50117
U2FsdGVkX1/uNyIsK6tE77CU62S0hphDWz6QYVED2r2E4NScGTj83wPvZQxVxKoN6w+vUm7Y86LDx/1nTUCzdfdxCyf3GhAqrXUQu5ajwVxPwpzuG+U2reBLIeaHxbWccXgi8AcEti6H+eHzdQyCDCO/6933j5XDdquz/4g2WBfPnbnxPLWD+0acjJDoUEifeWhB7lujrP7xA7xbDf6HaQea1VM80D1JCCiTV6K24LEN83vmuvTkOVoWCg7p9dOD5yAhreBhfK1kSwjcO+lLHtz+l++/Py2YWWSFveP+N61upkxYqHa9oQ9HsvtlPjbJ0w03su8PGrMk3E2Dnd2y9p/EkEA+ak2rCR3tAWkROTif3DKGPHjWj9PxvMRkz2+87g+gn4ougXnx7QefD0oOYGEYEwM/PWqgw3J+TyTAZASfUjkWAQWazOQZCSsat2qLvmNKxmWp2s26y7BH1C4mtB79mwSGRuB98lmpT+VNJXIIHnC9lid/FR/zQPgG9o5O/xqNkcOzqjUs9KPKJl58XaWEwgKWSAiTY7j0VOF16fW3y6VN38qbPCNCusPWqtDNfpmKR5rDIeHc37vnMpW14qjChkIJi+ypj7k4mJheWSFK/M+HzlyGj/wU2fImnMKtNTlCaSJpRF4PI2wK8d5A5R/+4c0fzSBhFbvFJ4odsFcAHKHkIBte28RECeMpVy7ILwbPdOkWqZ1Px1dIg2VEx86Qf3mXbQS5ECnwJcKmDp1DmgZohmRxhXIPEM2cWYu1STemw/+b43n9rVdLok9IJAccpEhGct6fctJmOYX0zGZqBoF1MFJ//s7d+UoQri8njmYiuCrPYZN3uqc1+ak1qTz0d21IZdn/y5Ynew1lFDP1/66q1+NZc96MJZ6oERgvoRms0U7IEttWWMk7bkudOMNc07hUa6xyc7mh68gNVO/tZ9tSeGP6Tv4iH/MoOlkhl9fOKyn+YEJDp/M0kbMtb75CpVBGFtDFKVz9NKJz7UXBlRNcngFZNjHfzbTe0yCucL463wnZeeWE3lMlo0L5xxs/0lkwzgAmf72kjgEeCDjmlsRxgYLgTKPRT1qYdjwmvXS7FFGXnMB07Raxs8YM9B7axRMhawXL7eHO60llUz262KyQvHyBWpde7IhU4jtLTJw1PPGWi41dXCiXQgzcjrODePI/VAthRbBBE8v4m2Z6GYHhI+Ru/lu8CD4o8+e3M6UkxjOLa/eNQ0VOmioy2Lby7nhOgkNJXTwKRwcEEFbl/KyrdXh9re0RSS3rxBpYkTulqzHLsutpjrhjrzP0Zd+gWjZd0q1e8GR7uitvVLXItOpF96RykSN3h+R0zQIZ6093ItB3luTJd072sxK3CoDknbdPxPFNtPz3YKct0kmvdvvXbrcWz2LmFAktUMtihaCt2lNa26nB1QZvyHVNo3U4LgWYPIZFGvtXU0HEG+4pHTUgFl082oYwO7GXQ13IVQhTpK2foJsueeqz6YJGrydMGpA3TPtX2fXqlZ3+lIsKMkRbPao8uyhE5NMmRtQ5x4eiCrEQAL7niURxIWtf6yuszejbmbswjVX5SRxI9UI8rwhj1DgGCXpZ4Rh6oCTehbIxiXwXEhlFDyrSw8+wPFKNXMHhWOy014UWdUMvtJ1K8xZMvv5sYkVe2iDDDfp86+x+5BJqOWPUCAxzehrBix+X3gn8QEy7XjEsrBTgDBRsqV0wZrqeUb9MO+BnvWeBh9R2h00wSmG8IwlX28mWFU4SqeVcGlEKTljjnXuV0qrl9WMJVnLhLLIwZJ9n7VBqcjAD1f7nGn+L902XtJtN702354V4qwMNyeF/FQnHhucNdpPlKLGmmN2Oo0N5Wv3ZAT2I4xl1//5RAYwUHd+8DR1ot0BM/js81xkL9xpL1VJLJgmANIjdZutgYbCNJLTOIqwXM5b91mdS0r0J8qzEw9S0IGa+z8dvV5MWRiEUQHwnaW2kuIKpP0BLJ+OYDKQoRng5UoMuduOyHuOdvab+ln8LixbQqAFQ5l4ueTCgchux0lTzdhX+TUiOMAIpbECyoIrFbjQXhHV8NJYauetcPe6vjgqsTT6eM1nC/q8r6DxlY8jAudSLOpWrVogoYHRcRfCQi4YY4DHKUdKj57T8CnF1bcyqXd5LAr9XkV4viZCkYrgbmNqDP3HmDES62noM3RbGVsD3dlZj7T9WIfH2vtFEPWT2hjnPhU+6krctaVBC9wfgUjUnm0jWircPJAeiBqY5HwzyfQveBq8zjdoATegTpkTo7oxEyyV6eWHkJtN6cNIqtUVbprPI+bjE/dHqou1zI9HxNWk6dOADH3Smn3ijgLs0/39BBjsXgygDGpp1+ZQBEFcsRVkXgOhYS8x/XmdP99X7XB9Y2qOqSbvqwJdCfj9nyzIDKXEGmIf9eurpEqtjMlqfyQ0RKvggaZBrxf8m77iSll+FZ48UGkQpBAad39Shmxv31Pw7WVRC9sp/d4VpP7/qFjM29Q6m/EnpnoLMASCeRTfOHQfE1yUn+bbvn1fv9B4Tx6rPFX8VXdK/9R25OYwMiWk9ImtVKJTSJ+7058t2/owofqWTdmLgo9jOfj5zHYW492Rdcm60V3CIswP9eTMZ0gC79J5KdnXPDl/iuKCL5aYl0D3MX1I0B0ir5DB8bnBrIN5XSWpO8Tcvj0GJp2RLmFNlQpmusbm88ipzq2yk5K4auEzMAcnXpM8vamQdHKk2A2z2vH2tNMgsLuCpHk+8Z7L7+r56J1fzMRqFRc2Y3QTYmK3KvXuR5PLHYfZJSNahkymEGs13udSiFTPntQ35MPnZuRXaX1n9us0CwQIcvpr0sVQynq4DFMaGVmwd191+h+WrbRjJ0BmQ6HLvV7W4K01VRAui05O7txHG9lEQNGtVeJEaU5vL5RFzVu0ml4HN7tsEfquHdMefWV9bDfH68BKBob5Gyhg9vwQedl/uvx198h7JXCzaVQhkzE8OvHbiVJNuicTaZg1ZRlUhsQO6yugJxIc9x2Ykn1oT5SNwf1wnNi61gVJ/teuVweqqYKdP1NjFh19C/pTQvJsY/rkYgf21fv/0oNe3uHupoKDMkA2pqmWT7RaRUTFBR8OVVKSo7E7dQboG8aE6OrvBvpt0rzBU1L9qutMmVQdX+wzQoJqxmyUynzA3+XMeYMagM787QuG19vqDQE89aHel/Z/2qWMvlmLlM02W5l8qvpl3f8mnZnhr74WgeZeZXOh8eXzoFzAy18FO7jlPZeYGuU3PoMvbOr4P6lLkKEsFCJu41PA8v3R5PapXLkw7nnQhJhCBvmZToEPPuYyn0+OiKvlCBcQm+ynJBtzGG/7tOaJwzdmSDXOFY1zTnVGKf2azwKDgBHqZ4F4cYPYsGZQfC4fpeqghc71Ymz8hmnwAYdlhtzGGS1ZWAsQJt/sdi/+7NXI2HW3ZUKQisD3C4uKxXWXKt2tf+qPLw8SV94UZ2bEmcvlLSw0BLTpyWfvrL1atnWidM/+ZnaT8i53Y0uWnRGXa0yGQ95TzqGo6c+OfyjB2BDeEDu9ql1CPb06QD8AEKSggBwcLVNgR8iPL83nJZscbQGxdusde+Qeda832+p0vIt4CzGFZWV6OmbmWyRS3TQpbJXRagGECjt9+j9wGCSZoxYlRUcZXq7wlW8LfGNu+Cy96flUb/ft/UhwzgDbEUzhLaLjpq1sZHxr+/L+pPUsCKSmzROjIp6hde2v2i6i23iEFdv9kC3HndCvxxOYuzjv8MpalBFMrN2SJxCCB5dWl6wmoVowPbP9VNd2MLBzNRgNESR6DmWDLwhTyleOet13bYAdP/5qpDNtexnw0pf5s21m+akTxN/d79qQ/3Dploi4ZTGy4RFNN3RiIA0MwvTGTQLxyTuw5SqzklrKTXB+0JFkhWW/7fMYkUpmPe6rAQyZaKkFuaQtcArwytHt990lW5aF6/GCfyH+SEeHaAeoJ53rCQC6QDbR7IKZhYw1X7hMZ8aVOWcb3FxR8/zqpX0npgboQuBqrwKntAYz8y5SXkVVXnTicv8nKxkF4BMq6zUYT8SFmt18rd8WI1m1lPdS2Bzkwb9/m7ygnHbXf9wH8Ben/2KKcMZRFkg0GI3+VbC3ttlnY/4232YrtA0DkxXp9OkM0Ohqn+J62uFOJRgzoYZD41BB49F+wrOHPP/ujrxds5PT0TaQurlNF3VHrjNwHeG0S3k8SepW5bX7P1C8qyln/SpNENPC4ZNGzuV36J9LNvwlIUIk+fAWwkVB0ZzZ4JzSkNAcRya0CUPezYCdlr/iPYS2lDlM2shc3tSx3d38PJkQI7xrU/KIWtFj6LsUfzD3j1xS7k6Wye3ks+V6UnJ6hGPeu1U6jMazDAhE8wScjD1oQn7bf2QNKpvGesu4hoipG7NefNyr02P3s0pNcHtMVwkXv1wDSC+Nc8k/I7pwlcijX25kTQlarwYk8uJJcLx8UjHK6TQrt+iVZPZOPt0cEuyYSbdEgGT3cBErv4hQ9kS0VD2qO/oxVdsjjBq0+fPJNxM768gKNGvHgstInmACMZGlcRvKcjrnjdia3p1H4/sApXtxxAXi1uM5NS+eJQbmGlVgpKg1FP88ZaLtFmbET2qWoJbesoTEkAJ+r4hNIjnV6IBtYrx3/698hectT+KNuWC0qErFUyRs8+vUjEhwJkmv+HYchVD3HXZvvxl7yBvULgsg1ArgihmWQdZplZ6DMMh45dYyEhL7V/VtKsVt3QLMjDNK0CbQhIQkQ+gd8M/RAsncpXIMwK949RUx034GR3vSBM2S8/fofrc6Y2d7Z7wEze8DR
Variant 0
DifficultyLevel
602
Question
Lea collects comic books.
She sells some of them.
The selling prices are listed below.
$5, $7, $7, $7, $9, $12, $12, $14, $35
What is their mean (average) selling price?
Worked Solution
= 5 + 7 + 7 + 7 + 9 + 12 + 12 + 14 + 35
= $108
|
|
∴Average selling price |
= 9108 |
|
= $12 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lea collects comic books.
She sells some of them.
The selling prices are listed below.
> > \$5, \$7, \$7, \$7, \$9, \$12, \$12, \$14, \$35
What is their mean (average) selling price?
|
workedSolution | sm_nogap Total sales
>>= 5 + 7 + 7 + 7 + 9 + 12 + 12 + 14 + 35
>>= \$108
| | |
| --------------------- | -------------------------------------------- |
| $\therefore \text{Average selling price}$ | = $\dfrac{108}{9}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX18lgZRZxtpxsnrWWrKbEE46VMxu1IhGuSq87AScSBNyxH40qSd7k+FbBm67wdPeet6cqF+ijSg7cLwBYAxQNNlVRRD25NZXiA976PIMiIZfsXwQtHJsjU4oS/Y25hcrH4H6kJNgjEp1gTq+SSJEV0Rbts844fYfQBe+v0Pg+jnfRYJEZkcKJaFAKEwDgzKBgSFCFMIAnnzQA8+ZJC+uUH2sev6UnEDzQ63XPRe0dEBMdnd8zfCW/ueGi/qutqIJpqlDkuqRAphuJXjpfpA5D2V8xgwMxTb9OlEyeUU6zA1m2gBuiaz68u4AEYsnAuEvret0YpXEyrmYV+HrO66ErWXBmSu/LjHdkW1FqoD6iUKYblqXoX5tgl+ZZ3PIxCwF3B/FVVKWvoj1JxMgHfkkjlt4Waloy+hOTw6O1iAt1wa4nB/osxmnWpIiFTOC57uakGvnRNTELFWp3+yCvPRxfnCfm8Xmnqc9lBuc91ofTrgfkVOrGivrH5Pff4yIqTWkqwOyK2sYd3PaLts2nKFVLp/Qlq22F9wJR95xi0EnLykjcr9faBCD17movLnlcfGEL+brqbqpWZijm4bOSG33yxjWmizjxrxbRwtZRsA/X/G52c8nSCPtXE2Bj2ogXTrHUr1AxuzxXHYbYibnFvsjC3SWCDsSmj3IS+7SwBAPjp1jAdKwdAqWRiSFoVrIcb72/HhJrZevEIcdDTD6BcYKVrvo4JvR6zZMrvF6ALCfhL4E/v3Lf+5KhoLZGg2k2bh5/eaOnKTmaFvYqNCdR5/l67q49OqEHP9WR3NRYlmoh0VtLzVz4aFmqD3JEsU/OjdQdm3qdbXCv3s1D1YXrDd4oltBIpDnOAYtcWZPXMplvrtO7Ets3nPOO9pPAHLCiBmmtvXvHJbrCzGyAALAWyfBy90Mv3OdmoSg+ayTYNiPFW9fjyMUC2kFXJ3I/Aa2ndgY7QSJrSH8c1K3S/PqKIklpHjgTwTKI4AYkTR/vE1s5NkLm5j+S2GerR5PsbM2zX3sKwUnzIr5d9bAtO+zi8dSV58lDoCn1YZekgWDOdTBgqeXWE2cPsEs+mqJooTvVM+3EYh1/Bo/dWILL8Vn+IbFFuihQIpYp+D2M2Dn3k8mz5gEMGY14FBGYLzoS9Xf7Ddlg0MQQHakRRmYiEx7GfidA7yt4Hk3MYx/NbDpVEAN5lxx+1Qqhmz6zflD5C8vUCKeOGsTdWRLWDxhVZEB0x42i2L9BU9VI0vn20b2eYOgpjLjvdY5faEBJrWy50WAZbhJo7t7jtIDNlZR7/dKsIVvnm7IGbHUEEkIV5ky09aqLNyPxU5RRQkh1eJPPPsZA50mv/hOeA7ecHL7WRsnIZiTjzZEx1JGK/18M4EuNUZdPYj87ILHquK8z8hrE96U/LhJPbno+3FcmsZ3rWe3Jho333fRoKqJttjtxhuq78DNLRAgKW6S3k/sirXI5xadSeFqwQhAwXxF0Qc/jzdfrYPl21LU5hps3ew024gjMrlwoDp9IM98sLzeiqjj+jdj8Ca7yXvO2ZrPqxEP3CYWZZhYNvcP/5DktbWuFrj022m9SVrY/GVu/4Ep5x4bHBILZ6H7S/d7XxfvNU7/kokoo+Hi0j6DeOmvHTVCi2P/Tx2ElhXUTG2JUOAs4VKVYpBp8NxuJIydPa7YzYyC1CNbss1lmNdD0jSngMscNrI/phCCKkh6YDV4XzwUXPO1FawAV03CivGowv4CMAR/hf801p5RfGcymSjMZylJJ+3TjR/aOtNmJiYvqZg2SJ67PF9bUKJTfhGFAjuGpR40TI835+3Plxly9XmavofU0pAnNMujHsBPDxuOtsMAP9iJZr8C2/lmsmRQ+izN1KeTNJzlO6i2/a/X6i1qFesQh/ijzAATKudRQIMWBJG86HDxfwvDBogrsAFk/R2Ung9Wh8IQCZk6L/rorNb/Ccw2jsTNcMjnsvE/jUq9Y8+iYbHUmHWVO/ZTCO/sL5OQgc9Sg2uqKjCWQ1YWNXII6++ORKwDIDfZD4umyaB06cy0OjDPJf+XGVEUcF/r4kY9sy/yNhCK1D+c+7p0ULxaIvX2ev4IiCwaqMuY5fHh/H+0hlhArEtJL8NmkcArVHu0pdsZCLdv76r3g5lQ7MvxPYD8jUIJ7iT8n2RvqjjVtpNF2wyK9fr9+7/MnicByMMboSLkNURVMfg/h3BkAsJ6Qu87WWrqihfZkfEaD+yFsbQdsBLc6XQW1xb3bu7ImvXBeEdl3foLZSlMG4SIAMKDjAeHhWlE2LF2lWKnAHrbkklS3bANnyzj82uinyTLjyAZRZu3I+1YhpWxgE12ECWEiIhEUE1OmwVacYNaPUNIpZS3A1r2plLjB7gR6pNMCH4zhcPpZmzfKSYfZpqbnlTtfpVE5zpdjvjoYlHS1cjLC1w0AtvyHCKz5ANUuA1oO1jBqVu1PH9ePgA9TtJtdrfLlS/p0xS+zfrnwk75GDpN1Hke28m//6Onaoyg9ssUBdJB3LHQ8zb1wE0CsIOFDt4/XHTX9TkNMcBLA/4jb90ZnULg2Ul8qO0gm9tQPJw+/rGezleBqHQs0kvzHpahMERqF0ruDnqOaSQw52C2WlPvIDN+PHQskjqiAW38bV2sQzT3w9v91z9bs+w+6y3FaVLgiCbIgnNpktqogbLBRJQFDeKWrSlCP/rlVxKZl4+ZwrpsmHaUgGGav563cSjKVU0wizgpH4Vv3jxuHLfZdYMafRxM20XkYWciSzzHXgtEEonkSR9nXruBXKX4ZPOIgt1IA9B2+pAtz6CM8XgHijdovwPH2NovCa93PU5Z+8v7hXbiHIgRd6m0eCPhf+KP7s644xmaSzmceJcdAbSe++Rw4+3xathQ5S494iO9WoWAuqbfNMT+arB7/hSvg/0Kn9BfaxOgS96Aqtrx/kojOvKVvYxTqzcNPn93BMqf9dFAaTAIC89/lz8q20ngFfIOpuk/U7Ns636MOzgizdL9AMSUeTmFNWsctN8Fmo1Ul8oO37FjsgZFI54FLZyqqgBx9bS7LG+w2WOnzJVzdFDQc0s0NEygz1ESqV7iVmzuFAF3vJQ1RF5/UDGKpZTz2ajP9AceInB05jzKzVxN3pVUWV2WadJ5f0aAMEmokEB3+yQ5doZvTlAjGebDZhv+xHmkW2MisotZ23tDVIll4D4OnEkPY44RSgKNgTJzhIfvT8M0x+r/2sI7QgwXz2JcfWK5obqBNVJxdTha1f+eLEvieGOGTh+DF7xBsUYQhGwjJ99mU+EFhKIJs1jBZghbBZLkN/4hJrY/nPiYcXC1R2pRiopOH3ALU0LnyEnZwxLZt9AD+mEm0reZzSt4B+u93DhNNwA942molT1fKx7J3nwjkUV2pgQB93jUiS5ILTw1Tp20peFU+FdRIQoh9FFSPb/UZ/pmndI7SlUTLy9u6F4KdLvNYfX2/R6Js5LvR/QXtS80hLzxd/2C/1gAo90gzZK6fXxCGFbFAzmoAZcwJSIFo+K048DJa7E1DzdQ41iyTffHu6R7ZB46AgcanW4sqztRE5IWck0yFRlr2N3skcRzOhL5A79qKbZHpV+5DNg//91clQOoIALUpiXy19oKoYtU68/AtLOX0Xj1VG7xkDU9Ice8IG7nkPeLYUmAgyYt0TdHtQiTCMhRMEv034MBESP7/qCc66HN6qQfiMCJj/lkQoLECTncDdHIFApkpgDbprw6kp5e7q2WV5h5b1e3cDLl4FlLBqsfuY81cRV4SNgU2oDoDiQYyYAJLFi7Hlhs4LxnzXv7NKVHLx0zHDSZAcfXW7/VCOk5b7HqkLNBM8JyeXwHd4LSy4hnSROGWOEJ8M8Zcyvl1fRSpAnAS2kIu2uz7bQWUOfJLr08ZA0xuO/UQTC+9qAxX9zZDWNlUlTGaHLP1SbUVaOZ3v/8I6LKJBlavHhhMnCiTEDNpCTI6B1w+I3ogEQD9ZWR7nI+9bX0DL53XPc+kb2enxSwx4c7P+0o8RjooG8t/lbGAEEjDDDKPdmbrL+hsXQMPBv0fVZxkGWqQ4uizfZDPtTJKw4X9i+WhHvAVvvRbAiMOgScRWpUTh+o29oOusRFfd0HfF11fgxbM9lNwYeQjiyYFG4ebVQ9KuV9grmoDBZv0ZlnS9ksM49zcglz+Kas0o1Ihq3vC4wp28YhXntk1LVJyscrxhiizZTmwseSRbFuDgp4yVxsMxEeIZbfECss1tJiqmdeexHl7nsMRAd11O2cf861EXvhBAUl0vmObkbE8W+uJrtiXp05yjFbRvPh/7ECDwJ+YgQCYzX/oX7w3wWO/0S2SLChIYmK7owzjLhJuZZVRnetxU2YUWWCPDHBZ/qQGE4lsWTVdP9f7nYepeI2HLcvZScQbP5QlI0Ol+nEcc03Zw5lmwihxfFM71vi+cl1bt94CohPdY31FfTLBdOrdk3syBjadrbkmojn0cqpLaG1mYQFUmRDPp0zkbbPw2bRDvcEa2nocl9tiG1UQmC1tfQHZS6Q+lOGTolMupIRK+HCA9lAG6KA0yLRgYirpKDU8oIxBj1J23cH4+U4vHIQmbiTDJsfpQnufncUiy5zn1nl9I5x3I6++5wpGoVE9IlhKILVw9vN5LtaKJzcwMpDSAIBwEdwlMv5moeOAhRj4R9HbcNEJ1RmiCwCngTNuAHLsHkvhgXoiZjD323krAVNdbVQrDIljnFuns93gRi4b9Xq1oduVXP2I6rozvfyu9xkjzDsG5MKm+Qf9RXxqrw0TJks2YZMc0gl0H7HlN4LEp9Brw5/xdh5mp5WwGUIyWLYlOPFqmlqExiWPWr970r/o85hfYvhmh9AL2+IKnA8YFauZcTg8bEYMxacBvhMXBDOQIv5Y//9LvLVS5grHw==
Variant 1
DifficultyLevel
604
Question
Janet sells grazing boxes.
She has several orders for the weekend.
The selling prices of the grazing boxes ordered are listed below.
$50, $70, $35, $50, $50, $35, $40, $70, $50
What is the mean (average) selling price of the grazing boxes?
Worked Solution
= 50 + 70 + 35 + 50 + 50 + 35 + 40 + 70 + 50
= $450
|
|
∴Average selling price |
= 9450 |
|
= $50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Janet sells grazing boxes.
She has several orders for the weekend.
The selling prices of the grazing boxes ordered are listed below.
> > \$50, \$70, \$35, \$50, \$50, \$35, \$40, \$70, \$50
What is the mean (average) selling price of the grazing boxes?
|
workedSolution | sm_nogap Total sales
>>= 50 + 70 + 35 + 50 + 50 + 35 + 40 + 70 + 50
>>= \$450
| | |
| --------------------- | -------------------------------------------- |
| $\therefore \text{Average selling price}$ | = $\dfrac{450}{9}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+TfkiTL0B9zsTB6QK643cY4qtq348O1v6fkKToNOV+BIq/GjqDX2OmhPpmGrhplBBx/7OYIw1M/30hJUL5u40OJ7H6YL9eZ0PBoFoxbxnm1Zn0XjViKu5bK6tG9eBw1duv4+olx2AXyQf1+3VQWEt5OZ7L4hZwNlRKF/K4R2Ltr+Q2UNdU8pqt7+Rhqc6rS8w39G4NAPAkTBQZrw4yrkrc+01ayJT+cMAPvMc3A/PsXU5QOaUd8i0V16uAHfd5RYPXMmP6okHv3f/EuN+BbdXZQH7yVps6iJtidA2fXnJJ/oJICee7K36OYpXL5n2+vNuSjAmKWikIZyLaSvvKysmDSY9BD9m43LrVm38d9Kmb9RHrPX2tp7ZayaxzCC3+Hh5RH5gnOxNcBh6dtXWQNI+zr98mekHfUwa7uGb0XXdWKrZOpfrrqvDOQMvcT3eRWp6A2cddHJZY+UhsbZqVsTKCNFFQp6a0VXHi8s9vnzpRTbDuVTcEju3IDncnsex1sF2iIH6Krwbrmn9RKYhVYypnq8dC5QeStfUShRDZA8HnCw4iwtlUNcGVFYTTsheECNX5QO6nuyPeRSPSeS5VdQrXIb2gqFxz2TSWwhmcSl5IQkAirLn4nO3fT5FaGPZkkM3N251rP1hVPaAxoLyK0+SyGZXlsPItV+GbtYZG2jEeK521CSxQ+lnL/Yj0GaEsRg2QySzWgGqiLFFWZwLpJZvwfotIxrKAjKoZvCRXDye2LO/iULLPWkpZZxGJtjFV/MeI9rsYCD14AeE7mbL+nEryA6Ue4fb8TkIwBtegWhn90IHZYXY6UryhQq6F4CzELEC+JAmho+xsmkwZGJq5TtYS6C+KkEuTEcP3zN9UJA/Yghf9/4f1gSrWF8A4TGiAS0NtJt91e00LMxp1Jda6dyG9VDjUuRTKYmGldZ242lP1KMiNUmmCaYMUSGmb05PiKkBqWiYEGZvQX6/E4/mG76ADLkzlzO4L6zr7fXNseZvg3YsiKBKyMjNm0UBQuSx0gc1bJFUiM+29yf9lukeBqC8WsUDBZZe9wWQ5878bzlOjEYPrABAmo5B+nJKlZA6W6TMoK/0wNYBPG8Pd7Qcis43Fl1+cRmNcv0xHeCgAQQybJlTcBDD5SEIG9JTgcgXxY0JkQm5EPfOmeiXBFtycb+01wcBMCFwwELtV6vFDYFmlCmAtuXr7S2mUM7DVer1tVgThqdt9Tv3L/16hF2fTMHqUe9jhFXAq7wLGXdQUoUEjEmwgdIu3GglZXkggSUzBWWZUlOpjpRep8Uhhkcje+PDKiEFXq6Fs4ax8x62Be6w2CqIREpF1ecjap4GOrsGARy8+ajLGGdGetxuRIuMSi9bNiF+DYQGWehlS3k8xjbVgcpH9fdcE9lcLnWPd+8wJRffqbqwgyp4rIEjyZTTFe39MXTWWYWJfaiUf8TgV+hX7X8WnK0r06Rz4XM8vzSdNBwp1BbQ2JQNoOif1DZlIWm0/bjdRfgC6DjvpU2n4ISZrIm7H5CcAgGL43V8kukcomQGOianNWVo7jKy8RjUq+SVCqIsxKcXc4KCQ4RcSMILBd58HtNdahxNgAYSfyV4BD+Hcqgbpbg+3rcAJ8XXdatG9aXwlDkVmRcZBP5k4ruzls4iU1Uml2Y2NqMDiwXftssGlSV9kSAaUtkS3REWSSL0dTucOnC84WtvCn4PYjQ3ZbiI8TXXv4dk7y6rpQ2OT7Xx9wAjcI7KFg3ASuBWa2ya+82no+qTN2eFtERbus5aXkIy6P1DQQz6ykdtxeRrlFLDprPk3fIJ6k2UagRztSks2EAN2z6acQvbhX8gc47DpNjFxaMd2uV539kI8IGiFhr5ZDqdrau0hQfajWhcvnShd5bBRh+NpI0VUdwY9i/q3U4+eSwacB6x4O0uGwic+reCZKhhKOJJrwGzyAiB/G6MfhqOzPXmmJ4ziuFaDZbZu+Q9qkotowCUf1m5J6AS/6uk4v8kmaAuwRy+2CaEQQOoH6vLL96A19dcVUp3aHZbU+cqFU7gQExpmSm3/dZp3xDUCihWCWhbByKOZCjAkMOROjD1TSqdAJJNEJciXlkp3b4ewD1CRrvnfeysjw79tVsfMpQWBtnftqTRdZcu1aN07/lTW2fHPEYoH/RpZMNZjo+eb2mocH0NmGSPEnHywCB2/oc7Gwj5PP+0yXkusgMkQdDOZiIA7s8Z25TiAKzeW5H51Uh4oezxmCzODM0mHF/eJL7Nfh9Ytbj1ic97bjFLOdRBJkKw/ox2vgf7TZv8me98Rvjz9jDRGhk6CF4D2zyJ/EaD343Fx25jBpBRyoSGuAd1FIb99o2l8CH+ttJ+R/u3I3LC+EFG+9hlSzbvBY0zVKI7JPBLaP5WNx1XYN6PD+UGMRhg2Mqtk7UNWHefRx0wUWVcGomY1bJAQNP15pHwWMsRD5GqnwJaey3gkA52MyQFi++r3I3KNFhndZoOFOBU4X7ctGi5Qjhu1dHWng9S4gyysgk2W5PhesHajEtK5ZOUKvldpdGV+QN9mVNr+wY1UsQ9ySZnQ8KUD9V9mx6YsNxYUHNXAntc9DntkOGAldtICu8BSxW2AcgomCxHRzHMF9pimlwhFPc7gD+jNmycc8GtVSK1usDO43miyT988RxqOl9Vf5B44z0PcWQHDVG5kCAzyI4kfrqbXcGQGxWt/+NuX7HnjXkIIyfx/rpAYvTgklMpfuF9rjkBxePLJM8Dz5q8RUe1uyCNhNmetAWAiCwVJ5lVII5EbSlU1/VCKl46efaoAukCG67URVLV+AB5XjsmhAOXDa/eu4Wm7XMx4SpxEMl4qYaXHvUuXsx2ewYNT/q6x71/hLKoU7kiLeVRSVX9B7vpMD2y8QITx1PhWW7pOcwzeZadzp6pYtw4MuktVPCEAEi3GcKpOeSnvv8CUC0y1qhRVLgTmFticFmIFke+lpAMA/F3kNKm0S8io9I2KBPWWsKLizUCb3snTxEdMA8dpdNs3xtR3XluzNRGK40NPOpfjT68zylKaP+CrL9hYELOHFcetqKVsgFfWsfnlMLEzWhvnYiAKRniwa4Dn9fkMz0PK7m/KidAzz9mc5l0tzpgSawmxbkwrPx5jD8XJ/C1LNowSUS5Ph9P0fvEAhIDanU+Qs8dEpNSqMxMi7bldN7iohJ7JSPV5LiTwqCHcVzfNgR+AJqT3C66z4GvVCsGApwPfvkv+ymQCFdo2b2MW7gJD85OBWMd83vX2C4qWlLNrNiMmJZ20N9oIcRZEZnrY3Or2FfkANND4q0x6LXJ3cGxEocW33Gqd2pnWB3HI980ZpS60NxacjiD9EfNADoQjcpwcW0p+igpbFtzLEC/TYsYXPfI/iz/uZLTBYVxiwl5KOs5rVrtGE88wN8B13ilEK+XP2ZmX6VnKSdhwIATuqbviC9e8Vt4sE0myn65DOqCcRFPMkveIFEkZDYhjJq0HZSyU3QKWwaDWNPB0TnOBBsJT5ZaTGsoN1U5H69zCCqRiN6/DteQO24HAOsc1KNc0WRSfADaSHf+/L3ZXMD3fc384EBgk4vOL3IDk0+OoMSJuR0TflvBcsIGlpBWV4ujyiEk9EDmAKyf03zB4DLkA7YFVBeUrdQ+XgwmCU/t/zzRtv5rYTHSkqS8wGzXHXsheF/bb+LXHsjUuVndskomsy6qvk/SG/upYt1mO23QciJS3+IGGy8y2TmDUlA8YRsi8CJxWZ2/OzzsRu2DlViyv/sV7q4tCnZ7g22ani6+AGY+Bnc/Xp5wRtzz0w2v7jlAAPmE+HwNQEowl1YXmAs6JgWkendctOUGRMJ0KPxcs/mNFc+8CdsTRw4uJvkcXChd7TJ05FBFuDmue/yYf2aALXc3zF+hZWzTmpfnHDANJVlwzg+jezmZ5zLbERglcnIOwsfws9hooUhnddb3A8GzTQqNdSdVfcau+QLipIb099MQvCfXS6gBQZCiURBB+563QgsGfpV3ssWdVVm0jr3lY3yJKiT1oTtFjLCEShHJFvGPUOusIl8+5lxe7px/miz1sud8hpJSEZh3HQEAPKbn7GyiJHA4SP+fp7X0b0c4Fo+X3yQp/r9t3ZWfxWjwVHRYJ/QT/DlNDptdvQUTV9aLbMhbVDQNAmnOsN/1IPYWNQQwbNoX5GumTK4waOjYFwHI8yMLD4WKt5AvFAnNm3/y1692uTEB1hFM4esQwI2lz7h8iDQcHGzoN0cZe7N6bUbSR+BKDZSTeLGV8cGoXzu21ZYGh9nv+m8IeoxHHFLt/otQDghqplPZrTCrC7JpPukcVju2Gma59k0aJMe3YLBsrnrtmqxn20WgQ1pjFixCsPyaoHOIOPIYAPNuYLaCYH1BUiDYuzHZqch0JwLwVUyLwuSFwafhlPXlr4+AD5ww04FfTKq1yx3Buw0zI7dS2AujL/8RTRYiv1f9ni19bBxjmcfIa/680x4v1TEboSmXfbNpe5jMw6Pwx5MCF+yjItLPp2TVir9mbJIcikLBxgHtCiDIRV0tWp9nY2x4Fe+SOQdMgOoaIgU6axfRryURmnSpnG8Kl7R/nIT+EnOLdAdO4I9PnKzAb+rOQMbrydhSic7j+AmmJetDuuBRteZ9nAwCKJ4Tnzqczjw4Y7LD/4YMQrPvykuCE+wwiPx6CA45Fgb72TlLwb+cZDUlGZbbtyqDzsQ4tSgEIHpFoQSwq9/S5JYIB5mn5oac8H8A9wQVO2Yp9lk8A0B2Vf5OlzwGlM92QQZ/XZTWjUA0CNHQtQfT1HenkGDU+PHd0kigmKj8HPT3OfVC3
Variant 2
DifficultyLevel
604
Question
Jeremiah sells tropical fish.
He sells some every day last week.
The selling prices are listed below.
$15, $20, $16, $20, $20, $34, $50
What is their mean (average) selling price?
Worked Solution
= 15 + 20 + 16 + 20 + 20 + 34 + 50
= $175
|
|
∴Average selling price |
= 7175 |
|
= $25 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jeremiah sells tropical fish.
He sells some every day last week.
The selling prices are listed below.
> > \$15, \$20, \$16, \$20, \$20, \$34, \$50
What is their mean (average) selling price?
|
workedSolution | sm_nogap Total sales
>>= 15 + 20 + 16 + 20 + 20 + 34 + 50
>>= \$175
| | |
| --------------------- | -------------------------------------------- |
| $\therefore \text{Average selling price}$ | = $\dfrac{175}{7}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+GRcyd1WAQadcE/GWZ5fMfmlUD6ci9oomudMXt981+LB6WwFIIyxqffCMXthPpPrTx8Y8YQ/KnjVWLKdE1XsiUc63Y9Rhyk8czuAIJNdtm8vf0iS1uOwq1Xv9/orZy+b7PjlDTY9i/VPTHF+r0XY//01V05tpFU+yr7ur0k6hLLJu6q8rivR1lNzXDBpSXDgCJeS5NyPlGcbTt/Bvj5w3cB1bR+WiwgKVkETE1FYIELa+KQs+kBw7/JYFxIP5QFykUuANhMsjUBdT672KDLTvHOSEq4xewSVjMUXpslP5ziEU0uBV8FQQL32YfGrILkuqXesN3KnvCaWwl/l8Uxgdc0AIh/+HMIqLNxR+nXHZ6fqIV3D6KqeWN/roxn0JLZF4RTLdlBwB6g3yIN8jo0OsBL+i+d4bv9BXrrwUyVSYW6tkfQtlnprQj0qaY4FVkwKqXEGxGLmYHjcsRYmn3x1XhKXhVC+SDDmeP/IBes1544/wKgg7HW9ETO6nMPyh3wju1oG37emZYEPHX1Ok3g6k/roArt9NwN8XqWvzUZmifylMJQpxOVdoe5MBXXpjX5riITBd5XB/Kc4wiAcyUCIfdRZtc7JKVZJLsOTqcvc4ca7yF2tJKnfYR0rHGaOUoh6cROGtLovw6iev0r67gifq36igHWcvq2qRzqUqNA1cy/F743M3Nln6Gn0K7EZB+moqJb589LY5YhjfTn099a1B4xJKVKaGGXBX/pf6BWehKZXH0ldrcjCTgTIl8OnVdoBbGpaCuBGRV2pCCZ2GVR6iBYVfIRNDRoP8bXDlig8NPBS9upehoqAa0iDEiV6MxIfgENVlIGX2mBiZ7A8bhXyBmFK6qgo8sBvfImTG3ySjoTruDYB+a93G9fz7apiYvD7NUMSl4kuCcohKsEZ8albzlk2uvndc/reXj3RWTup/EMpLpHPgGVNNxS55sG/Q+zDA+d1MToSpMjNMUwbQ65gg6t6uJoxabXn4kSF80fijgR7jT4Xlcdb/3K7GRCUaEMFwOxPjDTOXUgkLsXk9ORxPqT/KnpEsVPfmlTKCoPO+fxChkhDssd+O/8PltisUZgT+ML1DFvz+7c0wUjOXHsFi4Kk59zA3BushTfIv3QTG3Kut3hltRbDVC3PYf0/1GYYGjVqhR59wg3cAJv8m21zksckvKlq2XL9ziBitKtJXaeO5nX5b/LvkwNqjuEmiSF057T60ZWJb7flIQ5jkAPKLGw6Jf+hhLgMokBncw1AsKs3yRFOMGfxxfUHtraqyv/so5xi/H6ZsqSFtLWFwFD79jm9l1NketibnMjejRPUQMkhE9UQAS3WIzCLWs9CGpIrrvKQ+/7nhysvDjD66OjGx91Jp/G2jsFW11sUh15lh9t5iGAr/vLdmODA6yF8fKUYKl1tQx6rvPFpYKPYbExKmb4huR4ZX5k9dYylamV3Sb+y6F6TiGfr5LHxQTzJwkK/8xWnUF7zXN/qG7Uwn0KTFVGBAIwWVfKurORtaxoU0g/7gJJz9HmpMU2joGmwXKpilWs5GW9kazYWrjosrlWDYxITo2wAfHZbZ0Bg13jp+I6Bh/y/0ZqZgxzhsyplq8zR82dCfKH152roPtfiGEcih8jM985fOG45Wgy+dhFzk4cPAjSrlI0AkfvE+QIwAPY6y/j1+uBtQLxpQ0xQu7S2xXApK4Z0gEZklgKLfnsZrPUU30OVeLgKpqSuH2AMlFaPoqMprAVkXMyIlwAPRyfHdw7r8Flfx1TRddi2Ef8Q/w2vD/ytFnGgQHytsjlNaXVp4+V+8azVkVd8pCcVcMyhbIrK8B5acC1DHbl7iKi0cCBF4W4FqzxzJimMhYJSMNiG1rOuuQw8Scho1v5fXKFwbFy7YvWyD09XTjl4BujLTvsgaFoyiRiOrvAfpOSiEANAGtWrjoK2p/k1nud9hboi1BxXtnZfx57EcGkDRGHr8YIS5rF4M6J+N2dsOMIY7jAB0QvUVCZHQ30E7WHp8iknXzn+8aT29OnLplBLgSuwJsBANZ/rk05XYfUspw/GYbpuirvGOimUFlLUwaCk2lHDCoyyEM4fJCf1jNPtbnYR0CjC/5l9xTmxczaPa6nY9d93zrQEjKt4kEFKR05Ek23qKjfjDOsuW7QrcItUN3Dp3qrWJf5y7P87bSZeNyDKJ/yovzxRkF/N/rEFpUx9cR59obmVrzyJ7JIY4n2LrI7lGb5/oJBUgiZHm0D4z5f/A1ILfYiHyUC8U+BcSEx8AA+AaBgYZcTwkJYp+pz2iYvmsUgw9gzU236OkjeFfa/IkB3+I8JQXhTUbVlh1eUfW3CQ/la/wxBpLX3SOUPmAStOBOKnIFgeqtu5CEebjMyShbM/3wlw6y4njg60HCUlOzn3uMAd8KY+WJNs/jQmt8zXT7CtRsfwCyWU/5nnNGAJpjfI8sBU9ei18iwSGClmXbrgF46U8+1fa9A2FNVVHDc3+eFJg/HrUZSf4IKSBrKIefKysZkjPZQ4QNiy/536IUyJ2EebHDZ5G+tuXW1g56YbL+RXH9jyHsGqI7t4B2MPbsJRDashtf24ytNt0gcSNhCb4Qmz1M10Fn1w9Vm9drqebzw8lXM126G8C9udN1aJRzdxVDnLJ0IQ3e8mMfsnC7P3tII0ZRS9aUyO0Ns/eHKQX0KQfHliN4haTvKKQeZ9nUYtAKeWEydroDv70VRlv/H2wvQramft1ggJHUpDvoho8UoXvKF0tOHdcUeWDNyx64aHqaExz4jc3Ky0VU6s71x/Fj/cI68S/yMc9l8rfKRXfOmIKths/n98T9oUdcjtm+kS36mWiEwXQ4LOKb60jeKvq1YgMmdeIsLO3TG+JNlEw6x/AjhFNKnxsanqH9MNcNwYd0jYeUvqNkavrpcs9K9euMXlEuun/+88FLXz9ZinqPADzJIrI6pYJSc/r6qGBB5HeFU9PArThgQifKbzoECfheogqUFhSPtuhUwcWnK1ai3La8NIyudseMW3kg61ncRPNI0Or9H0WlKz9Wi1sAF4U6UoiebQsSsSBRwS9yZDlOUYfPg0VgxdD1HYx4qKh1dMQEI9BiBLGLIyy96N1PPDyQUxaKfDJvImSHFvNIGJ2h/XX6WdpbqcWzauejr1av2mY0q9ZxTsxxTEBylc1HZHbyONVaumSbKyjS8wM51OODsjB7Rz8/Fv/WdIpw1EKeeZLs7zMYOb4txj6nUPj/Ee+TA2QHTosWKHOnkUqXLsowjqmCLdjwam72ayBYXJ3DjIov5JBjmVdkz5sRrl8niJWDaRNI2Xgrj02H4py6rdMQQi0Rjp3kdMEsvmnMhknQ0LqJ5ch9klXkCygp9xchxHvh8a6DJAIVXr2UJ7iizlwfpjO7b1537E+rWBhnOdqtblRRhypDloiiDTn5LhKvon4vWo5L+sDuwzwm6vQ321c+ShGm74Lb9vJuBsWo0mR/C0Ca+/Wr/XUgei5fftk0WhIy/Z1gb8hb0ttaaqf69UyGPxqU3jVvMkSgRkvA8qM9Nk9MF3HMaEand0SnXEYrgb2soJilIuBhqu+jSGUFpQiN6XAm5FpuTIxv4ME84p91OMIT/7UlI1zC0x/TxUCFLTJUDMoDKBvmBC71RGT45hyRZxvxHIbVwkcj/BPp3KBnsNmhp3yQQJO0vUPTC45GNs4J2mP4MPOQm14b4UQjPSJpTDuPKpwShYpL4GDZsWdZdiu/MQDrSqOt+29LBpYGhV3vAwZRzSwMDerdlQzIymAn4u6Cw2D8D/NT++zBFldrT6UzTGtDKHNe31EWt8eZGzXKnDWy6gI54pV4mDH/CL79UmlrtCShbNwcMWW+YTo1vqHhccb1VsbyjxWnYuzfz1wjOMFxncXRSDtk/JW4iN3/ljmAL7TFekZCvhODcL2TEfBNPzu0oNclKWZHnCQkw2l/+NK8P9jXKp4j46zFI+g4o48H4D8ddPYugARvcuU49r+yN9UHp1BkukY6l5QvmlJBzudVhpW44NJPFRQPMqRft7UmgjCTt45ROvqMxR/AX7TXbAU90GCHVt2pkAFPMDBg5ftHGg+L1wWh4YxLUa7BCjGRAI5Z6EqavxJz3ckDmPjy2mU2rRHE3FFaBv+544DtQeNpvL36rXOL21BHY2d+Rhlgbs+/y6BoGyIq9l9Apk9nR5xM7HsbD75djlu3fZ6IQYvk/bcMZMj1v7Gxfy8ZLTxxU6ZI6dSm57dvDyw53307mJcNJAROFRHNl9t6pTaVbVpZQoy5KbNZHCUbHHpkB0S5cOYzJ+tmuHuENXudHPqPKZedkVhjp07uMQu2QByNjeEs7qOVy9gAOzBgZL6QsxHFVu8Z8kj0ZQLnhLkMWBK10JG4+yGpx3ZN93WOJ9nI42xNTMQCK2Hc9W+jy94piek98tIEJAJrVQY5Xzzpv/1C1wnx+JOB5oszdVpMnaOGmorFlHgdJ9V6t6Zi4WBn9+6XHm21sakEM8IOg3dIkqPQBbKNuF3R4ZEqz8gCwamdlwvCXmtCRDgst3S5CPIUULRjzTP1RfFpwd6KQsuaqAM5bk8b2cKCe5PaF8X6q26XDgbZDZGwFIdBbwUaS/e4Bw/DQG50PKVYqz7oKNZqdA56XR9pe6l2sAGoNxbpZiHI9mHKKL3fzNAAlYBjUKrQmSMJYUqbBL6PxWX50QCfuM/u7FLTeGNsWT9JNtCp3Q/maS2hK4uO+gaBi5HXJ2T+OlZlx0r6U2a/kic1bbICFB5N8MtdyJyQyZXM4e7Xya5EvQOoAUOaDkk=
Variant 3
DifficultyLevel
602
Question
Bliss collects antique dolls.
She sells some of them.
The selling prices are listed below.
$150, $120, $135, $190, $120
What is their mean (average) selling price?
Worked Solution
= 150 + 120 + 135 + 190 + 120
= $715
|
|
∴Average selling price |
= 5715 |
|
= $143 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bliss collects antique dolls.
She sells some of them.
The selling prices are listed below.
> > \$150, \$120, \$135, \$190, \$120
What is their mean (average) selling price?
|
workedSolution | sm_nogap Total sales
>>= 150 + 120 + 135 + 190 + 120
>>= \$715
| | |
| --------------------- | -------------------------------------------- |
| $\therefore \text{Average selling price}$ | = $\dfrac{715}{5}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX18grRIMxXsZnCH+v1YPBgPDr4D/oDSggFfH9+J5LCF7MezCv4KPP5vRJBN8a9/1o3A87LSa6k/N/HGvl4o7uWH22i/rt0VuL7kGwL/piJrtwljWkC1Yvtf33nfs/9tk5CthUVILPmggh1o0kxnMPsNPMguxqFJlZGmMq1ihn6F7Dm8lJkR1H531aqa1XUg2Xgq5L+R1nQQ7h2F53fxndcbkeV+ilo/A6Oizmdvdg2hrdFrLJr/slSjzxU43L0zForL2m31ej8o5HcyDvtzi3qTXHwQynSD09sshncjKIRISNez/meZ6oxjWH9/+0Ri9bF6K1+LT7OcKPUFteMM5lmPEb9oaOzOjNmCacF3XAgRJUm2mW4DEwrOY/ETuFge3YrmNUNRHJ+zh9RyZp3SJcBefTZ3sTsMMMi06I9p0JVE8b8rA23Ku3Uxy1EJpWNj0pp1iZdVGh1+XKY/t8ospVniYgQvCDIE9jXQKsnsnE9p3cE2mzE0RquG2wk4eBfzhvxOST6OkhB5HWxpG4MNFM7nq8qcx/l5wPaRXSWNIHctFuVCvzyduW6dupRElt2sgRUyNC2wUG5SID6Zs5pI0Wb7GyUWdoYSp9wAnvW4o6YmS8lCDXxAYO2N07jGJGbjFbTjFw7pwYgsm+PYuYr6gbGwKdLcRRVS67j4LMgNzuojMjVTtPl07Yo6+AkAU5tMQQ2F80G0nliwZf7cxkr1KCKhvj9dR97KlLoLrVLn8JiZA4epOivrL4/v90Uzzv65LTrKR7wQC5skgYjFYRqUHgdOWSi9spFCzUWRBjLXnnpumyBTxq6/3I9HETEqxmhjIAnEuu6zz5qdbjVxXJ2yWBrMXhlP342qH7fgfQ8cJfWv4HGs5T/dRsDLrowro36J9MIOeRYtdlKNh9Zot7JacutwjlzJuCrQmEeAihH2AHkExoRmOLAAM9iSY80AY5ZJ+VCwjurMgTiuIKXyAlEfSJLN0N2H4aa7vtncSZcKL+NVS3c8xQUj9ld20TXdxuXiiydSIcFA+4UF3nZQKW0xMdN7/Jw2pul7/NO8/kCZlu4IzVwLuStlEnf8ng9P64DnKeAoqv6R5OUewD/fNitJk946M2YN4VJ0wlnJM006zF+iKubNJm8ikehe7EQvscUID9MPbyNyPIKFcTftwHNv/0JPU7DaR/y2+2Mm1dbqqoODacvJAOrBSddt87wf0xnNFYqShbtjpuPfYwQa2rFg8byu07VTK+yRXDnE0PX9OpSZK1K2NUrH7gvodiOTjl48SCxdcdVvq++UAMVwEPmVjZR5jMhwC/Jo/c4al1j9Twfwgj8HyKilUYyOlifIFdOHmn3RarHZUvVEF5l05CgY73CG8lsewEwepTHqMIGh/x7r1w8bGxiJ1QuuQHFLzTBDDdDSntroLXFiUEW4SwpfF/ExRC7z3WJtQv7zd0XwEuSe8C0PNn1uT12wswCf7yJDdLFwQRJUeqy4uMDZQNwBqBc2u9QJZ4o9FIZLjZP/Ob7Nyns0o95k/E8cJUcl3gNuw2oYZv4/rlnGxbRkIP+RI0P+GD8jyICm5yhz3GHJT2tV3yNQaGyXtofM0lXX/lqulJRFzcBmzmbAoORRwP+8ShaoAPa3zE7dmTT2H/ndmUReahw1r/EFRo/65clJpqy+TM2sPCxsvNI1V5WngJ6mYsGirtYe0cA5HxcXP7qrncVaIYMgjEu9OVjyMTLnhHP0Y1s+wHdh8adPAiEvntpnhr+6Sei/2OK8J/yTLymSiLnDocQuNB7FNiazCtTigG9jP4S3OPPqmEi+PGIivY4WEtEvhEcJe8/t5hzwTO3MnJ6aYW2F4UJkztQLoSVjgFDWf/FfVNB/ECLHzHQbHHHsjZ0Ey/3lScPo4devKUylMT6BSww5uflIBzFPha23nfjBRzKj++mG5b6OE5s++Ptpa58UCcUNqduVun3/33gA4tukoz5gqfS64wBUNtlmP93cKA83B5K0XelzS1ZzVa6twtrTc50YBR20Oh6TdJA+JHhrGjJpinxZEEqtJjFcs2pgjvXVkpd24P6hKCT7Zs4v+Kaf+fnnsTqIdbBZu/d/qV6ZBw65c8OpzgwaiTqHVF3MfXVcTVMuqs9GkiHDmxxXJe/kiXjDGUQymEraWJrafRtizyObR0W0h68RqA2waeu4aTFB83WGjlznOyjqJqwSCXRmX4CFXnlsdmhaL9voxV4wwUrGWGT+l3DPsyneyozeLaQnswIO0YPK+2rBU9IY2eeWcEraE9pYCqlejYNnmmkvNJV7GjnQLKyAGg3hwj2V1MQhO7MzzYBhunzQetAIuZuBWaCnK/sg3dQCmGZUNeK6/cfzc196eudxBBWrN4SgdRJYhDC3xf030KCbtFrSBqKTZdjVjgymspblwXXLOi8hKihhu4HXoPbl3JLdgg5PFtigPNghfbdmKB1hr6uKGILNW6N2eoJgI1H1xkFGZYxi5iOB6BJOGZpV9NkEu1W3kAOnczvIXL3Qve+FLuhJOpQeQzWPOmwAhMcsl0tTNfZ0ImWx5HKfs9Z67AouPw5cISiUxpnnlbyXx2RBSBRFEy+oVCC4K7fICFWIAKOZwKvSCQjcqVOGUA2CdJVApP+PkOZwOUC01lDAH3V6tBW51Pnmeyp9cz2EEC7YCSST1H2VY73Q46XDdTjjV6aJMwglk9PoOSDQdoI36lGC/Fy/x90FIMhHQIoGB5pG6SaKqTMCQJMJFDgDp8rebiif+rKCWwpPEqlV7aGJ/WbO+DAx5KlKsMr/r4ZF2aGyVpGf9QEZGg8mejCWkst8ngj8w7NISAxifs9h3znyIjF4xoLR5nlEGA7OcMr15gu9Qn440Z/B9PQnJXwY3CesTDx4uhK4fiMI21PdVEBsYU8aJh0WMf+wSnWqpuR6K7fnmJchnwwijot4Odomr+Z9imJnE9/gKHQZzaMDFURF0tCNauxtGB/p5tVM5/FzRvV4vHkfQgg8NktaXybaBJiRnKVm13si7vnepUuyn0wUi9pFJN7+T20tCDSHXVBaG2b3A/eqGXWvOyfNIJ/2xNridCWIkNS/opZOzTjEwEZgrNsM0d3lnSK4gkA8JRKhtyqde9FEzswRpymFmKypbsnoG1tBrkKhns0eaUV4LUKP9DOlynLCB3ZbL10bMVJDI0p9M4YKcLH1PaYO+PtKpCmZxT/VI451av0I2FR5YOHCi2b9Y3wb+zCBv1/CUmkjolHsWu47EUOheaLFfWMfoyDTcEbSlPFmBpKq0onb23rU4pHuK322Tc7eJBCeXBaNjhDcax7iPj+dfBTJoKyZBBv70xIh0OnrCCv0Ub45pBg0UPV6+2/EOVirVYc07HgT+Mlusb8fTm/ckClFxDggtkJXR6wqZn7ZU7sCgvZZpcvdyh8UNpa+OaD+85Yl1b2s4sb/wl3QpFI/10f3+d0zfQH+J8PsbueFVMbyIUlGRBztKjH5HsddvKV8Ffy8msNcWJfdu4INLZwMvx+DL0UtaoPjqjehfv+NUEkD7ln3upzS4imtzTfMRe/33HVjWXnRIRSrIPgcqrCZoMoWH8jec8bEI2nxUSTu1wzY/lxzgujGJ5l2j0jty7mjaEm/Z1LTpgLwj7LV1q174BZNfFH6NGvKROwgcvVNj2Kf5Pff7ZjxLTkRMUyasPnnVUdAlf5MsOH3qr2862r/e+SNeG+nVe72zb1DOtXe9AvZA2a4icx2tWk8N02XFYK3K+C4fDUwrSBaVXR58xKz4PT1skiIQCVWZF/34GMi9uvDajx1/i3Pt4b3ZPSwSC7FSchWQG5TzCTze6uN7de7SAs5rfdhOfABxlljzJsvhI9NU84HM1o1EPBfiIHOAnvWx47sRa5b87bcUMvaxzNRkAPTHiCjfm/h1oVLc9tzsUJ563t1xYL8ZIlq0sHOjeyb6kFZOHwNmJGtzjX9r77DNm+Fdn7qyvh2g0HUzVI0aV85jE+YZdkc0utvSTHU+yJGLkzlsg2K0iK8eV5SABqi6SUEtMxyp8bVPvb8h7YTWMZqecaFZZvNREle2r3sI1/7giRJxFAdO6VSNPP4qASjsqXGefAy5+bnoT+qEj7q4at1ylCxQpwAwzvgQcu294o6bC+wwAh6E8kfOb43Ke50kZjD0O5DZizkY4CDp6f8BLK5OxfzxxVH9rYp/U/1TyO/joa40hMXfgAZaGqlhndMKFrkldE4ztqs4C4108OIWm0zYQz36ooQFTfDCq/w5eLBeNrzG7zxz09GZsYyLSmuytMPlKq2DpVCzHjyLeylUg1qbKD9WLk6j5glAy1yc4bUNTrByoyNjkZ24GpZYRdCLDJuPoqNUko0+VHkeXiDfmz6g7Jcwwephpkg2VXz+5s2wr9OUIQDQ5c2JeF/I5mkjqr4fhWOOOuklir1kTKt7SC3f9nSCScbzGLi4Qv2VQiHQ03b2olRoXFqw0xQUhG8v5PRIxyfHoRkWaOKzSXiXoogp3BmZMegyVI7WIVMx1rNUorP3Z2FtZxJq/S5ZwzNJWO9yB0VdxE0pZN5fE4EH0k9zsPLyYzUsZRp5RT3hVJMapX/6oJkvKRdsu57ocGRr5tohclkLl99B4wipR/ScRDUDWvtYhKqwD3kgVArubAX+i2MA17v3WZ8+zbeitH4mQwEj14gjzZCgHT+IoTCridgU6chLidiFMAqwm28TGF8Vb/qEcMoPnrJTcDswyNG1GcIDO2cHil1vYYB3hCahbRIIhK8fhLn6PdcLXuUDNNVXiFi5UTbUkpXWX23o1tqLnVzdkckO6FuVN0WG4VFMiVF9PUcsnSxt0tEHmZTJqHj6vAk1QHTo9Tw=
Variant 4
DifficultyLevel
600
Question
Dave collects Marvel characters.
He sells some of them.
The selling prices are listed below.
$320, $180, $75, $55, $280, $104
What is their mean (average) selling price?
Worked Solution
= 320 + 180 + 75 + 55 + 280 + 104
= $108
|
|
∴Average selling price |
= 61014 |
|
= $169 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Dave collects Marvel characters.
He sells some of them.
The selling prices are listed below.
> > \$320, \$180, \$75, \$55, \$280, \$104
What is their mean (average) selling price?
|
workedSolution | sm_nogap Total sales
>>= 320 + 180 + 75 + 55 + 280 + 104
>>= \$108
| | |
| --------------------- | -------------------------------------------- |
| $\therefore \text{Average selling price}$ | = $\dfrac{1014}{6}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/R075OmH378ih1tw5YTLLTos+ioXjbCVprMFXdN436vbfpp+Uh/0hG8kp2KZAYqh+dKezGsX4zxUeH7sCOYoQDcjnFEd2E9gzrCC9Db4oDzph9PVY+dEo95tK5mXu1EEokf1Gh4ZjqBzNJy9CCZbXV3MIlC9Vly5OkXkbDoPpM9IXvbRsOuHPMQO4KdU1O2H4iVvA3kRt1YmYyg5Dx/3uqGfoYrZX464nk3Jr0PrNYr1ec1iiPBU6fdf3PIfb721hK1EomRpn9Ajs5nTT8jDbhOLGU8rxQ+mNeDgegAiACbEQbiqDZe7Rc8u95uPAfv9LeI6QQJdeeB1Rd9vi/7OJ//hlzN7M0/RxTWQ56u9F7aFLP8eZk2qI4cjtF24DA5rFHMJXfpJtANDte/kr9AqAKiZtf5mrFdgs5kEMHvsbF+RJWH3/u6fpuKfg7gOf863pr14KQm5MxXSD31wA435GnSmypaFnVDFR0/2CrA4AO0BbtHqaRZKNF4Mlcg/nJZfJFKFNb652PC3wh6nMlfRqFPEeuC0e0TBEiJ9wWBrPIycfXs+JMWHXYGQBEk/ZPWAGSVlTFdTpXU/Z9z1YjU8QnqjzhbyfoHzLDPy8NIT7Q4xt5X29u7TeE0fG7yV+lxCk2yY4taMctWyTW05Xv0KOPkMzeV8nR78aZz/Ae7lXpTUd9dNd83NMxXh+OXSliOE/0N0d/wI5LaxLce98mB0O4mTSieN4i6L59rGzXj5YFEn/UEyLxxRobBbHnzL+hBqjqinfQ05GA1rTB5wc9XNuT0Rvy2O7M7NFHiIdKlaFzVBleOgbHHRwAkAsZnWGCo1qtH47MiqToKaatVqO41kvvtAstOgR4G6lwmzDF6dfJNnmUCLAuuHjyPyCf2g7kEA7octAWgLYB38N67C3sr97P5oqLivaYNtyeq6ehlzB3f+GURXiUWcufp1vqGEpNqiWjv3W4rEK1FtzVYzy+ObWy6H3N1kpqDS13tmfy0EhbPD1EpmUDnr9zdhhQ6xWwhCvg8wBp+S6Ff4vzLJNYyDKgPPn0695LFoSxgp6yzXdi3JszyXwvo1saa7rubTLbhfv/Y46LerZiP8mFkgCqkshkwBK0k4pg2okARO3zcf6LdGK/FvpCbjJRqvTm90SqPQfcunArBUCBOZvGrMWKimEs7rje19GOwkmjOIsLiVG3hD99Z897LJr55BzfgVl+nxtytrY73Te7ZiAxcVCS6AOALQR99nEncOJ6K1WnvmQmdHVN3S2XjqJFPtcxtmoRVbsbEEV1ch5r3oWZAasl3qU10bykKxcAGH3nM/m1fFHI83XljCpo6vbfheHuyB5d/WpqjRoDCKsY/sqxhUiuDRT8YFIdJjhs97huZ6M2IwXad/c7+7nJYnw7E/uqG0bXFYVSVlAcD92B+xWpsxP1P58dXVJbGsKZ7kziVnXCyRoyGhJ8TxxHJSllk9CcYV5x9EWuqx/n0nixaXkUsOjgCzWjn2yNPMjuYV2djUjyt9snBUJ/SxADgKonuKSwjbmqf2u+1RsdYU2+mcu3zFLyweqbLo2QiMSqRnfkEGDP1NzIih/VECNc9xnIi2c3yOyR8Awl7dOkpoKLlFt46CA+Fo+RyvvydNq+h/Rik5p+UJytv47Y4kEOa+B8tdQYAqjDYkJkPHqJENMGApCXFgSfklJvrV1Ce+lBWx/MsPTFeRDrUZ02ttKPYeG7US0b8abY5lXKKYXXXLOqqPzifk44D0zHjtro8/QsQWYey0tCSHKF3UWYChvfiQiZ49wklErmGW+B4jzd7ywaprP2XS8TUm5or7WGi+pcVmnznceiZ7B4Jw++9hynNvdiV93XjJ2pNco/zn6pTXA5SIXo9wmt9yyo/FpnybWsDvWet1dHtn7OhNfy2CZMywJc3Rb9V2/nM0jxzRM8PHos+j44SOB55cULKGhz+8G8ijwKkkCtDnUuNifusIeHDO780KOY/liUk/mqEPUPKtkR4H4Ah1JpTg5H1lPmuKsVPwpL6+xb+ReTz0jMIaNZtQsaiwrwvVjNq78/BTpot2fJ6e2fp5+OSi2CtCuwmGsaDuMt9xBnlBscB+lKqY6t50F/qaeDifL/fTDyY+x+MCHEBIHBVEbuueFb5o7aiJLhQWu+TBJE8fe9Kk6iSY0yz7fIgB19+/j/FmNHoUKhZLN53LXFpnbJ8BTfT4WJfSn7uxBbykjEAjf5X50TteTbQ5+baqyP+J9goCoP/QnraDrlVeioYRz/FW4d2W5M7rx3KgIpFcTow2LjYexmLf9FoOeBulWN7jKKfICU7ZvFSWHq6Wi/7Xq4Cf7qp9hqYoSf7VdxHeD1HDxJfAWrH5AJJOuoogqNz7JPHRtbHPDndxKp1YwG1nwEyQBOLZ9vZ3di+bGmxrAxKYBKWuttp7iiRxHleJZS/Fzh55JkT969qMZxScVw/jM99CM8GryOsMAg0rjH/VStpfoSbevyGgUNI+BD7J+C7Pie/ppSdem7qNIZj7bqioY1ZJyz3Sdk1Wg28mr8ub5tXvLkmAheokJCCCN2tX8m6nwxNT0yKawHo3KXG9D1U4pq7r0mCjbLgltEuUYYFHHJIZsGRMhQFM+fgR9kQoZ/lSjBaYjUZyTkDW+pl4Vllt5dVAkoGofCh6DmirdEE6GQ6LYMdaG/qfhCg2/MVNC2XTiU7tsAiYmyJ+ibglYBkBPDbdfrt4QE0F1UI8+f0OFgpSvNSrBOp/OR0nhai9EVlqUXFTUoWQ8+iBXCgakzKl68kiJuvvqrb+Tfn8cjjSFs8f1A5ximx7pG28kM4h9kbQKEqgYME2PFs+SDBKE1pyqigLgZWq8eiuST1cqelE5OtuhWjp+6xYq/i5v2LwFMvSchHxulQ2q/LiBxvDKpGDrzZsdzszwqjmOUZBoW/0dJt39gWBhxUhTDNgcEIRxURM/bZ8Q5KZmNBZ0MsI0vaabKNwGXs3yC0XY+hrCeEq0j2cunEAP771VmnGD0ICvhjgGsknHbp+JFY5Jr6fO52v2p02SlNDhWzCApqVlJWdG4U8BDgYEgrA++Szu/m4lYtf3E0Yc4AwLdjjWv4b/5wgNtyuWeHQn1xPfg9n7XjkWSlcNrVrD9KQISFZ/S6ED4hNP5xuo/uEeRFLuLt0eiNq7WTLfLvxJPikFA18CxAhYIyXoo4uiS2S+sbT9d/DyPyXdtqpLdJmjOcegoqiwlSwJ2rpzZOjkEfmKKGZ8AsBOBfTcutTzAZSSYXfXg7e7YJ3a6rUBsH+kz2IS3HaEXsxrjwxtxzmJ9Tqs0ZG+6PTrhvzT4rtZdKHvyOE3Fd9U7oAbWtQgl9GmB3ukzAqcvg3XT3PPYGvtrvEvQTG/Ss2+ElaL6AqN3qAf6pVu0VY5GKuj0I0rFxHVkusBS9cRf6H6ErKNd7g+Qj5c/uFdukPtNMXrRyIrDDp3zQD5xagS5QzIfvJLII+jFEQbphxCgP2yCE+hp78CakQ6Iz88brFwmmSU4UukeLdAy+rYaksxUfpj6XV0FxaEiSdnrSeRx/Z1QhEi4ZPC6SXcrqs9jqJ+92DLIThEehq4Jk5Qv/icx04DEOZoMcrojQKQkpSCZgKM2ZljsoP0XLu/vKQn9QLn4+iA/RDFXcxyRT5+iNphz1T2mZfq8bQG8FDVXIOzVamxgixWJbnFxaWfrhU14RsPZCIDwrEbiSni5JgTwQpVojwJk4WgmWa+/kW2WRnsLZN64f2ewKO99yAlBIjCphEMyOKs2WXE3KjuE9rZ98cxxme/ZR4YiwbGWPF+NfYBTdpLB/Si8l5yX2xnTnWyQGLQdmO0IRUz6XxzK9K+TvzA6r7hYaJGtll5AdfTJ11Ai3GDBBOCu0ULmdsElE0cKdqVVMwalUikXkkNu0Q5wBLBEMBN2Tzz4DKyF/UbzEA5uU28KOExJ3KW/oznWMiqeO0s8Kx7fvl8p9Od1GLZzHlTzD+jDqhaxoCX10eJB1rJ5aXqx2g/WpZw7Osn8LwsQCKrQI5nh4n+ZfmH820VUH5HCFvr31yFXL0o/1w7qC2WoLpppsg/kbe0Jx6SJUI45IPm2YVC0Qrf38d8qSwK8Y90wJxV0PncGq7O5Wqa7mG0DryDpKtO2qGW+2VxKGHVmaduQ8zkKVeegAaBZ21Wr38Vy94qP/A6GBBKnrrjfyssRmeO9NaquHBvDefzk31ufynKvKMci2AERemE4+RIkRxseyoguzQekfVRyCLcfHNY2cUGImABB/+BqoUTzQZuL1hQXJOpiO05FOPriEogy4YyWnC/KM2uhetafvdiUANnZIIOricQ0vWULFKfIgi1jt6U510M4vZiiT9MNQG6qKu/KtxAVZYjaiq5NIMISO7GtmGjtjnI2Sdj+oQnXiKzlAtwkz3j/MfQE1KlIiRHcXPTFu7E9fYjgmGgcapu4rWr8OKFomSr3DVPbsckUSxWU7SHBJQfUhfYgVB2NrFf/4FaYPObQNzTi0lRR3RhOjvpUYK/305Ns4X61ilMd4+Hl5gl+8CrZB62WM6RCxARcRQNK75brTQOeTMEg1DpOICExZpSjGRUpHaSkEgFRMtv8WemQzzRxSvcQizx1/YzS29IOmWJoxytDOLvCsNkYuvp+vdSCi/WYRHKfogiv0ts86yNp0EHF+xxgDBbekFO1zfvPlg1oUa+f0PV9ox5xNQhvqXuU3mAtw0+QrS17HaYn/PyCdRLa5r0kmVUiuP76oj2Vv25pipRXtlii9KqcOL/NpnDPOnmGz8OvbSj/K8PuF/gbwoExSOSQl1V24B9tnhcLDIpNMKiVqqjCmpCVrpoRnlh3ZtK9sVTjMQ6ni5XCqxaDB2gWkXneSOv+dx4n5Zmglhpj6aRs2nJVDXwLEvW7k2v7QL/Sat5WMcl7tqY=
Variant 5
DifficultyLevel
598
Question
Brodie is a personal trainer.
Last week she had several personal training sessions.
The session prices are listed below.
$55, $115, $140, $85, $85, $85, $140, $140, $55
What is the mean (average) price of the training sessions?
Worked Solution
= 55 + 115 + 140 + 85 + 85 + 85 + 140 + 140 + 55
= $900
|
|
∴Average price per session |
= 9900 |
|
= $100 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Brodie is a personal trainer.
Last week she had several personal training sessions.
The session prices are listed below.
> > \$55, \$115, \$140, \$85, \$85, \$85, \$140, \$140, \$55
What is the mean (average) price of the training sessions?
|
workedSolution | sm_nogap Total sales
>>= 55 + 115 + 140 + 85 + 85 + 85 + 140 + 140 + 55
>>= \$900
| | |
| --------------------- | -------------------------------------------- |
| $\therefore \text{Average price per session}$ | = $\dfrac{900}{9}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers