Question
Elvis enters a park at one of the entries shown below.
The map is drawn to scale but no scale is given.
He walks 80 metres in a south-west direction and then turns and walks 20 metres in a north-west direction.
Which point on the map shows where Elvis ended up?
Worked Solution
By inspection, the ratio of distances:
Entry → Turn : Turn → Point
needs to be ≈ 4:1
∴ Elvis enters via Entry 6 and ends up at point A.
U2FsdGVkX1/aIBfegC34H4OSCB/Z4zA3Vue/xs3bgs16OMVW4k4kBsl99U52pQv02ICdiIZdIb8spVsWWqIxIu3uIfz5B9NgX9b5AAvCaWxQt69ysc+bcNakmUyMrZqrKKRWdpwoIUyFV5PmCfXRa2BOA95H1cXLtkc/q8D2L3MSCaVVLnyn6wbNeJ9AjgQGEjguKvhC59F/jgs/FfpZsIZLXc0auVOwhgrk1DfoCIOCNJXHTCQ+bpRJlUOd4qM0TpC9ILd2jjkjYD56GJ1pJdQws690NiBSxiI0sQEUCorEhFfx5BfpmGhFska5WZCTnt7vvyL9hR2kMrgWsJ8yin43/vRbENa8rbG9E4Wpyy3IcfHE3nssdrnzckXvLtBE7QC2byiqrNHNKeooV6ePgmd8EFgc8gmb0uV0KnFjvAbzcOrTU3W0xXkSDgu/mNjNcTtwl2W2wISCPKv4XcaL8p/+A6uo0mXThjknsBWQYGSzZyQXNzqgE20GTjKQ9R+UQ3BM91W/lJR2J/xtUDJIt9Wa7Sef4WkgPGO04uerK9J3Cbm2eJ+JNX4Lto5q2UOuSAeKf3iHmwpMIjaYaka+mfLlpjx9aCO2Eu5srCxWuDZ5QDjVpogttKvNAwRY/IOlhcL6ldUzaFBaughg3U2osw8dsKQYrnKQucgat5Aj7HKDU2yU5AFXNM51EqaX/gE/reafvdHBUsi+PiFzqlVLd3Q7gBddxnP/GUlnUzaiCb/JCvlI90kKtZBdXBCXasLvMdeLsKFEfuRWPx/nPEoZznI2hXSQUMsu96QwvYYN4wiTqXOQjvuoI5nAk0oFrQEgPCoKnHyg2DAeWgxICxsBll+eFoNOrvSTHdqKOWePL0gvE808LMD8SOOKPcLZJ15QEU/jFgNuDUNMK9DK2yhqSE2zC5udRzT9PTTpUwdHDl2iRf3k7ytTHM8AFumKUgurkeFlG5UZyd98nswvgX+WBq8G0eVLgi/71lE8cToSVu3JdH/3sPI4OIcg0pYd+CuRtNuWgfvlI127EBbk+1n9lZTzMbgIGx6qf0Kcea4h0G2VEEiy8YSk1A1F+cCsxy+N9rjjKIBXztc3uacza+8BxbrE8jUCfa6Mv6tz3iGZhCNQzF+DJJ87yANxnotIkTppOW8MhV70DsJnL9zw4Hxp9EI+BTh/+1uixaQm7jYLp712xoCQpqW9mzg/dk42V2jIWX+s2M/+Lk1hfNU4gJffdVSdTBVvTr7YJpi4l4M9a7MDRgtVDb1zr8Wy46pTA2j3yPh49i6OcQfhfVIjH0w7gMlq3xC/i1Z9+BNvSh4bzgFhAEfBVwWm3zCs0L5OPYrzaNo3l4QkI2dlj8FFrjI7NRg7DVeG9BfuGQwD43na0VrZPWkN2MKSaMRcDTpE4NUueDoHgzt5Pg3gNS3+LW9rG7e1BpqymF00rdkSQWM1cok0v4huLe4FyHWlMwnxBKt6NOPp3YAqUmIZkCAXdhBhMcR9fSA/UxUoz6ynEX+NmO2bP1Q7ITDZj8YQ45kFPew7Mfq9BHd1C3gAFQSGJkPaWWgMERcnVdzmieQ0GCwlFJl6dRzhUUp/SL8n9lQFRDJmhRnNKVzW3TYLeBPBgRjUE3NHlvRWxup3EbhZyL42fnIwzP6p2+oZnVFJXJhgpvjjRcn2/E0S+9ED8Q9dMox+hFIdnepdwoE677SXqSGhLkyZqGgo3GEruXSgfCksbCeO3yd50umIMsplhqKbueGbKJ/AwAGlDjzqvrGUULyCHQSZJFrOtV4YuG17yA9lnC1VIOZABqaozAMt/2dWZOSvSvtdRMvTXSvNMXEDS6HEsefKRmgkdCPerEhBFiZUTjSVq0enlj0spt3xDSBq6Y7DS7hYoWAftikUBSaxII/BVeg/JiIl6hytDKIPD8r3pC4vewSWIW22w3X8YbYNvLsdxDW4PMZOBJC7GaSPWQiY9NugI0spAVI3TC5OTUkTb373I0f4mjzzCblfEfzJPwYm7FcVa19QLl994ktI1tDIcRxdnXKU+JS7Uk8kQWnSLm+vJdlTDiwhCcC5MYD7dECrRMjou/h2dO6pz+YUQiMFetsDjJDgJ73yFofs6Bx38+mq9PSotnF8l3LaskzJ1gqeWFG8IUfTwakJsUyXuoO5Uo5tiJRA7Ut0kjMQgJwHw6CpalmXdAVPNmkv0H1GlsYRwHcVUMK3M3v/xTIyPYbV5R6MKKVDD8FUZ1YHtitDU0YjrDZtVMsAp460/zwb8p0+6VLAYuHO5+VlvRdRgZ0LDaXGBjKyBRxw0xIgWcwoM5PuBsajsO0PR5s/21A07ZpOVpCPRtG0d46wQZ0cv4qdynMHGagMjwIm+hsLB5eHjE9RMurMro/CDagaVZ9woRUq2YKmJFWFuBupSx+V5UmWj00tWxDirrOfzauMsDOYDqogsnERZnPZpyqnwKXAtKoG1/UnIot2zQIGwD0hHtnrblsW8ucSRNeNmqPWxX/pwtTuIuXFy3XYJN43cCYEI1sHA11esd7FA2uUDGKoryrocSqMFDULZp0CZ+jhH/ARAQteZ7pwHKp+eky7l2I9BsNweRc0vknjPWYNYdkdeBnnyf1+0NlKBvWTpbgGbWFoGeuOqBLQZ/G6zEnCz76TVZ6h4LHWBlV7HicFovGSc+/KpR3Vhyw9MZNjrT4LVNuURGdQ/sUJE96Zl33riMtbyDoo+BvxvTJ17UYdshur9t3uvprhjtH25OW13qVwGQYaxvqtdjVAYitNKtgrGCrLXE2QLkNJI/M4w1L15yqC73n7zP4YfEqPn292Y82OxZjEOYcL9ooPKIQCjOFzMQepaqa0eXtQ+/SaQbAAX450e05zkFJZtI0sdqZzZg7prpGzj7R2jvZsX9sJVmOgHKDRK/NQw8bwm6Y7jRfOuyF0HWr8F91WkqEhPUgJUe3/hpmlqs4YVlqUHumAruOlrtfZPrX+gOUEUo4Ar19jL8bYix1Zgh7AX4JZQqW54IEAOC217OLjBAf/aO6F6zcThm8MYwuL7Cwr3oLvZmnLrapX7jPxHDcsZAA5USZ+YuKsEf5WwwqdCfT3HvfQVJvRHpF0LXNeyl0cFks7e2XC67/Wz2uRmCPek5lzgZmm+IdlGOAtFhJfDRVuVZbaIDURPGSGFZcdqzy5SSXJ+IDbDziAliRlvrVnmouSLhYvs8WYtnegh6FF6AkMBFLTcG8idMSrqYXNj2J6E+xbXAuHgDv2gErgen3LSnq6Y2Y5Kk355E+i1A83qS3PSs8IaSbDMd6Sw/YVA696OWSStdvQSf9TMCaJGiSslCqlmCNsQczHBPWhrLwMl5cWTxDQm7yDNgugnLQ5/d6BVmYTmRT0cqliV71eDHTmrYx3walicb0/MaxMDAepiXc2sR/NCF7vN0O9gPUtnJ37lqTLvdSDHJorLlibgVlhLLgLYUcUJxDiquORXsAKVE5HkDmWgGx64NnTvzwvv9YkxqfOQXM8gQvfAbGszQDjyft1gLTJvw/PccDVoJlKZUTIrjFmuWb6H3YxybZzLoYpfdZRwT0SChaHzA+BzINc34/R2FVR4U04pjKF75kxuvgCz4ejmIsRXGyVrPZrvhEUrKF+mNgvVHUE+WJUOoeWwu0GOhPI4IGvN55dpi+8+1YarlbfipD0xgrr27Mc0+2J9LNPRyYpRCsaapxE4U+YE/Q58JnFikI3LkTyNYach7y9DXX8E0vTrqtUayeObCdyObPq//AHsnQtCOpVyhbyMhUxF31A18ier0A0dpQDUzaD+T/q2oOw09R202t4gUSVLzmpnawtCvf2k69xCI0r5cTu865W4eqzTtCwoeP7tZe8Et27U86BL/IRBknSjr+3/F/qaK6N2hAsl0+wFfgZ+calU5PIt8CCe1VAv5jN74sRFayqDA3QNo1TOZramwFGi1bIV38WUgxCxzfun4sCeRZ87UTLjEDtbbySCcXrg42z4Z3mjQObXyMQCxe17kFjtJOlMQMN1FHOZc5YiVcj8WZkpThpcYPwNzCaVCiCotX2Vj01T03ptYZQA9hOfMeSLt0cXVB0xyChhS54vu8i4s8nOXOanojzVviYYKQcdEyylyPBDumm4ORm32wMewEVWRXQ+MkD0quB3PN3Y7/b1NqRvPmloiZjRSwrIM4ssixwd/w53Hah5c05bIgLZXM/8zKidNNBHxTCMur3khB1y2QTpX5vZxCy01ZIKAGmeMoMwYLrceJbQhwwyHLIREeGaXOyhv+1Bjwt+44F+Sw7/HXtp8M4h9XIBtiWDIb5BuhDckCeAxQM30HlT575UPiZeICYrLZNTRg4VTI887k4+AizINRea7BxVx1cQcoxuIBPOsVVxFKYnSgTc03gXx6Y5WSYsd3Pxufi/KOc6w+W0iGp0azA7pTJiFTuA020Te2DQalRvkXC61bNoO1Ui9j7f8R6w8xiVKn1TTgCL0u209ryilP3U2ce3Dio3eomx2ghgg20G8JSSfTSM0ZfMiQ3aY4Z/xXI+4igvtckbAsapkmbDfuT9UXF8SDqFnSL0mmd/H6UAYO2tXbgJxhND73vmk2zZW2uZLFrj7kLuIN095kZ9mtpTxrzs458/mZMK5hgS0qetlsNFt1E/Q2RePTAtCOOgsvWKfk44aQkjRNNSpEoi1aLq/c6ZG38VgO71kmuyLvPBV/hsblSDfoED/pTLR6v3T/EoFevntrXfSrpLDJSQ3maxK4yOBVqreshiApH8M1m2gnLSnYvFdRt7PVB9QVJ1tn9ZwaxZliMzXfVBNh66OSTv2qakwx3UiArKINM5k/B3UeBWq0HnVJlW0lvAEphfxaU/w2UZ9j7SLbDGXpyG2r1lrP8mglrR6aMery3O/DYImEhY6rNRjX96ZAbs5ja+EJJBbKyu6eqA5meO+LKTSa8ZC7N6tzbVYNhgAzWty+caH+mqpuhu6IrNFfqsjx+bD+AcH1FoWx72tS9Vei1Scq9hja9KxrfO/V6nWNIBx+1Z3mvkyT+Kcyt/5U66kQFP8AagX4h1fqs3FSz0YID2cC4aihzlAmu1izr00/HCHEVyUH1BhOqGQtTG8hMXfj3hg+bPR1nnHnaSJf6opCfj594y7ms6E2jKaRZD9wvT/whoC9CffjQgQr+5eYfu1Umj1rMSE/GIZVd1yMcm5ZdTKNqrS4Ji/j1LDjq0+9J3kqaRj1uX4HyZjrioiABUj7WaX6eyC72EwARc6N9iF6vMeUzMn9q+HFOxSlh1RSlxE7KWRcFH+3jyFobMYmRcj88GrN+XMNag5m+cDeiCCLkZZZ92f0HqfMcRbqVXL4+edFPxHQ79kqfDyMzuV7CTkOY4tGIWki91SWqQArJD4hInu/AnrrTtqQDGpUYtRMTgh+pi1fIZdDNQHSFOq37ubNrgGXm6694GqbOSwk25B60VZWmLrnjRjRb/wA6t7r0rlMtF+yT2ud8Mn/DUAQN3hjZi1T2rEPufLS4TvwpRQCyW0hKiqKxvKeqA2PY0ElWfGwUx/l+dfg4rnuczWNdTXErupkwrYbuKNEnHvA61RqukSdbcn1u1I6DNkGWnII1j2xEbk8h13WezrS9ZDv+OvdEZakL8t4bECNaqMktILMQwlFF+wKqMBBSRpc0wgFgUQm2ZKwdu2ZKpoL7O3CoUZIh58amRF/szAdUa7AbR5MavfgFP+5Kc4ND77OtwmvPwqWSio/JjG6BAOZVSBauDiwTNtaWKhgGtSSFFSvs5lBfqfKTLNU1Le9Ig3UoYrXCYQ4Zr5LoD9HKCYRm+PikqzVK2ZDuihwkTUi9Oh9TCrRI0zoYxJm5V9jXyRrsdIn22y6fGOE1IoqsqgkS3adsohMITLrZk4Z2UuQztb1JlP0IDXty8xZTRoa3XZs/blSncJ5HMnAjwnSur7KnXDwkgFrsZ0gzApAyPFVQnN0PgteHBtsI4p3LlNX9jcXMGLfy2e0590LCLUzuRw5udp49maEmL1pvO/Zr3oEm5HjOwECrYm3kiTdzkDnEtUGlOwDq+m52kB5/gqPTpR8q7xzoP/nUHgOsbKnwBG4jHJXoX13AsxDwnd2BUk3UFLIuXeP+SJw8W/IrvgwCvDXTs6JEAwpq25lvDUHu9ZrMoOf8DIDr2piOIO9o8x1T0yKWZMkQv/5gfQANOOS77sr+1yM5btwqvswpRUeD3+8VbSAH8rqzTKBg97iQdVfW9ehnrakBkvyetfKNinWyJnY2uLU5tLDBk6WlnPTgIVvFTbbswsS8VnqGRPVEcd650wtEAQkC+W+sj0IkaLTOEgTU1Q/QOm0Ao893U15+JPCv5INmtOa3UFm54RfXoTDOW88l7re27nM6kThgeOHWezNvsUhlsl3uBaSpue9165ABh0p4Cxaa/kQ7U7AEOUqc2ZRsvettav1SXdaGtcBKEjKToV6ZZXs/suXjS22Zr8YHGpA5M4VqO5BexDVZqzlko7W+2s/cJMuRhGeOTUjEaw2JoEV0GecZODk4DBYLMo0C3eBRRyN98yb7YZZVEydXQr0HZsjF1nqKo6dB2qAiM3PcknFM4uFFa6UCvDE2hf9pAi9fuA3bz5KJjF+SYJ6o73yyC/qK12A3Wq2IPslDv+XLMSbCpFuNkE2CaYZqirFcMpmYJoX9N0syQuu9qKqAZcayoxjizD5ZHj3D4mOL0q1yWzzG3zye0zAFSwT/j0Kic5ZA0hWPfWMvSh+NYeANgE9/2ALGUw/9mNgwxmhmbtJ5ebaP5bDyEO4eyhdV4p99hUCEYUZ1+UJ8Y4lhs4WUc5HUNW0UmII9ey/tIqwImzJ7LmfgI+hTTYPGvdLJ1wJUZlT69/VFgQtCtTaPHzGRbHR4PjkWne92a44Sq2oAilmq+NaN4OWUymVD29MFqUSRUZ9kHXO8Iad3BmT44G4XotYsooHDWB5clZnpHi28zAQPfTL/AvIxgji9TLnUhYtis0nr8fxk149l9mVy28HMIkHkT5W6wdaRS7FJyreVT5d8uVRwNf72z5MFjRc9CFBWOVvtdg22XJIFEEVPl3yqynkCA3ipLAXNOC+/vQ02t9ordFD4k3sgn1UpQQw0Q2lmdO52g13TFKAoF5/tj55UAMDJdbwVr2Iv2FsoZxwz/f755b6aGHSuvtMS177RmpGN4z5dHJWJqs1217kgvnWx1C1QssshRTw20jJ+RIIoZmWoL2ZjvoROgYZg1hbHLfmVhoXXoblANQ4QvsSAB3M8oCR96EfWdE1pOHnzBajcfXcJoM1AUpAAj2crWQ6tt69YAMWc4LUXSQvzHIYc9etDCy8mkbsxjTIM9KVM3lJYvID1jM2clQeARDCBSnVBZorNZ8U20xPjQql/4vMezR05254HL/E+ErsHmykPUbSVQUEiVwR3+ZaEHq7ZNvcfXKM27OtPQDLtM4g2bXrA6fzh9qBKsQ3CZyKe78DNdgSEw+iI/bP/PRGgV6XTaD4t1235mVKD4qZV9T651rbFNIOHzgX2EcoONvC995fNrjSYrx4TQ0kKiRErujedFwTAKF1L3jkyTyFqmD4Zvupu9v/VH4wzB39VApYzcQomy2+VWmNJOnvvanBg/1T52NFL5A2rck7hEuMxsVzD/bNK3BAxiwExkIEDjOe8D3o+G+yTg7qxfBsVJxfFy+V48QYUYOVeFIUm+qC6H4vHLsViEvCSGbeF61/PwNgFP1MoDEkTPG/bMJ6+HHASpjd6MVw2jg48mFM0Q011tSGBgdrxBvB9f+PT+OApWcWm8TDiPoYCVvdgMYDJnp00qLAD1fd6wM5xUGIef9MITUVzOlmJQAba7768kdP/Bx6qYt4eVWbEDRQ8jxucQeFW8FE2npU65KOrdwIHYkgDQi5HNj/I3TvJ0F4OxLhngdR9MWexj2BHKMSmbAU2xgNI9bAlGIvbRDrvvtR/QIecoZ6QTByJEJplNHbUkadaqHKVolYplQuC4XaIH4X3Et7Zbk/aBF50luPP4ZZZxJ+LrzV15pkElOahjhg/zJ7P8xWHG40YoeEM+gBja2DNYqjeKtvM4Xx+0mE7UMzLQe6gA0R82vfrYoU2vKUZ
Variant 0
DifficultyLevel
615
Question
Elvis enters a park at one of the entries shown below.
The map is drawn to scale but no scale is given.
He walks 80 metres in a south-west direction and then turns and walks 20 metres in a north-west direction.
Which point on the map shows where Elvis ended up?
Worked Solution
By inspection, the ratio of distances:
Entry → Turn : Turn → Point
needs to be ≈ 4:1
∴ Elvis enters via Entry 6 and ends up at point A.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers