Measurement, NAPX-I4-CA27 SA
U2FsdGVkX1/JT3jjl0Kd8Ksiue31LCbmqNu6LqgJpNnis1u5hXeATPv+as18c8+mm2BqZIRKmhHyqwewB3SHFVltzpkDW0lgvpA4RfYCxsCUXnYU3h85nyALWuRKRz3Agm0yxyUXKfRk+oxIjG3urWJ7SjzMEtC461EmFU4NP3e+U9V+o1Zl6mODQWRIM/XwxlKaNCDX4Qp5enSPt4g2gO2GA/rrIgbuG7vmFANfDxzBhktJ85L1Mz5wUGSj2XSS4U2W5I2xIkglNLsJUdaaU4C5W9QsBGhSkn/rTUA4AvAs+kcWSxbHkP7tJOoQfpxUuD2peTRxA+7aK8gsbSWhgb+1lnyZSvflHQDBxSgu8BeBrmd+R5L//Nxcn8KVN5AbHRJE7hBR0Tv/MDMQltPrdx+ylaj/GTCFDF2FdU65GKG8+Fu355hFfrQlv8ZZrHQcrtcd2MLFPA6UWO2CU1AQ3epjqdCF7JlWFNJFimbM2hho4RLfwNzY8pOonkHh9Awq464bwW474bstuHZWEdvWMLR/fkMa1dPTsv4qvQ1tU7fiZJU5Iqr/bz6Tck5wVN3rMYUgYZVjYxXqYPkZiHQtFLBXca5Lr6xGtx5GakSk5fuEDcTw/SUK1L1xPmDD0/fP+UnmW1rSa6WR8d1LhwElcgLEKlJp/DR2Kgc/k6HE6SnrY7Hkl+bHs1NxlC+IzEBq94A5DvbMWOXIdxaN4Lz9/Gvg731o7DPRBQLUq8sQGfX0SAyyNyk0Fj2aDwoPPjW30glPzhrLwBzzZT3EgK+0Iuh0O2Kp8H7H2+VdOUyigsBeaNKlnjrLok92v+dK/UsALLiLnUEZAanJsWU8YgsFsExcA/ZTEXp/FOq1AaZvzcM+3tKOa/dXKGMhBvDCi1fb+hbzc4YNmapcSfuFgKrpc6xIjKfKFFr2SkLILHVc0AcAB47ZsrvT1V68T4NNWWEfCFpsJIQKL75hX0IX9RpZrlUd2QVX5oNwpdxaV7CDBt0LrdtUomQvLAD//RH/+JxA3k4bsYYATm4adABtf/Baou8zhFumCAdtr5Mx16268LYudxVeHTq+vIzWip+GNe8i3LxpzCTdJaLAZcheIoj8JrciNUbmdNBFIA3Aw8axlet36IheqI89nADieGEtK7XLz+w8gsY+YijyTmEuRoXjrb3+tA3bbTSyDWRntereRGzBjNH+PX5Slwe19UuQ6A2RxVVJ39SO6v4RvJVw8DlS0gmR2P6bOcn/sbqxXmmhgme3OP5oQ4RpbWt4/m128O6Hipsax91/qZpgssX2TKNAayPF2mMmvGtsDzBtLZGAUrUnh6gu3rWimmZ9O4MGoAcrlG0wHMJTCyt/iGUQehnYtp41VvggUE0qVTvlVogw6vej2Kjq5VEykpiU0Et9/16HpaUVmbo5SJ27T/VLc4FMdr8vLF7wRIR8fq6mltJ9n8iUwqeUKAq2edsof+ZJfKNYlKTj0KyaebqBNMTxpqVb9j0EdoSRk76ZPKOjWxr6YVxWk8214NGnpui+Cb25z3iEgWRBuwZxRTv+TR5SveyNQMA5iK0oJtKege31JYEUbpxiWabMaqwUNrYN39mpOOaC1VMQvFBaEGFpk4Rr7J57vDlTVxvn3I1zGthU9YUU8qg2IUCFfDVHlMkyV5/NAsRteYfpVNM3oF/XcM0cEwYwie+06iVosIQ76Af0IIcM2Caz7Wh1q8K9Vp997fdOL8nZB4sMLlBYo5uZK1LVIH0VBIyw8e7Yk29wENz8B+k0R9arxueVULDJ6eJ1zHHYRnvxqT3DEee0juqavwjYl0hSvPIxvQdKH6zDjjIEqsv2AIl/4/2fAqyN6nSk23gng46ZJ6tjutoO9u7xVAa6dhtsaVPnFaWo018Aouq3cPAiETpYIAomJculNzXmBmk5PdgcvMANMICFR0+3rErrFx9V8GfrSsFC1wIac4JMZq8xBi6Vpz8ZF/n2kx1XN9RGEAV0TNrJpSiyz06Rqjxp4UEFsUO5OLYEz5SI8hkKz6tpyuYQNWRS4rrMKE5AtQO2LttnDpAJw90AK6ZjnmRDZiZPFVVsJYg1p4S4fIm2QqOYuEwXsn6FCG2YWkVFsI2pE8PTH9lACZYGHuOP8+bWdl/8tJ5c2W34Ikb8QcbI2vAm8Kx55q+9bzItO9r4aKmJwc3w55CwtfpHGsFeSI6KulS+iT++emVJZY8Vx7a2g+b2p7qhJylkhqWiUMZelb7oBHfzkhtymSLhzLJqw9hVm/cbFwVhwj4x6vmoWefN5BGmJXbFm/SzX6nDLXcld3xPYNQtUNSBQHpLKPbpkuy69BMS2sLAzqUSyPkA213yZhp83aqmi3CU1N77lsuQsb6rwUdPTAftL9XLDGJ58gHAylxX5PIv8oAYExMFarkR70lLm1og75o/ib4OWOQp6FdATlF2qKZ10yqkmIcFbbptdXsrAuNP0glk5Y+qypiLj7XJR7ff2Y152JoG0b9jrfbB4aqF4S3NFun1WFo+uPLBfjMc50zRzy8uzRg27w5ldfFe1zSvut1aNqWDaxnPz/zlOXhPvzi9v/JqSoCoxw0Q6di96fVqACH05xtQbXOsaC9mwT/3QcMOsvwV7UhQkJK4y4CtZQBcFCNUU8BcSryIDB1INFfV7cOjFOZFIRAYIqJe/TiSuae9AepVuWTb7PYf8YETNet4dI7wYCTNSFnHpvAJ/bb99W+im8EpQBpxdA3brWchUXx6F/YAOemu6rNkM6P0+41EfNRd6+MpDSlbHS2z4yxHwa+06zIn/9XMAkKPzyNZTn7bqHWaWxUJeRfZSc/qHmdh1Ig2KyImksnzmofC4rX5jmx9ZEshTis9f+JVwBXoSkpZHgyaPh0I1jgBfWue8+DAP6pqF6sP4aX0go7HGbNUQY4h5lUR9HqGO1A031bpwKYdiRCN2e+wEFwf+WUKMZAg5Z+ThnHHbdj0Hfn9cgL/8jMtR2FcL00riSIsayHLjpX0bMe/6aM5NggIKfMPVpp5BRABQS+mIZyxFmCIdnAkMbYRSdt6tqejL8BC21u86Fh0gGlCKcYaByuqpq96HFWYAOWmDbeDGID1bkcsdnKUH45HvkdX3rXa+UmWqO77/lsuKqNr8I0Y9ZAABlac7eBA9clE/11ELzlnYPu7HhdNh9pq3Hkz9P2jLGHrgeIoHXLNByYpGH+n1nDeCKLaFcBE5Dg4ck1/LwJguCpUB+Mo2ADA2HD0kaWTPOZPOmdOZydmLGKPg7Lzu1yd5kQtL/9E7kXXIKxjP3vB17vt2TSEfM70ywV/WlBkcJJlzMNKAJlxv0Neup5opqz321Kpk0qo7Dvw/3e+8ig4SW9nBc9Uz158EM4jDQjq0fkisXT8+qKqtiEECDq0lS9aU6Rn24Q46NnJJ9FvKk0y9+calYdyr7gs7tuC3v9dl8VgUitfZq5Y7DftbFx42LO57G2WdjFfbJNCwhvwl0l+TPIxNY81PX91Yo3UxOUnGVjEB83JsBMHtYNtFspz9setoPv3kMPdo1QW1psEqh6AUhDFVmtPPTdfEFJOlwY5wOdI1aMEbjQ3P0MtUOc7rajnRO+yn5Fo10QUax4ptsR+4PXJB5xY+W2prwbUQ7myM38FhRvRSQjDuOY+/Vk3QTMFChwpo/v8RceE0aBEy2dmzOM7H2WAWOmVCe+jjgOX96BRlH/T2FoO58mvHGG79WX1CtP/S1U/YJ1Q+ZVjFjkkTcsKIu0U0PJD47ZNVGNmbRRp38OfRi3BcT7OUpxKcvJLhtD38ueprSd6CJlMVpcEluw4W9mX/t8Hvk8pvOszdOio7iqbC9jOVYTpO7eEVbwR38yk8/jncgtffZVWE4yZatiWiliwyEf/d5QhxP5GAKoiWpIG9Wd5L0gWgknoUktJQBv1YGDGAadpa4gvQgKBeD67Lhu0AuD72mfKQqiWstAW7N2MAh6yMI4PsuA/pXheG931YQs6FOHmV3CtNu2otAZRhXVXgkPYA9O3hfEVmvu5pU6V05LKdc7S5z9BKRj22VwGM1WZx+/tIPGiy+Lq8ZXDSfNrEmQJYYx+Sp0qCcXTDl8mUtgQx7RnRNU1c7kir11wtD4SJzDGjQoUrhGoOqeMZF0WWt1kkXwfxJqvEoRIXk2saCYaFrAfhRneCgBJPBjzNY3ey2bn04hVWkbEEyaObQl/RcP9q5imNEw5Fk3Q91MvpDJ2rqHM2EHFw4WeGhzYv+3/fAelQaYtiniObBNK23idXqETudFUpeLWBiJ8BHVdTqRgNXG4E3oqsyUi4rD9rmKPY1SgSrVRP4eZqznVUYdf6xyjZg1Un6G78VmLjnGhNY2h4OspxcCQ8er9k+BinepIsrnbyaAEPg12b9vSz+PI/XYoo/NwOHaI9b+iH6R+PSsk2dknqEc0ThA+MOhlWRXI1LHhl+itA7LeBH/Tvnhp/79AFtzw2RpqF6F/3jQdyCfMjaLUFyUxDOvJfhuokfI8UOTxVmJOvdnecN4oJiV9LMrT8YLA0l6DiFY3LJkzOi1ddyfvYdaFhNSQ98qvxwrdWxi4NqBc76Fy8s5EvCZe7iXLNzCx0dnAN+9eyv0+Bq5jn7a9DdI15l0k2Wogvf5ICdMZeThhEWxRKwygrlPa01JsgVAOV5ZGz75ibiY8/gowXoRb5VTdOM8MxvG5KjGT6MsN2v11C/XI5/fu25rtk04v7GJQJk7GBs6k2bJ6c/Xu3KKmw822IeidyytTgzvLcIMhYTnvFyCJ1GYaqI1n3ss1cdQkAV7mhNR8eV0TcNXG+BjT8uzDas2sQe2HA2kc72p630iBJSPYsFfn6+xErtnZTeV4n+idA0kyYBcY75cx3e00u010JQu+n5Pl8N46BvU+lcizZF2KeiR591N/A1XEEPDc/eIrZVNf3A0jsbXlr8L6t3GSsyHbOGTCdAYXrJKUbCBANLqPX6m7FQ0eCknwvW98hQKSUEPnlImzTnP+1ScXut1OPKFFeP+Lxtw8sM/2m/c+7kKi4WDQbXoQPW2ACJuLPgngETe+/VtMUb5zc5nbhMstbxN4qGeq990vFO4bGmjGSVFznPFQ1Oj7f0nCE43OqS6XRhRbl82iDeMaoXlDjxHo1ukpBSM46ZOPWiVK1Qcdx2KHE9U2wrHF5Q7n91FbrnkStbl0w0UulQoYmkG2dW7UJHiklLTF5sj2tDtftCh/KGYBI1N7GV6pugh0vbNEgLicLH/u9K3uxR8nXDyiN6fRTVO8onNx85gtu6hCWihdZKy+L9Nv+fnUZxUyYHn/tz8ZL1R5zqH3Y1yWGsPjklE+mW2mGLususWuUZfwJOYeqKc1b1wzqmSyBrpm7hL4p3twXWcoeqvGxZNO7nH8alaxbRMw/PoLxoX/LiwFNWUK9fyhb8EMRuRvevyiXOYAoamQosKzJFibu/DakvTi7aigJz1FEXmKQVel7c8v8a9romBwVWT1glrviFe/cPCNsv7SZ8IRYD0EL0EpeOy9nzEXYSOpzFnrz4U5suxn+QK+P6Fpyw9dmRatn8N9yaFha0j4eKIrV7CNIdH8Dt5VtpIqZE/5w1S+xXWf0W15fXvQhgNcXFfE3Qfjd1MJyySReO2QliqWL/QMPFiuAuKuhuVUfBCK4rX87+tmq9mgHvd7ZbdtSuFJIS4zS+CcpfGzvyJYId0385RIfhSDsbDuZkyDochUq8KUu9UJgPHrb6BOzXrEDNZOgK8ZF/aXt7nondV46CYFG6ZaWV81XBhfvISNkWTaxewsKnZq+0zmEDx3lnhmMBOnK63WLJtQ/Uvdc6WHtgBiNMvTxrjIbJy1tEl4DWBCMO5oWt02qxWz3XxtsYEXtBvm0cIMi9wpHUM0grLwsPjvQ6Bk9F9V21q8LU1T3z+7uF/sxWFnriKZLp92uc9YI1QrAKlGrc1McdfjldK3FQZ5gb39q0wRXb6+niUzdLzHL9oRIGSyN4k8V1H/KhGP2rub4VWCq2VcbabJGhN625QIN8VUiJhtc8vpNCUOoVpaYzrlu+iHzc30b/i+svHuB06FQiQr7vXXbVROtfV77l8zcQNew/UbGxsTCQaiNWi2N7yxPbJ0NCLOpD2Fcys7nXD82an27LGSFOsllvEunuXeAcs1RTMEdD97FNa6AW9ea6iIdVOmmbnPwgZRMCoanzmAiqsuIZhrI8oq7cuZcQQVipxHI5oZIPREOYjya6X7fALW/mLkSrfaIhKilVokJEwSjQhPJMqeyqctArsMxi/ofbU8e/IHajn2OeRbFHh+Bjvhs2bKps899cwapfnXABuee2tTQfHQltCWgD2xviJcpwolO+z7jTlql1WQ02g908UurD69ombRpBuDJJ+LL5OiZR8ETwOu2uXz7/zHFl+XI4j6TjyHBKA/aMNsbV5sdx85UJ2ILysO3RzQtREtDTMQDlNk9NEsIK/PRp9p/vnbcsiC6ZedHdgN4uB0nkkvxHbB32qhKPDQmW2Sroi7NK9DMAhyB/gTkS8rBMNHa+Ofn+WC4Rydq7VMQK/oUTu5lt3z2GPtYEVQVULuN12M23XBOq3ledQJtcba847rHFQRnpjgdVTWuBTClYFqOa3jzaQxs08LUZuHexxmeSq3/E5SmsFBNZwLCsiGZ3iCzUes8BqGpAr151FeVxaYI2yrmAPAYr/JmDKCp4QWt8Ws00zVrVPuHlufLVK4NJyO9Bltvl3tDRw0bQtXPAV1+zcmmAx0XYwmkogjVitjbWL0TjwlfFKsA7Qx74nd9pSpA5HoYou+oG0k7tgNV5GFrNY4tCv1AowkmWNjs5rhb+KL9att0Y27OmC6VHA2+MLaMeUdUhbqJeznVoVrcJ5POjCKDUErk1CyjyA4YZMdOk4gnl6C96Pq6Yx2MhE9dhEiZUlppf8mNuRueEsXN1g/RvXyBL08I0dmJN9VVylZjjapNRApahIYv7GSF60Fiinx7i/Iq7Y12J2XCTmqZAPElgF42yQnnKxtbViBGaj15iNUCT/sz6u9e68lxVqeRs5XRvWpBs3DwgHF+YfeXhIM6V6wYc3smI4mvuPkuaRTDhwQoScfmr2z/U6oB1zvwigA9p7fc/VZs9OG7opnP64pPCM6Xy2w+cHjZkGyYo3cw0xL19gt0NdfIUt3VUPkjKqJa/PkIJZtM5zzmCMINYj+xRINJVmc/vms3fw2x82FZIvwOdUm9wzf3VjFQwTw1+i0nEh86CcEenmLjsGshPdlJB42TYYqZp0ZsF2FPxI+gZxG+gaUlEsg6Loc1ZDKM1ns89hhm7y+uXlHNW1DJeZcF7em2Y7sap7rjHS3bzJcuHi2jc054E+22Z65r8amOddLsyc2kyH7T3/7AI40t24uJWunlhL1Feoo7JDAp8KhS9kZrdhu7T/sKzw610Y0ksDO+qlL12jzxbf7tZdI8TsV2gLzt5kKfKwqDRFXN1cpafar3MwwcmCibii3cqOrDuAfmE4ngQXC/G4dgx2xuCZHvqIzFnd732AjMnU1kMai8BuGVAPlVJ91qD02/1l20YH2n5zEa0rvp3pC26zROdD5ZR/epiZm1DOEpoJhwhyAgEu1mZe2The8TWDk2p0Xo0cnjqkyv7phdwW+tOUmYVGO79POPk8lZmwdS1r5asLkNwlTAUwBeuF17B+i7YaMnhcTUbp1+fpNExjtTYfbhMgAsKyg6bEx3D2fCqStAXpUmc2Z7QFiZwYCiojgC+9BzttIjX/7c0LJI6gJ5r2zyy8RyErocCv9ugBJwxVZ+bmtWw/0El9UXiB7Ygq3QLq885m1NJmzH4T1AidfI7VCjmcjQ4SrSgE9hqYuqdFPHwmV3juOKVGNTslJhnl4k+oC1xaTIAGfztKljg+1o7AjCzHPSbSxdY10okXOL728nhMWWkvP4u0mrGbNewr+LDUkHQdfB7Mgpp2dOLx5dnj8Fg1/z3KoHHL48REByC1UkkNafRd+Qg74FtlyZ8SXvhCx5vHHBlMF8ifIO4FX2DDwNK1Ms9jZa+IyPzNTvi2nab/0pBEOfle6ratm+Rk7AS9o5XDTZipT6CO8nzUUKfmtPojR8B8PLdGYIHssFuFBWtRJXlmCIbBoUg==
Variant 0
DifficultyLevel
715
Question
A museum has a glass entrance that is made up of four equal triangles and a square, as shown in the diagram below.
Belou is hired to clean the interior sides of the entrance, not including the floor.
What is the area that Belou will need to clean? Answer to the nearest square metre.
Worked Solution
|
= 4 × 21bh |
= 4 × 21 × 18 × 17.7 |
= 637.2 m² |
= 637 m2 (nearest m²) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
A museum has a glass entrance that is made up of four equal triangles and a square, as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA272.svg 440 indent vpad
Belou is hired to clean the interior sides of the entrance, not including the floor.
What is the area that Belou will need to clean? Answer to the nearest square metre.
|
workedSolution | sm_nogap Area to clean
>>||
|-|
|= 4 × $\dfrac{1}{2}\large bh$ |
|= 4 × $\dfrac{1}{2}$ × 18 × 17.7|
|= 637.2 m²|
|= {{{correctAnswer0}}} {{{suffix0}}} (nearest m²)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 637 | |
U2FsdGVkX1+ZJVZ+VAHEqCZX3gOPX88WfSXlLqN4uATETkDRdHk5sFRHQS58LKA3+j59MoKS2bg8G8F4xj/DU25umPzKRq9Bur63NaT4GsMAKs5HMmvzI4D3dhEGvNzcCAjC/zWmGuGOp1oGbKEQvYH2wi84x3u6RRkJRm8e4f/1jXdYbEsq3Y9ZA23oteDWMd48HQzClO6fzTWlMrhcEsgEfnvfNCc4KingByhPiQmYO8D6ZVEI22qwRwlXebjos0VWuJJsNaNULFTHC3fffpz68cU6Bim6KTPY2FDE2Wt4a/EpKK2PSZ2mw8LhH0MUyb1hsv0aY5fwtewJP220M0Q7FNVceiSfsTOIgib0Sikt6iHj4idzUU/IX+jJ+NyTGOvdmXA0khcTl19Mh+RVzliFkU0rn/y9ygmaKCWCIwCENBCdWarPMp/cfhzLxpfWz6EN3vT13s6A9dCEvK59vap9qZx+NX7FnHYRHr4bG4qYsDCpa86eNLc+yUo6LidbcNmqsqW+97ZeQBAT3N0tTLOvnQEmWiaBxHRYZKbLMmdcimm1DQTemGGmhuDGFYgZDQKbTzYC42HXOHzfs5/IPLL51f0PdxvWqNJmWyHG+1NBjBdoa9KR7hdhfyoT8ovw7AY9mRQLFJK30ldFJ2aaUD35tS345Q+JdgtI8E+s/BgJjlXwjjyqNlDEwPcecNDubbiiKCp9E0S03d5TcpigbKgssG3C8Ru/xzmugDbpaoHL8zKR4br2lbom0DccRa9ccXep/oIRJfgaOIQWQTWBeKyYofsQ88YQVzpJUtM9INi8TjI3Oety54trc2RYGapiYXEuenOBW0ldIRB0YSSwjQSdCfkQrud5S2i5pkxUO5C7Fw0nzfKTCXMGQ8hlyZvtX71ZrzqnmJtQ1bcoXd2P7HCLEDhUnHeDx1b+veoJLQxlvFlnoPBaQAWqrZnXmmsJ81X3U3kIa0n4QDlPbdLPOAjAn9nan3mSHGmCiUw5JKhvKnWLxE2yP+d8QnOGN8sx4AekYcXRtEAmAAgM+F0A0P3h2xxdMO/ng1ZA3BVD3yNJq7pCE19VpxkQk9iXB88nNjDA/927DcqNhaTmsAIBc+NbgdCLaSchXICaOgsTwXR0kmkPB1Fmn0AEyh38kpnheY5OaSl34TTA3cXjCTFrg+y9ztz+xSjrgjzLHRFSx1bGxbA/+ttgWlbA04urq8RZeiDT6NmT1GoimIAKleE588uS0qROhRUIB9izDUixK1JSaXspWsdb1155PLURColWBLRy5+reLDAX3UrB1rF4I8lM/IUh/jy2NT29L6rBl3lHQjlJbYcOQzloI+OLHO7gfvN/BPE85I0lItjgDy/8zdepl4ZcucyHsaZgfqzVm0iud4fx1XRjiWf0UW4bPLkpp/G6V6twt9715XJOJBPGlRM9Oqbw+SJEbgAEzgxzWrIr0S2jyST7cH5OCQhCZhCCA0mQBCgbyBnf44fJ+Oj5vKFZ2NDsSJN52BInCghSI3n+AF2ToBKqzNwDSo12MHTgUc6UK6K3YdOH6CxJ2yYw0c3cMBcXVT1xehU0c3TwkI13DDWh24HqLaaToUHWo7aWWw1qOePOMGqG+vtzQS/1AhBZgvKYW/qcapYHxjnAbRNMuE37BpRGIRKweocxUVLYtdpYo/ORMX8Tubgba8055FYY95IguGSq1rjhxwONa6WxkqEwy6CRkXmV70WvAv91uKed1b4RGqs72tHr5EPYnni9tyLXIgYrsmHxojJ4jNb2KZXi3xrDuXXxoZ5/zC92USfNXRV4VnkJ8RIldXcc+ILJmswXhBOJOUn7PTVbGvFaHvkJbbjNwX0gg7GWIDofEILgPkZJ2RNqMtCnnQW5s4nkMPtbnwHCDaHbb5WG7UNxHQLzN2KTY5vXE/s25CVePXKpED0/djiY/ruAySRha/tVZE0062CD0CECEJahZSlB/wqA9LfY1IUCE8wFpcQ7tthqoJWAQLFnnQ4W7rgYWdPyGf7ophJNfIuv8JnqHjHHnFTdz7pWtsmK6nMe0XPrDwgqPmNa0mepY2In/xa+HGrYJjmcyNSvahJu9Qd607rS849x6q6OG+jeOkdMPStjIRHAOsjxJU77E5gEaxkNUhOBZurPOuxMojf5wx/q7KAGwvpsIN+3bkHubKQZ+Q/vlAlBWEcralOY9WC+JDNhX6vy/+TTfolwyqoNgth6zR59Q+nrShTDxfvFiMhwpsRyxKWemMoG6kf78jGUzYAdGADX+jzNNEDbYg2k95pEqCYhTbw4iz67v/9yNASo3NEREuiKF/mTVk8YqEUl6Zznu2eGJIB64feK5+APAzIHknetMb46+mtba/THW8OMDawaQrTQsGKTnXjZzF+YJVBpwPJMvxW7eFmOrijLigBrS92HTFvlI687aKFpdLxCw27csgutUGzgGRwADm5MrHtG4gujRXtLoBTOdKUrVDY0doQYqtnPve+VsXXpN0HfrJxIZjNmQmICKkI/oc3XxcVqo5imjgjwODHcDFw0vFXfeHerdP4sC9Mb/5V21iq4t4kyHFyjr8nJPuZOA381vwBzbO6nh/+yv/BZ0ucu11jkdcdQCyxBAvIzeeh5DW+MzkFdwvQL5jkdNi6vl6jm8UccsV+KEE6/qZKv2wYfZ1Fdg+8acMA+Ynn53ehbMeqdoUXhCRUM7h79UqUnVbNUaIFjfgXwfwQQP0AVN+2U5VG7EeYKNaFsNLzLMJ3SXfUADnLtKArDRNlHfE1ULab9OHUsDPiyiObpPTEXr2Oo6Iznefd27f7qSgqU3yszSsszVjf+ikK7I+W07iM9TZIRRVua4dZ2zHRINz5CKm1CCgR+EqVv8jU86KW5cLmqvYngaX55aL0MzdZX/LmXligIPUi/r+rtEroryzwZ6+/O+yJ62heJMwbUxLmW2WbE2DtabM3Dwo9jZT02QKahPkWjJbxms2EB/uu1QeIxexdAJU7DCGXalc55MbozCcoweBiu1/k9XAX7SAE/CfVIlrHtsM28PPj0RkEKYs460iWrOcFSksoeyICBRBM0mfHym/zLG+o+S02Z28fCLEqDX1HR2zN64aAefg8isjXspo9n+v7JzE34+IzuwJFB7n8qaddIW0HPaFF3UgC5EKazVTiGHDjAViHahOhQsEkStmzUFMo76Q2h4plQP0GOUYkGh8fbHVqTUTH/FeOQ92xbzZO845Ng1sBeGwjiL/GX/mQCuK6GyolTMjBAcOlwMUZ8Z1PXJ+LBmY5sCZiSiE53Q+1qTuFt29qpr+QD2t5/AZcbhLcHgqmTTLsBLfmCsp9+p78wAOfMpGl9pwBur0iz5iwgxQOG+wdX3sfNASKh+9VY8ZMnvl7WPyhJr5v3j0Rd6HSCD66zW4Js8AnPCnopWYyo/SkfmWRD4VfqB4XfRhTIr23Z+fZkhkN6Aa+te6Qt6+x3FrBcp+n2pPVo5DjJ7OywvYLHW2yXc/LZ9aJLnAJNJgyNS0B2v0MPoW39kF8Y6+bZj8Hh9e0nAzJ+9lCUcuxG+fWeILfDxsQVudLXKJRqvsHMC9XMce98tADDFndg8l0yetLhdWkOk+fPQur2d/T1JZudK514I3Ivr4UC6wZHOJKk1vsgdSkuIc53LcH0GdtB7hKfNE4qkoEJku1VIXqI5sy261qV6KSOANyGsF5DObopYRl01V91+Qo1crzgZgmAly1z9+qRQcIuPveCliTta7LRbtvky6STxcMDXd7+7UczSft+4dz4NLm0Z4ioClnY4VJdfAfy18Z84hW6BzYwpruJ6Fiqt6eVDq6+z2vRh5To2pKkA/mGUOJcRPCQ86lecDkWUI6gVsJL/wA3mPFAc2O0zb0aUMY9JpZ2r4rsAfF1xOBYk0S+R+yJQvqCyYwdEcQoz2BgBvaZTbyeStf/GiSaSa7YV/q3COHWhWzFKJvcueE+qonyeN74T79eOpukeY1wLkfVdeWN9xL+2wfvjczx8n2w1HONcNKGEQrNlDXYdgVqHKYqc3LtGY3w4YNGAMOULEKRIxjlMu3ERDm09VxrmcETrZNAAXXLKP1GzwLn4poGcggN6gpVqGezA3pVj8jVtUtkJgCXSHsZM5yr+Ulob00PNbatxLhkl0gO3tS6uSMIecQqtZG2CeP0CRYovAiN0ujd2SPwWWHfIdPzyZ4O7CuDFoWzsKeWlQLoiJV9iFc+akROu2DUuCadVl4v2+WzQi9BxegCTG6ma2wlO5MCA9mJbS7j1Gg7yR/Q6sLV7nVl8VYnAWsIwFKmEUU81eRQaP6zKa2fce/TzIGJGckValRozhK0h2uBMxRF4XC3JdvL6xlJzFzrTCSPRypIxH8kitxNW5sq93HXm4Lav6TXheRO//C2jDf3ur77bwTLsfbEkYiPhtu6LNE6Mcl4vyXRYISiQoeZIzyS9K4gdQ1rsOMgVo+/0oxXAltjheTR/ZQWMLBWOrA34CL42qJkdVKFDFvCyqZ8m1oM4/PB7cqL9+coKDiwuVnvDgYzCpA3aUoTfUMoGcVahnUBJ0Af7DGRRwnpExycWBPBzg4Cfg+FobJR+shHsiz5Kp5Z9Opd+QyqMsJ57vxpBSkXwjd1bUKUFhZcDvJU/FIpWN8ly+PcOJ5oLUowjAOHBOCcHR+xY0swvlb8zcLAM8ILZlVEhfqYhiD87HMqqW1YxnWRhObq6k4x4uiRhZPqwCj13HALYr0DOg1nlLbsy69owWz0iTEse2Y+UhwC5UexOprAz+FQ/LuOE75WgKSnlYEH3VkTN0rFYGuQKYyPLjbSOoeqF0cw4eKhjWo8PQnpOP8SBzodD1GMvOVPvyoUIiO+JjLviTaMEqJfhnlayGfn1a19kcv2boE6o607aTAAwJr5zLcrm1c/n3FnlERnzwPOxA1YgRmVRQdd9toiIlmjYUsCw/LtsF51xtYeB7XA52MtcT5Hl2mVCzTT46OkG9rl2aSxevUHayyHBjJqeaKYMKVXWXdmmV0gt6D/JTUMSYJf2ZvHYFyAVDLtZxCMXCBzM797RXO+WwitOYIuVTDgZ3u/qHl0f1q7a8L/jUUGP8grHOs/M2EDfRCeCqUtw7s9ofso4UYlFBDlh5VitjZ1jct7FXTp+53mvlAVrpWU/k7yeh3UysEsWiSRTqJShkNm8fvWUxuCgxTrnM1u+M/k8Zdfe/2/jgB2r+e3Aw/vGRFHi4ClgULHVK3fclHn5wQegPNuQLDhf91LF72dk9WSXob278wIuOdYpeyrgMKA3OQ7NXc1erWCBMUG+8PHrLXLtQB8nNyJZnCETEsqa6v8bfvOgZBQP2bRcnEgu8XsPtorUWyKbMRjXlpawrprSpAVI/5oc67msKTOEdfeqSrybQv6dkOSJT3MwaxZ2SzDF0HKFKegxVWqZeXvvmDPkpW0sbppLZowbXTNNBC9L4VnrIUKlWUJqS0kLlGH5xBH/ZD/K0zFfvrP6ry/91Y891AAb9Zi2U08j9A4yPD1bDAHRoQuEkzFgALriVZVukOR1So4B/cpOK2b/HIPUtxhPyAbsZNSETru0X32goko4ky+BfPfXmeOtCbCO704PoKXss+zV/GrIzQVKhP4C2EPZqPcW2l3HB6N+qO1lycVjjwD9xlh6K240Xx1hfDD9t7/ktkaJLnxSsk9pBC7gi8/rzPut5Ycke3VNKSqYeREtHjrgdzxw0ebB7ilbPghCXgTrSXpQ3Pj3HJF0Dj0fSmkXlD6ZSLIcfqgkNp1eBAMYvJuS+DDaG1205Ru528KKccSKeFyNuZokcn5RCT/4KN5A0ZMkQm/n5brHcGxoV5QeFbejIMGmpu9s9eReRE/XoEZICice2bKYO67xp8W4VZhIwcuuAfF7aDHAQE0IW9HWnuu5RoT72sxp+GCKF1Ryz/njzHkbT38iXCvkObWM3nlWWzNviH1w+nze7JNRzmMOeVenxnzUZD7lFtc1ffZ4vpJwxIgyi+XsOFuG8V491SkYslcOSw5OcK06qSVxFcwHi1JnLNj9e2DTazthFCOJCvT2tXOL3azSKBLmGSLbVJUk2K/G4m+sGMdHcYIXbOiiDDkbi7P1dgK+XmG/e0ldhRFeJP+rtAxy6X3AsIhQQ8IY7rpDp3SlJIq5EPog/JR6qU5KAximpWj7VXwirDgx5S8HOiQRxbhS/3KrLeKMGxbVnxtNr0jAswwXFG9pFyJ9pjFBr8GQHr0vSppXDctpSM/AdyO2dJP2KE7u/OcFFjRVOh9yS2P33Hfnejz6S3nIUIp08X2MljGitjJQWgybwX7E8428pAwtdWYVyABIWW7UhFx0UrgIcD9duvLrYLs3hTLeIct4hcL55nBQ3WDyK4XLya+9sATucVnHrrtK3FQ5rphG3S38QaHV4s0I0eSElvp/B40oqnqqvnVv9hDYXByNu7vLhiyv1dZ0Gz+2fR3zw3nLB+4HflkOS1xfexzOzQYzyEf7fHPeuoZHXZM/Zl4ETndnugR8s8htnT2Lis0Qyafb0FH427Nh7HbcwLC+WrnB049iGLZc59MVdAlzq4tAHMrDe4jJ0a841bfHOIfP7yNPSvgQBMQOQp42ol2cmKVx9fzl0Rt9KA/SSRnJmUMdSyEolYqfoYToo23rncNgR4YvWPg4nRocgpckFPwOvLSfxBRJtquvdOLJIKHRVe5wM/LVqoBKjyslkHzdrJnukmjpGRYlDWEeHehEoDvZLMYQPM5kvCcubKKxR4WlEgYDt9OYPiofxN7vW3QUTltKWih0dnJGA+xkpvP09DpmfXULNnk/QCRQ8UDc4ny9iDdaFzomWkjAkXdWmb0jScX1KBw2CG/27uARXWrC1KBvfDL9t7ULYMfjho5T9Z9zPpCLBrQTpCeWg+fDWuyroTuFp9ji9teAUZIZMyMtCaiNCZia9Xmhl0IcX/wFB6zMFBDiQL/LhWTvlwTs8QuLEhHo2xZcEXgQzJe9eBaQ1Wh+iUt4/SrXopEaR6uGOWxERlTvQ3R2of+vHwaaAK57tc4oPuySmjrrvMcFHtrteTCsTgeswvBu0Qd8PN+4AlN8RlT6w+AarAIXlWJg15wdtVeJ8cMFKvcKQZ1wmHRTPgAIdG019gsGth1v0W/uMP1t/hiadhFmcKz9eLx7IrEmPxgVt4Wf2K2OEByJ3CxDbKGTgKW1ciJN5SQ10gSUQAGjP74k8CT5Dtiuos+zwOjDQrYhJM309IPq8JTw7fozazfCjqzNnHfynKHmrbxp6aXl/My3imvz8BLz00K+3B1IK6kpIL0Zp0BquR1CsqrwnS4V0l9A8PizYix1Nfh+Jzk2JYCsc+a+5WZD7bheHNxkeYeWI97t9itF1lbv2/n9CLrvYc/qhyPHZGLPQzWBWcUjqFyQhjI36R4hKmclb2UzxiPOFRLRnE0hJCde88+0+busQwE0GDH5hjc5tJB/6xG+yNT46UjoqOZd5X1UHCqguPZ27dSTBfu2+HUrmROfVrNC5XglBf5uPBlY8hpvxi1gE7vtO7low3rDzZYV0znnbp7x3gVGicaEc7BkhB9kClHqQQG4jBQ9M4WxC0c5NROlK9uUpusX5gdLphsQoOB+ui4ne0HCzvRuYurQJOSAyeIJj1bCTsWoSmA9FJAbKKbqlnH0abE83RTpR4I/JF1zXIWzMwpm0turJk372e1I3N0M/SSMMpHxP718Lljj6oY21aWv7IMWAe9EAq2ZYuErGHeHvjyrURuT52IFHaHOXf/ZHjgbVUEnppFK9JO0/qx6rW7A7w0dmv8f2XtYGsmkBsID0N2mCu+MDbUiSgyNOgSd7O/Xrt15iuIUF2Add+A+lnMDbkXsof3w5DpVAJu4gmYWDthj1ZTzSeWJeYJzdnEJgDZWRffJr8jI6huNg6jNFl9NdBcA2AmcUJmWrXmOowzLMljHsg8GfUJA0RJTn6/IOeFueLEA/Avfd8jtzIs2bSA1TJ3elwHuA==
Variant 1
DifficultyLevel
713
Question
A light fitting is made up of four equal triangles and a square, as shown in the diagram below
Chrissy is spray painting the outside of the light fitting, not including the base.
What is the area that Chrissy will need to paint?
Worked Solution
|
= 4 × 21bh |
= 4 × 21 × 25 × 46 |
= 2300 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A light fitting is made up of four equal triangles and a square, as shown in the diagram below
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-CA27-SA_1.svg 450 indent vpad
Chrissy is spray painting the outside of the light fitting, not including the base.
What is the area that Chrissy will need to paint?
|
workedSolution | sm_nogap Area to paint
>>||
|-|
|= 4 × $\dfrac{1}{2}\large bh$ |
|= 4 × $\dfrac{1}{2}$ × 25 × 46|
|= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2300 | |
U2FsdGVkX1+ubiK/UUuj/HJ2/arL8Jue6hQfbN7LNfJi6q6xDf9SVlIUuAhTCA946lg9Wx6Kv3++liY4IB8W5dnrS0LsUnGbJKZlPxlist0BgpwcmHY7uaZe4mEDuVY6oJlgh4Ld19faPLK/7y6flBJW7hEel71qAMYo0PzxRZRMS/8BbVCQDXo6o0bIJemUE3zXKNwuQS40sdQ86dDtncjW6oyVmK4lonLNk2pZvHRKtrL+gg6u48XNLsIC76DW3scghB61rzcrrBsKmkpH48m+Kcz6DC/pw0uHgCaAmAGleEAuKZc95vFDD6LYQw54TTh8Pn1A4m1G3/lXQzVfAUPqwKXBx6eh5lYqVKRgTEDKXJdzjhZ0mdNKMegwp/vKkkyRfaprSpz4nDm4jcvp9E4gYiCjJfjO1wgwzIV4jgyhMGTk20LmFebgBJ6DZ3dl55pB72/oX9Y4n3thdKmXNZMHEsnETlDv1vbgYXo5abOUmyN4yv17rhDTyh1krPVsA/Q+aGeKdnjvTeelRfOlCN0+uZ2HDedt1ow1Uhl5LyvG4oCBUEaqnp+EIX9njbsmH5BebjtooRzgXwdUd1p1Prics7su+a4eiPWd8uWFHqOEhjSYhwlDzZlNYRYpRcSNpsyIaFszYBsV+FDZ69MATRH7nU8Fcnz8nefefpzXPCW1GjD/5QatH4rDPQ72cagjuehNwWeOhEoL4iAKTdJ1igjsN5n95jYX9quLYU/GG9Zv/ZCshvHPcdKzIaBPcLPcxWPjWNDDxcsM8jHDS1g6vhhYryUHenRqHxsDYN6CjCW885EuBM5Pspcu6JpqX3SOlIP28bvlJ5YXOMSZ+8g+Ke2CUYPpjTgkcEW83zlNzHn3REdqN6S3FyoLSmzH7DH8C4QUf8oeC1oxPDH8hbls4XOQlBSO869tSTogT/uuLGP8dTHT7xJnfSgKqyANKTwwlmA5xszu4ToETC6K0V0FtAZztkPFUsbebvMtEZREL+CbBIm2FYhOCqlp8a4uLSlyLwRiT6z4wHXHUCqRdMJedXCh1EhKlk3oApknifphLa4YOfXXfdhptsJPEqdQDak3Jwc7ea65d/RSRZdXE3ialCBVx3K3SimLyFp5Z0lC6a8W3cA7UvOZxmV5YfC1/+CyJDzy2DpYSKdCq6rv+htA3N/BbJEmxmNrGcQ954i5wqafWJvFqIh0v9hJE8iPdB60oY1t2z4n0Q28S1obsH4Wz6HGdLZxSG/cLUxZL9w2o4GXpTpsqjWQjL0S8THbolbxgtfrocUcv022pa1CebXr+g/ZyzCd5JGkAd6KW7w5Nd13QqQFvuErvtttJvvHYNncBQyRFLbLOztojtdVaRz6ivZjvNjnFIQevKPZ0pSrp8qf4jvm12EyFUe59XAkWaEdnDr0XQRDZ53nhhq4c0IA3qvXtvaD5SigNQHGHPNGIKRb5k83iW4ZdJ9cHZ+xZKg76TiIiXt+Hcp6jOYyIQ+XGsNxpGm+S25dnVzbxEJ9thXu4iSzj85k2gQuiV/UjjhxJmQAIels2HuuG/RO54Ti550pOgDmy3UnlWzKmzvUR/DxsvOfmW7ygdfSCFzNdlk7C0ykr6Jy7D69lz3Gnl4m6oTnEyO/XnkzMT8WrIIKo81JEMDddcTPV+XFw7ZQvl4xxQKzaU8bTcUhyHRZHv6OEVkAbbWZjn7Mf93wcBwApHjaIvsJAu2KMl12duTdCBWmBiI0dvPwhslpfAL7a8xXBTuTTKRGH6gwRj5pIKR3OFMWShoWVyvJOUl1tbQq/ZO2qvUqhz0mwbZGoTBqwjx7oYKLOSA/Au6NQgpqV3Xo5M/c/6Z8NWxpBKw/ZzqsTfywwY39f9PPfjbvCZHBGsqqYpoCoUb9UpeHU0xZlaTtk09DM1twQWBy8TiSvq9wpH37I6A/KpYP3UxnfsBvGHNqqVqV57I0fJh9VZQBMGPFDXYtdfr2qE/ze+FAXHpKixfPXx7uCIoSI9CRYF/0Wodrsf7zkkwfrcvBrWso3iOQqvC0OqDr5Dyg9Ofk/dDfPsTpC0UH/QR0CTfNQgsiiMaQ1zcFS2sXWUjzDedYlAiMMt3c1pjSWp9Lq7A8xJ5AOmPFkIrAaT6CY2Hfy5P+9+iWnoOQfCZb8C3hg6Y9nmNofweWdbwtAosbUJd2R/P0yMD0vnm9s+mJp1hrn2SA+6q7m8c9jucu0TTAflD8qhrPpyJaMWKXQbRHc+DMbwktWUrRRpM0l0JI7OnMXSvhN8qMEN+RoAAbTynr//7HwoBVkalUF0FFS2hYsG0BieLmDmXB+jLEDurwgrsbkiZRKAPqQgq84VOapiCXwryjQUCLEW4cPakKck5FKZ9ck1EXtFPX4kuyBAv+kB6gYM55SLHhMEptXzbEnos7Ycl5dBjpoNEk1WCKPdQgtFxEFXP9HEHOdWUVLyaECDuoPZn3WWkanIOqXYr3d2hcsN8UcUhvQLQhHdzEl0pKHA771UkajZcJ5QNCCfR24dH8UKoUe5xa0t731YoaVmlstbxgBQATVEpUwxcB1SJ1ZFj8WARpnsNm1RQNEhIsmgzpC0PzwqWd4/kVelabYWUX1H9JAmUaB2Zd/EGBTbOXCpBxWqM+AYr9knRh1MLYjWgdSE0cVQXaGLK0UB3KzKMpnw+rR3osoJuzlYrXetLXySZBeo0YKX8lE8tXycXxbTBJH1X22iSL5bDJz3k6ekwKc+cspfizIF3xQpWmYPNfvp8oCXQilbt/c77Y/zumKB6bsZ1VPyfyEqB3gBKuX72hucYfZppi26k9dmTmPCc0t+dIBySksvLp18cTUJCQXEEk2rDrwgKINi833VH4zZTbCn1FnTYbkcgYRw4b3qGCLgYmpTwRuASCt7hBEABtP51pt+tqIwT8ROx8GvnkyHo54Md7UcldZRIEgibHC8oXH8bFgHVmz/4CGR3EGTo6cW2so3aB5PPqMp8ASWtvE0a35z8fsOQz9+/znxUZOKrQwazL3B5Pb7DSk7xXIXnDi8qPPG+M4RT6Dsl2Mw+vtcayA3a2HMo/VOkgrpsgJqAfuovJhxNs2AlZ4u/sFZF4byEfDFk/NKZGq2sfkFwheoRyH5a2F5OYqKmSjS2xSP/imwaNaObArNZYQawWKsVzQNa5CaDS6x+DAakewr11g00/tOxp+G20DMmaZWA6GkzIzKyPdklzdlwWkX+E19838u5P0R+dyhx+9AxhlZj4mihDAufikFh2U2eR+WZpUcPCo6c/EKCgkSpQJzLCQjdlcFtttfs9e5ggvlFZ0+0p2NVhz18M6/Z2SlggdtC/nk1n+37Y1U26TgzqnMt64kOlnsl0ZTw/A2cytZWwiJhzd/mQs/tmUqBaiugs+2yuk3CZIWBe+emBGaS8GdNXe/BLwUH9ThD8EsHzjin5FW5RvWeElzRSr8E8wULl1oTtohVpFnAvm7Ih52hBlQ/oo3oH9klSO6whsgX4C3aMnLyhveK3NYTo6BQGsAN148w2euTqqU4KjCXuSqPL6OuT/0U3ismazUUhrRu5kOyzll4ugoSX6ArOHSMXZIf3PKDpwUcoMJ7GyspxY6/Vf6WWeb3+Hq8Z21O+FM/OVlgSj4KC0pjsk4hHRhhwR/0Hb8DMJKw+iZqb3W3Oj16hu4usicHZyxmdGEJyZUexHActV3mJ2hv6pl+gfh5/5fkhZlDPpIv/PTt0y1r7I31zyjXsnwCOiPI2Usdcy8fpSqiOm2wh8kXQmO+GAgOdT3SyDLC7iQPUocrEWqIW8oCko7JR3yNN7U19sgzzwQlRaqOQ5EJalcdhVdgVoXTENqO9AhVOulikhxltsKpy/cR0NogpxcuuLLu4NYNNc/uVZjG08HocmMTQEvHmjAjWyG7ncf5MJLaQOxSWVI3wDcj2TF8hNREmsF4RCHa5cETe9JW/+yPWSLv8id7kZ4olsym2Jhz1kO7NRd04gOHBn768/sWdFAFB0GGeI235H6HZzn2rBW3iUzyem7Ga/+DpZesfKIkdm4vW/Uu6RL2dqrGQ3Zd3ALxeyCMo5z0rwL0kKbIY0klbfgHNIVtXrErEmBY1fCgVdkIz4PWAldRCKHf2CwjpzhyY3Num4U4QzlC+QeiCf78dvFAZP/MSbT6xhz0tD209gy/Ai4Px+O6lYhnj7l/BcLzJYdH0zVDD6zWNrOZUGJEqV/+NXimtls41sGsY2Mp9ciNlLg9u9z1UQYkKGgG810B7NfAfSX8B1kIfkhz+6JCmn1mJgRGpZ4c4Do9HqGC1NbSExrALCUfOn1jkWuzBYOPcJ4WS/CYPU0nPiPtaIc5s88a8bKp5zJ2NTFzapiVWsN7OX+vINyJVclJu7pGxTJuXOWW5+4Ps4RLbg9oZVvXwnFzusg4xhUADYkll6l6Fddk32mdV0DhKRsIZSDLGctuiLODRTUxdsYaHkbVrvzL6lMx5HbtpDXaVNUPC6MkzbesiPpUGkivpytcvhHvAxKsKr7d2oQhuF2THoMkEln4Aa+6wsqPLFHYMQbRlwRtFvrUVxY6m2aK0NFKJ5MNTzyE/tcJ/B3ViRwaS9iAOeZXQAfIKhzuxIH1TbKfZ+ICQYra7zWp1BRgbwegZNU3mMHB69vCQ+OGw/I+tKUTwt/T24wHuGcfQBg4e5MaKmEo5yLJRwGVUO2uYpUsJxFrwmK7yjzKUB3xf05zX50lV+2CXnesJe9Rhed8k1hpG91KF6iazSQVJ8fugT6tQJ78ny96rcl0OMeCKuXZs8VRj1QxwBcCHcQbVcSl+jkbb26PKlKBpz9KJSgcjCUOwN6EW2kiCQh9Z2KENEyGKgsXKMUASWsCnfj7GW/FPiWtPFOs/Ql0C/YTSNdKcXRI4o2sHR2AzxaKVk3D2FFIkuQBDZYjoD9FxNzt95S6XGvE3v7oALfyIYNKuqnpCxP3DUrawNxgaefKMRcjjZQtsb0vNoXPVcAkF1CziN2s0gjAO271dvPIAE1v/Z/S4iyM25OSMRaNsFgCfm0LXhSvj8kx0pQDMjExAJDzhKm9HO/ZErj/PdsV4NGJQ6r7SLZ396W+8NarmXrfvGVa9YJNDNfm6Ty4o2aGV2PaTh//OWd5QrQQMFulqdWm0nODTS75EwoqFKTOH6BH0XGGURTyV1aC6dil95gHX+v1kKtW0YwsUZhstWAFHRJxFiXYemISX+2OTgw28x9huWxlH3S27yjOSx8CBee9Wc95DaUj56CUrFEuBrlDFMEDjUkxzD5z/IrAOfk4W0S+VlhnrlUt9mbGJQmZpiXVhaxTE6lPEb1Bfl+Rgj9j0mBf7kdnnG7QU7lbHqkrw5HQGchyYOK7DdPrlZ64PI3Om6nD1s2vMfsJzPxQvN9gDIIozWtVHqI6n1KKgmdv+R5f6hSlrjRy/J+4nw3TY9Cv0/vLUXCxcDLQ9dMJesNV4PCKfUP4M9AdZgLGEnik6BEItLL8GR50s3fYezTvxYFxb5YevYDCy0r8Crrzi+6zQwVvYDHOcVe2dk+hAXGLMg+CSwaD6ahCPZ84bpDzL1IIplSAKSej/OANheOV6bmA+8fSrHxXBrFIm2nTXi6sYg8c/B/DK9ITzsMOElSI6cm0Ukf1l3frnnnKgP9AROht0de42H+ln3meTZ5MutTbQFvFbj6Umt7NG1Ji+CGxaDw6t8GZ5r9tFzKTBCkFuL6B2+hcSZN0D8ksmXDgZyvjklesbEKv10G87aUOmWwOLdlW60GxRl+Ttf5wOtO5RE/XdiMsrQsHmjrKAHhvXOPl3+du4DANEp7ty/9l3j2jCCiQwz9tb/RtDuplI2I0VK0XwXuhli69mbWA3hxBHxdVZ14wwHmtBTStDGztpBmaJLkEOKfqi5SK3TX35lIkHVNgXjuHd9fJ0wuU/r5RjYKooqhVkJ4QUj4WGHx6U/xCuPFviCWeIfrhRj6c8Dg0oYDzCb1iUrXm4yyqDFmRPAPTra/0mD0Hy7HyrcJloPfXCCAZSpDqcQsJg8Mi8lrEFkK3KRt8u4RnsJLamX+WJyh528OOojmjCENHLsLsCG4ZxwLiS1zwotbRoDLcUXls2vBLxvjyMGs7RIK8L+TXuWGYwkbU3FJnUadhP4N1c5rXn2PGpKPBVqAm/u3psFFxW90ckChpvqXtL5EEfjg3QOjqKVRp/TYVJiTj2ci25qBujcZCS27Byd4zUwA5sARHqOoN4HpJL5tIkwxZc65YyyL7hUysUX2RYcUnbWTOi7kOIWd2lY4GuGEJmZofDBItW26irD8rifKKGXJ6tWmfgXnhHEIVGzcIPyMi2M4mTjBQ75i5RFkHsq10Ld8IWjAo4FtSpu9a44DxrEvjoABJZx5KhXdshyC5lH5k75HgDH3KbYB/QztL5v7miutXs9yPw4W0vHDv43lWzxjEpjTIBZbz5Ad9moRUeMQ5MsRZIA3pkVZzljezFEeGSyQbGsALq3W5xcjJv3UKgvL/U34iQ0pODY4EyBtIEBB7TcIKzFgqhMT67ZYzK8KZXg5fDzSnmlVc73O+1ITBvMkJmdZLWDjRKkJEjehLASlHQrqnlV7neQWNXe0RCdotflpKpvBUJKcNEDsbq6RzqF2HC67I5nOF5WeZ+ULJ2o6QwrgdFrDgji2xL17S0vNLCDUMYVRUFrVT3QOO4B/AK+xl6S8xZUo1OwDOFt1uy66Bl4W3rqgH8qFfveYq2qvwQeQ6J+PgUA5U59LHIFJwlCvwY7hEhHgTHeHVhQwH00UlOC/K2ZRwqr/grK+wLuEDjnY7/gAfHzfP1tU23WffRrv51iSYoukQwxbBSGsxVYQ/zmu1sJ/ZDqk4wBhIJI+UYwSoJsNkXECaszEw8Uq1NUiz+MUK2Zufa7hhjAPuPBSBw24p4uRzZLYTg0Bzy/eK1LWPStu7mFcMRxsO+g1ENs9Oy3NI39Mikx7b2rIDFk4GUVWgV5QVdbvjIhgvDNdmku25BrffLBHqDVwd4Bmh2j3kQKpXzY/I8kJPToqtMJZ/NBz2JhZWT5iHPJ4u9+9H39s+As+wT/EQqg45x48fzy2ZbZ0HhhWu1c3BZCrBxI/7aJW8h1SqNlAfuIjAhooBBOlcd9BGBJHoLSQOG1wSPiOT0OfT0UiMSZPNwupgxKo95SoNE/rvYgzi4J177akyJWr1gE/xP/qaGpHI+mupZJoy/VHG9jHAzoHf/MISkVfc/lrtybCYjMGkXuPp+8FxAtTWlyma/oDP80h+Nlpc0NhXyzZtgRRZyI/8mj6dGdg0lwkT+4qldUulMFEYFQDyKGjTQQSXPtKlJYY5j0Y0qPV2qPsacPvZ+iBYvPBfGg+BQloqlX/eea4IqFqVS4TKVzyUZwtLRRJjfOSh36pN3mZrRoa5QzeDBnu6jMoKidbeCUI6fXmTmRInKN5NmLgmjrlcRSgWFs6Jp8pkXFWAkFXzvbBe4BraaD1DpLJQ/zN/2lY1qYp3zXcbUWS+Dh9f9wfQxhSWZ3KlcYqIoSA56ipxOlj455DLFEFlU7HGBayymUXKV0J6dTCgI8bW1cpUdXMG9J8RNMfjUcFu9jNrrR6MuVQsMoErCJLcJQgaj6YCwwXyrimu4Yqo3BTolTBJG09IghFm0RRnTTIvXNdz1/EjASPhSGEvkzULLaz4fYxc02F+f1j40hG6yqNoWHD+9hcCpF//wgwOMdBBgJ9EKQ0a04ildRE40nWAF8C5XR8wGBsGUsUyuYen8TSfgCY7W4WDWjc4YIwpVirrsSm6DuMWFLXZt6J9VqSZROM7CvzaYA3dpDdAP1y1HQOMxXFzWsT4eNSGDKExzYmb6F2gdgP62quNsh5+4a38lArLVabNfIBAcFtCigupBC9pdm5q0TequgYSiOYA5jj/xXOUPcHNjY9w46/G8y9MScqlvN2w1VWWKuYIxxqjZkxNOMr3rjQZ5Ty91Pbf6fm+bJiH+yGnrZnAAUIMPm9ppWVzaCfVoX2XVj87WXGW40lBhxR6WdU1eNvcZLjqlXkJTg2HnV/layD7/X5oatlmxmVqzWPQEwH1ExD12hDFcTgeiAav0QhV4nmctyq4aJtNWUMpZeV0w22E2/sKL51WKVOUkHIlI8g==
Variant 2
DifficultyLevel
712
Question
A large glamping tent is made up of four equal triangles and a square, as shown in the diagram below
Bruce is covering the outside of the tent with waterproofing spray, not including the base.
What is the area that Bruce will need to spray? Answer to the nearest square metre.
Worked Solution
|
= 4 × 21bh |
= 4 × 21 × 4.5 × 3.6 |
= 32.4 m² |
= 32 m2 (nearest m²) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A large glamping tent is made up of four equal triangles and a square, as shown in the diagram below
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-CA27-SA_5.svg 330 indent vpad
Bruce is covering the outside of the tent with waterproofing spray, not including the base.
What is the area that Bruce will need to spray? Answer to the nearest square metre.
|
workedSolution | sm_nogap Area to spray
>>||
|-|
|= 4 × $\dfrac{1}{2}\large bh$ |
|= 4 × $\dfrac{1}{2}$ × 4.5 × 3.6|
|= 32.4 m²|
|= {{{correctAnswer0}}} {{{suffix0}}} (nearest m²)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 32 | |
U2FsdGVkX1/ze5h3B5vyk7JfoVTF8w9jUxMJrMYSosQ3+oPUfA3MypvB5Kn2Y0p3Vv8IhwxAm+gMj76/i5Q9lsEqPHNI0kdbbCRuSwpSrv6nWFNtPbDSB47/3WtRjNS+OqyMRezMQQOKdTtOrqhCo2oifszf8vYOznnqtcvivaQQF4NaNcM9JLkB/XeOS+R3Nw1+8xClfAfAQ+Ir2BIZauRmpvBHxtWobjS8ucoWRJ2joO2OGhwJNgRnNShxSo3h0N+4PgdAoMMfWVI2bPO1ilW6fC9giAkogH/djkUnH8wqpj10AfVJ42A6s4bV0qkR6sxSs7gby+5tGATiJUItxM4ZmfKc+mF+CGuhVn8e9TOHdRSVqF/yPRvw6UkSnpRNgxne+aru4DXRU1eHZeQ5pTs7eLUQmd55X6E1w7pc/9shZ2q0kPU84c2kgXIbMqcNjKpnS6nGHxEUgP5qnhEbF7S7k8jyWKRDRH9i/N7m8SqZWn8kE/xX9jCAS+xkgmio3WKADG4KC3ngv2NYDsVl1IchH5jhkAQAhfGYA2kaSUJUW4oIO7Zx4ezVqC+l1vvPVNPYtcZMQwYGABLE/01YI1qtSZ22GVKv0AvXUqHhD2NKE5XwPwAZUwDhl8Q8j7M828eYtoub8MeOetVlZ5iXBFqz2bJ7Ubee2E6qkg2Z4uHd6IC1Eq/bANX8YE0tpLjdS1rhApD8v3u75yoSJiGiBGpEfFq3G67NGAX8IgT0sL/r4GR0sv4PY0RmC15bY52L1jFo3YiDAoVvtHbnwyGUDbuhrz+k8vhdgzuusrB+4LXSBJCqT4GWD+eKhgn8T4DQsHr36LfHwrHlKQEbY5iMQSd0pDf3wnnoY+vTMWmP9nJgdQh2mbpuk1FdX6EP6+ztZlvkPBY/2HoJn3WcRAKjG0p6wfFI/A/vECKXef0X5yvbO+xLdGibF+OyraksAtuM8ZatjCsIExjJf+YZQMPAmHncOCjj6Ke0wL1SuiJQ+oXXZuNXhNO8iQBNiMaewvzStpAZQki0L/UM76sSQlKG2N5hUZfMvNSZ05zgKQYTs0kYRsKzokQsNWypKVVnksmtGFhqTT6v+/Y1Vk/vRkBzh1WFIwbsPFMNYv4frq4kgDbjupn04WSHoiSlBSQcMmDgOyxV2cQxOph/6DgewZ7xPrJwvWgbQdMoBmbR9o+etuDR3jynehvt2kr2V8bnuNdruxmKcqHu+PCWw4WStBsahbMTazGDC137sGFRBx2NOaXo86HRzB0QVZmEaODC29IvKqipHkKn5TtSd97ZOxA0k6FrQkH/rLSufCgR2T7hIIzMtyHyjYNAAgNoFB8Gu+iOnw8i2KwRoN1Y7prLBlUh0N9XTMSgP3UeJ+pRKR09BhOrExtQoU0Ef9ZCVu+8GCaPe0Sqxiy4Yf/dFLQPql04tQ9TzFy/PIbNaLScAZ4c74bDE8ZQTsCfhLBnJKGYV+OBz0w+YJ2BfEGSWDNiRScMOo4WOOuCRa0vZ6Y+VNjBc3MR3FBo4r5DCsLV3Es4zoUEo6ice6u0r7YcPIg2h7zofkAvLMHteuZQf27TSikwwfL+D+KmaJb1SC0Xph5qnr14QlopjRGdwP2gd359IMdW/4SObfXYEJwy5RuT66COWoZkQVHpe/agZ9adjcXz4/5zbaNZvZtlp15fcamBkbi/MMXDvFx3cMIHvchPBaD6EG5ZPiYzxtwflfbEdBKUoKkjtavAbGqJBqubUZ3JW7/R1RnYqUUsfnXLstjCn3OrKfnZE1gdT5ss+ofiAqFB8RfHvNqsJ09qGOz724DfMGvaoUNKdViYxIBB7c5doFvUu8PvV0/lyTKolZLn7QpGPi8SZ/c/ilS8qZ1cHK/DkIjw/5SLCcB5iPzlE66liGmNkVWndpESZ8d1lPVfnFgeZdVj+dn0Nx0L0aWLPLEPA1eUWMDFFKt9Av+VvNng5Esy+IPDguO/9Vs8qomfJ1rut9rqU04GyCVwGArIVwmEJiXJSoPkgtQHgTewDDXiFhtagGrSXlxwkkbnPWzZWC6OV9nF2ANSPlRNht5UznV286naKVWj0GKVPPzTFGnLsXMkJgy0+8SC+/T4d/pwvrXoGCws36RZkbU93+Ns/CIRb+gGI4irsfCTbU8a6FW2lJwIQh0s29V3hGLoyNpr25DKsq479TMjQfmQQVzDmTQPalYokvlyYerhKcHg9MXOyP1m4lhyjfwHfYsWUs8ikQlKS/ZSBiLyzcEfl01LaAOnuWH4L/p7Azxgr9VPp31Z671vutqFh6gIfOtzqasrFqSux9YKmn+kV4G6Q07lkBMERr5p5sn2Q12EA84x9J01UqmMJWmwmS65kvfbNuNORdkxCvVY0Ox4sAWlqVBbL6jA23axL3d3XRIp0T0uMHpWlfIWGGae+ej6hBdM7PqQneUMaerMnqOV6PNz9Vjc7/wiOLhoOZIElv8ez/7LT4wfOyD6MRjp5wPN+FQutSizupXJOXIU/bZd18KfXx03RJUxuDvJFTieHYRY/7SLZBnXGTD3aPK4Za06nOrs5t2ihYDiOKNrt3JzFtpUjrcJys4GTgtZuDUfoQ2BCP91nePBTzIdqKamDfk4Lgnr2ordB0IQaX9G6rjRaw0s7K81iRp7wXMCMXg59SLTuQG57s/5uQU5PmLP/Xh4DawKPnqsFBlBx/4M0Mviiuwg+hAaIMdcGJ/KB3bODDPlcpFOBg4Ibm0KuWDmrs2ATc1u5i6PU9mMIKPyyMUTxmN+0JPT3K2uJCS5a8pfe0+og4eQVX8xLJsSanvdlADQ7eor++1OXSaBDSrSLHIXYKVybWXrQpPGFoD86GcXwzQo6BP6l8EJ745xGxhZdiI/Lqc8GN+DiQnU3MUJSdSMEeo/P8AlcoQ7TplG31ca/p76TAlQMPrz1Utx7ixa9U67qd8sSpMi+2azuisNNng0VA3ow24PJc62DmkRDrjG8NKb0ADXaONzjRq3W/CDWEaGYcr9aVQUXxH5t4dJL/7IPFywTvRZC69kg0CfGajH1UhIt/7ihlc8YY3JPC8gTxoi7Zd5vg3O+uZ2NTSAs9wErFiodBkUELrHBdnGrU75W+yY0ZXrdhmy0zF1KbS1tc4UdFl8gtisqx2++ICOh3bmn63QGMBdvnTQchYEC5TCotjUgxRaU3/JxyCT4g1ee7FTqHO0NWh0zX7BQh1GqULAfXfcX+RodYwGMjS4qUWXA3rzkfZLD2ZFB2R1iSh5YlMjzP/7rvqPFpV71bF20bun70d/w64mtaXyWCb/SXizufCrsDG9bH6Q428D3uek7DLSVlf9LFfgjKLmxpkGRWMghg9qxd6W635XPcmbkRptRE1AF5ZXGnf16+U0g1sYsEdbRbdEILcFsX+l8Y2fPA0jSbeh+zTdUZZ60+SpJyhu8uxO63CGi/4CL+ihiJnUp5Gfdq+/FkqdcHBtvAongOrrmQttk8R/Y14JsYEs9+4AgpFHY1FQVD3BLJzrtr+ZitIYqlIYp6eL46pBXIcLHLy1nMUP5ZalNO5QSIRTrjWMGbR/XD9tQy7Ms2GxsC8/ZWSG91dnHeeMdC0IJ2r939oWtEokeWwB4Y5BHIoedwqh+ND9JpM3TfVj5mntuK6AIIFnM/DwFJcs89/xpvB3C6z3ofB9eIeWKSsWGneZwjhFjhHietvNn96PMKhB9aCvh6NsF1FRPEj4HM2kSGltUTd4F3+2g1s4b+u0HpbEMIfFP3y414S7uODAaIQXqe7CuMEtk/otQhgQifIS4q71SgXBWnXl5BUrZ4su9lQRQNg1qx1b9idz58LXJA9QFw4e5CGaO3HlOdKErK+Fe2rFmG6kBhsR7yMEen5aIgoZ1Q+Vf87dbibop0ugsQVHT/GJD5b031Y4aq2ypEv9pmVq9NUwLVUuRvh1ISwdaGNTP42Wu0Kr8mYBxOXTTKXIXtfRizdcv2D6FwAvBcgNfKq3WhPpARocRxnrvybv5u2yOsTkUSnFQTMxZz8ow0+8MOHKuu62DytkXoSTqu0wwuMtBuHf3Pd8aRqao89QJKaytcBkrSxD4825Df52cFgG/sXCQPUszPof4G1GGALDsuDfRNqf5mNvfjIL3vgcHJsZbdSJC4oDmWg557V8xC02+Pvx4KM2bmspfcWzbXP9qpStl4zRgqvAEK8w9+zZoSlmM7e69eB1K1vt3OP03HEtjX/Zq3kgPjqIExq4FmXrHQPSNQTAERIesOluxX3cubzCQfT9StH1TR5DwojzZaq/p3gvSAqYvHHVtUXD2TxLzK4JLnbtwNmrkQV6MjKJHyQhK3+mLqEhGd+/zN348OivtaYbIQY06yxeX5ezF/S33jBY28QpAbpbS5GSRLjWN0dsEz9LEMtBouZUHWJ0eEbIRDDPkKEZl9KjZpL9S8DNhTIuUvRtpBu+qAeLlf9NZaXDV6CkRhskyUl4f/w3w6qc6/x3vm9msPiW3fazkJh2nb0yL1VC1aVkCabSM+PyYxERkMxS9vOVpkcQ4Jz5cp4j8qOCAxzUPjxhLn7jU/UcszHWrtHTsRqyjyCyCt9kaljrT1OXyiBWn6iAxRTTmsw1rhsKlno+zfTJ129ta85JYCd6wIpYTmWWvRN7o0cqj7j43XpPVgAmPlSQ9+ZDrozODPoSeO7MwURAz4cFMYzmzIqEKh5LFdVJQ2/CL6OAN6cZ5Xcp5Y/5XKCjQUsyevp8Gro4x0j5pfIdt0WKXOM1dfGI4DdBEVUTGwm/HCP/XtpWZNKwQwHH/Qel0YU41H5TFDuBAzg87cjsQQ+JCohNMvPr+napYlgX4F+oYehkpN0PgXtjp8Gk0tSCeGywHcEPlD+9JEc3HrtnOAdQKyfenng43Zi8wOT5y9GMRASrmhPPN7OaBLwpIqqLpPeu34h9LzDKhl3Rm5XWKwHEkMvw4aU6a0qveMY+9cUj/i3EBlhmDr0ZdjZG/e+/NNsGv6pQfK7HEyRt6XUE2bxQlc5SOS+puhcA2Y0EtyB7D1nGNn9VBZ7GOSh9H+lrWuvHqjJykqtkLCM/x6VmG6e81ppktCPapR0SZ9GEmh09WLqi4VDpaxgOXJoSoReo02zFV8UGeWhQDAZ0IaRmWrvTL5DKBvEjfD7VFSYecRAqj49E5cxGIiCZV9BTEn1n9rBUbK8uUH/F9F5J8JliBIyZGusyWvY9akCBLR+wjBwCVrBHGCcFnuoqIz7TWV14jAFo0L+TRUUZ/TSKViTtkDmt9yFYcOOfHlm33xbH4kJwYu/hp1XEcF76/nE/gEmMzR6STs+VqxVHtaiZ24UlrGSxaMKi3rvSmnZS5E20zKC1d8ivr5rDO1o5BkrNfmkoILizCMTdhU3qC7wjeBa3vnwUF0I+8Ti++EreLKAWLsvcVN+xz7hL1/epfbcDu6WOXVAeKQt08aJmdR46x9OVhgxf1xEtv3f1wsylQxHKHTa4L72G8n//Y1k4uvjTqhtgJBmBavjoKfi5lTEtbkp+3cQbR60SIM4PYhAB67YYnmbfoeA+ok8MFVaD6l7z6eKEy32au1OCq1XogExUvY7e3emy/HmX1uA0wF/cxluWm/KXpwfwdRqiqxefrcX0twiES3TJRaMRYMYrFa5Zo6ZNa324rpSySip6ncQoD261RNYUK5M22J0xUFeZKH5JY08GwkfNp9xUDVJlonPvLHDw9nQJsFCViG4Vw226FFESvunxvYzvcbDvY5EFPCt6clWteTkHzPk1K1MmT10psTf32VhWqbC5XU0uoE0gFTBEZ/EnlVCAJTVI8Ji8ynH/yoMU+Ka9xzzgKH4VdXXeIDGgyMVCrPjK2YRNQnaYPIlcaGyhjAoHuT0w+QogUy0kSavKTAuYUDWl0cWGwwNBLzlnSzc3oAJeN3uYJX1Li1KUR2xQvtAdl+B6ViEN5nUfViJloqhdN6Jyqrr6wvrQf62dcvbFxhrCeWbn/eYFpTv+G0vlZqBWl17fFRBRB5A74hz+r2IubaQipPiD42SfjEiGLS/modnk0IWCD+MWg2MmPk/eR1WfM5vSGloaw+YD0Lzz3+E7YgcfbuKbbTShQWGK2eXnNiuae4gwDmx5VbQHvEUSqer2sGZnlo/R57fs7XuM+sJ4zn2S0TJhgNcEcDlwHmxmR0RoZvG86xigSqYK5Pu/4FvzQbVuk00mqnvyyaogaT1IW5EK0iUj1taEdhGh6G58/zeSKQ28V/LbUlSmsx8n+EeSRl34GwAH6tkVQJqGaWdKqrOgT6gFhMrYgqkGQJJnhFEUhZwB/mXPx66oR2PvDMpW9+Ca1m/rHqxjTYTb6DYRN8u/Kydl9OFie2UuvwsVaYoW2Hzzo1rOSojIlntuyGOKGTXh6saDeEp1EhiYMiaiIBsBJJshN/1x3kUD7OyWYDrpJ0v9Q3+GXMqTcPnTpgbJ47FBMeM2FqjaEtn/cPy6mkZdV+EsZuku5l3YmYnmycJ9WX/bZE9I0nbQFH1Nh7nzhklYcB3D01ma2WfwIWLR0pNC/NULXDg7GxQKZBlN+RQSmlzlanvNQiIlfveFVzdp0qtcx5RjiRbsMGzXWZ+x4A+LbqdDVcg9vPJRYafixjOrMUbcklp2Pgf+jHMh3ExzbICH19Jtwwsh22egdrBVToUccoC0/QkVqP+LLFSCUh+ko4BCtqKhKwBiUeF/aXp4jU22WhOUObFVham81kRO8HHr5VROzy77+1E/OU5AgRwUCPwcPk3tafU0X84hDQaET/fB07iDbWWtxf7p0e74nipPyBA4Mc2mgCc3lB/qMAkzu3+HgwcpMhMNndxrs6g2mvtsdqy/7VY0sKcJhGBMgMiHY0EPxtOVeh8mHS03JbpFWlY5/KNHfxo1G/tau9jE9w2xHRvAveyzQ03s9OeN23eWQZ2t3puoSnnWB8ZdFfIuoUkQfGimz/u28eWhVPre2hTJ5myPf1Zv3snmDuPevxPM3PU8vVshliW+tKYj+lvrDekn66lj6yVSP1G47Ae5e/Vw5jO+zAsdHlWFBjjQA/TtOMdMpP1v0fDxxrPs5ojduJAYXCcMnaBYVFninhUHIG3eYphI5qO3OK9uU+YExkh3eq8U/4t1Xm8SVjPaSeVpfx9KCXTd05iVono19zOvK7Z/Sn5lhcUhVNQjMgOY8PxNlF56L1bKLaZE2/5hCx2eRTzdlMp+oJHdGU51lg6hiYnnkN0DyYXDaasP0eDYBD2WVP7pZaVaWodxEfYetn7wDNv5jeP40f+xkvbbCWixBUXwKg2cldu9OuFOQWym6AHDKPtZOpO2Kgu5DUL3PXmcJn+LvbeZnpeotTA9Mr3nDBWNQUgX8DjqyPbYWsWJBunrDg1ljFN661BkLc+Pha2jZBL8RCv3bzU+6mAFjYV0WJqIDbqLAVdbBCe5Uf1lWt//WLJHcQOYY4gj/Wl4z+FxM3LtRcUdO8j+xZR6zVBIz+1H79DSD3aHSIBQMk4ziywMBzIFWM8te96T9dS6kGdXyonDB6/n3JaAWUEsGXfX2x7yDmdnhMMidbH9u/FmhzLZob8C0/hYSt26KqgOSp+1Ta6PO3WCW5ddSjt821KYL2mBuXvmtLP8zjVvxK/fku6Pt3wpXEpZEBENmq61sNZMGRGigFUUBhyVXKm/1kNRTZPWIysc8WTP6OjsDw+/yT9Zzq8am00kLEljkO/1I3dAsuAU2WPj/9BGzJFjfPD160SRNz1PPRl8OsHCo2xHKMvLu+fth6mJuyCnXk1rkIdOiYFtG4Vx9pu9ecGY7WiC+M9X6hlLGePKCtUfn1TxfkpUcFRNZ79ci/G1JM2DAivcprikHDiubLPZ/ifg6kI7CTiw0wHGPGE7VNLR9t8795VKzDcRmgGu7PkKmLsqKfpkj27LE3fJBOlapphgvs8HxjgkpT9bm/Dii1T8v6hkbJfsnoMzESTAynbBwg02ye7XUdfy7NU/tsl0wuYGLYAozaL394xBEDXNBCBlLuJZizcJPrXui+WWC7OIpiQgqWJgAMJuGpwA4rldf5/gsW7WumrG4VZU88oYX9DsKT6wECCYKG0uft7qs9wX/Xx564YTF6910pR7Nad9GzXw+/2rGgzYGA==
Variant 3
DifficultyLevel
715
Question
A two person tent is made up of four equal triangles and a square, as shown in the diagram below
Jennifer is covering the outside of the tent with mosquito netting, not including the base.
What is the area that Jennifer will need to cover? Answer to the nearest square metre.
Worked Solution
|
= 4 × 21bh |
= 4 × 21 × 2.6 × 2.1 |
= 10.92 m² |
= 11 m2 (nearest m²) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A two person tent is made up of four equal triangles and a square, as shown in the diagram below
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-CA27-SA_4.svg 330 indent vpad
Jennifer is covering the outside of the tent with mosquito netting, not including the base.
What is the area that Jennifer will need to cover? Answer to the nearest square metre.
|
workedSolution | sm_nogap Area to cover
>>||
|-|
|= 4 × $\dfrac{1}{2}\large bh$ |
|= 4 × $\dfrac{1}{2}$ × 2.6 × 2.1|
|= 10.92 m²|
|= {{{correctAnswer0}}} {{{suffix0}}} (nearest m²)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 11 | |
U2FsdGVkX19Yj93C1DCNTkWpn3/6Ltvjd2iMUH432GKkXF2kmF7uw4PUxiMNTvHz+p6mS0BWRXZRldEJ49TKex7G+EA06UH155NWecpn7OamJKWqbHN74Nsg95X2HYpZOYXMmGSMW0LmGD1u9GIUicoGLzcrjtCd0aunOfaYiKcF4YJrfBMunOIU+cFu2Xm/ArcEJUjPsV/eHGMRPGVxE9+1pkVl2kj4LsAehjhgfAERi9VRYFVeQCj4zL6U+S/vXI0n0dk+CPdbEDo6BX2zj+XoJ8tGKuOtODNtkHufQp2tcIAT78bPkvHeAWxnQ6iEveMxjGzsAgHpHkm5hIi6P8MmLzxhkkwVbALeMR8e+Al3CpEnJ6cj1gCN2cUjuja5ZfN8fImd8ynq5vkbab0vNTeLai/874cXdndPZaSj4WEjtHGMBZ1mqbkZbUhM+kpiUnbSQihLPGTIBH5nH171YKUvC6n+VpXcbg2dZz6wlaw/MG6KjE39o470dOvqA4r3nD8XNak0HAxV8yNAWpBHx43HJif8y/THgIBsM4Vx/jywOWKh2jS0Eu34SQrrh9Me73Sjq8WR66oN3brt2OJdzsUTQLg8Q+Y2TpNSC0DgOs9yH0KImyuGTX8hZx+fAKYcR6MOBe4IB6qPHHTz/3P2BNBaQj4IZBQaN2EZYoSflsWaddEI5oESHxUVLi9QWpY2GWfxp14M01evsndizouFRZ4fUdZCe9LVDtFNPg3kIhbYQdzL4kgKHGmZ0JAq/h9VGgvJx4wGFZEH7lPHi8tic2pnv414NVvnVQ9zIG5IhRvflRLBUJ822fuFBiCmfQTkygTzuZG/l8yH4e72691RGacEhsgFyhG6OGhpeNP0XkQ1wqRdu0TvfK63thSwMB+qtLDAroVy7KM2MRGKNr42WdMwhUMh8eEmxefHBEH6ZuJJLXaZQNqc2IqitUEPpp/2WHNVr1VZ/j7MJrHzTgTrQaGXMVrgLHEUJbgASp0MovoAn52tLT87uc8DIJL4JX1ab2rImrtplN4jFjGto5tsEMjAgeEgLlkAOsM4ADnSUXL7vBuKdjTdj82HCSYMBEmi1SyGNYnNYb54mgfUsxb1AAlBPNPLwwK+8M0rQAznvAxz+iAUGb5GFguMb8Tdwwez9ZD9X4XaYaSK2I3OTKXs3rUzuFa+U31GEBctVDnm0wRQcVgWyX6/m1URUupIwG2Kc2kDdJ3xOYvzuzU+DbQ0NUjsWavZFnRpVeEeXPdzQdBdiWl2AL6DFH9FtSKWBm/4KqiFo+GTQgdvBvoVHZmzdv9tNz5a2mfJ7OkhHkg5WPDeqCG5RiTl02rgAwsaO/91xOdu583vQqbN0kQ3daKAncHb+SW79PtiPUfi12dz5F7yVOtjlswy+Q4KQSpJ8bYLbwiQtFtCEYCRnm/m6RfMn/McOuqowQNrsOu9nzdjzygXUlQpqrF9n+GURQ4lCi5a3VGPcDr7XhY0mzzaoAAPC+dS2tS5WMhR6nFdFcrya+EEypZO91JZ6PiYQ/YrIEDFwDMZNkUQ/kMmbIedtx4qeibSM6NsBXf/Bc+b71ejIgsp4VBBGxDEOHJLoW+nCnGcIoZ5CLbGjSsSPpEyWjHMisyHCvOSZBaPAJR365+BNrzZdQIacc1tKUGjiSqt2Vf5pfHV0bYeJq3fBQhc2F7dZrLn/48JtBi7xZcYcpoSPefvPksqSI1k/COdFUxoZKVa5usgNgEx7BfPtuzo63eqdCa6VA/SmV5E4rq9ElVj+59wm+bfO7QPaSshzcgD1gSjcISYMccg+kGkMFvvTLKSRJ6HjQCRCUObnZZNWTdabWbEB0uziwVwQJekW1ejvvQ+O9eRzwJ4IONn5xPQFSEhkdyefj2+EU6gg5Xirg6/x8WYMUkuyaqZO8EBirPC5mfLB8XMhFEc89CORDw7DO4NdTjhM/4HJSwGSkQA0So/NS9txJznjAwnQcd1Qt54tj5mR6NAQQsrzUSUTBjnbfxZ++5CFKOsDz2aZJ9w1o821nb1QmDVOQf+Wjz3UyAjWJdAsxJ9ZXnmpuYXdHCJY1hgqKu56N8elv2jnX3kh4Tq7z94IiVdY58XunNqc/nL9RlHmnsMqc8R+zLmNtlfFrCZF9n6Ty9qNXJD7mSBPTv++ApMvgFvnsfH4LwTcpTKqBcSVBPcWxt/gxTPlA4JDTilNoWWSIZFfDuIUGNiV1HlJXQ/+Munh0UaTEiI/stXLP+MU1rRlIvx/KEiyoBoic+PrlOWBjOUDnAAif4Wj4Qt5ee4LHjYga/ecYh3Q7+7WJ+AJHOqBN1oQ+qZOClKw+AR6TD6KZH9n7dLm8UdPMvnSY8OJhjJXT5rpRwX9RmcwOsQq+RFlC8KG/7QCumvRIlOtJRtO5SztV5iauQlApATTdZRDRrdEtaxaUwUvBcU6blo6CgZsaU7Zc6Go0U2LC1Drarl3vXBKYw0iW/iTCnouQ8FSBvV8xPS529sqYoDQM+8nKpus5iliZNQycKb59pKOAqARZ0FUMz3xHbPElcKbhNPj6M56xhRuM+vEm3n3jXoK0hy0FkDBtIgtnOIJXTTEQTxw6V/vt+Cs+J7r4pgkyo9dP+62GLanTA8P3UhzmGu98QleVFyBe4CKMhIQ3veNdFmATOgDRjUuGoWVm71TKuwTraWDQo8a1XBfTIJHI3xQkWgdwu237ovofbKSGxwBPFuK0XtSvzCWrb6KLQMURv7K9zhEpP4iJXJ+cXPQC6LtW350P04AiZiPeoFPhm/mMbf4bMdmntTG4SqNw8Sid1qljgR1NxGS9IvKnr2gNHzdEez3Gxw1Y1ViBinjA03Ap6vIUBzTav1m8xqrjKiFfEYZPneEuEZc2mbyjuLhTlRrH3peFCVW9HdYYNfJLOrG3BPWShzvtmluZFLXE5u+A7aRtcZXeE4o104Ru2hlNEJ13DtKlZz4HXYnxR8CWDvromyCXNWKuhpHaBQaUeCJGXfocdSMwmgyUMU/kYWdRUaka2RjhF6Cpx/0/iivmSRSgDqf3/U7QrndX14dqQc7PNB7vlvyLW2wUU6wRCETtlyym/PRBv/1MOOHyIwIGPk7Ug9A4npD89gsZCwLbR/4+Y7n/wYYDGwD82UnzFeMgLQ6PEsyD1cH+U5/KX7c397mhnDZz5GLgW/qr8q+xHd5FVY02hsTHGJTRAIMfLmjsuV/H+R+dF+K6QV9H2X+xFup172ri5vZ8IafgbYB95s/qhHsDrqS7CxUdxEDrb+HpuRkDsg0D/thELjJuPCB2CkZ14dC04cLL+Q8DWF6k2TshTCKoRImhZiHPvYYae+qG+KM6PoapkPuuojNar14GBaNCYkO+H1GTThNULXlD/gAX5SrpolT2jOSN05ZfWG235fJTdQPVeHVeRIxYQv4gb/KeHYZqoWZikU+Djxh9MjhsM29hbHiUmVtV0Znqnfi2SQPcbWefmtEbSi6fh0sgQ7a3FkUDXPuvLmM/3R6eRCP2R4YWoXCyTzebub0nJGbclW6idJoeeZ6R3NlS0BAEHuF0M5NkAWj1d6kwcmfUUfSu0Zu0Q4s6UaIw3xRr9V0fLHvl/s7hTDw56ZBc2NnXH+e1i9Tc9Ob77FL6WBuaSi06ks5GpUQDMieQ6TSe3AtDdZs4lIX3Zp6+8yyaPu+ncIIGyMaYDqldJ5Ek6mrhdHyjVoWLOQUUIGs+OmCtGXqAbMZVtLdD68eD2jJpIruaTxrC94RSBS9O8cWQwWE3zKfANPgHiaWyfzIdVryifMeGLD4g4XjVNn7f8iitr1hLyTJ7b1Tub8ibMZksLXX+n9IPwQJqcdR+EG5iztRFFIIRZY5fhKKgsJSNsvJ/UfLF/WvBnKtjqUz3H+ofORn7Pl+De04XFjmJ2ZD79lt7DFiptFexIVANnmzVgNik6pZUMESukyMeomh2KEfJkoy7h2ya3uJmwqIgru/Hy12ja0/fdT7k7dMjVLOO1bYdLMv1bHCgjp95l78iBr1MjH45+QCKuQS4MfZDeSzFxEty3OvtTQRMEubHTSl/4dzzwqkRzPuHV2x7ZseiroZjCr5u9f0GxfD3XcnjQcPhbpPr8n1X+HjRb/eBVjrIFkrNJ4SwWwCseh1saZQZSZonc0YHcF1Hcpu3XRF7O1QSTBKMkNx3FapO8R29YTnf1o74Thw2FBB8zL35IVc5QBTnIxJ2IF5+xH2ks9anU+E3UZynATNOLBbl8jz4lUU1yulrVrDyeuIIFd5DFTBBhd6Vl+/vaCVLfl/lAw4GCoXHeJ94PG2Dp1j6wjWfOzVk+jXnpVLqpaPkwdpr6y5ADmATvKlPzTwrgdg6Ez7HqaAy0PLoiOPGERcnfvk+ycq6mlDcb1uAaoGNOk/BzZgLHM4yxhy3d4c7Pql/T8Idp3ddB0nOj0tr/EJf8XEe2+waD3Vykoz1G6jgqdti1slLU4GGxAtkS+62VNevqnMzlEzKFOMBJ/0EYQ5UpN3VBjc3mWYL1cx2UlYCo63ueKDoktWimnPpIMeOS7njzfSRXvkeq9CiMstkNuUT/e+tFIHxH8SlTC4OvWwkxnJIbFzCpolsts85w/81u5EAqEGwF2dtBFbUU1ZXm6uQ+wdOCY7XCODpIdBMbH8JRSwm1EmlAzdUcm9bnZ0jH2fc2/XyaGx7Gog48ItGBv4i4jwVEgftyY8lhiO4GbaEUIeVwuvqelH/RvsiFUeCnp/LFsnANIGXqanzCBk6kl4ot7lSCduN4urIAXS0hGogNOUkhWRUbApo45Gn+4xFhAMNlrBogeCjkV2XwjFrfmPGZfMbQv4Li6z47qnZbKUhOo0O+9tsu4OCQuGsXuAT8UUADUi0DO8JYMUMDQUXa0JO0WyVpmg/vgTWNmN15Fl0ZKsXe4SD+YaUbvHC8+/BDdp7l9AnvkLls4yxqJvmQDh3+cl8LE6rv6ASnvwIDbnA/JijmH05PIY0PZW5TZszOkeJKQExOUwvqi43JOcIvhC04aDFZ76FJkBiy4jvDC+kc/5KSRMlMyHIAc2liwpQsYRo9JfmpvXT5rcOaz29fZv6+vk74r/yl4g/DZ8G4nlMXMnp07GrtsC3hyTm0MB7KZ8gEwjD0wgp43WhZ6cy5ErfP8QPImXykXnmjHb5WpDXzYP6uCtNoHUFzjCnfAvdKyuw8bAXYvFvqh4wXBdRLVJTll0z5G9WfmDOHj9kUV4vkULGtpeRrN2HwbM3la5x21BnO8EvFqYINfkfgQMIrFsl9o5fxygbrfymkZcdvMpl+Hs+7hSZVDt5AQifpBFczAsROY6UAYu3YR7a4LvB5Hz1YvJQSdu746L37n4TytV2DNDmxKYArr7JJcMoLXZXw+A+20Mew6t42lqOUqaaYuIFKepOOvhvMS0vRj1bx36WVH1cRFjDupIigvdDPfFWAFWZv88+siL17kTfOID6yW31C+gC/kL9ssqhhhBL3FqUONfYryHPdU7gHGXrs1j+Mtewmbs+0l1x1iV6IiObwVl4X8Md0Vrt/t7a2sqXG7TLXMg94u3kupKKQgt6jwJtHpuWsZa62Fa1O9ZLyWHTOJlQ2J70FlgpdH5uU6A7I4rKhMFuC6xI905cOrSZIyn/3xVor0Q7qH/Psp379iagI6dBG3nVakOf/njoKobXbwIFxycaB3e/gCG1qpsRvvlm32MFuNEhTpw6fZDmGpgotLa2KosFKqHXWQ+287yZRTt2PCkIFVQ4dtt2bLU6KVXZjGxgJDOd06X0oGBcKaMEnj5GjUUrUVkGorBpv+P47L1IhaAPoJ4vxzijuwpRD4OL5IojrjPCotzmasZn2zhM+xv6Bc8kiIa2/D6AjZSp60ieoqPjLdAByULI4zp42DiQy+Fs+2HyPa01MDvKq6Ku9u6AFFaOWEoIlaYcMZn6GyFEC6L+LWDToQGYTf1AXjfjZbTsWOX03I7Il+ieww6USPOjY4vLkUwaR3rQn5kf2ZgE8G44EIw3VDqWCIfv9KgwwUFXMaXzLuvQqIGUHzeYUpVRJnNXmbw15P0ZuypHpS3QWnaG/UaZMxUUTLATfl7rKilD3n7QFMYpD8jw7JPJNBxgWIfr6TKm/MD/ULCL6C0ZjSGfH3w+5pIQz8L1nVlNh1lxvmEVS8j+BfO9xUobmY9lLAQyxlC1uSP47zwBhlZolqRvFeBnznevKEpwBHKAsWc64lso6EuvCtkxVb/SnXrPqFUbWEtXcvad40llBV5zb+whNbpzUrIA/cTO1DfwB1ThyRLnUKMV0qbxjbekoaNnwXE0zCH4c0FKpdPIUuwgRT0ljaj+5vQ7BjWk+0epxHk6yDwmU4u32B/89EJRw1syaZIf5CAq99SViC9uVDzaJPd0lVwY1S2siWqeW33i5hyfxxd0AOggMbJ0hPFNysQLCMtOg23ggum/m7VAGFKgcPtUrKzBG/svUB833gE7HXPglKINNppBjBr4NxtuaNJ4rOEjNGxUJawUpBEkfCiePi/WLQqJV+aZN/iyeoPkLuqlLTvWkmMMyrZ9K272JGYoaOkZ2ZB5GIBfdl7g8Hpp63abOX/WUVk4NG0o6pZ1BwtGKdP68Qs6RcuSh3b4TPpe8PV421q3f8gGo8CWvl7hFtJXL34UicZt1W3Zmhxn5jqcNZt6JzIX3Lj3UAmGOdq7WT0CPECWAUlLe92w9AoT1AjWASuso9ZWsEn6etE/ZSPl6c9w/MXwsn9pQMZJ8NiwjIf/aMRO/nMnikfx4L6ThxbLc7qyxPi4fDGdw00xw9Y5/nMbTtI44mFeFiPzcvEy2BFvLTbr83fNP9njr9tBynAoqpLR3mmbIRWxbprDtmUIchyrASeNVyV+KQ/ieqqjsytYN+Y85n59yymyjfFY+JXqyajiMNjLpGdFWPoc5ANBw3eaO+cIJyUmkyAywM5MUG9S4xkGSNBIrKSXGdqwZ5zlqDihviRW+1tX9UXhNxQkAI9FDvvdc+drKc3tSd0sJw9VIrQhouc2YNH3U61Ns4+b8fod5+zjKQiBKyFpirBACk1i70bBM0jzdKc7WCOKSNQIPHk0WIHgH3NOst23Ucc3/laeNji1FKxvMOcTQ7f04BODUsv77KSqlow2JQB0LdLuIUeDMiyKQcNCjSonI3XZAWbsY6gjICQkezqGu+iF4k7rr50HSXjSLJwDcWLT6r6gYFhEFHtjFp9gcZ2OjZUmv2Mr/6xYZgfNElD7Jc8qUEI8gvx5y6J5OWvtBU2c8QjT2B0nAnIqn6owFoTjElS5DJ/YXoXnd4uTvjMuJUulUO+a/lMT4XFosOKelajkyd32TxcbWjsZ0Nv6ax1IMg5obDdcBCJxNlyOP7/YXKXk7loLN6AGIpUWMcjU3viJDxLXzgK/GU34oYt8dtZeDzWnr/l/PvdnGAFcDI0K180M8JNW+j4YnGYDTfQ+JLBlZF1yYCakK31r+HZ/lP1KDiPujZB2Z/hFzuNrr18WATR/ZkElL8RzJWifCr6Xn8RIdutJhlki5qzmvsLUvQecTMgCUnM9+215j8i89rZkfsRmwSS6v/6Lin7Gb8yJ5ip97MX7g+m4xB8kdsfDcQScvUp0aGfKJY4inVUS63dGlabSuM53+K/ZckPtZnj0ZGFF83kcYqhcn7dzZyVNoPTcMwgBD/IuHlHV8MN8dpRpjo8a24bhbqIJEgTSjITSqpPKYHzEErcuVMYYdcBJVWx8fmt4Anx6FAHLqNIhJTndu+zidOkQIt2KkEfR0R04VCxb5JUSloz/LIimR++2YVRze5sOTel7OqvjMZPm6fatuG76IUUQAJEISGnBfRZRECclqKiFYu/gYxj3E+/bbAjRj02deQHieYdsYbD2ELys7kqKX4vL/Ky5Wno/bKbLvrC30lxp+zCKmRqqaGoIdjpxp5u73v6QazRmaRxFqMl06fetDvolqRVz6c7eDI65Mi243RdCXc6LpYnYvFYd+eEvdyBpi9pbUF7x9tbYevjfLFzOFJyjp8nyiUkB+n0/G9y1OUYIwnFyewEVghFwR+dFxwVRjU6CWVO0hEkZ0lpnhLbp8sBJCg2RWk8/xHhH0aE5rLNmfK0T5RxMndZ2hEGQXmKQ0CM6xZKbG+IDx7EIQ=
Variant 4
DifficultyLevel
715
Question
A Christmas decoration is made up of four equal triangles and a square, as shown in the diagram below
Klaus is covering the outside of the decoration with glitter spray, not including the base.
What is the area that Klaus will need to cover? Answer to the nearest square centimetre.
Worked Solution
|
= 4 × 21bh |
= 4 × 21 × 5.6 × 9.1 |
= 101.92 cm² |
= 102 cm2 (nearest cm²) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A Christmas decoration is made up of four equal triangles and a square, as shown in the diagram below
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-CA27-SA_3.svg 350 indent vpad
Klaus is covering the outside of the decoration with glitter spray, not including the base.
What is the area that Klaus will need to cover? Answer to the nearest square centimetre. |
workedSolution | sm_nogap Area to cover
>>||
|-|
|= 4 × $\dfrac{1}{2}\large bh$ |
|= 4 × $\dfrac{1}{2}$ × 5.6 × 9.1|
|= 101.92 cm²|
|= {{{correctAnswer0}}} {{{suffix0}}} (nearest cm²)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 102 | |
U2FsdGVkX182nRarGsCzAx1igprx0ucGTqwaZEbVIEyYEIqp3FZGbbMlCLqwsEBYjnV1fyNZEXwvGbtKGfxqgcUHp6Cjtal4bDUeT/iNbIiFg9XI1E5s01GqEsQIjgXRDKK5JQ0TIetgAyWoXPvQvtOL7m9JOS49tmj62Cb6EsbsHsp48JyL/gouciE+1Kk4IwQk+C12OlT7KktabrxaMusfIM6lyan7hkUeeLCNaOMMYoK826SEngVISbMpAB7N3qh87tUAbSV8q+r5RrHWImTyYh7OryfxX8xAd1ZlIBUqYYInqr6wANjRHHX7GFQmC8Dr9yqg2uZXhs09ERQji98hREy9vqSDblGzZvDyqX4hsIHgWcOrZfIavWkSVi/AqJA+DNUGnv789MstJrX0uh3Hs33rdOYLORLTi0bnCZZBZSEc4Astj32MsSFxqTNEzG3eSgw1lE0ix4uhJkkThPvnucy85D8EAWWCENIuDfyXA7NqIbZSR4gOhtR51puZ5d7REpE6s/p07ckcKTlMxGFEkEmjnI86EjRLq/bzVSCYYCPTotYu5UcVvSjq5u1PxSwaZf+Lt2pRAyIWBIqQjMjh/Yi+7mwrrEFnibDepn0XvSs36sL6DwJUchH4KCbS2kmDRtwLu8An/DD+3NDZljg2kRSmg1jyFJ0KMoz/SHY4bSWIjmxogFQ8SwXgp3ZsSFz8lBIRLKaFSwoQBSn1hMCpxtDhK2TKItrd43gwRw3/didGRzgDVkzCCt9CVAnPmHzbQx6X+gijcJquRILzrsMJKVs/5Fgb0HCSQB2r0IIcQyhptbKXTtFEomZiuXNykka9kKpbMXf9DPWi7TxgPgslsgVWgr47p14thXNt1ZZo3tbp+fl5s/UxGqDzImnn8uB42p3rbwuDIxsv/u6oranw0ir6sBDkkGdN4+t2ia7XN8JlwAcmbIQdx5Gz6jNlufgSsmYiWD2HPMVacr1rCIVkqI/Pv1DCXOC3P5jFU3DRYhZveoDoH5to7rsklOjdE+ykxgLrHVrJ8vuHaf1PtDt8FvWOSuOFrRnUABvzZU2EA8TVUkGW3rC4SGf/ED0Su8Lg6VannVZ/5gpUbw3S+7FkQKwVAAGV1s/H73ZZTSTDn6BEhfx94vttwzXsaTa1fWqzu4AhbIb0C7p/gUSkcc07Ud0aeMvNIGATccj41Na4fna0kHkjqud4nC+RiWA63bDrOJkf9QNxb1gZHNjcjBNZ+fFVEW2Ya1RTM+en+0ucLp/YkSgO7WvdXm9VF1GSF/OFdzpv9w0UzOTpYoZvLqd6z700a9Kdnc26XlVvAvW40wx76KXYID3hHrANz1vGH0Yb+TRAL9Dr6PUMB88WxB2SN4bLyV4JjXCwmnwOsBsqjbjswXph1WUMOy1ZAs3eR4IWzmwAQIHobYyP+W8uLjalLExeP43ea/5z1yFwQCniKaVYbugR+f0LWlaeIAhxWMRMQyTbrO+bza+Zx1e6QfPOUcq8HikFswOG3ZbiuCK8ANE7FpN9pG/oORjXiJs1U86kv9ATYg3UUAV1EqWEjd5NKdsol4AINn3d54w9sb8U0gIWmkKK4IKyKc8DE+kHQiOVgCklo+zmaHJeXFf1MUqL3keOVEKUaZUwdrz28mUG3XBeWG5kWItv83+t5xxEvoVo9MomOQXXRxedRzCE4oOeAUqDy/YsBLketflyWUbfxRKivrN4HaXELQpAWQ9ZzC9M9Xl9MO20qnQnqeSmpebbGL3JS+jDiRfw1giiMqwMyYEBLv2+1fXg+PMS+aP65bhosR/pOkKzpqViGfXL7JOwcCCt/j+qtqal7qbkQ4q2/ZH1Xtt9Qof6vW/Nv7at/3of03xEGLUmGJz0ftoKTj+5PAotffsmm6/0B7cnLvMuCmsB9aTscEY7H/GEpL3cd1v2tQnbIRdD9ZDP9XKMwWZ0EzHP2yOoFU8ehnSdQtQvTVZOQLSZam8mpouDRgYutlJzZfHtapQhKfBsLwjh1mJfat5wp971gMG5HWeQm7BiRnMAMoj5puwFBfc7U6rrGuH+K8hVwlyfz+Hy8YWEeSEZw/FjU2Gf0TS0Pymi3YyGvwUW2OcDrgV1B2ie5tLXBmciirnSCwZWIja7nLcNd8jUNJiI8I61KpZdIKtznme9RcTavuoKITcKFfb/ivrA8NpbmV48tkmolT6NBiq/AMAtm6yImQNfNFjfnwYkU1GrB/PVLQPZZ2nUrsolR7N8fuua+7EJz35FTfMOaregogJ+ZNmgzuIYgO0A4EC+CGCSsLpKRZe3cC11xCghb1VYEQoZbbIyp9hsjpMH3SJsd+KePAAziYcUIrejF3oEY9BaydLExFcf3BYLNtCncMzSA1GH55rtxcdkXrQsnWhhbrDsfjVkQAYZsbo6pyv6DsnWxJuilV+z913niKPscrSnSmTIoLamjGKvBvvBuMeBeA8c3STEM9JxZzg0Rzh8F2HloyOwuHK+pXGq4F4oawxM+QGoedQF9HDWiRjS5NDvIu5N3f4PkoANw12CD2/5OYoqid6p9LEp4djB4wJONn/AXGclbVdzr9ZxB62ZpTwQFCbActLL92rga/70CGG1ppwSGyLiTbktec4CHYH010al2h4AmNL7o2PUSLJStF15RjZakha22d4XfyrFr8CqaVCapuZ8/XgXHg4vNP5Xqm7ApWKpfX/FkLcLxAKxO1tM+VAasS8w0ym9vUiB8LHAYw9qCInGX/c/SY76eA5tVBZ2AeIRaqF8Hj2vR9Wk2PMG6zHLfxuuyLatR57raulG0HC4FvzZqiAYjCM022vdSejlvu8w6VddECxdchcYswylbwRrOFF4+X5NfxL1Elfc8PIDipxOV8aRjIf37zAM7aFY3q/xFzdnB8R3r3t4vHTEpHUyLx+69hshA723T+cmA7eZDo/UNXW3Zgj3u/Q4XbXxpK+SiU97KU6YPO3vhuPMoSdjEtBEa460ogahJNZi1NGcKCWqBIpJa/WmFr8+NGXP16a79iQ0F/+Fr63odZI8a744oTdb3cOkqbNOmf0cWDF4FmAPLsLm5HQBAsq5DgFyK0UKJtBJQmK8tFJvPtHMYCniVTU5VhjdFQVO/+/rWfNxFq7WZ3xuGp5xByID/Vl21jWNL5PFeu7NzLMf+pd48MbHexLWrMxAEfOGuZu2U3lZczx4h18c0dtFeEi3iZi0QP9AmD2fKAzu9UqmkWEgCh8VhiD6g2gMRPevoqtFpF/+n2zqXLB7pAGT3/NfGJp+dg7f+zsTjtd6Zr+WcOHLdYJgpa/jqQA8FRPUOQHq0fXKl+qBI2h/3Qr6IRciX06E8vqZmM4Buay2iFkyhYtnVcPwznG2O7TmvFPT9sIZPXTFLf71vVdKwUHuHpTOnnELQawxntEkfJUtRQXJe9QjZR4tR0kdEfzU7j2fxD5mhYEWR5jW+gPAA8EjzNkJz3ytF7WXlUKoSqNAtdRNXLSgjKbG0Ar0NJsAtAWAztKWIqjN0L1+NZeVaYEVnebpUO8owgUisjOLmXE9z5dupJ+ZjYnyEluzigPW3dq5nZZAQ501BkwiAOnIGHwzpEebYiQOcVMrXsz2uehHjFlxa1KYawZhfq0lcLyGCeNtr65ToxHLZs6Py5aDUw044x+fc3c0hCYMVD2854WSD4u0pK2ZDCYLGta4AQo5cLRDohMUY88udrPw2sqOYvsnthSq2PZa3e9/T/t0sNieb2H12kPZ5Ho7yzUm94SwkAKgqVoBQLBT35HdWCyULb+9OmFN+zRVqWHAfImMivVpSAhBn4vdBMAFnE9+I7hFwLIYWjIqyuCq5vcRaFVxL5dSgQCgaL7ectZYPdPiBP4pGGVMN3bcfUE8bUfpGCP+930nx0FJZV8Y7+FL3GSu6AQAFObuqBEvZKuHVdjHGXIRYgsTS90UGkcyEnIQ1NmJ5hwtu6F/p6u1FGc0CFoXvCz7KLka/eqxnEC/D/2+TblKos0u/W9eymx0H3s5uQan1hKxJwS/RfoRpaE+9t9iuQG/mn9HUrwjL3sfu5CUo5PvxLJxXftcbHgQ8FAfQuWhUQY6zTzPUA24ELthuQV3Yfzw3w4qIk3eAXmvxRz3vpZBlLu2BR7xwSh+sD6zZkTeR7+fV3Fo/gdWAA56+nTBzc5s7q3beX+gcCpXLh02jHqhLiN5QFNHpC7CjhtTKGMBLeLj2X00fUQI5ZJWeXb2isMQGSku+OZGzXXUOkWM0iMTZwKMNi8/wnmxMySCoDM4QLgVfijxWoR/+EGJok6nZgh2x9vpcHepbN1qxHzqQR7SNWqZ7RB1bwA0FUzJzrFyizso+ruwVhLyFXrwybyoveGRmpIwMvvr3EZ2uvVSnPNN0KPnRVg3ZSx8lsfZ9We0y5Y4WYTd2dPkOECzK2W3EM16brtspUCYB36r/97RBynvxqwsysrvJPezqUgY/sLaUM34ciO5Bi4mu8lwcDmqNKjNlaN/iJXEaGU0ORRwa+6bbi7jpgvZTElqGd9Whew0D2gLxAeEoz5zRwRdHecqy6V3qmViK0PX0xJS+L/1fHqG/RbDqvLAa5r9G8SgyQccg9jiEOQnw8nE4XZXjFSsnvxVqn/0WAR7MWEWL+XaWHgavHvUSLTch0btirOO8nytRy2ydgK+nZK0HIH4Ztdtyilpk3QLr/MqCzPjoZS7qxVyc6U1EVJKu29FbX6Jo5Tpjfima8VXg4eXpyCQ9siCiwtA8RdKQPfQejaxoxIH+Hn167JNRnUy7/rYj9Eku+CXkdP+AIGf6kbBUP32N6gdwNmclusyWeNedCG4YtYza7YbeDW6TM0qxQDjvK0woYYCuKOLeh42yZE5ai7AE3KZ/PM8xPCr5tDSph6r93OeLqkvGw388gBQBzkZtkqR1smjutLqvgE/P7BXRwl972TXwq6kwBHrR3rtmOWUyp4gUbNjC7+dHo/OynkSvGTe3YE2Xke/lTIl+oo00IKIpLehBgh+S+hGmikDNpVNNjF6Qb6pw84EyPn7I0I33GP38psQua6jlVdzLsQtDEjFr8RKyypRyPpckOwBBzqKHCr5LXc3XAaBugZi8WU3UuLmV0oPLpVfATMeiEzyHKi1OmCAkza0qBlpt/2KpI/7cSuFTH2ivxySputWFwiYNbfGpMcq7ix8ExEGtcomTJa1Drq4uZsaXuJ7mN3/DnhALQGi/gHpFAl6HOYKDS9I4mvGFWIlSqMGtAmonlV1kMWkutDrisIv/onSvzSRv9Vfbco/oamhRHzfPhIaMB1KQexSGnInH/GbsnP65YrganVd4guW0UEvQF7rew035EMTOR3UkPF3PgDnVrduFum2U/Ow0NZBrcfeBjRQ1iqhDZr9sZBATXiVpC/ohYEWbdGqgVeL57jC9Jy2mAO6ND0o6oAnGjAlaH6lwu4XEZy6ousgV57Oa4wQV5CBGeL7lbYmWQRLHiRps7INRoWKXxrcLcgLV/1bCxSHpNfb74LY+FFmzO9Lg1hCGqlL8EV7FNWiHtCcUodawTx5oWk/NnY+Z4914mCyzr4QOREdPf7uVK+qoa9d80PSCl7nlkGq6AsomV3CAfvo4fNwX/V/t+b0o81nq4v/KDBuyDQV+C7ujcw6hpl8d9GDMW8ut0CoonMHVt2yblyf5ycM++aptcXWtnMSOLvSA8x7RmijGylgZW9iciVdF+LMenT0MAEF2+GvYGb/Z+Xu5Te0I09kVxn9TVkjtBQjmUA2ix7IS7uiGz9qIt7Ew2HHzbcUMATFiYaKv9mEYxcYONxumqlfdWlKO7lbGp3n61zGcbfPNQD0yU8xaYCFq/q2hRc0nCt7CMf7cHNcphTiJ0tyoJ4R5Fldsv0qnH+BhKDBWyZ5chxlSVzP8XqQHGHt2TJnzuON+V9lfuPOOu1zMkl7E9KaSgvWFJNgP1Z7c4vuVwrhxC3Q4dt9gFQprbqUuR1h9A9yrATbRbhO7FhDsdl17HvPEEa7vEMN1iimaIHgwZo+D7vj2gcJQ8taS104FCVxxDXjhwOcqHJn+Qv5kT8nXIqjXdm5HfhGmIrGd8Znm5Mjcn+ZclcESrnf/3KfcLBYZUb4CgxCMF/eC5f6vd7LmdGfHySbGlVdTOOPab8Pzi6nfWulq8g0sAuOJmBi9+swIXpdiN1YskuXy85ir5ksvV2zhWw9feSMYz8jLqIWs6v7mupfPok/9kmcq3iDATJVHUWjD4QdvvhhOEWVuOltDF3dClHDt/Rn4+L/iKchThidN9/MlrrgFOs+j+uddzciUFb+SWTUfvqUj6y+tT+4BCCC9rQJGgYOy3b45X8GNfVrcvp8mJTdZetliHj0qmw4ybpHE+huCRczZiOp+KIjAF6BOSccwWaHOuDYymyEFoA1NHCz5jS1s0VXLNYXnH6u8BxlyhNIA1htT8/3XLJzm8LQ3airlxDMq2S1vv0C7K9nXiKj6q/tD7uEZKZlQq6/3stpTaZyFcsZ6oYjsB44DQvubCV/gkrjzfrJGPQtPgxbcGF2pH336Fkfz64XH6LqNQ4L1zkVolPtfAN7UsxcJGTWX5+HIbRC1sfV9lX/7CFJD8SAa/lckpnnTLIC8YkCkFxXgD2YaT8/YbI+xPEirJuIP7pyEba2K837z/+jbI6Ma1XdxIS/HyGnU1PeR1UGvqPMC3B2j1LwWTfulHt99dbUPrlyfYe525ccblm+CE1vd/o3lTxr9ysRszmvP2gsU44nh/famrnVUQp9mV+uup85KD47ebiAz/lylPgNDVwRZ0Qi7B/gsf/bkj7BPEv84XY21DxYP1rr+s1UfphynyfMZLtbXTuFWHfHbXm4m3niEVu1hdJSYs/wqMYKVR9RIHaPDzAVzFlPNbq5x1c0XMym2vmMJTzyrY0nazCzcdq+eJO/7JB1zkVLskY5eUexktdlkJ/f55XfeBg+lV6aDBLsr2lINnZVYGqKKAt4Wemrfy6WtiE1tU33sXpmR3ATbrdg1UydkoYoNkk7341SOEyCsRCUdGTMJhd2NgVI+gkZduCWiDcps590iWy6qRCTwNdE0Ax3f09v83RZ3LjKfZL9HX0jIRIYao9Nu1GrQ6M5PnfC8AWaW5ZR1EPBXraxBigLks/D3jfdA4GmF1t8BWWUmtk0C3BMvTuXVgJ2P3T4Xxk12/ub8ePRYgJC4IAj+1ap7dBmx5hZgzth0mJJyfrzn1ayDRlYKyEXjWWUjViNYA7mynI2eRk5Vm9NVX98o2aiAcSHTXqK4DvovzyFkjgLh4TfRX6NTv+NDW+fH/p1SrnwP+QeFXUbaHmoeGOk70458eQiOpZvpaiZ3p2zZmuC+6LtsSHMVhJ89NhMw7OqmK7SWJd07CIS3nEE/uyMxdfM6jYpAkUP3DIwnTJGaj+OMKw01p7yBZb8bTyvbvAsKAH8aOefdRUnoqDc72aYYG9nYh0qCJJPnPPN3I9zQ8GeIEtTcda9LYC+urc3/JhrxI4mJeRddqMm7W6o8EwhEmdC5SQG+lJwLYABaA5eukE02Fsh02ozQZH7iwXf79dQP6+Wj6i/Hm2Mpq8EDrAvd8VL+Cvw78LMp6EQPN2TDXMfFn8NeAiItUNRPK5NChO9j3h9TqM5/Gfq6evuonB8gVl0iL57SIudHrxEAfESLZW6YGp/Ue3ur1D2nkvxmxTdIvBlEZg6DX3xiZUsca30RgJaG+AwukNz3kckNyyPkaaQLo8AOEYBoGsnAuImctsjZgE4rdR2BjZvkWj6aJWIK81lPuF1R/S7QqY1Dxr1Mq+G45jodQMRzBztNLaUI1GSp3aXybMS4Uf2kFm80lqDspUNl8yPhWsX1TtVwuZeTtrMfOYB12b4MZR8BnqD2S9l3ccpJ/GJLB9lEz411U9BKiTlpo2cbkIh/DU7BwVGrj0LE5dQIFKdtdH+15rZfAxk2YD4LCWxgUdALJINMMpzPuLba9rVcd2IoYCmxbnnXnU2VYU3nLc0FfF0qgrbFfIndC1mw8VBrE8oD47MEG2HAqE3Px7AWIsqiTLJZya3qPlWHjhZPQHRGdFPMsDVPCUNtoRXo0Syev40myYZCfyHoB54H5NGO9eM64NVSygXgLP0d2rdVEQKEqEHF8lGVczs4zqlejY+3yta1hvfEzCPyJhC
Variant 5
DifficultyLevel
714
Question
A small ancient pyramid has been excavated. The pyramid is made up of four equal triangles and a square, as shown in the diagram below
Della is calculating the outside surface area of the pyramid, not including the base.
What is the area that Della will calculate? Answer to the nearest square metre.
Worked Solution
|
= 4 × 21bh |
= 4 × 21 × 15.2 × 12.7 |
= 386.08 m² |
= 386 m2 (nearest m²) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A small ancient pyramid has been excavated. The pyramid is made up of four equal triangles and a square, as shown in the diagram below
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-CA27-SA_2.svg 300 indent vpad
Della is calculating the outside surface area of the pyramid, not including the base.
What is the area that Della will calculate? Answer to the nearest square metre. |
workedSolution | sm_nogap Area to calculate
>>||
|-|
|= 4 × $\dfrac{1}{2}\large bh$ |
|= 4 × $\dfrac{1}{2}$ × 15.2 × 12.7|
|= 386.08 m²|
|= {{{correctAnswer0}}} {{{suffix0}}} (nearest m²)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 386 | |