50154
U2FsdGVkX1+PlY4bO0BZti0IZ0EnbpScvQTNL+J6e9ieneMmwuAcxMp69TnSRkojq2ZkUrGhdiL0hBhDQqZFm00ogUYIdCr8Q59yFcy7aPGW4EME30uRWEkVxTjEx0GPNVWkB1OU0ZMwKExg+518PycNdSaqcCImtrCytg4bdOLMLiy1DvHhifpMVUSdgoI/PCgsJ1/L/J8Sw8+rPJgu13CQ3t7cUI137+M4rjC+ACOKCKQ6yMPIpXaCyK2TUfksYG2sfmPTlUad11+7PKkeWijR1q6bZaVx9jC+hF2H7vYWkV0k7ABz8Y8CU7QTI0Kdohqp8oR9166ZMED/owdGB+yBpZhWxXVFEhsIcKEXUKwJR8Srqiwv6vq68arenHVgdYqyaZfeNd85KIHYyGbpnLKlOmHnwH58JQ1h51azMSlkMMi+OTKbp0HgMJRcMUa8yOb5ZSlUe+NBdiTcxcAWZWoL58pId8rCIRFvsO0D9l3oqpHsARjZkPsPT1GGFQ2oSh0yAzA6s3VpgBccNjeFLxunmq5a7MN+GSbLMDOd40vF4qyFV3h37aUzRZpxNesWM/indFxqdFkPklp5BJsBVir5TJFXXSeyFklGV3+8pM54kPxz0CNuc0qROJo/1xGfa24DeGY1fG1fuHqVpgODOPsqbmJFUXO92Djwx4Qg2lSRieOIlmA/dOAAbUFowCkOOXXGPzqj1KyjcqkiyempxiXvzERm8H9sDpNQ9nfvFqPTi9WVUv/ajCnL/4C7tzbVvckZNwb0JE0YK6Lf0tA6Qq3BIW5G8kA2nHko8Wfs0b1wK+VMLnMj9VnbcklxjbJRHOMe1sD5Vte2t7NlBtkdvL55r/KHvTCE5N2Q4aSnmKVK+aFY96mQDyyLQUqGdl3frQSLN15xUAI+xFRu0x/IINmhTppHEYZyHfJO9xP3vzhmKwrqwcpvxOUqEvuQ6zvn8ypBnkXF8HmabIyZvPPgwq0dibNqvUKdurDBAEGmv9eHmHm5V71L0WghmY7aSOiOC1ZkW+Pd0b+BCcygbvNAU2FyquFBPCFDONRKAlL0EsY8UG+51CXU8Q0AwE5PZsT+iuwwVbR4qkib66U8aBkcRYjoOZS+qEz2GSkq+VvP9z+xbpsk3mnuq7FfGiKfWtToTGtMuK8b997i1hpL21Mq/hN7hx95Z8i08UMemGpb+KfsZFHIHYRwy2ARW7k+sqPb/g6B8T/3trnWJycglOwfLQ748jzq+pPXC1A4gsQbQSp0YPNH6zcuVSsozWOnBT2xjoZGkaTy0VURcEmm8n2w3MDrgfgemtudrkGGa2jbF1wP8SvJlVJnGPShA35q2EJoWD1Vvx/Y3tj2BTncLzMb8rbLpSZOp5u1ZwMGEUv1w66E13OxbOqWjwCub7t0jUvDujVIkyYZhUjbEgRW5k/mEzNzB0bUVMxBU9TdRydJ5BKKXAH0zIPght7CSKFBes0K3v6khiRXBKm1IhwPSs1ySga147cecmXgOlUeN8rVGFEQ4jphuEr1PxPORZHzZZx43r0pbf6db0vxYtelGkiwFf4keBPSyUeIzbnb5/EOSymPyYtPMDWi0JxB5aPGgU0F2eWVMoPNdgBQDvExY0pcvW6v2pcy3PCPoq/TapGU+dhZDpe81G09t8P7PL11zOz6WwHfkyxRbsv/JQUj4XwXCK+lZprx8eJWqzV8w1ye9XH6HzStvJ7XbjZGLv7IMh1vMDxhzK8dY4nlHC2PnhCl3aiJ//TeTdFlp5FAT5FPCDwH/RPlw7yRLVco+BZGivVH5AohSLoe+2s8aGdgZ6N8hp3B9jAqCYVcM9S+q3dxXyuvTCSNW5fTMlMvCdWLVN6ZF+TzwPvV/vlP/UlvXOgd8hNEa+5AqtX0lG1TqjfmUEM3HSqLUAb0eQyHgovo9+WiCncmYIuM2nMubgCR2mo79XB+Iwd+ZBxwwsgY5hsQTJYo+C1rsTQtO1Fo1C8rTxiWcVMEGNmYu4j+85Wv41/SGxwgyaGoM0AXYpp1et/2FYWctZYJowehbYEPodHShWgb3UVjH0Iq7bKvws+Lhz0FRJ8Dnh7Wae2DJx4Daze0RAEu9VJKcv0QGflygi/CN7xdWPY7MI4agImdiekLSK+LkFA4NTAuyZpGN7N4QgLJ/IbboPsNbOlJDrS6htEm80HApejI3IiQM/4hL8uPu3fTMRrLRawLRcE/qXQ/NcoL/jeg9N36f8bWPiNnbfB7DYyRId6KgrTAwU6anwEskhQyGUYUrgnzrAW2+7hgoVHHbD545ApuEXacU+vqM9syQ4uAPYK0AriX7S4+zZxFnVXl1Rdyp3SAdT0kF+dGXMHW42NdyoKpJ9NcOZha/yRmsF1Nf8RoWvl6/jJlW2iM0NYAMO6omKrlPbIBY2pnhhpsw1z9cjA3ZOBUI9J9RUVN/13zQa8FOJbGk0256o2q65vb9wIxR/sEgOIEIR0RnYxl+BxULfXHrYC0PqQEq1qHI8RzEVe7VrS1a78pWxM9O2X5oJDO/p7zCEMpvabonjAdWo5r4O8yIyRBK/7dWGKFdEgUfovJqYePcPLAiHbWvTIRvb20TALzmA724s7TD5lPbH5fEunyWcSUmYvaM+tPRvmFYVKZNv1qVphvIkSWwZ90LOolr/weAGYhlMppvQRfp6Ld5rLKotJBFJhR4NY5IcONwHJdpYce0z/+wrFFR9v5B12k/EjtMro2SQGnmdAfY0C4ef8BGatt4FPOlZJBepuFBXY7+PZFMV7tUJ2gyjdDQAgIA5oMTlNuKHNNrukWjBPdJ8Th/qh/R0U5wM0/PkbrWn8s6e2eJsCu5ZPOw3laX9TI0w0CRSyYckUH4cUg//lxaeMyMPBMYmtlfm8bUB9eAaNTwRHBz0dn8FAKgDn+OyXxoV2yHkOgMQ0pUigLJyXowljmw0qQ6UxgtAiv6smvwbrEbLofivxuLHGEUG1ML6CTZW8Dweo6evrfZkIQeehfpgeV+gv1A1lNYVV8aHzqBY5WNzBbiA2giHgkNKK8tRDxyQnmnywosUtarx1AXS6UNnzZct3qPXvt7ANBXDBt0kSFWQWB3qzVuwxg1Umsj7lS2ELLHcbFfhznCtfCQDl8fcW+SLVp7iOLm802vkTTN8wE4OWjm2Q6bwKVr4iE7YSC4pf4A7Yqmy+jNd4coFMG8JxvDkOzBrz4kO5kQ2ra9lFEfYNVSRv7K/Zqway+MJ4Y1n9VRbHUGYtKAb1nDm0poflQ7Un4MLxuhfmx2VTh4+Ot59NzQ5RW1pH4pm/kf1e3dzPlIqaBEL3jGJeeEv758VwjUsg05jh718Ea14DMWAm8xc82lvk5WviyKO/F7AS6LlDZ/DgSKac2Jhv7L8Vs/BONF9G6/eIvjJIme13J8gnpUGq7KXr3lHhGlTv9s2NaMC9jkaLyKFnT2edgqiqXunW7Ci2gfmMz28PWkOT7FCbpFyDZ37K4/caBfF+UfznKjzLANCIculhSurSJ2SiKKUjRvo+7O05/iPn7hcoNmZPSKB/Ot7ONXCP6mlhcKQqVJKl6VbrLC7315GoRoeQqDEHFlk2IHYbpS9/CNdxJzAkbeA1JdcqrljlHJ31+B6G3VqSvZaqJZbJGnCAChElRo/nTEZuVJlTClIbRjb/PcG8BY+JtPNR1oDv/NV7HILcY/9Yy3qLWAdPDaiHSoJe/7ovdx789daSb1kBv2gWc9opLK0ZDLJGztF2MPnnR170u60vWvaLmJqZ2yXh8VhjvAIejh+rAUMQX55Ii4DILPLrHF1JKEyuFWxreOXIza5pN5kRqhMTJw+BX+aJP28lgGdx/atP/p2MjaQOrHgYF2l/MqiWcPAqDdwEnOni/cf6+/TTB04Wq6vzZfs/FaL3zoo6wQ1D0gxOQigRjEYxV2gZgxHr/bLLP2FMxcx347RHYnRMzZmlV5dulZ7ZeSCjqw2ICpORMCoPf/5Y/xWiUfNHEsO6HIQrwbI4NMEDPjyjW4jETAPF2TkcRdbjOENZuR1IJEpHwbB4VfFCwUByhdT81NdFH2jUXN2VK+Iua9S10jPLEBb63ZQ47WExUnkkGRnd/O6t4+aVCsf3AME4BmadrphY5Ava/32jzliSn62rMWLJyeQpSDRF71NHSAhcqePmM7FMik6bDDrPHJEqqdqEKN6Hs4+5M8PKR1CW/j+bi8OBQvybNHEsms1DF1RZ2HvuEIbvK9iH119S3chF+ZBsnVtN3yhtmLch87E8O0ljg1nuhQ8xdB0qavHHSStwudtaT5OUc5TSdjVPb37GWntY8vRsbumqK+oPAMDRhjEZRIT16f//LMygRgGJ0xPcb45biVtDmEwImJ04TbT+URiDG8uxxiBKjLizNVyrhBz9IqEdESAmwRl7Ic93XfsTYeiwWeextzUzDhyOaw7vfqgNhkwKLMiAZf4w9cvQWR3Ckz+wImSeu/bXOKM1O9I6d8GhprvhozhYcAHc1klL9JLw8xuDUsfN0R/VJyJXmlDZIvPGBABz2leYNj8M8FxN6OtbbwZ0pNJtgqEQFEgq9pKGIX/SF4t4ysLp5YNhs0Uct9ZWwk1hlzZLk7pnSxMw93Ia1LdREIPTSJ6ONVO7Xgc1iecgBejWKIQ3oOUQBrByeXalhaC3QXrz6OqWCTbm5+ERjOkQSJQgD2vxUAGk2dpyeKvl2l546WfVyH2D8YPUK611TNnm9SOkpgGHMs7rCfdfnsFZbbyHgF2VCKvIxg0NFy5MVc2u7UjtASDR2+mNwrkoY1g9H2qs7NETIw9J51HQwzj4UTVE0XnaYYQtIUuENman1sJl0AtAmYdaAjF4StNod/JwOKq2fFBOE5sUyi/gDKAI8S1yga+oEyDnc4uLcDeTrK4tdsQUc+8JDYJmTnxRHdNqiRLzv5qeMj+jaBnhJS5spoD/6I02O/GgpkErNRlKgx5IaUsyJ4HOiLQzOgU4riWJ27P7chxYiguhGHtOzv6iOp27SU9AdRrcMRsJIoma+zjROyzMmGVedCrknE2gP/g7lxfNtn2qTXvG51DFbSKLjr5HmSfUL4+6+EjmlJPdbaNRNT0quVsyU7YWkgmoXWFxiuI+1tliGVsImr84tXrlttZkUFvMxNEmdJLjZjDFmPpdU89+vBcbjKRDzSZFZJl9vENKbms5MIk+t/8b/S5Vgg2XOX+zaDcMESq1k1UHhQ5jO856CFl7om4RF9RUve67VodvNC18+/NO72qJ/VgTDcFY86eaDrrbrc4Ubvsjb/eDkLcIzPewBeUUDZoUT/iBggF0tuZPfIo/qViC+mbp8n7qu627S9K4Vbz841RuufqrWYVqQOeWn3ESvdG6e7Tma5NPu0pIin+Gooj+xYXh2O5RGw0PCNgTqVXnTTMhpOqpaUHoW2H4cTlgVkN87zpXztUCxR511MlRBbh4DeI+X0Oe1Zj+agP6sMTIBtubIZh88rjbc468JY1guAhfGqyfBI6G2MaWX4B48Nlk3Y+5zsDJ0LUUKMnGL0l7ZoKTXuSVi2v+yUcDEljsBnkMJEZqyJWeKlnVMR8FQrx9hXpHdyNVQfzeAOOZQmwSxCJcruZl6cPCTxBlCNsPW6Gys3NlXYSIah4BhqPwHM+gDUxN2Sz8uuNElVYROWV4+oOJeolQijU9Acm8qppgs11ltqxnsItULBhBi8aGrzHgwSZBwbVuwQMuAk6sqKWCdjRiM0/h0+TZkaJZISok0VORyFO0yGJnyPfB7bidp9mv7bjvEQBMjFwiKVcIHxRmJNVcBGMfj3AJUywkjAlotAHJkproW21xFR6M4LkwBFMkfv9ICnm6InLUvP57KL9qHWeqopqEdOa9kZxqph1C9On77iwc/0AAw5VfxtTBanA6mQBXMWj83mN5TasL7KQ+YfKReOZQ+rLt6SNqlvz08MiLsT0Gt7NeEUUdsW6PJKRa+xgbaEkVT4kyvM1cby9x8ECgZ+ka4kbmAY0VrLq1PSPcDyCZKCvlA0WQa3JvwEF1KYTlQMTKFVKZYTPu1yLWAgriwevapogS2ek2qJlNpfnv//ANoDLFugoMKIxTkeZigs0Zrixff75lD9VJUvZSK1zXhtjJdZJW94prFq9aYzbjOEt1wtBz4+Qr+U03U5wLvGS9i6qwAK+bziDTqelD4ofNoqj+3kS7TCszxDmtRry/q392SG+DmjDWPVcmqwcxe8RPGT4X8DLE2Ltcf5T72Hos1LYD4tW9pjn4cXuCayAz/V1w+g+XHuzyFpwTV6enCyobQp/7F8q5AYYhjylU/l8dGtn6NnGTNqezh898XfcPZmzu4uTmVCOfPNZ/Tbf3xGcx49YlhUowoR3gmyT1Qar0sRPXljboj/x4fNWBwY1q5Sxq2gyAzzbRFVHIyvJVPRR9Ia1BnVcf01qW1s8F6bwtOe/j7ddphwXJJnIoCAdKK00GWQDIGtbEbqyu4eynqXWWr6x9EhpJQ10coeZY4A+l/pf8TVhNeqtHOcI4SUCV15kMCCqyjN5o8PsPU6PHS3opb9zm9kgETd6X0RAhDBUhb7vpoOLmDr/0aWj1wFbeA5PlW/YV+yeiNo/H8DqeaChI8tL2C0OwE2T8KR3B/MX98rVEZFsHCca3h8pjV9W3oedTdK8Gjk05eSIYCebV72xjpLwpWahgzuWXO+T+kdSU2Iil2hfysAx2NJSJMDsKlzso2hmgOdBgi04qDddjXgYsd2lwRqukJYUxpYyKfioeheI0Gy/Fsw+q+Rc/tpxKVLKqamWmd5aezHempsIkj0cxD9449cBwldghWJPRDa5a4P0XMh9n4zzZR7FoGGtmyNoJk8DkgSB4X3oTC7PamggH0mPNI0a/2qWKp88Eii0JGxIe8+JOJPItDKxPHwp+5FqXoVS4nS2GywKXqS8Ct4SsW5VdpYg9nxnqRZbKHaWPpnYBMugjbfm0LlqPseomiHLMaSIkD821wGv3kW1Yjn3HJqyZIhLUKV4x0Q62/qz9X7UtPblTL7MUoa9zROHCS06EatihHjZRB8h7p9Sk0eT+S7Ee2C1ypSCrlcgitJWRa53svZbDAESzhRKb1i114w0WE0FIv2BQ6Ltdtid+1rWK7+ieZLNCsX3iZwIAO3V8Txis+CRBAXZAZX7GbymjlezcuXgZr9YYcQ8aulQ7nPU4M8mdiFb/DyYDCMxk+7YaWeBrni6i+mVwh+IpTal5nBxx98ZHpDyt5X1RFXXWA4JLY9Ilo2TnqN9DutcG5FXebBiJ5C95g3QOUmxW6DfTgy28eIoP9M+1VYw1Dcm0AZWTbnqzm4MQnU/Psl7NJZJQOsVzwKNByL57Vc8CdEb4XHm44fTnYxezeQX4p+IQNsmCeX7OKe6R4252OcsfM83Z4U4CzP9+FT5JPjPPwbojNJ5JA0sRw1lFmluIdIeGFEzDwcWqhEMIIb3gSty8lcZQz/hmS4luFfYl9RFk8x4D2sDPqRlxA0QRt9MqENseNeXqJoSdAgN425XEU4kcTRSqzNiQiffdGsxMoaUApUKtZiBYGhWze+OH23rKEpcVFsydqPtElC+CPpnpda1H+zZQXEHeEWklxZl+znGiaUvbox930MUhfsep868Ihhh/xxa9jU2ZOtG9pZ25U1ZBSsKbyLK8ZWFHwRubERhH6u50iitnQfMOK9rvo2mKfpS5EntsU382ZamMC9nLsa86vO+zP2gQsg68V6GhRK936QL7maZ7dNTP653q27uHYbAa+fGirp9HxYcATsiogpaIwep4JpOUmiNnyYwNEyudqTSyEPIf5+L4V9c6SmmrwdaiNOav/HybOl4UmZil3RzLZkoy9G729gR7khp/WoMN0zb87KOC2A6ve/ZG07sAajIWs77Bvnzfp7+kS/xFUw12ng3jqy1TU9SKhF3XXSRHcrgQ+O0uWdbhUGssWkDxdP/JoHdEZREPql9OBL1kDpvjFXyR4bKhiDZgAYXMtvTzvE9khbUhmEvXJRC0Tsbb2HL6P7HaWrFfty9dqWQD8bqDGTyWBv8ERQIHUchj4KdlomTfMho88hxPi2aqNqTdxmcmI1oNAFn2pxkzl4aMdPFvG24kP4O1eDsSe0TKkEFcI+nJnOHcz88rGcaw3ZV8fXByhmAu/3G22tLYIHVU5MPrnfEm8mVXuG6wbwJZBufpBb+3aOy7Fa/w5MzAD6unUFR32ooisvQfqZ7trO+KCeY6dvC5geHkLSM5d6f6mOhtDZLb5bQYPn3csG85sIEr6E2JqRb/kIYUmLG9ulR2XgXMbk8/sXQU+uFHFb7YAFpy7lECxHgUb5+KUphJczRTNmdaoMTjC5wv0HF8mPjzrBKdpobzkZCjVR4TO/Jsgt6UNsPLPlD+b9F2LL26b4g3NVrtlbMM6jDvvQm1GSLRj8hv3Ki0Cq8iBIsOa/bFi5o9ljyVOlZ9+cY9A/2hWGqcSpNahpgPtOdtNFfmyUFWwJvrYX7BDuwvRFd4dIzk+nxGenFcFZWuRu7/J2O+i7MaLscmYUZvLSVlEvbmwCloT69703TDSzl8YSH4fdR71L8toLAAwbaWcDfaGVm31YjCu89PjjYXNvnpFVujaXpukSA9lzfHWw9mVnldJloVVP3p3LRQjCJBhl55MOeATVF2x0aH12vAO/6639y0e1H1bXoxkS2WdI4hZjuB8RGEx8cA7wAgdDQCFCReyJiXUKkpC5ZzTMrGoTzSKEPc6NoSr1gcUXneQ864ADPoDIoxkxSy8D5yzuhImDR+3ek7HVFS5oGdBqeIDpuYzly0m8wqws/e46c/S64cK8oLXzgcy4n8R4qxj74LTanZCJaNEdWgYk+tsPcVOSsuVuifsS+IEklzDgd6NolUQ/s3HC64zgiqj4mCFy7DMqsmoCtDgrmNNcBCncGoHAfuUJQcdb1lzw9JgD+hfLJZAQ0+RgpSlSeeVMpbLGsx/wWzj/PCisySPGixxM3KdbGLva0jOYufkkRI0nlIpDBfTwRRBAhOos+1qY0olJkymwcgFiU0VbLnU1UJyn0A4BoPrQ6vUtCrTWf/KqjC30FjN4pPWyf9AjaacNrPcamZUk+izk4JRv9BerpoM2M65w+aQegNL7Psl5/Oh5gFCwidnutBRasYLWdY+XYnW7HFtE40qN5e+K01C81UcbWU5Imvn2UkWPJw1MEsZH++DPXO4k10Xayr0aKJGY6ZGSkLsojpABNKvVvQgD5gwiUo6B88ZxcfutnCdD+nBk8lGK52RxANUdDGw9og8quVwxpwia0p5FGL4OMC4OhZGFaW49UWZmnihGl/v72j7mlma4rL07VCFupWE8Z+Q4v288PYXQT52cGlDcaYTU14IlRaoRQMM94JkO8MiFd8BK0+YHhXeHvUEPP1g8XIqx5Qh/7pNsq2zB3BMIyKvCpejtgUuzxn9oMm3r4ofcKTfHbi9jHLQdCQvL8diwxIMkvhmSJ23i6eP3nzHn7HGUBtHaVVHoAem1ahqPSjeHHCfrIV9K/cT05eK65JTJqe9E5AP79Ni5dAerwmt/C7wEqXS/vFr45IHXgDzFYrZh3Jw5sdFDFDcSnl5LafGRNoyZVxDv927u2wN6S4gTXrp1PO8xxP9yMabAPfIacpNCuXyWxC/FNHv5DJepPCmXTU9esTm3LX59VMAYS9GnuxCCuN13iuo5ZmWwlK4kQP+FtAOWJ2k1FmR8BNc11p2bBGmtw7SEiDZBmbHEQukhX71pcfN17ucupfVv/MhArIza3nadQab3ClmkBn0Y+tT8W1MtS4DrdAcPKL6IXXZyh02TQ8n+fmIjoEEatThl5vN12UfYYLvyVOiSs7wGveIc5yJ4lMSylMNOXw27ciEglDgd7aiuyKg0LMw50pOc1TyPeY6ewc7J6fSC5OIaPoBGkFzK9XY2mxil4SWOELd8fnHKXkvXAV+zEcXsHcbMooRiDrMCWbjJJj7E/CovPLTh5P1G0XHK660F5espsVNdQzZDyvSe5VUxsXtad6isowQBOluAjADNgzCJXKLLsNBsifAKObNZOlNzAiS90Kgg9OHL2ssQUXherzJOQnIExIKSpgAaMi8uIEGpOQM4TYbv1E1TCDw7BHIeZOTUpif67uUUp2F6YNuDJPyEnLNGAsYG+AO+LC/OkD+VNpDLviB2kSxKYZNGOCqCuqSOCy7bJRbGBV9WtWOELQE5q4HcyfbS9rPCFu/JiSI8j+MvM8hEWM5YQp/JUI5a5+OKxFWgPOow8N4YnqAcld5s0Bhb8IRgXW5x5lh3iEB9zBuclq3FG+ruM2Il0OOapO3Hd2rSY0wUe6UktGWZGPGNHyqUFTh+u0PSopV+MHTVPe17hVyiH/hrNes0wMH4Yr1oiPgL2q/nGaPUd1TF+N8sGc/YoZebIJfSZrrgrio2czRyVQAM5nA9JW6thAmEAc239+6a5Hc1M91w8ZT7zAAXgsHGOV55qRcL9N4kpuw0MttZfhw9SllggYogvsRjniqoT6W1bF9xM1e1Zv/KOdchifOTAEqo+SENzP6ZaFVWvsu9ZVsGg0VbTSmHUbQTmleYCamRn+4k/XsLsdof9AuJEQ6cyttoZfr+6Rv+RfyclOSk9xigmsyTkDPX+wu+rBI+uqoNRhHNIj3KCjx506+fBwDFFs0+edmg97lWJB5IHDPV3kxhh5b/EfjefJ0ArnX0g8nIP/PjtlA+paenYdrA40kNISarJRZSirKZipT3pzBaE47yHmQH8wGgTLSmkAuQ4u1LHvHFOCpzhxOJCBW/nfbishQKt6nKeS6Df+FhtNi4LHM4Kslf8N75qdFgdBI8XfcpggGgWPLea+yibtksYFnX+jcvSESpgryR4XbsrDZqfM0XDkWSFk0P4bRBei2Rjag9hwYmPDxZaWKZXpF5SAU5e2j2ObY9b3QVKZgjDcLQQ7hhI6sqggzfFJYzrim/K+CdgAHiXYEWAXrJsP3ZMIR4n8qQAaBg1Nnx89JyiwYmg9xpp92WQz5C75+wEGTO7d2Som3rUAcQMt5BzAszpGCIVU+qqooGuQOPXDtF6t+o+DiFAllO0hEuiS6gK37KiqcnefLlkKcH6wOKF7lu+aIz0rPnEDGl4cd1TPPOnLc87qITrHH+jg+qtC6IZYLfV2mF6dSwnkwpUpj2tKDbkMdtOCQKm4uNqdPwWaLaiupkX2vDhwLiU7xRjlFJ1Gtii4XgfqV+zqUZ28cIgjY38ai4ogV2iEblIbCqhVMazqUj9CWVVdb85SK6eUwAzG1uP+1UrMST8uoyq7nJGAN13Qi2B0LoeA120lfnhQ5WIYGEEYk7C6LxvfH4V8kuBmUBqzW2UL2HN/ohk6U6QpjMOOzYDcPvP8eL+/cy1OSkDMty+zseVxmoow3NIGzLnWJAuko92XtbD5+i0LoXSjhvq3+APmSVgg1n3NIfXfjfUf7UxTVqwiFB9rQZpTWS1EmqE0ReRxV3AOFM5IR5LYOwkkgBQFsDkrQIJAeo5xX1wpHYBJLnDl4V93GS81qK1sjR2bmzaLrswkokiVNKhaoO2cJbBkSxp7zLOnpN62z+ABvhcGfYP+wZswA8waAdHLFErJht9GWV0Bu27aZGlKEL/SLXiRLcAOSjft41ApHiTsEHr6NzlunJaBlAFr2HW6sO0IeBdCzqKsN0Fyr35+W+3GknPitdDH6vYaD+NpUsvWpRhJax/86fFl/XheN+2Z7eDW8/5B2XeiQSM7xA0W+EQgrK/G9rBWT2z2JxIfXlSP1XdOhkcbWk5TE7UFF8EE72Up9wmo/XC1Okp4yzO/4Oc8LrBrDH+IHUHLZFo2mR4sPLnQtmXQ6x+kenWng0eybUVffi1kEPWNS6gwqDsQ6NNRvqACa3zDxVvhQNELei3Wr+1wkJYArHtBaFymPqi/oDo3PKDfFV5otE5G+8F+6M/lUxD34Ai+ixqWAi/eEToKJwAa07+Jadq6CjSCBGNZqz7e9FpclMg6keDcvvlorjVUOIZmZcBQ6rXpJMlTT9h0FOzkv17wnvAvsHZbVTRJ4SYKQ//PQ4yMBslTfDk4zmkrUQYSKl2W/T0hq0md48ZTXWlYc3MSasJSPB9Y9gY81WA/xvr2ajGdexxQIDXTimM9aEPLDq1gatOKdyzaqHgw8tcDjRPDAqqJuKf5AvSmPWFq56gUTpF1xUU6mgbqGnX3BrINtiQfqFECyLh4Hj1R7pbT4SIEqwdAZN1cDhhkA8EEmnJazeLwrS65pqf/jFaUKItBxopYDWxCx+t04Hr6ZsbIwpjP4dBnY5QN22+atRftAajVZRH+DxyW99ld+0v7cTc/B/LBcRT5pwlq7O7BtFl71aXLcAM2WYw7O17rSfswW4vGunUWS1CEHTzvovgfrUNOK983iR7Rgt+sY09XCInCJdizZJpjK1n8/eh+QtCRlE2P7XGKopJcgoN4E5QzKqWsYTexYwor6fXpXyR3MfeGnIOWZcD0Uhia+/niruLBAx2XHv7rwXiQelpsB7qX6VjKAGbid3n60Yg3copF4y/KSTn6rzaaFiilMQJ0rnGAPO1t75pOF+chfk5e4cvNtUS91763zAee/gnbvU8Of9WzHes4hm5EI08DOQb80t/HV9cxUyGKj55cvPqrz+G/PdFGr3NG3be5gofyKYrQDoMLco2ebxcbrBvytBo4Y1mgnd4j6Gie/EwfKouvMtNgOmyCt+mX0pB8CQhOF1BnzThj9h3YBH7pSiRklro77eyuIQPg/HB7XjYBdOAWq/8L0pLbjjpN1oM7H8lfk/fdFSULQRxdlwP4LGntervREjgf0QkyQcjLRusX++YNGo4LAv000pZ6OsRzwS03QEHR7J+qe2mPol3NzES6d2XLh+anWa6ao8Ii4JenTjPfK5gYVz9g/8uKeTGVaBmQUj9ijjvnplZt/yJnfZ4f94VEIFRtaXiCDTRy8/3WFpQyomVr1l5wqPzh4e0W3mny1Go68vlVLWu7fc4P3D75QK+fZBfANAsY6/B6PWRhP3/XgV+OGo0F8djS/jS/AfKw+8TDHNzqVB+/gIqtIW2NMK3k7d2mtIbAWDJLi1qFcq/YhSC7oAXTdUP2eulAVFn51ZmozcsvzgxpmA9rlxXjLqpxNR+EaTqzCm8cctjxUQpGgPuijHJDJxsNCFdti1GerrwyXW7qnHdaKoAdcsoqAROMkdtIKrOQNRNayxazsjg5f/Ib+ChDrnRYWXseEwd5ztZfIfDrmwXhJnL3zRse9VVB7CKi1yq3GSll0ZbIRWnj8uaQ+tYXKCcYdjFNs7+FOoFukWjLV42M98zN3Mwd+RKbfL2XD5AZLpFqDDIt6O2F16lqA2nzobvf4Lr+vvvzHlyqX7eU5rDPPvi6LDxaIyjqJdoUsuLJ1g78t+3LTj3f2tzSsnC5wmArBkyxrt9rasd9hlhCRT16Ih5AtltHRnL24kWYfY5SuZ8INMZcC21d0SebBeeZRUU726DPms20H7ZkR/lk1rR6fMcdDnI0uYtjWApU5Zae+zHjrw/6q9B7ufJOkXKGRXjz4TDsriehNYL2zC97ke+H97UxAlI89usC+3Os9pBQRq51V1fz5QiHnIvP07frnrnd1Wch0BFfUCweQBd6V/wAxC4whSeMwQEqTusL3IEO2hdFcTeemitWYxwDT6CLaT03uqugCKA3eL+OYuzeX+I9s152tXdR/50YAlk1rBF4a5rQqi/4tZB0yQTUWWiqJM1P+pMB41lvsXi522x1MtLFebDlKhNdgseeYZn+yLeOw/qbqAcx3QIm8y4Q4XUfZ0978hG2OKobsPqDAMU2GF+1DQcBdTOigIxQwJhD/7jDeN2B/k8G82fHJ35mvyUr3Tz3MikKCKjIA6i++jCFy8GQyWFK+X41GVzSYjsgLfntDsRUyq50jHUH5qdhaUNr5A5sSKUHYe2NBQoLAb41vmzY1uPnHV9L8DsGxvHBmrOQFOKqxwSfoE2l9LPGqOjz0Zt1S1LzEeMuaTFwnDmb6X2pN6m2IiutWODwig/tvJchQ2rmOd6orYyRZQJkmKMxcFR8ciULw5E+EBeBhF8By806HQc+g0nyvyEYK2cOTl9JuT5WZoSY9se41IZFrTxgIComHkkH5/fo5GPvIU9jMWt2GyYiMMGxTr+2Na/Q/+uEz3bKYSPdMPBSBFt8h7ZYlaxXU5yMUZTOX6AAYmOi3pBSU9txi4CSSuozhb0zkf9MQKCYk2wgLjuR+Q6sCMrL1TBp95ngoPVk5oSNGwd7qlbO8+dr/wI9vS0WwNPUUKUbpc/JLuE4Re2UvNecGswQDTjWHZWN2S4n2vMwWV8rv7HvgNPyD4oF9aCb0AND/yOI=
Variant 0
DifficultyLevel
565
Question
Zoe collected 8 baskets of eggs from her chicken coup.
Each basket had the same number of eggs and a total of 96 eggs were collected.
Which equation shows the average number of eggs, x, in each basket?
Worked Solution
Let x = Eggs in 1 basket
|
|
x |
= number of basketstotal eggs |
|
|
x |
= 896 |
∴x × 8 |
= 96 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Zoe collected 8 baskets of eggs from her chicken coup.
Each basket had the same number of eggs and a total of 96 eggs were collected.
Which equation shows the average number of eggs, $\large x$, in each basket?
|
workedSolution | sm_nogap Let $\large x$ = Eggs in 1 basket
| | |
| --------------------: | -------------- |
| $\large x$ | \= $\dfrac {\text{total eggs}}{\text{number of baskets}}$ |
| | |
| $\large x$| \= $\dfrac{96}{8}$ |
| $\therefore \large x$ $×\ 8$ | \= $96$ |
|
correctAnswer | |
Answers
U2FsdGVkX18lToivV3bb0Gr4ilqxUBUuKvu9JkfdhfOhU7Lm2hfisbPphkfeZX4nPr9wKzSnSIwyMPLsOksDeih7u9N1H+f0n4W7xSF8nUmQ2PvcsB3MNTa52oNf2Lhi0JUO9z/8GtLINqZ+5qZB9B2edOBIDB//g8x63X4m/xz+J3UeLqHTaKjm8Iw/dZN+voFNCzPZRJtzJ3DM+H1w5TLKSWeUllaA8wOIHbcwa+iFUZwysONO1uugClW1wdisfFVFgHABQZpOMHREc8/Go+gf4TlKgEGluXr6PSY8UICQb9ugefL6oCi+h+d/w7mHGmJP6eq1zY0xS/C4OPTYN85AqcM/9Bwvp4WTGoSXtyaKYCriMBSRm4iW7RQq9fI7KOjrQ+izS0PA6VySRFeHzmoTNN+PJHFvMK8AMMkaTet+52zpSBS5rLq0jqND7k5KFg1EeV47RMBAg44sIgDKRdc3qPpibTFCKYYpmnOATRF3iL57r0LqxrR0J/8P3xTiF8YmopaCCFEsFDRYECv1ebIb2TlJnKLcduJNQQSTrpMaQ9tMpVCrW5vnaHwMJahK0DyIBZVMo79ESS5PjTyMl2Ivz2q45SNF2Uo/IkEk91SctgYZHd6NuhauQd9GMPp0CDNfja3S4n5fKeHRSBCEoWRCbcllfWGVE7tOwfBDSr4t4H/sQVp+HC/Q2fqkz/rPwPCm53rgEgImYxi69dbcXJmLzFQbemberkZIQMjtxOh0P2iIHF6rYmqQIp37cL9HyOvMAaPobFRHiGXUEYXPsqbLT+JNwoBujb/YTo/f7JyrMMbfJo+KNu7yu9YOkPqcPJ5yjclUd9iR/4rVi0umYpYRma0CsHrkWbujK2x8r5yiK2OBfPQr1TNm9tJdYre3UHbd9H+vQ1oHmyX46nHynnuluDgkonFAvfdQySNDQ/sesmel7t81S+fDJ7w6VlmjLWZ6+m0qV2ztbW0jCu+ook6Gm+kWhPlHpG2X/+WVVGFf+B/sjsSCpUoo3OKYJF/wqOl+fcXouUopwqEXWAIFIqh8vc8sqHlJ/bPX4aJeZGJgxYJ3GRyWTffqxaCZkHHUUK2IvkP6E+ICsLG/Z2kAvaCLMIo+O7Cv5hZvFHAO+Ce3Sq8bSyvc/oTu1UfxfI8ckuxfwyv56gFKdhLF8Y7JuWpVNcziMSUB+2bzzjLlMwN4QwyJGg110VrzlMr89WuWCXPlq1fFm3v5/ZpAoDgV+37LzM+8hJUFTFzqfqTdFiJusgXbx6gI3AyYM8lnB65uB/Il5b9tvxE/6pdBfNM2MinkH5zTMpn7YrgqpoydBAW5R0KoQZ9d1ao2EaeZdCsfxNJrlS+7Jwho2qIPST46Bk+4+ENXecUtevWvf7pbnIv5Efbc7A4NxJRvgdTh2QG0CFSE00aRGuM9ZXxBJ6/yXYqcRJ7YXocWX+6kRb+HFGNhrQNJf6auDwkX7pLSnfgpfkRdM6lI7iq1ImVsAH5JWeTR+RDWQDYYfHuyyAH5PYT5gc066LuDnbzZLDVP99WkFWaE7cf0/xwLDtQznA2cPXwK+cZ57p7CWtFceAOBZrmLzQA/zhh1TUkz6c5UsR7fFbeAPLrzt2a5+l0fRKpvU8Uydfk/yxXvaA/wJzpq3QPyhK8jXR2YC6mTDhYrPmHJtMLVwhJLOYzfJxBmBCmjiUxZhrc3Q3CiSNREJk8iaVrAyyQoAyBLcgdIBjhofg7z504iOLVLUHFqyJJKPS+1F6mov8GK60Zl3NT9uQmxHTi8Sc/OAG2ePlOwHMCz7zxswGvoiUWBeNwzU1k5ReQYztZJDL/WJ5YZ1lhN/M3YWVn12j3vZ7Z/3PBs9i5Bkl2/vsnBQa3CQ9iqI3RLEUB31VrH9B+TVRCpUqHFRM9BSs5oA91VXlG4ZQ0IkHzl6hQOo4rLHK35uZziwLRChQqmZJZpvKukp5L3wnk74UDr/efoQifTYw3AOcWzw8sJM15dS6bcjCG5IVvJoMedyM+/smhp80eCAGypMtAua2VZIVSm4h5ACn5YKQS2ZEaLBZ8EHNU+CIyn4F3LGKiEArp8WWPDrw1ngmwpZVw3d70gEdrn/U89sMsFnpXuInXjC3jm9ysKvBLB090UOMHyzrjV/FFd9qaGxGz8KlGqrX1PHB0rEqZ+Lcje2rhoBE9Xaq3BElfUPfwXKRO9WITBsTEYyOEQBlMMAwRKkaBKXnZkeHshYrvqGS87JMgCFyjTHd7d6j/b98qh6ToqEDNRHxMcgH3u/IZ3EAHPvc/aV1PkaLvZfeLpY+Ip1P4YUs2R6IwaQP02xkBFKU/js2DNDCXadecEs21So+dVLTSxmDBOWSkBr+9KVH8QpA66kmosP6vQ7bPVG8+qLGAeHrHtuRztyLsY2I34jS7C15zch7gX1b98Lm1OXngDzHNBHZVjdDs81Q/g55K5//NVPZXITTfi408KHsA2zNLrjNeX9poU91TNhP7a4EuRslvhSxCsL9nzaI0D5dnP+kOrw4P3/8vx6rR6OZUzgJn8e7gSAF45bSWqVNMoqePTZoTu050B5EWm0QON95p3cicxcKFr/cDy+OgFAhbqI3BzwnxakGyR4LK5S6hWJP2WUMqhOsyd9hvuP2+S6zl+0GIx/RYAn0tibHJ0/R4Paubp2ss936e4FUCKUcB/WSMAjXz7W91gCh+MrEeTi6skz+KOCqU/4aObk9x6OFjKQV7yrDde4dK9+zl6zGPC5igIH+TlYQFUQs5lRroVqIw89oekUu0lhOes/c3+i+9pxmTn9YWInZsgunioR7KaKFbq7QYSghRAZqK7pcdz2ESGvSmCPWuKYljYoOmdsG6H40Mus3FaLHkeqgPNAFAG/aR7pexZvCIhQqevwBFYNb7ge+ONAI6rJ4YPM3yWneYniYZYFrh1UX5kd1+qr9kxRcUZDVmNeDCgV3Sdtdf88FNMZqs+nhxqfOCFxoplyaoMKvNFR7rI8hTzIGRsxhAK9X+EHMX4wECi13TVtO3ViECgC4hM/zoBguDs2ljGioSYM1CMW2aWbKqoq6pbnE8mn+78vlzmJnltBqIL4a/TnOOBK8ZG6NnVON0BozU7Z6U9uzsU5tydBimrLfjPqBLtbw8jrJdUHz2yBDqjz38x6WU1460nWzIXsyB0NLXkMpJwHp2ZIW8I86LdEZxwzw9mVWWKy5DS41ELhBcbvE9BK9SYLYVA8wRITkw4sST93mi/73Mco40vS5IvnIUuzZpRGGrM4Xdm0DqVXp/1FL8lnTjoNuLv3+46aXX3NFCePZmnF/XyabwVquvpWJXnFd+piZ47ZPVaxmDiRdYcJvP8lkMQtbuBoTftdH9fWgqRTUteMLtmAB1gq2nSd/qtTECHvgOhdY85Rk4dsYyNu6L/0cl/W0CRFmhM/xyACLUeVd65dotECnXmBKoWlhqwzMbWb4MVPQtaJmYQm6VCx4rciGxWRjKALjUXHg3hHxfmJ/of4pshk2L018iq7DOyhZaZRHouHo0Sb0+7X0tR4pMXVoW+lBY/ErBL1SM5n+wwO0Dk47ksEMe8zyQ2ZktZ3moCkzmW43TCxXxUV0M9xNIurTmAHyK1g8mY1nEs8sz1KnE9exhwEnRLD3R53m+xmYJ33MZLlAiWaJzgZwT8KDQEvSe0osqV8BtEVyHMe27Qetxew3X0RdrsfhNy68XljNcSmYvg5tX/OE3dZ0ARLXUNG4Ww6iotbEAOWX9g/lfbVzp6btJ8pZ2w9XazKlIVw59ubCTOennlc8G1b1fAi4ve20Ag5O6fSZxXXCyWKyYkZVWScNCUrEHfuKZ+Nvs/MNMMiTDLN1YJG44Nu+Uj7yPnqzu5Xm3Pjzlemvw1xEHyP9L5BumQeylLh7uflkIUWAcA0C09sKrFm5xIm5jjmLiKl1GYvvmZLVstMnb9lbXZC2MRfwl9lNZ/SUvCrBT78OTqw3dZQq4WSJIx8HrKNJPH3I7xvRp/lLPmwKvoBnuN0gUV3RmjdjefH9RxzEmH3Ncu0VZXGDHT9utblCCp76yQ6u5p90s/Ney3f2ffC/hMqJgyszXJYcUlyzL6PwYNo1undx2q8mPLU9EMx1Mb7Y7v8gmvstDBiK2fpP7WmcBSHen0B3r+aR/hDlUusqCggs5vbxZQJWHpXbScoArgQPWHXSUxvt/TzQbzLmdPB/tcsCWesrxldQwEWroRU5XgF9aGJYpONRQRKzn/kCpKG8DiqC6PySuxSmJ9hpGTlhUE8Jf6zetw/lxPGINwRn0l3JBvCFGCOBVlv0j21iWB3YVkrcPR6eMJnnLic3thcPI7JT6G/SXdTNZek2P2WfyMEpbFue/ugesP3ix81wv6sHhA/cAd4RcFmxopF5mx0v9AUUMuDQp12WJgWWm56HIBEgPCnrznKn3M+yRyMaA8VteIlWAl/P947CoY4UqmPLheorgCFV620CIsj7RFNcXCYS/+4XadI77+blYh6Esdz/kVTJKuGdTIX5gkj1LOn79ow6s3lGX1Yq+M4vaysh1YJiG/3onEswJKS66o/FgliDjmWXDjLQfDFCa3jTG/Sqy7KtOb6LJON2mVSOvjNArR9CspvQcuhRHISqXnZkcSW86e+OwytoR+Xc3aAi6nWF+4kaz3M6EZWvdGJ11scUKr8JFQZ0r3dNLrxb6wBnXVauuDN7UCP6gBR6u/G0hSBPYhyRATL9MpoPrZvS6NBBpOF/2DHSVZ2LuDX0AXIEyijVZCmntRRee6AEc90GW7PuQp7iXXkW5zE62CSpwrml+pGCHW4dsyMmVMwef4uNBpoWjTHDDPGMkT9WeFzTDf8dLkRZJzF+/QrS/+w9+c0nIvT8kIXRjLUtXLrcG0iEdt2MYZdZI4C1lcr6fzOB8KqJl0uX+q3w6vV/xW4faxL1F4saBePKhJmvO35ke7j5Ezfu2yn9UN9m71F8KOjLoX3g6c4SmDulbtGho4z0p/ofKCnt27HrxjqmDGRrCjOajYo+TbSII1CbRT17hDjGugz9F2doZHtoV+fhK+42E3p9xS8oud9T6b6PbkGCXCUbs8Iy/DWoQIsOejBwU/oFqk/3llhPC2aqEA+lq1LaxeVZROsYuY7/27418mS3bJnY+Cc0kkq+z5rDStuWWLA5/iTkll6rTalssZ8w2tLtV9ya1ut9xioTTVDawBgyHqIfs1QPUUjpAOgvtAjKgenpGhYcHRBoCykRBpAPgKwGJaHH537cE/fQ5ZHA6EJJxYSNUmUqSB9Nnv0HzCcXrc36G8aSGzRo5FsjHR4cxAELe2KAwg4fEUimP3aLoHnnv3jNoreOki7tBicua9AVvEAwq7JmGGrJo4jYHwydotaX7CH54LsM7TPQiZfsJsZ0PqRUc7cnyPdKZ2UTkFu7ULY8pX/izpbJc70MW45NESTbHYnJPb5A2Io3dglN+5M1WreCav2BVoF2139L1xJw8CwH7/nzJpuy0ajqpT5cgfhn0coIL06DKCzQjuoWpCxj16bn/dp2xuVFZAWsXKBwqtDURf5fw2PgXCvEGhJVgjfvNcmMgPsYoBUZiYfnCffKXyeKRpJMEEVmBKIwzHYXowMvQ5ZJclRKmvI1mvUCJN//0j/OmpY+nFowEEfBoxQWq/VizKVRzZ5Sbru0ggJ7u8mqpe5vqBfPZ59UZ3r0P9Bg9W4CBmAcSzeGt9HzTlN8xjr0HwtSq9I7o4qTpRqolA2mhrxhnWuByJg9KTbBbYbc7HCLizdngBZBfbiYuBECVJcx3Jhxe8qwA6a8cVK71JWXtizaj+AMvLmN9KC4oUm1l+jFULYmKxdTeNLImS5nD8nWB1sbXa8njrbKpBB9Ujjd+zCLhrUkdFaqR/adl2t8Cmt0miKlFMqwEuJ7l+Pl/39JYl9jP6LKgcMFGviHNWdXdSOLRXbY68xClMyXnncxGfBuSOH48j2rQPCtQuisjGtHQj0StVAzXimU5RHnYBQTTdWoUidVlp5aksbdG47HoGpLuP0q7DrNFPai5/gxeXtnXB4jwhOSL0s1bDwYJNu+utwoD8aWVNYIp/FlkRYackDPiVl9VM5T1OJB8guPm69B2k1FBJPuawVYoOSHLQFY3sov9l1x5OLAARQpdWbPg7ws+UJO8o8XeAdgPi1FyjTpxaM7OUQB93+SYoG/VWGcKtGrTMzTUss5BJ6Pt5rbWfyErKImi8uLLpPWZTAZ8YHffpGHGyYR/dwu6eh+kJdTakklR3XJHv98W0gl4eVKd8L43jZJIzqSczrxKHJx4KuecLfL7HEu1I7mO1ZiuyLHrJqruXq+prw16tcQNIKQd1AFyUDO5TcK84InruC+KBZcFqMW3WPZpfBOnuQIMzXt9YHGW+EnRfs9/iJlAkn1cWXm4fiRSP2hajFhGfLBSGp1+CfSE5utUL1/Vz0RHWJDwPvRf3WSDffRqZap+1l82SNlSTZZm4hoZF/5RlPfJSA6YXrvWPWOkfzKzjuGnwLRu3eJmvG0KOtmrFIGC1KqFE6blEvdJLLGMynD8YorDSQ1vg81/K8LDS1BfscBW5S+6i1tLLIZpt/cpy0ARmU243V/Zj3uAgGhjAFJE71fdMA/0jm0fXlYlfnBgjIdlbR79vjJJe3s3kLiMTFsDW0Hg316b+i4kPnoYpZGMQJiLJzL1v3cDtB/WKdAgmkl98ZyEhG3ADtbgwWlT8rFL4SQ4QyKct16HNIX9exrjGPpHOVoLonckZdLkAfEJAqYKxWtPDKFIGvUqWZ8ISJnKjGGRpq8PT/89KG97kHGEnpE8o3wSEOGI6j3uSI6l/3aZn2VgSmIAylRIPL6zJe8vbhgl1CuUUdNgZob2w1aE+scNkrD6w0EKrRaOIWNe8ibVtI2wa7lOh5Chl6TbwZ6NZOaW8c/ziJmZvoQyWrrPmlIIh5Hyl/C1uhp+mBsVJFk/922IgISEc+lGsGol3guudzfaJYbTrsdL8YLew9SEtuJQAYve3Baf46jucQ0KOelC6H/ylLZqIf5LjhhqPVaHfvv1ru0eGTiIf4EGGIm/prlEJXlD4J4J0r3Sivo/Mv8VttZ+oOCthqJHTlkuD+nowlyfy/zaW1ro9cAW6DN2FQjUHVKljlxF5xn6+nH2iSZvJh2L8co1cXMU6RtBPrFSwNk+4AzqFDcOjaE+8PWBkEgrNEYlMn4+/xBcYT7+vk3kIa1NfE3cFD1COgcj0CYk3muwinyBz9jBFnJIDMosi0sanr7RhZ0KvIsm/+cIkXsi50ZOB7MHrrBTqTOmrwdRLGHXiXJ8/DCyOra8hvvKqagQBWkiaXDbBfRT/RjFfBz98vgNyD3+/e3MNzk6+ry40qJX0DeThPdYJcr/cc0U+Lfx9FfodLQ4r7uRQG+GlqAUT4p0hG8VIpvNfTb1ygPy/dB5Xgzs/fBETnf7M+bYgyW3hXyqlvxv/47oJ32c6PmWXj8qYKEf7KtB8QnKqHcVtljZtqasNh0cZzlv9UaIUaV+SrIkLsptmA22ZIGfIWEU/ry7PUrc1sLKfN8QxP4vFsGqwgxV9LAvU/ZC4yoMWOtqyDGPC9XXRc8Uy4/EWayEaugSmg1lb/68GEFOKj8kHcN9nx3HRe6xxJ1RmQAs9g7qSXVdMqxZjP3yUmKu94eKL+e2OpRuV91qT28m8dSmAmaqBXI5+NZtzGkxosC7iXiiJ+rv+oeTO/YqrP90ilfoumP74l8tiCebBVpntCk29lpG4iN9Q2AP4RFYdFzneIecvctvY3B203PIisldhFayXn31X/Af7vGQqW0EstDbkBvAcsCLiI26vvrpjevTrIGG7QxeQn+yl5e9e+XxgkgRz4E6kUkZ+ZPhEh71XCNKnOKaKJKJbKSqoAstYoPrOxp/lbmNeqk8v117+LbOKhSdrliHOlXOsSE/Kj6y6yjspFaMZKpbI//WcFo9zjQ0D4YAMZSQ3Z3mCY5NMZxvsiSDpdAXan2M81EYQw3vin9535VEQ3KFMQhBDkvKwl+VQHE/HnOHG5Q0bRJBcVsie8/1gRt8hx3exT3szetb5J1Mp4ymKn7LkUtDa3OxmJ6sZLpB+dciF0Z+rKfTQG+XRxsFvba1kyd36RDiDH4dQ2CH8ervnsVxxfZ13AYqRi+r4CzB0fmTdHDNuw3tZWFZxOHo51yS1M4aZzWozEa8v3Z4WxrmawFzaxTJJa6BZYV0XNkWWR2C/mtAz8+7tdAN+0KbTo0/3whbbEIWfqfBUqTNjUNo9073U/wRlFVD6yX0eAUodjNRV+K/W9L4/Pdwvej2WuoZqlgeJ6PYclMKKauK3FNWQMvl8AT2MEPC0tDA2BDZdwq9qmtQjIjC6W3eYM0Iim36ORQmEipQxW/2z43HGKXil5/lvXuZEG7gzQUpN4lQQVzCYN66kdS/4rd6vWSdqid6zi9c97RSIKN1NtQbdvQU/upwaUHzaU4OsFDiM5FD0ql3fBsBQMV2tKPfUMPV1EBulE9qwld/y9vPVCmoNBct7507QMfphQyFDkqE6SEhHwKoSbubw4UR5MgiFb5p4ZMX+2mjykzOguFa2FLaKWx0rD/qBWlTdi4kMaG6ge92wuF2zai1gZzncGHTnD21q32eic5hCaeu2RoXdSfgBPqMC0OKPa7ql2Jk3uimJdKj732H/0eaVfixK4ZDkCrFTNThW8sBA+1pjZ3qF1kNmugbEmk6p/wBBrQOIbVhiTY+jai+tSF2tTBtd8SWrMrnXuH6uDgPJGwuWOTVQxLFBawQt6NcSVOGHReXdr+hN0OtfTHhFP9EHgFvrQ8BcSI+S0n5hIn2bEKl79m63uOu0IoD9hh2cGr7Wq7ljr9hFiQMAk7by4bCbRDCAbKv7BF3ARwcthfnKKJ36sv9p1uSywlbG7UUHRIyVnOHFZIa6FTCgoE7KeTjch7whD1wB90C/UdrT3an8/KFRqhTZZfhJsWv4JN6ogin4Zg5g2c2V8s4mjEbX3I6EEzyWKPRECvfU1DFh5Z3dWkM3zOldXH3B9gGJUU+DcqcGS+d1M3jNA6WyZy15UZUWm31sSKZcu+7eTaYJe+VrnhBw8FFx+CWn7P2/S+EoOm5JBJVzu8QFc2jnN+onn5P8fj/uHvSX9/PLh+h/coMAPI24HnnAWC4R/+XEG3gRozhMBOz5VKqm8FqvuZ6e0f+gZZgN42okLS74cS14m0+T8gvk2mPm6omsP6N7TE6GjcYXU3XKIt+lWNDCoC/gR/LgkoyTlEX6vR/4GyqHmngAd7VwP7eeM8kve4y1ugb+XBkrPjoPJ39GvBSdH393hX2sCpVR4iArKkRikjvobGlQeTuKhXC+1c1QmBGGQtebLQIEn2CP22s7R3DhQcGuPNYDeHCcienh2LxTMnUZMSZT91+dPNh089IXDbN6aQNKgRFHIx+nlReoLz68rEC7Tevwl2F6qOBmJgxSmXBb2cloj6t/1lwMOyDE7k1i6U7hUkUlxoxCgMKX3xTu12/6aDIpXw5eLSZy0cX803GbGUE1GDMC3CbUauWzew2eDkZdoySpCcRhXvp+m4mUQ6K9FlE+1HIp5yFoyFnUe0GV47LnJilgX2gxGmHrt7K6Y3TysicWTGu+xy3o8mquzGSYYw7amY/vQz0gCa+j2jSia91+Oai/bDlCqzVEuWlouqyv09uG4l1qXVey5htsfbZtlV9TmOCfHq3Ep4+C7Ep+z0EDKjuIkldiKhq2iq31PooWj6OEdqqBZNlFR/QxhykNBwhwv4WnixyebjMENoMXO92aJ6OPz3Rj1JF897jQAqW+fyqF/GzJC/dvYkO9WQ8qnUwCtrTWDpXMt27fmSyxjYbaC6oJRFl1uN07i5kHVWkkGYBvgY6lSI3GvTgQNfnZzKsJmb7AmMdUMJ5sbWeiFpZ+myA+qa6bQmO0SUafk/HfMB0Ahyfdo9IlckHH7YZkMGhrVTZcOCDXrMsGBTzplLYIjK6vfbj5dbeDR6Ry1PlL3YTWMaUNVc8iEmPOHua5U5ayUHO9bGy1IhkxjpmdxZoowmAb9Vjb+FYGnotLTKlLHQh0XiBLAvOqrNv9h7H6CvFWaYEN+e3t/j6oYUOly1iVMOFCA03zV8DspsZcUdAwXq3o40ZqrcEol2JAma+8y6B0FYIXJQr2VVjSVshOQCwAnAEiksvxRll1IKz2Dk93F8/oD5H7Udhap6dGMLCEu3ON/zR1dkS2q6OztRzCu6t9wrXsrwDaQAicc5cdZ1ooD17hiM/oEHXZIpxU8on0vxEteuhkDkGSW8LY75t0nsZWPpC/9A/28Z2wk3cUou8KSE4ORChTCNH/Bt7i6LloEU0GaHDxllyA5vbLXkIKHB3ShrnQA/pQ7eaiNOZZOA1v2BPR5FuAk4OcF4yG2kiBJNBlXaaURw90N7RQ8MHwGFUhOwMeIbTFL3Ib+Un8qdSqVPKKUxAzO3FDhxuIe19ZLEwG4ZLVf3Q8RYCrTSBmZS9NqvdBb4i441abT1E3nsNLjCAC+l3JicX9Tq+RHtBr7qm3SXbaSKTTyx8bS6h3qoPnpJ6D56goFQYBXBeA9/VsxXp73+Td2PBg0kwI23NbllXlGIpL92SXRHN7oW0eNmuiOUW+hoz/9Q303CnsB4ncI/tLUwj+coUZhkocE5CVTj3BUDBPwMOpFZZ3v790Zs2VyC61IVXwqJY/sWBH77Jp01WkkPiIEJSNfbb9DFAJfwdxYYW4XE4Wkn8Fq579ozBudg8q13pcW5LNXfa8ztljvA5ldyak+U7HAs73Z1lguAQ+zscCGI9l2ZEmzmVuO4+3gAVegXvkActUlLdaCFbdS/xdjR+ioscsI4Xxgi8hpvqr16RbV5a7IjJRh+8PTmhgd3Z4hIRQOHNQLZevVSOE1wzku1/tPpUPTAnH8hPHhu7/8uXG+g5gJUROIHz6mpWb0kdo5+cy4a2uhGzEqPcdi3+kOjkvRv7xg0AHr+v6FQ+10si/BLAIXQaWrC1Ttt2bCjkzUOtT61MK3gDN3LRjdQNg/yT8B0CtPfGwOV6Y89dL6rY+f1FlIoVfW8dHqG3AKDWqBY6j/rGqFh1Ho+CNCT3Sr7GSVbm625anTojHwMdy1L1GD2FFLdF6EOuuDeTjp7sP/EJ4nPpEdI+Cr0xtFIghJk81N5+J+Iwd+gxa83atpWnXVQZFhMd2wCONbix71JvoDX/TrSZ+B0LILRmJB3juhlzgHY9Stz6u5rkEmC01DDKlfCauy7NYuGhHXTkZDmbGNuRg0NPjzT/1aMK02Bo0lQR3BIoQfXfFIWFDy1mHN/nF5WsYR3ldoMNjta3++40YLNNCH3EAmHHTq3qdonImZU6SIsEewvURyHtP2Pw7a+48UDQIA0pGLphpGPz8XW1pDVm7lYvdSq3QRJwHuUT/vd/+/+5LY1wKAz6eMwSeFbJJftx47nYDVflFOOlP52eTKtSF8PcwPfMsFAOGoMQfjbsrwb1MUiXpEGKhRk6Wse0TYAx8myt8zGhdFbyBRjwVQrJIamsjhl4djBuEmWfpY5r4347kbrfsUVkHXGZBtwThe8dPbbsX+oMpyLRz1GR+y/gx9FazYDznGw/qEut8zWK7QW8krPUucGoPhFtyDfELORDFEuGYVNS3yCRUjYlTiub/WteFBpOkiavJWw7JZk1D+jSSAUBR9K246/rhm8dVlr0wmCPOXsM3+RVmfvb2dsB50W0rlgQpmvG/0nfFmmoc1M3PTGfehw9X2HxQgqaRs5QNC127uiRDtyqE79DjZqBfrTk1miYzXpQI4rwraREOk+ibtvRWQeLXOh5QJ9IDdTN2o7brSc2YOxVNXFpPPtcPyuvvqFWgL8TtX59Zop56R6tcd0vkn7RA5yMKKPBouS8napSI7R2RkeCzfQSkIhQhMF/D7myQ8AX24TbIfwCSlLqgtrMY6Kf37Uc9vrN2lD87shdC3CQXtUVVdFsXEpjADmz7Q0fBePA+Rt2sAwnTDpth6jFrpXPkBk8MY7RXBmWOQZHlfb9O9Lnqw14fUtuIt0rnno+p+pLytXmgOI3PuBiaI2VYnzG2xlZ33ytxz07Td+tFjYPL7AHVMmxavZO87fMFkHVQcJ4z8CVUUvGCUtmuWaFr/4clUG2D+wQGS5qNlv8fvGtJbGchRuOiTrhyXDzXcZCVoF8aeaCCKqG+VZndiICCIXGH5j/wVxn/xek81Vo2gWlbCHiz0N13BLBF0IkTm3XA1htLyE7H70kC3bECxAd684iJwiAG2U9S0b0T/Pf2B7N8cLkuyArKWzgdJjORKHTcmUI25vcB9h/xKJ1ARK7fUnIC/Y2LcmoiHFGRSG74L4+XwnZTOv7nfBdPanH49dGgSFe/X9rdrWw7R0lwK5w1yQKUn4VF03szpkobsHh+XgFF2SxTwRV5NMKGak/u6IFWzBTqzlfLMM6q2/DyISyyRtcGAdKGJQqxMYJ0RXvgiUgvbEW7P/BMWoo9u7EZkxUNS6r+sSqEAV55gM+uFObb2DcJZPq8H/JnZwkFvUxFaknSmu5EgMhCGOssmI2hfEUgW0sT/xc6wFXADllp2MdnkKKL1rArQkFAMnWZCZn5KJDnBK22sjMgLZWBxkyXkWGpArFlKTZ3hgARZfdQkFYDJA/7Jpx4RYMJ1p86AsIU8vmXA2YRTjCuN8tIVckAXqD6hxP5KWZg7D3Iy6BSoxAWz6UgV/t9UMFSMQWIqWq9m5khdpmAq4KyuXXToU68jyO2Cb483ZEJklPljWB1aijZuodMyFmS4VQym/A+1IWDpbiqDoVuHwGuhF7CgMA3ZrwTNeEiNnHqTyH5hRE9ifZ+mYB7eQcjmEPeIHTlbmkVea75A1q9WISU4aJq7xtZj3J8RSOV18Q2/gG1tqZRTrxj3yEkz/ugRYXLWqu5UwHAPVn+d8tBzcxWBW+8Yws7vLYGsysztaxAxekOlCLtw8IcDBmytP8L4amqJE9wjrbLpQ22U7zD/cY7GwJRT9J3Zs/frjTxwNRsWdL77Uh76Nh3Xe5EcUt+mZhUmZAoXL7bkNEfGiCrBZ0ZCyIMmtBWV2LXjKkbQw1qzp9jrQK2U6pFKWrom0UC/CVQP8fZIoDOWafo99BKBNtuS8My5lxlGssebP1d+fL2BySsJIPqaaQzvB+RgY6BF8lYi7ZBlFMxv+5K2DAtlGy/MC0X0a9e4jFmC49MFDX8sVdM40tAlTXW+vKTEiYzVH3y9cmoWaT12LT/o/woFpABoouVpfiZyFYV4kdXA5dXyZK3yR9n6Dcc8Sw5wz1i1X2rBn99yAHO6yLjjurRPuXRGSWkjdCITMFuRG1BMf5Wm7g4WfKmg/L1s+SJ2PcXkcpNfgW8zgBDHpWedmGd+mSP04YoKBgSTj+M4gm8vicmryhC4zZLIdxYfm22H7SvHu3Bh6AyJ+5scLHN4eu7J5zGNdwddfCOSpKyvvFHNplCHYPOhzATQMMPANSZOfWLrehaXDJ+a2sEvd98I+3XPKt8I1u3WRIN2F+T1UIZNuxl46I0lDZdEMc5pBwe21Z6kBPIVMbkNhxmVMapRRENtHqfcLVPH0pQ3UEbT4Aelcmc51i36ip+sbEe24RPRxw/eh9MM4rEHayHEkzhnxZo/oIp419OKLe+vvjxSh74jINqLkif90MWBcxhd/tLyKz7ed2hhOt4m8mvPGmcq1x2I8D69y2V2w2AR3PlRGqW1wWCYlPMVJxs2l37nIn8GDW+g4g49B4Nwywe7BVM4rb8zYAyAVKeTZwnH2y0bUBxZyGGoKagxARvkvvMfOQA5XW/e3my69Vf+OMEP867EjhXvbXLXo0d5+kfoT81dTaUEe4owWseKPVyx7Nx9k0ur69iTRn4O01fWAXnMTr0LEYIT2B4lhukErfFyb0HbbGVwddSKlEjYFHPd1zrVB3XUmO1GQM1z6RH3VOlhnlqKF53YVuJyM6Tnwc2Brdx2yLUph3TTmfHbsFCFWCanqIKVqwnSycqt57HxRu5d4YZyhsWExklxNnzN0UaUk+ZGxzPmXKnbs8LP5Jphe5Q0mPaNInfp6YY1ZJAu5r8Pz6c9PUdGY8DvbtFe18cEUiUu4LFWC0hgMAtEOJE6a8TaGXo8vsCsxi0UfnOvHB35e0usi2vD27uvAQN51i0e+NM0/umK7KkP9d8hvXVe4HsxGnUqXddOjJhGLcmu8IDUdYoc9/gtXhNnc4cdF1MtGN7SQPwzfVehN7IjIDEmTevafIYUkp1JEpiteAz9/N+k/We4VpeTxkRkUniB81HstppNuAQ5rMSjqv9V1vHuUCO6e+qowJKDdtyUR/5k6eclJlQaY0oBBOXp4SRttj5YYzazKAHpMmB9O9hXnKTrmLkRSm5wIemnVpR05HjRqYmAzgXa96CF7WPnIc8K60n8m5UtOf4TQZAe4WyHDYNdVRNitbvFcyWlBFWraTQ+VgGzHpqkPtPQnRpj+W8FahLVaK0x6AwJxU31K4E6Xln9rHT+beWDkLzGAH/LVgVrLAvoe+erPSsMeAPHr3sFM03mIL9T78=
Variant 1
DifficultyLevel
565
Question
Beau picked 18 baskets of peaches from the orchard.
Each basket had the same number of peaches and a total of 450 peaches were picked.
Which equation shows the average number of peaches, x, in each basket?
Worked Solution
Let x = Peaches in 1 basket
|
|
x |
= number of basketstotal peaches |
|
|
x |
= 18450 |
∴x × 18 |
= 450 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Beau picked 18 baskets of peaches from the orchard.
Each basket had the same number of peaches and a total of 450 peaches were picked.
Which equation shows the average number of peaches, $\large x$, in each basket?
|
workedSolution | sm_nogap Let $\large x$ = Peaches in 1 basket
| | |
| --------------------: | -------------- |
| $\large x$ | \= $\dfrac {\text{total peaches}}{\text{number of baskets}}$ |
| | |
| $\large x$| \= $\dfrac{450}{18}$ |
| $\therefore \large x$ $×\ 18$ | \= $450$ |
|
correctAnswer | |
Answers
U2FsdGVkX1+vYs+9/I/SXzF9EORvv3XyS7pgPPAos2OVFuiOHaTS9If7E+t44O0r50wI2CjNmL3jF2d0gfI3s+mVplCl3+WIkSSPpZW6ymW/hkrzRYoudR3IYHCsPvDWT/QPhrcy9yVuO24XtShsGEZXAhmGRR6FIpppad8IBHTO/7J2i/urKH/HYcDyizOPNJkd4/L9iTG8+FtNTx+uYR4lfSxMvyqlHDLLA8FWpt4/0wY1e6KELmfV63R+PWIc2rVsKes0sU01LeSkYdf9hyj7xiAcrnKQlnaCEHSCxG2+VHxH12N28T7i80Gi2VsSj+0m3LS7XkrLdra2MYFRhQpQdNyzL6vqfypd/my0lIYTPbhfhTcqPr3w7pOH9jhDLo9OOOJ74VNT3FVF0YlqgdAQ0lqH6vXSenJQM/YmcgSiGbICeOerMoFa3d3an5DsAvVJGfA06KufUY5jMyW6P7Y5UhzZJ1FFt21/+TI0Iqe/HKUPNbv3K0JEDualvEpSmOSI5RR+89IjBcAtRYAZERd9zZi+mpXXWptQUFKxNsm1DNpY4Du7g9xAwQnf3eAOa6ZMIU83DDCGf+vPfMTSCr+yhEo3thkbfivN1EzLbLibnm+gdELoCQoXs7isG/MMB7rlcivXg/y0Tkoyx13HtK0d2u8zL64exeOxQ2aQsCdPCkoyD78dPlnbb5eYL8Pw+TP8k24zXKMpJ5aEwy8CzkoWyMrmPd3fDbFajsYDWKNtRQEk98zc6PLecyXK4HtDbjyjMbOi7nAdEaYwrciFelvaJ498JUqoyaZCgX70xfSRByQBy/TZRIBwvQeMvCuJnUG+lXzh7eRuYwoNjfHkS90g358oG8mUommijNPAvJSgDRPYIKQp7TjMxECjjE0wkNIbjQgdIdQu9Pyo+0+3KICjp49+Fs5ltmCNnPnV+b2JoKg9cql3CUgRKRfGj6UBw/7oZKfM3mtFBHHHGuzJy/Bw15Q+XZakGWPQMCikvKuONne+2tDeAHfsfx95Di9NbPkW8z92NRZpaUQa55MsRfzilI1zRiHTqXarm2kS2XBL8aVrQgPGkIb8na8pZhxrtFhokKvMpdztdELrevqccQ0Glmo5X6qA8zrbBmSdNxMKQa6noo5Polon3poOR27C6Bm+PEkebD40a202ReQYmNB/WxlsTuT6Tgu0i+pcZLxD7X4raXJWN9v4qnEHYqUYdnXoG9AUXkW3oroNT/rwa9+79aEtk1V/SphxkHHTaHvEZP7IJ165lM9MCqoet+Jl0cFSca1rhPdKXtuSD7YaHXp62iDn2Yqsx7jpCMcNpJPuoivuhYEAcsTDIpBB+U96pPJMXUOuxkTGjkopGKYdenTDEjfXtIrzPo68C+vVf2ng+pxiiRYFqJVo6iTCGeC47cwFYfcNv4IsB5oe3hqGZ9cuzr4ek3JgoKLjjyRBSPEDBqSd9ZxtG3/JNR+9vrORFT2Kcozt5KZG7AYZZ3bhvLQZe+rrIr0B6CWMT5QB9ElLPLprd7xO39KWx0I7tjkaKwGCM8pxy1aDHKmsUY6m52Pzeqe2a2WZj932bSH6wEqbknbTAWlPlXVWt19epgS4Eo58q8Jr/IK7MfwfTqmVm9e1nGg52Ei2/hUTMx/jvechj/d3O6IXDRvqR3AfMozldRAuvr2Aw7eU/KQ1JAyUpRZSgEWoBAay9UkvPVdS1B/Ww0GdxOrBndeNteEFMPPap1owI7zgT93NN2nnxufgLLap+ddTpmarPBeIeOMWa9S2Idt4206uOguZCL4J26Ggvbqa/S3R8pUtY/5dMq0d5cWuXmTF7o6RF8l1T7rj2k1rMfnTxL4wOVf+E8KBsejXxUPdTrOCoDfZ29/oOAvresIzeWWHIJ/6rOkV8OQ7XoqC01u/60Equp+iiOJnXakFUVXZSsUDpo2JE6WOJLyzZbfV3P/W095KkSI0H+KfGWdvvZyDsjDEYfkrRkt8JrTc+Pm9MFUHb0yroi5Ll34SaiR8W11kameXiyWKL39qwaKSz34J7przBVS+vqDdElxjGsWlpijvse1WB9brxvbC/IPMqeD4WT9N9H1ZAy9eAf0r2db1r8DPMeyGDsDLYY/obNyhk5gEw8gVDOPhAn0HJ9v8pcHL0Gz5KBdTEoMUqNNB8sDIpmHjMr1cwwGk67b7/5H0BTZdSmFx2AaFjOUM0I00XVIb+HIQEpri8mjMQZHPDS6c7to25jy6aqyv/F31oJ1Op9sMGTPqYGA15e7a1hu5rMZEXSRyg/i0QYRhKF+sBeL76lhpfZ/eKoYzQUyhiVxcjkZia5DqoFk9Yl55Z3JIO+aYLpCJIWJarLzbAtuLqw74mvqUJVBLqvcPBYV1GElDMKzmKnoyztMnb0qBYtROOq5ol5xPOsM1taomam+b6duvvZA9GPrHTzPyGysR3boXSTT0CiZOmut9JoF9Vv9+ZEqwz9AnAe9HcXukT9DGyOrUbcEfM6qceXt+DiC4LCMESWv4IG9W05yzSMsyFVwtRUFs9Bfs5MQsrmUO2KHt5ZBJCfQN8Daxi3vrLjXjcSCSb4v3enA+S7asx3eUri8zHHaAtFT855imDSOGLnDYEdiK1Ce0lhxHR7tqsC+uDfaeap0dAdCu1S6KTHZyuBB4JmSeMbgUfo6ilXT9nfUjg/7+mkP1DwwE1Gag5Kcy8yv4JV/BZYOEf+FBGO8eRm6cA/Sjl2bhs8jAtrgljnLSfBKbrAvBUbjxDd88ZdB+TFSEP58wv+m+FCC1VnhfpoxG5CF875/x5r+/KS+vdUzWuwEoS6EikrujEoNsyU6nozHAZx6IRni0mXY+jmWlCenge1c/9quecwuQYlEckfvkQAH+SC8FA6h3W4jnDD4Dt3GkK+BLhkBFeahTesl75+rNUmOy7ZSCrUagh0xmkW7wRv6vl5N8RwvXyIDwoUHLQ+bnu1Lwr1PIVD9yzHp+VZW9Gm+0bmF0bGdNkk1DkVfiQBl+O1kED5ZSMV4Au0dsTWzmEw63mOs8A9YorvMGs/0vH3asad2FwdGJvLmravcU9azqrCu+DITKMJnkaNhVIdUC5OuoDGgLYqekHT+L7wfzKc6kuCUsA839pQc8ZMqBkEWNEIaUTRNUwfR71qc00ytsgOsZqxdsrsLpxDwHtSne4O4inQ/arTxDGnlX8IXLhUmSlatpniKa0FKw+7CfRmguKBS2wISF9o/xCdSgJ+eOSeUYPWcZKOGbKLVcw/NrrICc98Mqqhta4YQ3zjR50Tq9fvAhwP05UUbYojUZuwelSNnfWwXrcAhb04KgjxO5TBAmyivnTrBuJWyttZ1iq3onXvVOBWjMAjh2Lt8xO0rjNGeUiMUxpxOu2iU/QSMeMoiF3FH9lzPpI0FEkSYqgxj1um9qdaCLj0PqOucLMpP4oZrND4WhUcgNxtYd8vJ0971yerQSBIOJi+1now5rNIaTCs9vipsZA92mNSzAdCwOyC26L4GfnSoj/9jSypEBAaMhVaFVWASBLGiMVnEkl697sKLiK1yRJO4wSDDPn/pQb3WdtfPVZQIcGT/TLmauRCv/UO5gY+rgp9CAzL/4R6h4vBLd0Xpm5y8H7aBUMDw+1JvhVg9HaIhpWZnL5WdgnVIqQyejkHiKZHSeAqlH/hrrW9v+XWKoW7mj/zOU4qOM9W45wJOs82TWbz5jugX8LX7W7xglzMFEFU5RDMKtzCflvVM/nLAyd2jLXrd5q/brBlHVbuavuy5zuRWf3fBL1Ly6x2trwMjfeWEpiSKuiFYcMxr3SC5cwkr5QQ8n+qTKZoDEc0NpWF16SDEg53VVApqrrnU3+pOuliWl6qlnJqpXKbCK03QQw4JQQgPVZvOdcipV+1dJsUM+oAwAmYW4qORTKpso49k5lfq+ocQ7RwbUKQqjtGuHEb9s4Ep/jbVAPkttwsiti7x7uHqxR4Idnkac+8ZH4D2X+YgWvscrA8N6MvWQV73ThP+DzA4z8BRhZ7m9X3hEWNllPKIHNvP1ND9ViKAToodkNiNqLu86Vic3Sg3wMYmeeVRne9CoNIX4CKS6pMeDluZcq9LzEhXpd9JE2SX6gcNJVTjMMB68inmGHm1n2Sd+8DZ/D/FTQ8N3IP1jRNQX+j0Obez6jrWr7O83GO8ILvMLDJWo1AeHEEqNEeCItf9lr6XiHJqHf9vcmaQCc6USoe3VZQwAwgrnxjzdKSiwFz1W1YYtHXug4q5IQtrkPU6uEuEcBBeFYwsbtiETIeUESIA8HRA3mnqZ98liZO+pp68ZcbsyXjGuJCpnVTbnePxv2fw/OkKXHDrV3f8rlGWfS+hhrOwIl1WaGclGKU6VDR05cdUMt9org/bAcVtZfUPeTF6leYwdqE+hl4m8k+XdA5+dIantp8693tuDaMSk01QGhl7dn9AHqEuC6CkW6OgwcXPjH1TFw6SEBdQawAVaTKg+ipXylyaBZqraem2Mtg8JiGKz13CeGJXGkHnrhHp2J5Ec4FXbwFqgT9ZLuwTPhnW59j3Cx5OpuM+GWqF8kREX3TFT3rPpPBq1dE5kmebRwnAKD6SwpoSS7Uykqql83QzhQZent29pNGsbT/oE2go6rJK5p9Ov/Mpqx6efrPHjkqVTQozOfcEfFDLy5mK85QjAqNMNYGpGHQuI8CJjhsdf0gfm4NgqBFfKOXQJAEv0RvzzHuWikxhtOukvsfkPHZ7P5LjKscRq1Tlhzl+cXy0tOg3nTxUeCHyegj9i7KkOZzHAYv7SjQCLRQ9JQTAhSJqRmvigvLJ6JTbZUO5YlOS7BurxGkEXo7dE6p+960DwlxMl1SvzIZwhlGh9aRCd45ZWFflkCjL6+pdA3KadD4HCvh4ipxgR37gsFZMsEh8/P6ZiAb0rxNi95CLsHYagSe7r72PQ0/pnmdvI4dXxA2C/JYfHqbLE+Hc1akFC+B/fpdfX5/pb8dN7eE+2izLWNuU0QhtbJqMMH5dDjfI1loyNYUeikhOUO5St3swNoProxuSIqUJhW+GlQRxEjgZKbVLJuIQl6KGwKFGGl3/F+VMj2WOz/s4Fra9kb39/Ke2hhgCXNNXrydvB7sQ3YzVu8CfgnG3PgQ+5Jo97iAdP8K5nBXDYC5KIkhLjp1Tpj8KXng6eEVFN6E6S+jg2HT/xTQuwxJSYGXZo7ndXPx23U8FIB93nYtQBNB7eHTpnLZzGZhdDbtS/KgLeE4ADmj415yTzmCp3vRtZ2gjRnN6rY+EYxZnKk2iMC+jRwoac0TBEUv9GWYPb5S39ELkCKGB7aea6KsXArXba+nn+BMGsBXrRBPqNUlsRv7brHFnUrTqUY5CmZufvv46lOTiXSUc5noFSncTcw4IkEMrottAT8hUBwmlEoD/l37u0DM5idqH7M5jpSMBUiRuY6Xjo072I95WVvoXbs3V2hqiZb1PwW/4nLc/+mLa13O+C/hae6pCZOlQsqNmBr18qdpg12bAFIYGuyNhcgTSm66OiehMxfr0QQ47LbGLLG/dr6FuI7k35S9v7i3pz4KHPK0LNqQuWZ7VZmHXSOg6c8SblJH79cCpFdMosLyw8QfzGaxlzKk9mF++njiWBxbsr9I0fVF6y1bdbpAs6tVhH1LuI/Os51QSjCUCQU9imqw4gPMVr9gIr/QsVLutQzUEMevNsUmNVzgcRJJsi949yr18cgQprhjX4J78Z0o65fHbOEwn6i+ctvMaTHzhhPoEko98j1KPe6Ecqi8KkHPmOo50tSzHDB+w0LswCILCZDkti0Wy8QR+8QeWyCEypy+xquffSsFN8FoIgDnoYvchWk0Gyr4VwMmGNZyE+YFz8cP94Ta/IsJF8SlSwDraxxaSaKfHwgTlahsUdmBYpSmYjz6JWLhw+4g4IEb1HWdQAdXmJaTrpUSdt4Y85e4coQmhzB1OvwiI4HhgcMN4C7ZIS6u1iYzxQxLoc+erDRvm9I2wS3MUNqoUg/k6fWwNzSKuDwWSQWA2V2fQNyfhGLQf1MGPfwWNLSQ8nHVqFmnnH+7Sn8L2hDMWIRf+yuCkKcoF5/jQC2bKJ6tkqSfPKJkYvySn3hxeJ/kHjrB2on9ms8kMyeSnSseX3m8CmZhrlKctLmCzGD3nS4geSXQvOJ0KlddNvYxKN3nDZKOJDNZ5YvZnJyYhevwdehhigl+JvY8ok+aKsFMg0hgkGrxkCyF5d+LQwAGc84zrzmcUuGwCnvdSPmMfqgk9DM3KmAy9xgbDPw12wQm9RqF08TAowyAwsBH51QrXSzLSFvzIexrtj/fs4S6eBrYkmFaAaYMPrfraQwqRU+PxGKPdAP8o4T5hzHCP1yB69uVzKaJitEa4pqz6aRRUZ4oA9y+VoTkt2IbmOYTa5GKVzLxwHm2PzZbfJsf9Rpcr6cU4q0x5aCaFZQDp6dbfOcFq9tVU1tgzlHw5KCpw6eZq5RVVmKsiD3Z0mQJh292CGK+Jixe31Tnq15ma6KK7zrup9/GnyFH2ZoKhu0kjCNUPe2xDJQQjMjy4Nat6N8ifAYwa/0wXh+oY9xfFEEkLh5hIQc6xmQkuxQFlzEupwvNqhlIXgFZB5EYy7n1VBWJjJCpL4cYDPLE8iDZ6e1lbYweAdNGRWag7nXDF0baptUSnX3o0fPCMBSuKz+M0mYe84GDFmJAF48NyiBufJhlaaIk8B/3vU5ulniPOTeo6E0J7SFVIR3UnQ8fqUtdEz07iBzta/kU0VzHgQgHZD2dD/Byg1JJY5Vdx8JZJnyekd5X0WnyjF3YQnhpIauybQzPtZ4FyFrSAfxb/IUAVNXmDilZJzmeG/HdJTe3l8nLwUPAeCn+7gb9TUJSPWZb69Vn0yn5TcKqkvEAXWcqSlqiImjF5zluSNNvaScDaQSlq1+TXzcie2wMIXNTihDvr9Jm5/QVArtjBULRdMW+f2s/k0KY9Xlc2ii+28cSQ6Z/zMbwccSd6v7MDTyEPn46EeKBv1+pf/vTj2/TgLHvil9Jp5UFWyPruKbZQnOA4QSsqK47eCwr0FkxVyN1w7YE/MdtJv6LrRYNjKG/XgvjwVOwGsdNqBZEFOMoEK2IARENcLLCiv8pdCP5rOCfn+f+8WHzB0zTc2nEQderiSFfkA1LTBP/7ypa3XrUUgTCmtZZ+XVahD2ha2NtrV6TZNMQpfJP9ZR5tCP4WNQniuBpoR6emQEftuKK7B5U/PDVlwWuJ5zPl6WoOCkiBlqOhmsdzG0Qm9/3aREmGrXr+Tw8ofdmqzwvd7xIw/vPnIIvghl2qLALRMA+mH0KfOtAdQe4mjTVUxEnSRsemZaMeeHWk/V/bZgKU0HHZQWd6UuVKmfNMRZhB09yObrtaII5Yvw0qgQFXCpyEBDef9h6niGpBzr9GSSM70zeRgL4nTfXcb9/CVIP2i3VwykxMlXfus4yNjGhCNLd9i4e+Jc/6FXLSMjBXLuyUFsjY0kgn/rqQPpdaQOSvETRZuf/abktqnY2hCCxLlovUq1uewZJxV1/PATBdcr4Va0vY6pz4ASVYK9Y+N6NQV0nAZBrWHjg4e4Na0ceuJzHD53184KTQqmSetTwG7wUVQkKp+qfkZmkVGeayjQQ+XulsSHGl2HvmnbO5rhjNOz+81R4kGxcTz9fR5mjGK6F2dak2nSio6yAsf7DVtWHjkweceMSh7k9V1lLufaVE7mEm7au9mtGa03Y6U8L2khIpV6GAv+W1ZscYY8FcImLEdX+yRxHYCD5pUi6EG+gnd7BNz3TFyJMdt45GhhC0ohmtJLjg+tPOLfsG/Eom85JKXJ7RV7ElU04EpPMzFAfV0KPkJHHrUG35VDSBs/jkRF53qfxj+SgaG5c76R1WbVJ4nfKTya8pVHIgTP3GWIwv/6ZhYbyUAkoi4a9a8gZkwKCeYbgZTn0iMskJWu8BM0W2cbeESPnta2/rpeKT9VHGlfzz2Htqfs1qyZyfMqcjgGBt3fqNosRt47xaRk0rYm13CvCRxlHwKsXeeXET54PCdZA/Yv0A0CpB5wEoZ0AuS9aC4JeTv9GCdosG2w10e9PCnEtdLC7OoUKbjXiR7qR1coH2fD1WQQfULgpYz+D6fPy7YbyelPBpVWgzu2Magee9sU/m/D0UjYZYdKlsmqc9MdtOoDgExGUkrFmbmi8Y1R00P0kUAmG0e8XeLAxFEZXWXTDufO0UYEuU1/SzrgCZLfyqV9bFwPCVxtyO7TSzFn/0vw+70QE9UVLO58a1VcxFrqS9XXKAXgsyqInb8h2NtUn2CewICfqR4DcT+logZ0uoVqxWKqXMy8UdFS829VlB1/hkOknC9ZKWjjSX41c5nYDYmtV3x/3gGY2N/wQvq0x7sOQB64hf2fo+BA/obdibGcRe8HiEiGTM1lUE3bvBip8d6+gtyW2dHrTZrYMsS5+nM5Nval2O9NICfpwzubXFqKRTUZNm7BXOv5WJMKSvaAx5+ukozPm2/HQio72b/sbYZhuyQ/tMFUsn7H623wDy8j0kB4GL8rcgHYhR//qCuSZVDQzkHOu/OIoMN4iGziTYjG+3AXHfiNYSb3ubsIfbYkhQB+l53lCfAt+WrvC6q2+HYyvqgXAxHdyRLZfXDIA9FT+0V5IV2HJQwyKbS6NG4II2p+D4MIOMLlo3gfy7H03oAMSvDwy8ewWXvK80AOX3D9IpupB1D+AoSfA36aO2BAkyqZC39RgarxcnmGppS5CejUwb8vmoZP8IF0JBDPgBQvViJZOa7ZS8tLUTHGj8XG3Xs6HVKwd9fh0l4DnIzY1BtEyemcFuNyUNfPrmFSw6G8OlMDEZVQBgVtCTp+NSUhoCs1yqRxnoDDrqwyuImhPtiVfc8y4O/ONh/SXk0SZ+FIb/Ev2m2XUP6+GWrhIQKfMBWSkvc/iPszBAhg1iM+AHRQlKTp0ZyaZgV63Pd9jVA4haqoPb01cEWKq39yj50ssQtiEzydwms+fExGbGKFioY9gQU2D9CTu7MOtqS7giAHS3Sk0nE36YyASLHWWgvT9XR0Rd9OZ2MAXGMRjIeaN1ppHmF0kmbzUKZMgDbsMUc2Gg5oalXCaXXbmWsi72DKAYSILPsgAZ9b0y4ZlBR/daA0N5yVhK42CbfvBxaxksEuW2cA8XqdcEHoIwurN7Cedn1rrHXTjY6tSlMvZxof9vCsFoUv2Az4MobkxCtAndN5Ixtbgd3Imb5vIovxwaPpCKRETHOOWhJjDwt2hXBCqwhwpoI/hdI8vBX4uCuDIoW4K6pcyVD0jPvc+WtqXZx+xJ7hoNVkHdSW58WEZ23ck/t4hXB20mUdtX8MkOsHfxanCKsPEFtHMmhVsbH5u3nI/Y8xLXaU+CawQay6ZU0EcMgK4bH8OjVI+aygs5nlcik7tIlOn8U5UpxIifu2z3hCnVGgkI/B5BOnMkrP7SfbdwP1chI+4uqVzdPincl0AxDKhtFOjwrG3bwKYBV8AX8OcoH/19s8kZMokRbyVzY9RitAWiZgl7X57fRMXkZZtnY7Zal2afaaqcEoTtxsm4t1jFPR911Hkv1MEVx6MVH1yHz0C/MNkKXpVMjJ+wN/ibU0xBW3p0e9STeH2waVlcbOsnkrBJRbpIEajnfU2zMZQKsASaGFxv7LcCWWGWgiqtoITB7IKC9Z9b+DeMtDx0GA7s4bHlMDlhcZpVg7snRl73N3pVyM+HmTQfbJt/E3a/5wfrwob0gLarcreDuo6XLHLqd7+3Q22l35MNdEtnNrhWMLx9hQh9nvcU5fmCGswgdJPjt37yH+gRSN0Ac7dSk53mXr+QgNx6x0EUdcVs0swFsM/HDw/p5JYp+SHYzHZI6ACJtHrmNE6oveefzYowbuyK109E8YfiR6tl+7ONoXFovbOhTBX6zV6Oid4xlPqymnJHnDyxSleTnIiObfvp6mqtJMdmU9xKfaTT82n91MU3EOHnXBVhvPsciCFbztsvDp5lQOAf75KiyRXc9oHzktiHley3cagOOB7hNDjvaYhxLyhF8QPaBWVBiwd25OcwJv6V0gvt8ug1xa8u1SPhOlJBmHH6/o+/9Y0kIESFF4ehLAJB/Z6ffZRVVd4Mn82AciIR+xEfYA9IBGTjRh7CjV7yVpynzPiTtodNWfYtHc/rCrc5xissKaIJPjcgR1O8ptb0VBtwHXcW8aqWq2lOOJ27L3mtOppczve4WY+6OatGGrbm7XdXwfzqrTbhBNopRv63Ev7G9gSqkIGvt/Jkhv6EW9T5hf/e9Ax79NQ/a1gnRcD4hL9DdfnNWhtNTa1le4LEORETNI5ydSLiSa9Z74tDKIbhKhzxHt/0arVBGmbLP1NHXvdAPI7KE5CTM+tWG/7dR1NgtRG9dSWZwbQqQnxQKMED9Aa0ozW9346MNUE0g59WCkwLhKDc6QjtIHBDfEy8m2CtBr6Wpn356WPpQ6wrLnoLOT08pWaTCogIXZWjfdJSHRidNMkU4WL+Xwr6EO6SM+pX1aHwVHRbt8LO0/5HG5c8KJaPoZleWy+7uFLPazuQ+GN54qxjGb9IbgteiMx2/TiRzSstoDJn/01RKF+3mV4aPwq0ZmWgAtqDbiyHpt+7B1ksGn3sibnTikWDzgzd2L7jdwQk1+2jkg7ZjXRr3j/v/UuUVK7bUeOlAn4MRibedYK+rtUVp7KH8JA2iSpEv91By5q432H3KGLoLtzqFR8ANAZuMrSjDOREYchE+MFKXLlw9huPv3VTtIYOHorN3/V49pcuOY8jgs2ksBDJptMf7I/VAs1kCUPpzPSkCp0vrDC6qNam6tWol1HsLvDwrEbX+tkOjb0NTOMtHvELZSkoEgMB1pniroQBKjdeSYkEJE+vsUJkiGdPl50MVZbvbguAWAxL1WL2S/rPAfjgEMkyzv8O3aOWi8nUl/Vn8+3A8PqWqchS1C+lmRyQLa/96nSXQTJdSTESynA6bLwXhfrVzSHaFTE0X6vZBxwNBlmPUjfe/RrX9jy6n9TrmcAnKP2FMh2L8H+6raql4jvx+f+DaOOXGcqL3q8YaswNDKDt97W+3jIT+eIZMKv03K6yNLu/8yE2tRYWdGQPlbaQ2c2gH/uMGO98Qe5KLKtGEfZB6NV6DZ4fKhdHdx+pU0hhzBUGMKf3OGxZCY2zSFCtNLz+3KKLyIybcdrxhuA0HVJvjXU1ov7s7PBNuJnvSZVkojYVTB3ih8jieRl2ctI9GhzSWSvI0hKsRHmbbb9HTIeZ7nf4fZMkoVrct7X7ti8kws37VKqF9JCIWBA79u/drI4SY0rCs221qdhbmg4sQVCk4lUrspPXlp+uOjM0kl75RW1rfkwy3/TQ9WRKNa6Are9r3qNr90X82merbikp80aPyu6UHhqKwHVjVhr+2ObALbrNb85aAMueK3h3j9R38rXrDvYfV/y6lg/DonlVzkb7mBfiLKnoe0yYGF2J3yz7YrY32chrfqpKZgp0PzYEm5La0/pj9KhATnEzY9XXJQzCyvX9pUBTbtlwmCfC5KEsxVdcXzgMs4zNIKe/Df9qEa6np3xbmFZUZSYpJzwnqjW6oZdUqJsMwrKSftuyV36r/iQWzIfVUpqBlb+7YmFpXt8CPo3TtDF1Gaw0wGlEh9loqht+MqDJUQ29B6LEu3vtfhd3hVcEkL+jAVagOmEfBW59JUqLzZBMSgc6DO/EtzQPSSPd05kpOn7zx5XPJzk29DG4pt6oYimsEPdxNJxDRU7lJpHg1VLvGfE0miEhp01bEusK3nry8Q0SDOa7jamg/DXvyk52DIUaQi8ETei1mdmjXBuM9cbThaP10Uqj6zmmCq0K5RrHPO0x2ex/+VDORLg3E7ouHfC/Fvn1POEWFu1wiEmcLTJFkknHg1KQtNMg6EVsbRsunWPQq6blb1xkVSGjbtYD+CGPWartoy3ZniBonsUfkx+xVo9mn+iZX4VshgWWExOoNEUR9mnMwmrWssyfm4BUx5Jb11pJJ25gzc5M63F1oAQ0v1EcRiqXaGUS1bMJU3MNhwe0CIv/rnml/MFa45pr0P174JgSi9uBs5FqRPX/0XGash8Jp3LJsHSUBWCPVhf1dvQ5B4iXZqRTioSjrrmx8cjYOz+wt6oTdNydHTOI3op/EzW9Pr/PhB9cTYOZZEsX1VLFvkFgM5UQPnNk1uoFmJOyMDICojxJr2ph8phCkv9LeNYtbl1qYs6wHaUdls95OPisdX72UK84Bpwprk7ls6CEhfP/e6s+dLOViTyLd2AmM6N0tIgBg7EM02gycSj2OzfSVTJ6uH+JK769PTieV40FPrex2e4wNp/3amRMJdD9HbdkGRaiPBVnrDuE+m5/iSbHpvHfjS3zttrYepgOs25cSz6Od424CVuoPi8pEZuhozyBTFeHCEHorwIfq7pRjhwLpPvbxPJVoT4LVxp3gfarGt9WmBoRegXLMgYfORbVVUMwdBYtC7egHPwaO3uvv3yd3zVPqYN/cECsWU5vAfny/2MMSzsIpvK+EM94phlyxRBDmSv5UzI2iblIe90cnJGPxs8Ny524uo+xxkZqrE/NdiN1+y3uo6EPpPH7ixO26Ws0MtfBoR0se33e8uWzCNkIAgjZiJD1zo61YIkfnaVRiyhdnQJpBP+wVNQLU/OWGnf7s1hj2t6u8pfIYznGLon790zFOOS8xphyvdtCL8S2WT/6FEa10BbBH6V9jHg/i5iEoSXwLhuhg/b6vY63NeCzf+VaLm8WRxwXStw7n4QYmIo0cN2NSrpOxnKi9teUt+hZwQLPVKvmusY37i2Q8gUxUStqq8R+/r1yKyZfaGhMQJhmrtBDQJ65mHkXgXyQzL3zivruAuojg9tofmrjIsnJuLDcZYodpX08prOrWO8c/C90/kNXiBeIKHm88sn0KwxMvDZMYr3RPu91dNDpOP0HtZDl0gE8mjsDLe8Zf9w9OIRnQ1+2Gf50y3LGcTr37VtMn2p17x4s05KXktNOk56FY7c8aXaUjnPZ787pLzFYqfY0kO6WzDC9fi/Pbq7HFffZvPrUcfXgEi5lOTm8bqVj6WU4A1EO5gsFw+bPEbzOX6wgRU28NHZwbIMbn4C6dc4droi+L3v21ZBPlCoCXQkdFxTcSPMa1SQ2EJxuF2JURZ5Qjc+zhJn3EDc9vraaWI8P7BSMpWYhQ1Q35WY7tEG0f8zFpgUCVthRBRLAcwBrrLMqC3eTC2/zC0gml3G838S+ef51YPZi8qCZJQYa3wurCevuOjJvoBLL+poj1W0poFd/6f5xj7e0XzUG2/2TL55IhoCyG6ZdAbytmTapVtaGHqTjPnLPK80QyFHCmg+asHx2XwJ5yCam1wQZrG+pFCf5hsKUZCsmZ+/RbA4mfW0IT2wZQ++UTNGDj1hM6c/1kjlmi8C66tu0NV3a4wVMH2iztaCe3w/fDGIGubYCLgLMMlFd2j2c20iogUGdbc36nREXJlOUu0QCYWWtlgsBSt8vm53ccpQEfS0zfSHVLop0BwivH3Ut0j1Kzn2W+PI7qbVc7C1r6bulEx6BdzwIM9nHmTePg74natVO8Hh4dLtncu4LvpGmKd0U69F2a4S/jMWIBa0TONN8cJ0l2ViNYnR31x2vp0f6JYhf/DzPlyO3y2CtF17rQGR3z1AuSJTeGzYKwiPGs3aLOws+FjNljJN8hNOWa2KBhmitrMRE8hBvOAYxyl65Fk/pwUzr5rWx78snttHjy0tAjucQFBolKTpfc2d/fu4C1TNgKrJ7EKt6lHhe63CnW96OLmivoRsFNNBBQkeE6ZZH5iKjoUkOsSWVuv+n2jiTl/cKctK6LcHGQu6i+5CYZAIQkHGZXBz4LzX3dIl4vVdZmKsJKdXC4o0Cdk9tVKu5HWfGCq4tbq1dBm0X4inse8l/N8c0K6nCipcQfWxvli1U4E7Qh+MDfH+BXqPPNz8tTthBKGnZN07H+1oZtMx4A5UEcGLS0436bW6BZSztXUYFp5OP/q0JYHGBTjE6dHQDAdRimQzV/C+vTeExYYsE0zaNBa8B5caPTLdOBxnekgLzqpF/ZVDsEs66TShoHFIJoH40kHp2EGzdgARJq0Jod7v25RknfDN7tc06DFkBIZe8PAS9iK42y9EB5AnICfUVvrx37wfpNVhdGqxFR9byuBzvfKkbbLAIbUguGrLPtCaiw+fwmPhxUl3JmTp02IzGgspeAgQbbqpXD5qlPc42B1PvDJF+xN7xnzbMxtJZCMaR/NhY7TbQj7ffeixP0dSIAJcc3uPj1+apt93Mb4KdBHiyZnXMC0GCsrtG/kCNm63m1X11dWKEMcVPSSWxXPeRx6rj0iavEf/LR3Rn6D99DxbUxR9OeQyzdUOzZLm6OoUpMGGy5mcbRIA3VsaVA0fY5tRbGMQnjqBNUayfhT/N8ucvVU7n689LTPNzKHEaA+ebFI1ZZ82jJo3uI98St/WhHqDLBUdfvM2VldyDCQ0smWRU7kSH7UxMhRE4yk5oLVL/qq02zo2sY8Ih+TigYOoMPW2u35DTiP/MQulQS93y+TdD8gyGxTp/r1MPAcQ+pIfIGdQNJkbHytbiZSksMrTaN+SA8Yss9bzsQFCEzM5XbVUNHmnWC9q0Cekph/QrcjlXu21XqypguVKidG6utnBORspma
Variant 2
DifficultyLevel
567
Question
Belinda raised money for charity on 12 consecutive days.
Each day she collected same amount of money and a total of $1320 was collected.
Which equation shows the average amount collected, x, each day?
Worked Solution
Let x = Amount collected in 1 day
|
|
x |
= number of daystotal collected |
|
|
x |
= 121320 |
∴x × 12 |
= 1320 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Belinda raised money for charity on 12 consecutive days.
Each day she collected same amount of money and a total of $1320 was collected.
Which equation shows the average amount collected, $\large x$, each day?
|
workedSolution | sm_nogap Let $\large x$ = Amount collected in 1 day
| | |
| --------------------: | -------------- |
| $\large x$ | \= $\dfrac {\text{total collected}}{\text{number of days}}$ |
| | |
| $\large x$| \= $\dfrac{1320}{12}$ |
| $\therefore \large x$ $×\ 12$ | \= $1320$ |
|
correctAnswer | |
Answers
U2FsdGVkX1+Z4EjMzcYkF+IF/vA0amL1iM1FhZ+87Z+VqHgC/987wjQnhDwmf9kYenBA9DN/GoMFzbFLCULaseWNS8jOxFfXvZAzeO6ZUvCL8I8p55dAWzSz2VYw2u+GfNhayKbzXGiM52hDljnPgigRr9sMIEFfUEH9+Lfr56Gn5kPJZOUnt9N2JP9u2W80xVOjCuTR2up4aMZHmJr4UsLJmeKS+Gvpp0onbrmJQY1FCzAFt5iYyx9WuULoMJqpYoBzHNI5cqpFR8mOXTL9x9HkJhSu1WKe9GV+WlaDwSZOAFhN2R1losIPsgplBQUddddO0KZzRHtJMYCVk5PvgQ0Os0lgoWNLmtkKfmdjpuLfwtquuI8uR9Yzxc4IR2Wzz88vf6YQxKgK9rjGo6a3OFuUaajkp4j3dIn+M0m5N0jfx0M1rYoPDhSTPpKb6dgfYZmd1xeAaVO5LHh7kkcvoc6vgr0de8RKIFS41wxAiaH8I+2Zr+XbAiiHijAXeVi4WIIdNJDHl//deKHKON/k2ObswLN1P9NCG36bDkqR9wlAwriQZFMqxINqLhnqQeYmkI3eDdJgZnXArpwfFm8bgnHADG1Z5mEvPjrw6KCBmuXRjKsE+2BI23VS3EpWjBBiRw2wLGtpEFznbIexQpSltjwAavWc5Q9U0FIv6jQwUTC1/agg8GK8ZC5zUiZb5r4eir7awy6BN6aWiClZYYbTbKRMUmNktchshcX36dqrf6lQQOc0dDSi92K0wEGZ2chnBhT3krL3IBQqZkrnnPIthImNPdiGu+KwPOEIeVREU6GXoEtOdLC78HEKwr4SM2YlYCLXLSb6YjzQ8UbEch2yumUD6K+Q1qJlUQS6qPlU+0KWtz9OhNDcQAfOk0h9DM2aVfire+l5ihfWNQRs2OYIuRKVf5VG04KdGONVBEvybp6dtMRTV1ME3fHqDwckQySRVrj1n/1C1AorhOAh8sOct2AphT1eCp+c1mccZoMssl7UdI6E+b9AiB7mxB0FIA+fn4Fqi5FDw6c/d4TQwpuWhV45dlUiIeDS/Lcyh1fI4vhPpZyJnVWY909fR5G6/XGOilNXytpE703+koJJaFMNY72p8mBjJxBUA2wEE00c+cHfHv52J8kQ3MhFKmU8cX4MysK1EyMSyhXsquuN2mDYMnQm5/CxDSpDtLq/DedlrcJz+EgF24rakTAYLCODoUdXm0sMVH5//Jr8fC+YtXYa3jFClxOX+9uXBPUENUbBNXlY9OeSzVo1SjfZ2124cCdtsGY6bwgNzxgFdheOVmZWJ2stK0fKtE8dVhZZHgmf2yzKvqx2OsHNCyguyPAxAoMLc6RSbWkQTU1RSSSS3bDv6gLAUMeU1+aUlCkCeY6vKHz2pt+QKvHa4no/3TZW3Yu1wei7h7OJEnt5SQLGLM2WJ2/C0HEUD2pwFd8wweuDQ0PvfxhdfOjRycYs4UvcNB3imaGJwm8ysm+M/en9vVkUflGMxNYWdd46C1lf0qfEUyGDMeNCvD7Cm8m3uOxJhq/N0bHAEy43QpyeGu13K8knKcLOTqVKW1H1SYSVsuPpxIiAdJc4D0404leFuUqumlbRv6ewiJ0yo9LlimaCWn9Dx0ayFtUQoUI4gT41q2zUCWZMQvcHyuHsTWOvVap2HNg7Dwnl5rCAtLTXTU2VDKwL1bNkFNZBljmchDVpPiCLkiLdLb8ajKwLg8HrdllF70Yecb50JrP47DsrP3506vNHe+sSxsVZ7wqBvvC3hFcQUg8Og6dcBydIgUAJuUPrcW/PU2M+82omg4weXkwAcP4AMAPSm2HPDmlh1Cee0Ssd6seuA2lncYqfrcq1pySaS0onTd/or/i4v2ntGCpHcKa5qawPAnFXluLotVqjd81uiZk+JCVN+NoSa4MQMu9xgh+Xo50FYP5mGn1lo0TwZ7GOTResNvkcogn3sRMgsgdaqx64vLTxNS9GDl/gwpYtqVMvchGK2pDB/GR+OvikJwBZaHWzMgpEKRtmz4PXz67tsMidZy8TAvB+XZZum97LV/B9WXy4nE+nFth8xtmSji6GyAA/0JoYa4+3u5DgkXxyflSx6vBhwHIGkxINYiy3XJhEjou8wIYnLYEtwLmRycr9OTW9tzIj6OkTfB0Zm5ipXroWWS50wVEpcpNLuIB48e5+RmsV3r4S8P+nwlbAURYUmrqypsybwFuFI9LFx+w4W8eu+etYN++kh5zxyCRYnXZAKRJpiFA/XaNcitEz5pVZX/gtERAeiHGtGphtKeePsULWjlOkZ6fCbHOaZDVbBGzmuWTd/FrWGkZvER0ZSnEZ8y5/HmdUhwxgV5YT7SiwihEfZWn4heoONXe9i3LOiH2GI7z0XoSiR3QME2oLSDAHDzayyRC0sw6FJCFKWvd25Q91jaxabwGg17e0nhzFNfqPHAS68rBPLL6sOkNlRqmNPhBR99gDIxIYqEGt1sTbS9n+sS6B/khuWLyzYCZyFo6PShoFnSmkEhKIy1V8lTdCh4L+TkTh3ISGM7ooTnlWfskcCTr61HznggHkICP5aRdw4xPkAXhnQ6ImLCW6OC06VyuXQ/EK0j0DSkJTZoqOLVLkLyk+fjgKa8O9fbTjtJhf/ZqlhEwS2I/gxu9gPEbROEFA0U9lX6CyzTOddJ2ZjuMI6bTZ9Cx92kx3htVxxBpmqBm267jcGlIWOY05+OWI2OHTKoRDFycRnrpJB6pCKKiYQfgQ71HNZR5um/BZQYOqwKKAIuyUT3e+Wkp0UDy5Alamr8pWm8GVBhPia3aPBESNwgDUAHmGEVK4lvYSzAPV6Wimknn4f9Oj4Zle1deSkwTyp1jtQOROABzDcG3Sgx7IoLLtZ3DCvkgF7/ynv8ANczEHOaxKUWoxuzp+IHG01cPPsPXJEBgK9IyN0Is6kYXa5nUtiN5sKNDfoGnbAwdFWNOLrL7c8EJ7jc8pg9AM2Km7ZHmOzniv1jLH5xNiWTBxmvkqdCp7WpnBW9Y80AmJYPtnyiHa9c6Z6sCb+B7A11kWGfofqi1FSIf2a2DaHJ4Bix+eCHNWBFE0IxijCODpAhsfr8R6jT3gbIh3JnrGJaCHa4V+eKFKw3wSM6oo9lqkh/b9Sat6eyr2wscgkZa+kElw0uF/mBmJRwBK5YCSPitXnlyjnZnFFxqYdbSOPHxYuBku35zxiqTbmgYnvSz5yG0+6H3d3yAeOmQ2zVxHRkPPs8Be4GeLm1khGbNOPqn/cFbbrei1y81mFOSpkBY0wUJFY7su016ICJrlmvQf6zT6rMpy7enqbSIGjXcp9Q0GMYXXh7AGIuUId7zHa/5Z0IG46ls5rX5ExkmSDA1Pulsb25Mnzv+Ad0ep2T7MpMnE7g2dixK8qExzX6x9v3G61lePDu/h7t4mOCKn4SfJh5EBDeOF3/Ybvq51oI5GpmS8ydUN/8xGY4L/WFVqwQLsCfxonjpB043OShT0nGXpS4wpwT4TYDfbEkOi1H7bvBqmSqM2/iPPWC+vPrv1zceQrdMAJWgL62UFbMf8v/EU17fkUpxaAcnN/jMuMjTMujHS5iN0QNZOa9Cn0Hdu7D6oSqH7hcnR18MCjacCIBaOq1MPzZemJKgRP8FNemBMEm4nk7tPOZqD529MSQxWZ4M0bC1eO8lHcG4gp37k7xH5G0zJ5lGujEqAEyb0T4VsG0t+cUegbF9zJQso7PhhFGolc8b10bo/rBoXWyNfWXHU17BiKCQQMj849xIaJtrMVhc1lygWKNnjhQ0Vj+iPcS1Y+o4hdKNZVjhXfC+E5zWndRvJycZb/oA5zKdkkdLyYsZONiV2pP6+aO77pYemCo+v4HT11KjREinMiXlRkw95FwZSSt7SSTPasD6osaVt0x3PRotrWtNXkfGQE4D7f1z6AJoLHkBSuAs2Ng0B6qEMyq5/4BpCr2rYs/GfVCs88EWrK5N4wSXyykZMSL5l533TprbDXRIHUWN18TvB87SVmPzQEd2poPVhrXIb3GwsABX0Or14PdAtDMaK/DO66G3obSyZZ3JfBuobfb+zApOsTz+xLDEtp0szx3Cvre43bUXlTpcqU6TJMRX8O2P3EmOmFjVAN1g+5CmhU4cJdyibnEdINpi2TxR++Qkfvj+YwtSLCPO+lZPLdCP/iiyMAbj8F4S9rTSS0kp1Ol0CbQyFv2q+OLkeJpnu++I+DHab55jJsS1sf1bKkfhsPS+YjYJjh2s8yw3KTGwI4vANGfjSmhpttW5U3g64kCmFvKOtNCxteDociXhUWahco0sh0ruwg76yDhmf7MhpAJ4oXF2JHL4u1UQ57bwJotF5BBD2NTRbe26iPhbaoFz2BlqRItYubOo+bLiFLQQTt7U0J4zRcfABdNbzL6yPt9Tt7eJdt1nc2cyGL2/LBPOpKDlKE4yXf3kwMl+x/rYFvvfby8fkpNSvqW+lR+a2+XSOdekZoeCF8CoC2hIMc37zBCwxO5g79Xj78N395aeqDk+5nVKiXl3tZbbdLz7kVU9Jg44sHDyrI6AaW+fcbcGKYtzRfxkAhGKssomypqBR4y8eusrbpYplW6eXnzcTCRbk+x8yrZGu5prxfzdVF+QaqaCQPP+Vjxad/WwEYs5cwVy6Oc4hW5xPTC24S4oHh81yhq9xqHK+rpNH7uvL5mR8xRv8uSJztUS4tnhkvTwp0X8yO79R3Cm6iu97Vqz5DaKPBIeUJHw78ADR4cjvjyqr3QqSri33zKT3wOfzOteTWiPo6BUkZurksjBBgYGkLRM4vq1yYo988E+N/vyGX3vJU7UtIGJVMNWo1zmSazj5cI9hSbT2oX4c45RIQMGfZ2mxCv7km2kph8Jr2yPUig5CzoNGxkS/BKl42sA3sEBVdBOHiOWIbg1zBPiLa/LejJVOoR4IRcC4jfdKXOH/WXrT4yT0GPMdGmhP6UG+L2ZDCwhIk1sveBHXrCbXW9uOdafPl4Rdmab4fpDkYCSx0Dau7Hb22qpomFR3xY7CuqmoHHAIyrujTYjh/OKEiEypNGMhC37gpl0rrPhbDf6Asl7RiRAWOkGppbVGGK9/QzUw51tJfl35rCRovMuWM/leFIUJAyxXTYOPux9yPrP+mjJA08+rub2JOitKOypi9E0c9r1T6kK/8/ezsDdM6JzRoPY/FRneHFa2BHXBU9YFudujQiZ+iO+s+rNcXG4aMChjAO7iPKKtx5n68c4m7fQEwq9t/R5MxYeJnM1Z/0aphbT1u21AklqVcHVVbyohZG1W8GZu9xEtI5D/Hb5OQsAIbOFnpjt1bSNmKmMC3zHFIr/+cxdESCOYba9LitMSMBVZuw7q2yZjA/2uvn3bpc1quE4G6z7DDcWoBBKMyT8tf5TOwZwXUhb8ZA3cfYcSYdg648HGmd0SRaV9K9snkXLPT1pgg5Zi2pl8oL7+TYIfgHIWWGISXBvx+L3XOLkZV253V7isTqhDy12XIvajvEl0/Rw+xSxYfsUQjV2kzbMfUcl9YdbK4HNLfdOlbcrcTt+cXjzfSHwZ0ksS08t7m77M6MW+eygRN6DvHD7QkWZsipUqzXLucs1HxTHk7uA6ZQNS+wuuS19g7RwUem54KSwOlelWgPioQdCS4I8hjVDqK4gyWSdkM1Lsv09fTWXSJMwGGtyvVprRPZnR7khnQlM6x6cMq1V/3Txz1TxdhokVCsB8Q4nczXmlVc4jXHYDw2lPqHGnIBKdk9hqOJdBu81G1SwE43jCRNxOmc6gzzcK3nCJeKUpUjN2YrHSyiJYql2fX5UHBDOSGmood7qsqeNWxsds0NiD9c1Fa7/F38+JGkmmFtKMgLnc5c/+Xcz7SnnRQCHeutqOf6RxflHjNh7j+kWsk1u3Mts73Rqua5KWI8v+SlplAkKEGedhldVGMlRmayKlmqRk/9PenkOi/7Ea4ddd8uCQAn5h2PXhEvewhZGjQXRCt4Z3OhCmIquTAaYVRjmGlI30hTCUni13OjKtW7TayjQ+0m49coUfLkiwP2zes6YSO6SzJyEboBQTe/gAzVi+h13aVSEAHs1D0dMmZsUhXLSORKN2is5kzJCqVoCXy0nNIbXfxng/NHy7v2NMkkSPQF/VmINDiMbsTt9moIHsD4Y+tR6HRhf2Kok6bnBZWrYWx7UbSS8ijb1byj1yc3A/es/KDryY5IY+kDVVktjyOIlsSQVlLgszh3hH1CEaedEj4C0cpIbZ4f8FHv7uGrW2R8gHIocKRj76ovnEq1OqXfONm+RLOwNFcBBjryC8EzTMtAEt3zFytiCHlmpnxhVGlfE2NNkyfH1+oNjLtDNCF9l1EsIfbkfCkUxIz0KCO5SO6K1XltJu5QoJ49PUq79BaJJpGb71EzbWf3EF+CESves/QzC7qoSG/b0UZzYUkcQMk0Cb0KTcRybmv8PmFpPc0vc9WH7JCy8j0BXkb+Qfo0s5J65vhZDqxQNgtUAtHMfcZAPdrNamrmat7o2moEKLIPr/a9w0S8fYPWI3VU6wftYlW2yjMI3R9P6RQt/3OxU4RacC0zveTcRULSxVz6edPq0/2a261aVsAewD/YzbuiQnZofFPoG87wFRYGd4eye4pGOPj33De+wQTWrHharqJ//11sOins+MKysnyoqpfAEW5pGxt0SPtq18CO6C4rtyXl3/RPIyKGKHSGam32BJfZqXxrXRNx7mYz+QpZrgfYKl4Qhv2QyATISfx5Vj9w8LqyPqqMWmwbhCMUStYn4Zd6RvyYnwtP8Ums1fJUCX1IrCQTvqSqzaTWSGOtkOClGsGO7szINPEBEQg/0VkGRIphONVXohVTYXPEf0ZCFH4xtKA3Zklf5mcJp3tq1r0NF52/tDfv7PD1vhApKcCYHsnJPRPD5Fd1Deztch8bv8CTFyh709NtgFyPoBfyzT9g78piRRwYIMuDQnbHkgzQQqNLnPXZZQ3k+6YgHwRcxHZwIzSmAygsVbziumvrbEWc62iP/u6HxeK16Uemki26w222vQiPXc4O2hF8WaflUg5Q1rsZwwyO/wreYvfJ3/Kl8O6NBKk+PjisGS20+0SncrhGvSP8V8ZzN5lqT4MjOdSTM0hOlV3g9rf6EovCIKidpfgJbblTKZAO6O0LPsY6MnIcx8mnmqhAsKtQPZ2jfuUwQi2BILWfNJQgzO7H4Qw/Z7skDdORQgm1kQi9xUAmtx4h2anYAZZT7iSg9LHTQxdjzr+63M+BEDD1M04BLLkOcr+jnr4mO7ckzYC36luArA7xXR8Yzxz7oZMpUJE1ADbpPjR1Y6ly7dTe50pHXsyCSHv2O7F+/GyKg/G4qfUouckYlUvAtmVLyo337SDKMNOxl/gJQ0VVA2EVQmV2aJ0KbKoTXEVvG+a1cKWdny/st7pQ36BmP9MdrO1ZfFwwXBsDew3bcuN3YD81biK9miGy01Z+OuKMZZ/Nlq7X2CHKLOMApazs+lKVqonJW9UoRSHVCmJq57Hwq5Ma2mYJJdANSeOVsYYwA4F8Ja+FikReSjBGyPfEYYM+QwT63N/foP1DOUyn1QxUxJxvkuRu1SydyKUAOD5t8aLJ2kfs49Ubewy2et0yUJQ6itp7ivGcI5GYGP+Rz4kvZzCDpa6yrFCjMqAICBMnwNEQuLfJAXPWUqh31t0Ai9FD33XchYpAGlsUqwc7xoHQLAl3CRXdLijPwRqO3XYT9qb5DElYZcFrqgRPW50JCWTp7Cx6KbEo8XnL8PNF4/EhSlhoN8FxUVb7l38+99onAKHkjgZyf61UnR+db1ka5MRq6MR8hYtwIM1xNuxDe5bbVhF+ApgslzGAIaBNzvHsgyxDlhrmk/cIGi5GVoeJPpsioazp3Y9L4HMunRQEbBsIaOJP0d6XLhMY25i+clBcuu8KCwRIUiaH5Fc0bU6cHzaaTFlV/2OO5X9ABRNt2lfc7zmaH7ZCqxyW/OKxaVfsBm9fFqLEnxEdcEfkwKUs3JAmDmON9h2dYAxTwgeIlx9LouKIac3WPY5aje1l0v1efuLF0NIQF2olvziV0f6UMMwb3sOaUQucGwqfSN0TY6wYsvjRWZD7DpZ8UHIdGlk9gCnYZlhyXpWjG5SpaGnsUi/AvRhOl/gDQ6IWU/Xx17v+Fou4RkxQqHP4/+FLsGLnB29uN8u+nST8Ij8PUhD0V0aXSU/zrRf6vFo3OW23uWRdDxpPYgUA49B1vAcDe9/cgGbYRh38h9tMtrcUSGiedy/iq4wdjVL6d8ZTNVDZlnxp/SnVHrpuGqb/XATQDqXGZ5G7f1EcNi4jUeRMIzNMfTKN5JXxqJy5eZcHGK8IJK68eKyc0jhSw9mHSregrVrlHlrQMXt1VWgDNeDIqr+b99qI/kHx8Cbr13wWcPxWrw9JYHJ88cZOnvssQTtNdRsdk5Z7wy557EvRnbRfkboRNP+P5N3P422rN+fo7OWTb20imaEnsmfZqHIVB6rZHXXNatI2aBeuNix9wMjdcxT+y7H0LNFJSFvGZaE0P8OdoEOgr3HOokCJedZzcUGjkData8XluRuq4/7alhvE99xpOs0HZq2Xm6AzE9go6C4m+DiUNaAk/VW+KHfWhvTq1XJLe0m5JMdXAIKQJ7LjPUYOotkchfmV6j3kM+Y64bpA2cWcfosa5D/YTGQp85PhrpA0tsYDwmYGUOFwmMkGhF6kjgX7HPCU/zBGcD/fH0GBl5kd7IB8ubIPvDUsz/WE+a6t/m1BHMVxbcTnKIpzs4tRAz2ZxB/GxmoeSwPVEH3wSyXU0qdBl49esm2ECfal2VsrO1Aa8z1uCQ5FjLsRruq9sskKwU6lv/JxY8D6r3E+Q71yg3OU8Sgt8gOS+yWswZdgUiwcPSvhOBOD6AWoA2ZNKi16imh0hE7OxB1qmAS0AGXBHoJmUMGsswiJ9jxXZU4gGZ0WqAhNfvPjznlytbcex2Ye+moYAfaNuzSZsudA9/U7ftxC+P/xWbV15PJKU2/vdg5zYjoqSU9i4vmTfB6qp1/2ud+v4YlLY+HwA5YpqKuZya8If7lw21uHIv8lB5028XhQM4hsGWS6AEcaF3uVwycQHj3Sl3ipd8bQf7LygFOh6gsTcX22bg0sCBJeUsu98bZpkuoAFt3ejdwMDEda+OqiNvqoYS5BweMoEo0Q0Q4YhoDitffTv93mBPHixfJnV6un4R0x6xQOFDAGa3G6raLbmn0n1TeXVaWg0UPos2RmIea+1NHkUmSesJGL2h1gZu1Sms1FyiQe2hDXOYZxV+Pspo3ovpJv4xGSb96uXxS44S9c6Bzg24H7Btcr2ywbKhfikG5ovKlENdPC+jIOesGHTiqCeJp2CPWeCXWk9iEX2Vq9rmvBCblVF4hsg1eYMVvN0jQw/X7AkEP01p+wcb1caFDfKR2G2MKeJrY8Ba3IWjpmnVrgNd0Q+IMs2F+TkCB4yzLEhPhlX6Cq9CWftwWOcJyLxaiv+vK9xvkrMWKuC4gO8Ptdh9UlEy+haW8uTj+2sFNzVhfWVOEL+iaGba/3qqHMfm9OOXZ4skt+vVYyLc/AdsC0VlE7DVIdXiDWq/IeQ/1ayOJsDLumguxBKN1ShUHkUr5DNk/oj9Y1tENLNWsH6tcNrSOg96YyQt/MCTCrAQtUwYns5HApCwHB8ZMf88xhxO9LnY8Ppgls1rCXDWfynaRo91cIgr6WQJzi2uVq8zCm424AS2vFphdfDG4oSXYJT3LborSQUl6B5+iPz6TSfm4DACYlAT5Mg6/YuyQZQXV9ZuOZ6PtlmW8Q/nvG6GjflB37HXTcc78UG9P7lqmfMyMdHmnnP+whWKCBRH+c0vBfX0eiIkMlGqdDtEYpuBgSvyyE0Nt62GdVQJEuxGgYgQovznOAjZOKgnQNlC3QnfDfaOZvoX0AMEz1Q9f9CHuT4GAuTZ0TBR7DITYp+3oS9b9X1YUwnZ9ofMvr8dbrtDrehUzX7n/BPFhVjSIGBSmq4v/ILckg3ipsHeEsFEoBFR6pEcJngEuDaoT5lITcTHQEUfaIA2ddw07vLENyd/HroGToaePcKHJtA82NfDmYa2GPpr/MTV9G0dsVTpy216VtE5buTDxxsic7kOL3oxtUG9U/8pj2q+V/ivqu5UOEWisLOfsXX6ED8MTvN0wrfG0dN3oSx4KZvh8sXFyyccOnS0zP55M93/iUZwSdoztkZSpqlmfGKoc/IlYYD5/OW6gdlHOr8s1Yy/MWwrUKsgchRoiCBZaHIsdRDpijFWbz0wEpP9OWo690puTLOFoqe/pLAEPfMup6NFLUa9Vvv3jqB2116707+0ttIM+QdYI+D7ZFhfwoCB00HKDv2ucObiIFTgCYaxMFaar0s2uTjHBGeDTk2JfjdULVybk7NCCF8B7UVbUZcpBjq4JITwaUoIiO5c4FCAk/xK8/6EKQoLgt7DL2iM77/t0FjP50vf6MLa4IAsBtcxHkJfYukFAIggEIoXdkXiBwKIPPgBqx7axvJXHlBXFJ+FOtVhRbY/godQ+zoP39wnew0zBQr+H4UTrKEoWpvPTK7oKZ6hPi0jZsFZG+dX8Nos04ULr6qfk0a8f+pYl+S/l2s4OU/N9b9hekzH0xJ60jgsMc/Mew8763Dqjp9amt8I0iLaeX2tXbgy0ZG/SqHX4rGyFx8MAuDl7oMFBJWetKauOq6b6g/ylp+gfKVXu7TF6U99OKEIh7Cb9m+L/H1AZFzoEqYmtI9jU83VFhn+PG4HME1S8napbrEwLMwUnTvps23MTqp+S6PbUZWLlRgwP+9lLW1nEZCcwskVMqVKXJuC6BvwWqRQ/xUuCX7w2p7XKvzoz5kDrLl1Dam1wWUS2gaupf0BQSs/UFqVg2VWBVwIz78qYyAOFhLSBKIlcc/UIYSrYQJeJydkJ9GahqACTTDMxXCev+gF9rLkK1v4t9HN3RbIbm/ydYsF/P2jq0rsIIwCaT/RyA6tyjhL6o+UT/YWVUMZzhxwKtfJv2hkQPOGUI66SkoEq5Re/ul9bFZsp2MHGZZW8JuLNCyy/yffIRLcyDIeXGkufKxe4huDzttWQCmYifdzqUuFNo0ouN9eSfk3SGqwA54pgozZCD7ZuNZid5WRJ02/pqMi2ZcsiOhuwgAelse+SQ4tjvztM6G6dBfcnbOkNxq+2UAxyCrc7aHMiV+q5Wb8EIVkgps8Y4PNQkC5B/q0E+LQXYkI7Qb//h1F+ozK7wdnGqiP4oCDpu96oayXgLuxwYlqkuOwihlDtYPtchJQueiXP2lRkPMDuG6IWOW2xMRgnpCFy7XkPFpPBFoAIoXtoIfTjnDMk2qUTldF6GVOE6hH724ZLTh/nxOwRqJjHe/jExWvDr8nWy+J5zINi5Va/zJksZVpDt1GJfJxBMAhfZBPAd+UFvFMyuxYubZ8RqN0q8rAHvxaPFYycMhnZtJex5LhkTLpIOOuCgT+k7Gq8lXfNhSBncF2TVLyRclatOffMZvLH9F3gDAxrX0K0g7lfj9oVEHxmoClT6xXmj9ytDgiBVkGUtwF22LWFq3BXsY7sTZrLh8Bxo+YNIm3gpgLWsc8WEPzUOdGgfrfvN9h7ozWj+M4H6q7JmivD4A/y4YxMGP9An6Vu6sB0bMFp38vdRIXfgdSBnVPOkhfCqJNokSdvHr1xhyFLlql72HMYTJKZDAgPYd9QLdVE2HeNTyoyZHQcOQZ7CeWgNzg7mZwDZl8hEmXEz7Uyt7EKKgb4Np+Vz9VGPI2SlHgZK1i3aCwVAk4SLRE7qxoJoA1pVfnEPi010q97DgcHonl0Rs3HRtaoIO9WKFlJbbL+U18eWTRFHfihDCxQwBnQrgQ/MfMm6I1TvqzwbIedcPA6IslQUS/JElP+jjJpbuHtwnT8XV7WYKYSxROruNOZJUFtjcE14cirIkn/2gtomyiM7AGCXQEVzVcO8RViGEaGpkOtvHhvQo/RWRo+N4EXBXY18CxwiaNpJzlwHKo4My1fkekHMCBj0iW7W+7QB+ezGdam06jl1cb+n95uEaMjVvJeUQjmgG0qXClHpt7bLCcUn96/r9SfbNcLm5uSLxkQX2ZiwVzNp6RLcD+wcExenonBb9bF//kg3Vms4ZJ3CN0sDA6rz6zqO4rO2y7COCyKT857j05P0ZB8TzxMNTRXVemYKj/ObVK/HxYxWZ9rVmgQHn1QpadjcHKZIEyA85l5cB//xIddOIYUgY0G1nFcwB3+MakgZU9/mGOt9A76CGQIPxHGTId1cTfUoH1DVX8Audbj/H/ZWvmdJ6WhsnkzR0YqSer9yeXRAW0lZdmKNCd6yhsVErc1593cjEERWorNd/mq7qQKQoGStIFouUhu+z8dsDfvuW/aUKI/fj2KPgPWx3qkTKGJ5uE3bl6cJ6EAOEWr3YDceG4wGj6MVx5E84MrYZNDZiRJQ/uBgOQsz3anLaFCrbDu92IsCOZFT4pwi3hhPfwhNswkW4XMZgSYG1zfWdwIgCAacvU3Xe46Rcg6rc4Y+cT4SGodp4aeEY7Noxebr59lJtyudQot+f+sLBPk3VGqC2bh8zgQ/0l6fLrlQaP8XqeopE2Xm9Bn6EodxnAZRYl+eFBFYNWQ9dMxKn3OqFG4eD8TvrZk56yWx/TO3tlr+doHDwNIzjHzWGD6y5ndzI0/JmWU7w0YcdwLHu3iObMSWX2agSDZzytpF40uPXwMnyGbW3msS5QcGbYVbGR+AJUb2lIiWfp+RHtB7wGcBqiItoPRXa51oW1vkw/wTVbI01ozgBhAZ/eYi1Bdu+17myJFBg1aBNRrQ0JqCGnxL+mkR+LSA1oh8uy5qCLrpunYUpoUhPwMpOGc7neKxdGCQF2kZUqmw/FlHab2R3Hu0fk6z67JVNkYHk9tpsWDzRRTkIXgI3daaqKcR/6HMbHoGi33US4uhpQ+MxA/bhqMRXCAO3YEoeY23KG7KhOEkgUJqKpd9CcsLMNXM7UJ2FLd5msp8jzgxH9rg/2iK3QiAgpTrBFWbWblcCtEFDSqq2958mlMgqWErDbQGbNs8AM3JnBMP4oaXdMkramEf0Cp68Mhou5vzO6/i+jGk4dYn+EDNF1nPDn4FapAsduyGCWs7rriUpOlYLdax2I1dJPMIdqihMpg4kz5Cu/+nk0ZOTjk70UFABReB++recaYngO74gq4fYaBoumx6n7mMZ4ltdUMDMFbWsRcNyquuN++UUPAH0s3ZBKsp5ze4MOsKdqgv3bu7A0vOizK//iELP42b+AxNSpGkjbH2gAFaK8RGp6LoJnCiNRDXE2xU1KUst52XJg8wyI45iUwCV0YIv019RVoifmuUWps/t4lQ4jlzvNEYUUlYZPKlE4fg+lh4i7k0FUBk3D8o2YpNTZzG2iQZsPwE48O0+r4VJq284XNjI7S1g0QLa4ettSEQLfPeSawu80aFmIFk80RohZ9WSu3OJqdAJN2R1iXZtZPPAyHBJTZpQdmAKVkOEHzhI28sEEtwa4mp/tBn5ObF+zHpoTB0BIbPdeXtRrCiHUjLU92K8zJuVp4iuoslKo6Ipv4F2BVdgA0JcH4ndK2yGvVMOV8ACfeLZwrSB3yeYng/SmosZ+Ll218U4fNfeaGXsTPKNcwjDCS1QB38QbyLmnkHjIJmFX9zgrj8NDX9RSAfhJB4dwm31j8eruoKD/4TeEccFlvFYbZVxicVlRO3ZCYVbl/sZC7rrgDC+R1sHPdLp7+GlpGG6rPboOI8oWOgSkGupLPao0NAx4RcOrsAzv5X80w2+SPg2DhHnLmTNpoHEl91ZBJHRSa5kMWNemuOMYiFdGl3MYtYXEQF3eTJ8aCntolGL0OongzuFMYDH0Cof3A/johsXvZ/UypBUqtoFG8mud4I+FTkT9DLELHT+af/rOvg5KaNUG0O+JP9mUgNICnl1TbsAeWcXAw/g7CnI7sp0aGJ/VJegGbmIzg8yzlftfMsi0GAw+HULrG/MJJCgErvP173T7d9uSLfTl8lXfArd7u/cphvjiuxp19X8THg6udvQM+jOx3k/wDRARsCEK1hBM44NmF1FORpKhS8GVdvhvbNA59b7ehRrMp6/+dOI5GAZVzAWuscFWSmugqK3xAofiWVp3eV8BgsARDhfX0ed3K6vYd3rMO1AIZaPtxpKBcpiaXoYnqHf9n1dTRrxELmRMd8Ah0y4XEk2cIjXJ/1RTtFmq/unszzMdPTHAoGB6YDcJW7iU2qPWi9MLbA43KwTOkZaNfcQMwUwbQ+3J02s01yOgF9QJRiq918FSJzheTghDSqQOgCZXnxCntH0mp91fHCirykHNOsoulk3S5K0rGJBveXQGg8XLEZ6mACmVBWjtvz82TlbeRMapn30rL2ZYQzwVGJFxDtAAhRz5endOC6ldOkuA4XVkAMVtoUHefCb7KAbW4I+i6kfC5FkFLjhG+BtHDUNttUr+/YQEP465gMzmhRN0wHHi72yn30qezQgb9qzlEi8sKKLumO4n3D9XBA9axYm8Y8/CkNIJCVhMvkdJnLiXVY/Zt77M2Tjl3Ygj7Hirds7bgoUUhXw=
Variant 3
DifficultyLevel
561
Question
Sam worked for 35 hours last week.
Each hour he worked he earned the same amount of money and he earned a total of $630 last week.
Which equation shows the average amount Sam earned, x, per hour?
Worked Solution
Let x = Amount earned in 1 hour
|
|
x |
= number of hourstotal earned |
|
|
x |
= 35630 |
∴x × 35 |
= 630 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sam worked for 35 hours last week.
Each hour he worked he earned the same amount of money and he earned a total of $630 last week.
Which equation shows the average amount Sam earned, $\large x$, per hour?
|
workedSolution | sm_nogap Let $\large x$ = Amount earned in 1 hour
| | |
| --------------------: | -------------- |
| $\large x$ | \= $\dfrac {\text{total earned}}{\text{number of hours}}$ |
| | |
| $\large x$| \= $\dfrac{630}{35}$ |
| $\therefore \large x$ $×\ 35$ | \= $630$ |
|
correctAnswer | |
Answers
U2FsdGVkX1/oPAMaXR2R/98eN/lxHfhiX/Tn2ANrQbSMeTTVREqaNnp/+IzGpxKxOMrsi7XRejEHZxAG71IHONJRuZeKoEmcIJwAupn40S65meh9PzvrBfOdNqoAUzfZCLl5FlIzXduAhG9nswD9D5C2gl/+xwcbKKkIBtIP+uTUQQEjT63lXlBqp1n7ooShB3yGkm5BDS6rILwitycEMdg4Y0PF6vWxdwGjdTXrdJ9BqJDJ2I7P3L/CsXyjCKMHqwW1hmTCyGImmgQB56zX0B7i5mGDdwTARRSOEWN+yYTBJrwigBhFEZaOw9ZBcr2C7MuObxOiZEPetYgZAp5uZ0AN+WzGlRaCSzzio7k25GQ9MLvn/tQJAqMA9RXTAWiDQr2prIZm5f1Q82mwT/KyWjI5/XDsfFfDvArdNem2ZdBVzXEXhcGHVWnAqv3CWgwnRqekAAqFMIk2kJ3anINkFg6pQxczwPvB51BBffQK7We7+2z5AgDu1bz3rY9UGvMIkFaWojXSUekmuIN16iWoBf9gbKFuK8+/icA75wONGOTogk19Cv5oQswACgHsWq2xatPGwHWrCIP+uAe67GENS3NzytPlccMxeD2bWvKcDd3ob0q4mBIPzx9oY4kV6ynAUcSqidBQRDEFFwoqxejibjzoEyuz+x6YsKGnakom3OFXWXJPbw/XbaZ1agPjNhcavHtWGzbtVHNIRPFWIsm2QzVALQuSc1obsoVXgYKR+1GWOdK3rsv8uOxJ5DY24Z6wz6/1DbHVtcr1zrSLQ5fXHO0AhoC5JJ+1vO3Od5pSPBo0fmv2K+bjlQcz+GcSzNoTnzu7cGJQpiyFmLSgOGjN0UsA8MMrlroGLXLBPKKNTasIdZkFfd1T829Nrr9TVUxeBeUIhAVugkDTSOtZLFSMoRdyeUq3tyQfZtpOmV6337QVU4cZY7LLG+ioMc8klrFN6mmJJObFE/+13pZ1cGG5mRVKvLj5f/nPHAv3kDKPGpsnF3qCqzpMYiX15ZqdB22BAeuoiQ60vbgtaC/c4XRpwnb+mtJMZzvn9yw4xwqQJ71NGCdST/nhWzxOXScPA2+uhHeKj4n4qap2V6qFJ6xr938M5CO9GfPpdzeNBFKcKqfkRsmzj19iAeqT1lBmrnkudfgtXZybu4aCehnxlfEjJA2LkeIYyJRRtc11tpejWTe4/KiYlvClCFsZPa5lJ0UwYtCh0Th0qLX2xgN5qCxh35rBEFUga9f6Qr/d0EQFI3Ok/3sZlAF0uYJCN2gyBDISwxnVC+7C44NEgpj7zfdHMZDvHMJdgTyK1z2GKDPg9gnlGD1bmu4L/2Hv7B4pgG7vwLoVYYATjPClRJp0oiFrir1OI4F/twaUjZUWae73nDcB+gMGBSxq3PM6lzGYXlhbaXRXBmd7C4YUSAYfYd28xw4DZbChlh4UKpMkyQzwCYy6r9wyRCwQc2c4L1DfVtep86EIpB7GMFW9JmfeG8m8ruZKSaP18XIHLCgJtOVbniaxwg+Ldg6xZywzg+4rHA/nH/XQdK0p5+PDc8dZhF3h6OuTjfErUKpy8ALQmS88//MwfH3bvQgHh3Fa2OyPTSA9nMaU1qELsobL88zCiBZmPw0hyiU6FTVc5t3HQNVu7hldAEnzwJSorZy5TX7w/ZBIfBiz+iHLpkPNgPvNIRwq9M4FWXFdE1MJb3jJ6p70nBELKo/dZ+HajxWt45HUtqZFuATW1U3QZQYFNAqEEqZCBqsyJe16osN3Leb+3/t1NhuRqoIhgigV4VKc0/9d6QWC0LPgfglibkD/8JnQ2vUy65wgccJV/XbImZtqAUp1Pa47fPFK7T0CO5VAgSpnbnYifdJSCsrj2Ac70jgz8kd5iD0dw/4lGP6Xz/fmHCbBILklEK7ucx5S8FmgVeGRmlOBeNwtN6MHt6GZO2dtg/yL8G09hYQjYiJdULMvCnMa5G6Zvpq0+mbdbNQF2pLhkov82WGjR6Qu3Pe6FZpG8b8wZJKLPqdYdo7KGCRpM1X2IMXWIy9pQaiFLrmbIIAd7knJCWYSFEY07MQfTxn+/C8y2uB7rXUh8ljSnUbwXHM/tVK44eQS18UyLFCcKEDSjlwYDfkuJWCuM/i43DgvHpLkUblhjI/D3Xu9QKqCatRfG5gULTB+e8vaekp1vdajX/LSoHRgZlViMMUqoJMMaxruy4DemL88yNObGZDyFEszVG61R4y/JuJ1tot7Ik9wCgUzjj+XKUA1piCvW1P9GN9RwU7Nt+Uttnm2XObsPIc1U6f8aPLZOPTjDkZDcgxAwCJ+TQw10uI2RHF+RxFMqRaptrLP6gEnRpTen1ku/SluyTA+mlr4RR2fMcMuLvwnrfGuceZf0f5qfuFmgZqz8GNJcTy7HT/iAdlfV2/xjqEse+yxYip3it1DDt7s26wj0XxAbax1OZy/+0q5ISIVUafoV08dVF+eYjVBudJD+PK2mDggov7Vr8ofl95tAjZudZU4TcGfXLskTLJ5dl//9VqzJC3wwMx4hO/he27z2DpYJQdk6lqwGJ+WDBGxcLhFwVtczFYsoPxnSmKYO0Cj8KHaLMlgIYhqYoeYtaRLjymrH3byyulF3dinMuDwOV+uxCmB8nV8YVwtPbSnl0cBdrC9ErCpHPwXsOpymR8C6KGotbW6VjhSj3Mt8d1zGbSRvBPWmXgPccb99HrgAFpWOMDf7tdNg0FdPMGLhiCd0TO3mD+U1xay1AmjnOasKZzjZSGTHlPQvz7IjksNjniO7rFLP6Rs20RhG8JW8XRHSf6kLtpR1Y7i2oOX3FlPQYE6r+v01y+fh/AyLsuz6Da8VMFp3eVi4N6y/7lSyAvaFmHJQU2o283AkNFoh80Xzx+lqGcNOHaJsuS0X5j3Ww9P2wORyRsVxPTNQSCQlp1tPZ+TT9JZU61D2IjswwDGRi3UxeEWQvgeY/d1bRjWNXKoL1a0CdyFFg5NDZP4ixRdtTW1zfSrnM/EdoXjgoNnVTia+5fT+ksc+0N+IN6ASXutsaqIriyJBXwSPiboxIVyhHgHiEF6rW90n/UoFtYNtnal4z8PzKZBRAjhz4/H8hKeHRpgUEjQB6ED+W0XebdplKpKd1xiOGC//wKk0404qf4H8cuoMLD7huoBNv0kxt8LVAkrcLGUuBkkeXf1r10eRfRufQVKIBvcRgKJ3ecITrvv4D8esXVlGGtL8vEQHv5ou5CecuLAWdO5IiYwoQnxHAVUAY7E/UYrF7NjAMq/+X3bKDTd1dPAt5ozzCe26qWSpZh9PL9/EZPXag+1UjsNuZHly967mRKW/mqonQvvaRVD3+DHkkCRbk2jeLUbEuj/ABFhaRx95EiHjjDkboODmwy0akyOnTQFdzYDBIoBgyuir7KC0u0u57nSQcmlnaTtvYHUtu+FULw4x8q4gsQmVMqPpfy+Gn9JKidIjwZxaQygULEeQ4ZQshVvm248Wo5OO7FD1k59hijgtw6Ki2yC0o7lDwOUAHNnWndUONRqFcVP534DUQ0QOR1IzZJfoJvP0lBzKVCw2akIaKSP7MfmotW3j6lX24Q8idZlYkgI1jRl5r0M161oweryHOVXsss8aDRxleZcPpDL87UpaozKX7pFArNUEH37vX6dSGTieL84kAyelue+74Ieb+r6ehNyNt42A1H1ld8Ab8kYL99WBNdR11RMlaKQXgWE+OJUSfRTYfgFfv5yYOi3TfHB3tvBaTiIVXerkYEfi8P/dykqH4xu+r0IVc5w0a+t5+EXkkii3iIatKm7bGWpfA3RVlCge396RK/kEIjs2Ts4m3mkzgtqpA51QIoa46Jn1YfaTb8DdBYUOX8YNKUt+MD3DUq1OCFhddt8TtJ5rcLG+tYkFE5Oz1BGyzSsOIPvoZzji6NPkiSkq4vbeokZQtNOMpDW3JKJpoTSBBmiCuMCwB3sZiVOSOv26Aa//3byzMZOpMGdjMfKVOEFujeIbStEUwbrRVsQBbLvYuSg4A7Mp9z4pdGOWtDJkKd0U1pGaqVY+9rnjC4cu5OQqgRRFgToJvcRjveKishAwebQTaTv+GHhGTWOp2sB5M8rYKL2zINwpsYJOqrKIHBodH/UMa6/KhWA7YnCijiCXWnn35lt65+MIGs6JpYGy/QcQIxWmYdekNDIHQ6sa005OWivNqtc4fbpsK074znD5LEXoZ/2WsqwqOSrHasgXtTdce7Kz850MxkCUhiDlwwZuwt1IhDEzJXWHCSHuRlAGr2UBO/ChyXMp+wywzGglNTMwoPMR2e3nSt7hoETQ0RdBoCNiP4JcLH8kUyEIyX80IhYIU7A7ojMn/JtZqVBHNHmQJHltzehMSy5/6Q19dovjTZUnwSVP4JwTeLIYC79SjWV+2kD/cWJEEE24x2cO9L3iS096U8uhw/amvEu55pFE2HF9AHRVqJv11HMppZfUTDndr7/KoaYkX37rkqjfumLhzBQEX/ozucC6Ln0hqHcHdTHf5+o/ljFcyoEjlmOLR8PhWimT3X/jiX+ZVeN9kZ2qOibw88UR6i2g43pzkF4pVkm4HLT1xP3Pl7Awf7RIXMmx4aTHKjDXO8xU5WHUxjYwnlTkVxCNkBWZzQsIRtLkYUrTqZDn2MzDAmaUHSBYlxg2wkhrYwGl7TsRKeqlrwvz444YuTeeId2iozGHpn8KsirhP/nY4PyE6JvUNxle1f6tOm2eI6GQnPw1CPR4ADuNYnWBjfzjLAC5oIOPxtCs+SdZfc+64d+T1JJ5ekYIWI5VSBFL74UXNBAvmaWJf3Dckn4KXR17WkcR649tDF6NyhI8ljaNy2RBnc3os4t4PoWGC9G8N8D07omXITdVlDKy0ndyP2uf4SvYcqPTovecV6mNE51gmuJBRMwk8JY+fAfu36LVYG0629rmjfYs3s6cbHxz3MRbgaTfeegG8A9w46w8Bb6RGMf9M87gkAUIdOrrFy27oLgMWdJxx38p0zykdML5DNQDg2HFnjzqyshvJ7PS2SE7sKAZC4vC4a3B2X8JHrr15e+xxIkJN2a1yVxD+lcHf3jjlSeY40+wIBYTOJ+H7zCqzp9EM28jQXwMT74E34JkQOZG2ONElpJYKtaoJSl6rKGdEQsvkMIiri6IGTzRAJPrMd4JNPo6y5RXhKBRgnfFxl6IDnO5QMS83boOBfDhz4LLNgIbvnryUNwDsrqvB5DxdzQYLv3JjfAQooCwQWm9ItGqqk/No2ZZnYm07xT2DHnpaZSf6bVJ/6ksaWqplF2qf/12mw3dCd/1KaGeC7VdB7BNggrjptlksROvWx6n3fVfoBSYZq/TMB2hdOmL5boYrB7mHsITJXXx4vnSWNmTYoK/MWmkWenCvfqYe9SqGfiJegsZr3phh8e/Hej3qBHlIKo7BelqWXBRhrXjYWcaSNQc34DJ/6bcMd9HqcMVsIEEV0r2mOnNvd42jwTnSgwRoAuzRkjLCdaPUdvGqs0kkqpaIevovIHb6/tSMK6Lxgw3ZVPWvPaFQU+1xgKRukA0FcEOacsdc8cOedH7J/LgxFJFNy+xKYJ/d4NJUzqShVrdhp4qhydo+dLmH2WFGYuU6cKvuW8+1kOf6G57nkuGehDPwFqrn/qhHOcV+ljlhhy0f6ihufc6oUDUlMDYI5ZVPUFpYBvktmX2HqlScfXq5bVyAv4dp6ob6SmFi113uvFJT6DDCDm8pNI05ujPhf7lbp09TBah+G+z/WFCXHZGL82aS1VBsdrbOX7MsoncerVsBx9mPzD00Qoi5sRDeWOUcUKGmsxnEdd2HXGwnGnHyPln515NF1By1iB0/gd6ytW4vPTZKPOkXjb04MGVC+xtSv4CQDhJxyiEWibFQzFvSf2Yl4ZPytfKkKGxQdI4yuBMaP8/AdNY2LQBJ282bXVXy6BcXDvI7LIxZj9D8zLc1m/JxyEwg4eERRGR2Q3+KpWntaYfYMZji73BxK0uQUG/7Pj/fOk4D0Ybu0fd7B2qnw1usnYfOs/9GVijuz4+DK8m5oeEnkGWYMYYUzgytJiYaVYCvII/b57yHw+HNr08or5WcTBYLdqbLW9PNWBydIYXhKvWQwsr2pul1le5Sdqzx3Bjxyb1SeX6+89sBQSxPQSSAU5uBSYLfs6tG2qkxp1KzL/ZpLLBhlJqTCu+kIQqmoptdPp8IQa5LRW/vJ2KLD8LIDpsL34j4yihsrjI3o8kx+SpoKJVrH0Dz0XkL/npwuR7LVilG5GAj8jx1333udI4sBgECFRI67L19rAnDa6JoZQldRfUrXO6Epe+24K5jEaTo4GI+ox+Hzg8Q4m1nnxDcBchK7dl4iv53wA8TxZmg9yVJrPv9QYFWZ2g1hjldmmW90eRGWEHplyXWXWW/xmu1lnygqnRxb8fqrJ24kVpFeCuVRmraVJbWVFRBmRKjVGPOg1MWtbm2djBZ3EHHlRNRFkSf2dS9ezavtj1ql5irVd81WoDR8PbDDx/6SobOPPU1gSozh9uPUPUjYaHdZYQP3WMhwrzgJ7qW1xhkyac/WK3E9Aln6wxdYUm/G4cJDYUE96AX4kUSJ1bzpnmghXkCzV1PAzAaXH6FkhGaHvvipEsohl7QIIP8kaom/tTSGfXYddi4jMn9UJJgrLPFzhwSSlBFz6Sbf75ejXK3B48FGwE9bcdCHr5pOx9/FHdg70EmqVei92Dkof1YQKN+x8GHjdYSPcoAUc3rqtVPTDUDyx07okRZUqqlqj+23vF9qEBAqU9y9rO+1fDj+Zq03rjaNAcr4O22G7lR8LqvmYAIVBZ8xkKUP5J+WMtPKbWWzPT4oqdOvFO67pRHuQXaiUwVU9BSW8XexPBgZJk2AO3bgep08UAP0bM/D1/YJ+c4mo5TP+GFwp8FP0vgQQTL8Uq9JQeSr2YXzwsBlvKtAL5P3KW9n468UenrThjQa7EZ+BehfPxWsBZERNJYqvUpNjU3MtCd7lyVodwccou9rK60LPtEJ+aLFg0t75z1QBv0gyrQEmrFbTJFBAaD8b2Z6MpXuLBHyRRwlSJvnnhZ4jtVOUy7S2cplF+SDc/X7XziiLWZTzkVc9IE11BTOiXsgj3S1p5Dbr3aZ86liOfyFiFaWKwIlH8eQcHhGnmGRaO57QGBUksMTMThKf2At4gMkpI1PRLI92mfzCN9Af4/k6Z/N5jJpCgbzwgsQObJgiZXVaTNdjxyqgq6zJ9dV98Zsw0g73SBlyhYUhnbQ4XluSUqjBsOHnENiq5yGle+vmb/aW5cpeV/Va0EQja3wvl6iPDe4Jo1E7edQWtlyYgNl2zgJQVDp05TwrIM1AU7EE/5cnPH1CHHDVM7MKr7mKQTjFY50ywdYIyr/Zhbk4hkU6nSENE7dCmG/N7RPRuqNdPew1N3lz0P4Dnx+LauSa2Erzc5UnXV7Un75hKslYg9cIDNShgZ1nqmeKDGQ+76DQGgJiV+Hh/jF+b56qO+zugCfT2vYIpbIeNY52uoCM4sw58xvU3c4cu1l33TlclABSwtErEG/3P1bbT1rf4Dt0zp4IcQZXLp6JILwcdqbCS0/an+4f1uLk6h5RVabV7S6QKvVjLvcg80Aho6N0Db8ZxnbF3zp7nia7KG4Eu5GCnheiEL5mI07OiaZXvw8d1qUiAY2YBHkAa+jMOp+UfQt7mOmUkAwnH1jjWa6lr1tt8J/95RfWf0bWoZZ5UjnvCkRNEgCEoq21+CHzi2Vla4JApc3wXctAQ5NZWAb50fXIeBkToxu7bObwImdSSPTmnNRUYmUr2KmYP8omF+8D5U/5qH8RcPYPgyimVevw2tIxBsoZyF30r2gcNKRPW6pJCCFY3i8rzLuQIAaldl+MWDXdnZ+ulJ4DSDLj3qEFaqqGHbj4AHMIpfXntPXh1TRxxi+Q9WFZ7kzf8FO5TcGbOqdNGGklUo5f2KGvSoikQhiJ0JUGfKCQ6ccc5TrZQNIp/bEMRpWHMySa0cw5DJqgAOZwwqLQLcQPn8IIzi6rkne500/CK9B1HFE2Xz3ZVbH7EqUJKEflfEjpg/x17jONQFgG8XDB1+I5Ci0IzjxlJW6sn3AmpARZGOefik6RiRsSzeDgwOGI1eTP1JlRNYMTuFlo38xyZVlQakaRbz3tKK6fOT6nLqvzS7H2m1BHl6R5rZWV6jXlPoTAvC9vS5WawOSGRiAbOStsogMgeZ7+iXjp/uHZW0XGns+WtEZizpxpAJkv0UwR5QYv5CP/8ldvPz7nu0U2pmlkmaue4QwKH0QbukUjbaclsunP0Yl/jroyrRapXeFXBPiZTVgkpgRhbIS8haYt3BZ/30lt4NlCkXYRs1fsOZlx43CAuzHAVJDsMBS3nPEia7L0G7jtRvUW2G5ZPxnAArKwOgzIW8r72W8WryoYyn2dOtYGQmnBUq8SN6GTOPhfdYk/zcI4W0jxF2BR3Xn2YDwTfD6etDi6x3WVYviqd4iSJaeQ8r7WXZYpurOeuamQ9rwaU2GZZ56GvcGyj55YEYaAXl029nKBdJZUFZ6CaLem7gJkmBA5wvzW553TfKMlAOFtBqyUo5y5BAnP6t3ZSdRN/NRWK8hBW3Ci758WOkJSSWxCRnj5fLwzbkG2yPj3Bi86VvHaGXJCoBjuJElc7QSK5X1T354EJF0voIYduRlmORvjA/LBMSpLCJPuSOONc+6t9FvSzCrMl54GwbYxj8mS+2SvNnxfMZITOz7NgQf+Kmbc0vQj90r4uwXRh2km6QnRlR3lQ9xvGBGxq7y49RjnytWDdqH76pAspFb/OxgTH3St/mIy2gk+Be/NmYZaT8uk7JGj+t/uFOrSy/jhfvV2ESXsRyjF6m2VD91dyeoXIAklQAMVaHtgz05A31neyVlKHENsrNE6Fz1hJqxu9BKRqCOzfIUEka0z3c9RCRjDi4uxyrSW7o9LuWU78paAG4niuCfOYhO+i8p2LBJjc13C7og145gq8Eo6sJxqNZxbwia46z4Qo7r61DoiH+wgqxpOPsiYkwnTosdNgVIj6aHKganL7GvUg/BDvzzzKMsAICjz6AhIbOTnHHwM7p70qDPeajlN6cAxIWi+LYAutO8vHZadRw/G/CPGd13B61R1g/9ssSmK4CrWdzTcGz9q2kOKiQGObohUsPRwjmoY5Sw3M+ccgoSD79rvKNNYdgKOl7Uhi6YHXuCRVB1mYneESQl9C/TNu8IIw1+/QlJRu9tvz2VFh2JDieRMuqehludwZktyhY5m5cDDKJVVBna0SQL6MuVo9VJdmAJ5iHodXbc0bp0rR2tOX98eOLIBryjLfOtfH0OI4DP3/aO3LrF87l4dn2bpyEsdjFzdA2u665nbet0z89g8jvmKtOpP50aGrumk8GIygphGwfHnymNwJ6Bb+d983AduJo7SYdst58orWM6ao2STTYNdU1qOSaiLw9yn0bOfptVIo2aOMTu/lWLwNl5sv+9fgALNDHB0rvW7rqNAglB0yVD4eHdO9kDtCznLZgVc+XKKAHoa4ZZwHMlE6rRvF90fPjyT72h6rCasKUFiQ9JGHSmdHpIwGGfcDoxOmgcvyLur8fJ8Cd4/KnVOZguiGYP0yHDqy7jdRJQjEb1yNb6dhH9eSOiClhHnmJQKyUW6vxznM6sFMt9nHXgYSUifERkLZSFQpWiScAusOyzYNX/tNhIiWjdAXkddrDG2Na8wQw6MVZBeAx7efd/Ji7pVurspJMTPiBsK6AelNbcKEj4BDhRXyC6+ws8fczg/XmRL/ew8gpiw8YPHoE8jeyCTmo2PUZ2bTyF0DlUBrsnnyCZ61ZP+NmDvsgpnvKdIq/+rJDK63xjEBwVfWJViZIh3lgv4epDX4CriT+jiC0OMk85tjLq+XM3SjutsF7E5PAMdMFfz5xJRQMF3ciIAQbVJmaLNpD1HSp02fJGWevYAtM4m1NNrgioKY8AsYg/6t0QmWOl0J1bhwncA3JfO9Vr+cI1We2UWTW/uQrOsIQBd4rpmUT3yvXUCzAME3kdiRfOyaxsIDUbeiUsTLRb0hTgTuUxQGJg9ToGnxxbuqygw94yDRFSLdsB1TYwgDLGKSQor8b8hwCYGJ3C1sG48GMrYc+i+Fe9+zTqJgHMhSqv3yM2aEujN/2s2Q8nAisvPuizN1KYdBbone+tPdxKtS3RGLZ8E1lul4WBrKl0feLc6EvmF3PqPQiZA6/5fRnlwvkPPKpnWI1oixU/KkNlzfwRMeXP+tj/8uzVwbaJXT2uJefIrPloKsDcB/06wGMze7JEa1XX5EdtBi0x0fSveVYqyijqTrDMoT6n8fv5FaYtE0WN/xHCGw4USBPLznBVf8z2kuR55lDNRRzXJH7jFrH82xrJCrco/F0/2Lp8SfO/QiZPgwx7YU4yTqLhthVTAy6TStF2sCOcWHzjO9ypQDsnVPB7MQUmkJlZU2b3xefPnkOiCxafNxCBoKYQ6lgcxQOdJyA071Qs/qjXa62eXEYzmB9j/XpD3Uca8NDFuHWcnPujq0B9SggC4NEi87iD5qJHGxuKfNRP62tip+WQE+EU6XTQeAPrNFUW3IeXxRSdiMUTa0oONIoLbm7pWPExdjFnJ49tiIHGpAn7JWyFxBHHy52Tta5OXU7ssOw1GjbTP0ziOaMq4ypb+8+DBAFucwXfvvXGS6CcpTd2j1yFKDKzj9QawxCMXYPW2XTJIxKzDMHG/FeuuwAsIdwx1C2WCDXm14UKJKlUFb71s3gPPkgVnXqg9c7FMxTTxgVT4jAQvJDZA8dArXRPabKH9eyzUfTxY7k5LhvWeVUu+Ga/Vi52ZJLT/+1lzXnKlYOwlwc/jd4h/ijzywYBQorlA68prim4SGgmUce2IFJcOt1et6irsP8DOP/SbyMRwSYjadrANeqRGmzgPW2BtNlu4U6vT9MZpqayk3m6zNWIQTE17b2hWz47P36lub7+ZeRIThfr18zXic8TdDv8TQRCK0DxI5rPGJ0YCvNKmsasTYKIxxFC1VpJA0QsXDFLxZV1O285V1CpnG5OcdCgAKaM+cIyslGIK9CISIAZg+rFrQbbA+pRnAykIPaheJ0lKCRv0d21UNeczbQNpr2o+Q6mDq77SXaSPdGDhpmE0BIitsx4ZlSjg8+7wb+YARJjOqJlPeHkGkCkdBZYjcOhopDgbdRsCLkoV7BqMx17JtlF3jL9nKQkS67IKO78LE3SU2FlwxyLMoiBJcSOMVJpzJFA7GxfVNDypTEHSdaI8yVp2IVtBTy9hrlmdfBmcszWAD3hUytpm4SZGa/15REUtfip2renq0z1jOIp8+g6nC/se/viXHtaI3B49hfIC5+DNoa+vLxnUyGuemy4jSa/k8qYO9PWjloc15aT5OmVD4LXrqM3LW9uTsXKnt5sOAjXllTfG1+MAL5+pFjT+nTdUVBZj4EPVSdSl2OSwGifCd5KEH/FsRAwoAAD2PIENzLO5bIk/TFIikbr+k+SS8SpB/fGRPJ3HskoqmwdI8kKatrln7ynbPcQFtNZpPWxEaQBYu6Go4nHAUTnKwvc8ROob9R4mOpIuboXqnU09B4JlHU2Y9tzLW1Z/rfbfVNndPZpdyDHwi9nojFZM5KlhMEbmQ5baFxT2R3r56/An3NVe6EgGKhu6yomNAo+ZNxPS7qiLG9wdCxE39ysJwcVNsNWWwsTM2Y8Syuq3ElDpVQO0s3/EPXmZkjKHTGBIwj+AkWGRFQKtyO8DIgOa0X1XrI6oYglA7Wkn41h/BO+b9U7K6i/BOMj9E/qu8vo0qps5VadKgNceJ+JiPaUMBbv+5XxKmYetiYBxwXkGo5oWxfelQNT17v4mg0dr+Eb4gZGqkjsHqZw/bZvktH6D/UsogWTTIyPXAgYQTaVa6B7+o9AfzeRUfzKG9ZAVmxgwb1HOsfN6qzTbXNWi15hSKrtm+vJXYBd6Xkjiisybs9+Z94koOdnJjWqT0ztAybTgDM5Gyly927e5Gf3cVa99l1RFtIUjZR/oJpBiqw65KxfMso7Oo0v9+nqnE4DIbQulfc6UmLFSsi2LvzB5yyIssZa+fW+6KYrmLMtJoipafsTm9HV2GN/PJ83o4juq/DxTIgr7egeC27I83PaekXz4dI9QaEhOtbW/BnTk6obwBjRly8BBNFSeQAg0xioAmQWUGEnDzVpO+Su6Q+ZD5I4QzhZVkOiOCk9OoM6mEEPbglT6xbbhwwDRw1N6LVXCpbKe3c6VVv2SKy0BREqrlnboDi2JpiRed8LM/NItDRUIS8HYBOhq0Eev3gEWE9NeFEM36kAIozTdcmtOD/vVfdwsk8Fe7CaNfxxDmdCiQ0K+peV3rkdmCcs/2TACehHpzaB3NU2ndTEXsB7aiv0QO6zpiMB8z1JnOtIpxO3MmJpCaJtvoDx2T9cfxDAxXeys+Yyz/7mUshUYDfV4NFhamGXXM+5gk4QeYaW9GHdbcA4y0HlUGi+VAWgRHXJrl8dtbetRijVP1sfdvFjSuHIrBDeonqnO65HYqQomojd+iqKGxgVL7BAvQk0nEWwC2J0ArQYBAk2fmFKQ//8G9NKAE5N/kRnQsN0oGmaj7jWyZprdPsGkhvcwFLUZY7EpW3wW1Q7NGRsdp5yHATH9jhvCr5T0QNcqsl6Aw/R7wj0YecXmL9+c7ZX/8WGc5lRUPCFDvkT54+fRxSWc00PRjp2nFD8FgMJ2JRFE6BlrFCUfMiLNDBXyLEYnxV9esZraq9rMKyE+EiHjn4S/rzDLCRcslzE2sf1YMc5BuOvE15lEe95p9P2Vu5yGb4PyOevzMKCVe147QroflfVzlruedrpfB8w90NVyvH6WG1YHsH/Oer8zOIcu6VQiOf3SQMno9N2WbGJfShl7N1F2//s+yS/QvoaCPsZrwmObFi2HS9cmlOIiuRnO3oWeBIqZoYsMhZTJXp+rvdIHrxaQ+MnW8aKalTfaQtp159UOWvYwpqp2vRSwqrifZJl9lOae78JWFZJ8Ue84t6bGgOvAy6OcW5LQ42jPkL23Yk83Bi3WdXCjvVndxysBuohwBVoyGKcqCniuJF5AKQA9VLcmIPvf/CD4eaTuVvVRYFnwDo5ygV0HjIb/TqfjECNjjEJR/nnBcG3vCFCp1vtO8ogOT8FTmbaP5yHeCmqqtxhzsUpvH8CAR6Js5RchmPz9N5KT9ByXs8/5TE+N+eCJIgqcQhCfZCKimpm6XkrRwgho52W1gfYk6TpZWVlbBA1dCVdCtrr0Rpo3WqILCzwKFFVXVeQKgL32UuHHhyy6nPFALIdkPF4IjBW8qjTmARcROjBMDCC8eUY8wq6bwpUwq5fbMP5v8uK2WhN5guy59TnW6prYlJREfMS+oK/T2jtGFy3/xHqX/jFSydepgst8h7NzhLUeKxFkarq/HEfwcR+xSYVjcwVRVFS7qV8G/qIPWIvLRUV4udXjgbKC3noWvYVPRU1eRzu/NvVpHVnBAkhXHHlrfjMnJwjlq24ziGRZGmnnrsFKmjhVYmlnKPVlE6UplzYu2sz0/bM10xfXGzawE5qxuelJVddin+SievKj78Kwz4xEWLi2523D4UaEi27c5PR7wS4FZduwe9FwILKGYYQ8w7lgDooglVXu1ooWu8M9lFzbvJeTuMy/HxFx0YFaP4qq9SmmMecMVqxxpR1KYFP5Jl3oJDd9X3H1JPsdCAu9BCKSjseKY1kSTkvzp4VHyqeEur4VsGMRwfmWCTzsbTj8A5CWpKe83jus4yKzu05U9/OesJ/N4zyQLoKA9+hX8AvRruq6bVsLLSEbfEJhBiwST1+hx3nLbA5icEc3cz2sl9HDfA02RC8IQTs9e4zdjWE8yrcvm+RyP0o3ZzivXrppDutFQBg6WBSfjnc4IifzO8E7K+U2PdrNu6bpbJNnOLRyqtNJ4uThE2HSLSvEQyqeAmy/a7tqM/Yk0wVjLagtu3JpLkDLa6XOvsWRmil5bi5GuHUqQzqeSSEWJvU1qYaMP1X036gXUJJvIDD8bgbeLLuuB1EU6z4Ad9OMzQLlXrpaAwP6ehoUVBRrEAELM64znXSvnIDg6kr+tphXVOeXSjJ8S8PsOMlbwauCIuE0KTxsMY0ErSxhBp5OXc/htiCpmNOosDS2LQOFRVpveLJU9RIGqoHPL9RpBH4V/mtWberWgQ0krpcLdgtT6A2xZwFF77K9hVjYQ/qMo4mRBxx2Hy3H3fzdpxy/G219FS/RSfhGS+0ImbK7isNCKa+dpNWsvpozIDHJMN2zyAXPQV3ZmGd/Hb6Be4kSCy0IjZsozwxga7assLxyPORAod4WNNr7B3f+Pg6uIDqfNvh8bYJ0U2Cu1O2wILkIj5k1TzSdYTA0s1OtY39RW1h5su8AdaamHBgjUno8aYp8L3ARQcBqlzulWMCdoDyOw0t5rowShhaWZUP0V2CmUP3LmVLqz8VXDBrw36HrKhVV6+PejGHhePjn9oRP2jAqIga1vBWghRhxyJSdhRb09kmjqXFCupFycZlopdWAwMKWR54dBLab66wkypDGxW1pTGFd9c6150ullp9Efn4XanF+ODFZS8GBA5cs
Variant 4
DifficultyLevel
560
Question
Levi collected 42 kilograms of apples from the orchard.
Each kilogram had the same number of apples and a total of 336 apples were picked.
Which equation shows the average number of apples, x, per kilogram?
Worked Solution
Let x = Apples in 1 kilogram
|
|
x |
= number of kilogramstotal apples |
|
|
x |
= 42336 |
∴x × 42 |
= 336 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Levi collected 42 kilograms of apples from the orchard.
Each kilogram had the same number of apples and a total of 336 apples were picked.
Which equation shows the average number of apples, $\large x$, per kilogram? |
workedSolution | sm_nogap Let $\large x$ = Apples in 1 kilogram
| | |
| --------------------: | -------------- |
| $\large x$ | \= $\dfrac {\text{total apples}}{\text{number of kilograms}}$ |
| | |
| $\large x$| \= $\dfrac{336}{42}$ |
| $\therefore \large x$ $×\ 42$ | \= $336$ |
|
correctAnswer | |
Answers
U2FsdGVkX18rGQ/H0awl3NI+cS0J4GG5CA3yb++E8weEHahYK++d3Q5Rqkn2Vvve2TdFaglNxJ2NpVd0tpYsFU9GCl3DsAudFC8LbYzDmjo7h2avjhLX6wvqVlrZrWC3r1XExaG70/djJiE2dhTOZnYL9Q9KtOhSjrjwTLN/pE2FKyCy4EH099QOvfv49T0CVkxMO5t23S9Zc8SHmqGLCRThnv7uZueqPLuvb6eN5nA9ywl2JfNXqw/RDCHZK0OYtC3mfob7m5+2lbnLhl45HJoCdjC++ordIkM7quSJllDDrQToUypLYfaUWlTxIyyFNzNAfZCfWk3zlKW0QaaNc5JFZZiaA6RW7AjQrYR1b7LVhHnhKSGKu7EJFyGnyujkbnTnXOEkpqMa8Kc7ddqE/EBSSNXXH8TVOiy+BuN/t2hqz0LIiMsdJXX5Cd1TfPkuhUiw+fWjK0lSMZKvgV2+EI362N8hInOHLIr67osmZkcifiOCdOJhf0wDVa1dd1+5pN7p/bzZoU7NZoV+IMB5mN1GNq9wfhcdTz8dxDWZ1+G/e1ftg1e8E45R/r8YE/21t+Y917ZGS6k+uu5FYmRGeDJkKEpgMWjdC+wIOmh6FNHRAPAERKsqb/dBziCQ5n13nAgqK5dg0KVg+YJaY5VBA313mbTbELHTCmzVlrzGwJKtLFCG3dyODd6W9aj0eL+F+R3WULSQmAX5aKHLASH3ca5bxcX7557UV7UZ4P6nrE0lNB3W28hQwhjERptRgPv79y+2x6Kb5DXafUXokZdAM/4asdweEWvca3LgnPEbln9si5sYgbckoHO1zBOAZ+LLnshN56V32dvnQvNxsiyxR/UM7TqAphTdzn1D9V/tY2rZlA7dDVzqEEynkhxoJIZ37w5ZMg4RAeE6bqw7/4NBfVIOza5sK31ZkpYqVwfgsGwfUpZboGGl2A/0bMz4ASQumtw95W+Mlm9bX6E6+HDCQuP5Rk+OMASIm8SLrjqGmJwzFEa6cF0aOJr+bBiwoCBCsJKVUwUTqdE2E/Wa8sVlPBlrGejyr5HpKsBkYCpIwiY+R758jOLQE4jyZsWrTizvgdBsMtfnLYmfNNyT7q0FP4KFVoNzdJMrq/e0Usm9w1jfQcEo1NH7BuxoJU469BkvJ+ISOPNU8DBG1X6mh2LVyhVRqc+Al2iNEi+403dSt3rodZoMn45fyP3b9ZeNwV5Mhl/MCiu4Jf044gg2qraet26JjxJqXRB+v2EWqNsv8OKSgkZbGRGNqrQ2bUk+iqziVA35iH2zcu7B9iaohJRR2o00Ks491FlqCt6SU1HBqzCyxuyHITFila/PurXIZ7Jx5RZ6f7pK5d9lH2SiYrMFW4bmNEw2LGZuDvvyv7C/t5d/0sIWpFAbQp4TtiT3ryrJWgcTIwtOQ5TPlN0kcZwKpxhU5KZgj+FyNTJ3N5Uw9Y0nvBOguRsm59RN3YOh0dHfljqBa/RaYFfs0W2PZNeSA39nBGS1q4wrLcNy21z8zVQUmjJqmMFoWNT20wLr7VkchXtm8s0++ERXt0iVuWXog86hQKhhELhK0R/F6Dp3j9BDOfIdOOF+wWy3UGpXlkQpCwjbrCkLntThZoaQ2GFXXKGrtxjAC+ipZr6p8BXmBOfatb7Ne7ilFKcwD22sn/wPvWesj+kKctX7QsMKUFcJzhfFh8ADiTQaIsBkumaWcgoawmOTvt3WeP2IGMyRhIQdI8qEyNnPJt7Tnd+vaWdrvzV7mS6kzriNhYfwJ02/OyhmzgJGNmKa0lIv9BYaEVFRWTuXwLMLobEAqwxYx4ErFC71MyvFRcZeDeMfa6p2UCG5yU+tgcXbnxKA5C4UMUB0usvmX8hbyDM24r2Xevj8siboKZV2KmELreQCxdNupY/Q0BDac+pl1YEfE6WGRsWMfZVK/QYEToc/HupmxQqpeZrDe/N2tbzevJQ/c4E4zxjRoT2+HHHyqV1uXmKYFleQ6amzKfmecIM1Grp8zDiZEX/sbkUEpO9HGYx4pzABFS3B+uUAhyrQ+XKzn6Xm8QIUR/axp4N7np7cyTXmgDhT2og8mMJejuXyR/XGNfqbdzJQH2g+AvquAUfUWZ+TIN6cEm7ryD+/1VMYydNpbeeyIWsa6SHw6wMK1d362HIstRl/cTdfAjsVeiw1zFKucD1kCdRST1SwURrWH5zqAwnVAA7s8Ny56Xy3NF4JNDozBPPAtbkxsbQUzjvW5yrU8jBI9KRkDMJ4ZHTI0DfYST3NpIM5UkqXLzX6jl86XaBiXh5DqS5rlp8I7p+pOk2V4EzD+FyMc8ZPZm6mIQLN1YfQa5RL5nWoADKhZGmp13V/JBkh2KbWfh+pzIIIhD7E1uQtivDyVfCElj7jUF+5gJqQRZINRbTM04TdDyZKkpeauMptWenwm7yooVQkW6BWfm9HkLODe3Gw4LQ1fI3WBI3JslOsahIM0DPIyTFw+y7W804cG901fQv3J3ENgJIXclr0/sxHwJ6KUDRQDsToVcIS5cWBSamfarBbSqimM/S/2XpN1GikCQpnAlNgviFWmigHb07B9GAL9Iec0lYAAYWBAUuM4Xt4MVOC46ToI+0T/U+rZ851DATh1i2Ik52BmtDlD30V78iDX2QQYSGEAPVN1gMroghlaf4CsoTV/qWaUk/Tx9tiVDQqsHGWYumsUzXfz2CNA9RnDO7O3gSwdmSY/iigu+4G8wFVpL83ODu32wWMC9W1tYAri1nXmMCkhKfSsNyis3fSWgYSgIqnxv1Imz04UwvxBlgDX6f6DwMEmtbGogemqsBPQLGRuwzXheuBtaT4vshVebfUt8jBZuYj6UbZTy33FG2IrrzBx8ygg0AYEPm8WSpY8aDOp5saBL/eRlVBlEZN7siUoIGvkoO5Ach7jocvajWFuda3fSmFKyyZO2qwZ/2w2i0zDVPmpuOOGHbY5E2KZQ4YE/SYP60m1eHS4JNAQM7PipenHl6fPSd1g8aSaZmQpmlwrVe42vC7FV7n6AYd/BP/l3RUDFAIt4JrM6lfOzy15lZZ6cycvkPDeZ0fqZ4EZ71P+GbKqsc/8/7k2PO4dTVGY1GqUbbHVv/Xdu2pKkMJ/iz9BRkd0BDvRkfkHcCLmnxBGfxV1JSMu1/mwVIF3DOyAlBrxeypr+sME2PBUfWZojohnnnPntyYaDyd/FNYT8F9LJ8rVsn7Mg5P59ppzy1v2Mpwu0/DMf4NL+PgwEjM7VAWQE5cn6mhQ9SDgad6NsTYFpZYbEvdnoatA8z3p5S8LuhpqyTIWI3IGH51Y/MirIhoyVxDsaM/yEyoiUElMZIQsL0hUpvdfIwkzuKdMfXU45ndHZW9yi5yIbbnuFZ7mCIrkU1GQgVNT84DJgdzAs5mob/oFr1t3yhpUq88+PAM/narf+nL2j7nFeiqDIdZ6pm6Z/kjBxK77ST6bak4mDo29Xc5gI2tvnAn93CVunkRebHVMOJ38dxPEWWdikW74AQODRHwFALChBd0QVmu/LBiVrapIxnsKg5XTcEgz0qGlWl66YyjfZ4X2wVwtTATtnw1ID/kIo8Wvq0vFTtu80D8T6Caog/fETRVBQKXeg/hi3dMiPvpw2l+6R2EbTM8ooKuM8gzcu8UBGKzcnvk1vwZ1k+SFFgrxtPGUtPCiTUzJEgkkxRkfvF2/36Pgsr5t26a0MyLbGeSnLLzPwcK0fUZq7/355bFXCWvYHqt0olHsP0N7QhQAOeX1Z/O2s5NUxFpHLBuTeTfm/7nfKYZ8zsuoyFGy9GLN/u/1TLkTY99VMv7A5H9/z41uDIY/coBO9p65/68wPbz6wW4b+6dWH0f4ZpKpzrkENGp/iYfRxWmwTPTBb35MmpkFhfZQUcMJA7jGPkrc2hp/V50yvBlmxKXWinIESBwDdTD4Pi0VQAsD5vxzccT+BHrvBC2JgCtYQlAXn9BHAYZJEPiOBjBmFZigHm8Rhv2udeGOzt2xOr/aaVEBra02h/q/gdHFpr8Rn6kXlpFXKr+SIAludNWHWZteLlpYZf7yZCUjb/BX9neGtpI1oG9rugFRTL5xJLyDc1ndVmAqj/x+LWMRyqJdDeEFZw8MbgmFmpbgKrUPaqpybdYNuO+XLeJ8cd2PwM+y9gAch8U+IJH+e7Fwo8voXf+PtM7YJxH7U2b5o2iq5EuMlAoadbv4uyAfZqBJDGTM6IwqDbkyUgGEfOmNmiBGrKr89Ijtx5p9Gyf+8a4JPeUOADHvUoff1ZV/NPJN2RiMolkLwzSiXkyv6qKPiPZycUTjMdHnbs23kYFHD86y862Px9Rt38bZzW7cQsPwWAqsjeNWUbycf1hEKjuAPMLITZaZtOuih2/30qJ4ghRS3/mQpdEIjD2KWevGlauyGJ17qffcmlMA0lCB3m4XkU9QvM3WQfZE0UM5if+Dc1Td7a+64MipubtGKf5AMkyZ3+JpN0NP7Js5rucXxROjrjmf7n73aXR6osykR2wydMMtoxliuuFj8fLx8vAbN96VDWWBwpNGEqTjopaSJs+zhi/OFNw9qVD4H+n5WljT3vkGvVXUbmpErfJZxcAH9vm7u5dJd86tgRUozvQuAWJXfZwkLwIvRHLaWwCES/LqcToMN9fBnsgr55Epm4VBZKo4KhumDjmhfoq7cRPbe46oe691mU9x9bEWWgS+3Vr7PY5vN16hP7rs9x/b+iKOzQsSHshx5bcFB2ZQ4iTyNwVfbvO98Jf8kIdL0qmVFUsNn3X8jUvDCxHyhxU9LMYDey3bOrUVmld+BBx7z097VqkgrtadZWu7ItxD27xdp8XNQqdtgUKH7J+79m4zo67+aT5+Ek1czMVo4OJhxcUA1IoK/p1pgvtABXjikuG7/NWhVhebEO/gZAsNYW1dnfnYMT1ub1kTqTQ4wiN94TDBBd1tPujcHCayD8jm/q8zFXwjg2+miLnT5Fivq1nKqp2GGXMPDJAusvKnwko2hpYtApc2UxwSj6+jTB/lrnX0ylXrMmLGF9xaVraY3aoUI+yvX3p5HkqUQwoqvJTbkrtNh3MP2iHVqRO8/gPa4/MsXxIcTHm8E+7FIZ9n1b9G6NSw0efV8AgztIRpkMh3zoZMSB1QORPvg7HdaMVzIiSfvM8aX/6ryrn4tNmBpdVpRMDspPIPQ9h/opBZeqYgC90eeNdodxm+8gEYmfvgaBssm3vTr93owi5PWJx+M6iDlOGS7xwhVoLmhcsUZQ+SEql73y86Wdm26pzHpS9TQCZhSuwwemmRmBopsDrHty+7U8kJQKIv/q0U3Rk+621I3YVArnTiknUfS/xLMh6UWvVe52GtjpNnnfy0Nby73AfUWKQo8frQd6xTd+PehoQZ77VNTVBMlfbgArAbUw7elvNDNbrUq1Og7Px/5fhEo1AFkmYzgnhHP6mHdqcGQ9kgCG0N+Ru8kg+3Go4KPaMrWNsLQcTyPEm15Xm1CNPbvlA6GST0RpG0SD71VgZBYWOTWWzgIDAKlrvdd5MCMMJ6l/JGz8keuT8toVYUhUKGkorM+cFhqBieI9+gkeHIETmZ92NHPxun7dLyjDXdRohn9q5DTGojo/F2eCZFDshuM0/A2OtKCgY+vcflfnc81UBAf8JbFiZ3Zrx8SkYG4HMIJSZjGZtRJ7mR9u6DzZxMugfjLDPWrvqrFQ5TeEAD/mfQ2DMDYdX7hRuii+2fy+FKenPGFas+EVbKofrUng9txvAsXta4W3r38uVwV1M7TJDmWZe0gmIelr1oiih6Nq6z46jEE9BxMc2TykWcrcvT6MtbRX/k96C8xSFerSGQPgUqCyXB4x6WO2hCWoCBG9b6B2XI24MvqrzR2kWeHT1HAMPxJidt1hVq8B1B/ueQ3P9Tdj/pKzwVbDTkUXhOrqgV9/3Q7I/mQcwqLRHQPY31xcpfJPHYGjk/SyBueFO59xpJVFR01oua1mmtEdYs0ZoHabt6ys3wB/t5zBE0panx/RYI1fhdF2MCPEVuy2yiF6f9aMHMiPmqTPXu2ognmO/TV1SjpUbqGjDewVKqSAPVqeGpkwof33b2LLrhFYt8ZL2oAkHcNXCTLB8xjVOBzwOjvXPNG6UbSDuGVZGE4KlRyE8KHymUe/iJ5OemP7Gzk/7RV+BIbQ5+GCazs1B+8V6P0hPpEnKwPD7mAtqSIgIXGey3AI4OuG3FckB/QH5OsVmSuaubYg3Qx6+pHrkXPkReNhaq3SMk5X9R0sLZnmS4jfrGnbdV5CIOfrBdELIkpgJpZPKXwS8NahTIVPFjITaEYguGFJ+sQ9BJaA+NlU5uZuub3IVQJmiP3d8tinTqpXlQFeY0v1PSfwUKvmplhrX58l7dYwOv0M8xNU5idXYOrC1ykPpGrLdWQjGvx139FBaM0U6COchvtFL5Ci5/+2OU97+SgO/DTjiES0D3CiZY8XErl9Rx31bruOWqXblMlfuKoaSFiyQiQXHuSX/ZGLkfbD8q51ynEAerKvPeC+1H/Ha9pz48F4Kx2Egqy1ilPNZcyAr7wjtTXnhO9glwt6Tnr44J6SC7l2XtBIMLbFqZE0zGHLAe70NRSCMQQtMhBg1cSZaQFs8ByXYqzm/1uaQc97lVp9aV9cxrB6N4fZKPvPW+tLNe199A+oIg2i+oXlTR9C7Y/kFyXi8pf2Izd5wSPPF+Wyu0AvtjPdHl+c2N1gjfxyiusO8nKEQVoTVjCAqB1TW//UvYJfoqAkC1DXQhT9FuuSyugqbfu3AAW0ZDEArk74yGw7cSUHQm4avICW0DFu4EaM5fdqXMh3lWQXokJ29R9RJvZrj4zE18nruFZTxaHAJcfsk1EA3U3z3aDTM/YFqGPfd8kTx4xOXsxHdY6UYYP4elEN1PJRFh2dUbH4MR6ubaux8Gri05O0WTZJRN1MeH90UJ6wY8tlU41ekvBuhOVQJQ7MRol1y0ZoROio6ks/oHa3d6QMkT9oZ3kOjNv1cuxx0LILQfgJGlb5t9WtryH7oVJFe3gsUW1kthQh5A8akxWBMtep+1FEtLXon2i6ENMjtFwg4DyxMNIKm8HSD16HVKjjt2lRLR1HBFD9auWaIHXOD06pWF5JEhNfe7Fz8GijpZ+MuuxtLY+hozDM8VZpFxbDpiay5LFsn28/emRnQGhrHAneap8X5l68eKO+/m0XsRtS8SpDt/XsgyZm8NChbzbonnwCks3PX911IG2Rq1MUdg7P2p5LHSE9u/f0n9ZHj40wzXvrN0w0Fv356amZ137sCMDtVHyc/UhWmJTotZROLWqB2MtNWhsaTubiQ8H4NzUaAvMBLdE04cIeb0ayEsqFU0UYUDWiupJpZ31fVnGHoX4DDdqnF6GusrhN7KX6YORLgicA+24EZd2v4RqhpNk2Rk6spSI79vcp758OHzHW6dJihOWQahuA5B7UAxTEAvUuLU9tAoZ7acafu48Svrh7zkIYMQVA/28DV4wHWZyhEUxiNgZITrjzUWZTp7FxoNAT0ceLJA/jhNXT33SxO6WsE19TUcWuEpcVizahYdZCMs8gD8XilfldeKw0A79vBkToZBksZJcP3eYxvIdvPUMLXnNrexJy6VzZ3P26c4bQwf6vOmUtbBY3EwSKhkpPNfeDfw+l04vaU5DVBxjyt7XMZhIiU/Jexn9qTfm9wBRmu976JworAusBrhznUMXas9+VtRvpwkxAOCmV4GA0UXI57r0NhBr76DIqfXIdMuSqA8Bwpyxm8iWpUkyzMyZjalymq5XC1uH/y94JGZqgC87uE/E0f28DxMmVDbVzrY22KPKwmEu/iqnCGg+OJUXPoWdtF6/N/D3iB66LKhJlpvc6BUGEfSEMNTijjhV7bEchIhxnDHfn8aQqJjgxAW+QQeUn7xCk5nRyToBpyIGQ7pR8HFqf3XK0FQwmJsprYDluTByrc5XuvFCltBkv9DnDqQ6s0R01TkNr3Vws5qO8MW12r2dBI6nmUg72ovDtITOzIbt6ZwX0Znc2dRSJ4UTkjKqM7l2NaaGaZgLB3O5ZqddvRQj7w+Ixcos91R+Ib02In79uIv5a64Y1wkKEvIPIKgosCHfgj4aybqKnEhXcjGb3V2897KuKKQ6HUSgN0BaiF6nG6ODrudD+hmvaW6jp+p+xmjFkRCuKLf3I5i7ewBQoJQpwNuysvQ4YO26MGqOxmkNB2IYVA3qsC2tjiHtDCMpZeeRbDF1aCGRRtAXRVKT6Pih+fq1an9zOsBlHvxqS0kX9UMoHhclbJzXxMq15blMeZtPxvaexx/mpnZVjsHRtRiOUt59X1OtFk1MsW6F061ll+PKWIbIRDX7kjoZ0l2YuxNEgIbtXkvQsqPHkifLqcqL1TDDUvCXxldC0awLSq13wTVYyKnAXUifc6o28PtL18D5uKfVrp3vcL6Ud/HVi6v4g+UWmuHLOwTLxqO2FNeO98d5Yp2B6Kom6F4c4SL+qYVJhfDy3EWPGRMMBTuV1CN8geFRA6ylbSihmvcv/8EQSb6b/nPcHZ8n6u5C8itDd94gBRYsInX2gIphq8BHCCNQvurwTrd7VbFCrIAnZmmzxnDuE9O22qyjG0IqxCJnQsF1pbSZcybaWBqL9wl0NoWcVpFSA/6OCtujkOGH2o8/a/Uxo/XFckUP6H/NiOCSVcALSKOkAFvBZ24ycmUcQLwyIUJn1bM9c294FcGtQzb6ANeeHDqMKpv2V2/vDlpxGH6HYGUgYPM2RxdEKEfvQ+mHq9lGXZ4RIUyCkcLc6ADFDfzJP45v1L5MmhmLJzBSCajsqv351om3k2FxC6WbHATTpuVrgo0LBPXGQF1fHJtdix0LhsdT1AObExR8zeN8suWM7MKwe6Tahh8zJsiUsWpYDOAGNJ7kgSZXB4xYwuGVxdXP4tQOPS9l9OnzHZVoHrkkppqyvIiR/4iB70BagGoC/M7DkZMea66in1jKNalGUCS/q5SBGof7CZpOV8qJ1KI/DgLFfqr7+6CJpyQKgC8qpqwvHrVZgqgp+pOS/0Vo54jTJ2yO3eNZPOhqWSDK862Ls4TDAuO4Dt/rLEApSOmop91sq6eAt6fTmsn8ddCEZbTVpb4397jmjkxVUcS3PJj1eQWGjkBgWnbCEYTJcnCtsuZzrok3QcfGCc6DefBbjQiA5DWvSib2tAo7gprZYI3r3SAIjhwRews/xcr1y4bTesgtx0HsUgQ6cJUGWqcwXspcRQflCeBPTZa17jlGKvl6/wGn5EjBvojZlD6I4J1EW3g9CKUdz+ab7Lk8auXcMJ0DCPC0V+8HwFuax8hstvkwcJGRFerZRwRYBqord3wNtj7l1kjnuvE4g54rGmJVAMeX7hxPpjeBFSFu2i5Qp2FF8zA7TgDE1xIKNLffHCIMum6jKNxN9EwzxpjIQb7UC4upnqCTapti1GXQpS8sg9H3OMH1qocy8alSK7lEb3Y9bhMIJ7PlhleYwYZogaHUMh/n+vosq+yj6Y4FMlbcDffhcDso2U5XTBcGPIC/X6FEKCoK/Ypxmfi/ki7iJbI3xL+kBnGA+Kq3ZPb74Feh6BXbR93w9umU5jbjAcjA6BWD2aCvIun9pmJCw3wxarxJSUrIcQX3UH4OV7YvkdppDR84T2NKbm15DcBU7a6KWQyH3OZv5aI+orIxTKgVxtV9gimnkL6/2GfKCRMIKRhYkI8++Vz19SuaLDvwSNOOLN18yz5uRYLFhFJHdKp1Cn+OLMoax4t8+gMlc9abW+QLryk6NOiAmwVvkai1jTyrN4LeGriOXjF0e+/q2sskwhFi7Cj+VY+yLKKC/cVbkwkN3ag466SYKK9s6GacF3wMZDZZ2RmqYWGOj33pdzk/OjIAJpBo8FWlpYmA5DI4mtdrj4GwI9JREuT9w5sfH7l9V4UP0sSNFbuuJBGKur4B5vj7NqRoNsIIpwP8G1qM4Yg+sUWyRRk7NC6Yh/knYPHTwryi9owSJumMAUXg5YOTjccWGzV3nVNO9P9YmOLKKyVnRLBhuV7+Aj8yQsr0ecHZyLGdACd+kT06+g5NvMDEKVyUagSBINzEjLXlj+TCC59QiMNAAIWKqjINsQ62qA/KRalocWacIZG2aukk7KLDWYVtWVy+jaxGDGZ6xzPectXYqytUEuTdIp3Uy5xhq8Uh1CqV21fZowSn6AGm1ujoBWXal0tSzZmN0s+KrAkfMsI0f9/IPQ5Vi6UeayX8r0egLkB8Ji+d6xEB3qaLML4FN0kPmzX5wYqUrxl0G+Ztzkw/JdsT06SJjHKJ0zKadvnK/Mt6QAcra4zutP2Is7s0rQR7gHshqSJsYOuNaaanBsqe8EVFlUaD1VCvgqM43vSNGJoc4a2I5ueDojpWG3L+Ig/TwJOJqR5TUZqzOW5IdylC6nYqbhBppOi3quN4t9WQGiJ8V803UQJX/lwkwLt5Rhk3OVXoqQwRxYZ7Bpc4lCWc6Gq7zIrqzoF6R4huylCiXRn4TSfErHux6vE0I68Xy/XxRSTt/Edpih2U8MgxLlqXduwcak2hJJcDe3wt66xzQIf1PgKu2mMgLMqfTqVsUhVjobeTkJbsHf+7RILC3qHPK36OdsO7W30/SMCa5jbTFMFmF5v4lztMBDfbXfuITxnNvzHAQq0DawJ4m5YqCejrTn0341x5epAmI3T5LP2Q4auEJ+3+I5Fc8dxtUiNBKmq62idw8AGcKYHk5p6uyGs/s/pISFE4mN4TYmofoI58lF62PryFKDSBSEY/hLJDFuLbZNvm3PZnrux6yhcR3NyKaiuyGK3rbH6hFRuA2wHi+W9tk89oEdJMGtLcEg+ApVItpP51lp1ptDRPWsStR0RL1R124eIdIhbAmxfi/v4JkHBK1eIRoTjQQxV5AI4ImomyqimxWonBbUmrJ8V9Zux82V8C6emENjtiMdThAq8s8A/r62Fh1GaKO6XJJSaHOonZQZMUty1l/cuEoGHRMv67JSjL7xhAJ3Hp9qfoK0ZxJAIkak4IsCl1QAfsUvGaBYTdr6FQRBB9oP9dt41JKHelgj8EHtHvws6JL0Q8ZrcCG32Q5vLxWjFwv2awCZS2jKvfZZD27HFbQBZLz/62YayeeeTFIkcOKCO/tl8gx2XGN1lRboHXxRWISDnxzhD4j8j9ejIMzOl59j0Fkkl1V6STZjU5Io5ZImkR8LOF4rehkDlFK2fy82xKTuMYG4Qk1/eF8RInNu+uO0KATuVdxZi70An3DM/1OkuH0sgxBztcvTpqpulZO4WSPpRGc85NMBdOMl1xrZXfyM2ZqZ32lvDIFzf6SNb82ADnYR4x4UZp4pKA69btRFsKKknS19qMY1PThyIquSAWEYo4ELU1GzkTmeNjr4dyzvKRHmSxTBsUHZt16B5AuyLYCunV1TQHymAtp9UA6V3rFr+cMiPFWbQWIGk5rQj3umP5uHS1Uew8HV+3v719k+WFEr7wl6XRyD1BXODTjnAE/E779h46WLD452YA+dPIjkYpbsC0Jb/YIkeCHy2Wb46zEfkYmQ55DAPLErD1qKO59v5GF/udegt9p08x68vrDCH/JdxcRCf6qHxc25VJ+iyv9bbgoyFsgzYiChI9o2+t2Q6hGOiYQasJRcyTNUhnl/jSjLNcsDNm5uiUlEsXhABfpAytgXsMP58hvVPKpIE8MKz9QGQiTjpeAvNpg1L+h+oXXVEqc9t7BK1Oh0PvLfcJHx7u85d1HEXduIYb5WizeQtqds7gLutwxlZxz3jsbyL1lTVOmdeZdlg7FhaEHJG5V2TiWeW67PyOZdZofe9R3hsG085j4d3KH78j4qB6LCvQ7ffchG1ZdxkYGp+Z0SFJy/AtLyjhKm7xFYa+I0m0ctrYFYXkPiAYCFAFYjYzYuvjPOTlTQiWYRjlehA1WreMQmyuvE9fvY69BDz5m99yMJPFS1yX52aYDUnNxzWFe8vh530VuIvuSqyQdbsmtByZhUj2m91Bl8TiPpXphwguePWdHeboL52vp3bGl+AVvgypyivKCBXnu0ogyghiCcQIy9KXXmJRPJS3mGettogOMX2I5mxuybk+oiwmo9CGhNbb922LQAl/yG9xXMZ4P0LGZQDlPOlzv8kEoB+Cs5gD5XRFh0lAdbjLHmur60uVUNY8eihuurNUkQB9URxuW9VNa1JWBBohVPOYkAUtwUtRkoEi+AhQU4ux/3HJppGyiqzVy4XOVC1MwFpEpwz1mVrXfxp3XQuIaO1nTH1ICcUF70Ypa73o66M6PTsJudFAMzqX8nqQSUcdH1QKgcAZs2yfM5UdrTjXv1tM6s6evVzPsOyO6N/iXOA7lysCpPIeGRclQ240pedT3zyX2c+zKDyMvQlWo9pcXVlZGAn6DeUU4GkKvAcp8nHkGvjDTCu+iUZbUih/A61HJ+2xry5Ckm5dgXbOe5TIRJtOUhSl+wVIA4E+UDuSpTeKKb9sozPiahVz7+X9Ytc/y2vRL1oZuzW5MZUzOt/WtfNEm0WO+yPUrUV5Xeefm2FuIi4ywfkr55WeXtMe0xLcwk/YNx5Bz9fgdsZyZOSdeL1cVJ41xhL+pQws7GieHFH97CPG1AC+x072sTJrT6dWVeJTUS/GYeQLpk66W096ylgbvOyDm2ZGmmf2dYJJsU9xQIiIY/NxNObijmmMkiKeCUc7ZyeC2eK0h+Fy4VpRagmD+TgXbZXgaxrZSKfHJy8um2c/V/n0L6ufYobw9LL9uRQQzaYifTupd0myqj+tzLqg/ZeDqlI0VVoMWRTExPG0dggG3HIdJRW7FIv1Yx++e0Vv7uS27W5BXpVy/q9kH4n6HjOGO4nEYTqZoV/XygcLnHugK7vANYj4PkqtcyaIO55RoJfAE8QmZW82LBXz5ThZPEEcIImPyfhBPyTAlSIuwgKV8D2Tdh2pjeOIYTCgRJMmwd1exd5JFEi7poZsULcVMCtMsJ63qUOLZA+z8LYVUKW8etDXWLY347GcNPdmRWkXNGiNQY6enTmwal5sALrWMGRT+VfNyJlyqTnUALNCO7uo0GIEWEKhJ+2aO0n5/NAgbr8sT2ezXiApX7dz1uGZkof9TdENYp+HetcVUqdqHL94sZT9EIQlXX+okuxVCRAt5MBzHfBMTX3NhsUndDrH+adBpz5MU5Scie9t51pEOuSxU6wxDOSwjqFpwwLEYyDi7M2jj0oYWOIB5HBsftiUN9Ic9RvWtEcJpyoMBTSzp0CcBVmxwWQtjSLiAMsDwWnBDTKZMTxJehCYsJyYyJwtbInimwxdeLwuy2j6vzIoNgywoyimZhv9UFpHzIj7d30bFEUJG5YpzES6BVkxxt9Yk4sBtLRRZjfgObH87NPAUc/ylMAZRn85PiIh38Cksx9w49qm06XBkp3NdoqmanZPHNSb6vhyrsFg3rPCTmlgK7hnVYpKtROqGTvecQqSFoBkCBpjAMMepiKSgzSaUOGxij8GJLohHSqTtfck6UUdXUHiN0A4qiiQf1/zB3Q11ko9KtbOyOtNI2tgDT5MzavD2yhrO1PwhhIo/+qzqUIZIbUxKaedLLZJBhn6sTaxeRSoT/QEEl81jawjRnEmLbgRcYu1BrXZ5oXt1/9hSTp6fPHRGfm6xs9ANogHedEYhvPyrWCz0HKMl39tmNI3ydCIpajplDG1j69aKXmEz15YrfkioN/EyO9NC0TwvQoIw+6pLOtURvBQ8m1APCkbNDznlacPfv2fTw0IeVkGuj6Fv5ZG9exLeuDxyn7y88nfPDhBEQZSXTtAlfEq6Vbj2+lZlcy6sQD+v3aO5MlOyTfIihcxU4RDFpMmi6s1nF8PnOKAhVNTQZwrqyHlN7me5rctSZYGd8ojyni5s5gQ2Hmz6n0+MRGa1muWzyWq5tupdtJ7Msiu0MP7McVU2qNr0C9TaxHJ/L6ggZv5wcfQHaLXcsBguX2JoCNMdmvtjFcKG3XmgBgjVArRITpGUI1jzGLuRCEzPrseJYo8NuzwBJuRZDepCqLR0KHh2oeJ4WSwZ2sLuDxoGcrZsM2b8XJHLdREupSnWppMVkrODxKaFPiUU77ZGhyR+4VSiOQ26LXX/ScwnQn7Nn+dc0hgU5ywMREJ3spVCzOvnd4h5W4afmvmiAcLx4Xs4o0dF73+y2UHllVoCDdN9XkbMrhqiqfqiJD6xIqryjNxckf6zUvkpYcWy8q8AofM84UM0s7NNeAk7+mxyycvQBoKKB3giYz2eudJnYyLgiZpfXjUZL8BbKXRhdHNNWbIH/vAnGu2PPlnVP5XFhEVJbe7T3lFMsTOyhFRKoj6+Dy9i0CX7dh5eNBtA/3wDjvaX0YDX4e8uJsOgpo/cdX9ydxfsWibsGXtjSq39+Ewa87QBgi8o4sJml76abztgKXBXIuqneokt0cV7Mi/Y5V/OOdPpIoCqi+HdiMqzxsTWttZiITCmbvpisefEu7Hy/rDOYw+zT90X/oghpWYtHcm0GNMiskJsJsS2og34CCkOJDnTRQU4w8E9+91Q2im0PrDfbKuvUOeRaItwExHrcTwqPbSiK//odNRSPXLPzWNWBe2IhFAM=
Variant 5
DifficultyLevel
567
Question
Ronan planted 25 boxes of seedlings.
Each box had the same number of seedlings and a total of 1000 seedlings were planted.
Which equation shows the average number of seedlings, x, per box?
Worked Solution
Let x = Seedlings in 1 box
|
|
x |
= number of boxestotal seedlings |
|
|
x |
= 251000 |
∴x × 25 |
= 1000 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ronan planted 25 boxes of seedlings.
Each box had the same number of seedlings and a total of 1000 seedlings were planted.
Which equation shows the average number of seedlings, $\large x$, per box? |
workedSolution | sm_nogap Let $\large x$ = Seedlings in 1 box
| | |
| --------------------: | -------------- |
| $\large x$ | \= $\dfrac {\text{total seedlings}}{\text{number of boxes}}$ |
| | |
| $\large x$| \= $\dfrac{1000}{25}$ |
| $\therefore \large x$ $×\ 25$ | \= $1000$ |
|
correctAnswer | |
Answers