Geometry, NAPX-G3-NC18
U2FsdGVkX199ZNl5+lKF36fMkd0DWZDK2/PWY63rDdn1IUNIrgN2eXAJw2sUggOCSRcSJ49WyEcs2qcN9ShdjiJmPrdK+QjY1RdJ0wzC4M0KxEk/TIwoEjhbSSLQ1EywU/pFZdVt+48jWgRMAmG/dkjKz+D6yfYc5GqWSe0VYen5tlj3JxJVDtWWSswDr8MrvSlIDbCxXdnkysj9i5xNUu8wLMEHMv1pS5HBsazFl02IsLkFWqCj+mnu3SBpeIILovhTRpVUFqUSE3hXfiVcMI1wnLeq3UCR2z8rL3z05t/hXCt2BBgWob5EjC2/PmiLpQpbA2NgR6unE1/V9/Nrrevg/H/rHsRD6kPzWDoRwV5LLNA67LUBAaxRg7kuIVpXa1QS9uyL5VsPR+kLAq/9nUwcUb+YtFvGXqn/uxubECxT6NOyRnrSpER8lbWBUkCS8HbX/ZQNZSZcY8aIB+RVgMD4PXOKvX5wDLyRKYAvdso2XkeSHaglXkKR3YM0LUEmUVzbf6SJheuy+sUIEE/ebx7XtKx02oPdfUezxGGitav3ha7U6ZsrFuRPP8+fcPuR8zLD1xsKAUVQ339ZlQdvW2cPRDbpToA/08rXxAe8xVujW+8pRyUmaDLuwMAFjCmq9qM+c8zwdNoAZaXVxMvf5rJzEg6vQSEh/9wbr2+nu5QziWON/mAzRMYFP4/O9ljwADvZq1X3RGYVqQu8E3etxBz3udwxvXRpwIfwG2lIjCA+KdtVHOidyzYBH3FXP/xn/SL5FfOzrDHLp5X+e91eK8jYgGbV56CC8Wm8JMAbFoOjb7WYDPY2/QICURnbRA0H1QpJ19mkLexxRHtYmFMLCK4PxLP5RGozc4bX6kc+fhFXgZhWJC1RWEeDgZX6kv/8Kp3zmllfMCKiqJnvP0+LA4IPDHvlReqvxeInE+WLCjDwIdfmXopvZ/FyYdbusns4KkJTgLe1jYF9es2NCrwTIqNOvdrI6I3B5kjMOxsxV418imrkopNt0XKsVQHtOjfUMp2DHaXRf4HAg/w1ZtD5x13ikySwaiHzm73H4OJm5ZFSWLeQe0402QmooISjSLWLTSJKoaGbExrOCLY59lHZawqbRw8E11JF904biv5MvzAvOQ8HnKfw1Hq9SWJYsb1LK7gjMNyAv3xCvOoWH04O5duNz1j0PZfyClhQk2Dj42QzcNejFvjjKya6fV31enS43xrSJIrNu7LPLlumrS+DGhfwRjo2U7Zbaw0Gtcn/LdtyDwLm74YQpklIbugni0s0bmmFgKOZVoEjbsVDnwRRyPWx9mXKrRE6tUxaWm3ZMPRCgFjp9GG+KXtl7KLzIqjHdH/3WeogRWkBdr1/An5P6/By/SZng1qIhF0GyFcggSYM1G1FbrC+iKLrhPLIm7uf+15WL+HVDyZdAkewSDg17N++euExkQDNJn0IPkOcTyqgSz2Hfwr7Xnvl9Lq4qFWOfzy+Ba1go5xFbTFQiJoiN4ZT2dXCq449bWX0uMqPDVUYGZ/Wl0pAmrFQQYJqswqtvsLKfSmRWZn8UAb/75JEwTW449MVoxQNiTOu2iKDd1AgIsYCgnP1viS9W0cnVMKCQw8W6QG6VoscfC0Ohe28/W9dwYl0rymGmoESv2YItzC2fg0OnUA1fRBwxmQqqaDhbfo2tLHVTTvb/K0buIHq6G96kJsJNTsNG/lmpCGpUj4IvRCf6Z+/lTJTpyciWsRdHU4n4lEbgQ7J9N+8c67103iNH63Wm73w6wT7VHXTbT+dUTM7ECg7OitlZHWPAK7NznvuWcxr99oU9DhZDY2Q8Rc8sLp8DczlALBInMD7n6LL5xKr4bwIleMCQboWsEehf/LGaaGOPEmPSsXExstAjSILcfjH4Jvpa01SccwsDtLp8+NyW3pJ5O3PktUG+g8qlTZmSCm5S05MOSIXpvSuSV4rhGLW6rXGYfjprz58ju3SmJStwhtEfJto6pUhBkQN1w5c8cW+C6dPfBVP1+bA6oO1LBjOc3x8lNLVtql4qwI2+sXCI7s3JDQTp2LcN3ULGhsTvxe8pRUexI/SWzPBmoz+O9s4+av5IJ2xLhIRwUB8W27/EPz8jhoFJEivPuEIwgQxzY4OyGypYqEJYy3mQmr28upaczaPUjqyuZ8uqXaQtivxb8kb31jPKfPpFtHd2QI0NIoC6/2rXYvB5mIQyOh78H+948uNdQLLGWte1MZkao4sjYBZfpKBAjxUtYd/Ln74Sl+iExSr/b+aRdskhrUXx+k7vnPUCSBHRBN/ieAuRnoqEUhtPNUOJAsx0cCefkqGw6HomP7znm5JoRxKUbhkBtonSzQ0zbEDqjB9MtNdszOj6GINBvN0931g9Wc27W/X48Oa2cnw+wVlokxih7gd5n4q66mzv5W2iw/UaXWV+Y2dTvkHj8YQ1rwa1zCKNUIpAIldzBjGtgm8QkKMB3+gWAY4CA69+BB5PNx+wMYM9QaPKl+Cxh3aaACjxCEsv/R/21PEYFQFGPRahPUB1Mc/ObEhuMrBgeY+Si+sKBM6G9vKo666WzxWeNjp4ZHFZzyUvjXIa1iBqJaO0p3JqK928S+U5LEf9u6HX1Q8VopgncB4yqNKYuM2Ur6F764Yx2BlkJ3+b0fEPkrC6mEFrKOk0BBFNy2jVLtfOLfY4oQeomT8BCV9sHtNOQkfKbbWmlgTqzVzi4bQHhD4/U4BVhQkwYZ/HZlkxn+EgYRwD+MGUxt/Oe5b3tEwWqyb//Ic7ZwY9wyMhkhxGqbZIsZHqgZtI7dajuR5kMsklHZWL6k6pgy1k2JTdZ1DRm7tlXPHGq+KVF7DcNFkPXvPFfipqi4rLa6vVtZYtfCVafhWMf4BSLhRdph/yc/Nf4v/MkUiQqlS7VIIVvesSrZll9raxqLvP1of3yyJPb9+GnluGYDk8OVwJUiaLsEaAc2B5RLA0/+fp1w01ETSPuNI7jbP7mgx5o9BPM42cvzFP9v0RRbmUucqeujAreh8bmnRqjoCiNKwAWslhj85yXtpcgMkyu5lWXk1U8tcD08YyPqbEKHuKHhQA9s0DAKWD9JEvrEdmLomIjHi8Ba1ijwUyfzs/iweFJUtYQ8zpR6Y1z9o0pgXI5a+HN/OGh18949Khdent5ITc1XOl62k+rA5S2qzNyOHhj1XHH/9bXmqeUCMd8mvOaz6PiAY7Zq3fmVzJssY/tzanetq9dJZOIGAVfGZmsHnpVtugT5p97v2gzIwB4ZGYf6evrLtr1/hbJfYFMBUdx2UPS6soNcQNb0vYghY4jsJe5cCdUxuzR7XCeL1cZwAwAuBFesbFwmYTCOWZMnxGZJL1qroS4HlYnPyLRJypGBGGtnt53gDO9YOSupPlobcE6kHqt+tys1zTtq4GoiY39IYHcKo9S9zWZzb6MDpThhihGuKJ5q9iGKAIORPirjpxwcMCJ+mpSgKAasl1CWpbuo94NYa8OJFPFiLcMfcirGyAgSid1D45ZK01G1V22DytdXeiQ17v/5mijjLQPdnR2MWx1VecC+DUUnLPUK1mo2BwCoXTKfl/nNtv6uFw4krvA6TWb5rrC3szdkUgVBn9aL1a3a08OJOLQ/01yi2kvtClIWoRGQkPdtrzdps44/hKID8ANoHa+nw8133DE3emHn+2V6uowZHkqKv/7RWzLleehhFqupQyefYbzYHQMaJb2W/XJAdsq4eqOLs7d9VPgmUfESoIGEuGB6wWJhTFt/ZfQJ+HOgQ2Ys0l8oD1xS1XeKhdV5xglNC4OLzfjJJwqLpOzTrzpHFrz++J0/VYsblV+LO90Tp2lX2YrhdQBWz2LEsGBgUMM03sIu6XVVJc297QW9hz4+V35ux+a4EmbC6XMFcK265FhlBd7/Wq2y6///3h4KA5TDyOedC8JG2OF0y/o+01siu+IApsNlvvShebR5MqpwjJCTm4AQ+DsirZXJ5e4mMoKSn+8OIVYCbuXX5g7eiz75dEqE5NXtsbaxb3OuFzx2AwujsKIvQRo+Lyd6/nfSESKNoYu7ibMjWPTRA5rjziUKtQiphpWehZ4hpEHC78J/OuoKXMLdcS63qMA6A0dwQXiBrZw7uKKay4c/ahyldMgc3fmvL6ikL1/pFJ6Oy55vHPOQ7XmNq8HygxVH/jk+90cly02TromHpBqpmLtSR/BSVjx7Zb/IioRVJ2Svvh0nh0mwbuwBGhGfI9OP19rhkMsOFPq5+ZPqqkDdUi+2MGHPw4anzu59pJbz85A/0zn9pobCipkAGUv0t4o5+pfPHq5271UUffQQ02x7nXaIkBggW7bB5/YZgSMnUP4SZ+rlwAZEtSez7edm6JXoEqgR3xzUj7XSRa4exqsE6hfu4o3xx/zyQnIW8cAiiKZhpZwThypCEG4qdBIMubkpTEp6/IT0jvbk05ElmabFp7xSAvfnjm+aztdjzuD+zgvxHkV9IUtm4NGbwltrgpMSSJ/wLRD6AWj/DgODXrKKe0RQ1KSTVtPzAAMybbqwsGsFCGn0DuwAEPGcZA9i8z+V2XsWc1Yml/TPJ6hK55xYTcSqp4XSeM+usPGtFuVcABywxgv8FwGkuPuoiVgy8XVdC/uo5pbcU2DqeTlu6gGZpZqI3YUjdv9wkuJUdh7wqSZ1eZ74MtO2vOt4v35ROWqMwCnv0xHj+9mjy5QPBJhhPF4JUIokpCWSznrVv6Z0qLvExVZjC5z8eCzFQfmcu1IO6ySrvdP3QPw9MKmfGDB0sxCWBNs/wBg9oC8E3yerOyCgsy8wE67k0WgamKBhdC2Sd5HoSHMzBb+tABGlQinmaB24s1P+nuD/gVk2+LirfJrM2wgxreMmPftLRcNrweEXPfzQAf0To8co8cVeLlrS+6+cEvbhKT/tYWNXyCvv2OMyx/x8mKIwkX5gVorDIRx2+huauy4l2+DT6FOTCWUMHBG+Lcl2/ijwKSGF5HYpfESZJdPu9JzDaiuSihronwk/DD8HcBcH21L22RLfheCSCOerET0I8Md1Hk/CqLuqghys/5yF3LrTaHH8B06WBygGUH+Wg0jx9E1dLg5CAruiZnOMxIprcYfQri8DR9cU+KZCDa12rLNFyGCFKlC9i0DFcnrDlbXC54LFNy27vqwqpYD0F4vZtMamjeAEGFm7XrjEyWGi5d87DWjoMVieJ02XSGwpyvR5S2i+E9Juq9FUDqV/EI0eKsgA+hySQc2kcxBU0Gi5Un0B+qFKOyQngNs+655HgRLbhd3nNn5MhkYjwarPkys9BjYObAukQ0yiStK50T8Gnza+a/Tw3r2oEzXO7BL+mSolJJmPhbs7VqmZwo5N+srYPDj0hPR5BxfH80/o5EE/axp9uQvIAPl3vfhyU790yViUE4lVTEvFrC7tqzx6tCaP9H3rS8XnsffVlGusaS7HkNMVawAWcFzmqzCnx9zOG90/9IhzH6gPgU3EDnzTgvagvNqtY3j8h3o2Wo3OV6UaSCpVvBHa4T8Nqmgm8jQHp0SjwS0nCaGtLpS2cvEUe1Cq5shR8VW8Hkc6MGBRv4qG/xOlDHr62gxFczpw/oxMc2WOrhmKkLkfDkrEh+ktHbBlEWRu+6qVqY8t2GPbu46Iha/LrZ8ohFjL9Vpm67lKC3SIsOg8WvqsNLA7ldWb53xSgVhHI1a93TfDAUi7g41+6vrPJRNQv/8GT5OerEX3h9Ml9qvC47KWQIVuF3f88P+FWL1niuhCJup1P5phWx5tzgDHonpJZtA0EC42F0a6NohTprvBJyOEhCnEMd7Jjxlv9ysbDxBBpeTyjG0cmg/CvG+0slAPz3JwoSmgm2cDh9fxFrjNJ78Z7oLg4SToR700/QreAaCByd4Npz2nIGyrh9Xsv0I6sisMySRRbGXOK2JqD7na/1iHbKOO3Km6OFW13KlkMT4h1RcKYnPs0YmTMk1+7A5WuIXeAALy8eRiARz3fLsIuSUlXpkUx90Q0xznu6pV3tl8nQ7qkThYOqPCxhLr9ZgZ6REbEAw7AfIc6R/9T0zJUp4JFHWcFLPWl7zMrCZgJs6vszlLVc4L8vrHzW0f6GxHk20qOsUL1cFPSCBYwcR21Ay0RexgPkYd9J4Xzsnuj4SR9g8nlD2ZlPdkM2/I0MI/U6YEl+iCP6E6eS22rH2vBRRtC9SaYSG32tbcd27YckAuspRsw0/lDO3LBON4Uh98kZbZpex1LCcvbTFUGAk/j4dLesJQY4Ia6YedtC9kizlyPmBHnHFyBfxtdE6wOQmj6AcBpT62YbCpRJ6bmOmRva46fys4XkRsQ8Lh8cmkW5RJ8p4aE2IaXglqBIDC3XqRMKmvgc2r+exaSkmxQbV9hV3L1Zodyz10GTGPdF+iK5rVjwMgoulXV3r4s1ohXCnYaeWUL/IbvXiwSh4bEO7JmzDILwXklPT0ZHqfr/TKFpahRTp6rBoQB5Rkd8MJwMy/BD3pBEcYU0TGZh4nYYjxyb4+iq1XZdOaZS35/4LRpfAK9ZrhCzZ7OGwxyAjNHqCrIYZQrZn+u9G7ioZ6k1kIyAsRWLH0VACkf0u+KboHeczyX8T2dg/bhDpN4icgW2JcTv76hvuVSwnsvL/bkfHbJhiGLptNNcW/1lP4nK+VrXvCjg06xWI62yEC9YAmPafFEbqkNL06vzkK9sU6lAgyi1qJKhYhP9TsnORjSJN0303IvruZ6oVlCpSwPc5sGzrRaa7kPcDUG4Pi2kzr06Hjo0F3G0FL9IB6mH8G1aRACF3WODRo1qTaoGSFf1O+/8yvYz2AqloGLWVywfUF/B3UZK5SjMLGQ3j2TEknJzujTJAQ4sqRZAgdk6URNIVh1r3HvLViWuOdfgwm9MD9FfwgH8pbb/tSTncGkGU+ny4xlSSNqIxSJfv8PLxNrL4cR7h9fa3aOVPQG44NQ0Tr+UZL03NKDYompIYmBem7PZD71d/eBMIJPSjUbpBQJZSwcDa3kRdaHePTykPiPswGGB/TQ1wzecjZvs65QuPYrtTVg2Yf4DGt6I6o/Lze0z4hoKkFzMyvJXw2nij6Jy9LhYl568/wIne23RHqlLBl3jBOReJlhEMRdas005vjqPXpCjWeoSLbynhtcKc1rECWyNTjZwlCe0Fb2AGmFahXlepg7UdDyZcqW5Glelqwz6z3cfX/cBOuySIk/9DDjVsKDvSEaffeRBoF9BoLvHTFblx9c9lZLr19XRPX2/kNzFwqM4zl7xH8spjYD5/++086uyz+Z3yOv
Variant 0
DifficultyLevel
572
Question
The rectangle below will be folded along the dashed line, BD.
Where will point C move to?
Worked Solution
∴C moves to R
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangle below will be folded along the dashed line, $BD$.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-NC18.svg 200 indent vpad
Where will point $C$ move to?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-NC18ans.svg 200 indent vpad
$\therefore C$ moves to {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+6kubRtqLUXmrubqx9Z86fjs62TU3JACuuy5dVoWvg/VmZDxyMSmTwheXEKeKlwKI1MN7en1VzZyCa648yjMOYXYecYQ153sj9jjMGaVumxBAIU/bkPKcPMwZHvhjZDaMZBKw0FaTZiG4joSJue4nVbZIy25zylvurUCB2pcnJL6M7cR8xTQ6dG0WvD5YariXfAfQ210CEa4S2mDEQ6bYlHwHRj7mrW6j06mWfHvVybJBM1iUdqCPZrx9E+rhCJA8AAiaV+zEpnt5r21qPh6frHXkgiGJzoxbzfCWYkpLhU8UD0P7PZqdCf80Hj/zz9qJT3/TiR/imn1gnZxIqNDUV/M+BX/uAq33TD1v9aneVPmQHIGoxcuQjlTfbDOFWj7Fu3tNe22j7cNxqM++lDxQ35wsPuawbEvDuVsUii7rk4/cmhMIINP4gz6uGnKzVYt/vdsfwv4MgsT0cjgR7lwXJBLLFRGbA6Ecp8mGC/f7OLP5oUzgyySSXVGDFTeMpZC92m1sdMCIELsII0rLdf1q7m3nXw86DHGlm0lgpyHi77HGBOi5BO2VhRJRt5Rp3JX2Ad7uJvkESqMgxYHeKaQo9qKCmvymzi1d+oaVDmzsIWUKWjILlEpyr3YGWMVPqEv9XJwSYQfaSrlHxQncG4h2hw7wn3MyWWYvjIb82gapmyEqJIH6yj7QhbnyjvEGed7sxEvwcS+K4QPYzhONPmxbd/hGo97RzoOKHVKX2Vj9TJ8SXH7CVe7CT0HPOrQ9rj+JsXbFZR+B8q1jHpUHxa3w4iUGzBSbT8nQUXwxZocRGMwYmCN+V107yQnR7KCx1wR4/VmrzUaralkfG3xPUwDA6IWYSmxQuboEIjDEX1L5ech3TrkGGjviaM1QJ30//zw50ODz5nvaQ3pWfstLuaTmjdPWVwPrHdRiKAs/nfV9D4lhLqrOVop6Mucjr+KUOwfBrPMmYfLSj7Y/AAEc8qggjFG/KPWrHZL3B3wnrSKg4EPDxtYrHRcyTk3afxQXR2iRkJhyY0GhjFhNWUHnujhE7Mab/0oGwdJS6m/lfC9Ybg5qabWuzTgInymAsvfWXxGY+KA5T/nrr/mStxJBe08joVjSWx2qd0IsaevqSSDEGaVnf3NE0oW5+xKvs1NwPuo2Y2OesGnnvnpibGTlocX/vkHBtWcdF4ESmxoHfM3X7w1Y7CdotUo/stlv0LAqqWu8XAcqR8H1ItO8lRjyohAuEtj0//cmZEtdRtzMD2KhM0YUmrOlifubf4FMFqDvlXugwdK9496i3ux7tH+0gTGafJ9+sN6naVdKQhha99OG80wtM4D2rHCJQ5hnrYuNmtPbHb7RjdxdiueAsIcihpHU5RsySgZHSalQsrbqdZ6T7Mrzm09Au58SfZKqcSVArb3VtTpaAJwWOvWoGO8sLThCqzTvRVJo1/462tKPQL5rRGDUG6s+tj9ihfBR0m+oARb7Z2vQbK3r6224WdoVehsp8wojtT0fkgIfc2WGFJwI8OxXxIYH98HyPqvxfjG8sr8wcfWZy4KefEA35u3GIh878DpQ1kdR2DCQHBVVyLQdJ3ZeAKeB/2ZvJHLGXCzqXRcoGSoEvzikCeqsj2KlZ+DujAIHftytiCDtO0RlRuqh6NUCe2bBJ55VwwVlSvhgy7S+RXn+KAMQ2O/l0W9vJKW/88Zs2Il3mplQuNiXKIDqM2VqqSbVW7IAT7zwcf+jlvMOo1Zrq8NylmENEX2qx8dM4f9sE+AChE/T35ViXUa7oHLyUoH+nzG9NgoUEa74cpmIyv5a2zewoakVDLFkccq5z41tnHZWPkyfp1ZHbAwTNpMU0Z4JHo8/nPULAj1m91EHnnn2FFUO9jVqZljFaddoRx/ehdQGwG2VnRidUXBTN10mOOg4rQjYC7hkTbeZSVEYxUf1I8JxHgEGr4zhipxzXHMbvaUBsX3kSQEdrzMZBbWrCZQXANwoHFk18hyB4gLlfx43K3gGZmLZAVoGGGHDthUHKlV3Cth/LKrlAZ9Ig4SAucnoCnA1QR+lbEZYyP8YBR/sOU2U1zCzv6k1Ggi/SeVaxDHtdPR2kkWPm/I1LSPkTk1wzHMu9flrxhHylicuXE6dTMQHeO0n/pabgitxIvIew7RJdlZqKTwO73+fQXTXuuJmzfRoGBITizM5afmN+nKcjkv18LthqHjMWjlQ+V/FOE5oj4f3H+cGT277WlTeeKG31/I5eUUACAR7lt6b77uyMOCQ+n5PwMBLZz0kGdUxlVp+/XHB5HOSCRw25E8HzOJ7GdZmmu9NeKhEP0tCp+Ur3m4tp+aCbNOK3TE/weZt4tnL1FH45bx+jxldhfAwin6w8VFm7KKV5j0DUvHp8AIqgUsodE3y0spMpPn8mvbeC1VdSKCehQiGGn9xYpNEbvwa+7HOfBz/SxBKe50WXrcNckBUWWHz3SYY3IRqWXEVTkwg/GJnhIEszdpZO5DYAWA89FrZtpL/TQBeVv7GHzYfEyGRO++PZEK4yiVmHLL5RsmcU2Hrrme7gkSY+im9R4RA/DMSmAJcGvJVSdYR/3L4ynujuZu7qhgMwI/Y+WLWdm1495241c5B1x6SFLLA2ltKV0l5o16YGsNZdmr5q/XqhoQEKRKEy46L/9OIV3/jNAtooGBgN8Fz3L613f2pHEBm8iVPA5TG+wKZzBd4xcGxWl5FjFPZvYUAAhEiCzqliM3uztNOyRYN0dB4ynUzNHlp8nDCtGRtSr+Hk3LVf/cnGl/RyspY7KXNSdRR5khvin/trVzFidCkdhHjmmYwThf7GH2JnCwEcw7EtI4vlvPKgbwWOSBZgjISoFsIgJaRB18ZfMOEEd7gL+xMh0poRvZaCqXkfjEPNmYy6WUy5Qs99TE994KZAn4sRHs6S7m0nJ+JwbOFfO4SF39R7lE+2ZGEtCbuZDYcWaw+CYYlAfplR/G0GNxmgvkqZdud0TjdClFC4vV7z9uWVYGqXlg1rA90EyMAnOXZgblxXjV2bNwl0wZurkHdbur6H+sw45OdHLUMLEzAxojFAXr46eg3TiWvM9rE8Sgihhf6hWW2RZVML2sdAZbxxtrRz3bOaG4+8lJEd8Av4gUZRMT/MtARW9H4clLzc+vpSk7Ke9Cyl8e6hgsXhrACbOg122S56I1e9j6d6MW79h8gfCGXy+qrZH60TuP7GArQS5F81aQRmHKA4CIN6Y/IExV5ThYMxBVnEpt+EPM2zw8UH9tQnM5q47uFMJp1jpWpVF6hiv4ULu0jPIFhaFcj+aAlLu3qYBESftNIahXwAyRnAuKvx5FWmKf/m4A9RQ6mWBL2tgbpAmUYeS3RtmeS1jYxxNnKTsGY299IPiBvAsFArOhTzDoy85eHZ0Ra9+mARZYpZySgk70aVZHVPKtftT1Ue8OSKebQd46k2u7iqB2hVvyT6LwPjEfDZ9udsAlz8B8ihyb9gcAieRK/P9d5RXUOcrKGY5kRG8QQysGc7SBlIv4B8XCDlI0LRnT7hi2l+BC09lKM7uvEcWow6Vgo8H1uqRrNi2lVt8f4j9Hpxeagfd5GRk154VW9qghUsER3otP0v592MQSWaDPb2h8+piuy2byNOVq5qGLXw8MbtafRF7NlNPb4BUcRBj8aKBo8vuYicQ13OCefj4UZx58NTAyOM+x5D/dc7/q0+uLx6ZP7rziZLSsGvRrp6NNLnM5gjplWVoQyHPHq9qF4wClsOFxaZzg0W+D1pS7ZZg1r0307l0frlrTpHESeFuyrfdf6dN49rAMnRDTsxV4IkQeV63myO/bZ23AbaFdSuCyDUxqKEq03+/y5FkXCjoDLAo76BOmBuwAMB5zNUz0VGjpqyhPb+05UxqfFNIGJstugdTS/gAoc1u4e/osKBNt3GF5zRoVAhexm8YoWi6y5GYps7Qz3zPzsLi5tnmYUgBcSHGAE2XlehV4mrbXyQpoUk+7NrtQDDxsgC6idUyKp0kcjA56WrQJrTjC6hHNLL3ukVr0o/tD+U7OE9Bdt2EwaUjzQrFFW0FZy1W8B1dlvqyqelgw/JLni2flqD08uMz/4N39/ubViUBQPIS25VxvjTwJnAZYSTP0R/24hWAZ806kNs2ddK8vtU1RSQGUdzc497i6ycOJPUUPGEVEYL3NdZb+aR3kCYJ0jgsgR3JBtPsARbWvabsl4Xt6zYp+mcNfckRAipDKMkA5wjHe6QEjhA8eiQldyapVs7AXZj48ODL1Rgbu1/Swb65+BxShyseTAhOcgh7stBjXYiGE7bwYxKQxysmL83tNtq04FWHrc+HGhFmdN3F1XYjciBzLMRpNKr3UBl6Xng/BVPWeJbJsjevpzbrQKa5D0SeeeToxy7j3VzoAlIw1OtCfW3SgScz8gOiec5gLD1k+XwhZ4Jj6DpLvulrL1mO4yCFlgqBHSoqJvSFX4B+g7GyLc3dNN9YPZT6L6C2GXPP1qu1buHUPZ7kkg6/3SUcpJWcoDquL+mVqfCYbkx+IcKdeaqG1vf4+fEzQQeVESKvahpkyoEaPe9tZKXuUtEHOZ0DjcuSv77cW/p7g6JfPp1yVPfIrMpKR4L1pBWUi3PNsGoXbJs1jlG6mKwbOWS1CfqIt9zpKWTfMKhuDyl72J3FWOXKMGfVjQDduuSsEmgQZ12YqipJUPoZgxvtL05n34b2Q5KyVmZlhzO+bipWbJS5JSC51mdmIc4jDhe8VW7Eesm/JtAyxJK/ohte75ztVxdR3SjGwggw2ONrB2iKOo3ouJP62vk7fEv9H8o5/+j8O1jPZ/XYSUu8ZmWG38dKQUeHHEI3ldg/a8NLmhpY7tzI5Jy9iMdd9dCdOaM4OZvw+0owEm2RZ/3p+h4JoVE6fp9uEbkr0GM3obBSrslnSuo7Lnv6pzSySnmYdRW9l/lB4BWw6AojtuJ4VSlw11O2tv6zsrY0nX4L+JpggBo6BAcnugA4qwaglTSqdhSikMPC1HvlZRlc1iMeGWrSSEna0fOK2TslIMItflfrZsKh30LPw8rHesC0sm4mNDf+QodYedvOyN1fM5M752lYne2i5TSfF4R9AZFAJvSKV8qKT/YTs0A+tySFqnxhaC6YI3txi9W9VtiQKTOJ3XEctisf5I7XhylZZLekI6YbdhWzj48npsUlIZmzwfsAew18Q09AM1EX4Qly56WbdYIVYn7fq/c/b1UBickb/3k8xzxGXFoYeK/aJu+lMd3c1b42e/eAFu7ObqDlzVaRtnkFvwN146ou7n1dg7kmc50ulGjnHl4N865T5AiTWpimWh+PrvJ7lK+mjy2IvS7OmV+0dHg+yUPrytj3bIkbjdiXeIRc+mM9lihGMr+PNKaFNhiVZ180lzwXQQGdRAVEHlWIJ6KE22BNmXeT5LFVNuPiGqrMDdifBOjmaTFUdHIBtJMzThDigwMjRvqvttZRZcA39YJyQKEPElLNbWDBWP+G/N+aY8Vvo+FMg83AzQOEaYclx5J6zJREHoLonp+NnVphujlyOT11XcdiFLKF95WsarWWNdZ243MTkZ4KpevTG5rDAaAgqL88gZNOos+ZvoHAxbbQkFtQV8uwj/6EmvwMaiMV1QUokmOMD6RSpA5/valaqKobqlTHywDEGTatFdEEczRlge8bxol6NiAtoJ4H9ZgQMcbAcKMH6QI0TygPKMRkuppV1+Q++QM0XP5zyyqSgDWMLH1QiGi3AT7W6O+LFj+iqPQjBeLSD64+U3ARo4xxRtCeIWeZ83vUHd2oj9z5Du9XJiH3j7B0C17GZoGkNOrnon1w+Ue/BbNIoTzGnVvrJhCOFNKkGjCZoBGeepa1BmaIRfwEI57WwzHtBh9isUiHKQwdg+xBQ3i3MJZFRznchg2KPXgloySgi5l8wkW1HLNuTJeg3ygtUGi+TLKHtNd0NAUyv3Y3IJebaA7I9+BlMrWcbOj7a8oR/VvLLp2dJRVFNmJ37VOn+gJh5jASdqlYTsY78Cb4mBr4dbBzA+ePK5Z8Fvf8oPK5Pq5UJteBlJ66BiVbr94RqR6edagbAkFpOGXD2MxHWTEmLZHLkahX8Oyu97+92loGItqqu1spolzbIPdFBNGVmoyAbfjf8VjsnFBBDSKV4M5nG1BfRwOEx7aHSmrKAlUqPqbLcc6pgBronqdvOM7my0T4IrYr1pl1BFiDVdGbyhSoSq2P6w1VpeiOzk+a1VQX9lOXb/WCRgDJHHEjagBoNch+JYy3lK/TkZQjnC+zW86hek/cnunWslNV4KUGz3Gm/iFl/CYg/KMPd0S5BFjVrXtHpvmSxTs8x/VBwBAdjTp42z5+vbJjMPWJ96H7/2xjA2Lx0epS4Ww8+Vc7EvWteffqTFp1RD132PwK9iY02epKP1p8S+FvssdgW+2CrRRKDG9KZr/4zcKellHIy/W4fKMdxUnognTtGGWc4YvPcizozq4mK9ExY646v2B6oxacIy8G8nZevwdzK0hSKXF+FH6wpbCqhGWsq62rS9K/NjoxnNQfcaB2+bubAQh07anOdWVvh/iH1nW/SPp66urNWDcGT8HVJU6BsStHGHXfyayCMEfrIeWvwGfya/NmTswPc1kijx52IFVNradOdh9/TJI4CfDH4iDm0lgXC0PUWELg6Jt+4J04vhVL8Rf0TGolQfNafcqek4BpnDk2+lYA/32q52tVVNIhAQWUmWAqE702yY8bCUnnXP7pBQcxSvpAukfLGU/g0wsB9EuR0K6XKrrwCV617CmfXLMRrpJU91A4VevS+GyMUfCP/Tbqj0jp4SXd2lt4BxV1Ak/bnIbRtGKzWQT5myyjZ70dQwNxxUMg19TslIf7cQVFJ4ZYVZJ/mIJE+6B+VmJAvXUPtUw5If5AjYQJ0zqQKRoTAEMQUYGLcXdv9X4OOprgQh7Wf8pZHIAlr8auTSL+2JZ+efax/NSMdZI2Bkgo2o+1nd6MblmMLbtQp1FIlZk+s1wZlu0SvCicCfufEkLoEvVQfxVn4tK/NnZnTNv2RYEv/IwwurCdZEOPl61M0X46imXKUt6KjNBCmxg9CmjPeR3BKjRAaB/73nKlpz2quJZ44fDvlH1j476COlpbnvAbJO92kA8l5k2nmBXj1+ykV6hzHx3w1n1zbyAoGDC+tUGe8piswpppFrt6/vZRoSFwq+FtDxlBRcfo5pAGAkox2SylNtFf9vsww==
Variant 1
DifficultyLevel
573
Question
The rectangle below will be folded along the dashed line, BD.
Where will point A move to?
Worked Solution
∴A moves to X
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangle below will be folded along the dashed line, $BD$.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G3-NC18_v1q.svg 250 indent3 vpad
Where will point $A$ move to?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G3-NC18_v1aws.svg 250 indent3 vpad
$\therefore A$ moves to {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1++UhnsjbE+JhPT4Gd/RPKsP9h3ZaQdLdimKlBwlTQROIlBI3NhA09WPVRQQasfxsuRjHQLn5ILwI3EZYIi0PCCPGRf1pQOHoSJPuzJY4SIFYXX9IbilOgbWckWJxJeiHNYESGZWiYx+O66a6wVbltSXgnbjqUPK45TLuC0spfUVVsCvl+VhiVXusyXldckrqc5v809hnmwKmeQ8JlXs4V3F9lm8gmIxtKqFvAGWx/TR+tsrBXcTqK3D6oWMrZf3zVP/Jq9Q3sBJzTnsFVp2YCu202QwDMBgCDRYWvWN+VLFkR6thtOlfRvPc6Bbwvf/nsJZNnug5OzwlWejHzyq5tmIOdMKH7I0wOl8yKwZ2HJr97IFolWNyOL796AghEDyrciXHhVzRoeGZRHXT45MI3UvNZJTDG+K1vPOe5Wvy2hThH0BBkrGN5zauzus0DHiKBSTDKUbexdow2vl1L2xfZ71DEtSqL+sv2LUjSTrsyrGDeXPZ7R+rOGB0jDauCFeAYbewOzKg9q43M+K7BwLvtDqrqqqa0WjTU4ExWXihmpAmO8lb2hJxM8MFJt3USH8CHKSot9HfN8HA8rJpPL5bloPxphuyqzOkCVWEaNfQRh/bQzVkrWqxcFzFr/mMha+DP3T54AWGVDSPGUM/Hs8XUh/s6Kfio7XUYCXTIngcVXIN/YBo1OYCRiMtoaghbKswp7sJtkIRyebnQHJ1dS3RMYTF3KmiD1kdFszVrgBIxEDhptJw/qR08t8NVPIoan899uNQSWeHTt3UYCdPrVBSII/RvYa1rLPWaHXQrZEVJCzARxhjnQuKYAMC35kcipjPx/zPH7hXb5Pt5kgTww0yUozP+J82A1TFRvH4SPuxKK8t6g+ZDvol5VErA3L+U+Wai505Ttqe7YYRL53wan+FvJqBHu+NBW8I41Mad8vUN0U5kSNJCrYsDgpcKrbQWPYgnebn69REbbYapao4cF3RfRek3LUYlFvCL950pieZdsldzL+Ilj/4ijkRqcBLJOxvQ5xvKsm+v3oNwic+acFLdJoN40ORNLxnhO7opFnpFYqJkB/K/OHcCos1GXFwJX+nJN0LS4EtZnKjn85+KlO0LJoQp8A3FpaZpo+OslxyYZOzlL8Vj31pvoSMKdhWL1uR8+YaDnTznAWQSEAOVP5JILWeEj4Y1vnBMeQqwz00c1kkPkZAHocqZbjlnGVwagQp8rASfYLlcaYBf75HEHjz+8yMl8OtRHg1yxkacb0qNzYYEYml2Q7l7pBrRv5W2U4C9sGGVqxbJYh6wUGDPpEXEf+7cOansdi19AdmyoVIf84DxC29i0zw5dUoZ7ISvHOEz4uw/myp3CVFM+39n7MN0PklRXmQYXw+GiNyE14GAVAxuNBZt9UBTDiscpL2ge8+4rgeejv7XLxrBvNuDt025qCpi4XU1YY0ZLvls4l6KddCQisR/peGvo86M6WK3bVRQ1ryJIhhvew4RsH6oeiorM53/wUoPXsB3ERcIGADOJUZwgxfpu+CDbMn5Ua7hNp9oIHSZqbuVWA10N/ZJoYrafRcWf9gPHyzSR7MaMFMBfs5OylX7fw55qDpVjQJyoMJpqneJZQrWKA4ExkF0g0ODcRE79ZNZjtTBJN6Q0YsegI/fFtUA9oNrG1sLK3f2YjNryofWKWkydZzfnzz1YpvdMeUpz3vB+PcESwZqCOYxQbbVPPIhi9CvyUxx4RS28i25X6snR23A8NN69Gt9gmlGyPD9pmblkORQJRvz7FyI3V8Qub6dK3Ar22WuL9/jA+eesLIDgUEcsbyO/d0Ya8FvI2ZDohVvhsvVG+DSsaLaG8ivbpfR6WUKBxkm3Is/F0MoeSgGHU8JYt8OT2Dn1MMHmOES6MlsIzroeHOCiS++lVt3dAdOtl/MY0sLY2Li4pdDcv5UiROn+HYA/rniys9sHppUtofAJpjFJtrpH4ggQlFzjmimPuQ90g98X7I0BeeRa7wgLNFLVLvxDap47mP6D3ek6QQo7/OwrBhZNTA5y0AkCR40oT1930zMu7hkVxejoKNYFHaXiJ9pHxJoo9GnTDeckOdCL9DHgB4NwKinlcPIE/CGBqwFB9iZ6iTWS9dul3Bnvl1rkUeQ4zzb5fx+vSsixwHUFH7cIz/LVnPUPQqOHOkRTviZmrOHQiElHKj6ew2qVPWGpTcZoWe7ZPSR4VtjD2/9FEBOXvvwQDJsDVnWHwkpfe7ZMcMn7TNn6HPIahJZaMrxK6+dtYVGrzneJr0F9xgxy17DJWwSgNerfxmtbd1qI5GX7efxP90zvoP/OcLFW7wqCnuCUvrAbhFtFbbr9pxAKG71Ha6d2+8YoWXRG3siKEgYE6S4BaQoJXH6XgPKsBeCD4qnmxK/e5pQ8Oer2syOHgJenXmfG47oDD6vmlO4IB9PJPF2TepioRReb0Xjq3eiL46cNKqQ9fmkki0U3eZ3g6oJSWfQSXJmFwr+JKGRVGwt5kyqi4hZMsMbjdGmrkfZmZYWRmYGOAqY+Zb+ISdLKH9+QIQjA4QK+68QEUCJt63HtliZbMFZ04KpNgBUOrDBwaIUvGZWnpgULTEu5sbJI34MM5RkbsZy9UFvGdULf+dG5yEZ7gYV6WjRJSKspaJxezGMmyHKPE6iLG9Xu4ZaNQCD+fwHkrhPLDbqM2VObY3BJkI+odF6IS5H9kB9l4NuQ41hk5NZ9iol9MyV3WhKlLTQwX0BNY5O3G2lcS+cizgYrLsveoAwmdFhWnlNEV2cUJK73kiTaVYIm8bNNVrzspO626UpPVecoFu6lKt5EHr5i57MzMqn4UcZ4Tt4Y4bLXfKJbvNqnetuwe26SnN1/b5/8nhqTGSHXm+h8cig04C278fdEDDc8JOuhsCQDRLXlarg1/1g5qKuJo4uxjeY3qW+UwM6vp5yNcwFjMi1wwyzTOPw3XQv0fujwsBbOW7eVW7ORd38pSQ4LXQOAGSzvtH+rg8eAJzBiBm06R2d5qRt3q7uEo116XZXA9tt/3XULk2WZWR3uONV77boUZH1NQ2kyIbwfxwr6N36MOq/uCyeoutUmu8SZsvTXIrnzpt6hIuwTrRNpNVlnfIS/iuVz10UiGqSCzK4Gn3hXbFNU1HAr7N5l32LnhYKtbizdx3PVbZ9sZkz5ONxw4v077kGrmu9kEauR2fziR1REbn3ch1hPwxtvIoqK1f4l/ee23H3OCnw2+UfUU75/TjgaJ9POssdovexU9yRokpKLTjsUJ3Ejt3H+IEFl/De1/5GRFhufPoBh00QM3+W0vlgEQIiGWziCxcvhS7ao04FtzgtP+UPx/4xbB5y8w+tM+hvxTowUgc3f3EHDqzsqf++7W+4Zg9Q5kQH9yIyIcpwb1u+kTH0sdOfENcSfEmO52hYUwGHcTW6aC8dYRNjJBiRKYgTcGfk6FvqmQYdCl28raGcRT0zLfewWqWN73q5alONZOqIFBFi4Pqukob0WEBDGm7r7xS3FZCeQdV56e1rfdxVirdLJ5VHMVmyIdLM/vTImZMkMH8I1/nQbR8b36Hc5u/GmFujfe4sMsoHNTCTmGimUK0JHHPdWqfavMmLZ3hT8KdzhkbH3FPdDdgKsZv4qYO8xKGBBIEB26GDRZjZ3tVb9K1xfKdt6DWkNFSQHMVo+OnmvxMxbbMxUZCnW6kayrCiPBC4ZidwFVcWGJyfjapkI+zjNYBArPDqO9GEyP3lOvuUnGL+qh44VO326XVR/gJF4UqnnoDGJYa3lIfq9zujHC+AS1ic743Q+QewEfff8m+duacuHcqky4+t5f/LDklxbrpfkIPWFKEHg+EL9CHUzI3qvQK/B4YJ0NqdYjJwCXKMPb86DMTU1H7bQbHIFcLcnRC14k6H+M70AR8A7lW2z4dZ5Mxh3o1Twb+/dLOLt5t9AGcEGvuqxvDx7D287v5QuOcGZ9xWpwVBBXH8uJS32u1uJhYl5t+ee6IdRg12nDJu0NPPtJjiJjn3lVAnJC7grDHRyRCJYWOy2UYYgXBll0Z7XdrFiJnAeMSxwQyGtNsQTNaiqDW13Do2KXhtFbIiRGercQ8W4d8PJ7QKTe+BWn8RLFGX5A6UIMX+3NlHz+X9NcJU8CHit6PwLe/7FJLXkA0kdy6FrJBeGRSXSTrraBzrJIpbboZAz4CmZoOkueSl+RQxJvxl2znfsfHGL7MBFO+Zuh8qGQ+JicDybqyq8wkxkg9Yy1+tr5YeePy5EVYaNHJ3JzEQ3J3E9iLKvddube+w6t7x2MxRqmOXUFPCnFxVJFJECsASHV8uKnwBdaTIM7vQo3/+/Vk+mmBwOUhlQ2x6SWDh8lB7ddynnAPTPxMViUAS2c+jkS+gwQ1AdLXtWi1Xd6fNCBAo6ft75wvxb/frMIuLJantArjTupDWROGsEyPHT7wP+tA17+0WRwYCI3Nuv5i5QgrdEyfifyaZ02Flc4CskE+4UFbMCHijLtEfIAYeOrg9Fle5013z7wzfGLqGtOb6cn6LzAf7V47IGoooUPD60UYnIvInlinLaUtxnD0oqoR1igQ2D6Kx91n8QhjG2rJs1Kl0pb4/2Iu1R5MKHxalD+B7ldSgW8XBA2FsCjNp3ByCVnxoIDMmYFyYAKmMCtwywMDNL1vnC1lhdplAdVHiPwxl9on0OVRyssfQNUW5DCDkEy20oqoEkHm09twETvXGkZC0hzS9HYNt5IR6++GKh6nvDnPT1JLckq6cEK+EnoRp10dwpm45JH8C+RFDl94BbMJu23dc4kAqDLfs5L0lGENMa0fPmJeBEXXYIcSldegmdzvD5nPjovFoipMIOMiaKzRKH5zsM9d0z0LbPcNs6eyDEp4n/jE+UgoMwPKyQAQq+z8c/j1QTeStUIRtlTgtmeOtWAyu/OGJftnbUr1f5ABOlJj4nxvjjrPlFZTgFE4A1HSSM2C4MiNh9GeygIjdQc61vT5nhgySUQpTTwj2GTn86beMBfw2mZfZ2gfF+H5OxZ9FA0EMUXA8XhKPRtlOwP9naDwdHObbyRInhykP8yH6mdqMaLkTWL8NZzoOV8lbTRnCxIKiX3iBQg3sXx7i80EJSLedxUGkfCA9DT4qn136OQR1JWzpaBZr1LbeD3gcnNB86ww7pj88XavoD6f+4RXNtUKkQ5AEPbWctbkJU6WaXOL/2Ur1eG5lTrD7shhZmk7F68u0pGVIKQPYyF3FlaQuW0FROQWuMmuTqXbtewwd1EzCd4zNUQlfJOJhEq3Eqb+/uSl5Tqo8a6wZjYAzR8ztZhtWSu3tqdXosyn76ek/rIpIDVjrTyICrRqfbxiRvTAtGw3bhoeWzCvGkjV3g76M8OHi7JtD2zX4umccxTth6k6ji/iqxk4cYscDfz8tW89/xK2x9itHzHWCEn+A2Lij77QnlPNu9y057UWgbumK+LA258ISHLAH+xNoTmFqaeTwzLZZ2jIED8jXZro1x+IWadRWj+ub9AedYr2AUPkQxGSSFtRbls0JtsKrf4PxAP2zp8RtBmLg6jjMC0w12fj7vxMz4cEJcOwJNSAYPQaKgBBL9Pd9OVrmjH+zjuNy5BzsYgqPq0eAOYKbQW2L6613A+E9vKo2OnKmqUhvrvCGMbtcq02UsFgo4eOFMOX+kpmBQtTnnyoBVpXVwBb5KQSf3OUJ6PZawx+xPQFfI+XeYjmixkojPXdV+lv7T/wsg869W4gWb9ciRUrhR7qZGwTgRw8jaKCOdD9JNUjaOpRtG/HfMb9ZUqkhuZCtnAEMFj/cPFo97nbPouVKPNsQ5gep1OscrWEKnFMjIrCyIN2jmZI+VdTmGJ4euNMGKMrZWGjygk2KcnD2Qjw+Zxl+0fb3P3zg/cDc5WQaw6CXXPCr40xOI2ySJBm6O9aTr2dEA6lj062HM6q6zszcBoq28fstIEqAFM1Pm/pcJvuZ4k84I+neA/iwZ/lbwMLtduirf1czeIheH9ezpwKjDHPoQEK97rO6RBupRIHQiuV+d+N7Lk+EANaS8tGatX8i5/TXtLcSq/u87r7OK+//PfS7hkIxXM01jHrlV9ioH+joCwBT9whQTmgcAIWyP+79qVZqdkQ3xdtcg84CF7KVJdNse1Quqb6F1mfScWb0k6giCjOrpnN2NcCUEVY7OI8F++cXGd1qy/pKjdZzwYvlhao9xs7ed+1ogYQE8c23BEr2cqeBgcC45sar8AhY8lk012D8LT/BHMVYgF0jTU3gqb4oR6Eg/wzXDbTT1PTCN+mqoGrkby1DV3vf91r0kYin0Tkep2wdGkeUnGes+jM7qh1HK38IaK/iaNfQP73CdB6YslEsXBHcQoBJq8J5Oigs87Fd9Fkhu3zTqtFDD+bLm4ZL7vWH7CWfsa0r+xo8iFXXqMuU8zpbKeWmgQtQszQJbaX4FXTNTV/4HF9OYaTjftF1VvTKqL2Euy9L4o5xNDyaIIBhdd833NcPGaXVTu2qymaa6MlXtAuOwKywxWt6lctN4cHNo1FisfArsWKdV1d/PF1WBI1hMEwXLuNU6vIeIPn2P4X3cdsHLpnINAs8UBQ7aILMq/xUgp18bkDoh0B2Bv/MjAD0u76Z+1QDIEb7IJtSaIGlsf3SNqsJcGto4CVhHP22L/rpDjmpZEU0SN5Q3MrJjbi2fVrMRHZBrALLMN1MfKbwPy6dpasRuufj0YEHQBRn/1//EYeIFPpaoTZZ9u9ABGiMldJNdS13upYZT/lYuskgAfF2M0bW2rXknNbTJJHODL+3Oat8uUbzpcthL1QFx/gfLZ1uDck1L5XkjGcOjSMLjenfUCMr1FvdzJZvxqX3fvpnT/dlJdUYUZSEwGYg5D0ih5Emajk4BMpdtwq53TxsD2y34syAo6sIOUqglLglOM2mu5LO8FMqaR0OkZ2lMVSV80E8PPfs6brvestW1FbkjjpvK1OxJoVEHJxF20tn56XGPUIRhpZClTjoSWMbCvH0MBB5JUMd9iKaoj2hGMow4CUXEn+8PczKypKbZjKvW7K693DFX/aybsPdgn5uanYDMdXKsA+gpCRuvP3PUSYvqzqlf3kRRhE2Cz5KQiyI41is9sGe3wtVhquI63jYbwMrV0I4MKzSNAbu9z3D9sqpKp4CJoecjwObT/pMpUwpb7kLS/ngnMl8q+iAekx3NdRFTuHwsbSSL6xIkCacmI0i1f40N4LM9zOWDQBFgTp1TmYhS9nwmc5Hbt71mBwAsrsUzNEPdlQdW
Variant 2
DifficultyLevel
575
Question
The rectangle below will be folded along the dashed line, MO
Where will point P move to?
Worked Solution
∴P moves to C
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangle below will be folded along the dashed line, $MO$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G3-NC18_v2.svg 210 indent3 vpad
Where will point $P$ move to?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G3-NC18_v2a.svg 210 indent3 vpad
$\therefore P$ moves to {{{correctAnswer}}}
|
correctAnswer | |
Answers