20085
Question
What is the highest common factor of {{algebra1}} and {{algebra2}}?
Worked Solution
Consider each option:
{{solution}}
∴ {{{correctAnswer}}} is the HCF.
U2FsdGVkX1/UjSsC0pmRecGzIrtMQTXfd56lPlG2ccpJEXGBzPcpSVpF1Lu9Z7vmdMx8E9T8JzryDrus3lun3ilK1gbCRUV2T7fOw0+iUvOZmlN3k3yMCGTs2ei6lSwZq40ZLJNA1VjGFYm7w0XdExaEic32hLVn+HD5AUcb9AffCrW3Wc7jCicqvRhrUSpWV59SG0f15g3DkiFTaah7B2UtoyNnMkC2/OijtNxh6xnHbaLPIPzwyw/N25ycQFIuK3Dr6g3ucQfSgvqegI7haN/Kq7xORzJiD1zvaJe4DEj+q1L6dfq7yj5oIU3pysR4Xk8Ix0FjIJhomgOWg4SRVMxqmJXY100Q54ddw7H1m1YPG5iNRK81cdgKPRRfcOkU7wtAJbh1zzzCpJN3eldCC3VGE7uPveDNYtdS2FjrHxK5GL4QP03OuKVS9+nB+82XU5QbUGyqc6eVkZo/2rNVNNh6vrXjPyV8EHWxDmFYwz0KcZrG7ET7eQa53joNFbZPRAsJuyyUa1OYUTWBXwEqlYcKbqA5lrJyga3KMycXhOR9P+GYzqMlVLPnRM9ZwiRI5VWizvRlZ+rLbxyNOedOzvxR96vboI0UQyOrSzlyD/nnvyAgPR5lnwXPOIdDYRmZ+V2wH/vAedRdSGAA3YHuG/lVB7q96IbWIqZos6WxI1u78t4v9MqaqmNt6nacmQsOfyWjVDuoNFpl9lrpWyK3YXszhzSl+VaxQdwdzkQNM/JPix5iYTgWJGGUilBArOhaE8WNwhLpHTalBQRlzu+YJ/Os3YuaW/1JmCJ3xX/1KrEnS9NDJp0TASCkhoZau0P6O/ssLLgy7gS99fgTvMPknKmaGSFGy1uynOzo+twGpMzRgQ2xST9JNdyUmrJzdzJ02laQydvidzp8yJTVoCVfENNJsWP4HVCOYsUi988+lE6rdgq1oZ9Z1JwpnqHlZSckhtnQGKYrXZ/hICyeyc1wDKOesRc5ceFViTNJtVH7vo8pey+MuDgJd4GwNL0qYr8d+ZgMEWGKPagxDQqHIhtX1vCwPBz6gn0UZRNnRqFCdmNgHlEtQR0gQpLdCQarv+Q7bKChEOGgnloc0C+rXGUgpwTCUOQabEaiEXD3CPoCQd7q/5KeXSy79bzIHeHVUQd0DcM9jIMGaRYrVE2Zhq4m7calMlTsG3A+Ap3Ijdibh/7Vpyg+/dAT0W8K363mSsJ2wcogpJucuTyiqleGoNalNLTBsxnyUx4I/GbSWpQTRjnRd2OoC3TCz1fyoBfWwHntdpz4x9dHOuCd89o5GHXSY3P4B08zRJVGAB6/va+AATa+wROHk7HTv9TCcjjxWpDmUSgL3lW5+60Vj9zm+mw4dQ1f6SuuNb0Wb64aTaqCjcfmomK+7VOrusv0fmpPoecaqn2vmR3MCEl2BHr5ip1Xg7x3P8ii4wKKFMeJpoGNITsLVplfYB+ade6/iq+I93URuG5poOZPwe9qNnbHHxtWMbydu/DD3lzJ/FBxAmdXx7Efe1WQ/pZ0kFT2W6GnGWYhFTtD4HD7QDn7WRuWrrE1viIdGxqizMg1D8fywao+NBTEHUJP45fyD5ko5kkFA3rxyLUWiimQwgD83gi9fccdTfl4ULK4WnYuZBQPL4bwVNY5OaDvMkm6MWR/LAoG24Uvk7iYhz2D74kgIXj+GPahqZPfsUCV0O4TgulR8EKtoydLHKRqZyOhUNROyNpFwFipZSt55zbfoZ+MvtQmvH46tOWUVPu3HLpm2twD3tpXsZ4DwJq4tNyv513CwI8EQKV9uwEbBGcWNqi9ohb10kc5XdqfK2AY0T7lpNto/dI4MfGmA74cR70YsoqWTWhwKbi/CZGbyGdrluRq7ugHTbNB+dt4sHZEuXiG1E7JjDlx0A10oMVciRWZBaHQyC3sBk2WUWl5TpaLNtVr0WBPV3huDmvtKWHPuqCRV9Q0ucwcY6mpizYEoxRIR/ui5PWa68TJ07ASu2WRHEyYlg58Lxm/9pvsyf1MvNDwzhpAanSGAywXW+I+Jl9EcLnDlLYz7+7mA2gU5O90bPZ6b6o9YaVKiWaxT+pu0OKYaQ0toujOT9TxPgUtHO+JaX8HjGpYdOEKLhVmIL0QX1TYyH9UukTUq4poInEgav1eZpJ80HplCq0T46K/BaGhtZg5vpSP3FlmQW2G+mPYkehJ2Dsw56ayfsDQq5kbghp8F0meEMstpw9BwwvlDo8X/AYXFnDIFjevwRi+lM6tuibGYvbg/Oi0zxMdHwtm5l1t/TfvXPpEP4qpq9/mjDBrdmsmdyuterFB5+t92AX/lIUyFv2yvMo0ClZ52lDEkO+IspEBCjjdLtNUhrdv1wg8iPpMBBT3NJJwxJjhp3XySGQ13vRXVM6Em35cgHAWReO5FE/77ct3WwiyNzVuorKbpwviF6n+rp7mem75aumYgPj2tuZPmkZGFcwgZCZ/2M44t33gkqb7pAFDC7HYISrSzD83p8pv0kYgvtseXYfTZASbWSCwJVaSu7GcqRwVOoPG57DmjCOX9pc89y/29fPvTRN4RPUoekX2CO3Fc9iTGQ38ykJ2YsBKMl5QubktC3L2qp4pbW6MWNtEDjiADg1suVGulwXq1wq/rdIlKqJ5wY5j64WWwyz/PZqGKZKuVC0CJl5nETwGGxRQsGUi80Cz7gCDSly70f6ANcTAUHC45NrOscRTDgzkdqPQ462TzfUyUqf8GDyrkJ1zX8QplQejFJvCX/IEJDx/zpduyHM895AcDdDudbdPop4Mx46fkJC1pBrKF/+uqiFKPGA+e8ve4je2jFwZe20Rf4+Cn4qnYYLuVC12a4MO62H7twfNJJaSoGaQaVuGQteqt/fytaLXOuw8ui9bGqyKCgf1rtd4uS4W6Q0QmiWk3nv+ZHKuvG7OfbQmvgrTn15jJ/mHTRggVobTnAIDMKK/oVE2R6OMeLUjkfliE4Ih4LV85b7K3709KZwla1Oi8wv6c/WpJ6uUGQEZlGi4Z2PtYkvMo4XrU/2mG/4mnWapzGgOpKjvSA2wq9vo5hH+VVF2d6phz8C9S9obwnjmKx7JUt+PCeVbpqjjHNsEkmVIv3A6fGTsXlByDKJiqxj8ju2p5U7dC0UsAVqPRKgwm+bK6SHcbknivO6gk6MJpOv0TtdZMXtLJkVSlvLCn5C1nOMR+t/jbtsY7lxqSJuMprwKTjd5uLl9RvI4k3+dDZvcc68WR9DMQ+JMxOfXrHaKynYeV9ucTRtH7NvGXFSa7KP+gjZmRhmRS04WeNI18+zfKXqAhsvBfKU5Ka5P92OcHAaKf7jEMslXXNMmMUN0tPmBj3gw/TglDRwimkxjwoY9LgJgsVkHTgfXm9BUyC+6pjvQljtc5gbYga8DiUCA5ZhB5Odc5zoKDWZNSrCcroVhGmP/HuJsgGUesu4enXtUPFnW9yvr0lxDRk9iWm+usdUuigcrENpvkDuG144G6kNUYstOkDgBtLorDb6plIf2FERjXNvkhUl1aq9aQV33s0beKCJYFAGM0IUQB18wpe3YU/SkTdzTksAiD+ah1T0zhaRYZ7pX7+/hR7mT5pBzd2hIjUa3+ICCQ7/XIDEFsaOGVWZc6djN3BB0UHkIjqdl+qhFs9e1GaqHZX5qAp4rAtCtni1X3YwxAxDUvpRycxiCpVWd1X3SEQ+full/Q/9gietyeZjud4qW7C3FsrdKnzSr42vWzQLyu2R1BNJiWOCg/K4asV9Tml7eMdS1fgpKldtlN+hZN1KCbrrrU6YQBHl9bI4cLy7ksxpna1rIaHVdFkCAj0QgXIlgVUVsFDMlCWKDdERGDEKb7vcL40ne7H71rAXS4syeLFWJ+bBspnL/ca9RGT3ZBqyUW55DfDGbqV+Cxjn8XDPJES39PnnYOt0yzAW0iCnk2fY3jvPTXNzKNC4vKPGFHjtdW9s0LtSudyLnMR+VWzsW8KnT9RnUbtjY4G+jJXQgNDSzSJxPIn9+HOANx5p9C1zWC4ZfgY6WDUMwNvJ85WOC3fcwhuFMW+Ijq8CP+LyFUU7OudfPzy/BCUfFALUHi293GW/enUz/vghs62g2zgNSKjN8Atr+lXmzeeRaj0c1Fpzl61Q3541GvNMw6TIM2LRNrmg+Vl8yTKdSetcQUaMp1ZmBC7nz6ZkLF2uuyzp21AqQ+Bm/TTY9PJN0CP2yMno+yDilpHm93fo1qZUL5QSzNk1my+zrSP2pkKLPbjJN86YT9fGPl1JjjT+u+ca3FI1Av8uNabWhORqH9zu+ufhoPTQ9F/CrKL67gJLukgMFhy4bo4UOEzvt+Iow1VnaEnwQsUdvnpND0tZgFzqn2Lr6xS77OZITPbQ4IMNaeE2ChADSS60kSclRH1Z2Z4M7i9q6Q0fGmnNAlF77y09qm0ZpJfrZ4nM66KXNeXfhAcyW7XXLECUxAZphIAolqnytF79YcRr2jNAI4zns+v7aBh3QfhzkFgnYAybWa9e+9IcGfMzt6auaxtm3QbyCkdmK3m9p2PnN+PdwpBpZJKwKTKmqSYGuZxVLj1WoEQ72zvhfg4HtiT9+Q5SSsVNCKcTAVEFSETogT8dXghx+a6RkcC4vlCNOb30FT6qii8V/xNCM0WFdaj6vPW3Coa5jYE7IGDsQRXyksik4U5DrkVWANIxdxfJIeEX9ZFhooDzP+yVaNg/Gp4unWZ98VwFT+bjIP8Cd+gbt0Hyjo0G+rJvypdA+y6sHWAaoiIFK9A2hsy5gl5kgIQB9OgRqINP29Jz60xnZ0YUmA0eYVQIPS5FUuktC+xDeN2uhqKuLxxVI2se9RZELAnBzlCBUb71ZUgSMEIilIoomjIeAY3joAulJo6n/tSUK4Ht4MYKjGh/Ox5YBnPVoXpj8DJx2pksQpC+JVgxUMCk75AjwYUTHY6iB8ffAKENnbEDO4JPiinWlq+3GQ08fWuqih+048p+0nLdfD6932nv5N2qfikHaab6HpzyNcmcQVTsK9rx0TkNqfb0OTys1rb1YyCZL1h1U4mzZwL9rOqvDpiOEMJC7YR1WKK2y4hoQ6mMYgfaAvazva/wXTAcQaPJY1x6P3zsEu7FZEExPMo58h+XBgoBI4cigGUTmuQTbGOli3ZFaFTSPyZ8EF50dX5rCNjpYfoXtWnqx+9vCfZICZR3m4bMgQfDMu3x9uaCYalS3Ty4kEaSbWdtldNPbhisE5tFF5BusTJA/oauZldDoJmhAJ1+papF7+4Awr5K5Vs2qi8uiCSraXwj6q31mhQ775jTa30+SUJNmX0ZRpF3Qel6PmNmaYz4pSM0SMm6cMw1eRW9arMDZ8M/Bo4HVoJLb7bRFEeoXhMfzwCVUS/WhChSr+MSQcXRXgTJllES+rWS9VuU45ubSeYTm1XPq9eKDIw9/jYw2BGhQXiqAsrlzeYH+uymC560Ukk+NG22EeUSGQDxZmF3dk2EomZBUf9Zo4V4JesFqD/+UOOtZY7RWdA4mRp9B6JFI49H1E9AmeWA/Q4ajMOOj+ObL+jZvIb9FNn3cALBDbvzFHbTZM68YJTT9M/LrLIobWYLbJIoPxWrXx7Ul/4Szj+gUvbPT8GpavJeK6VlId/gx96kvcZiWDjupr44WbRRkGRsDdSTcQms27wWDUIZ7lmBhEXPxS/oK5ECAqOxXz6Z3M5OXaVJxrsa1H4VnnNn5TW8QTteKEBoUEMnu6+0Xf/fQ4iVuT3btBsIoONuZqKRwK3Y8/GJc1kDVy/pdg855TrWA/HwRAKfWMTy3BMCgUCxx3hzvKv4qkLmghMxxGhicD3zOOCebcHJL1139P5ttV3xVjYDsBWhS8vVx4wQ9TxWRFJHi371LDgBLiZkaJZMveGJtRlVE2iw6O1hviHM2evQ4/13/ucNlkaCNFnvmaJvG1tahaxEMuhm4LIM2JpCwCQCviESunsHo/EOaXEuCUoACDOlvCA3nijfv/gnSccmm65FxNCEZiIzqMvyy237wzUyBhhQiZmqzxWVqdxroO2wW5YR0TuUEmLGcQkd7jpb3OKgPhuYSKiE4ZCyGoLIQHCegRgRNkh2EdQln0Sz/rD7r0q2ZAJ0uYbaU7EQDsUd125GgQrYwHrMLIq2ZZNvblwxAyCxiq6swAI9/wmVoVgR3vg/VXyUDpGNTfLPjo41HHUr1XQ1TYbsZMN2rGN9+e3ExAphx89zZyHeltUezSSvYDf3AkwUtOSEt4UiPgxUv7d1/tn/8Pd+Uldi5oM+5QDhkzA0pmfnIh+43DSErRuz8hhKKHCwkfd9tVK4UFPOae/K6EPLyTNFO4ecJW2Dt907NG+q+AyG6Ml1xs1Nvv79hmSLjnhXQ0jY0b+L2nc83JYmD64o6VqFt774crbs9Yn6c89BWrQTXMQbRFz+KbFs3i7surmiY0ElPo46svh0j+yi1fpa9VvlvY7W7CsObfDV7U4/L1qvj6jTWYQze+iWCWaNfrrXaewoG4eBowtpcLvo1OwzKR02rsZ0JhCv4/BD9iuljHBXsebDLiD3jGe0y8L6tTdVxtLlNIzjn8NICZXPtBVsnxycOdIMZTPG7P8F/NRlH2D/l38gPRFszg0E/y9s+uMEJT5pTTavj/UzBVGc2RsvFWE5fQvVxglMxpKB+lg0ylzQhyYUQO3aVGwJhdCiR8ZohwLoqH4F3K3ABXsroKaCmAotdYyJXh+2wVRLqyRsV/+rseZA8B1QQe4a10byTuMB+bKA5SrZpUHMPZbANPwR6Mw6e4efUJx+LuSEBv76raNGeMPvECVAdDjBN5oMZAv8QH6E1XSWbAWo0rOLZriu0j4YWu97M/iMS/OiXJRSWpUlz2iv+2x2k7PnJ67qGE0taG53HXaBZd7LfjuDnldlyo/MGsBzjsYfIQ8ipLuY6d+2tetTd6tlq6wutkxSgFsVa0EGtvnNMfBF8erLc5HoX9ynRf3Wv9M1K9ToGtFJuw/6p1XvhFbuwrJK9tqTjUxw1Y8maMMx92xGK8okW7jey3XlwYAlJtxoZJfpOpuTwk2SZksAVUzg+5mqpIXwKcmwx9PjHjh4zeMc/EQslkfBq3RwJhNVJr/0yuQjnKP3IRMhfVbxl1gZTExuI49//6LxIVN1rDJ4rFUAos4cM9xfAHKMknVh2P8+p1GU1r7dQb7huWAA24G2HBKUO3AEHbN1sOsGupNgMeWMoEG+PpHbQfn+4BD6wCHKNEbivAilNeuhCCoOxGG4rdKLFaCjiEszbXku5SEmVCwIM/Tu4GVugDrXvFyHlSns5ZzJRyxYilRKAVGILiuxcQcJWQAsfidVCku8tJ8RFu7VV0WaPPYuXVosdrcL7cp5IKB0y6UIk/n5bZyhZQcpd7UWNfKC6jBfaxsPhh0USal7bYxq1tIlfzUjZ5WF57SIRRQc5R8JDVR4ubxCZWdh3xrRNKGObOV0atJaJi1JLBWO2pMArfw3jwWZPDYaD8yCo34vlM/dZB8M8gQFA//s7wGv36SFxUe4SPyqixUTtCZlfm2uHAdPiIW1kqqKyEpRW2KYToMdfOulD3Omt2zYRlFgsTvej7R90uc2k3A9SXZHINl6wxKcsdNV1iTpCJ+7qzSzS3oBpt2DbrWWv47ZyXJkvOgFSaL3Ecg2n43y0wYhjkIsWL2j4O12myzlJWRO2f0UUsCdWCXM25/t0SrO0XVAxM3aiagixpzbFnC8y+sVGR7/fRyA0zJYbdHcK384JlOhvdZNZ7/+sh/3BFRcw0/7U44O8EzULOK2h00q7HFVg813XBuQIHxoZcuFvCbKOy2mRVw1pYx+utjFE2r14qkpBG+Nok5boz4+mi0SRFkABBPKDbsST8J/G1jmc6pcEcKOwqO2nRTmUQg1nNiwJ3H/XZBOhORD94s4yiQXF9PST2Y/38R3E9rjce8FFVibrXXV+d4EaO3HZkys4MsLMs1oe8vlwL9TA4kUq9C5nwryUqAMhUW/H/VRHiv5SwJpvM2lmw3MkcK/Nnz19VoxZiy0mzrBsC0KS1k+UAW68VL2YKw95iahil+a5HJC+yaFUyu/x+4appG6r8YenqlrxCxjYH1vAovr7xiHItLqbmmMYvs113Yigp7eH39uUlhLlAW7XntXL6jMJIkUI8OUi+60mNk+kLX1ERPVkAKYkpNhDijBy/RNoo+d+x8B6SwpeVNuqi9gaUjWqGmz2gmExZhtNugDh819Ex//kuU5onHYcStTpBB5+26QZtrO3aQ8ABxEPU6LB+DTZZrdblAC04ATh6pODeviV1GEEJYnlEQwXVRBEipljEIgf6b8wPvAzHBzDxYXkfw8byNWljHr4SrDkHWk7vq3N4oaniL4B57VvfSydwvJIzjMvBPiazjxkXyPnsOT2n/ZGOHcTC8ja+pHK1U/pTr5nlHxzLk92cIoEKwTOPypRTikEKLmK2Q3I94CSPvnnU8tSnQJhnLlpHyofGwkwdQUp3kcarjISy28JHIqpreCe03Y7ipioXIWIj2O6aGllPtBEidypiUQ+SDBbFZpywLhb/J2NpKfwN7Pk/0EOECGifGGr9GWmukjdtptaf5cDFbjhWePRaYpeSoB038X2mn/HUzXkQVlV1+L5XWTr4LKmfbb50u3Mrx80E32AeYk+k/lU1Wlu5vVyCGop0FPhwdGqGBoiLs/rxnw75D+HgTnJBdxn382U7Dh9u43RzzZv1GzrcfysM+RbbQ+tjQC583gPUaKHhBRqelrHQ72TR8gCgoMoipWREvuS8Zn7+d6h74MbDG6iLY7FZM3FSdpp1CwnFv0PuTV8EheumiSVDJqa/EX6p94Aq1xSCxA61Atuvk4cNc8eqjlJwXvRbcXRUWmXl1PHJ+E2iOPnUnqIQae2U1dXS7cWO1QL6drGr/x4mdl4waR11aNF7DYvRsOzdPYcZKgmQZhXntbQvpYF9PQlEmZ1SwCykb1FNlwFNi6+t6caqDy3Vapj+olEY9FyJMr+3q1pcB0vriyU46BnitRWIlv1g5NJiD7DB6YJnFyX//qrmes2LKVVYWKAesaFU3VLk0Ts5GoKznqovmzIwZHE8wdXYiTf9NyusLJafXyfRHzeCdS8XNUjJzPX7JLkfOVange/T/dadtvg2ZZ1eLGNML9hR6qZBUERbDEaMncOlQ/htYboaKGv4KZav/ej5jpbxDrdZmPpRTYgS2zCGIIwHTHn1E5SsGBz+4znx6RbeSXH4sOizxH99JANYD5Pgfm38P//KNffNtPF4eN1BGlN2XRGEKlzUzCFw1peGKURBphoi96+H+NYA7W6OyvLCHrSRyDMamfUylfFEMPrIfzzPKdw3MCVb64P18m40WMyLmjxpy5KrKtA7HsKe6B3bQHc+aH8A6kPgWAnZ9Z0RDckbbCVpHWEnSDFP9E25YD6oaBiZiKmFXAHgHJI1/z8AVXYDAJu9RMXFc8xgOppcjKc2bHb2sfY/auAAnDfq741p8WcF5/Z/P+q1jdtgXrYi5BfuMQ0iw07kQJ4kqGvC4BZIBJRmmgQx5n+0OOlLPbNC+8M57lYi6XIUvYXwaGUr903TffoJtXOrhnB5qDg2asTadfnMu0nLbRAZEtil+Zl/cuI3+ul59yjHNS4ha8jNWp/ZXy9eF9b9ow3C9zl3FY+fucFEAjH0IX2Th9kyR4kNIbv4IV1u0q5Vo+OvdcOsOTszwPJqOXgk17TfutKzUx1j/aNWagJluvP1NTJrwnjgIVjZTK6TA5M66ALSyuoKQ6N5cma+cqKFLyFSq6QNbcsGJK1geaxezbAm9Az5M2c4zS18d1kLcm2E3xonly14E3c+p4v9etO5k00eogmyTxF+Uwy/Cbkif5sO6fEC9AQ8U22o8eMcndYVe/oVU3/BSlAmA2X5yzir7+9yBBlIJs29tutf1QmlS66JO3VOyIpR5lvcT2xg6Ad/lMJo9wN27IzF3GMK52Lnz33Bh8kDZncBipbw9uT3luBclhBhK+mT9cRCpBiHCjVdhoucH8Po8qjtcnLakprIixaXEL3u7dRgLaW23wn2rCG21V7+6wIOSWuM68364LkUiynRjoyrcgJ8F/sfck9E4/ifGJ4oz/6IQ2xbxF+AlOWTph1OQh7GXkgYRdpYJNJ0DiAku5UyVKT+vo4ua1xF52tFA6+hycqvonlqwYLvg3mPGnl8YD1w0mfy+nMwjp/sHHe3bU26uW5EAdhmgGQBPKzxQHS6WfqQ5fVXjI4kc0VNlV+lu7PcYNDizBugbZruL5y8ZjoYs/Z+zhBWLuJQY5pm7h3dw0LXh2j6u4s350IneExjnjC6NZ1nyJR6pcbbCcp90Ocz7BJkdBqbzf4PwlRv70nbhphvVT9Gu3Dyf2uDa/LxTBoZppkkFRwDlK9cYAB3zI4hCfJEYxHItsSc4egTWtzvbAQ+yd+ft3nZc+eQep4LW0qsnaTNMtjIdj8rpn8SPalc5yp1LTw4d2s20PmVT9u6fmb1RtS3TUQNZVm8CESm7I6rQn4hC2t2dO/AtXGhZhORHu4icA9NwwlCKfF2bHYOsy1qBFcAQTVmSxQo8hujXexaYZGdfyHGH5Z3299a5ZnBPnyCl9c7McLJZpUd8ZI8iy0VIitKjw171tfEv43L6J5NjLj4Vpi9c3r1JY9b7prJ2Nl0kISHBnnn7RwMRecsiajr4MYOHdNbTAo/PyP9dr9/Lmsp+n7OUovT7NihyLKhdGxV7JgJmUG2NtSLezp0uIOam5vM6KhrZiUXEJ9pp6mO/O/8rkEpxV9ba9qIrqyUTib6yZZqiwoQ+AdIhWudq6hWUAsC8q4QQ+Q936T5fT7RFdrzWFecxoWHGvVg1PCugh/ipcEGxnh8mxTge8aZwbjJTsNBl6ppq+RkvHZr00fN1oqh/FxBTI6ML9d315hf/A3WW937ZclFrcyc1MftHkv53Q7gHn0VOVkEnnJPtj4KBocDzOi+ac0cCA+5RwNHXizz6qThOiuwI/EszFmw63jvBrN/vcKXY5bZ3x2k/OwNE0YOQ+9WAOXpDfCcGf1cBJSJQJnPwmILJlB/PJwKbm4/fZkC5o5+5HWW3o7vyRv35GxuZ4uw0J+p7Fg8TXjM7xrXp42vKu6QbOnXOFImwkPAGtTeu2J74+DzhgXB8Ik3DlgoDf+yPDYaQq0GWeG1QYZqMAfqfpq6wJKmM448hwqxD/Hzhcus/6f1zVQARSSTgwj1nB4RswTUUUHGdiPKRHwOQf0AIKCTN/y9SkXvxsZx8K0DtJjj0LyxOeQQ8PiC9zuhJTgk5CO9++d6RWlg50oDxsd87YUZyC4+KvtHwV3Hx+KFVKn8UDjmLrl/1tacNyIyygADvNW8T/C832RQEsQsGZMEiDXFH3ilqZQPpvDQqrtNOMR6QYbjvFC0vYLF1uv5Ra/8Ov+2wIpTyHqqOfIMxA9BMmuUQpKuJOo0sPOpEzIcLmqXHTV8clhcMf3I5MqVJruOZ84FXsPbFBtvaKrRpSAb+gkIwEYTm57PoD/MjlrZr3fL3m8heOVCdD0amf57bu6xJRsI5Rt6I6dHKwHE/ZdxBlL+ON9siibXorU4C6kajvVvee8MRstsa0xy+Zt0fcxvHkPF+DJ8VZSqBaMVXsbYEu4T+hdRTCjgrtqtXjTUYX0w2NbCZuWKG7XXd1DKRSy88gXKegKc6UXkF5EfsnhFj1kABGt5vBgw7NzMJpwADaB0aWTVGOBEX9V3SaWhe1UrgqBqjlXdQFTuXbejSkTx0CllwWqIidU28twkSGxRQKcAW34nl9M0aZhgxgH8cO1vSEAePFla+0KKtyp9/g4QOalTzP8YDGraNq5Ljf/pdhU/GRTx3DrXBOylV9dnIY=
Variant 0
DifficultyLevel
570
Question
What is the highest common factor of 6ab and 2b?
Worked Solution
Consider each option:
3 is not a factor of 2b
2b is a factor of both ✓
3a is not a factor of 2b
6ab is not a factor of 2b.
∴ 2b is the HCF.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
algebra1 | |
algebra2 | |
solution | 3 is not a factor of $2 \large b$
$2 \large b$ is a factor of both $\checkmark$
$3 \large a$ is not a factor of $2 \large b$
$6 \large ab$ is not a factor of $2 \large b$. |
correctAnswer | |
Answers
U2FsdGVkX18ODFGcqMzXPgtJoaUY0haHm8e34d2sR6z/QTrYdmymRZfAro+BZZXuiP0uovUa6YbR0jgEdbwggyrDdZ71cKerPp0avG7PDHTfmE/r+42ufnJ4s2mBO75XTnY47+b1OoIMuqEJAtYNk4GVVxl5aYXwuQfwXKXRrEQK+J/MXyfMD/GTg3P/UzvFvTx60OR/+A3LlTxPEOA5Ekg8S7OW68s61qKRVy7oU0eGnUZJB2bTL81lFFNZbLztYxjSo0FMWt6cYTltJzmL8IcE+B6TQysc073QznpgpApAOcqaRyWRaJK+UztYWjvUdNpzZe1utmFxIub1d7D67MetgRFol1Iz07DU/KlQrM/Yt9B5nkUFP+SUVEueHoPiOUnZB9210Hbd2+N63O7/YRdTIw0wcqmRs2tbqgn9XsrZAUBER1al6uLlZsRqpCcsamZgBJ9XBDRNLm1+EwCQP2CEw7V9gVrl479YoCfypZhDO2Ep4/8vL6yLQWgOOSxPZktKBv+fuYnJYvsCgr+OXl26vZFzMI7fPVI4551fdb/b44ntHGzhfEJpBYIFvnQ03v/6fombYtgDeOzHWVGm8mW6CSkws9LnRzJhv9SkV+dgcG83mzgsWLd8Je6nHqZJ5tE5I0nMfU6PRxFMdld73zvbqhBAJTKmdKNkEzZXekszphZDwiNNk+OR+viRdX47ie5f5OeeCnZUKGDoZZPsEExf3E4ogfWTMlmXM2Nd+KF9e1yL/hlq1L8NmmLV+Ai5jXFialfBNjnTjaN2CVvm0CioiK3FVFXIGZzFVtkzqUVlRD3MxNp6gh0tZIexCo2HzwMCdpDsQYZluTLDRKwh788rgxUx88NXym57H+vBAcV+H/CmRboJL7VvJvFPv6CzdRnuOA3ESKyVpcVSfEolMu/68/3WjmKCZpWhxaZP0iOBnkDOl2PAN0kCBUxJZ7bzZTJoBDqXIQBljfbag7UZn6gLGyPjGGKwx35E8FQe37ZjJxaquStg/6tRMtxtZqpYY+OWWZB7wdcYvOUNbRuwSsTi4Em1Ai67VfJ+/Sz6K7bnUN9kl3AZ2OrsyW/g81Nu3iN6pUzsQjPCg7Twv+Bn8m1UaJJFTGrx5BnJGsttSk4y4Isyja8x/sA4Z4OV4BQOw6hyMOpe9RdjetIC32phC+BX+oENupDx3Ak+Ck3nsBuydH7rwwZVjyk8WE4Wsv4+zZTyj3EguZHChLUmrHqMtLlVoNtvzobUxka4VjN3+85+YoN5MgbKy7s+6MtlPrxU/tE4VGNoo42aNZ8/iEUVKqY1obKYXJYv3twSKmM3VEZMLLExexFQPf6VcRQ/gndgF0iYAVHavUAwYYj79CoWPKcEY4lLKyv/y2woj2Pb5gSwXsWYi4gih19tg6RrvAVI30lIiqvnKn/LxpBg+GQNMLfzyRYdKZ2ukht+xnxeNmHqRWqSYS2ko8nnZNhzjOvxXq8qlGVMeWuuBe1SoSV5bOAR8sUyPyiS9GfJTPuHhm+4zLhlYhLJr/1/ocwD036Pj1UnkBWPUK7lCjJWTUckIDsMdoqFGXvKN0ExRfRAd1O5TXh5HfNr+JKyd2FpdQRzqtEGu9KO4guRwJZbem3oGnPLtIlSxfX/5OLq0dhWPRzHFlCgfJoc+fa6/eOYwUnjZABLXXHq94aeIuWNQ1okkrdfpPPRujZjB9F9RnbFE+LVYc4p8+RM/f9SAdqpAzrbguezqXaahe36XMqLtoFDmbUQMVQM1a1HH9dPfl6+hdFFalST5zZUDIfTh+RvqdIIDrrrpN4rKBEkm2JIbgDCm5lQ/0IMNiuGJ7duFtOo6Kv1TEI610V0avco1jqZDQO3UQnyWiQJ481mZO157FJAZfccGv0wjPUNujgQZMlxxdr+9b1UStY1vSQqdS1TiliM7V6bUX9IdLyE3idDGs2eNHBNfLHJz8UmcJgqpHPHLlizWyhGTi+xm//QaXAgVAJB0B/eqkMaT9KoOWv2wj81jvSt3zykQftImTyMdVSJDvRb+JR6UCDkfcwP8fBUyGvIRVDMOAR1anDt84vJCMH9Xznz7+cc7KYUmMznk690l+dFq/GFJ4xHZsMTFOxwApnE3gKylpm/ZWVEyV6xa1RmT3V81lU1XyksC06Wjh3xW8ZN6PuHB1t9ZonlB1ejpISP7wVdZL+KvJ6YdcYQ3QKEwuVjAdyGE8c7gN1Qti2d+TJxlvYt+ltJKE6yb5LbdyN2/31fbgufiEmVbYjTcWiY/xVjoFDkHu8LH34QH4w+BkUXg61CPDJejTQZ9n17kGIEybjs/82V5D2Lqv9ZboWkAh4XabIL8FT27MajzioZGnqCDVgZCXZ3B90RcRCvslpIeqDGVcHY3c6XZN1Ubc7xbSojsUTr8cYzTT7rSQI4P5j505p3c9xYmM3c91caKBCVq0mRcRaIvY0RIlurFKiCqKZb6CbC/9IQphdYjt5PIW+Ag4UOznyE5SQWK8ZXaLVaQqOsfnmeJjVj8X1dm3YJgTKc0RiBeXwJjazs5IyxbBmSHl3muipIz3xz2UoukOwHVyr1x4+d+IP2fU/Q7Komxh4jP37q1KxP/vNM8OLVslKUFqzjfXNrj6FbUNdu0uP9ydCFXy+A6QXcUF2jfhc5YoF3fV/BUTGsXwYrcpgDBNsnugQ4O+u2fRMc1+7sSsXLcbz/IPby0+egfLtKJieVkf01CX83J6gl2sfu1b0Ajn7qPgA5w6RdPmmkRZuTDI6+fmA0ndVw4IdhLDL36Mc8OURZZ9CAH6R0e2nZaccv8QKxKBQ/yZxdYu1fNATIlW5wVF61Bcgf8MmPaqUUSx4Y8EZVgTzusa/XeX8SRODk7IkbQVIsfaK4Keu79ztM87fCNHRkFG9SoA/7NL7FlYIl74v5JD+Ah/AZ+LDqNXzVBIa8RPmex75HIITaZMbpW/QerF+HvINln0IYZDjNWre7QSbW7XJMG3g+vmXgyPBePLlekBRA5yGKkUVY97/ZXnM287f/tfBdeYhRsSIMB6zTzQ/pvJz/a/c1X2kdh5Z72+L0srs9Om4v/srgoKJZuvQ0jQOnWYM/KeyHtiPcjvm8bCf1srfTa54TmhAiKLV+iJWvZqftHWCUvRdeMwjilmnqMTGLu2KkjVFvQHpicS4B4UAIW5BqCzWY4t2QGLkMWN9Z3f/IIJ5A8DY0H99w6tizIWsNg570kG5sxSV+FUfYDD9Rof/cZQuHHyCsBEBhocEk7a8Zy4fwWNkTQOoIifQtwsCtyJjTgpsBdSyJkprZ7WotkFhWS2SqrZCHOsXRwvRdeH+RUALwkt9Ev18sIcuLu94IptR9wHtT661BL8X87mdyvYIH9KCQqILiAX/okhZgonBGbf0PhlH8x7uLgHlONWSYnzq78cvBkYG7xY6ZVVvhDF/zlXeFPlQwoJsuQp86YGtiJsxefGBXh6W914vJ+zbhmLIVLBpfOqmHl/3wfqo+6iR9camx3pWDH80RRLDvhfrmIqKesVKroisb2jnujIi5aq/0gouY8TlY0BH6Ug96iWfkIR6rFvXw5AjVTEuota0XQ0yW30eKYTcuTPxvBd+L7g9d7R/kV04cXvVmVFzDWAo+cFVchLimfHn2s3IcRphqgsxwVNtADGUqVgkzh377PbnfYqkYdmolxEhOjP0cOp7y/tUReRbUuivss3pstyBL+GyYQFB1u1yndJPmBF4erCP35rex+i8aFrAb0M3JXdTIVQV91Q9ZHbmSDbHxhnVTuHk/Z1Es4YY8GcbpyPU7lsJqm3wjrFSfIaOm/VWLYPFctC7Q/Vk6EdlkN1MiwmzFHHvg+U2IxNgx2YVnfo3OdidmTfBHigY65FvzzUNfE2zYEVTtDzOph66vAuqYHa5JjSPMqElhqQwloa3YmrUd8AUMxKk4meqs88TRj7XI+3GIRn3Fb6WQBguPHeHSDywvy0d/orBeeFK3MoeP0aHhZqBZkZWRsqAQP8Omt5tlF7ljZTRptkJ1MwYxNWLMYPiZ8SfO8yYZmSl2EuAkn2xrs8P72aWUZ9D7DB/zA+ZFZaxOI05zp/e4bPWGtyzHY0oOdq00c2yM9tklj3M/BR9aJQhtCsspYxIyFQYdv9aTvlym4zBsdzU6pvyY3dcj666Pss3B0P1g4+4uorQvLbCDU6ZoBcGCw0SVew9OeFa2Zjq5+Q6gTHf9lN2cypiYt2PfHaOy/J6um5KcFnTordkMgC5Hki85jSzJ4/FjGwYpsB3m06SeCvIshT9fY5MYblyfMEOKQN4ahBeJHELeb3O4qL8V/hDoji51/7dsiBFk9XpclhR87OPyCmlfoTqDBtPl/ACgARPNFyXNLzE8zFRFLIIwZ2mxbVEM2yj3vzu1ZKb9CkHyGzpcrdhE2/tBt27GDzGJko0+w0Dvel1Xsf7OqBAjdRV/JwYnr+IZgAYSMSZqDvn0lrCgSSiuYBlsmEH/Fz6nQAbLkvDs1IrsfUva95YBHzwKfl7Oxv+TN72+nd8JNnzKoNRW1Nkm4QaoAMmdojozr+YaWVXv0LcHwxHZaqzNOKq/tyAC3HW0lnucg1zV8L3fwm5uFtN5UGb0kTkUMLrzf2z47IJsD/lRl4Y22iHuvCAfyQOQtQJDov9oTqMX9+N7wNCZ0cLvlTF4w54hjs6EN0i4+hCZrpaqT+a61Se40loQGPSWfQgPzs0qVj/mAIe+NBTuaqfsyDSv169fVARWuiRF9snD2OdyrSQLKYpL/pMfPFp3blYHJCnyX84XvmzhUt6Blmoii7h4SmS7KKgk2EshxNQWpHi4WlvqanYlsWEXdFgGcxisKbbnP4ilxBWZl5KNESpQfxNzagG0de7ifl6GdadzwQE1dvY9NE2noMOM0iRdy7uGDpzma6W06bguoL/JLONOEoJ7/64kCqryqaCxxmaL6YhWHtUOhp69BLes7HTZjVIy4VWJhl3Y4LzCr5HZ+VHf4fWLd5MU3F5NA4ukTKS2U413hYRCY3hN5PXc/NxLY0y2ImFUFHHCNMkhHRVAJGGJ3KlT2CSpcXfFLA7cp5tE9sbL0EsmO57hux+NKOJbfOQ5L0dMsG1FQaRh+giNq/fD9pwsgUhNbbvFErj8Mk//sRy6S/YXKBcfaSKOz2W4X7aytvk88cXpZlE47/zVJG+9G2Bf0wgz+2C8MLXn1YR33Zz5+yr1aSPpdOEcUHwutke3qdRAVWCWZE6915/3Cu60dc+NE+dLBnzye7HqEk366PfVMMsN/sMac9r6hUvEBfmAebaaBujxChIWJphVERhdGxsJmFvzu3rlnKtnt9M3AKhnxG9nh1bXHsKUc1/hzvmNdF8aOljyDospzRuSNJilC6WoLNMmOz+nARYH3+4bNTwbWKtA6+Hk58zI5viWM/quYan9d2P/8sTKdOM7EXp7Ck5FIcdoN79dOCyMgq9Q2ikFiepe7d4H5XLQ8RM8R2KQLR8KTyNRlfxYqhbHtT0V4QukJu2Fh76aPJmznFOInEn/iQ5I0NroHVeRdalvpSFhXfxxunj63hURAO2QU+ubbN51mx0oJBxpXUYolQD4YnzCcb8dwKjFaI3t1NfKctgpW95wQTorS35eIxmcXJydqpIQpYdkYioPRs2fJn/sN9beMT2useAW+dnCYxHyjv+4oW2JmoPdgxW1C58pWFMAw/R/eE8hIdisWEx23vZiGKgSCrYX1sQC+QRr3IgbTsr3OhpzHbV7Xghmcc0g4VlgShTjAH0/USZ7lHO98LekD0IoSPMBWveH0/3i43s2JmHXBNgzGX9rnQu/XuJ5wldqWladhe7hYNv1Undt4pjtOfFknVjDbxk8Vvfp9MqlE0XwI6nAIaObOvEHy/uhHnDPrWOG5tBvco8i1NahiUZlie08Ej8ELpCShwrf2k9Q8OwD8Ja1QY0k8rCxe9VFHRdzmW9K9EQC5q1CoGFX7J8paQJg0k11l0XdhlRNe9l4+rxDryZs13QMcEx2zpYSLZigTifYJKrd4n7mDbms8kh+sucY7qKVAbD1xRPs3SwrD4+4HTN80foRHuha+qq5U7lVxx02fWSjKz0JGaLKLO6Ach8grFdvZkrS0sxkQ/eg5mbtL0zWZCUsDlF9xIDvtOzJMfrnXzX12QbZtNbWDNVHi2vhe35LYVAeRe5YW6rGpzIkKvCRrzDrc6mebLNteplMqJ4dgG6Nq+SzWPt0VV6ihZpUpiDKid59Bs5p/p6jUXOuwum0Lou/nFy3vkjZWtdcaYlJ8RGyt2W9e8zoFLzmOLaOlawCWPPvwjnH+aYdZiurxSz5+8g/n9px39jOeUhKofnLB94bEa0dAeX5LRXzHVks30M97zDZ/k9pIhixGYoS+UEO9q9/23ePaVSzq5e5UiYwioAwB3vK17vXmacMJMmG/lfY8IUvavhRjy1i8Bv8OSo85zgwXGvEN1iTjdLnD6K4bDP8BnRMWfzObBwN4mytrp6I7GPeDASQWKcL0PLxNeDduFixLmH+TQ53rb3EwK8GmGKtMggDiRSdmAP/8lelatxGgEuD45QBPluzc6ob0aeulUR84GJwWirXnBpMYza20TY26K8ndXBa2MeMExPdr71Yq5X7CxVh+0f2Uj6p8G7HE8m5h3L/tB+ooauyNqRoHkLybqmSffV0WgbbkUB4gfSjYAdv4Gum8L5uFDPfRKo3Pe+0xks6P6Ct0TZWNIbbL/qj3+BMK/dQyO5pHVYXdUP2fmNWdLAVs+CVOW9IpWb2HosNWp6TkTt/l5yAOBfxK8GPFvf/irKSyM1T0spFOdKesAl2daKNN8AR9cZQTfrsbbZDeolDiVbSdiz+MJBxGsnkhuaTDfmZKciSlna3MBYAnkg0lWnQ2F5Ljr7tF66K2XrY7od4FXcDccSLRG3U3RmQ1y4wJUgg6EITgtXiyqCASyEsBhXq64rWOI6hY4qUYBnYaXx/igG4CJgaqvAiOcERzhCvBjCp99Aoy5uKRfRhqRwqLCFswMLi8tvrBufsmlk38iZGKLHfbk60VSWsG2qQtNWpiZ9dmFHOPPECNqjHv6N+rgNXTRs2arF0PTURXmu7LkvVNJIvxVqt4PbFil2LBgagH9ZMnr3/t+gzix7aZopRUO9gx8ijpoaLkA7itm9TI/2qOnmSIlUAfwHjLk5RuSetHp4WLRVkQ1tEzjE07xVMP1uq9dB97u+X4Tp4TJpoBTLT9aycOvmyHUNrp5eEDSI9F349N7I4tWO3eEmyyj5IbPnjWEwrdaIdTfnFjmyPWvpc/Z7zLqWwDPgmYmU1KqduK5rpawEAWV7TYBKO1pdHaAUXWKxeZtACo87sAqiq2MKGAtYfDIld3uht0rUj0qJs9i5x9/Ue4UZVXFd+aVlO62eI4S3PK4/ZP/sg+VA0JxkBV8Pgg1W+s7JmCqxqJ4PmXiTJxpaJdhONTaYpJoqWqGuAe7axgP7JInjtm1KGSdU06SETA+77+ZECjog3g4VpTvFc7YY1mggPG+dffWKZYnW0o23IhzccgBM33C70GRnJ8QcFUWoww//p+ZgEDFUQcT0DNeS9oa7xTf8D/rTUrICSuwfuz3vC39+sgrZj+fT57YMaQ4ZkSp2bTFRIAFlpUcMUSmAPwOi5ZEPBYsuGPc4tF/SUgWZBH5I6JJvwVCeDzit7gga3sf6663ckUlXa5S9y9TeaHWodfUDY2btpF2n1OLWGNvCdwgRcvrQWp2RFyf/FsQrdLXr0ZVqOuO+4o/srEHqhteGKK95Ej4qbRiJgRJ3/F4sdBpZPcQ+FBQqqPNsUzwLag57k5gp0ueYqbAEu2PUbZQwN5J+Rhe63/P7X5BnzgD7sy1s5mI7bJW85ZRMoI4TQ9JlNqNQIIxz40ZHQ8Q+dYkM4RbCj+f06xh+tH3PmU8Re/k1/tD7xRGRb5jVkSYBTHMcMNOfqxRiHjQZUIlgoV4ENfmMy4VA52S+OfmdcYuN7McMzoEAYucEU8FgBXwBiTNfNzYMV7Z/vTalcQsqGPZONr3nlYQa2Av7B6gH38Mf5PoQMlU7bK7TO5JCwCcuV5RNEotnaA8jHfEUJfIrdaz54dSeP7+TQ//LkDnGQJ0unjOqIYMyzXcKklBrePtuHqOpq6u0MyvORVza6UPz5EH8xQMd4i4xPvgOLTqITXLVh60GlnNb9qYRWQsc4kiRjZpbEsjFdKo+D0Pbh/cZ+Ht4FGTdkTZu5NrCKpYEVFRIORl2dCZDz5GvHiyzCY03HWRnvoxezlzsxQesC/l7zK9BNE2DK9WE5638uTjGplVA/rPCZ6n2ssk2vj6H0zkfhJVXJNNG423joN/i84iRgWMGYdI9fxlx8o8oHxxonJJ91MCMFgWXQ5ue0TS7iUrb7f+sFoYln7FBSFFYvV3u6wCaKTc3QcPFF3Yc9iMN4biKR0BO3rG1NubhBTmy5KbcSObZ15WhOzBjFjIyFCAs7zjOh1keKsPolgv6+8qIQBXcX8e+kmK8UGDQNX3LZ9tWKGVaB0y600pefS7gjJBfFa1vUZQn1F3lOi49EE55wTlnfZvyPA1JMYWboidO1cdhkKfp4jtuxCItEVCB9kdxBYOXK+u/eLWHxLVEiN5chLv5mDDFga+WjoG6P04TY/ah+ul+Nut7BSkLk1J68mW62ypkoojloAqp25Zn0USEDlZEbkYWHGTx+4ktnjjCOGzTtjdQr1hI7WJ1ulkqT/pgToIuYJHuJa6Zpl/eW4GbCKndt8bLZv//qDeginh15NmR/iIRJLxpJCMjyXaxsE8KALnONxb0tTesIRKpMnvrAfg7v/CQovl79onSWhPANuis2c+R3jQOsoNJvvAPeU8fzsB9hQ3cus7XuTBg0DkkXBXR1W1acnE7tQOKy4dI8lo1vCjyUSmjSS92+YU/FRpSnOVpibcFo9zMTPyJw45ya/qvOGVDw8xq+qsv+MoZJEXS9r7gdlwEc8p+akVkevirrQkjOTWXHc1sVMD6ccbDsyxBsNxnl9UI+jxFeAdwRHie4Fu1ySvUdMNo3Q0JvhG8uWAoVQD4nfADmLhirEalUQXM3bHVV957HFvQI+SzL1s6p6GIpUsfINzGQWaYVeDbS6NU3T2tv5gkoqK/dgLefcvnQrLpFgXiu4/UGUsRTT05Ck8Uh9wnEA27HKHTKLbfw7p9rR8h3jGA0SoSjgE5zt4BVSxKK/QBCumjweMgjR2fqjGTEs6EFjjbR/Wjfesp/KVsVQsoryDizDmCtSHpLBPAvoET3szSwF2/SeA0Y0+/dZj+BR2m2Ui8Q4JQcbr0Aj21DtioPNG4urFjQ9cgpCHH1w/Gn3/MSu1srvjlZSNLdP698aEpeZOBNPrm+eG/YaWu45zWhuYOGdAbL+pOnHZpEXZpqJ+NuCqP5YAr/eXalgL3amw/ZewMWDof1N5ZWiP2cnhSVBJWgDSqan3nvG8tR6om+7Yat/GdeqjglPWom+SBxu+xsSlRXshxKJ0WxjUJRm5I0et50v3G25biu0XI5gym7JKp5Lgn62JbvOkbG6NFnNsRyn3XS0c9Pp9bWJmdNu+/Sp7WYZB2ibbtj4GJclSAxK6KgavVv3vU+mFquhSGNozb20RzU+5zypc7DxAR9NObRxD7O7z3J7JzUyJTvooOwxkA8PfjNkfGzPjT0JFS+HJoJwqWDoN0YYxr0uIA1zmcidZYkNzNBGFa2z5o3QxH86Rxsr0c0AzUCKjeG6pDMzPXSRW8F/+TabEUPJk7Z0PZCavwqPHwRv20rAQvzywSEgUmM48KUdop+M+une5/SErroRo7Q5O4M1DZWI7a+RNKSn/6tTeg8ZgpxqCgLMrZ/flkJD4Bw7eFtE1vlvgtVCuI6nkHTzwQlenjw8gW91JdyEewuqvyMl8m/juq5Vl9SFy/HZne7V8QXiVUz7abzfYG9WtTxWaMM18GfmIcOR2oAPPWpjXxG6jbJR+9iQE5CypQ15BPL/iZFIXgRTPYKgLIZsH8T94FWdgUFIFFQvS5C6lN7AKjMG3RVUn9JLWpcm2Uhg2mpNuJeoOb3VsKydeGjuNVezW0JIn4XLxjHPInD6ACj52HGWAZA/ktta5zrA/+ZBekh0Fw9VlRdYfEZEyYsiEgB5WqkeFTBYvltIf258RHdxTPVD5H6JPv7iYLQlJ3rquiwQFLkxxZsI0R/vP1n6/5W5Eh+XIH7UZsp8w2YTjk4n5HSMLjsEdVLYJ2VkfO33VP+XYyFi8tPE44Gmh3ykmAaJPH+qvooyZXoMo8o4/BdBtPHP3q8gcI1c28zjHsmyGkgysWGO4SheSCkvC0Q3e5mXILrX6GkL3TJaIvfiH5lfEoimui++lDPe11vBUFPk4J2zhL+qydFxqDYDfNsMFSYntg6vSGHS/UXztPhz02fNwm2WcIAwW7BQsRDwyGNAHSE6dvGzHlo4ZVppX8jstVnQ0XsKTO6iPrt1Ttju6cVIBSS0wQq9Js/w8208VWX6sQxjsraZox4yR6/1kb+n/gVuEhyPYXuVMo5jTBKiMTDZeapmGUl+kPGFwZ5pJQR80DGVi0yjqyGgV9+v2E68hDEJBL+400L6Crv9xrw/QATILLlz8U244lmvunQ8syRaApkmXJFE/a4kVtYQgbBv7MWMynhxBak8bccOWSdRJ6DjMKybVhd4voao7WwryJAZue3exuOxcYI2UEaSYBhUrPHBJVhXX7YbzvC4KYWjONTq/MdTI6EmHSM+kXzSeAO3cSNICsJSmz5m/AvMBQy2YaWj2jvwNugce2JpqNunartV4+mXw2jpmbUHXamdHlyQou+ZPcHIZppGEEUaIIGbT1kC0qT7VE6bKvGoeNXMKxHZ5GbhLncB0GxJvNGqtd+y/uevTPYgZXjdac82bYKUHGu0w6N53eXsTwc4if6Q1Y6WExNNMMyFTTmxHGJ31NTba4HCwcS/W1bq2UzaVKCbrILYe9SRxMXNFgHVKyTuGMchOB+Fivr27Y0TVNLtH421C69JK/kDBUnn4dN2Qs9i7nQG9MGB+jOdvx/YSHhKTr3tW5Y2wqOXMm8cefwdJed2IJaBHqqSp+IJPJiSPpFR0cWAFyajam/ELK1vUvKvGGcjaN3XBaZ7kJxHz6SW45AmvFxokqm8MeSd38T1Edq7G/pSD8pRA/SVU5OX71ph/qY6X7nYoT/ZcWkZXm0VwDtF6U10EiKy75YDYF+FuORdFfSlicB3BsQoWLedZ0c13bgx5J5N820H1d7OrFN9MPSOPOyiEhry+0M08sBEdpYGq372u73Ns/7HaksOtgWvKU7qCqbiPessPOmycaRozsc4u1iMSTxmTk3Jf+P6+MpLt8TRlkFwCCnFdeYS5Jq4MkrYWa4TscpZ6ul5RrlpZ4Ok8+KNdNeYU9hBMI6nVojPvpHEPyZWuasH60FcNYC+6HFXG+EmygN2D9YctFxsiffFAEAtqj41mvvi8WSuY+OO/saTTHYrGYskifejNJ7glHRXwoKVdePtwcoqUMoRKbzwQBwsePl5ppgOAIhleoZUwGSFAicl9uVFnUF
Variant 1
DifficultyLevel
569
Question
What is the highest common factor of 8a and 4ab?
Worked Solution
Consider each option:
2b is not a factor of 8a
8 is not a factor of 4ab
4a is a factor of both ✓
a is a (smaller) factor of both ✓
∴ 4a is the HCF.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
algebra1 | |
algebra2 | |
solution | $2 \large b$ is not a factor of $8 \large a$
8 is not a factor of $4 \large ab$
$4 \large a$ is a factor of both $\checkmark$
$\large a$ is a (smaller) factor of both $\checkmark$ |
correctAnswer | |
Answers
U2FsdGVkX1/C9+6C/atckXqhz/6vC2b8/Nd/ozLREJGxT8iDh6a+l8bNHl5mbbmOLTdzGWmELLrOi7wnwszZRBy5PCnbnqias9XPAy+a/UqnZtyL4QCFWFhlYloLIwwGYZ6ehrqvO53VKeBbJ/76bWcqFTOAPx1xUA86s/D7+LPFC1uYMXjqsOWOOKpcAesieBp+PLMetpKMqTrCYy/tjdyJjtJ9vXPm/ywbPuqap290agYjfMmh9ihrNq0oa0YcmWzieABJ2V+Ufzf1rB3jD8bNyEHLJf9NsUOIFjFTfrdakhUw+IxZdz24iPvT+6iRiK067TVhuXdLX/syFjHT946uBcKAPFNfbNChrgc0AT/StEvGLV8EojSHRXLrJH1UPssP110JlF4z+mDjuwyWpoevXp1nDiUHoOOyM73+Hbx/b7gzwXZydY3n50d5CZPhibe448OxF3M7PHVsVrTUZg+COJkZOm8/d5eDW6FsHV2bHG9wLTdreXAVWrcicDaZ1zVJOue/mtj45HtyuWUrr/BNHspK/FcMDkPVboboisA8/LFiIBBUkJ5KpSE9P+PiRUlojBP3T9AIX/lAsM0lUEpJVv8dPobVlhBbd45s4ztrI7Su3w+6Dm7TWew6SibGwiXeYPBc9E7TUE5xainUxuVG1qxxTkUrNvaVpfAPhp9OeIYtGmdnRTmjZ/y0YS+ibXmfyYcWkb2XgedNnhPYBKbl9QydoZRvcewH28lgW8Hol41wvraK+VNalzRMy8P3WHSAwCo/+TSvX6czd3yDH7Y+qYnqd7VsX3Ryw4F/aqx/Mcl4/Ie5cghCaBuwsokI8hxc5R76eWHTtDI1LbLSnb+NKe2Ovs4nTiwl4YrRPQ+xAfKwl1t4T5dvbqoIEpO/nwhgMpiV3a6EASpGzaW5UaSM5qGsMVDpA6Js0ViFqFT010WkwlJYe2bzssWGmSBeX3DpCeJqC0n7aKxpNSV+2+CHG0FXUX/AtJZKUyzLIg/X1aARCUkHRHpSua2CK0CDy6zLlt/cn2KmZcUYZn1s+ckzwmO0libzL5agoMrNtqMNmwUqev98rknRkXhqJ2i2Wq9fakHC6u3CPq7gOciFEIdGHDVObaWZBntiEf09uZJ8t46m2xGNZuCWhkLNF+4ujQJQQd/QnW9tEXgUZN5fr0hVHm/dEpgT+f1xP48/ISwNwqyth5Ra8a9cSQa/zax6KkU0jdh29asVj6rosnKa3sl+CwWAJIb2zVvWrVStEwy8Fin3nSV669qGjAqB29Ip+E629JnKWTpHVu4XtoU0UIHO/+npba0rUTO/3+gfVU4JgSk6zD8jewxRqG3m1LEY3o/aR9YQtW9q/T16nbpl8MAF/hnoynz+kudW5hVLdValelJcXfeNh4UnC0S3w70Un4xIphuMfvZdiZX/G68zR61ZBnUjeKNkR/ll6j1U0L6KtlvyzTB3n6jiZxU7gAfP6UMXL92aNLOxC3yl2RrpH0CWRGc12HOfavQvhl2eKf9Y+lTG7aq/9qiJmhbtalxzlSuRHDXiFRQ+B9s5Jhb5JyzdJfBaCO7yeMIER5R2nLNw6QA5mUjrhs25+FpkBHPmRQ9TtXYiDuDh9cx7dcRkAdsN9FjIXJDQKOqRh4FEL8Bb7PmTFsZP/uviQco8MdFz7OG7Y4dM9RabkgoKu9Vk/v3j6WOZJ7LwH3PrOVw9D+oBfTWaHcj6l4oWMFqX6VSQ7h8E9+/MNxUnEn9HeZ/NxyjgjljVAQJbiQvThs01Udd647X5YHpXrIJRaUlpVKNqezLqAwGNlX+EFHIic5YatjooVp44EIu/zD0/70yQv4tLkeOhqVnV7MvWFFs2yD9zp70NbOCJeRt0X9eoyPemt2eyFXmMjcTLvAnxUJqTtzBoEzSE4vB/jpQCeSStAhxzPCJIgHbI5UKLM/Bk7evSY9Hy0voZGfj9F1hE9TKFd+cGLYN1DD9UMpnk+9vj7xv9PQvMhW23/3ILHDfawpC22JsihPYtZHC8uHnfiBdwA3ToHIWNEXBxTm7iqPk1K1K1DP/biMnu7/sB3y6zHKim7BLKHcpNLVvspzjTQE7fx2A33Ind//drKAMwpF3X52hdXNMUTwH9aW4qwtU5vMmUh9If0PTtQIGETUpxyHBwzVoN8kPFzOac1SFlnw3eITdNHiH2w2KvSQpQOCikEiKxPRnqJsGtSRca13JRv2PJ+WRd9x/mNwSGpJ2FRFB8Yhfl8vn/WIq1Z6gK5cEC8wh/o4U//vlnsLI7LPjVXOAMrefNp+Wonl4w/CS0+w8a7t5rkJX1Mi9QdANWvGQuF4qZ8OTWbgdgqxSDXpCQ5dCfbaD/36QOKiY3THoGLg+r33+levbFfLVDwdmAgfy11EnPMk+vu+neRIs6p+wEj6e6gJSI1+o0XnFHomOZd4XgH4Nkrtg22utlbpMagkFTcj4qNY2xo3fQa5KYepzkgEcXKZjaowEsQW9FMIklLftAZBrN6D7SEaqBNK90UUMQWIuQo+upmqKaaB0GCNo3hQDVY4NB6Bm8m8U7VbmffM+ytFmI/1fDQEV9XtK0BF+gXsUldQLVMlduW8EsUJmUAD7utHBVAMRKP/PVhfW6RDe1/m82ETKBD9hLCagVJVOEU3lOU1ensYQjTw7qEBI4ClddqwGvE1GpoKDpyFukfKERBTZufjcDlc0PK/+ngd7KxpZF7N07awXJsLEMI/K1a0S1gyI9Vbkz9xASy1m0HkMJGYGsP/v/iuW1tiHZX86Z2Q8cIJO0kFfG75hTubOogSAwySClpZBbdmFpGSQIkfpsJh3UUflfM76dLsr+10uv1IpJ875xSTQGI9K8kXiGk35cUlip0RE0/PNnOELGj3lpJZ4FnpbygBecryaVT85Q0OFTe/SeTY000YhU22Nww+c41ph0xJZZvhJveIhb4kzPNbAikt9fCdAmTue6+QUqG/KIaLcB7wv8igQqLVFyF7sWotPgM3VPYgH0/VNLzqx2CE+0ZYiRK5j5BwsDhVCp1nf2idSW07nqQEDmXeNFaMDn1gbpmAu8IW1smqsMmdDA/cFSXbroxt+8RWs2zLhwyfED4TChPmOfcaY2Q4f4DwnKzqc1DoR/bFXFTQVDCQl1yz4UVgjd32vIr10A/4E+wNdrA7GLOgVrPP7CC1gAOUBNt8GgGTW8LTH5EPpJ2KQf1rouPxs0IcMXXUiNhjG/ONOu75VHN+vxdyFvgCgegXv9bPR9tPsdoVuFnZoiVUog2JL/4kKQ3FC0zPgvS1N407U8yMqVDcqQWzx9EdKflZWxcWJ7Jk3SQWt3DTXwm2jBjlOQboGFs1JZzUWZTTRwp1KddoH8MvkwvAf9dOlLKzjIaYCDOeE/61ZGoMvCusKviLbL+K2fh6xYiXGaE6Zw0zhUNyRgHx8FiVDDyT/DVhOKRfQSp8D2eFD0PYgwTIdyC3e7nrVyZpiu78PVpUzDmIVgmypquDjbqfY1Li1OR/3OsjH8KgI9CjgPj6CDb89LTXtDI742CBwu5vu/LEazrBTSWcDmEO+bKYfiXyjCgXcpcwCMPsHMmc32LgQjfLrnVOvXlKT5jURHCQVe2MEZV5jDXVc3gfVYYy4hogYhkBnedf51ejC8Zm0WsEqqzRzrKmZQXEh3SDNxkXvsR26krvNI9dKuSxDg/VjE/ptZF7l2vEcW00HuPe6euDG1vtNwTOTqx0TxQa6BQKGU698C1jVX64yBYc+rRng6xWARhDd5Vr4n8H1i1m5ToHo+91zp+TRvv6weSY8/R8O5dbVQvWvz8XDWAiFdtCRM8ssDqu/Zsjoon8EnQDP4OZ9wgPq+DDoeEZ90gaBlTMVYGM8x889YZsmmqTDjR2foMjoGKcP9ksrG2h5O/TYe/YgoRe7U3Bodocnw++yehFfb3yfjmLJB7t6Z91Sq/6fHvQyiptnG1+8LmLzZgDRl7a0f8VWwFrAG/FsFLQBjfXeGxeW8haHPbtvXK+mvaWs+bx8tfr6aeijaV/KrzhRUaRrzOWUqdsWOr9meMaBodshVP4crf/2RzS+7wnUVy7oPmuSE/BmWbn8pZBZhvgNmdf3oa00REGrOHL3LeORsbPX3Czv3O3s/1j5EEbxHG9KShYYYiV+cDb31xO4LWA1HBjTTc4pw7H7aXOP1GzwdwfxzsjeCH9KcKNydJi9GaeIDCvIjXuym+nzl/I+1pAM9Zc4Xa6sn0idUtYk+0YBdZmXcnOM2Oap8RGvosyC0OXpLkXkhM9PQN3gWUTjc8TqZk2wFp+fnfJzN3See0R9NIQyFp7k/4dGXsx4uz0VQYYa6OW9+6BOZZVk5a4O9h/xz+IXMJRv8xkAvv1YzehS+4+izmu9dnu9uIVhMQTlfzU9f0MGwCR/pi8V/diVxyKzSl6zEgmCJ82MiVkielZqKXDWW3oJMuqZcvEgZLwX0a4plgRNL6729Jhkb74RYjMqmofAyzPqnKuIvmCQkgoixhGEHP1p9E3Ej9v+TY6vGentB2zCazHj2Ynp3IoDfEslXbLN3m1S2f087My+jqVUhWRUDYSV7orVDLW6QRWCOQaFupVszCMDO1yU/2nLl2/Di30fc7lvWtSiR5eROEkBbK2vZj57WqO00uVyLYQqpbOCwhuCe7Surp8JdmEFncuBDVaq3iAxJdH0Cr7x5YcMeSjn62QcSJHRKj6wjXvPIKt/M7zFtp7YddRAMVIkcqoaqJ1W8PSEmBQcvBYy7ynYi+YBtdG/sQn4GFpHBR02tTPyRCaLc+SmZilx87Or+JrHcdf0RNGOZOiuJIUjZkT+ojmWIrD8uIp1WR6XI/v1VGoyOViA5gJG8BHn31byehRvbCJoiVW0m85LHm7V8FofD4ffCasZ2n+XUmRLfzSiiiCPmcSEU+oEsEKLWy3RYbpZoGd9D/fwA7WEQnxzNQkhS7uf+eYSXXy/vmxEYlj1dbQI3arobkBUuie57uHk5lsj9W6AoJvt8l2iH37aBk5RCtpaGm4IENkxwX+e3jA6slwIOuaYmE41ibnfYnr3rgA12NLkURC4KD6IWtKSMKWpXThmO7PaZS8IXCnUFNZp7VUgiNEfZRqeZgafkmMFeOCz+WU6SJ3UDq+1kvFDMdjOGEriCiL3+chs8GSLyr1lCUoQYH+sWsqVvDawKb8jyaI9QhJ0xigwTTYCA6uEYHOQ1h7a/EOdRRC2V5hlmg0zhSTIzfVGVQA+/gu/k3/6AYegADRjPY6THzGE0qm7NDCtKOGQYeH8ZmEb0CDnnNUuLgLeCkfqt2MMIJktkRpI2vGzn056k9t99jjTk5NltNGFja5jrTRtNqUhou4LzJmAhVmCTJR2i07NWBFv5SQqCW68khMT39a35vnjHOn2rije3S4LFDLA5aEt7hkxf+VGRxWhAgGuYVYHp9hRHRclsyhPdydXHasMoTMXuF2yvg6sUtiZhYZgERoUve9BGneuSGRXrvgJPGJSHUMlCOSaQqv2k/RqEas/Fa5mZobqWlRhnNKNxuCpMsrQ6t7NGVr53n6Cc3kADfFkhQDGNHC4bCLuFPbZPuDGb9KNo1/D9CeqiwU7iHcI7sQUhTFJH+WFzyiDrTVldXdAPnXfyz4BW8Vt8YMcF57ddfOgQMofnfeRLdsgS2feZj/mlDXqJebZLKeuG3sNYoVdXz+C6PVkEuyUomqlS+hZ1MxJgETnL6b7zkawwaswIhfHNVd+GPN7pB2nKlmmPiOov1B2OEhidHMLOFGE307ZF67r80Mtuv25jk3/zWAHT2AAwh2YxG+MVpqmsswUlWu208WHgq8CW+acJG1500fmV+MtUisdidVXp7VKWkVxMj1AEdiN4wHQsjuxzOaOG6cMJTUOz8ZdF2ZLowdvyWsqvyqAv0TMgBqK/nfkMiR3uTor7q5HhJ7TirMAzKcSDyIwkrMcW7eUxqE05HgVn0Mvhe2+9UuzpIBURw8Ebtz/kLYIVI0ERyUwY3MeknCgDrohvrPmMw1tjqjxmINomdZU4F/yOQXwceM2y1vUBhQuCeBnQSbfBEH60bQCBRngo8bx5Tgk/Sz01RKXnC8/FxbwURCGE8TVlNCmHisLmtbWGcfOdfq4unwap71yaKR8+XGgPWLObv8xzOHDRsYzFBmnpxv1U09+/nKmJMkdf/9XxuN7bFrpEcrkvjw8Bh9BJZE132wUWkvbh+mGc2NS9clV3LgQRhdw6GBsV9A5lo5gGutqWI809NA7lMkJszf20/MrCYLIIA6gy2CTq7xzGNsSLfRL4U85Mp+1t5he3VNjDg1pXSmqwuUJTk399K6CUgXbXgPeVqF67IXhZLS5qNncWReqA0CX50LScLFTqJpvsShq7AOiiaGXpAyMPNwYnqy8dis7Bikgw6kioRx7LF6nsFRKdg/aHOylXX9dw3h/NIzsQP5onbYkPDFVHKYhqlx4J6tgtO4SyVBImWXbyzVVT5HqjVt2rPGpiLUqqaKAJXtZuGXzjQevCAC6vi/TzyslIMOW+DzEwuKq/7icRgi/SxyZ4FNEvHdx+TUhcPBP52wj7hwPnff/2pSM6xdoBHnQKrVt0YD6HHM5XMHtHS+CpTe+FFyjmlowqXQkPFTkAMXPrZJvv2EQpsgsIAAfzmgTecWAymdEJ9mtE5Pzo4rzzITz1EMl1Fm/Y2h04OmMKxnP962WISJ+PXd+IquZlbzhb1X82ie7/t4thpfPx/UiTQ5nNcjB+Dqa1hm8lip/brFDf64JW0lEhhiFFMh9dgJ15qdmess91jqoCPzfmgN23Al1VRN8UjiISRH+mElbpVAJph49kXADKaavg09a7mD5r0XPUgdoP+SoxpDubvYdJFRbgnFmFk2HMeZmhICnhYkUvq8pZh7OX7kE7SxgHH8+f3mxTRw35v4JBBriI95qUwglALJc5YCDixgBIGi5BipETbYsK+MPB9I0jd1YUXUcpX1etf5QDGGRrcB56k9gmxJn9KV9GLdtc2wVUh2PRbHc5Qa9c14e3LKQGGAxXbxOiBtr6mmqtAuEG+fg8a8j5ovZEJ8aYC+fYJ8n7rbVP9yef3cA22TBhfMTzB3fejHJQ+DE8PkBcY89EMYUj83YJ45Uu4OtJzQDjYzWI52TSaqWLeUnAZ6Ltd+QMs89E4wvyhTUWrCFeDfbQMRxnL2bBN6J0jZi+ayoenEjU6c3KJU2tYO4oWZFhtjRpq2WX1kWmOEheuZddF41srGdiX7YNChChvfuflxwziG3IIbc+e+JSSMkk+dW10lQovg9Th5oJ2lsqgY2bD/5Gn0cex4OkXY8jHQAphBf5qQFdF6/W5g4dCO/0Ks16hP/I4EH2Xv58atQNJj43U1AGriMqCsiPUDQtgyhqktebNcr+xzKylJL0tPlARM+Ay9EaBAjro6GfQfOaYx48o0w74lK/mFQaoqDj3fNhGbDlgMctWOdQL9+RR5TRSOnSfn9t35wDy0bGQA+1ze3CD4qPW8lWTdejNqEGVkVhZSBq2KWOJ7u56+0FNEAWbfj9MFUW4GB9AsJDx2dducfR+3rtMqde6tUPm4kUDuhGiT5mQSS/HfgeeiIN+UHoGOG3g+zQZeUwS51px17gM/XUgc7cERN3fLs6F4/EKchK9JQqorTWPZTjPxCVHTBEXxVoDldiEY82PWEptWtPgxejkKD75TKUh5nFoDQwk9EjJp0YvQJ9VgegySW8ImbySRDvHuaiQvgWg7r2mB4TZRKs9tUrxIIIxUeJoOF5OiPG7fgRsef090hziQy/b6SsiJHjN4yuIyq8s3jm+8hCQefoZHmtB/MtK1XCEKgg981HY1D9gDLYHtbRIc7CccHceSpZrJqourlj21hRgVAujLIxYHl8C2VKGIWxH+p7qBxotKJri4xmGkUuZ4UPaLeJFfYnpCOiaHn5LzRzVrBnNie6BBT1TpsLpColyBi+k5Mb5DRfX8rxcsweoUt2S47erSWVgjX9aRNaNeRcBRo6xdQ5QtS/UJJSkAI3kF4mKsrE5WrrRIYzYsGPZvnRmD6MV1qp/erDuayuExa0tYzIx8xTMRMR6u8yCDnai4oQVE5EbwDvofCTH+CTDxvbXUaZVB0WHTRu7Bf5DezQR8KFyUWvKrkuavHxyu8Kl2gkYT3aUu5pq43LqrnbNml4i9iGohwk7zLuUc6vSIbCSxTT1/Jn8UUx39d2bWjGxjZkfcW6HArhAB04lpEUZhyP2S6vrI6VhqanZBsePuHGIKCEZcTvdaWZ894tbWHJKOjhUXqWKjoLTG8Xh6Z9haFUsfmxDtKP6n2XxXq+sEP5DWdODGmFn2r1V2D+raTENlDxr+BWVlOvIBBk4CVYq5LG9eFIf2U3EuaG8bsF523FhHoNbtGwP6bbu/LZZdYY2jv2/S/2QT7e5qPp4YkjUa2Dlv3yEPLFsxj11aWkOP8fGmNHlGTZSbZrDulxetU8Cq87HBtuvolwb5OKCpKhC/5zU1T8T05vKEOS4NZqlgAjqZ03KGmuXlOxPwV8CTPhMFheOk0tbyPSO1yGe+p3pNaLZsw5lPkcIlMaPVs1n0lSWphlutfyBtKf0ewnG4fkjOpVbw5fMA3FisHui1igp8PrcI9KwNBxV1wWe60ZeB2rKQz/P9hJjP57l4c5DKD7iagw7P47npTGr9WDMyMfqCp6qCOSrUO7ngbfqe89/iC/opUBg/XhQ4nlCfzl90Rs/V2hgYTKbQM3kjB8RL4Fi1xGcVg7NPXq4Av9uPiZ/SW1+333GB1uysBJ9n7WfdEcyow+7Zr51pF4YN5d5RFsxF1GFv00yL9mNzPpwp7TMQAjcKQ1vr5FwhFRnBxhMb/c3aWAMqiMZr3EMgMONH29+s1DDasT7oWQKyRm+pyQ9laBYNO0D2KPb+uGWruE15VVOCfkreDmWu01UAknw3fLvoOYCycovzSJB56wgYW2BaaVQ1w6hHmpkISOJQQEtdpa+iabx8Hqq0XIww3GCSMliURAUr8fcmKWM0NLr1Sp4c7slTmUCuTzU7c/w4VaYfYKOK7rPKiEYTv9ZChyhnZo4gMzBPa3KTQi2tnSFXGz6/8VdXpixKKQ8fJYGwXN2/UwcSUtDefa679JcCn0Vjlt/Ef8CJrdv74V6ZOmwMQkj9sWXC1Gaw2Iy1pCCj2CHOIaDI4S4zMC5bdXnXHp91RN7J9fhSujhMAA9iZULgFgY9XWBiPudnjdGK881mlrNOqRir230KcwfAEt05pZeXsMOoQ1T588JP+C202ezWxkP8ZSj7bJ0hLbh2y9R+jYmn1mBE5ZwCNntjwPntWkuxx4T8WBtlcEQPXDIVjVec33HoAU8ZdVbeIZJXPjo7JyD+wvszMjFZAUjEzy/T+nLUX8137ilvL1jUgb9RkNw2KDmumgyYO3RAQfaoSWMD8al90Q1ErCx0OalS8989og4SIQa5gCJNYK5jbFonFnn+q6jxaSIPQucOgHlL1GVBH5m3yfi61r7vHZaxKSzsZ7WNsewGXy+fnTLuGe1VtFPqUlHJRXc+M9VQXURh8HVKllXLbPClPNyBpln/m8zetwo+Kj2e7gTD7tnwPaK7D6bAd5N3CzT6kccjeRUkuScrHGokrmTLLMCTShFu7706NEEsKP/hpCIBMTW/6aK9qzEQ/WjVZA5ZZo0Ls/MIz9hMwdFZ0vUgtkDgCWenwgsDXGoxpGlsldi8AJ1QyjxQLqRu7K9BVlVPyxq5T4dWUO41/SojuXCXnTTgXuRfA2BYZRuiw2jvYppFGAbJWPS5qmk5eUR6NK6FiPHdb/ay66kTMeMFcyXmnhEGPXsxbjFuIxcwg/SqEav3V+djlwNmkB4c4+G6PTv4Y/I1xpaDuQOee8YVWxQ+fK6tFbu5CiBnK+O/Iv6qhkbuWENpAZ5fw8sNBNNk/MtfatzYNq3PSrjEZtLtUrKCdQ/UeP+PfqY2f1VR4LnPrL2sQi/2LJzOoAjNm3361ReUKPI+Cg2uIQ7bTmi504yvuAOVr5Yyo18y9BZtTyQLUxZcZ+ClFyIYQJaFxaQ9m7waSr9B5fj7GvYlBqeMMjkP4LR+/LJG2D1mjBoGAa/2nIOthvEd4GorSZw+AtYfjXHyx9i/1Dudal/EIOo1Eui2OxInXjrwzSiQqMMCabUWylm3qqXsAq27edtvpSFJrgzs6bPvX0O/bwHzGcbBbApx39ZKOIc3/pJm1XTkdbhIxRocdY6af8ST1DmDGMxOIBeNNt3Mqxk6bmPuAd6nqLF15KnXzHtoIDRLAHeSSRwmIP3S02l0RZ5a8hKKwF6G+tVg2Y2S16oWdkQUtEzYuJy34MOvEaf7B1eVpnsCYeqy16L7M3P1U37k4yO0p3i4nXPRMdGWc7LnvpQ1bz1gqVnnFvhyDtnc8Q2UjmA6+QJ0afLFECc9vmqIiDxw6Ht7dG54Fl7irTedhRUSK8KPKP920jJcyMgU2AhMkdQ/6nn0mAkuMuS+3XEeS1shXI/awNvYr4/smH/mYPIjKPNo0jxDWDNSJn4KkkfhtcJ0BCuQLoxHL2niv0TcOKZN4nlz1+Ct2FnrluFmavcmfgyZl5gOOHReyYz9Jp/2cae4UYJxebFWo0/v48Bnva0DpQSEtUjYNSxuRz0H8DFjMHd47J4ecARLFlDbZw08Dq7ZeD8kwQxAKw7aBwMkPsz5nDdhi+YFhGn5F7N3fy2OpfpZatAMCqi7IjfeFVATo4sZoonkMqF+9OYN4kyM/I6YUV6jQc+nKUAEAuI5d71pqA0wN9GrUpgLE10MRYcuatea274OVYk/kW5pju+dMai/DE1zKGAhxJiUWQ8ctMJaomuHW6ettexYTjiFnppXBHfS5pZJzE6391sUXVbA29S3oN0Egnb2zb1N8X4FBkvF1/ELerlZdmuNFpaiJtg1Wb7qQTz7ZiLOpFn+kvNvTLKJHZMXnmmOJzeLXzn5pay7WEGAKSTSqAhcuWJKNptbNh+1+FztHE7hnoIqmv1LvOAlPWk8BgdToVhvK/gHTiSZE1WaT3Zckm8444ZISSa0Zxd9Y+p/Kc1SXjVAsWB2BnaYMdgm1bRPDjvRq/qhw6jR2R/mM4Hmntu5jZnqcNYZmLU7OJcH2vhA5TvEhRtfNzyGjokurT7XtIld0IJ6R7i6cpTwbZQPQGjH9OK2KNNzp28GYl7guuNgi/DaS0wQ4FTHwi/enyHnin1i86jOLhUnq8L+80WDzAerDC2VNyBstDY2IKxUtwv93KdP+3Y7TJ7UT2r9VJVcCTQMpWrQwWeIHqoDdRHCTpu2Xf9cafRakjdflJO37jG+nDJKajB9M1QUcJcvnqcHQC08LrRZ22aIiMmL89yKswONxxzf8BvcNs5XIMhT+vStDyhWOAqrsPHVwHA9nO8ixrMHBedKquOEVVjmmZQ7TOMeyJ+lcVNsSffVCkmhqNg5TUg1V0C7D+kAVIQ/9K8Rsnt7KbXBVW4W7iLsBPChx70rEQi/jLTupgz+AnrlRIKA4aBC5XrtGpAnvsmlusr7SOhJy077vMhcVSzMuG7vXnXzoZ3Nc9E6fCorRmCHqYs9Rk9X2Puq4b5YrXzcpqFHb0oz3oLT+eufj3asfBaweJkQ0QioBTEzCNBOUv0bhPdZG2NEAhdsaunGwo7NDS42oV/M0rIzT7WrRNNCn/MS3yWP6cgurBzC81pYKJArd9ad2+xsnyoGKp59ic+VJ9J4ybgSH6jkMvCalUudJ2vXmanddNLpiM46zAQPYZiGKcz+Bo4x1PzarOhmf6/42N2M9mMyShTg4vtKolr3QShOIHqjdk9XDMx2uVuRjmIgOn8jI77mbNJZT4/KrNYI4r82vmJGcdaNKQYTmsUWPk5iJtS/16Z2cSyr4boHkfcTaEB5WF1mmHP/hO8zK9oaCqkSKGSA6e/6YSsGBduav2pqN1/VhzeVDDZcTIW9LPzucIhfayICy3HLGuRuvTwfo6SIYzC9Fq2ZGoSd3R7qpEjhqYaGBrhtLxNeVg7GR5KP9XoIoFqZcovYeHvZW95v9LU7flDd1nuUYet1n1wgwCO5AHyXQSBuv3VTJdOx7UFCS2JRJ21OHI2c9NQWcDuaRaYJDOncQxY/9bmNCKHnip7pZ92V+8MKGlt/BCZGwEmrGUtTpNGpUTun8NOatnYB6yDrSYm8OO/gMZGfJolULDrz/Z2gg/pnzg+4iheZ2IwYc7sQMVuUEwNAWI1ZlwLGX5NZ97E87KvN7kHD6KBx9M6fXq86RK5r9MuoKVfcdupFcncW7bU2J/SCB9uPDRrvwyOtvaycnOkJvFzXk/hFPYVgJXgPSL6UeNR1Kf2X+2xngvJWEcmhwXBRH+ynxF4cNWLL/68QIWD0TPks5qLIkxPbP6XeuFm/hc+wWNw5ktlGW3ylhU3pXyf0gY349VdCONgm3gGe2pUpUH5x1+3IsOmYpWfuwgSsp2jiBEaK7uCQUbpt1cjPJTp1wvYpyuWl2fTazHGkIW7K2LdOOnP3+5TQoeUCmRnJgofsUEjQ7Bie61XsNt6r/CX0ObqKVuIsPaNQXJHBI1aTxCn9jJZZh2F9u7K+XDd4PVJk6UO9PLg97cDY8zzA9Fk+jMr5Ryt7a7b3txu+ZW5+ka/DxcUqOQQhKdYIKieYQXhPATeUgTpL52UKxjtUDiTdSVqAcsZWM0FdmHnKMY44eyakCjbANKAT0lQGaJWM3gCwBiPeAq90yO/1VTqDumiQg/QLf/K3HBBQ4pLNAyZmX+SZAhAdFpxdjG9w/4BYr/O0Ihzd8kE+koR85dqr1lGujITWdGHN/ekf47SDUn/qVUgXGfg5hj9oevi6+LbwxM5Nx9VYqC7kaNVnGkydiawnWTrEfkhrgc1js3/W/pleEx2x2y8phRXlBL4rML9XlBWTPExXK/+V3SWXkn8hRTZLUOEBv46MFBRcgAcNEy+3oC+XH60vFzuKqIWBPW2uFvGEAL+dp2aZFV5ITsR5z3I9B7Up80KdMoCZM0ttxFYQY/G9goRr763rN/b1wfstNPj2HlCoeLBZoqG15FX3GaKuJulGnIvmWfE77GF7ipScy/sdWJLEWEV3bL3nm3/TqRiI3Nn9nVb1TFJpDomZx/7/Ho2RoDUte6UW4L2wcGeK9irlur16Fzd5NDf8HjnCW9fcVBQSrIDFczXx41eQniH/0le/yjB7aqO8E=
Variant 2
DifficultyLevel
570
Question
What is the highest common factor of 3b and 9ab?
Worked Solution
Consider each option:
b is a factor of both ✓
3a is not a factor of 3b
9ab is not a factor of 3b
3b is a (higher) factor of both ✓
∴ 3b is the HCF.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
algebra1 | |
algebra2 | |
solution | $\large b$ is a factor of both $\checkmark$
$3 \large a$ is not a factor of $3 \large b$
$9 \large ab$ is not a factor of $3 \large b$
$3 \large b$ is a (higher) factor of both $\checkmark$ |
correctAnswer | |
Answers
U2FsdGVkX18yzTaWjEAoQ4UrwaZ53FHJKHenO3RzVJm7QlwkAEyvUqjk5fgn55nztc0Wdh8Goc9dDo4whb4TM4jz2+CoaRjc7eP/Yh9UNb0B9XOPJQD2MowJ+C2kvXclvaJr/bs7JIpBEWQEJny4/axuNTl4rrgyNlOUx0w8nOLMQmanPxzj4jNMon4Ro7L+lglXZsdDjy/RcN0RenItSF+oYIbaJsstReLhlP3wJ9mbfszymWzmWb/kHAxx+3aPnsdDn2fGIAzwXAcNz1UBcSCg9CBskuCN2qLGbzW3zJc/zs0msI5UmUuM8o84/V+W7q9oxTU2EspKN4Czx//m0fFtK0/NEeqmEI4mv84DMbU/DbKoA2fvbvIGUXj3qtbyhA5jXZdJ18zXCoR7MzRv7hqb9tsnADTGKzbxIRwYwfHAlRzLE5eQsA6lUkgbhY8g59UXxSF70+XvE8GWHefVke4UIoS3lxOoa4+MwCcZivhzu/YUwbde6wH60bW4as3EnVY93cAZcxj3zvW40bKT3BiNexYFk7xN3VhdziLVwhAQL/dybosbdnU2Wr70i6p73YVa48/VFFmOkynGPfKDPtn2xHvUiZ0Xe6yGVhorAAl0MMIr5lN+Q03f8AMWKm8fbLphB2wBUF4+93W8hobYT3cL8bMA0FK48LTKoBnv3tmstJHfuywFi8zxtlqSPaeCrL7jRptsq3jAwWKLIcDcbbfDo6f9084/hdKGItbhQZ149YVRj3i2EEiKa8dStWje9a6hAXu4FxVj023ZNzN/74jr0zxWERXCEWWLPB60VaS5BLv7bYhn/F9FYbcSXBzqVOiLhTVU8iEaTn25Pdc2+M2St7H09eEQOfubg2fnchze41Ivb6pPkJxeMA9MT4r+C6Bt9Ev26l+UIj/Nh3KC9hTsiGLAWxHfpTSdGUWOq4/fIKIe3zqK32kID0dzYlIbR+GyZr/1BqzXLGvgNHmELuh8etXbOmB2jFWqPF2yx40//60PoiaVBan1QbC3n8NsTgtZHSUFTL7fcdnkY4nX0m5OW6EWqVfNX++/CvT+eUaW2VnujR90xCeO4A2Iwezt93oc6+mxLFfXhkLRtkpZeyRh1YYFlGhuLwQOmIOs1L0DxA+XUvr1m77wTftbJ7PdAJmOYpWmMt0WeeuVGs4X4BHkzL3h2AVFHFvh+Y7rZsHXcHenFVXsp8F8hDwVRBKsU9D65BZTXe8AeewUKS4qQ/sEYOwBeXqcb6o0EAK9xfmT/fcNpoECfTnvTIEx1cpKweGHdHlCDM99155FF51XVd+ts/PWwM2ZB41bsy90nBRGnLypFdaEQrsRnNct8k/XnT0oxWn2gQofJSboL5JoX6nHwhNNsO7SL+lhNwKNac7gSgRKyhyepZCluNn7ieqVAErEB4hYiesDU2+da32TNKIEMGMMxxxypkx4MDBabCkPPrcfy/lI01DnBd2TirpvMRQQxBFwQM83AGZBSGBodfD1Bih+d9Sjw95VhofxvffCl6w9x6rfQsq+1x+39bjNzItRLgvY6muV1cFwiAAL/QVfso2ddPUpPUDPCGUTYoBC7gmxjRRlKTENwROrD9Ix3sMBJ6NGKqKzwc2LtDdc0rEPdC0Dy8QDx5Fzhzs8HatnJDBhFwIwKHCachscRzVckbdCJQ0K8JGVhx1afOoNwi/jIVoeZLxLbTg9L02SedMTlx8OeXXxmoq73Qtl2UfAWsxfDf2tgsQpMdkbPFh06rVxiG+leb5k+aB1FLYZx1XuDrsxp9mfp9XRDf3OYZhb3BngsLGvS2fzKoCIcXWP/acGreYCdNM/eVv1mmMgQgx8sj+jMW8B9UBLXA2/ttNyGomzUMpoxvx+hvToJVjWUK4cvm9nvOIujiYClUoAorRB/1TJG6PU2Pt5VbKfiIDOowLlE0PXPbaOMN5BC9g58Plg7YReUYhvQ+00fdWn+P99USsYIJEV0DQRWn12S93cRazMq5IanQitxSXNgjaR9CyT9qyfHopA+Qj8J9Beiha0AscyUrkSdZGwLkcE2R/Ap1F9ZjA/aCdHco+Cr1PDDXisdw+6xHBvgefceqMySvJV/d6EnOAaOF6BDLwO1rjFA8yrWdksBagVKvjD5LoTR8f7nTvnhoSltYy7/jbStCJn1STYeSab2Si+Meca0j07zxovMkwjCOlUtFjNJo43hQO/Bubjd77vR2Cy5Bw/PhFVtUpX9jhpuz0EV9VFrHlOI87hfCoaGxfijTTIRchRRI4ekds3phx+QzdRPj+FyGVrF3FUV00MOgB+7u7dOelZiHa1+lYeythD4raUo2xPqKxKi0V298ONMIDy/EiIy1E/YKI+0bltle8UFGK4XxvrrnHLei+iPz06DQiWe3tLCliNtLi5CZrY5PE3rVFOeloOEIF0ZYvteHmqNpe+FhS4CuPY7zuNJtGbHdAQlpUyYvCAwzKvBXaB3R2strOpOMuhKO7oMuXwC/yXTIv0+XgQP+rzEs9GlZm8+qwYUk3QMMN85+7VT+hcbRU8Nv9xxRXzH1Qvabr5pdYjgMtCKf6ngyZ9vUq0O2FFXrtlyODxoV3V0MfrQRG6DZTRR03DBnYJ6+ecl1P9Ww8ZXDB/nPzTOeFy8qvAIMp9eO86EvTealD5ilFCxS6P1zmceHGDUDS7viWUzZxoJojWGkFnE7yLrJ7hytyIFQUGILWBKx/V5+YT8DOxaF7U/IPZjza9CVs9TMQbpilDiGHFmc24Eb3u/Dc26NfnQ7RL3kqAw0o/NO91IhbKvsQNhcsS8OuhSycZvSIlf4lsrjhn8204qUEkmcttTxdUYBXIwWRHtJ6u7lhorWiWcEYAR+rbF4Lzw2Qs6r1+HIco0Z95/vbz5jlfstnpqePkgUSwUA0+t0hZZpjtlmHFm7D4BOGl4Ee8EG0kLRfHtapef6Etu/7lbvA4HNLtLQHXW3JnAm18hO5GWG0JdAcpwQeiBBEFmG5MeRLD711gydalsTTm9p+cvWKQz8D7hngj7A5VYCXQhC/dPpmKAqVuPEuHORN3tNHvZlrCLiLGPqTs+lpBIpzRCQR8e7C/RLbfws1oI3EOwtzQygH4+3njlFv4eBo7yLcjTDAmMkxpKChxS+Vq1cZx3AbEUu4tam4eU4FHhH4wxNeFKIshDHiS8ErPhCHFlonoOodJrEy6Id0RIvNLg3BRQUNJ3HgFvBOszvVlTKeTc/0CL+eDQiFl7sD9jr+JsDWU5d3UjY2HTUjbMZ/1LmSbhOwsKbGqUs6nsRxR7L9oQyjBvXPSUYzUE3+gfvXiXsx+ppFcr9X5w4wROPVvX7t4ek8KHakxl3jadCDtPzp2/K28lTCHPH2XvNOKp7/OtJKYjr4fObMSzjZx5au3yxPtYfq/mPrJJ6oZlrIq4393K+l1CD99potW7i6LaZRkp/wEoyHhcFblKtCFcS8GrYcqO77QlLtFt6fHs4FREgwM0avJyfsvQfS4J02MkzLw4QSu+B7XZuzBHWKw+fS/wKfoGXwuHH5410jJjkxyX1Si9NfnYAo5wVRmrO04MF9vwJf0GuYcEszqZS5bb5xvOiMvBHj6aLfIJ9goXhQmPnv0IN9S6F4slvVwR1VpRHdYOk1A15ZtJtpkUf7xzu6PqSI7xJva8nWbkqCVXDxl8E8qx9Broh6KkscMOs2+UCMPQKo5w/rJU3W1AElTc0dvq1hYUKRHeVjstG8YVzL2BxzL8xpBfaB7X4dC179oKZW6ziedwY9m+KKOxjWimyZWREz9rElnUAMHiYGZVUOD/uy3k/uGhooL9YbEIGIRPOz1vG/fpewhQrR3xjEeUrRM+UHYptdbwBnV0c/gGfKQnxv3qTk0Q5iHBmO2QGmlKDfaSa0Mz3fCZfBg7k11ItQRg9GDVnMuyBZNcU4fvIsbH4DOTztQc9s7Cp7qMLfmw1MbUnqPnhK50Jkfp7+kVajd0/nQscciDy/H+ELByaX/fQOkeaj+DZvdWIDAU+iz+qWi6fOEee5ov777bP1fEPZljnyZ/Sg4AakW5G8rkO6oIVw1csnZM1HKAIPlRTTjtlgc7b+PbFFr6IMbsAuzCWd4ObP8ILxyx6E1sZbSB5WvrTUwpZnD40eKYRmtPo1Gllw+WsSifVCMsYZSluRpz3mJnBKLEit3e7pJ41BhSmBq9MNFPgl4m1Q52cIFpOj3GrvkzDs6xpGeaP+kGc93udPWjWgiSPk9NST/DywLa5ocNCutU2hVDB/brZ7PiEQN+oHqaWy3mjdjfaQ3d7sH4aRfOU8B4ZHDvXuF/N0X7UHYOhQj68bSjYYWeZ77QoNhoxtJFxyMb4BA33rRsq3npiRqw3QlwOOGw4RajNO2toySbDj6vzeslFy3I1RnLEpYyX1hX1p/JhBWVqKjYPbkcLXqOIBAhR+Ig3H+HhrbLjfZJjOFeFbTVpmqV1V8ER90Bvzrc4JGJDvUo67gdgVS0j4GP8Bj9UAR82U/khx8wHnD7SPvfHlGdgqkav2zevzDVvMssqYJSkkoY7K6WBwLRZdY9nXz61s7/J1GyKb5hjELMHRlYVRCnhGE03nKG48Qa6+22EKgxdRAnjkRWQGoxDDJpkcrOu/qxomRcWuKCW1uvES85X/3QGnyj8rRmLAtvrJmZNMDwK3GgL43mSzurjE27TmOHr+L/qiSAp3/yvvWhxvQJK+oK1KFN6Qx8BntelgAcrAC/z26lekc86SXXtLWmCHYoTtDTc1xftSobjOXJdcZkGb4d/P94fnYC7Bl3sXO64kNDocFz9ETdQRmmXJ/Uv2RxmtA6OVFw3KYQOuE4RxhNALlu3cVrSgB3JLt5G5bMPMrXEZcnEdrAx8+pvaAJdonbkYODglCqcIcsOQQPECoXBNfCRouiVu+9iYd+Jn0swyllUBLo1uQ3VW7w8chhQl8SrhS39wYMpaH6goNAthh8D+XXTD8CKO+GGyMKMhddOWMFQ1+Dx/kcQ9foF+1sU2vI2mJENOAS1OryXQmGMT0SYmhnYnEoY6Yq30uPR3RbFDAydicQ0CXH92rZ6+NrowR4FEBOk9vl3K+AptRQ4M9a0whJ2mABqP7v9ZMPmQC1Tqsblq3wN/TAYIG5//lJARP/4FXRsad8bG6h4SMvtNoACW2tzYcIEOLNGDBJwBDGYCSownuswGLvd6QTVx8+DYRYUNzkCMSHIuvym7UFyUIls8eY7h4bau4F37CmTxNkUwSjh+PsHExrpO7McsLERMfeDQ7fXiYK3/ntPX25nGIeG35KSXGz7RdpFGfo0OONucSUOK6srBp/aCG/R/4D+OrTBighdesGy9ZeYnRBuGjmG7nVog3f9zBL3ovqDQZKrt2ny95R7oCSFR1vbENCjBjL2KO9kfJOJcP8UGpUTLPUv93fqRgUBzx1HXlEQ+YyO6WIpqZFNxd/zRkJLLazIuTGp1ztjEDCd0lChKAYfV08uIxOQ/gd27jo3Q6NLUSCCfDF6m9tamzFmC4IB9tKxcVjk5c9isYkjY7e/Ye+Nkou5JJ4xd1sCIBOyIqmeut/fC5j0Xx8m4mAukEII0hlS4M6Fx/ayQ7LQUqaLfbJQva+1unfru/uxK2j6JMXJHkp6DtpkdG2zQR+b1mfVUPiDbCtR2HvabstWmCITPXlETae4/D4WV9DOvX91QqEs/4RqjGZa80ksfTRMXqHVHcdgHnaq3bXlsjy/fDJ/Mn0sVh9pl8rRJE+OpBjb3+/q8r0qRhfnvJFIG15SZJf2JOYTzFJ63DPGbdfUy962BcfGDHzyV6+/ulEV7I/zHlJ+I9fRf3WAxhj0gw32wTme/frrwsB4qc7agkTjYA7G1ap/t69DbRPb4U6WWVzFze7GcDxAQ3LXjkYgbxZaQz5KtCCgpIyV4hIwPfItO0QSkmzwIc8wPiQ+w5sNeEyp7BDlbS/q2UJPkiQMSwmK12KuO9P9wcOTL4e/rcWtBLoKifAGZOyQms7fX6Z58ah3GklIeUphRRM46I4t8+b/tS1Z89K9zChlNfJI+jx/qLpJpDEZA44rkUGcv9TlNOmlzrlT/RJa7oS98PH3n+ppkYUixBcbtyl5P+4Vvi/FWpOEZ3A+78vjfI5Uv5gc0ZdUTaSZaCXP64KMIv6MBDZw8asd3XUFol/c95mItg2c8SqeQyUDwurR7MnJXqp3MzkYRcuQvy76r6Q695fKi0dgDCTaOrh7pBa+WkQft7R5Wz1zW0mN/Kofm5u9IitzuctvQWJsBvD3aLMEW6KbuCAEsa97BvRecxaOo7epgC+tCV9WMd9apAgL6ZjOcbQ06NlC+P0Q6rC0gMdEWZqMuIhPn08IqbRk8k5QwLXE0jksizb7EbY2tsyCibwqpS2hGqlAgVboHVE6DpWKcH9No41kjOEPU1co1GX1re9zTJglecsiwR085AJN8RbSVosP1yzq6iLtj2Elic7YreUQ5uisMG0geR7oJYxlzSy9Lqjm44C1J+l/Px/NZFTAZ/5p1nCISj8JgyIJB6EWvAR7a7KZJeyrgJZBxcG3ClJp1lNCoExQLsHiuQatweLqBJg05beayc2Y8Ku8cwqA1cIofp1G2wbDUyiQpbGy54q20JbkjsNgfss8vrKIV2VF17wbvEilUVF/iES4crdKESWCOUqqZ6jlZVSC6qQxufjMdoufNZWVDZOPVSXxgiQ6KbZn5isryglOSyg5+uuCzQs2FDKwN70tLfzOsA3nbHP6y6I+vsY73MwckBjSSDtWf0kbo+C+MCET+Mn4Y8CDWxfqgPcpqFG9PNi2z4YKA271QY0C27YX5jyg7MA5LWtbBDgRVt1YhVC92naCjYZTP3gRQpEp+kC5KbONP7EQ2KTohXvzQfxI+zt2KKxrn/NVkS/Ux1KDwDH6eiIzdgljDVyuaWnlnbhPiLvXgNlt2TythpJT7e35n8EenSY3EHa38aZFilXRbxhvTr4UF6UK5nk7iXpkN2agsKJtg3LHNeQ7ia1MiinF6dKlBEvmXJqw+NzJ6BPkgoESjdb+Uf1vs0t13lH+aCUmPi3urGDahDEuS+uJ6SuvbfaaoUJsQ0ck9U7LMkM+TvZBNfkjykZjdrZN/1cE/4i8HK+VfDAMB2EyMFigwsXCVi8R0aX4XS2QOj7aA2oQt+dptLV5pA0lkvDjeVKzw+7endrd7eMWkxBx11XFIDC9uzQu0a+kYSKOyQcigttWswKLzfhVIrF6DVUrwkcCqCFe39QptvC4/P4wHjyLU4zmU5STXWxG4QmOhv6QYXTuX+KO4AwG6C1jGEED5b+SVR7f9qnWxpqcABdqazj+X16ZHf0zN/fm+7p2GZH1XntfY4l0aSNMJX0oGtN57kRSeHZpquHCjH+IpN/OBjwiZ61UTF4oJn+QMey1yTIEYFo3c4vZqPdNJCsydIkZJ639ZY47q5U7RhOEb2hkStSnUJncRtJnEMQ2mh1V9PHUpc1G1JZJuw872+Gn4J52j+kFI7W+YFBnrBL43R0NbGR5PY3YEkZtrBsddpDpklRjLy6w/1bxVTdhvb2Y3k7qEPOJq0JSluhg8UK4pM5qTz2HAr7GAqD+oIlBO4IC+8KFOdKvUf4YAg6f9lkLMEzB7NpC0Bx8jtQ8oYeXvn6AEL9d3Wxufy/K75RHKeO0PTzGJrB/OXTXJ/bhg7N/p4IfqJA/1FQMaYctzxp/XIkF9mG8GZTlWEPrVEPuYuwcmbra+evB35vryf8rLDLEAeRNKRHBvM64+UYloruB9ymZPUgn0x5sETmqvxh1sW08tkmJLdlrtKdXhU82KeghXxVe2m//btBkPC9fvmxohQSmxRL2B5iwgWojlQ4uKyxwK+4KAsngy48sA+euLS6ywKuKteR0I/nSmwUmdyhmQfuaqb8BR+H/6WCgvnjX9N9MslGSNIdD2zB4bnS3doqSejkmAIetf69rVf5JkYUnWcd/WwNdAtFSeKTpPLuUieJEjd5rVwONLvAlC4DB5vs/y4BaTfVxvJ4IeriWrbfudw48tE5KGOjwTH+7kbZF7DU9vWT2CS+qKV1j3sv6XPE6VFQZpyietipXDG739m5bRZf2XD+yUDbpcpKq72UuppLLuGKcvkIzbHEjxcj+4RgB7dOTVP6cZ7ThjIHSIiZkAGTun3iZjplw9wiAwI5gCXERDP4mkfeN07/vgsvDsw+qbhevnGp9wzHk/YIMW93Onou8fY7/klO1MR0i5IYBfx4k4WEVzNqjozhlVvWCe0Sa+FGNTNgGFu/sOIIQcU9LV2ERDlrr1wmpxjsbz7EsbHdhXfqSaIbsrbrT+GWVtlQmwyPci6PDYGdzV6Ki7GOj8LATcZ1uJWOfMqegZTGxEgNXQ5iDYF+l117ZUdMKFWjZ8Tnzjv9pXNkzzxQ9BkqW66OZJ9OefLfehXk0N0OHkETLGpywTkQGwpmvcm6t9cOplmbWa7rK/OVH+XCd44fdBkfP9IWM5/XgZElYzrl20x2GoTiP1KLBpPQinx7tLrj1CZNUR80x0ZhPJbfgoKS/7Ao/e4U3jSJMD7a3RPsz8I4Uhg79g5GwQJVr2kNJOm2O9NOV4i01YNnj5i06WG/lzd7UYrfLv+UdqVXD/RLjCVpS32PrGiP1s3AtaHSHWaR8W3GkyRh3/MSyDqg/4svCBTmS9VZPHh4/k2Oe+gq0qS0/GWZiT9AcIIxuzLtUz6OkL99PqjgSOlAkF2PmT+vzU1uyJfqeDaCBvUpjNbtsaSW42xbQtg/8b87uHwmYIPQN7d6ZrRe1uaiPWONtg/dtx7W6QWbaLESITQaOwBYf/KCJM2/8M370XFUk/bo+y2tTVhCFNLyNdbN8kyt/o427XU0syWNy7u0VXem1UzBG9c/zVkai+ZVpvibEltHFgkytPfkoke9IWWaUOmHvxb2U7jHQsw0HUM4epMxa2+ehX2q7dASg3W18m+9PYnInF+SNn/aR5rDcQtWeW4mpJ5rEMdD8hY58MuTkp+v8uabjQIErkhM9NL9rg0kdRpYB4aEBWLDRqvvY0UE7/03+cwoblQliEHsqzodjDZemARcswloh3LYGR9WXaT2HSlh0UfDRu8qLlTe4pSXX25lzg+WLCu8j7PbUsQYmKMF0qNNusB7qY3Gt/kCljmiJMkALKJJ5EDvY77AK1GmOOIWa3gR56DBV9mu29ANgBako58rlnUPwhB+rSwBlqq1S8M6c4PY+3klKOpkcW4XUoavwcR2+CpwSQKubBRKU2gZ8DbXZ8eZkUPQB3Is4+h4CNspTvI4jfbLqqFqi1/deYB/nFz1G0N6Oy7E+Ft5B/qqpTONf/bjfwYZeHy8orZd2/obVc8xP3L2hmGxYyseyGhnn0F605sideX8T+TeYE3ZsLps3PNYCQV3SxsYuBh6CeKt5ffFcK9pxiklX9Dc/sDRIZEh4MFB607scMWNKWw9mbqC91oytYsbwlBQyJCCy7NMhpPx+fu6zM4T+HPuxTbzs48O4GJIapL4tr98VmZjle8+ZqjFAek3m5m3DeYZ9oMIdqUXZOrpXu9yNBNvhCTEzfZ3xHdhGHtP/t096hCA9+qCHOBX78+mgaI62e64ro6B0j5ef/8RbOchyf1NPTuPnNAmLRsZNfv+AO97f9W2eo8m94CEm1/uYiTVYatvl2tjeV9wA1mvGnKJ97VhhobbubZvRVSjoHRaVTLDrYSyfwL19trRHJ3y4dsWwfEaNcldHeV8dCg58y+mEEyS5TXpAolk7uWqzfITF2RWz3Al92bRU8YbXiMmWD0Fd8C0AoGV4CqowjkvtDXFG3+H/iBHZCNbMKpcP40uzScPpCI12Nkb/ES87bIdEL/r2h7gnvI5/lm/dYjaU56JhHuJeaW0cieGd6vQBrSGKwtyorwLK4hfufTfIsiX3wjxoVWRu0mIvruOtGNfGBvXmYWzyKDxYKQ/ODNUyoOHEifxqOlUmLNo4zteIjWJPQItYqKbtOA3x1d6F15k+eFjEMCBC8ye60ROhHcvTLqb/VR+G2RTmJr3hiHWAQyw7b7Gv1qBIE8ri+1HILyw2xj1MFkhE1QM4nKQB6EZxp/168dTLr3GRIDGo5o7GbtjqLiyxcP3m1TdwTAVeaLIk0VAcVJ/2JaxRToMzx33r+HJ7VMa7gQilb8ixhosZSZZ4fZ2hHifOEX4Dh7q9qTReUAsm8+xx3vJV43hoK0mxrrifdw7DYaA3YRdGAuz8rHLbABu+ca9w7fy2J2LpAincmxjLkiHr30xnXGziDCvKOD/A3VsVJLmAGerEcRsUIbehGdIj2D3q0YtNSQfPcZDLOOtavtyM6iueAhBr4bBS532LmwEy0K6wujYftPZXhWkQ0JmFzI1W2zrrqovl8d3mTMoLA0Q4AZhvh/eHaDGOUWQCv1ryiHdIRlGoRs/NKf44Ndx9jn5ZxpVuidVHETrqJkqfWShP2gWxp8Yi0B23mcOAP8G8C+Jgg2hSgqsxjpSiahlNT6sNoIf8KCt5G7edFPlObBQG3cFXpgRQonr0kwekyffj6zaKqtWJ1jFcyRi3qm5DNq1KpSY1uRZUBzM9d2ECjZm41fy+tszNUJwfaO/77KsI38bkts4nGrPjARb44fiEJqzEJRgwmVlEFwfl40OJz9hedn0xqhEK8kqX1LvBxr7oIdUIWO81KjD5V6k32+LWdzOqzGwgIhm2YmBnnPcATDeZDuAXG2L4vYBxP6jio6nmz7cul5A6w75gJgWiLfTspg3tyaMhtLtALum4cEaBwkdMbQdg23rkuIjyL0QY4nLNweoWM9sldCAtHph69xOl4by/zCy5s0PDvLP5wV6ej8eQDctCOKiwxJqUjejxOn0yLaUrZ1pyDDfi+3s2KoPJfJTQk9EitRNsXp1kaUjgwuPvG5fDTgEpD303Qnqh3p3lSmgYixJ53MJk2YOmXW9Dp9hMPMs3DqfXUYVHZqu5g55G3l7SshG3Bc5nA4r8aw8am9z21C6cruDHJFgJfCenRus7dnp1eD57geyS2e3MFmUDMtUU5c0KW7MUNki6K6lYwzF1t2W8J2AIqwMnq+XOSeWD1/1QTnxFdowg8aSbpQgTpNNKvCxUK6v7Is1FwYbLLyIKOx1mdsy64fhN+k7ei+mwCdAvevVPDrXZhO7wMynOIs/qSLP7XpCNBOROJAsGaM88CsxyWC3Gx7S07Q8RlMBNTaJ0MaU0XfzKW2BKe+7eAvdN5748E1C/TRzvB2LqOgnMSYiLWGRQ8NkgVx0p9s60L3WlEx7/AwCLK3ZoOqtfQonGsXN/qy9kC9l/wRC/m3lEWxWoh7Q/LriIPr3sdD0y6D73DmjpYG9xigLYPWZxy0n/qbxZvV+g/VR11Vz1sRKpTI7/Zp/7660krA02Dmv6NYupAk1br7U0H0nF2HVB04AUTc0UHq3fHGpDUbZSYo+V8bXTzX5GfVcyHdceLmBb21143Xj4HbDRQkL3yvhbmW/Vv+aOzP2ckD7Od/fO6zKzPfjCh5CC4wO1ruckQkM9w5leiJpYdCpqf5hWHh56/SJS9TJ+J2Iyh4MZj/Xj6c6L7XIM28Vo4usl/ltV7vqn6nvDgZ4adroGZKrs9HUotQegooQRQfv6YXiRiPwcL+gM8qLiTdfGFNstfyOAc3aQccQUWEKmjUst75L/Cd1s9t0/gNeH5epN5DHDUPZMUIvvJqpiHSFxYxMWpqKlShTJDlkrBPhglceGRQ0JEbihy32Yi6SqpJ/CR9GRhZgqwVu42s0zgeUPB2wfXarWBmd7pivwNwCruB1Afo90wuIhAKhoo3HBJn1O+sXdd3+eSXvyxj5P7VFFngwPDiuFUzdhHOO7D/TVMt5Bb0iJ3qqu4sWRCQIg+wnZlAAPmPnhgUn5FIWyH3zg==
Variant 3
DifficultyLevel
567
Question
What is the highest common factor of 10bc and 2c?
Worked Solution
Consider each option:
10bc is not a factor of 2c
5b is not a factor of 2c
2c is a factor of both ✓
2 is a (smaller) factor of both ✓
∴ 2c is the HCF.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
algebra1 | |
algebra2 | |
solution | $10 \large bc$ is not a factor of $2 \large c$
$5 \large b$ is not a factor of $2 \large c$
$2 \large c$ is a factor of both $\checkmark$
2 is a (smaller) factor of both $\checkmark$ |
correctAnswer | |
Answers
U2FsdGVkX19XL1Ty8suJK232Oj3dz9xIERfuetbBOuPX4v/cZP3JbcEcn5iSNTkhzzNAI7T93OFPU8LrI+Ujp+faOTjWZd7w0nnriFkwmDEbF/pjA78UlD22zZjXdPnF0KDaoJNl6hcuby9RG+vbdcyRCta6335P8Ap9cuSVZ4OvZMUs5JiZ1j9woxQ1c8YEoGXh5zSTwiC67F1xYsRNyYDdEgSh5sEDemhnUhk2g/UtRSmihGeJkZeVowywDTgxYlFxyBvUkQmrKVR2DVGsDowNQZPmTk46E/T68VQG0prmsUaFD5OjmzZ8ug1iyKLT32t8A4jkd1W5r33FOE0An8D9bJ7fpvDnw9FJdx93gT1bedu58nDsAlfdqSUI20Qu5iJmgCgaMK97kIe8ddVjULWSN+KhWvpZYwPKPRpiL4xDtpet33OtyeSMPwjW1rgGVXuQUJmUJz6B7ouHcWXyZiPyrxWD+teTiQeDLiKarfu08c/BEp40zBMLmPLCeZ43xuTTOyiIw7wjfRFU7FdN6clM1safYJi05+iKnoB80037Ee7Cv4e91koCxHQtFxEKtQEB2/DN41s1I8SrIcsUj40nwf+OBNApZ70Y5onrXmoMg3ZXppJH8FrLPJGRjh14gXv2NKY/WfEE0iqVTBZ9D/mDZEFeIvo661kLdgrnnXDM2tD5eXkF6cU4zqoyYEi5A6zcMqM3OKWTtSK9WGmyZXbrkc6wGFgM75Ccx7A0aRk+vX6n4zvF4SWOpPAr99NRwvPhBn/ACk/p+Fxuk1kfgafbhhPTdoYVe/uooeHSbXdx5iIjkcD/a/GUx9bSvSw0N1PdbWd80kZnHXDao3+sB6RLXahrvmeFoZspHi67DNx/nVO/JPPUF/a69USocbNaGYGcKgoEusUxRJh7dBw56RGubhXF/2WQvKJHE4Lh2mH5db4L6J52H/7mqjmOfIKCdUW6bAmZIrJAiZ02U3yoPHt2vbaTM0qDfVzHy73E8E45ujpVuWeTV/5S+NG8IClsBX8XHyc3Su/VAO9ZsTJoL5gOfaxEyb1931JlPMfHFbfuV75YZNa7GWLsf9iMM4mcqqz57JcBlC3uSgwy4vqUYpx20lndPskUCiFqygWIqSN8FB1DYFPW5sczR8HKSQu7vCNTq6cxxL/HjBq3jDuFG8x80N6F/Y6kQKJ/CjMs+A9/+qncdCtPhg3wDR1vjN/DSa07Zv6wve8LwZK0n63Fjnn9SFOi1sK9xWMU+uSTGrY4Y1Meb4WTxaXeXKyXpoi36J53MyJ8/+KrIbCX9CF3wmNxHtuYL0O2+cwf5KAe6/sOmQsebpMsG60sAPpE/Twfkhmuq3Z9eqUhxOTvpMBLcZjw4RnB4Qt7OpAyijtTibA62as/Praw573v5aqvmlx1rNb2W3PJUjG+ctGe9cNOsytBPxB3KqVF3JNggOt5Y8IerFG/jbNLFxGllXs0qXwIJpj4RxbfwDSXVvySeKMkgV55VmsvtSPKK0SwFh8StjVjICC9bWf9IgVi16H05aL83oa1NuOYbrsmMmNf/Yr2JZukOwdkqrfay5XeWONpUjul7ozbTlGvnPfW6H3lgHOvaVzFqeJ8RgCpilVrXzMbVrY+cEjG7E10ENYveCgn4A9qxkvrwOBgr5s5c47sCZIXDx9oRIOBkVfF5hun8X6UjHzmtZ4Ta7wymPurxn/KA0atPAjco60yA3oDceRoQr/MwsFl6T2trX+qHhNGH4mQrejs3+jMN4xnSFg53Ff4aHWRuGbwDuFlooNjcd9N8LmsLKbeaVFSKKFQJfTW7LXbXE2QYEBDQ9qlUhI+fpdERMsEqbhYtW1EjdYqjPJjgQeMDJN59+5TgMbBC0mZfE04m1IwikiZOQxR0G0DFIXVpG780jK/7BGMgby65ZDtntUevvV70i+J6WfrlF81i8+M9+P63as2YrRF5/EeLQhuqwR19DpW1viNAeZKPXZttgZ63zD5IK+7YtbqV810HP+Zht76FRoB8OJpfDv6AP+XDzBDlR0xldlP2VvzvncnJNx3U7S++Asin5qr3oo98zAG1bhQA0oDykH5cDyT41ZJGPC/QNVVDbePqHaVZ8INQxdEq2Q29AXmgB2AxTkhweH/FRL9FIKtbCSvGu+1eX95LxiR9nAKWiqH1Ruut0F/o8bNbSNMWh/cvCRLHUPDExXR759MZjJdhKUCbjue8/MUkgb8DGk0uAYEYv7wNT2WnLlI6JG1uif5dQogm/Fq3FYunM4yUUMUETMMHsdg3GgyzDLKmXrsKTcTf09PKIWDKztvJAtxiIXqd89/thLGjYiMGIXZlmNFT4wYlrxI6wiugCa6cvmuQ59PjxnlSmZeAO22dzc9fDE+kWQGzpG1DEPCbLQXhWZ2rDh/i1J+0YMY2YzMk/yPW+e/RHsDXlWPf3ZFv+JaL94AHn7h59Xfuhd60T60/bOtV6jgvkpSrlB2CMtxdkR/xWSuqH4sdNtdAi/ZkkfJVdyQZNT2447fbuVvFqmiJnDfS99OWjrA+a3T8TBn+V++tyQv4PlGE05hWEDiTJyKbCSLe+hiM7lVxMPbjJcQ6wMeijtrrP7ZN7EvZoNFHvZ2SiaIfmpWyznCOvAGayd3mEHg6y5IfOf02kV962qpV3kgNUQMsfFPKcXsBrXxO+laBatFGelWmbEVBTqJ8nVD2uj7d1TRMOhjNQmJDWXC/8Fojmup4kM1ZjF/YaR7IEntVPB4DDP/IjQdu+bb3ja7CcCp0FnmyGUN4/0NBAxrhiN/nDC7y1izyS+Pq91RI1W9ae9mCuxayGIolwVzvslHEs879l1N0sIgL9Suu1cKuUm02rJIj27rX/aykRchnKmqCt1WulNCVydYMBoA+ioyx/94SWQ/BHFRsg0WmxOBIK+jvtG4tG6k37b6cYDh00Od+JXVZzGHLgNEMrGx7fvxrO5ISYojo8iuHldm376hoYCNLVddpF0xbbFJIGsWatWHQn046FEd8lqNrkPDn9y5WP/PtLVy3VmkgVTV4gk1up7YwYEVHd0ctNU2Y6ynLeHszuu3/3KDL6SgD1yHrrzfvPlmd0GmYxF7d5KZIcI4nU9GgFdJFT08hddbBpMT5GsAOa9c/R4Sf8N0p3Zly4ljJ/L/eFezjTm0fVwBl6/+lSs+dZUETbtzfhg783kOZlfJ78WMR0ApQ4guT+ECWKu+c6R3Qq4Cwkg0xiQWT9rcCaJ/Hn60rPcG8oJ3J0T9qeyc3GI1X4q8vlaCpfAic9yuV3ZZWeM54w0075e7ZgcbHGm70psGy0fsnG6wDlkx7WUCFtndE2lRstmCatUzVv4v6lwKu/j+fDyVJZ94/DrOobtbPxW27+1TybAUejH0RBuAOUV8z+AcjYK4tGXVLFiARhOyyg/rh8ebihsVv1C/jf5a6Qz+W3DOjpLe3Wsli12vBfhN5kfC8MLBAx66ajxQggksW1A4zWyVBELfY1sUQiZsktl5C0Xo0AUMjoiCNJQKlKYLpFDIeK8DnnlZnGamRiZnu2AYGAGqGqSM17awL+Hu20GitsBunprNu2VYaHU7p4NZizhERkESjq6ry7S+ansDTDIb/KRleXr/1yiN1vmkTe9aG31Q5ppH1aSH4kBm0LmnuK3tdMidCa0EiRB6Y/4HKso76eECatwXsEqNJkw7PJ6vMKtxM0EdQHyNYmZ7GpalNO1zOmZ7L7nrewC9XXtlH0+XAcQPb91sM0cjl0lj6HjN3GirmTaBh9p3YahKTQRwUE3/J6LAoJ+9bBS7scE6H5jpM25oz7R8yW508ZKdH8epme8ilZh6xbhACNJz/s/bDAoetieKd3LRBh3czLPSU6EpSagZWXTDM96emjvBPt8inG11SnfIxx5tLXvXNWJF4TNxs5iDKdDA9Dp2ahT5c4v/VGfIyIzl5DoVvPQr/W5aGIqWhGMtrjB/czxoSi75l20HkBS5+rydJIL7ojGvcmdA5zJbwTjHyE1sKJ3k12oMTnVcu1BBjf5Yp8w3Pmbs1GpCDAeX1bGNYElhdxT7RtN3HMm6tXGwFzst+rtU/AWdGYcLJzbYs0GahDAdXFqL8lxJRO8tuqdPfLgmASA5lGn2IqyyAa3J+9+/tjoc0V6jKZJ/O+VW98eJXCJ09vrtaLeLTJNJ3ylkaJ9TOLl5c7rIdXxuwOkglGazWnvYa+1w1afyjp3BU7ta4Cv4IgYMAyredmzcUCYE3WAzuB1FdV0sZ7bPaJLCOzjuo3nfpKeCtCOv5lq+3zkSBA/EsqVNXpIROb3eTpBPROkliMGumLcfy8OigKnridckJwF6rdnUh1rXQhqU4H+yDAziNkEBTesijphJp+fH9cIcwO5XP0iBaBS4i8nuXpXikx77iFg60RJUfL4Fr9z3jTfoSoO6ROvcrzGx0YF5mHqIvSI+uvzKuXBPCLgzk7b6JzTyqejx9YRQ/vnOKeckHAfzxMjFJAB4mM7wmYxSjJqAcAyzbgHaqeavt5MrsD+fNt1bP4b9hlWy2mCp7a/k4hRdyy8pqMtU69cHzhsC5G5hW29VYLZzpRi6/bGcT4lIlpfE6YT/aGSM1oZ1pq18hOPqsv0FC6MBfVpcNe65YLxgPAI71i8nS1suf61JxPeyaEkLUScK12feHc1eiENvQGhTAai6lNffG6CfifO+gubmAKZwyPBOg1l5kJsvNpm2sQTlFqBPvaOMu8w7bwJjPkiZguBUSmjCOKRNRoWqynD/uU85YS06NKNMiILKPeTJw7ow6tmGNSoplchBEarZtBqHPSP5w4fU3e4pYzUs+nbO3dRJ2euu4eiX8BZXj0LQyLXCk+nxC6zY+80w2Ja5rMYih1UChIFvqNCd8PSjdhaYukJBncvgQRCUJjKk9dvfKjC48nShX7ydb4HeuVG5VfycK/qdyfrngUpqCq4P8oQNWMkAlhlaKNW15OnotNaGnwotglepsC6Hv86Z/PVEL+uGcG486srlqPPj3mamXX7NYnRLKJqOK81ZxyZjZLeCA37Q/jQcCEefoIFqqEz/0KCN5NG7D0qRllDLh4Pcy2yNcJonFeNH+ieWbaITZqCif1qxx3fdgB0+bmOzEzS04ngxiIAKBMaKY6ZEJkR0VZToo9vEr1UrxeX7ZT2ukGx0xt88DUzHeprxTwVryziIXdWLTJ5t9UV/Avr80axOqYTv0ISd88RH7CB+h5/MtL8q4dj9OwUdXGwZlASDlTdT1bGcWJlhlaJT52t1iR2dwVZkjdvczpBEALCaZN0rm13YYicuhLaxPl7Xh68PPB66Oi0/TUbJ0JiCXf0jgxMYlGOYbmyWrifisSjsIoPqyqH85mgM1EV8nBg/o4807xQLa7YIUxPNAuZdEjSO8pAR/59SY8M3ellXrbNqfXP+vLZLK1JXrhp8Jf7wnj706S1UkMqHNFI3dIFAn9rSWrYkZLwy2+wUxWFa+NwXKYyPPvvIhIcoBdwCOx5hs4kQpVOsrA6SKKCvf3Kx7L1MmRtdjZnu1YM/HeIkdMC5DSeiFQ0WMUJBrjYhiZ+cJDmk+zgHVuQiVD+Dw8+5f/s82Atm8gdyG+lwtYb5TyFYHdDPCm/21xEfXciknrOBWPT7dBjT4D9aBaaoMctjyaPIwHw/NJp5Qm5H+/k9wN3VWQZW1z/kuVsNjd/zHyHnXMUft0MAR4IICPM5oGrkYfaPw0U2LTzpew80qvWru4ouWjNCZkDlUxtvALAWRhOk7lfeKZgIbihtFxb8kRljighM6TPeCSd7b+BGcAAUo3EbdBhGW2EqcwPn4sLXmwkW3DxZlvyW8/uHjELRI2L2XV1caSdNN6xSLMnMq+StzEZLnrNcbSZ0smiNyl/gKqG6lO2R0twbdGfoEHNXStO8bEOLXyQ5fDhMqmc4mCM37pH0hTnJ2XvPp+lQ/ZcQO2f6eLqkbaXiOvO+lxl/wzlHDCr2izRq1khwSKBhBWsGnX2Kt5GOcJ2cCLPfQgSUblWc0KTO6TCGWkZkLWEBk3Y7GQ6mmi7ZXObTcOjwdCwVhIGV1iAcIyA5nvheCgBhF5L6gOS92mJJNori9Y2MtiMFlwoBNvgWHHl1FWEpH3yEJhl3zSXQS9bsF/REd2XgXItWbyeqBg5dRULJbrkxTeTjIBzq9YUDZk3KZV3zKEKotCTH5i0oH5t/4MBzMVaBwfo66TuvicFLguVdrw27a/CKnZhR4EyGCHf4+XjiYE6Ma69CVQSf6syvr2MYvUpwYpmdRP6LkCvvBaoLnYBF7j/uPQ74Wqrmyo1hgn1YRn/ME1VN2gJ9Aexmnybm7vWMKzVZKvOkWBd3gnFx70BG5hrvrDW90iI+bD/74nsL7RbIu3zRLfh01MQkEr4zhbelKZmGJMViVHlzhrKm+yYMcZaM0dPMhvh2Dr+67uTddMl8KMP/GH9pFLRqsQAQDz8RxvJ4RrtdWSvoqDFrbT3W8xn+y2P/ev2Ol16NzWNmDysbElobQ+b1AhR7/5cdng387WbzzU81XUkEZhxZzTB0U4sFYiltG0bjkJ9XkzLOoa41W8VgXv8uzWkM2y+wZIfZaYbrBU/9w8AZN512zsGpKw8+42vZVecHmiZc6u83Uv4J6mh59acMLg2jD+wPJFul4B7am+TRQDbeF5wQyy461pmiytkneBnfAXTJRbUM4vrNblAU3657BrMJC/ICKGjTYY3g1F1+bypAMBbd0cQGX2S3kCr+4+QWDVtfDjg0O0pGB9vkpNbmQ1GLNeMX1pZpBxrP7dEad2nKEAHoHy1tACWqiSPK9VBK4/G2DkqOk8e9RQ+TP6RaWy1SRVa6KNqYChL7tlhbnilY/X+VpptK44V4PMuQ0B+ZpIno2ezcFJEJ0amDYIensovysqV8ixnGEou4fC4OmRtXOiwLC1rIlgvC77NpD0rfyG3/k7xK1KrTN/g/rtvGiIPZr3AP+zy+1rIF8eOlVE5BfYMuyQzSR7Wlzp8jS4ypVrYmz41vuwFHi6+DJg1SqgcQjQajYjUBErDhCoEK0hsacQm8lEcwEoe7BFQbGyiq8SzH5QEw5ygnKlqfN3kwkNM37u/kBBSmRAnZGT0ex4LrXZ99Scci1SUj0FwmTqQg54nB1KRbPgoC771w0ea41Uifynx4UefLdIOe79qJfK2rr/YPmz2Dz/pEkkuy3/GTHIwzKPcwF4uyXDX3Gr7N8Bwdif8rODVEScFHU2TxauoiojfdCEEV1lEdnjKxKXHuXaK1V3teh6tLSrFE+6rlfXgHJugr1K2dDnHCUPCrdzVw+xl1TjAsBSNUs0wztqf5SVQgAr9Y/BHTFfLkjaPJvR6lDLsI6o+6PoA5ZisCe5OUBaiTILJGZE7UOrF9yar3jfZNMPlV7HKfMV0x5wPv00O2kZ/44pD4bDHQ3Qz9KeC6535Vrd2AlnCPREY6WoWcSdQneGiIlsqyyaIo9AkkBKUym15x15dfpmxL90DIOmkieI8mnUxHJUV+QMf6Zs9D3OVROIwzb5oC7HGe/qF0KMot4Q1lQcewkcrpvnm0xFXZmf5+hQJSF3Zm/RCOFWfWOl/LMyaGnX+BjcYvZMns2YkwlfFU8b+ByyuL6sChO+fFrSTme8JRHfKA+EZdo4vtjqa7ymZcKB+RnxJWgsRE0hgS//KbopE845sax7+EbgXgx+5KbfmZI+L0BVJXfXZYQRQ/abENPi2A4hr15KE7O9FMrKygoyEB9UBEu6ZSXCTJ+G8KXuxbXLeXbamVT+7Zqchf6ytUrV1V98xq8f0QEeGyAtxsnCuCM0VFd0agsQBmNO6A/FcCRnnf9N7KUl2FiEXyE8hoQi43l5dtgAk4sFpSmiqMdwVIKTr0P5srDSPQ4dQLCvx2wIR8Zp0SnIGsYwU8RALel9gNTjMjvsk/itUvVs9jCkIEL5T8020/3Z2KgSPqKFDrl4ePdgfXRgMQp9X8GHlLS1eblxpffyCla6pOoDmjCMMXS0aYUUHGdzHZsVFMgUOqE3wrUGKc0KIMktj1IDviLcHwJSOQkUaLUP0Mul7b+jVIqBiHSXqI7Lj4IClM3t8ysBVuOuWjj46SNz9UPsKmRRHhq3bl8n7Ht+e8HlIGN2LHSzmUL8RfLju6VHRZt9BbIA/+9niNyCBNzoqXJA7b0M8UsGdrboFkQIx4CJ8ZEiBCtvVNb4WhgiUyCxqhP5Lg3wlXr2iLdN1O1gUeuW/R7Vd93/x9ONy0P5Zf3tiV1fIAwPGDgMBZ74wQ4GBqxW15/u03Jqj41iAqNVEj26TrC9+Z0mpvNoriDAdD26Awbj2cxKngEuo7u677TUgl/VxZq4DCskXUZON7uByOuiYUfck1wIWeCe71SLdQMsM42ZOwJS26X5be3ovE/9t18UALPIkM2ElLgrlEooA15tpVHAzLZIMnxGKHvuFxbUFDl7TPl2/MYwMzVjW+I1+ZkcR8eVGPaIXdhEQF0Twmetg5IaUej44sCUBoKyvnWzKvhu6wY+BOReVALBskVp0ARLPN+jW0P70F7C3VsYwfKUo27IKPCKoYM2h6zVs11pKNRwhNLPcbeeMseaw1J0gLZI/UdUchqetDJzMPyg17OhN4YB82T/RAigSbflxGVFBg5+HBe5ZYpqKUBllOoPpLYcw3tfQoK0TaokYZwzAM5oLnEYQPCkGjSGN2IFBGi7F/IQW5YgVAqSKjW/Q7b2e3Tnmkx5nY+4P88j8O1zlzQZSPWjfs3KaH6GwJs8Bk5t+1gvCkE/QHULQWck2jHPPIxCbLiByuNFia/l52OLx7PBwq7KdOyVV/ty+VgEr5NGts5g46N0KAehgQPQWnbKBLNsE/O1vHG9UuZGTolG3R/s/1anEuQuGMp7tlKtcKHqS1vf927AScCLuQ/hDiUSSnljR+s5eKb7WvE8U8IwrHvYuTn5Nkmi+dy9cr4TVP7AjaM4uv1CUXlkBW52+CBsjiPJMtcoF/uD8khIiydboaetnljoVicwA/YeQoMBw3hPh8DTdavczuHahI3fMZb6KTf4QzsHKhYAkTSepsM2llbXcPuMJ6zHIh0txxkugaqqNmr/RzbMmEp+MEtIsc8DxEeWowYtXTsimPLcOdMywoI78YtyNMzLJDGHYQPH7mqwhUirxtqzXzRWdD3ZiCdPSOSutZ5kkm6EZzVvaPMZK22GDiDfAK1AiwPLA32lbkmcwRs26Y4nYcKYe/DNzH8jWCS7UUmKUVvDnxdfdrAHPIcvjlWupCxLlr1WU9U5hUsk1kMJeI++t6N1aZpmZqQUMwb0rFs8kpCZZosjspe/xShoT0axtyCeRxc4qEiJ6wGbnDPBoQuMfzTWrRAL3tY31Rl9JDCoZK2qlyAnDsIYlBTkSuG/+flfNwnlecPzqq9WggX5y8MF7fXfzMX2Ksw3y6bEXtotBun4RjhoDztfQPqijFDTXV/t1ax4uKeGAH35YtSR5frf1JfQTFMvjL7OE3sJBcDWN0FhIrzRIa6lcmPlwRQYsXEVTaf40BW/q1iqJJn3sVl2/fEV8kVZIiseLmjbPEh50oTdpvMfcKYxvWTeeqzvctTMtsh3VZlx6+dsHpuiKzCfp+y3wHy300ckIMONkLA70HctkAQxUoNb8AMuqvW/9SjmCUYV/uobJ9YbVus3vX78btqdDZCtnGr3tPOPbjgi6LUbQf26ZHlaWlTll6vfqGezpO4FxVJTpDrwiut6oOJGQ5oH2RcMC0KviBHLM+8kUKEexQDR9NOGfLDDJ6vAbnsEnp9G9eof5Czl84Dp/2cQSWb2UlfOL0On/M6SGJGTdS1RMJ91bT3uXykbTifzqKqPylFbMdACxf3wRgYfDutloQlDoUWxAyGpNLWBS4BBIF+za/vH2dtovWMRgFAm39l+jFpg5xWykXhtPe0eFYAeyt1hpsquQ2rUT/WWQysgj5LWUjtqP2LP6jLwW9Ehp1EzMRbWL0Sls9yjAZRvCPEGQ8YLighNdNXdIY6NLdTmKFj92n7dLPECH5VCf3fSp2nKm1Ls68J6iF6leB8wXsdgfKbyHJaTjZ0rEaoIbWkOGe5mJbdqIipw5PW6r+CVHX7lSWl6ee2n3aJIEIPLWaz7lsfsEjZFngpc5RZ+FkN6YB4vmSjjNCP+rOfSbUWudcSrAalhnwx1cALgDHkCj0Uxh90ZHxBf7aQrAWQD0Avp3BUCqlwcMpibWmgLMcn7lWsKOy2yGjUqmpRdRlP6caus018at9W3vG9q4DCQB1AqjvjzVt0PHROsxZouN90ZF+/0jekmiwF4hph7elyFl2TDUh+oGfRNVRvayp/8IgSbZpwRo8gaTnS5FIm3F9qNTSpj+xRMcA8Imj4nVZWPcRggPBbahSP7D7DbkvElUi/6AWjfZbxsKd3gza779eJqd6BIr9RYfB7cRSSgUs0S9fW3X/7paNH8/+Oe+Q5SBjRSVdGD/d6tBMBaGktPTSA3vLtD63Y2QRJW+VzeyVTQWkMpXijxbzX4KEQtRkw1fFbvRl9iM4Kf8y0c7YgjiyHMoYuXvPRVtj4Bm0cJqSenSlSUov4BYaQ+9t0NBCqnuxmWiV8LnIEO3NimGEgOIC7FII9CIwn6oKyl30y738V7t8GYMmh0Y9Rfwyh3A8FHlIk/UG1iKaIRkE1os5N9d9ixMsCq2B1LjjyEaF249E8ApcjnMGi7jLBPIgvmX5XG2IzQogAXF6atgbQsO5YQeKMaFgQdUifqQrdblfrQ2gqsjaBy8y4zRpXlxhLXuJt6FzntFRKlge7pB2A4Zc91qayEDlDi2jXkidwsOUdWOxG4CzC7VOyahB297IoIiHgMuDspVMnu1FaE1EKb9X1C3LSORMCBYKalo15Ruxz2N9gYIU6FuczYtVKs/3qdCNB89jSIQ3gZ/lQdqqNtD6AlDvJcRH9AN9GpP5PQqeSFdQYJr/mhWSuVU7UOH0CaqsWL8MK6ZIrA0HNntPpbFqM4fkIquF8zhW+hk7VWSP0rd2JsShdpRAU02l/XyNJHZ9RnAQZJOuF3OAPwItARBS7PrC6hl8C0tyNKO98IeyQTYSziAtA1V+7yr4Q9vO7kxbjMDyYrd9xTNgGfFNR5A8k6pywJQwTf0WfdcEMtUedOeMgkp5VIu3YGaFibRqusFvX+B+zlKdXS0CHvVdZmOvCHmWXzW+q75SmibrzK+o81Pk/hg3gsLrqCMJU6WlHZ+6dJnfgL8BBiiOxDs4JMmIVLi8amMz97IoYrLqEvyjPMJpVvlVODkd72LjxCTKebTQ/sPyrAhYQ9WEYaRaJ1U5D+VKMPVB0k2PMtRPF2PX0em28U/+j9oHnh8yLSGA0s376XzF6ZB/FFweS9yQViGiD44Iw+EuGiVSABfXNRf7vPouhjWRNkMW44mkQ7WQiloq8iHUYcaKdvrRSV36V6QgFSJdVBWeErWtX9TQDLM6jrtQn+FmxYInBvUk9zPR0KMmp98Ktiw0QLYsU8anf0pBHM+gmZa6v1R2iXxK9Tf3pkTgQAv4XV2b4I+4Qc0ufUtcfVrFH+HEXNFlh4XnQra7/yoYlDXO+UfOUbY7W1MVwjC1Ermy2XYzL0ivkrISRYAlk21Czj9FOvlt6WIcB13R+Rm+vSsf+XEc/uF1WuMw9bSvMaAqKOmLOlYllADU8/zKOi8CC+BkO7CJp8RMnJc8xI3a8oB1KupX2ewbBtnP1lACdoq6BOrsehDYLQLzdjI/T/YD6EKxdQVDfExwkpW6oJpRGGL69XYpC/z4PtaECQM0Z1kVHDXmMPov90wYXQxDr+VP2hyVOb+4MtgZBz5RzAOKWaMn4oD/OycsX70SsUf7Za6amnDHtZmCX980VZ/F2xSlQIWqssH1EUnE
Variant 4
DifficultyLevel
571
Question
What is the highest common factor of 4a and 20ab?
Worked Solution
Consider each option:
4 is a factor of both ✓
4a is a (higher) factor of both ✓
5b is not a factor of 4a
20ab is not a factor of 4a
∴ 4a is the HCF.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
algebra1 | |
algebra2 | |
solution | 4 is a factor of both $\checkmark$
$4 \large a$ is a (higher) factor of both $\checkmark$
$5 \large b$ is not a factor of $4 \large a$
$20 \large ab$ is not a factor of $4 \large a$ |
correctAnswer | |
Answers