20088
U2FsdGVkX1+44kdjRAY2RVrMev9nFg55mXmtA3J/WqLy0LELFzmUIncc/nkqwkk+AmihuYpzlGVqGZaxsdxJbKlg5XuTwf35OqsIyIo9viCHCobGOmsZj84k4uytTeG962yI3x3P01kDZywEMqPAf30qqf6l7JIhTqQoQqICtQupYXTWgUW8+HOIL6yl3kIBOCcNla8ri9GX5WnBiDC18LHUrkYcP/gFOdmc0Ezf+P12PUpYXwX1kVh7dJeDd4Bcrql0Zq6stoHB4aHHlbQKW/8v76cpCU0i4n91Majr9aiQtTG8NZp4l6P8YeURWLeKEglfbXJtVkI3NSWbjJhk5g+xae9EL63VYD2IZnWEhj0pTeZuFxZncSCEV9Mt2dVbBqfD5H+jkTl1YgzhPQuZ0wh9ptHZ+6vilGGEql4NOZ/bAkhtF+yxIlizD14FyV7rXIujb+k7gGZ3L3m7AP2iFfp/IB8l+0Pj5e9ehzrapC5Gk5znePKlTHbw9c9iXmjpem4nK9agjCXpi9eYjqgJK+11tgG9CiH4RngiGLGLzTSN/4H0SZqloHSLZHjwl5eJD1e08WD154nF4Ds5+TptIqFVpxvTYgnQore6MJqjdhhVQIdZ0yjwIlB46rdpEtSG7H4REPFbFy/daPPinfgKjJqzbyWbPyFNG8Ht/tuIcZCs/xHMJQOztTMzdrR6xGHiTS+D3gjZ0cwnK+Ks6fmJ2H94Wa+uQvyif/dcoqDsQ22pDcmAXh3YyPTU7zZtHoFbeiqwSTXO1leVCM3qb1AxHh7GZ/Z0S6RD0Us1BbyyACLP4wNpVuXMuPcKfGgKOugfpEOkCgeeAvkJ9C+CXYrIkJXKDdFwVjzaIA22FLiGK9m/zpmLFgxe3ulMrMTtHbEvyTkHN+DMysNMMR7TTngzvWK7i7utQS2IIsbkYl/XTKA9Tic2LavZ0S71yFJuMfuvZbYCqwAXDm/O8eaj+BmX7TW6Dqy+/q9hYuoBlrj3WZ5u93zmr9vP+AXIodQfPrMRGGc2ua8zFl0/jJY4OBddUktG49ojrdrxcH/IccrSLVMG5aawfZ3wTDL4qtSvNPkmrQXQ5mttdfYhlHqFQuvt49GFxZ7w/A7UHdtobicRGJ6c2eDVwesInA36LAPW169qCnFGowNzmbUdBrDDvIIluNZfeTHbp9niruu4TO+N6jO7kvejEPYAuMjPXq7/pQzdmH3xwDL5SC2FxPJIq1qss3CfrdbK22lFTJPeeeZZ3XHzDTD8HQ1Qd40oQ0ssGdfXOH2Ne38mZq0fbnUZelsBcvA6/ivFtNhfnNZ32Yq+TUf9FjuzRR9kJQXpiCdSA6s4PrU0Pl4uIul0DNrVsxqhAxuujdbMGFkQfKlbwiNGqkza/x4XTxLmWBhh/7JcASTWqBXjA6wiB2xO2oPIC3CBBBGnGrR0R1l/IUX0gC6DmRgvugSD82XILI/RSnJxR+OX251+VfT+OlV2tbau0rpUsi6MRZWFJtx0NO8UA4LN8CjnAppICtReWne9l2OfUYJLDyncxkWJ/vyPPYFEBDMhdouINtHLrXbUO6kUsWgO4VjSDpGacvg/udBkE89N5CqPvU+jayPyEqoiKI69hBmWw3JXDuXHmQIPUjHzjKiKsjO8GSIecCXWb8rZrRW7/5+/6vAsFgIbhxIBHvYiMzZdHgVv6ufwmUJ4wzplzwFwWCaxxA+9ARQOU1Frn9jQJD1Dkw+g5RS2yXOwEoPysBgCy/bJWDXxS/759uOBnChraPiD5Cuvk8UsRSeYctT7L6P1WCgSRLE/RHsTSvokHKeRUFtfNwcC63Jn5j+vJkZpc3DOXiIw8Lig6DRTNMABul/nJPuHtYLGbvd/7RWwq9yvLbwdPLMqbSg/7JsXhS/8NcXV72rctqj+O8oPXkOA6UWhu4+RwI9s6Rt59VfFcQjQRrraD68J4GG8g2JkKk/inZOESbCQCHxAJNnTHyeqHEWpxDe/jvYzTNJv7+MGFp0uh3MXXTz5sw5rtLY/laKuac9IZcvtIl7xrcTW8/BvEEZwRMugzvdVYFb4YnvKplmDwbyY2BbioABW/1BXTGF4Eqq4f6GF3tTvoNzcU6Sg6Q4oqLA458Ynhh1hlPaCazXyPGZXmYFxKqQqXQABBMHpg9F9sZJeY4W2suztgDQ1lV5NjK15dAodot+eVf7ouRttmfYu7AgS0XnNV0DrocbUTFGQWlBigfA/SQnNDjwp+CPE87AsBl3M6Lm2PVQ+nlZHB/dm4WNK+mLrA9ZSiA4gMaUU5Uqca95203vPo/ft7As7m3rkyFDEr582nrbygl11X9Fp77Wtp3tHJ4pfhJLJNaCLrAstWbBfhIBHgKHK02NZ55n5Nw04oH8wtc5UI0/ADejJFy+zrdnkMJcNgJVrW/d7sb2NV7J7EfiX6fgl8887KWBl93YmEX/hGGAEr24o0AGPp+bSwVUIHM1o/2t8kO+8BKjI9LwEhMD7/s/qWdDvimojlHK2j4Tk8WSzmw9KFVcyov7PSkHqeJpCeAC1Dc5aW30dqmyuOmogOrfgtYT5SvhbVjiJ+JzSR4eGrBM68UVS+GXQ/6hQDN02NAmsZ/dX5aeWzzZmOdiTsPlvKaYyiaBSUxsdRhw9AJQWIhcSdo2/29UZDUE7l0q5V6eWX5cukGVNMO+VsFs/i4F5zj2A3GkhqrWxv/BK8PUAkhVJwSi4ymc6LU/uCrnJBtdbR8JLQi+akJrLpu8k9tKTT7sk2Fj8gY9Yhb6xSMZ7j7yFKpm6zK8hJ7MptocaXKljPLzo9Y68RBHF201ryolbM5eqBJQ4oZgYEK63Icijdg6ECxioX159aqx6NHdtViw19tSlbvuz447c1seNkVAlZIdWBQBiWa92nrRQ+2rkbQEWDKYwOy7zSOBYArb4UUf7SiR+QC94ZPRBJqjFBAvVoUtw0Dkik0XNxSVuDKXODR2gnd+GB1OgF9qLxlCWUqY81xiqxK8cNrJ39F8vItBNar4B1aaPMTtRUBBiesF9oOy+OyAI3aDmsT4SsZu+bXjCuID9kFUOvW8XGqdDp+XLJvynbf7q9EecbPzco19X1GIP+/7CBuQkgGL/is2tN0/u/s3qDx/4cZ+tkcdqtF41ttgPrRoCkvQDjleIKvObdumyqZEKCe3OnDisDXHSR46n+STFMi9Qso9vwcRJqnFKA5Sn8tFcBgyLOWoDiXk9N7k7JxxDhBssi7+lUtKE/RnKdvQGbMKpJG8YT5FRWX3C3icJAkyIkcG4iCfl0KeU8NR8X9RQaoy3CkXyCtyu113ALPOd8gDV9Ayz7NR1z0ywodgX+gmYCNFSB1Wwnlo/I6vd0jAQgCNr4rq6E37c/A8WI6Jn4T2k40FfvTi5SJTbSfI7q8bUrI8GnA3T5gi+1HDdppLCBNAZAMRxGQ10mDucVdixnWz2PI2MdD5aXFKhLDiKNrZkIR0HVzLxc/tkWV3oaI97GDotkgWVT/pHuz8ftrdmpmDO06TVdRaSBlVzazMCt+NkCbLm4ZdJwO2RwWHZbx78e276VYHywBRDLDPbuc5+7Myw6qFA0WK11tP3MyoxG9aa/kEGFC2+Lg/fMdNpcavzYezysSlLfqcgh+00/QseCwEnFe+5EdMdgGA4eYzCFTC3alfiESsl1MTcwb2WSJMRy+n4BMA5YyJvdghnDVtKgoqoH+FCnZm55PmukPdI/UakM6jKfdFfKkluq3SKR2NkBM0E6AkCs/ipjO1BK+4UXec9XmpoJKC28zziCfENMFw04228YKDAFfr7A3pV716iC784Qr36B8L5IoZJVfzGYL6XGPjU/MIo+fFb98OvjEUq8XxxAJbwazkf+vR5JbYD5eADNXOMEY+9eJBTzKdaVlMiZDNGsyO1RCXDatnOwR9H6dgKJGEpDAZ65DGqn8yyJUX+k3KDEfGncvRsOJJIl2XFDgwXOuGaKWbvEc2KIvn7eggO5/fWNVZx50x63ijarBpTVfUy7WjFx4CFZrMDHKtC94+6cJ/13OgfGcW5GuClTwcTWhrAVjxrGwRIwB9Pu75wgYs2o3xyU8sF4YmRTM12OgWyoWTEe0UVOibmKoJse3kluXiiW8LjgCAptrpK7zbM+e/ZxMGjyXuUaKoO6aMG9TMC9bL6w6POcDKdYgYG5gtGPzlInuM6JLAUHqzhPS5yUOi7Cqe4ebv/sxSZ/gb6R4Gq1MaTlLsvHZcoxuB5OE1z8lzGz5RJF6bkIPtaWy+P4CLb1RlrCJ5TSKLLsS+evKPAWVzaiGOtYQuoqG4bpufMhXYOPlzMmBVLzufPBx6p4cQZwaMlC/ABz/5Bppn+o9AP06VeXyPdMdl85LCuu+hRfpNex83Q06AWofzeIpgkSMY/w2SkW3XOuVtBk3SgW1W35LZmC9hCgrMDV3U/ksOt6WfgZ+FSyhbe66uw+T9ZntvXFv9mvnw8t4AaKn5XVQyj1lbARFjzmL0L3CnbSSt5W3S7gG9aZetNepudWvxfUcKCWXegPHQvpJSg5NVLH42+3xbeXTRjzH2VpqLJqojgzrcHiN3AaZEykhIHcKUsM9fGw1u/ChVhdT+yhTT711bmL4lNojzER+7OtOjRD3IWxqGf1GHx/GfTtoTY+lkVmwQy28BBADvbLVyy6uMsIAgS6jCOUya8cBYUBa4Xo27vCyj3m/VDbu9CXo34fnS0gO+Y2xwr+KIMQOtsp5KiNozgCatMFz9Xcx9hVgqLwfRT1Ut0sp0CBya1lAJWkOVAyFXOFZF3BknjUoI+b6UD1Rs2PR17Z3lQwJxwgEowvTm3dSAUMUDzAaGfn8BR/sP20MpmAZCLJqzIOUUMinPEcQhsCO+7uodzTiLYgUl0vgKH/cURNdKxL1Ras96FbrxNdDixkswbIx42ERdMLYQyMLyIz72kt5QXtqe+FIKLPw3GsgPpucJUk3lhf36BXzo7M4zswtawZsKa76LXGGOkuudhGS7cDjK40jMjomnB9nrPkohQl4WeM1bS2EUDBtiFEhbuOjvpJo2ZoBRk8AUlghVT/SoO/dEsCR8UoXNro1L15SlMCh5nY01MgNE0yak7jjM0WPP8lrhM6mWDN68gp9KhBES4Lx8Gb37Yt2EhSxLJl0t0qAfxKyO9nx4QZ02vlIAeXKW/xU+8WH9hj8iC9C2xz7UVq63exNrBCNBLCQVx0o+YhCFnyvN9Dlg4WE0BCmMi0yxzDI4aNwLixrzxfFUyAT6eTmmy6RgpUXyUz7Z8Os52qRHoU83K9TyVBh5/RVGCJCf5DhkwtCEaFNTxpegDvPrRvVtvEy8UdCWEzELO3SjqgkaFapgZ2grzYqVR/eo+/sBxts0Q3caOJhQ+MmWAnjeR7wpOLJiUg08UcAHxhwS6HorAbTvkHfR2I7xAaeeQPHoC8tfAuMcYQFuknt1pwRj81ETxQCK1pom9IKMgp9JyVIpW2KezBO5PIiL/LBA9CNjiVEEEFkPV14PbMlkSjnziLUzBEsc3LcuB9p/hy99xDHl773M7bvvX4fzMUV9WkuAOmqHAHtbFjZtONj0T1aYGQ9RWkBlYauTfeZ/PYxAHGpA6/cS/keTKSsAx3UFZEaf2QyRfdfWPAb7gERRK8wNXglO/PKsxrGc7qymcaw3QW0QD0wlmvEnqrSlQPzSOqGOgloEyU47r3rG78nMz/ntmPvaLOahXstkIfBqHMSPgrKoKSjcykHKbfdjPepba/MdFpmGYV8huPwnkLMhWZFoRfrNfH3S6wh5+aYiLEzrYoPmGJH6Nm0Zpwqg0rd44QbIbSZ/qto9Ab5mQQ28gS5/PMyb3cSyL8WY12lSqTWbRbzUTHLf/hrX5XLRN+fWIcKaoaOwmQA8v3/GTlpWY+8xaPn2iz+OmC00FmI1JSbsF0qBuXlL8mNIUQPfFkgZWEDqcUvLc7O+c/u7VnkqIeYF/Rj+fSXS3k1CnWuALIk7GPMA8q49ywu5s4pOqPaTOWQyTpoq9/Jenkm30Wv9GvDynlHAiUS0Pg67OEh91q/g5eS0AsGHhzdLU4ho56j2j03ne2VLuzDT3vEuPEcOPnwDfaiYU/oG9zu/U+yn14Fh9HDR6SnClNDx69TFdzHLJGGjJEQoT3YR93L1KU4aDJd2pEaWVXCW+QZGUeVCGRGUsfmrMRZd6WL2Is+dyiiBfy0soVAMy69TEFDj0gHpxQhNn54LtBwedIwjCCz1r0R5FrqW3k+eJGKz/b24jQT0sm/IPZJIW3b/et/jXzjCgeuj+3i5NS7cx5+F34+ZMnNUB2NvJyUNgRPVXI4MZwjkZZJ2UeEZdgv197xTLbAtDlEdHjvztXzfZB+V0Eg+2KpKst6mhP/Sfofx3y2ceeOwSUbQSELsQri5fjS2iC8cVVgxOXaNnc/OYl+sEgiAn4cE5ObwiAFiw3qdJ1v9YLtic0HQj7ikbY8x5sNa1W+1pQhPEsQDr3ZesNfbtlUmeMtxBaAeDu2ZB/s6MphEbHwDDE3QsDmTi/4h3zq3pbySwGNA7PQt8GwFrJzuiPQpCLLebe7QMfDZMFyaObqr4xavzBC9Xylp5q/3aoPHdMUEFP8kvZ6h330fFQVSmfw7oXfLqQWavUJjsvMm+7SAxhvy2w88U+EO5IVaDaVf0IicITbTkTGtYZHRBjHb/OcIaOB8Bwc2rdU9mu4i+UQtSUnaxHPlqinXFSfZE4gJz3X5LCDsFoCCkwkZX1M+r5Y+Uz+k3LO10sxmyTjRUEanKYPbActc83T2zhsjd9aGt8plJz1Owhizaqrk3DlvK918fclijpsCNY4dAloaSh3bO62ja5e5UAOIP0fEkzPzsUHNPmKnzyu9AaTd5QIgqsqNZKAuDmNwAXNl9CGmoZi9HuVZHZaoqwIHaVseSsFTwwHv3qydp2fKKkCtjqwJ1EBRFan10qlHV/3SN/+3yEFsYC57clLmWcD1U5uobLXTAZV8OYThvLhqLbEmp3yq0zVfwaj0VncMNZAQ8k8dSGJuokSCf6Bm7q/tPJvSNN4UTSs03TkpFEywn7ZgpJXLGILFlCEgmxp6Rv1azC9uxosMRDLbrJPUr368EOobzkStBM4uKUfbJXXA6776ES36l702X2QepPyFjLTk2eP5AK7BOI41LSyuRK+vnTJcE8ZVitEJg24Mnt/2DJpwo4l48V4STXHrZwjKu7b6v4JsCcqIiAK34zlNOYaWXs2otylL7Un7vKHWD4oOrrQkRcFnuqMhYXcdyeQM1zRSZvEBZEsGA8uDCIod9s4eJ6+Ha8DzsqdoDk2qWFU5s1m4oFr0VzOuz1BmVI5Ixve5V51cZX39qVTBv4p/ZXETUxmMysuU9Wi2qNqv1WewurivloUNdI0Csb0PE5u2a2bsDGH4M4F7Q/Ho0PIxXLiHY4Pwh3ndskiqNnfnbTTTaYfkpmGMXo5PzXNG7QBpveAD0+VX+yUrvWimZxUtDxOcDWx5q7KSzEd5HB6m9eZvCFRB63wnOid+lfQkMu0WGDT+yr0PVY/nL7QpVhBT6fNDiPWFHr8Zpb5jqFDsqevHjOmKpJ6zzCf7lJGXKkue5sDHVo2C2C1eekHAX/nR5xdj3ZvzdiDafVx6Kg6KXPCkBHEoS98JTdErx+0eDkdxqa5eEQRV5VKS2WujyfHRMUSY6u/vMzQEk9yjxEAYMNH0vDi2qzZYIIvcTPVYNuL8xphNHuEN/ednrIrGn0A2KLi/G470kbBY3BV70TXWEHvSliPHYRom1+zeRpM9EFLvVElRjcCUc45nRgtd8u8VbnWKPPfjcKyVWGJp5CrkOo7PSHYTAFcAJF2kelqqGiJ2qDPInoM2RKwQGemRPh2+uA6TnGgL9Hoi8DI8xDlCJmV64T3OXUuCUqzlLONqT8UXwWkhWSX1cjhYBHVlL05KXu/ubJvJVvGQ9BDXMV+WaPKDwcyshzFdqL2W3QzPYKgpqURFsKn1FI6BFF09P2zo3wTlAu7SRCAqCHsEkPL5frRML15vIgeKvvX0wj+aehjLnOWc7MxazuZHDqjGoGP5iBRr8msnGKqEEH6mkha2bw4vYQ21/qb6fiJk9tfreGVJmTWJzDaZCX3qPI3ewz8un49R1D+fKquVgsKmFDlz1yQEq+SGXusrSPDEQDQHi3zT/lr8o4vgnV2538Gnp2d08ivCkCmDcQcETR3y8m0JurzhU+EY0/4UfKRG2JmdSpWIDXXGXoyJSpBAn1hjvHWubLn4ZYaGIfXAn40kvhubb5XwNbtnlruZyLnzjiX4pqopJZuAFlHCM12A/Ir2Argic48q1ttBw+fEB8GL+6m29aIFcfL+6LExyalandkYOCv8tpjZNHYxqxIKWV2Es66IG+1AkCiuUkjjrIcvLapZ2S61mZoE9fwNnCU4yLOXV2dATA34ixUJDcGD/fD2RkYHG44Dq3KWJZIgQPNkeGWjs5bDrJGpCg6EyuQ9fBwbi6RwDVLjmv94EJH8Di/Spo0eb/5gjmFdyVUcqbupRioEPqUwL1O18VkpwWyWXkVN9S13Fii/YmVvxvTAURTKvjO6P4f8RSwzx5kvDjch5vLR9R55uKKNrYFPyrCJrCvIT3CGPdWTdYLE8bqf2hoAcON7sPkGWmH/rsKZQfJOfAtA/3CmsE6i309M9ATyE4lxnEZsz75t8x0cyeD0fktt1Gyo2YLwcFgFWyDGK3FqXQorhqy/XmYMcTZVSfyUfMpfNCUSqJJxxMOLwYFF+q2XlAgtImPGgITYPDYQwP1eyqA/AkvQ7zQAx6FBPNbg0rhYJY6juUI2/j6gt0N8k7K43Y47u022/yX5Beq3W8AN8h+J1RnZfpDORCfMTZJlIWFEmTD1ipZ2S/Y7kexPkQ6B1V9lGgHQYkBh+hBD0RfGDB/MxB3C9EMIF6yqgWPnTl/rskS2dJqJtU6n4ksMI/lk50WoaYaxbvos1PUYHV2JSqodvVDTJ06ik4TP4tb1aOh1+/zpsbiVl0yT+5OCAS/+trtLRgLXfDFn1MGxw5hvsjWTVLXNd1s2C1GaHsJAuTmVgcDwHv3pGX5Fl9M3794MGy8co3Qug/BhyHmp+aHPYkX9LiEADCYFChULH6e3ZywR71ztYdZMt/IWHYt2/KUbTafHOA9lDMmU2js8IAJ4j0vVWvZHQl9qxgDz2vV+B3SHEjqeFCW3BDY6gBzd8oR1osGMivYKT4ysMHcPJSNVR0zxUZVVokrl6yTYZ9mzWT/s4wWViX7vwoiCAxoV5Y/DkEafU3e9M41gpVWJtx2ijMpK5UIGSkQJImVwZcFnUlMP/GYGQ+/mIqISuWI5YXGRjfvtumo9ODSPyaD6BWg9zkOL4Z/WiRqJAAS4lZN1WUCTfqGpcxvDB4Ve4o6X/cO+wC+6f9MZ979bJ5Mz8XkkuiD2JcOypfSNTppnvVkxqVS5fsZPI0NZQrMWxjQKgSaokF5938/0f7hpH/ZTBZ8ZbN3sjl1yX6yMWpDKWYZ14qf9VmIUAueU+ZGwyzOFnyks9v1NLsGMNiXLXSGXvMsZ8Vx/j4AYp4AOi86DnGUH6PtX/r9rNGQ6eYIkIjdFHtle8xhBzr9F5t14VpoZCvmv/T5E9jWKf/gJYubICPJ7tgDAjh3uW2WOTKZ04vPUSLlmqKUDxE1KfEDB7JlDlvICmq3AiShjEv7OPWEO1qX/L97jh0bKL2Zab9nHpYhGCihxYsIpBI+8oz2lJVWuk0olI3sei4LLTUgoGvp+BQIEo1QQE72a8Pr+ze9KvxhTJSeWg/j0skLl3W6jYtq6qwvxYa+Y8xXIgUcCwOjH8q5lDi5IIeBxfy+2lZ5QzB0ufcblmOy9hZ6DPMt0G3PDbZeq94BB3Wx29wK3P+KQOucfVaA/8mUA4KpgMEgu6Xly68eZk5QCyzX8U1nung38FKWT4ESjxm6RUEHxmXx+XhFcZL27QYCnSDuSdslg0qCguayVpue381DfDDYUlypHIC6f0wOyMZKbLT7NHD2yWjyGpVTdqYRhtidkLPOeUSyXcGb7Ks/Xv8a7UtZ/LyAbr8ViIfbN4WlG3dn/FX4zR1Nu3mPBxy+8t/aW0nWWzzQXHqlQg6sQ/uMqXwob77hUzIlpE7Mm+gSBgfWPI5Okm4gXm38BOLKMhhIzETaNLE9lz8wySHKwK71shF+xRW+ONTxIRMOpShG6mpp9Dowoqd3zIE9a9vmhgF7H9IQs793GgGeuvki7wnke9DqKwMlN0UbDo1qSBehRNqfiFPz2A77EMFD7sqA1jQEsEhJxQVGpAymjE8G324qvaMpIOOtTQw9c5jEY9wim0p5TAmzGcR+D1qS/vmdUz1IJAWa457IfsmigQKl7M1gglUJgy/dITZz/gqZgmIunFSUzgcZ47VFyD+XjsikonNxqrJtfh9bs/FZIlGuZrywd+7XdbXivVWgaTJ58G4DFC6pkP055Em6fWJl2dI015DEYkf6OHh+ZosRy8R6sEF0Cx7rWqNas5DDdf0g3h3J6yMGLtxIowqBydcpQngmNSaiF8hcsVF/yZxZx+A9gTyJDOAZVFSRPxJ62yH47DIQW/4i98pqo4U9/vb5HDpZTA1OfwGDyuhTwvBcKR6JUrdMszeYOpwc0PRxWBR3ldFJkx4Q/lSdG1gnpny0XAXMDZdO0TM9Y//AI9xJDmu92/hcqxG08glYYW5N18LYef01z6NdpwdB4ey+eQ1feGu/w5/qn/DGcO/Fsvef2gkcIpRZvPLAFsQF85fI1k4BxenJOOIcqjDnl1jmf+6wedI+QJQOWT1uDGHgJJpczNqpkAe20m8PdnJk5TfWUfN35JUzvU6+cCun9nIJILuvdvsTT1Px87g7mSifHy2caNngFezYEJgJ9x9OLF39z31zUUQmy+SxuakxSNEfsLhugqbFcnIDKcY3OcoRZRBG1DVVWT00CXKkLFbtUqeHEvP8zqbr8Ln8HtuTmnJidBUzUQRK1aGVEQwxx8DyrqDec2PkS32FqRktCzDx+iS+2O3LlU16QZ7zlUXEUuvBDuF9I8r1JPZAgXBQ0BFlpk7MmzB0YDyPaB4cDL80vgqJuSMmNnzAMSWWMNAdXrJl343gAYixOYcsf2Kz23ZQ+qcO2CUxF/dI3/nXO0BrXAJQjJP+1If5VDrmFeVUoPxgN62+9o+Bc4Cn7Elh2q3aPQdFdPWUvyh1JbTsdLe5cNoSwe2ADerH3thOfvhU8hsoGTnmIx9IGOV7ZCt1uqGv1CWXfcEIk9DnpY6A2N7p22uDXtHBhNUiZb67TZYGFWkU2YS0AaxycLR2ePK8gEcPndMZ4oMpeTMaLzk6IzFv7qla1IyW5N0oAkMZttyf2/thIXOB5J28AgAmkEAN4TI1r0K1MktK4AH4GTtgP9gIo7G0nPfl0r9jxskAUaB2GqUiwLPeRcvWXEePcz+OeLSiHkuXWo/HuP2y7BbxIKnuE+2rxMqFAarlaCF3b92B6/zXXwU7TtkBgdPQZmsqcSJnab/MsoMCcJAbYxoDUJMVyQ7lkVB6p8MNF21+yOe5lSbGx+Cqcw2Svlqe15PPmRk6HDA2kseDyvp0Fga48fpGbDscJ8N2rOMkwkQr1bziMQsHazVLD9pEchK/3Ge4usbpKC6HJ2X/LoXjUdq9D1LfvV1MMD7HJKBhqmzzmjZ6fztEnf64gcyzgltYHWR2aO3OZrA4z/wCFLa3HBhnqMUAP4qnwUAVeyGkrxNqc9NfP2op3BGaMncsJoYB39XMRjauvPVHHXw1+arNqRuoLkfGyc1GO0ucFygGjALLG+Zfrsj/7H85bvK3oOnx6ckF2lukHPUr39WQjfv7TiQdcsk30sUqmUeh6qRjM98yDeVhqBQAs92IkfDiJ6uL3HNNNPcavgujax82Jr6bRpfcbKwSrDspw3DLtG5A94RfjMmHPLel9QQIke2KQRBusmcREOhIVg4bGdcgi/SsySjAk5ONoEoX1eY/A6TzbL/wFLM67w9Wwyl9YKvSpIkb0nDt3oT47iWbKQBuGscXCXNrtC5HhjqCdyWYpZntlx5wfzH7FA2OZoyg9d51JBAKOXDioXV7xEokJZFjTqLNLLd63+1i9OpnTdNcfQ3w5ckrB4Sm1nzDi+Zhsx/CMGFhTDH4fJXvjlIzqNpUhJjDCMYEpMD2485zJ92BLvJ3Y0BmrD1iX02T4fm6Gh5dxM1hyVzvuDheyOjBrVEPXKRBM/ulVMkes5+cWpzOG8jd3kNUswkDXZNpTk8fTWcJoZ7F8fJV+vLeZBLl+EU4dNes+hbyOYDxdQeMa13GILIYqSFmoH1CGcyNaRvMIQ+oKkLuB2cpxjUXJpiBCPtvQt185QHUCnbggCNFuCPHgYzUve3U2eXQ3GLpcR0praF+PiqGuuuy0qbExnesAGfCLmduUvATla6rJvTMBegg2YGSHedQlqw8RV9UbNMrwe5Msy7b180BgMnJeQDj9kE9UHrmBnxUIJJAIZ07XnPJt9VgD6QM87i3AjPO1oMCbQdzmpjZ0Gzmyko4XFh96d5S9jHrCR3NR3Ozj5b9s++GmEYcAtYPX2r+nF+5wF8FoFc3g17p9soKbnjQpkc9EtlqW6uatIMYXEpTDRWOLRDfqWweuXan1JUHeuKroC7cnQ98ZUXCffLFwhkooPNt1VeMHTOit4MR+aARhTn9SEKNThqLHXWsmoCqDYPQLioDPxLxeZqfhbcMcqNLfiW1bi1Ro3yQ6iGc4y5IqMdO2ppUjWnq1r3B6tWolqZx+LHTpl/2RMegtmP1KYewQuQuAKqa6ufjPJqrcrUNkkH9qOPKzsPzkNFQu9Cna/GMQO8bLnhwmKW7PFu5SUPSYDIXp+H1yInToR9Dy3owyhhbQSwCGVyanZvnWsxl3rY1kL1uaM/PAYy077/fvuDqSWxFKLRLajTRnyh+Y7wbIiAosMD04yN3atW6+MLv8fVw6bxb+j/087W8QPtJgwqvr/hPQ2kt84JhYUabWHTWAvHGXfG/4HAmsjBuxn/2CswIM3jNLKbQ1X73eyHIsRaH6bDTIXVqtrp30Xr9VocwrroZs7eVo+stQBpb8NyppLKSRg6PqKyTrro+nvHg==
Variant 0
DifficultyLevel
577
Question
Which of the following lists the numbers in increasing order?
Worked Solution
Converting non-decimals to decimals:
85% = 0.85
87 = 0.875
∴ Increasing order is
0.7, 0.78, 85%, 87
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following lists the numbers in increasing order? |
workedSolution | Converting non-decimals to decimals:
85% = 0.85
$\dfrac{7}{8}$ = 0.875
$\therefore$ Increasing order is
> {{{correctAnswer}}} |
correctAnswer | 0.7, 0.78, 85%, $\dfrac{7}{8}$ |
Answers
Is Correct? | Answer |
x | 87, 0.7, 0.78, 85% |
x | 85%, 87, 0.7, 0.78 |
x | 0.7, 0.78, 87, 85% |
✓ | 0.7, 0.78, 85%, 87 |
U2FsdGVkX19Wzkd4Urs5BsOcpW+36DYJ25iBSq4XlZ27bTpgYBBJB3/cA93h7RoZJ2CPaoNeHSK5DGc/OqHP5MkDFwVi9cT0enqQqgx4mM5iSi9L/1jchrCa0fvS/hHv95zbiZZl10+JBffE3JwzfU5k1bbGqqrdSNmwHIVTCOTDr4QE9MpoqpoC1jri3JCtNVtkS80shaO6pa1kFae2fYC+WHyYdqtQgpS2gYROYbqPQKz0Hc1OMVylAE9uSWuSGyPLyFun5UeAJTMtF20uxPGUoVrkKjP1PGG4coZdeRUgcLn+iGOoEkpDtm1LHIOCnyB1zyxCXM+rZ1o03iyu+FJOg04UFUWEC2H+KQT33dFXwWsjpgkhShcppWqzXhamPWGBBOi92pbuHcwvzshOrttqIC1AkhW2bAuhGET5br/HN5gI15Tw9CM/pEUSK+JkLNYRLIa0vgaYA1YbRskWCZ5wOFsZGtUNrtmSmRWulgxKHHR0pD6dOaidVQgej3P6oDJ+v2l1vN41b6mPVBqxK+P+plEnPaev79b+SN0htzNttyplRxZKFZIUuOJmxG+xBlga7vMcSZOrwj6YUumGA+uW9wXL59roBWQhfMOrp7GFNgal6+Yl8sXBYw1RL9CJTvZn0SY4LMgMkhANMhAP/gzouwVX+E9n1PnUAu81NzMHFzOfM7ICFVUUbFOYqlnzu2pXNJsu0VhozhZxcoHJ0aFfIBOEgvsd4ZQJ5Mt8Qwv6Z3zZ7i5meCNxzHtCAiv88rmCWYCJvCuZ51urzpABkoFr07AbIlz/TR8QCcvEgfFK2mO9OYv5yhVFXgWnoRtwv1vvE7193M92tcy0b9DTGrKjO7LCzJJK/kg9ooBUjSdzacO+iY6g9OVqKLFhRooTwaZAkYGanKxoO3r2PVZteTQ4h+mE4YPz3tvmLozD1dwX7ZuaT/OBNP28nw6yxl9ESuacqDzWVYa/1P0vcUzL6lhUHzS7lfuwh7xA5UZDSBrUZg339OR9Co8evhqKdYzWcp9mD34yEUjHZSiiYY5DoLJLy2uECizlfh8Sq4Ye8ae7MwC0Egr2DqTtfwEzdbCWc1vmFdXGgBoeJDGsJd8hweBd42tES6bNLWLkyjRq6mkkFh9jZm0fLWreofQSq4rxy05wIP23AoBAJpoZFHpsn6JAEKdo+ey/C2emnDqNNO6Vgn7sfjE0Ft/NO04yd73IU84XVoqrucFV+DhQiLFb3XXavl6bxebUtx2JXIIWYUTRT3MGmTN6y96pn8dyFzQLgPchRoD45W4gEMU8FdSiaPE39I9a5VxYjQQ3v64o+68CKvHbfwAkvc3NXBt+chgXO8O0kdgFVz7ZcbVzxvWVkcMwAlX6m0TW5KCj7X7eLzM7f+dybkO6eNZKPJYSFF1NoDXJ+grYg1CIL3lVkXXtICwfQ6yptQdOftNw6QooXz4CODCktGZh+G5QSTEJNecbWVzvF929Zs0lgJl1abxF5p2YH28o9tJ0djEPIS5ZlBsFzj93YFe/zA7Q3nuyTAfZFQ7O0SykpO1pG8ziRW/dH4SA6MxfXnxlxDL9RkXMvlbmmP5UIVO9V0cDPidJOlgAZeDi0sNnKvUNR5O0EFyEbU5BHfe3JQhYZgGXEx1QeeQKazRx71TGFEyMugPYA4Ek7XqCPZrrJ+cEOPixyMHCkFMf2XoeezTqIjYeTzB/8qQ3dZ06O6clcJRekjvJ2vG21vGrPntRsmvYnuhyILBip0YwQQ1MNsM1RhGepqdcRtltvbqutpPVZrBOkX+G3wloCY9GJBE38xuIQtVJvp322mycXBrO1xfAr0bo7uooEJnqXVX3LyqwCRe4eR5ocAUQ00yO/r94hOeB64MI9o+RqWp9kW4mZ1KWxc2y6lKBVnscIWoxGRRcksNRFtW6DL+vV7jFWp51UIGAIpza/6BN4synPlpkRZ0MME1RYi8/lBmFvHdvz49BZI+DbwpZ4bHKdiKQg/pFv0dODfmW6sc9sFMYajtKDRIgOdjYZqUFQXOytUCAblCkRFk0pwRfEdWzStnJeYGIcec3yNK5fZceiDfzoluQBavwW4Nf5iFYDXbY23ntJLVj75SyWyWQVy++MYMQwkx4Uih9H76C2Gq9t4mWgkobYSuEG4fH6vAVUPw+MrB+M29EYUytZ16SqxpN024bDV/EqIW5xDbdHOO7qcvxY7aYO94jbAikAobItWe1e5dOrGEsP0kjWeLnzm2FKtpaVHDtusZHQiJA3eNQHHtr1IiDSFvEjlIfOmPO3Mk9HjPVEe2RlgDEU6MTHp1T5C4CsRVHKWPTMcPTOeWb7iPAZM5Lj+3WA1CK/9KdaQ1dwX9ECLux6T9dosS9+JzteGeFvw/9lhryWPIPIDzPeSKSuPBGF+nmm49TA/DsrEUkKiYXwbVNqVNqdTp6fbhdL2KeSfROwtlHsosMfGEpHowHP4bAalsuAlT91S4NqYqgkDCiFDW4ld/t3w+uJt5LTrA9RW6beRqhe7ilKV1yF13YdQ5Rtps1FfvD5YJZvZlcqzrCiL2R1LcRKUiGkQQGT2Z+cnD/NxqR65JHbDCb6ulKJDHGyjdkEo+HLlgWBMLevkl0vUbaFWzMVUhl9k5WbsHMvATZACqTYRJ8KncokQkUzgFOZqGP75XzWpoOdAoO8v/uTpkzRJuVjb34nlqe36YroOnnkKWXmYVMjzbEVEj40xBLrUH487CeGSpoejLzheRBmxkaUMcl0rYkpAW0ZN6I9+8mPDZ8xDXjF+YL+FdU+KJ73pH2wMhBQ0ccB9kvqHp8I0psAzG97McFFANzzVcmZXs9d/xAqKJ9Z6iL96sCopjnEJMybRworLdis7HWQ2BVET6BU+AwMYvVXFT1aMQKzoyALsDMnvjxkN3uTYjv/4i5VgK4vAewKSuRThsecVUQ7OcfFO8p4Q6qKRYDymupmCtcBEKFKkIRxRZtzDAirn7X2+vRBpOGSig6/syUk+7xGzIkBtJuL3ofKmRIx68wIdO04GZDNyadM6HEX9gh40AicMPRdv9zoBudKaN5HmhosyMuekeR0+j7AiiU4LDxhk/tX+a/cUQ9qkL2pU4AVBFgoX+1HaeUAibbmg3O2s6JYKdqD4EfRMHAc90gi58V374+avqZE9n47Rcwh7q2Pr0ZjgACyKmsCu+y7CRHX3K44FAZH8xFlniEmydYw76PnAChHKMCVpjHsFUicALWoTTMrsjr8z3yPcQD6OYdzrUsHcaxpCQ4s++4wV0ZhOzrS+ffz1PmwGkT+2wleh11T/t7GlyZNEgaJvvNmG166lSuD2m9cIcGSFp9xJD47KTlwJEgR4NBIlkWomsfetTLsLoDnb3p5Ueio1jfUnGtLO0ALD0wl1zHYvM0Dkra75rE4+Gq2lUNlsg8RjpHnEDCtpqKhRuHWW4ML1YjMPB5Fhu7ge7g8K/O74LuvkqqYkiPNUd+2qWV8X8YQkdizyRM1+yY2nIc0VaxELUcB99Pr7tz60BJnUF597KUv7bEy9IkWdprGMAPcqxPu3nLZv4URS+CJoRF41idzTTHny4jhMAlcz2zswEcHyBs95TNKRW2cpKSlgh3Fw3992p4XZiASBxBpuvNnRyOCM7XCEy5WPrn2urJWyJ0kR65EG9hZ93+8hg8Yga4+bddtqY2YISX4OSUvquEIlirHbpjsvtJ/JPshEXxQCjJWLY9gghRFmRe2DcKMVDd4C2FIDiLKQI/Z8WJA0wFcvYU+yWitx5ICuMhZP0YBQty0jUQ1Cw7WWW7+CxPcFHHu4eE0c2sJkNDB+bLYtn1dxOylyZQZgPCFV/UyolL5K0wHmpkiTpcdTaGQOG3BkbbkGL21ryx5F0+qO/Tr02pJQ0aJoC6Ere0XVn51JRadsiEZgRQsDqVBVRc3qoUd/YF6RNEcCGQrzDFYxVHHoAKqn/pfeuMFochg0xHDvZpXzqkaiEMdADH2v8Xmw/4IwL/0+4i/vyhQD5BYBWNbD6XRK8oPxdrtG6GIVoCRoQTHVpUjgmoWY6Gi2yICFOHpfMpy4LdT2TgqQyKo7XHNt6G7RGCRrXKH0x2qgCRl8+mzUlhvovbINRqMKtxWdJ31cx+E87PO0EdtU5DhW9kT93fb+yClcLhFTWpH9V1cJBi7Gt9jzp2wObu0mn2ksuWH9MfqwU8LZAJXV33d2oUtabsIqLwM5f0NO+u3ZUFlmZ9ty5gqC3bVc05d6N/I7AxIRU3Tn4pxFFVXHaYZ2h5G++5TvY0Nm5AMWRBJms/3Tzj7u2HIID1KBV4qVqy4GfMwcsZA9h/S6GPpRIt/wvzs2oO8LwYF563PvExbCsZ+KJxEcFfjcnSwKTOhAwbgqBeAZz0kN8+oqEZu99FUc+oDUqbLUyaINJgss7szF0vnx0ydNL8GQEcK3PF6iipKAcLNZoTouw3DAEVQYX9h3hSMMiJmXWI6u60cHV8OJfQzqZ7KZWu+eOUXSDFVM/R8SvzeD+MJEB2Ov03NDlfYm0/DG0vh7++MKUREuFQo9DYfuhpfD8HmuCeBEYDe4EG/B+zTZky0voCGPbANrvaoXeZ3yTjvyH8LUVzppkla8jf7RpEtE606Et1ZTLZyCQQHuA1dbj/HaxEpYjs2a0zBZBo13uqkdq719DQ2BPRzDxMd2u+y4hybmMMf3UKxsaV4UgYl2OZapQFLIj/fC+FqR+2HMs8NQkdUTlzLOcvTI4Hg/yydy921wqb/ZfcMK0gzEhxiolw1ZSsSQnlAeYPYuceA7hDtGxvhvOvKphPs/sTpNuoO9xALSdDxxYLDFe3kR3w/PP/bPDCGAmvSfZpL3aIPiTaPcVIbCJGKLOgfyzrJcYruYAnVmP6lkxGyFBXgPdMvhzb0z68B+terfDM4lPd8JuvrHaSv4/WfRyEutL924vvCg5QUS7lcBvuWzOqSZ4tvFumPhdDxRPTwABz2pVJm0KR/O4+t1LXM0EUYmXhHarOm5MlttS7gWEvwfyTMlm+7jTJHROOXEBT+KmNozK0aM8ggKGCkRff7M89AzKLLIPFAB7iX7RZjz2a/FEMYCZPv+jPaYrLq0F9fwFuo636FQAmSduNNqoP7OsvkE7YiuD/hU1tY0NIX3/81mvZwFaYMBOlEMBj1FJnirjvfd3IvFvKYcvIkF8QtYN8AYLiCsK7PNszIATaaxcW+STO7VbMZxDUSh68VdIkSCm9uSwnIBzz6/Od1FfY1Bzb15HHN3uEXVDUpCbcgW8GggL3IcfN3HFIPpXM5PDRTp+l2oCdwuojACk9or3hqSdCc/7PMNmgw01wnAZi4J1OOFRiBRa4rnuluhEFdvhFK3ywc1MY+YIU2lo69budkQwK6ARg7R389f2sFqLnC2B6zO0vTWTEQAKwnFB/nAKacDsCTOau4nBeXTzrsTsS4zTFGAG73t8JbVdblgVGKdq7sqAHCG/hqIydXLM1wSGVu5xRajMJj4RQ9ihJ48Gcz4U5eY62h9cOzxRJ5i7H37THVbdGBBrpJJXsGPeN1AwVQIjfvwJ/e4kA2MkrNHVBm6IJVggN7+MRHoFyonEl/josKQc/GdmCbxTVN0SLX37P0GCrndnUQkBCDXAz6vhPkaJILhnJnAqSFPjvtaIBw3kkwFDr/l+75qRi/DQ4ritRC90n9kv8vzWnPQk4+8maH+0lwk6KhRc9KRy+rbbebNWjchy+EZO7xQU8xrQZFaj+39cR+Lgs7eJReZ7NDyC/f3br/208y3RBXTV99CqVEM1qCFZKrr7cSMInLZfOotNzvhfPplPOPIP1Uidn9Eo7vXEZdKEl3xCOTdUfICttlHiBVO+mORmOaWdLP/lVPai/Ult4CxJxH7qAlSN/yxCojriqU1wahLkt1XdNi/jD2XiFyErXQgkpTLANPoOrgeYKj98SMcJtXPU1uC2naK+hQLYKLVAvMEjIx4AcCMNJREaprQGbIBR4Otu8H9oJKGro9bVU0B9JZ042bm8PMJ+z0GB92RroHNA5XVckhVfvUeKotCC7+poDK2fwfKPDOIMJ9vFxZvasNMueVVjC5ukWK/EfmSTw/nn21V7jkZmUpUK9u6UDPJppba8+84WmVVjETV+InWDaFlIu9AmopJ/fObJzciEBGHsu6gQKVY9myREBgyFgYkjk+pI4hkb8eH8yx8BJ28jCeY+UyZGnVx3+9DfEyQ7XaF1hjC3JNNj7ZE0dx5fpV5JcHOwXodZyxebDqyP3CceIiRARNUsCQowJ4iRNrpWyAWI+cmIQLNA0WuhTo92198is5ejR1XlHekZphQK/F8ifSVD3Fx7ScK07I8tHRKAUFTZd33UMNVxiuxftAwfzEci7uaem3s3mvY0Wmz04MHeRfYLuBCVz+eyYMu4FCuzfmckTmo2lsSLfsIDfvq7IQEoGeHP7LcXa3cw/SDWaYtiUlWbCMmvCmrqehel3Bj07Q7v1DRC9cEbY1gGK5rLZ4W8aE3Q7HPSjSGaOm4jOqw2U/RqfPExAQqnLG9hrMhw88vNbRDWo/910FuitH7E9lWH/00g9Qu+DG13zAII9+oq1DmwJahfRJ/cEsx8ezNMcImhBFamSkelGFdGK4v3gfWJKyn39ROnlUxdUirYb1B2v0ACBfavGdS+YqorAhPSVO2UgupZBoTXg2JAOe7VJJ46844zIL616Vpbi09Hdf6MH3yDEHz+4jtT4o+PcU6GbHiJwwXXSuDtrbC9hVO1lJ3geCfsdFlJVJjGA4ny/T7Lz1qZ6x9kdVUJqUzY9sTKiKjQRi/fGMbdgypt4lEpOZ8xRV2VsdP7I+uqXqT4z1dKQap62A1lYgqF7ZiPM4myHdwEad0Bop9HfdjC9UWePU5VX7DRTiUHaLYDWigZAUMGDlB1b3o00/aacGbgMmXOucSmEENxGisdlOzQ0uiupiyuOJdLoIgsio5hVimfO8s9aZfjOQT/X+JawzwKmGjDs/MPKPtnMttbX/m49XNBHLQD0+Iz+kqEw5lnQI2f///KYP5zFFhzBT3QDyahBUDaejQfP/EPKsF2SEtNA4n6Gq3Ky1yxy+nmLhMK9bDlMDkny6wTJz3vk3IKxyTqeR1+GFmo5KF58SnaMuvHbP/4BJaoLMhnJ5tLSQLbbRHQl84BgReG9TaOjWURGqXB9ggW2OhDs7wmU3YHyRuvC8SaKk5EB2HvMX4hJTHSBaUCCf/hiszs0UUWA0bYgMRqm3Yh775ceOwvg4pryIMKVAaiNfRdSF2BiLTgN3ZxXnUScXsYf20tuXX8j5oy/NiaTeCCfiwm9ntVRUu07Q1ePJz9rZwgRQSAyzMhHYVS78/Q2fQNdb36jnz/896VV1qEtBOFeiD6XfGB2JiGv+LUjeF0IhyxGh8lpD64PDunMtaRl8XKRK7VnJbkQBKqnB5SY6a+FIdbPhWRIBT2WHz0+bmZpyZ4G+ceO/y/hTui8KS8/4APmKteb6qvoR8Zdxnw7YnvliTRr9t/SFbQ9Yoe8Z5GfyqOh0y4u4tOnENk4WvVqfTlX4oNgkuPTNVUAYig+0uF9tsrp5XTnDMV6B8TYbtk2O1FtLVvA5zGuEu5olKF8yUwOIzWyqRXFWHXDi8JkkQbDHZsPmi6h8SR8aUW9DdF/uTEx3DqsU8vtgRdD71aDA4bqKw7mZNjlskDtGz4T2+Ir5lW3vJFLzK+AqCmoyPfDzCJi7EHKudRSoqsMtKIUPjkXw4z9Xom2kNNNkyC3KGr7V7Xv7TQ4+rD2okM6ID4+qhhCxiGwMoQ12OhuWxRKjc68OFhuuuF2ajWRrk/pE+oMkfZnNkOx1tKMTxTBLOr1fxUEvopjMIdgS6POiAX8IV7pnE+41RhmNzT+zn+vkyYaxev+NcXZOKa0jRzbhE+7SjQjfxLMXIsrRRycbdCXLGokvrH+FU0xVpag6UKrXKMGjVhtiMKYly/TJUeEr3l/3tH8cKkpG6Fr0i0mw9UgxYi0/OLY6v15Q2BZADfDzwgn0W7YJ304SfqCoAhrh+2sQniMExGJrr08SuwJexr5sJOZMEHQrLHYvxGI9yIFX88WUIvWwbYsH6t7THCnB3ndkz/INPgwauwNlgUaWcYj7lrS5y817eVIgQVBI0qyrjE5CzbgvsIugF/8Xk8m0amM21G6Bod4e2UUTR2oCvfNGOz+Goa8sLdm85P70rPiEDgnvvKkvZSHa3Pe9imlNWxyJcshmW5Dk80WR5rSW5OPwaLFZPgNKLgFOBbnhHJTMVzKbf2Bz4wqsAv3RbjhfZ2tkL+a3lv3q928x1CljgqhtCli++wjZW4NXCIORtEfpKifMVTOZf8bJ+uA6SWaahhMP72aw1OlBxqZgLFPeFYOWExOcrWa3FpTokYU7GJxU1cv49UcQHw8b07XeCOv/CoGtHNpp4cn357yWl5Vd4A37vud0hqP7hzNBTERPv0OruFYrMTPVikH/xYnIsO8KkZmKkpcpjxp9yzWLUXP9QneYyd6AFxyf9vT9jsr+NV46wjgNu96oAq+/Y/GK7MYvJBsVishROPEnhpUrw4iJb35z/c/nl0zMX0v/Rm5rC4/v5DOKfWZGYqJhlEQRdpQ84F2zNpEMVIQnpB1i5zdrPGsdjS7dfQzOSYHS0pmPRod8bNUSIjUSsL7t02HakHF87u2J0ClhC2bhY6mKN6VezMwjZ9+Z+2+IX3YPsVSsY7rlJxhA5cj6jf2+yN4XXeje8YcITtMA1BeW84l85NUR9og/DLQvyl3nH3nd2v4ekkHfjOQyLPGDRsTk3L38z91a6QDcSKEPN5tWmmruSn9bRpg07Tbo7pVGs6v2yl34cURABAcj1jvpM6H0+MwZnJ6DwWuBc3kOSVv5OZBEoOzPAimHCnVHSWePGNC/Nynu07r7dpxJ8oBjqlX8RO6C5YfeRQL1gI6wTXo8nkCKUg0Hz13Q+eizjDBYflllxnwFXrq4xh1HigGx1p8MXY/8zimXzTvEpLIE9ckC3tfxqJccRDxwTD//25RfYPxpKRGs/OyR0YtyheL9wWGty5nf4Qzj9P1LCURnPIpWXiU29p7EUy+lhzTiR9GYoiOY23ZPKlxjPlg7Mk/kQHO6f5Tqy0/xmxPefkd2cpM39MfioBZt22Rw2KYOHEmUKtqSAV3SYr5SieZcYny6lZurX3jsGCS4pftrVPiqzicmJGbEk6uLcTUSpWmxx6hh0P5NsYjjQFg7iVW1aCRGIDKUyMrD0FfE8KOBvPXUY5JQRf6Gc9mW5042SqKml/hoDNB3R99QdBPQIgqlZh+ZNnf43gdihwnufG1k68nz+LkP6DudXmudeCvZWpKmrdIYUMUq+pLqDiroRSfCSfpFX/grC/QblwPcqENMCVSv1T/emzXEcVyNxLsaXH560tMZocTMlmvQnL2CRvSdCe5+pqb/VpitnURoP2mFiHbkNBvLx7g7LZJUSNANF6+ZiWJK7PQaGasy9e8oMazgY1v+izF7jHUcsSIRSbqfJNes/7MyZHunab7DSh2UdoS4RqnSfvyr5zap78z2A2abQw1sYN+8PAeGjudZAzFxgXoqdVm/Q55R1GPlYeupAl28MCm9knDG2sHBmwigYJ5Red6paKY7gQ4xTWuSBM9K3Sr5MsX14Fd0X8yFLywsuao1Iw+NesZArvP8HFG0jLlN1ZGrIOmVobNXx8z20vozdj9xGdewwbPkRF3CfS6WbwEMBY9gY4DkxvjBjCX1SE7/rfQAKxsAtoSKmiVey4MQzwluDAHVAlL8AzYVD4AsvF+rjfb55d0Z2KYizl0j5pQX+1Z9/J8Gwp+oBhS9pEJJaFFqaWQfO7oOnbjpzxGe2crALVDKKZ0jO7j3luIyY3KQtit8/6Enp0YkBIRmw23lbjXg1HXA0GVlti5W81kttnDuDPUXqFx/6yDzB9UiwHLIMnc+IaVyzVbsM0szzKcyWh7xhWiIp9gtDY6S80E7/gG1VVrSSSEQD4P9rEk38mtixSSNdSmtmoGKhfhE20aHvUpbobVCBNvxCP27OTTO+HzhjStUwolfc2a+aJv1DmstQ74UDt69XEfP16eCKVS8ePTOmC5AriaIWovlkN9EaH9ceV946OSjmyXaICn0NTRamSySMSuwzBB7mNUsXJiFxgxBdlCHBO2XWMg3KfE+sh1jUn5bPPc/3UFa/zsAtUBqTxrls+lukyO+bxfFWRckbK8WJZXNMPy5uZy9WAjY+YAuKlWDcn4kDA2mknlgvo6K+TPvJMWgO89ayoxfnrHhTwy+yvuFymsYbSxYCDYAvbTsnXtO3PxgAmHTc5wnGPVkdf2F9zIppVgeowR9+EO+QiwSMQTyYFWu1U+ok92tCe39MDKaZRBr43I5xbd0Rzdex0jYb6b2ZaUiUvNvse7dyubK1GcwKvkl0UX72QkOqZCHENOh3JXWm0mmV+45WTYNf+3aLKBwGjS6uZpzEB+K7hZzL+9+QqKGDw9wWPYGVFSX83l+yH44fr/AznDM8kmFcFub/ZaBtfppj9jW1dt0uwijFPjQbUqk8wIVoShoxVpk5oG+mmaKeP74UwfK+yRXBWl9p5HlXzMBT4Y9kJLecmiKOJZJTH+1pAaX5QEbN/Dv9cbP/yYK2K/xdrgIc3q1pSzVvmI1TaarCBDCueXYAbXYUkb4StGa+cmL+eiugsiatrA9RT2FWbfOUJHdj6M/Cat+GPO0CUtb55E0NdxRBU9VjDKlgunTlDdeCFenkq8iBoaj51ZmVtLFcUlpfD95BfR3mAf5vFahp5iKYNZz4mC0ACcZSN1JYl4nc4cSoyWM6/BK+KDWwBrJ+cIpjr92jrHRVFSO5D3I+Uisyd25CZnQct/GFAGURiTdro9yR2OOsGQZXXtGZgjguVtitN9XTugh00sIEQE1BPv1vCZuWRoY+BcTIcxoc+Gs/xDMALptvchc8h04wqdtx4pkkFl980nPf2AI75oLf+wowGpnNJH4FLUfkBpFyAucsMrD4xvcyubvQ3G9Yiyt9pyqlNpCe+ZPVOdild1p2qdcSmI4OBaw6t33+/DCWVuiNNRToqZVRPzVaZYezClKVWNid1aoNfwCZVvOYvGNRLIzv0ezNnuf9aU57NGazYG6U2G81JY5jCUAklmeZNzvULU1+aCK29s5PWxGGCV730r9jVU97N8+k7Ov/cvT6pN2gXuenOk5/3dyDNQq2fVa2ZICTqJzPCJxiIzfcD8cSR7g5cjDJOxOlZmq4bYkcUOUzE8VYvPsEZTxXiaanSmZ7JYk+0GZYx+lzOVZhFr9sF3ZkYjIAm3s3d5cBrlXdJtfL7o9JnnaRdgfF7rJLf9Dd6NLSbL9+tGNFAZM3REo/L2e+pe/a8jkNCvS5iP6+RUr5Uuvc+KOXF/7OFL5zSbNFRDNsXsh+j+cwVOAqMj1Ol3h7QH+3LStZt+s/ftm8ffk7InXrtnKZhCKiwu0U3uapC1uithpdb5Xv5hFtL6GJ10YDDLNh2inpCOAYiA+vrF6fAn2r0wOYcLUb9+dYHU/PImh3/NQKc5E2pn6jWFV4zHF9brtzdEhcGRkSIaGZ4vw0DQ9kgB65AFSphgtuJEQwkT/BKjKWU5kdNM8lFPy6pnTUenHOtX8GEdk19HF3vD/7+h5svEldFGG/5eoSDIJ0ubB0rxoQsnkC531FiwBYxT40g9bsSiEacYGCkFvBo371JcKR/FOEj7Mt+p2HYXQjzRAXB21usxNHCG7+TTBMAY1jJvkY/jTbi1eH6NqbtxlXIVxSo5avP0o7XeHRxUI8VYWDL4z7gl0S4xdJ5A0SOtQCx2aYo4RkrUXUdPXEnveEcpvVP66pst7x5Nqk94nw6W+5U0Ov0se6ESeKPVdeADLNoHjyotfziVUo8251Egua19Y5tMbMIno2WvkUCWMgN8Mropfuv37SMtwWRf9QTcyXRDvS77o1cYInYb/ZG8LX0eRDJZuQFt5MzGSd2U5rABluRwnW/t+C22I+8sepW13TWBZks/ImbyJD3+LftcNJD4ZpTngwU3v3VK/22ITC81Qwb8Br1x0QlaTqHvVR+yzOspIzro42bZnS/GCl2GtIFSiVDJxDgUabnVExELaLcImOaJPoWCDY/2JSlZ9JmoBjnu5m2I83+ntQpuCiAoBN0caUYa8RpQnMGCqfF9g4edGe8M+ZLnzolWsK016vUmqBbPosPYI+Y0+tLKTyQKohdQ9ROWPdNpl20zzyt8lPgB/X5/YBqhDpUdqWv7oWxQGT2XsdnRAZdeQFr8r80xzJ/jF2Dq1VPdTpvayfX67hC7O7OsnECZee8ef6UPrFzwNJ4wNk1XNljNe/yw740VedeVVSG7XKfrSmvz+V7d1vK/qnkrWi1DsyAhd+nDJJjV1P/dCnWyDMTeSuAcKphtLo2nFxrs6mfg4s4fk5LxNhbneqnbj7F6S2VnvJ6z8h/ODnl5w+MH7kZAkLbkCqpz/kM81ogl1/jvlq8hQnfHb73x4UWPYDW1LSk7gX8yIuSjPlhj+PssVl6Ame4cV0ekJhbrmhsYs3dIDKiG5vXn4PLx6Mmpu3Ryh3lMUaPMUmDJRqIKsSqTp2GPPkndA/dv5oxKdL60vF18OmhCRWJ6JvA8Aj7irdOhBUy7+9Zly/+e1Sr3rs0L3p5qiIg00Ck+RawbnhxrFj996J3nhkyDH/09j9ATzz5TiwyL2nBTGu2DYF+u7oyoSuUncYzQv4xKhE+XunVtkOos6fdr57dyyd+i4+l94Fk5m+ZjuoDcQfjKO9WHD+g7Q9/fHwDkIL1303UKI50RolARO9GSgJGjtOAfz8U00TCS//JpY2LbTzVaEKRoJmCradanhl/wE6oHqjNlqnq27Z3DmHtzHF6R+TyHmNhp+MZWNV2E6tJKPxes8ZkBp531ob8k6msvKhzfvebP1m6BjRRLce6G0tZTPmOTpuIsskjQpowg1HbtWdgFSmLkx6pUE7miPjiX4vHx/nNCpi653Gvib3OAiodCD/QrQ/mJtnHVdv0eyqBQl++ARZPFJRDd74sagfLdDXuDBYi5jYr9kDeJNcxO1kbAa2Bi6/uAh8zgzuYd6td4ewuRm7g0g4GaUyLdhncXEAMvZg==
Variant 1
DifficultyLevel
576
Question
Which of the following lists the numbers in increasing order?
Worked Solution
Converting non-decimals to decimals:
58% = 0.58
85 = 0.625
∴ Increasing order is
58%, 0.62, 85, 0.65
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following lists the numbers in increasing order? |
workedSolution | Converting non-decimals to decimals:
58% = 0.58
$\dfrac{5}{8}$ = 0.625
$\therefore$ Increasing order is
> {{{correctAnswer}}} |
correctAnswer | 58%, 0.62, $\dfrac{5}{8}$, 0.65 |
Answers
Is Correct? | Answer |
x | 85, 0.65, 0.62, 58% |
✓ | 58%, 0.62, 85, 0.65 |
x | 0.62, 58%, 85, 0.65 |
x | 85, 58%, 0.62, 0.65 |
U2FsdGVkX1/rDVOotV1mzu6Bjimdcy5On5ZKV0ZF0p6xwx70OPVowx3QcSxRFzdbhbOIHWYO1sPBJ7CkI9jtmimDmGHnOfGsjt4I12QMH8hhpfVNlDyNqm849H3lqAQ/k/A8bAgtbByKaRopZhA48tb6f+cnkaYlxrfqlYtDmRbwg9/uiVcri8HLzng67aeyfUGyHabppI4m5AyCSTgAOuTsOmSeQ9CfullwfL39iN8SvQBK0Nmnqe6cR30Gdrz/lyroadtDrQBLrGmWuVAbapDXzUsTqRGSp8HgqOhv5E9sEmGydw4FR/14mOTH3VEbRydvOIAhLzf3QziKRJUYeTEo2N+Uq692V4+hViguFsDrQKsS0I/vcXx3VfVVeAipK9QOw1ccs0w+DOc9DjRyfYeadwJuAQyhxYFFwtUxLWe86q6raIkLK2UWBcBO3JpvJNhr/Q/G+xEQRf6iQMjAAubhDO4fWpFw1sDxhixYWW96RGw0B6WKtLy6E8k9z5ZAUp0WENRuv7Fs/4BmEIQd5UbMGrrcix1Rc8v4bELEpHdINZPBYgC8xggN82Ma4Gdcw+O3U/v2QVDnfyI5yJ+bDCwf95vpQDNEYtmXW9OdRtiEu7yFEWRUtczM1i3dRpwJrsEOGpsJTzCNaBW1pQD2WUapZAAIBbSSSadfT/1V8I+7a5e0W4Xre6N6w8zQKUu0f8ilpJqgsbXqgcqprPp+JmsI3mWtRRe816cTSkPkp9ckI4fWmmpJKby/W0RTmmL6qMogMfXybFD2wboBWHTo4uz9pE46PkyNybm+DJzbnlFzOpEkwAd/0KepWXnAjZambBh1s9U7cCIG170YNRDx0NTmZFwVtbqIbdYY0e9+XUFUejNvtAu8ZP47fBRut/6C0Zz5BCC7z87dPdu76xQn3sMTkbtNPSVCCp0Z7kEJ6xk71XW93dqSSNAF6uc8UQOHIXZdbHmkNW/I8NfpqLszAMJMbsTReU140/tJwa53UkK0omPMI+dYnVRDSLpD9PicuUtSTpcQhC44+pum+8L/NtNzNTv/WBfY/JvopSVGkgxv8VVM9dc+KxrgF8zOOPj0vEF6nh6T2EaeV3VgADBUXxmaAy4OS9bFsNvVSt+FZhQLLV0j8a2MCf2T1Orrk0IVmFbpiN9acKpqK7N3c7HNswBAwdHX95zGMS2ifE5WYovgeyG1HbHaUGyq7hmvClKdqASfxeZj0i4Os4YZQqxGru4nygwh+KCShpRXCGdFpXhY+Jo8xDgwXv8LrfMDmfBRwdEOlaTH7LqOw4TMjJwT7PvAyJJ23mxyesWUGbsWLBacSqJDcsJdgwGkEeIUU78PNkDMverD37tvL9q7WIDQvJpgKwwjWHvxU3tQV9rRF2heEBRL6S3TGNEs3Z6/ert1LzihyHnODIOL0nyWeoDmjoR9hxQ0ZC8yISol8GVhD/3b0H9Zz3nisTmtyyC8SZxIqiHuWiJq0hMuR6gRZp9PkZXPlH6l2BoSzAE0j29HUrL8GGN6EBBQEbjWrrAeq4iBrn/pRX2NOotuQSIAvy0CZmjAkzSUD7MZvvGOiCHGeEX0p8C2N2sJlUFkvBv5TUWzFD04RSZC+JYnLnFidFuPU1ObPL0SgwzxFGd2yky1JMR+JaQHc/jiivJGb60DFvMmMnwDg86jH1ci/lFRPDa4aHqKASGFjuZIQIc2tUuSO2ofYG40CpMa94sHY3Qnxo1/83ykWueeuEYR1wXJqzE4/iHAWRH76SDj5LWwrXHKmbB5A0G0V8jGy6gVZTaf3C8MZeTnGQrs1XCeryhkl5Le2hvIPal2ma74xSOdNIYpYr6YBjQ+iaiIAB5bMhOQZv4+d/HLzhvoDw8yi5jpH+/r9pfxCNrBGEet15Q5Rh3pY4Ngp1WcDfuGdWl1r/gSOZrl0jYECVqFdpu3JjnS0+5DV3pAu2rBjcB5mUOa7L/HrvJDvJsZIK4Us7ot/N4L93xWFkEMrHQXcHCgvWOnI8rXu0YVmnCN+R/KBVL0bXh41YLLV9DaJRVisjZPMMrDAUbFZ7XNX3DfWIwqH0lGS8jW4xovbXQRHTXT/znuyvZE7wQDtsd2gACm7jNpa9+sivTWl0Ybh1fYd2YH6z2AQkztgj8w5EDt9MeUFoKrwpKyz0J0Tb2CoMZ5X8eNSUUPxKVtKPIKIXuD5qlMgl3/+Y1WM9q6SxKeCk/7Q4ssyURtC+6VMOh68zyzk5KLZikED1cEfrnPbMvmmlGQ8tBsYv8nUEwfEDzlO9mbZMeKjjcHv9LBFdr/68JO3iUc1EjU0bp7lp4bm73Uy1KzB8E+/1+movwi7VVO+kN6M1zk+Gciu08ga3f8cWeggs3s/tENYrikXuJm5kquUQPKgiT4/0Ff6a5AnJAmhmfyEFeAj0p8KBcKc17i3hk5PL4mqhakFprfQTROmmntwHEcFdaTBL6p+PWTsiaft1HWH821rmkC7s4VrP7NF0K24jFHUY0Pxacj7GEamCYYbIVZam8i7sg/TjKuMJEaSmdJ3uTJIL6m+Cua5BxQQhtJ2SFTtP0WF0xsqvluBkDxfhIkk3xnsOgfj1Hn3FOY1YhpBDRiALLcxlvVFk0xuk63+nBGS1Qw96u1cImRY/wDuwG9YLDG6sACItfxydSK5Fy1TQgsGukG4WY6FxFUpbmr9/z/6DigszPkzwnky8ngEB9t44inJQC+V2dvtdL/5757ff8eucUgTj+RpJvmbtRRcwgXjikefVv86SfrQo+iYEuWiaTlS14BSpmOa2j3n6EAVTvCGF2uUxXps3CUWy0gVo/7QnvNRZtAtllywnIswWvZopJQnjFEMTiMUYB/BW6uVOISvPAfB36YtMPhg5kNSgPtxOkxFszmPzdX/LImA0A7k2EtPkM+O7NOcyKCnK154ONkVh3ve0HDRUPr2Fy5BR+bhCehrvm9iTma1hKfLeaDjvFjp6Cc8aVMV6EWTAw2idNLMgcuqm3m6cx5h12nSzhQMTsAIuLIgQWK/1XOHbbfa37plwcDgba2W4plT7uGdPalQvHuuZISs3JKm5LuqjBOxnOwO/oZS1eVgSZFXAG5CfbP2GRucchLsFGL7dzskq7Dwoh4/hjjb4jce29/HVez8mt9XmMO3PMnFy+nyD6MlzRpPCxak8xNToLqMA9ix2W+eYkIBEIlJtk4SGzJXqT9hr6ux3TshOc8CV1oCIVvWgsQ4p0/YnrWuIi2kPCEdzr4zZr0muLamMh2SsO3UagiN4zrNWazhWFiz2p4iVVhSL2D7iWLKQSeUXrplIiMEGn4sZrJnDmjinzjb/F8AP8PzNOBt7M/PJ9WrI5TnJQJk7sqxLRzblIgW9lGzpeSZrX4rTKpL2C8XWzFLcWy168SSMow9cz49TiG9ROYqJqtFTZD18JCc0hH26oggN8jIJ803Bj5iJPVlT6roLLA2SfVwY54FJqbTVjLvswx0zmRLalNCYlG0TNtLrSffla+W5w6qz/Fg/kRnlksYp5mqwZ7sz7D3krpg87LA5NMT/DUdUX3BGCj+3a2f8+U++mgb8grv9KAhZIFbYzK/X9fljBLv+7CCGSvGxaL4jo8gRJZJWhz8YVmyE3ghu7hT81HiBfnVrqhAILNX0yD3sqhRI+O0FbOZr5h4BO02PJK4QFxqjXHvA2vHusfFWEp2YtfR4ZaF5GPz1z9b1S/UtviYfwm6wxoPTWAzUnTYqtapCm4woV0XYCJ21xLxyGg5vLvvw77XbDWjUHO/u9ABFfbtDFreO0PhOLYXRlzIgKW7pnVQvqIZdiwx2BLP5sQ2B/8WbotrRVjLt+9bncgCQ1Q/A+0itVDAeQkoCj0T5cBqoYvJluLEKim7MPJCmhxKxnwwmr1uz6YEDbH+TpESxT3dk5lh2LgaKzL5YYkJzqr6DRgGD12zo7XfzuisXgLefOTD4OeEM91DItw6tDWWwMSJAtZZo8JiVSVAVBYhQzIqBASpXzYWacYysQtqTzj5r5deiVK5FOUw9j7ryMAUV/qxZuMeRngdlFEqcSHvixqP21Ss+xLnPE56ELvk7/d8isc9/7qKMTYlx4JnGFQ/s1mg+IvU4uslguzOKrVlkz07ZfEGOKYx0ieZC+MZwQLe0XiHaxBTQqxDMXQ/e4whJgCdOY+l3qQqJ8CvV0zeU1O7zLjDVEJhi32mb52/WjIOO29zTOnb1GEiRk/zSX5EjPicJDP2IFseWyduVLvvXd6HJ0xOE/2lLO8tietEQRkczt4ZwmNr1wU+yez/j4E8sUW4aG/ieEogGWGXM5empnlDJtm6DOA3yCaycqnB95xvUE2Dy9CACwk13+nOevOlYf6oJVkUIdY3Yl3G+OIhhdkNWpT5SWR6fH93AsKP1DzDt6t8JxAwWJqc4o1wYC5bcQ/dW05vnyRC4ZYX1dohOFlo9bUGuor7MWtkYM8aqccl18OLsZ9OQ0PiffjRz8VHmj/O4uVsE9n2KTfxTu9AIJBaWg57RSQscoUiVdnuzXVfeAuCxYVlEqDDzhWwqVM31OKj238Le+imc6zXhffvpEzEq1A4x5HBYkcbrJQOpBzxL+uEwki1DepHNsqYcuK4b5qd3tGUXzxwr2GKR9B1bHXJfCyCAHePfqh5QFxTqBaUVJV1gBqjjjzO/v5DDmeZSUUHTC7yDqJ7XSfKJ7M5d7xfgx8QlyT+Ar6R26mcjRxTuC31tmfC7Sl5hGS0E4OCUhw70Ik3Qu1HxvfCrxl7Vv6PxbCWimnxTQesAheVwEU4CT4QIuyFl5/Bei+oxiAmMeMcsmUxMjn3l03gnqpYc1Gz61CTXszGGp91KL9izQ94ULMW0ZRtoK6xsDC7z4i84XuqKtDMLdiiQSwqYn4hGhaP2HXNGxTW3EF5iudhOpTNCFkh+venlNEaUaGqaNPW++3asMDIvMpWHsU1qbVMYWuGT+FqRwGSB9moR/x//3+PHeBLaa2m74hhPZ9dK7Ol9OsAzM4t0W1qknR55rzy7T1l4Z0KKX3dNHlc1QODK3UUq4xES28Hx78kBpSUFVGGGZNWVfa3sHF2HElG3zbgYK+DtEhQqZ2pF2OZXzoYZJ3e78o+rWFdCjfa0Lx71hXiLNlBrfq+W0Bd/VLaI4rl1n1lzWpEMWe4/3r0UITdIzXi/AYSC0pFTUbaLUbvea680sYu+ql12NWHWK5BnTVI/WVmTPxxEiMmwh+iOxWCklQW3dA9Beh3n+JiPJXDSStdF1ozpqLEt/xDDK4LdgBZsL5I++IA+6c2dRqRca7VHcoy8LNI0Qif75SPZCu0iV4ibO9XPkAOumZYpkoZuCMW/V/y9ZXc4TrINNJ3oTVItcx4jCrk0KTbKzYdA2/mlMtQ4fqjOS6ewQnA1FyfUph9Jir1T1cHbassINNvFlgpxceYKexuJ+jdix/ei68WziK2jDSFAyiD3cvB/T/3WSd8c1QMwKUdI2E2YpQWly1uL8ppcSc2CfqnjG+Xj8PA5/ikacg8Ht0WD3ObHvKRyXu3Y0BTtMLyTCpBOsc39NVECoM/RjPWNCNTzqRrdrBzAGGaWemvzWeLO5qU998EtajIliaB5u1h5t8YiUJD2q0cHiCjIXIVfkOozJYLlm/RXPjsbXmstyZywZKZU5fGL2Szk0C7AIzxXqn7cjrNJY2tbdiFZsEWNUIVk/3i8vEAfdwuPo2bjJ6Uf8WfQ4wdK1x6ia5Zk5xEQ1ROoNHpKSg/I3YIGKa7EZ3fFi6Omk9eBV9U6FwlPE7C4GED7uwf1K/rbwRlo7HtXdg9Miuyke6g2kfZGJf1RuVgz2Jyuu39B2WqAAfdbC3HsUwAaRSpaIhgRSo9Qt4CiCnHTkxaMTP8Q0uqN9ME/B3k9jIiLjvRPfO3P5koKp2Kc4R4Q7wbCRS2Bx/22BySc54Z1D+7kLVDPm6z2nFcVZHVwWp6L8ZRtz+ryEbegFZemoSD4V4Kxr5EgxaxBF7reuDJPuzgFZxbC72R8J4qnvygwhtO5bUc/2reWe0AjaGvCceaGur69hcYLk/SEcnvJgjp0lrj4yeI7ArwrUrPUBicah7qUfIPDQrjNNtxIS28FlBKHL/uiTgKcvZMcadSWPLSRrNzG8SgjAGX/MBG9ZOtdTUMdoTMJBq+fotMel0wx8RPHjZultWt31prXOE3dIHxiCzn6AmSB4YIy2C4akrL1uEHczeSC9kXaNfvrpg5cG14s6iDokLfvFxnmyqz/9DtCaEMw7kLqoHEsUsnBxBPQluiTe6mIs6XDNIcqzGsAQwHibq/+p2wcpDqkGYlVP4LlRKIINlXJ7h2v6gBJJBTWn24GpnGh6ESKn1OMO4WIGyWYOc+MlYf4W0FjlswSzySVRn3w9vy8CExyPYdj1q+5X2eksxwWxEtIIGmuHT5nHXeFtAUwuLAGdIudqWnTD8wXugVeNb6NQDMl9y9aO8+28VmsI/BiwVEBdtDxzU1qhuzWSEyZluaUWR2kisVzkewSoq5SmPuHc8dgfbZM44AgMcXA5V4QIwoIq2G0KoY+894idEfFR8APXt8G6ztjbktTTFUfCAgBKP/yhjILld0TTWdbrYIQDvCb0Hkh+dD55dSwQ6lVj2uHOT9/0h9tcy24Fp3ArsduKQg5hQaciK9jQBw4LDthfwAcEGJD7CWeKTWUIUhC3HfyCI+qcrGi48K2dOhBzepdo0mLXUdHdAs2LUrXtHOg7Mm3zlsgIw5z4l/EoTn6AhAhwketeWIHcJo2LABJflAQs+9RbSg8eaGlCRsQf6/Cj2YqDu/qwJM0VehPuxIETpYYIFcPpcqPuhvjettUJRmAsruWW3IYZSdXwPwMhJMn0BJ0e4HZxRFJIyacUZokqnAqLcYwUnLnakqXjvOyXd6A7v/k+aIp5X5YjUsALtM1fazJURdaNRZdExKpyRm1O3Gn3B/0DZzqEcuIAByH5y0dLn+ccIu+1xkIg9/T68Bxx/iFy3MyIFPkmibZQWnmQPhIr4KDxWuNS9ZbqBm5dsLUeyL1O3qTIorkWNKkvpI/Equzvm2Cso5rRNog3o0LUtqbQJEwwXprlLeVjY03irk4t8Z0tJSh42jUBDkhG6EXzxmfjJF2KISJ8LQSz6rmywgR1WHKcwcScmT0GI3uBrk0N8iEZVcWwvvgB2RGi84rxwYLof7ePKwqlqsrKB3VGpV6jhwYA2fEOEerkHOutT6dMibWLoQ4wxbvKKa+fWk19nM/nQCeQhNBqJxAOyN5HkiB+k0BvzUESh0kgNJNOweWNGcRkvtOemM50FAMSO0CfG1LPVA9KIciROJF1kWdfxe9x+jc9AH4h2yx1OtMVKaDveIko20rhElxSZL17lwJNmI9/vSttLfT0EH2fIyvMkGqOqLH/1FFL+VAroqbrR6BrftG/2oa5G4gQT2EJiYoku6sEn1/DGNIa4QMqI+80xGcj6D90EnL3VZSXTrDBTzsmFi4YbkKAMKyj30hB3Y1ITOCDduaH6wDA4uSu/Ad/PWdM2G2gPIcu8lYBW84dIgq+/A2xTb5IoJkJW9QiWow3gvlQ6XtU+h4dhMv2m+B8RMgYMVHFh7LvdN6IQGSWaF8aDD1w2VeiXt9JyqTQNb7i+6egH+Y+qsRdYPzgXdMYg/tM/NlcQLaPOIamBe1HK4EJ7+7nqYxXB4xAC7U0MQ8EAC5aINE+kg0l88MWFZWM4YdWvC82q4bb+QtbqZ5mp6AMuokKm5bTW3gSMiH2Fsdh91Kl2XotZ9cUpru0kmz9SArINpKd2NyfcSmSZ+iWGvyDonar3ZNI5SPvncwJU+pjvS2o/2vAwHIzxK/YpZ05o6t0tacGByA9nYtRXZll9ocsr64uFCwgSJ5GlT9E4gpQqaFjkamGPA5mghUnde6eMwP5qy+Wmu593Oj8B2no0k1Gj2GjgJQdlG3tswqeuX/SadgU452mQpAsZxVXtDn2VKlldAi00d97XwqjW3r5Jcj8y9Dz/7v2kyWFypr4R/icAyuNRaV/3UpApkgmn+omOS08TaitYrzvaNX3JAneVI8j99p/ePpesCIad7x0vq0kMVxPbv38QbRxTfwbQTg91MY8vGYhz+/4GNITxdKSg0SMFP0sqgYBkUw1LILjUi11lEHmNQUSoBJs6tp61OYNsIOqDKyrT129CjLP0vWbH6AOqYqpmgWzo+kNQzjCCyF6tuqT8wiZWuJzbbOyDzJI9VtS6J+n68nqlIvKVJ+V+NI73MbXvAugzKvlfBKhmUyEAXVVcEZSjaEobpLHf4Vj5gHn/D2CgElq5IXKUqgGKsoOKsNk/yO6VQQ7VwuogBKG8zbmOAUYSPf4Ks7BJb+Y1NPfWkkburv0XdQanby+x0dCjQppNfydlJbJdrVQ5yL/18tlW+IFSDtqnUwrTLyj7jKyi4+Nby98topaOcgzChbnjUMMLSh7ehqtSQwZJtmgyjg6ftcnsOSc8r+eq/jhWq0JtxiTx/uczdeZdStmQIMs+lNoU+Ed+MbBlDhma2a5I2Zxg+g1iKqFvEp/33HTQuEEQVEYRAr7jMnLxSIQz/9+GLc3oyn6sD9g1sPjTA1KODGmVDkJKHTNaQpO2JuHArlDpSfKI3nA6yk8kpD202buJW+bziUp2rkkb8BjbVe5mFpnzfM3hemhvRRAtIYNvfTV5GlvOfSVp9zVB/v9Fx26OLz2yOiV2uRvfSdMrKGFHiJxP5/x4ojDIVQXSUOyJmRxBY3pwEXFRdrtfBte4coWM3/0ulgJoCaMUk6wcQAUP2B9J0ZavGkzdIeoLUTVJqREJnRwRcxZTYXU7NMSLfZLO3yxipwbpSezE9P6V0Kn8es9YrM4baECvaBBSquKskqI2lT+GMUiHn/AXs4xY9PqvHeJnkcDHWDNOOrq0CWRKLB224f6zxF/VGpnyXFh4K+T3mRwANGYO1XZdl6j3GbwyyHRmQKJpQXNrtebCVSRIg17ndnT198PFZYJHyfLqZwGZNyihIvdb8Kr1XjWZ5vU2T/y/v55/1/4R7egUdU81zrWvjji+GCkst4GrkRur6pVKiOhLQ2zmIeqQGQoHUwd+UnmvDckiAzIUH8L0jqG0GcAXwBrs4OzKwLe4b+5ehM0BS17UqO239zZykXfZ7Npb365m2V7070grEMAOK5URCg19mBETZh71Ns6dntDcbyGgUf3v4HNP1U5HGXhUsvQwTmOCrL/o5o8eZBNGH5jojC/nCLIgbMputFEXAoOW6OS3JxhS8Z7fmHIjPsAe6EkpOMo6NBEYgLKr5LyIoQSdceCkmhuxA3MJJqSNgESRqehh8VQNZWrZHuULxJ+7Tz4ZbCeJlnoZQ2gOG9AK81qw1sbgZcEUtnoSGlPnSwkfDsG72THUrL5AjfexQuz+7xzO9tll8DQ6K1+3+pwdKgTp3nN7FBi53nU0mBdFeQOptcmuwXwBdtD+hzNkD9N2rLrx8IQo7GBwai5R4UhGj3SWbwMmYaFZQ26Matw9gfnvQ2D+D6p0E2M9ntFg8I3yKCvasua2ol6tIbpWIXcXnbdTvyiAaAh3yDKgSTf0MZ+Rv3Is5vtxvYuNOfWzT88ktvxZKz6mnS7ZlhCJNR2dXKK/J79VTeMSgylAU+cbwQ3NOW2PF+nDCHgXjX32Nn9E1/dJyOapBRZH3/fdVX0ig0pbwdLCLjkQSQ2hd6zPTQo8yCYaXRmxRaVtAWQSJ2vLxSiwzO+tWJnoWps+zITzLowYIO64I7mOQgNG6EAdVGM+52XkvZrGZh781tsXeqLv9Xe69s5RDYnPDqSpfunChzZZyYTASolf42hizroqlxpdboQyMnYhoQo5o0xrcmWDtxMCi74d9XQVQwtIcDvWbqKduYC0NaX6MKfxgOd4/Gs9go9FahQr/5t4aXzt7sUkkMuDbwc0Un7WQyCkiU6lWZOXC+cuCc3HRV9noHrrWZtD2lQfX3SPIW26GQYnpToLI0CtZlLGCnQa8y+omPo/knIo01gL462EPmfwWWG4ASx+KDjTfAH9eD7hp+dloEryuB04hBCe0rNEUlNu4tmvJowv2CyyKhJVidzpVsIPt2NRdnAqgosS3ww8hbv58XgFm3CwskaF7GUhhazO1yfocE6fXQbkZa4xeI7Uj0WVTYB9S9+w5xhqTYKH8AgPx+Gh8r1rC+J8qAXPcEdJoxmu5ptSFJexYHkSFNZT+YrPPY37gXKSEthM9cAadfZab8Bn9lj+zGgexxqtDTF+L5PJS6Ra6/Co5c6BYeKkQcbVxp7qKUf0zkb+aWkA0m683u55NV9QgmGT0R+/V5C/h+LnYBTIaHszW9NPmFbDwZNwD1S6+eYJtYz5312m5e3+xC6ZmRI60/us1y2/1k143UK841jauLiBFTr8fYRnyDjNvXIdEPFXxG08puxmvb7VYxaeU16T7nbFIk2tNsS5B+15HV+l6XD2iIFP3+JmvTpFB49uYzRjn9irZqBPtTKjrjr55wH23ahVuZxr5gGBdjPJ0G6Wj0mbvFGXkUeWtW8YFpYfIB+L00txKisOHVQiU0qi9ZnG2HB9ja+PSgDyjnUP9wGCuE9252tLMlhT1x6yQsnZavrHI7EZWedI6BdQaVSmcdaNW23RDS8hh3ZyhiVnptDwNU8BZlzhv1TL1tNW72K8tLcL+nZz1+PJfL5qGuUANUjvH154EQsVa088vyP/UXMWSyPbu7SdoOKrDJ+wc5nKctWbNr+XwmnTQnsYX2Gf0dESXT4nyZApY+v3a6u6619GvLaoXGN3/inCuMJt3OA0+zicUNaEoliEwfE6KFqQufsXFgSapDx5qBtp2M5G86CwH1dki1hYGxVbpQ3zNCJBJDoBf1uXns/BuJObbMoEM0gaXkQb4MLHsRfsvAEj/C2prZoANKTEmZ8OCgqjddHNiNjSLn3lJ6ilDnsNsqg1jLjNfgjDQc119YE1YPwfSN7dX2ngviihPKmWcDYKgdLDUc3fRJWMCvJgFytcOMxTcZF4lkl834vj63egoS+/ExFw3a2Bm1+4NRlGr6HZNS7OOyVgO17JADJy4eRj51emF+0fOrQic/njdeEBX7sstpENuVMsMdOsszGlWVW7kF5AcEuo2DzDrRi1OhsFiRcga8WhUCkKbj8iJ6BRWpZpgLmAdoVe0+qRnhSNerWyadPIVmVSyzMSbXvIxYLGN5xXgaSfzOFMZv1GuWj8rCo2bQSNKUea40shkHGqfpX8h0JH1tYYfNBF0Crho+gAqZAAz9vWJBS61KaXY9AMGTnsnBczOPiDxkJeTWfyHjvpmn9/bDrCpfsx2RqpFBzwk79VsXSpEOhXVNXtLU1WWtFwDRWNawq4fkziQcsXaAyRV8HTFWlZnqNOA9FiH2/uOQ/D0OvJeKKWT1U0AN9HRZnGjSyqDoFCIiZ2P2fZlV2WN+6Bvbg+FqYtnhJ2bavbHyLvIzdnkheIywXoOUfVfgAVH+6Tk0rbMNN0w1yL4C7FIoggckPt0nqf6R9nai3KWDtgeptU+yLUPo89/AGX1C+uy7m0OWG1nAs8RwbRTyWjCOpTsY4MVZI4K4rqTY6bXmJUYVOglH2s4JA3QfwnuKTocN8w9WI8KIjPd1tLPFw1psV8rMe+UKjXb4VgxEQ5hIErY7qGEcP6WYlxSvrBCVesD60Yruwy0NHd+MPtKKOuIBkNLp+007tOpVXVc/zJfQUmyxMYIgReukl5vk7PmPMnaDzYner2IvMOQ7eBu6jvRDACkRai44EkBNlap6L935CHhl/TX0ZoL1ltiyHr0yE/dC+n86GWBWif8A2i73PRlsk2Rrhj1ODwPG88Fym8OL/6NVxuHOvFhWYgw+j6jF8Nn7ms9IqQZrk6i1xMFADuLPhygPHIFw5oT98YEp3HWV0oVAWmAh5bHKnbo99r1Q4uSby2LMhgT+fe9pylAdcP/kbk5Mu1DIGMsslsj1DJ1rxOUtPdTVZbo0u59lTAxsjlzUDiIexA5SHSkoBwtrMpTu5WXzsxUKTSR6K3hqfMFPPlXL0Yp77hBf5KvDE+AsoWhlKaeUKrSYtsD711YaSLIHhUhH5Sf5T903ypdAe/xd7O5LCDMyB9nf4f0FwtxQRDOPYOxyQdc5oMj0z5O44qkr4ewV2f6pCDeVYWig1hBl6wJf0zRV0lrt/Hal5hSeCzkNF6dBAXH14awYji2gJ5AmVExXLp8NhE+pJEm/ylp0g51VQ4ReWl5Xr5SZ8NSPzvvZwkebq6qLDRzPkXpnFG2nhw6KcpaqApqdEZhsdvIRlDSjL2zTby93jekeEzzvEObCXpJ7//So4lTFe5Y6aOVuD/ij9sIWmXSsUVkJAT7MuoOnyYQrC+H/kIXLbLo/tP3tx0kL1n5angjmVcm9LW8mBvJ8NxORTKpOVB+1SN52sfLbgwXWoBLP2XqVPtb/Gktbd4itWd28+SKX6GSl2HJxCeJ7xkqCk71Iy717YBxOdhP03TzoMTGHOMRVt3+sQuGIZei0WcXIbTYS3pMKfg6/klCUeMh+Dv6ycYBytiSX5Py5mcsUnZDq5wf1feLhGrU4qh5fFMqOj053qfWL9tTFc4pEbUi83OjHeEkedcSy+LgB+lVi36le2GiciP4PYnctIX33utlgiKhg/RFHVtllBkG5pL/JG8QBFHuRoAXHMVGYMQi7ZioAVubY48xMwYikxcIV6xABflSIFBzFS0WGQo7ShNj47p0yyhnR0qyzfEJnFgkNnApQSPjblxg3ofamZJkCODYAtLncuA+tWD+1cBNNsSnoL7rwBgxAWKOCnwfISI6510Dwrx18yZ2CxsbzYqDh761vA+/7uvumol7I+/TSBjte/PTgV2Oz+if4O2LCge2km+W2zykeIb8Xtmw068YFz3/gWtjNui0sQeLyJXmO7JmwHot382e2iH/JI3DqXNZNPUdUj/sAxgDbcVhHvCnDvpewck5bZdrzaeCsFWQVcZFbDcb6m97gnv7bWKaIVAPv9nRDNMkzbk9rrCGe3AmkYrxbxfFRucxW2n/hS3YyA8fPAU5M8udoKJ2GtomOiqkx+rB/4KEezuvczOc5/a5ya1CNCTs+lZ4SmYNwzz4k3dyHeht8mtqgPGW+huuylQjATUjm56gfHr+Ks=
Variant 2
DifficultyLevel
579
Question
Which of the following lists the numbers in increasing order?
Worked Solution
Converting non-decimals to decimals:
59% = 0.59
95 = 0.55555...
∴ Increasing order is
0.54, 95, 0.57, 59%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following lists the numbers in increasing order? |
workedSolution | Converting non-decimals to decimals:
59% = 0.59
$\dfrac{5}{9}$ = 0.55555...
$\therefore$ Increasing order is
> {{{correctAnswer}}} |
correctAnswer | 0.54, $\dfrac{5}{9}$, 0.57, 59% |
Answers
Is Correct? | Answer |
x | 95, 59%, 0.54, 0.57 |
x | 59%, 0.57, 95, 0.54 |
✓ | 0.54, 95, 0.57, 59% |
x | 0.54, 0.57, 59%, 95 |
U2FsdGVkX1+CZ5o0GBXbPdr5n4W2zN4imsG25F/C3zq/Vy0uYm6qd0nWNZoqal+G+NRIY/auaygjIC7j3Yl410YEDWlybu8413NgH5RpEF7+aAty/JYJ0W0NqRu4Y+Vp5QKI2gmg73y7Y2gsE1Nv7PSl1Mvj42jIRQwp42j0VTgwc0woYVe2E0jg1NC5pdqCEwn9phZP2A/gfyJVrNdaw6lBVNsQaGvZjGMp/mQ4qWaCButENNd/qc+IfN6uyKa1Nsu/34kar9J2TsrrrcYcgCrJtotfqw31UI9vbe8UuNUJwfQHwN6Bvf+JY9NlV8+vwf18hQkRsT3OhphswtCL0cMx18PJ/RVKrOni8k8KpSb7KOugWxNRqOjyhZjFmTWNPqXd2XvgIPIcVNGiY1UoLvQhC8dd1VjrFp/yAiL7yX+Dqha3E2PBHWUH3SG104oy2XAgwH9VgS/0oHU07s7l8CW/gT6MjkHk8s3X95gn/H/pYk6iCVqtU12nNbrwa1dTzeV78cPjO3AhpHEOefvAs1BlEtWwhAH/nrdwXEo+39dYfVu+3aSqjWwsApFmKHfKQ4SRYvlI0/o0JNTZ7l5r33V3UYPiO2bUvzdkYMUe7KKXfma4riV56OxNu9/ahMOMrWQR5USPgTDdprLVTKva+0ZhhBnxFBOwks5W9QG4WCHlQVx2xciGHTqowp6Ht4H0BuwZpv5LbzDM6ZKltszGQCRfQGKnHmcJR+L0G1XauAhD/Ey3GaFKjTKN6tEEcqLJ8PxC+gERN53lnPhDNBVF0tRjX8Yke/mtO4C6SGg4q7pC/Lz9qOPrS4G91CoYUBvE4WtpEhjZewHvPVIrXVvFZ8Qtny5huHB7++SIlO/UvTmjH8J1y8CZupx1aZBYbwYpszr1GZE8JCGMYoK+9x6P/9Kf7hy2ed/bSb804JLshvTSXe+KZDfTsYQEumD2r11kuYr5KkoCvD4S1uC9zKoqjLFdV5KfNp2/LEADeTxTgIs1cAWMEfHr5ndjA1ZoJVHR+R14TeJ9xlWwwzt0j9YWrPJPiev7Q3eug5KndWe8YYlJfV7vLxzVRByZinBuu9NZs+WZKNt09t38wB6Ylw8lij2N4tqyMlQo6wLHCTimfnWd4xDu4aHEKNX75pOrWjkOAo4bDqzBb2yG2YLdZSX7GR0jxgU3WIBMuy4mnJchU5cq6LWwMKyQocWm4OKWyXQUXrOOtaTjlbXpCTNTr68IlyxpbQ9lqauAlFFiuuK893AdUKFFt2VIPsynLHW7cxSAGl14m0ziH7L9d6zlj/gZrR92f4fyL+ssa/RWZ1x+lICZAf80Jh/O0Np3fSXAvH9vSjCDDB4q37JVQ0dBLUC6Tx3dEdRqZ45Q9xuafUo3QbRP6ZqY+l758J6cX+sh6mO/VkzbpCGQnH9ZFzAykQF40Zw+EoWQf3QyueEM1Ndv/I8TOn0wzTCegXyHoB2V/NX+FcZqb/zanHiir6ZjsWovOXhMzz7hkTnmex/lGAwqObE/gJmPs23/ISlqqazikF353da3f/U4s4o4JRiR7pJ1v+50OzAUrgcB8xl9YFi5um/Pk1au2tqj1JabLT47V8h5k4ntTpHKBFb6554bEJvtvt32uEXb7TivdY/5lQ7vVFeKp2+qNqx/qrGb73A9mv+10Ccn1XCQY/mgdhZYZxNQENByrtfl5mqHkh4MbeEwk/TK3X312QL+5wFkYrRQ/QtclybBC2Ri7+8YUlX3tZfTaJZXQZtKTPczIeMhHhX4DpXOmK+Rky/1QKD8T/i+ioXcupWIrOX4eJwjIY+cLUQ9Ui9DPpvfJDlQHT0h9NLJKNqZFGyHj4rgopFYq0NZieNUPMMXqrpRsV9jm1AE/AU7wPXgR8ocwPnbm/XlOs+GgvVjxpE9ktjjsQ/qKVKtbpuDlfg3VDg+dV7xSTc5OthpADD1zdHJrBKKTkUyWF9tgBRg2gUKlbyx/B9MQaxjCyOwOwGgNQJhyABt3rneLOzcK2LFBO3Fm+H1Te8GC5UtK6/p3R8h5wmRW8+ZYBn3C3WWwEEjASGkTtOfI3166j9UqIHg+Lf/1IXD44kk7UWPWvd5eeSVEL4dhkDuH1k0RkcN4rChT6Aa1fF26PvcQ0+zOlax+Hw6f5Qjsn2+7R6NRNZpgOZ9vweS0FYmhn792Vp2baZB13/t4r2mRGizqxCrfyj/mjW8KrKkTylvWOPI48UlMBB5iUhL5fivq3VO9lKlQt9h0R+eB7YTvAXni7zfQj3GMRyWgYlQe7SLLDytQ/8943+mpy7x1h5eIJVw7GJQcuhpRM+CcuZx8cdIPcXHEGrgYEqhHbcQ/S/jxCF6ztqhKYVmi/TwnJKEXpMOLoh2oi4bsYJQE3SrhYbYtxMPcsSZnuJMRlRo4Zm7MfAVsBPXniYx6uTjT+aLSYxOH9JHc+feRa/KKpHJ0VJuI1Jf+B4dBtgKDhlExmFXPq0lpK2oVzgA1aIgcK4ye3hoRqz56OO19wTRmJiwAfEYwGR9LBFdLJLDRjMSmByUm0RW9Fa1SQQSjOLopwk4juxgsytJ6hNu/7XhbDl4e6PWP5bZyvsyTRknSeASzzTUsdmFBHZ+oZDP57L+0lgSB4KfHD9JvL29+K9XfQ2hUAGGWiHv5MufZLAtbR6tp0hzZ6PXZbFgYYMRikIUtJfLRFK7ndT2xG6szfycqdOk0+Yw1M5GJng1i4IorSNvNReA5eIUUYPkOvJSGLOJgezeaLVn7A++d4tcoaKyQ1xqRJuQBuU1rYb5oXYucm83dyIm5OPIMnXEblNB3Z8Rkufdb1LpZqRM+P7+gpPaO/QbaNgvn2jBP7EoAKEYb3t9IFCYpPGGutQJc2W9+289GwV0e48KqPO2QAqRBP/UqeUaug1e9sbS98tex65DOmuLQxsAPmRvFKDNGWXThExa9tH2c4ByKwttdEGWnV+11l52WvaaXQxiBsYLtEMQe7UwxhS+YKZKPrfigUs8xhgrFrTYApGLZV+W54sF9JjoVEC2pkj518/e4uSZrwrDijA+B8MrvFXABbnBpYJ0/e0r1eAi9V3hcvvZxyjEOfgnSgHXjZ5eosTIIW6Ydk+JwXGW95qACDLBIBBTYeykfGAT62YsdhRVvEaXToI/TKQcvY3cgiNqwpUjQjBaNjryMF/owrVLDK9qRn3qNgEZiDnotPeZQNfss5UPxsQjxoNneN/k2JFn8fE1sJGYYOacdJOOR3+Oy/ilrFOTJJOGubf2Q55j3FkrpAVF+eTu34ZYsWHkRq5mCJ9uZ7D0kmecTxV109ACYr5koAzK5KXrvD252ToOBtPGKiPMeSFTLUiNcVsXe+QpHOkEsWLnyXDf6YdKp8NjmiVmhZ1fvq2tUXfs72Zir1vVWZknmPcV+4PncIFd8NvqLJ9+5ilTwrKJACda5eXfZ17D+w2azAdf+imr1vO3ylZHTP36TYoLu9YobzjGQnXfTVOem+HrYLkAoh5rMgFt1VcU50Ef+NcnuHXgpSLlvRh16c6fPBUn/HBFRBSuEmlbKDOkriNspfrzJhHEhzQ1b/jIHqPnxi4DfM0j1H2HNwJ1gwsPYMHnuGV7kKnvmuZoNFbRTrx/xtv2jI7bmzzdjqYB+PlrS4CJoIioc8BqvKi/aAxKOROVGIxhiK22S9vAYDNbk5gTL61/1Osp19b4xavDlG2Pqo0tx1+4+3H0npMJNLcWwkLpCz7xErCx6sS7Nj2jujNC6paxfekaI0YNQ2d8o+YZKcAVeP5VNwfbEhWdU95v0Elp7La22npELHkPJpJPL/M+qLfSxnlLQxWePkbZtE12soYU1TXPqDtk1+6E+iDsxjTurQiOcnQDJFKUQlkVcAdMIPPm6p3k62u1E97bGIrjCEF/d4VFmGlvpgWVCzuASzjx1J9Z9wF/nU4Xe00uN3ukDQC0N7RuXjCKztCO0GF7AeLAHAaMed64DKkAfu3ls+Qnx3jBdfLhpog7/Y84ToVfJUTEeceU+4tS5I9uJV+7e8sgBWkyVeEf80wtNqPRMRdOaUWJy58aZpHcHLUfCTnGLMGDuLxWdvfFoQ8sR9u+KOuykb6ZpAxXlHUIshYAAeeoRB+9SVu7qbO8I/xbFQBMYfqea95X0rvUHCv4sjV3accP1wmwqGo5Z5FzvwycRxlywlJJeKWFtoki9sqWnl+ZG6BdYncf4LFtxtOWnWU6kRHh2wmP17sKkimijKs/pm210HQhch8TjvTEwyE7xQduUbe31UuSL0hPaXuKwLueBnmqdkOY9uIoeG8yANIeeX2IeONdqvN0pBKFKJc7mynwQ6UdiIeaIvUDjXLbPWVTHaaCUB+B6ducFxyvmRmHdHGML9pJngmfRccSUw4EHgVwlqEPUCrLyT8dXVeVFsWuEe0X35JgTon4Kuexa50WkRIEiMbzixCAbpBRBOq/GKa3LCnmggCduO4hZw6AVwJfKhwRHB4aZKMm4E2soJ2xiH7xQ8ngna5MFs+yi2NYE6/SH1vyKZQ5Gr5N3gl9lmrcQG0zjSJUmNquywxI8Ei6ucX0q0xfKtLPRYkd+PgW8JblxhCqkTaTF7+1DSirK99GVwBfgGNS7y3TEhXTI1qzW2vDMcG27/lDa2Id/3f6ZhsHY/kVL98zVMjPpWQxjFGPBqXcHXscImsPWRJs4Pme6b84SsCmaVJU95lBBiJvYIeIafoo6pOQQ2P/00KiF95OEYmBPseP/K7PRSE1EtUsh8Oy9Mh4UD+XcnZOSsC8WrTlHocQF4Ecd/DxYqFKEqOFtR3cwg7EyT9vW2ONQO5l5INpv4oI87FhrB1924ihAB1dcW7UfmLVNWb+6/5velbZvAuOGxoRTRaWg8XMxAka7XbBrpr5gHkHgJQD5CnfA3hSNrACcEbRGKcIyUOeHRHEZD9ixHF6wk6Qje5/dW+aSHK2a6NX24bhVxep2SgfKugaG88WgqhAMOSpHEnrQcAL14ZVoc5ZG2WlufeXT5GclBLN2hdOGjooZOQPvpHfJHD/yMAgXQTuMhKV2cB3NapD5hidALL0dvBdajm838EH8gtysF0PQ6+7F8e6LeJ4GCEaCE+tygGNaIt5cTejiG2NGAK12oAQCEtXEBwHiDkMGaIFILpOfKGMZJHlzE73B//ZF8QAJB58PAeuXZiMP07lRQzWL/635ua3f5Qa+iPk/TM0Kn0KtjRZhpyoTytq5X0tMLWphn6ZO4PA9icbkNBHy90Kc3d4CC6Ui7+0h2U/ZwU+aUHjJT9EBBnTE1b/Un3n3zFi1a7QzlorIOd8J5P8diu86xwyI/fTf0Wy5K+GIvpTtQRCVTeKdyT2gYllGINyCt7gqJzj8r2xB9AFZCgLp/Qo0S/llYGd3GeYwE3GoED4DvDdMeykFC0A+DtdnD6IYNpRwy6fXqnPJmOrd61g7S3ppTJewhC5rIUZAo5Rbt+gP5ucAOpfpNylCLL73SwO5FDyPVft2k3Vkg6WONsLL8iJa/zlKgYsS8tbH9Zpxg5et5rnnEEKqa7NJMVyi8DP0KX/WEqbc4mZMNH2ZPVPkkFHYCEz+zZlFJBX263GvmDqFNTi6ynxm4syPdN/lRQx5JF9LPBmsZZMO6ALj8EJZTgWBGOJGnJY5F2T/x/IopjFRq5Aj/hqcaiuRJSn9sAflX+UBPiy1PZ9p+5GiwQGs8NVHzhMLFkDS4rakVU0cFu4Xqng5uEm65BMv4Jt6xZO4bBBap1Y3aITbjbnFAVWVV8MlCCtP/TM7/fKJSFeqFNrru/g+MbtKtfrxRIAIu2CKUErGO6b8GXSx7wklhgtYK3o8ciF1/hAkk7jxsVIiglMy9Isk9FseqMJeOEZK1ii3B2q72uU32cwyuOigKIV9U49mk+3S14GwKyG0va7TzuOMvuTLXCNgevcEUCp9fAJSAaVhoLIrcJmr1AmZTdbTyThN6OWU/lM2Cavq9EVbbkgycFqLCYcc2OsFZQtic4Hk8BySZidLwM1luDS6ChwzQVHjck4Py3VgjBO9gR6PB2uorAEMeDPfF+gk6lJSDWIiy7g3yNYQNuWRoNjzGgu9K1Genh+SY9GJd0jueuA+uI8D4nqzci6wbpFNJkqIcYub7irnoX98DKPLrKgU5VA3K5gl4Q+HROb1k2JE0kNEqhqFFmI7Z7X57nJQJ4+7G2mn1E8Q6Ls1tijfXDgRhEcjiKfYrZQS7zEtm1qYGEF1rAJv6cG3zknkm8q+5I7Q2z/emgX6APdkGzrye7ajQEn0GiBIyhwCeZkdwkx0qKTDBjfYDhcxdQ+uLzSt4JWyOvPc4I1ledGww/vudWY3F3jlD0c5sUJC3T7cauQkveD6ZXxslvodLk5Iu7hnWWPvqsez6FwBTWnRCGcXwhWDrZq0yc5O1RJU93YweS4m/V9R/oDOK+sOKdRLQ0/XTN1RcPj9+zvvFvt3n0TdOlUM9cQeQVGWEfPiGYnK5vS1Md275/vy7wuOhlarIaHqlfN8VZNi/VJVgMHAi6jGXp2McsjC8U5+Pbq/1Yp8wleZdyMCye2nugSxnF7pXnfma1cteHQlP83bve+8BZlAFnC0lC9MX1VrZi9JEUbGBtJxfMUBKOhzFPEsn7LoSg6WfTyxdr908ONfWZs1d4Ye+mz1t/y78mJWb06sxS/0ZvUBhhzv3sxm2uJwMGvsw+cpYU5nHmq5XyWW4B5r9xKMCPiFjXhQcxVCRttfw7o7wTw5b9Eqhqh4P87DhtlmRLJra60+tUTZtF1YMFG6x/gW7p8WergpE+dCnl9W22hFadudCT6ggTVATcvhihZcHBPpmcujztns35QoEyKL4kerTRdupjwj88fK4AvdQAR4E4hb/wmxItl6gJXsqHvppYyOGdEr2prdIt5RiXhF5+QDyF95DChaA7JQY0+V16mcJBjRuw9Y5BdGkcVdtKRsWzLEaRKMTAQ1Kv6j1TOVNkYcp036uc8zRIMWm/Rjqx6NkSLF9SvQQwYzdIkrW+NPy6Fq4k140xZkNTB76IMn4NJL8Lg5jWOzfoB+tWMT10XTzK5QgUlB/X++kq9W94OrvmSjslsU6V8DFT8pbCN0OZ/rqEctdXwXwoWviEc1J7OOy09+zFLqafGsJDuq8c9lPuWRsA5bde2F47QUM93u9UzLXywClLDedKMgQRMVixarn7bQZd6be6otuY/3V1WRPpwbIOwfFUeKxvsmB0JlrdsguC9ckdalVJ3y0FLerreSvcZ5MDeZ8sqnhySRaCj5MYb7U0ef7M9/LV0TUgd4AZMrTF/KsYyK78W2IhCPkfsfHPBtHjqoPQbO24eO7YY4PTmPuO/z1abTsb9zkEA308dRxO8ut+D6uDNBT1h6+B9K6le1ti931c+AxNDMDZS7MLxItu7aErYHcqBxgufxTtHbZ/3vdUMi+ZU+0HRxnacMagrcrQHGwLiN3g01RmnFxNVnMsHpH40PPnsq18SLGSI+hEz9+18711dYV9/6lyw3KWeMJMNLc3x3K5w1bqZEdRN3fNstP5KoMr9e8+J8ftUIYYyjtFzDK4fBoROwm+mODMqaXXxaOWaA39dth40s4dzrm6lLlhvupVozayit6o8e48JH3JCd6Xgmxoivtj18N8Jkbva7RDn53I5dBplV43qGQ73TxRZdi00MHq+wYijRj+++zbllBN4uoHmpEDTZ0KBs4+TlQCD7gtQ+oBkGliNYSPORYVqgMRYAz3+0Jb/vQkroFWoA2E0cKRfRDW7qgVqkF+Krduqvi/552xgEV4DANHSai3LUhqwvLrY9cp8JnQzmW8QcI6gVZ1y8pqMel2fphmb95XjrX0fXRoBcD9612QYDo9ZuFpx3IljaSjRnOJr6+2MrMjNwSv3P2nXvBLVZE+sASEXEDvR7CeMxR9sVARm3+rUH8k0ECnvi/qW+QXnb3agXk7mhRZhUUmtnakb+f2WUmODlBrpCA9mIQPTbR1N+W4mikTaobM4+kEoV3ND5YO2FXRHCoe2VlP0Wq3vJj/OQX89NePxFYpxdWpPuwdfFQMm77L+jjkJBVxahhE3hJ7ZMd0lt3b5ugqxPBlCSeamB5N21XCNnnEpwiQojMI5qCs5KSt0BDNbHY4gOghK0ZugUBCyCqp+aLQpYeU4kQgQdPCGMDd8rRu2uPAp6fyDmD1AQiEcjvj+e8C/GFYKoGS7MRj3IIrJLzkayT6mqbA4IlG490Hjurkzo202NKF5b7jzqgcCPW9ku3VpuFz7DQq4Xy6hhuOp0EbUZBA0mOI9ZGc4yAm+tI8W7JOgf+W7Zf7FRtNmzNELsBBfr7+HULaZKmYQ/LHb87I5+guvfuDrcsqUjSNvCEVcMgVOcQ7XxLNUVAxNUOQtxz7flzrRbfKibKYaYMJcQ7D4zkJGZ7BX3xFIGTLs3788Xeai676YcP/HEMt3WdnIInHPI1mGxmve+YkwKWCEusbO5lp4Blk89QJ3BdHHY+4spjOfpZvpDx/6mmfxKM33Dw7Khx1G+crohEO3qeSP+GGNfaheB4R4W/RDnCEwpsPEyWvtFyS68PmTA2zEcYQUON5I7bYaaHJB1aoU+iCtrKR6MQYzf5XRCyT2CSoFDbfpS1iSmDMl3QbRgq634q88ul+aPlgXXlMvlnO2pvoKvqvBl/fTRjfPIdUd2Qd9VDXSBnh44oRZnqJ8/fgRvz2i6Nf7JSoYCwJFhuDPSQu/RZ82Ekju/OkuFWlIkFLiUEGkeZKL1gwZodci4jfY3zzgZAbZZ3Me2b4N4N57eKsMEfTEuCBKGiwQmGRSPsVcqvYE0QB9WSllPnKIZ5VVieSI8jfiB8zK5eGRi0HjmvHF0Fl0PARzSBNZEt50EfolU0Wy/Ppow42a//W1gUQ5W2uu6ub4PHtCOUX3Cgmj9kQU1/cIfdokJkCrn3DgxXIfgkNacpQXca3k5Pz+BX7EiXbhe8ciO7VwDLeUF3Op58AW70dtPzd9Td0zgkFDp4KGNIv/t91zlOipVKsqTHqsGBz1y19wxBKwWKkbRV6M3fQkg7HHtqf2oeDcCtyOsqjQLufAffbUbrRL9/vxLHgB1hxlgDhLmP6ckmc8t+RKaS+Vp9rVhJRVCkZRJ44+cqPsJT25XlsJhC4by8kx7ljqjtFQzWX9d6LLY6x10GrwDTCgzSfYn4MQODtyuXG8BTzIOPCuccIuOyHp8M/sxbnEQfOj6j1DLSP6Tu+h+41lbqBuhO3/FPTaDgYu97Q9pr4AmTKxf73/M/lQzJ0nVpne3hQPlHGpXMUBvTxci47Yp4HKxGE0S2XiHiVMaS05Hpn89bUaAV3t3n6tm2KM7uJBqZLX23cbkt5zmmgLOnjCWJLd+a9KFtMNiEX0Rs50xbF+T74+XplNIj6yDCNVeJIUQx3aHhZx7O+KGjO9EoqnNAdRfie5J/vcH1y24DyvmcU8WsPoBwfEpfvJUpcMTV20DE+nxolekr9oNIidDXIkDpkaIkKa4OnN3+Z9J/lBtIeioxm+nsZfyKWyf3qM284hO5RXZxg5ZPUs3gvsm/Gofr99beru+mn+OT8j4DtLItLQC0f57slsOJopc5vbnmEF3GKPmlzGleMIHr3Xn8jJAVePt75I4eX0x8ZUnkBxPnY0HucVN8HuWAi3pMo4aBWQh1t9OTV9PZCHUL2N+i6uJI8e3orP3XqQBwvjDUJXCFN7IBkEmx+D1t9GOg4Pkf2d1IH3j84FUI0e0/9ZFhj83ia4PS4XEY945TAXZKaOA1NmJq40LZWHsuMtOA21wRH0GwxAf0WK3cJn7fK0bvcN+QkrS6+709AQD6IMTEi20+1Gd4o4Q6lGuC7nqI7e/u0RtU8FH5Hx34gYYnRnhryO6efY3P1j71fYKagg9DsXG/bRvqbh4+Fzv1ih7EsyIiv/iOhhcDPkcOGPVCpLogkAO2r8JW1R/6eUJcLVLwJYk8Xb6qP6lbx4xrfu7A0DqAiAESu1mvFjV7uQWGeQqFn5AD4MuGP7j2vjwPrVe78tzZW3s2aGmBGV1xog3YU/YGd6zw+uLogP41IyzLVaxt/jWJXH3EFzWIdQTlXtXQ7pedHvfI6fR5avMtxL58XWxUbyo71u7DR19/WEJtFCZ0LHonUqURDuJE5zxd0p1++VxORw7suehZYgqh4FHWUBJVpTrTBzG1sn3OBULn627R5P2X1NIztlIlKEVuRI+8uKEiDMYIWV7W50qCVy87il5HbREFcYkimt2GrsQOxkvouUTUCUMEedeLfwwXtj39FvLhX+tBd5kb4TVPBFmB3IN0ScN+ovrS8r89IRFNu67d8RD5vwl/VR5G7+uvBnISu0htnWL+8ZnNPttSH5puYAJS2ns8uoDhq9YLG5CI3nP+mUfYqPIz83FMD5gpJjNvYeBLWIqRhdadQiyM6MNAe9QwH+6llpwPWK2uaCkcCgqiyhrKFKBzihyPbZZmjogGecSijPlsp07D6P2mO2MlZtycnKOI6o7j1MYFKIF3YBJ7Sn+80+WLfN/JmO8xlBvAW9BZgarvatdDX8BHDWlm4N7UcSrMCXzQbGoR0Wmj22r+yz+anFaJNv+8viYweNmQSddnnzMXZHhxhQRO4hzpt1W9pu60mV5eaIr8w1I7C0c0yGoVZ62TMba1AaNn2sqt4q8erp9My180UIZd07ewnEikovPsv6i48iGml/pgW+9eX3rZFZKGQLcXbc67jtGqRUNiQT79nKlJN1+b/WB+/4bbYldgmOtFLmcvqVcuQj2pFg86lYJnICQsPKP4R5FArfhIQ2nbOZ4F05LPnV1H8NPDZfhLI/lEhA5pVeba4HtyvJnYbUB415eZcrgmjp6P91O6nBFcHH8Tgr+queX15bSz+Ya3KsLRt1LbRI0+DoH4jXBrdOWYElETsxCxo38JWJ3+SNnuWsBb0gDtsSP3rS6tST6GL6PubeQZt1fA7jFJH06Dl88Z6XosuVK6Yo4QegxGZDHC6JHSd75dWybVRSd3HES8FRq7ShGkTqslKmwnIjST49ZMNmdQXq3GVFRyeiOfc32/DxvlCe8KOivxwl9pnJlYMnpY3VEKAWkUdRIMoHpNE1yujrqTUgDetkGCjYYIUpb5Gkx48LVylU4kIqA/LpGpLgeM3deMUIqtkr4MkKY+VUIaRmZ0iqb/E6rcWsADC0IWGr4y4Drh/FTXHVaoVe+KMBT5hYDsTlGX3cHl6boJ3uFyKysQLde5TNdVGumgaXv8IbjHkNUrJ14j5aB0za5pCrj9/p1rsyGmCRhx5807fioYQQIRapSvxF7bSlf2N2Z/TaSJRECmWcSilsfVnq1oyS+BiG0U0E4kMdun7U469A9jeCmsiiL4hPZdo37HVeSNzJQHa7saJHQiFesiIX+Bn3pjQIYMxmGEfyL+n3lYRgdGyIQ4z9VqcG6O7g4elkRTsWHdy+1QnpxdSJSrCojwkRpD0dCVOqsLFfkw/5ntecBQVYWxH8zinWSkOXV90kI4PXA0m/wNqbXm4VdPUEqNBRuwd6c8jrk2GIji+HZlPX8h4M6PP+u0n174DF/TJ8+iKAVmPKfpMNgtdUDA4MqPK0lGk1bEqLT+dSbzPYA1zySq0L+A9sdtVxIZFHP7HWXzlXBSSeeAeZhU2T4HCn45PvNsZd7uWDFD8pfwKo+wzJIkXBRtydgfclaVndb2hjwpqfkcS8TxGpBBbvuvx2xYyq1619VAdOGoCbC8xgB5qnfWXS3pvZVYRXMJrRIF+qWKXz++3Hsr086vgw5HmSbZP1nMzMyCIeCBas/hT+odUGo0ZvJbLE0BfDZdbblD/UaBCRHXueF+exoATxG+mEyL2GmngKcxnvHBU4mLo0Q7lMuRf1n7vjC26thNtxayfBPcS0Qt+iXaS3kMb9szlcjVBu6YsPnk1W6bUhcTSxS0J1KWjDSozuR788A92zMdSG3YosruDBloXW3BSdEvUsS/GypTaSgNu80xEMj3/JcQJct2J0yqBw1TOvWymPcKLTIMkNYX62Dsy4fmUGb9KVPD8nNUSJAggrrBZJ4zoa3QtBGesHWJoEreeQqLHFsUo9Men3jKwxSi60Y9xcm0SbUk3Gk+LTpEQhUVkbeSr3d7m/bdnli4R+Zug6gjqtRt7PT/RbKuyDOinuYPoM8/4NYsL/r3C4qTIJkAhnzse2sFUYDRN1Ii00fLpoKN3UwJ+aWQh/pSJyf0xE3tGG9tRtUZB0qwDPqBHZTyX5OpvL1c2eMphKOPfd+wm6L1hFmSisG2esM+9JVnMG+0Rg4L6AyKhXodgUiBKXHi9t5h9wXjzb1xl/6qCnEJxKJBKcxsO+XvTNaiMV6McSqzxIb2HjqSm2KIl6g7aDZkauAHXCKqYE92gxQuGT+qkI+C/Oq/GvB+watJfYjzjxsrHhca8gNUYnjPfhT8s4OCC2vSepTHy+55GCx/IRj/yqRCe6JGvhRnQt1gT3GOZIfJwmuiVw0e6V52Vqo3NjjZa6aLWLUKBqzGIcKTm0W1hAjm7IeHx+zGx1DTrKDLoOV9J/7N7i9hhtcE3dzf1DRQilkfZs1DvQFM3xrNAQAKQl0oSEDq6TqqFIfmv//60N31zy00huP+AE6vMr8wFD4VofXO5/RcXhxhZz+R+ncNZ70ciuyzcpCod4D5Lvt44CGTrJU7ytMJ8utKsRvWDt+C5/Luy3e4T0STL8SDf1DiO9SLuOcwjoWL/GDvdSgb7F7S5PzuKNGP9nrvuOv6HpohuYn79gBPj9ejRT4ZxY5Vwbo4x0W8fb6AkMhWI30Nu35V5AYn8jqG//3jEDYibyPptX+MFP4663HXIwTKHDfKmtzu2OL77V1Rd+qrFN2XneOEcuwLbdx3gNicAqnG+elE/SfR0xIoz4DKgflsbURWGkCtaxgOpI4gMBLEfDKR2Hb2KUIYq+Xo1S7UfrvKq7eaAP/U5gOKfBUbAjN1lr6d4pc2gPZ79sqcqO1EcakKj0Dj4EUFnhM41SjmzxXORbCfmLtq0UIHckSbSOvipkSpyHz9/yOaqQoUTMMfn/AyL4+jSWY24DpZSoGBEr2yFIE5h/sH16rtOHyEsoeYSg56glw4ihHz7YafWR0NM41ODccqfojm0Nh7h1A85qTV0qBimnGImaa3gkv/tMHuJhzUys9W02pbqw68GOmqX9yOE+K9or6TejY0LP59iuKBSuRBuPekDaZMvFhCdqiHBoGJB3VWNy1Nw5O8JyZndS89si0FO6v1FHG9Xzab5mUkkAra2HgnKg6Ne2C0rZiuaH03NVjV9kUJn1MOayfiLq//7EI8fVnFuEM2vSS4irorz2+0tkRHhrlpGDt/YD5lXcos88joSDyyo3AFGwclqbRLydERwwvLVKEy/RuVoU0Ojn9zA0qpo/zZmPhnLNeLYoPZDZPkYZg+WcCAPCBuC7iaLPJw7rHUOyd87yuDvk60TMFaPX0zwO70zvJWV7sW0AUhT23TONWegzSGAAsPcIg2qoljM/pfZRBdhiYMKAryC5UK3HaBw27FGB7bZ6dpl7V1dsMC4tyZPShYxe+eF86zqwVe1u3tpLhULFio+5xpV508xSd3MAaQAVIDTsDUmypp8mjWMV2Xw/RKUNqchRDX7Zc5oTl1YGjq0zlJN4CrLMovf/sSFethv/8BRoe38VqQB861Th2wv/RyaSDiBpQbeKKl3YSpkVPB7H6JOXWgeKZYr5wRBUmI7GJ0n7+cQWernGYhjKDgeW++tBoqjAk1BjNlLQfhURACDvLzcGIioeFGxaWy2t8fwJe4PNLxCyCl8b4y5lABKf/5tYCiIVGUnu+xKeu7hf0nO+FNTKGPhn0kqJet2G8cOqdYyfNM9bN0VibNxB3A42UbpnNh35CyI79c2klKypWu7F8EdJAE6zxmhqLOCOtvZVE+ooML4b40mkKo6Nm5wUGyBNeyCF/9IyfXRENFm/eJQ9Fbj9Qah6v5Zio4hsqRxqSFaMa82knG+gDhghTlp436UJjc5YDmIonPAbsumwvt4ZKGdxvyX674plgAg1FDtIz0xCIBTk94yvkVjZXpsXUTnkGhCUUW1R/1S9sUmWKd5feonhFJx9enFfnpKSN6Mq0Yvo3BQw44GKuD/N0E21IQFM0EnLrNxfMH6++qkOBlmA9aUPOxck5DX386EOviYExab/+SvzSCKBvg2x+Le5pB8G/08uqSgQjhXr46oRgP9ZLeBGsLXmGeLasWz+VjCixdH0k6NhBG6NM3kUAOfWkIfcCCeUZC+daoDayS2vNqPyzZPo4bOuhnHtHkhdoPaw3202uQXfF1kE84hTp0nrctTgR2NhChUOKDHEQz3uVRXhVokuKDQCHddPsOIUi43fYiF/mQWhijE0GM/7YqgSR6wDtTB8F0MS8cxiiRg71h9nsFqWXh1tdRZKRw9Jt50VrlEKxL/5r482RUfcPv49FUnV66Yp1AXGMB+Unp42QbOu0+rV62mx5iTcr7vkJIDx5Qc6if9oc07C5DOOVC50uPdbhZKfy6fZU5VurOvrFOMu7uu/ZRLOuKeZIltAppmRSQRr8gwlKsC93ZsCkgXRfG2TLnfQekI6lWqmoah4a1uD6FD8OY9mav8aE9/Ucj83OZVpks2ywZGd+fq34DW3RN0Hf51beKtag+KErV9FeJXXJrbTZqnDRWCTg1pBZnkTOrdKqht71OnRFrrMXWV1C5AhE1S/l+KToffaAqRose9xsYhIlGIcH/EK9kdEsTmdCb1qnans2LwkKRECBezQNFqKt/WZj29GzM1pB1KjLdSSUp8z2wOGX/o/MJSHnrT0LfDBoKIiSiWehBFuyZU3PTAID5WwRO5E2UVQTN2YM5GQjtk/htL/vFSC5jkPRaduIgNVMbN2K2HzTVH7EIqZhiBcD/Q2Ycvwf+62Ig76o3fQGbNAoay+ReB0+Hgi67jXdROXK8dvT7eWn5h/XzTn6Fq3KL23fIjMpJMLtfNTdedndW5uOjQazDdkF3VDUG+spnQMiGTdbgB1rfXECe3b8FgEAP5/yfpHbZrIBhgnzCh4Mf3kF0gqRFh0qZUoJkXxNVwfCaMTDc5snMDeZaF3xZ/Um2dwt3TRNF21AcwlEQHlk5KZUuhjeWZAGUC9IbasTIjF/XyjyWL5HQSHYgc/+tU6Sxnj37SzEFNjV9ux4hifbqEXTyatXZQ1iCQ3uLZsQQjuTma9EuIAQ9g6tjizzIQtgpC7c6LUmOs57qe9htobwFa/4wmuM/qDORWfznDCWSUyXEbegMGsN89AjSiL9xi1aDwCSqK1utochQkPpaX4uMF4ulJuBnESU3xIGYuAU/YVcA49xEbns0OreqUu7T3XXlqGFEAkMncGEaraPpzzcqLgxixUdqA3wB3UwcjjtWOuN/IH1kvZS2KFnBSXqKLjrfNIwLKOIzCTpj8QJaYcds8JGfghCccLXXBvZSnQlHIG9eUPoIzq6KkJMr0RwJ+RrmwvT1Fiq6cWt2IF7+P9BBgl3zv13rmkUyoLoX7MptRTpDsv4P6lXAUSCaaOKWbDTebgzmOk9cItt0U609gBgk/CBqMTk4lF3de+Z34LdhsmVa6bdjY+/oUqFefKWqhd7z7HCqyOgnGxsduCqq5pXkB6rflxfzbkuuYviferf+sCfVaq6Op5Ucla48d4uF95UidoFgpHuj+pwei3dx0KVjhfDTxoqJFVl19FayDoawvrsqQc/z2ZfGgKn6PMe0yO6OcqJi0sSSAwYA4YQkpBH9LMPHILqJdYAqLPpRMRWcyIzD8T2sQ6+ah4o+QwTV2KyEOZHOUJDv/ie9s8l5GkcgREDDygVZTiUuy+CFpes/VYOO9Zx2UMWYgfZ4Ai8F21+uKV+pN8iUOTnLGp2OCzf//8iKDRwm9Z4pdpl1c4JT3Vf7R+vvBm3QNZ2VMNSHNo0npZHCt0g9ShtZZi64MIiXa5a2KBINiO/+XT+TV/owyIJE6qu4P4GXcoYcck9sj/OG5rLhOS9sEugpcOWb/nUvJzN50MDfkp6aqY9BaRRYRj7HUCA6GmQckK7KOallWAhveRgsQFmLo0IpEl8OVJ1fcxR+a0T40Le12YIKsNTkcjEPF9RU7BdVFc4vMZWIVeswyO5zlFrgrFmXfOXtjVihN9nsbJtXaGrOhftZitrvI5jMG4WdOPgXd/GOGE1+jqYuWAcwQBZbsex4k4FAnTvfg5H1kbgzTvWzI1D3jRFI8WZtoGs8IHk0H3g2f7Ek+8rvqqwp+OIWAjgBGrmx5LCpCQ7VQN3fpLdKIk+dHYUIYRjrNAYyqZGzOR0bwts08yb+gam19fhfDvCfpR983ec8tyuUPpZptC0lSTyeYLN+dw8eamEIUsZDCklREeAQ7JJ8WQIYUMMRlz1FCP+BFi0SkQh1DMjlDsljlo+dD9JXQ6sIHBPpTNSEAYzp3TWUtjoj1K3n26M6o/qny3GMbJbeKLDC2OzpUinxM3UlqTC2+38Mi6aUjyFxHSOaYzcS+RBa377EY7fEHvRb69fqhSuK5VrH899Z82CI9A847FpeiKTDv9b4nOkn8AtiW79NsOW+R6lK6QnIrtsPah8kveB1FiWmzPqlImxBMB6fKvl5d8iPP/ozvEzsr+Dr1zYvtSMy2PLjxCPLJf2eKc12IpdLqNtSSDQ3X1QUcJNXNhX0JWCiwHvVGDeKXw25HVv9URIXQ0Mb3Mb4gj/nQ4boz8RT/Bf1wFmBSyGpSu4gEclJQrfQJyD6wx1EXw/ATsgtt2ppPSKfU5jjuB/xjJNXAPucvqWWXfmgVv4EONUmrzRJsQl+pxgUJZpFgWBZKcRUJI4DxZ+5bvc+1yvC/WxA3dkoH+u70fY3fwR/zB9dxIh2F8zqzwb7U9mfD0FSHyMDtroP8DjCKr3kpSZRp0YOjs4EZLR4Z7zihOCFhZuTbv4zkftR34F1ArZlY96roUlr0meXl8PRe3ol3a8Rbafrrmgnoud89KS80oC0HTLRaKotUxXhazyWETP6BuhDSSQ9QPaqPlfMjngOI5iLoXbe1M961IXZJdMu+VE6Cv2chySriYpFuZAntN+lkXWOWEOEtBjcWTLsRCfXx1WYE1Mhywg01vuAJMC7EkVhN/GAnviGcBjE8t1H4mQ4us6DyYHe2XQBxxJZHb78TD7ywN60+9nOhCwkZz7fZB+/WKwfzZ3a7V10UNWZ6GrqjtSNDoa8JnBNB8lVVv0PmMwbvdc3l9OW6ZdhXAWMoj5DpWa6XfqDbemN0lzXH7Vx/cZ982ODU8C4gkDn9FBTtnzN3s72d2H/zDKx7i/0PeoSO0GTzN3HAJOmiMXOaO32WWtL9PAaqbbnJr/QXTj/kmLOaM2Syrh3EOJIkc7I7eMIDShX8aXl9v8pBioGVpdPXzumtSShkUO78NLGdFCaWhAwb6aEHmZ2TCzrL2m5+EcWpaY2vrQgoyW0Q4IkmYAdxSHmYYJEAGaZRqlPDT/h0QdsbSN/G6F4CdT/bfO4l7H8zLcOFPTN8HSqRBvgbFNzEPSIWmV8LPIkLqzJpFqD3nDhRjwCOm8a2m4Hw/Q5aobfw4QD6YmUjLAohPFD4QHRrjPH/4x4wxgCGE2ro9GjQ/u+cuIUdP4P/+FmCx5Mtry0vZW4BGbr2aH+npKqVDLF36s1F9y3BPjS0JsmP5MZ42JTA5IaXvQK1GZ/gETacmtw1BI8a4kx5rITHA5XcTP232IfU+j3D8zAUGTeFQH8d4OWpV3uJKg3hbRxiDEtzkh/L+/gUs9ceTK2uecz3WUBILY02my7GETu+dKO04VjuaWGNvJxgnD6gPZTeDzNjvPjPuhwpzY5QrC4dfWmP2CQkqqEW3Hg/txCsr90O8/iz/m7JuJIiq5J3zzxwMWA/FdfOLRh5BzihY+EcgExIezNAWvJwKerW08VlwbpwK9bcWa3gjPhR//UZPZ9lcyeo/9aWUTlJRDlE/AMkWRSM8I64pS+WQspDl2umpO6qb+bCLk1GtInH7iNO6TksG301gWyO8sRs0H3wJ0hpACQAfO0Z4W8rRPYvblhD3oVnQTKXeBwZiPBGe68I3yLDJXPAqSw6hVig0rVOxNXA1WIedDhpvahZXvWYDDYgnBb2I01px0aVlH8a7kP3CDgeeAGqJ3RCX1Rl2m3q9V+bc7n9RETUC7xLclF1T3Y6mQIt3IbYF6mN4YhGdwixM9ZH+I64Dighod28PA8Sl+IEHwhLDClGrz6fgOHzzEp5cvu1+WuPxO8o8qeSd5seHXs83jo7WvHg3k/tsw9xWziE5cY837G29i9AFKAr52m6vEgtjNQn84RGubXTo/WCBex6qQ2T0U30sWQARBF4QNduJO/yQt8iAlEx98wJQHlXA8QhUz9fGl5av6SOJh2T9VuuGtXJwfuP+4i0O89ITrHGINI+5DX9zp41apA5WSYt+GgTuT5Lpx1LG1PIaPhDOkBLErLAS2oSevicCy6qvl4AbOnQZ3JDqAFxGTNgH1LqhYfKnxYzjk92Qdzjdly+P13+hW7HpSYEe1cmOoCHwGGlMwyD0YvsO5btatTzomQubgpGRSVEMz7wxg6sawCvE3xubh++y3vANDWEaHxQ0nViIylLtRgqyhm3R1ydPayLU/iL5bk8CNOartF5nRM2nfsEUZG+yBaSZwFK00sXtH8maEy/kSEU8m2LyRsQA+CYkuL9GEbis/qbYR8AnWBLBkuNj8RjzNquoEBsx0J3D+/9OPfka3OapmoWBctFK+0zIYTxq5CmigoyQyyKGv0WWtWpxyqOhGaWSvCsoJMMNzHjS/jbql67i0/i8Qe9zkvgNl4t3gEWO5FIQt9QKSbFiVG7bkeDiCURFPzrLemkFDGjFeQq/MGxMtDKIt/H8vKtAQJVpCYhxwokcom7LxMBs/NjNzy6yQ0TgVrk+Cj90LIDGt9EHxwpZsicUP0pottNv3ytp2jUUKbE4CQx6qtl1olR3CrVXDan4fSclx2jUFMa6HedxAdFH6gaqVenpiUca70TAoNxnHvQvhCZ4dT1rpYYRk+R1sDUpbAuDN+EhUQzCbW/VG2TTTTf2nn2kJjgiswqb3RNbArG07ejO47yg7tpwfZ4Sl10MyCj64dMivB6elesJrMGUQ3w9gcEIVV2Z/1jORaB7ZdbmYQr14igUC6nsdbBClHYiPdOu81zLFUp1IUb/Oyqlbh4wjpuWQZqI5EzD358ASz95dBWr4l1mpLgxLns/bQEAqFfIPRybskwmTf7Tk91wSnyuSNVMnSzMbOPKhBzxiWi6TFEEIQ8rFp5KdeDdSLRTgG4u2uL+Z7zIWl4Gt9ZAz/jSjLy4lDAiR8w8s63NCtEYRECwVQRL1JVprZ62nmYDMyI7mgNmXPSDDz4VLlKvlqF3Z5p8+z7NA+7cjCnK4FSACYluF5NCFqHTwu97p7q3O46LG5P0TBTQMLrjYH0GrhgM1BjE5XZy9CU4gktO8Yn2ZcekmD+D8eXG7UyP54CMl/OQhoOEDsyGIVyuPr5G+7jiYnQR8AmFEPDvrBP6oc91DRTnj3LZJ+6xx8zCTAX0B5qZfmcQSr9VrvEoFyJunUPv575QvhAJB0pLVCLVcHk8IpiHe7L6i5KAkv03dk3ZQR4bTw9cm3EbwhcjpXXtjAQ/zA9FZzmz+upmZ5PrVuzBc8b6DW6zFbIvm9URk3SbOGTpJLeITLfew5eBrxncFQtaj/I43zf0R4nca4Z0bQ7y1OKe2fmGkCq0Hk4Mr9CU2dgSbDcMaZb0Y1B5+L/6fzfgR6IZY1sOQjT518EqdtQ8oZFOigxVU6uykPCiF19+ME5riGPK5KrtT5FH+S8QnLLPT16RoEgof3RzIGZpFoqPJg4G9N5nEqGdGhMo9dMehL0tDoj3eZxiWAKBHQ4e/2VkVp5AMW0VPrGnEQ6jv6qmbCEmhsnV3Nc8jqbwPahWBf8+0M1RwYDOGAoohPWGuln3LWRnlZD1H0riW4Q7byFVutuipA1kCdN5WuERcwARPEJdR6Dnw8X9oxyjCpbsVfkD14VzMXjRoEXfCmcB7gVS7G7DJLwfW04xXWw+vYGi00c3R8uIfEKWxxzaFWIjymQdQptxxbO2jH42JatuEAVMM76tNAfSqedSxNEhCKVnZXUXKF4xkAS0gL+SUdOK1Egctw3dDoHxIqAMsK7gG3e8n7NrsfCttBEvG3Yypq4oNi7/0VkXd3+BQYIVEv2ETTAOGRXr74AVIt/kZPaYIYBN+FX40fWYONU+SQI285DLUBy0hH3xB7VR3I/1dI2te8pgmqK4KDUc1DAHx2LEHxCpwdT+fS91qF9DmSryRSsRNgjhkZdBz5oFWpqmPXl+xXRvgZwQHsSDH2ovm/Q0u7MNfM4ePyuMc2U8jwrpvm1BM0YWTw6ybEdhHLBSZC3OS3rgWdU5zX4FQ54UpfaJ/JFXFQDJ6WO9Wga2tA4Hcckeslz/WXCfbMGb/KLzrS5FFbM/wc5mh/IBAl0O4EG7z5hETDYJONNIsJhTN+XJxktW5Akfwiofzj6oD9NofYV2IMcv3CYO5lQV2dRKyVYg9w9QV0VrsCOt7Qn7HkaZCgN0YEVfXzdSFJsMS1oD8HktZLwGHWs+6aQFAGgNOfaswkexD1VwVyxc6K32xzXNtbcrEJHP7ycDCM408iJfIZTz48uXfAYUKmzx5FtdegIs1GhNsSFn9Rc7AKLp8MWunqgeu/HB7g/5pn5QOp2dDq8WGry/DV4UBf+dFjcY5hTGFUgYf75kJNkYkq91adcXqUmDWDrF2uJATIQ/SDuh+PPVWk5D08WzXdKulqjt6Kp621t0kqLgipAjfTldc3U7eSZWFUt9aQvVfLk3yp5ZB2qAItbEZRV4CUo1Blc8XrZPyCcsFzLVeMsPoUG5NQ4gsVVJXEzmbr1ZVIQtyOQs1Q+nweMM71maqdEbZG5gk5Yr4/FiaQZRDf5CqBjhRwVeqmTlmC+b/Cf6iBVolk1qmh1tuJLzNw633LzZ9AGQK3VXfUcMDa3hZLumf+ZK7WvW5qHRZ01Eq9bNCZQMAgURNVNU7TZfXVj1tS5mEfrXARADqWxwno4GZF8HsP0/poLCbsoBePBtcu9m7lkaDl1nbybb4I64ncJ/T9pTSxfWLGoHn7SduPpx98K6BIlwxNRmaOiEsDbnfIHVlzLQspXyhYiruzumZmJSBHOVqsKzIGs5/N+0bVo+sgjvzcERfQDZM4OmORF1Q7tSZwCQUaF1QSwDiC++xdD4TO2HuAb1AtT0Em1Bcy5T6W+XGJCImQlB8hHHvQ9+YvKYDrWCqXLiwhdzeJAhXNQwZShMThj+X7XwCcVKByxCrLkGS/jM4SdDgxigQQo3OwojixrmT/wgHn/jg5tgdLAS05OPAuJs15/tsqATz+YlgbidI02vLSlmJhUIyOho1UN7q4+Tp5JjK2obveh2TQCmYqK0xAPaccOGYOz3sqTA0N/n0bUbpb5dDIPOyAk2UiC0yCmKWHiWGgFM/jj0BF9s5Yad2QLXDhfWKLXtaWueh9m15KkPVdGBqgptOl9wyJ1DqNU76Ngy6NjW+SoSwAz2FOGkdAkd2O3lQdCzj8JHlNq9RI+83TwBmLs7YAkQH0igC+daz3JH8XSnA1gkeLsrOvxKKUfCbTu+6p7Q3M3PJ6/+D7H4mZ61AK+LLo+OSFKUzb4z7o/LMl7DXuruhgJMWLE6Lj4FCw+PNkf00Rs8QJEBk8exBAMAKsC2OlcAbI3PyvCKzB7WtAq7WkdbWmYP1JWh/JRYFAy7QdTxz4kLKQdcAaCLmlQ0Q/jR7wLajx21jMRd6k2WNiLweXRMVMCFqtjFMyXFGAAW//G25XQGyMXRRksMMsVN40OGZfhdC68DeqbFPRJXhFZV2yPoZ6GqSr1sXainRLtBerQSCJ9zwYpOK/U3swOLqoOskyFflTRYZNvD2F2DP4y+jesbS/rQZbdUlffHA5PA8z46W8Fj9EN6GPybo+RsmZqZyKmQwbDkjiHtfc9Xhry0PWZad5eG/ZZEgxCqp4RIw+5iihDpG9+InNOSIWcuTKH2jMTcAzbxGonY+BzqCkr2MhmFpZautoqTLx4xvpHWBBz6lFOccyGLSvMd0Dyfh0DdmW40Xtv75tim3JEgaSI+Q+FZuxBfP2IIbVu2kGnsF/GEgFqko/HGDgUovPg7tHaLWx6yPfzoGmg9VTia2hJXQok/u/lOJe8m/tJW9LZxDXXH3OhGek0gh5UCIiQXcI/Ij+diZ5TqHB2VSz6O7tbMkb0ldG+KCyDmcgZUhbp4dJaE/yklt+7sRjhsMeWiNj0MVAwxj27wySRlBQ7mZL1PsLLpfrvZVt7cUw9WrIeFMnxCXCGdGk5khXraJZCSbiIw4Kn3aAgg+2dAqbvAL/yY+lJXAKTSBjJzATCSee+GKj4nZdsCNCv0DoIesBCo8NDsCDs1QkUpzI/tYqR9VVGih0qDZTmlYX64YVmoNRIIizZ2XLV00C+M3owIMzHV7Xn92/+Lzi83UNw9HKu6j7HBx3vK3fxjojWtKigag1qDTj66Fea7jxf5oatMdVoIPn0th+aDzyZesVR4ZjvLYGGjxrIiR2JKvHRuURs+POIPJ0ajOwG0sEDqq0+6QvuPMsxSGBudcMPrKvbwMBY/HSygJiXtT1Q4JBet/p1A04l2Zffsq+ev+0kj3i5JQQrG1UeqB0odVeMP90dzWhMpt+9CVtG8hjE8s8bylBiUlSnFgFAG8tz5daOQZ7YuoYlsU8Q/I5gg585lYn4pZ/Kwdm0OPfTAvQNm+99Tb+u61LlnR48THI2PU0yFJy28gQD/f9ysW3p+AAdg1b4yCJ2DyvX9g7U9Cll/q/5fuYWALMgmHNS2B2ceKbj3T1ybyeaFHy12q7U/7DfdA+odoSVK5+NG7GjF/nxML1JMKJqJpqPzjlbEJllusoA05SfnEDLaay4Mm69kjBRi+spTxfkva/c4ndKzodLYT1I/lDl2Gm0NezLLYTm4cfZEG4zFzJIhD28ff0Ol/lPTPT2LGNE0Gd4zcM7/bjpjTWRYbbxNkhyNRG1Q8txsz3L3cfKeSUISmm7d9hOwx7iB8ZUReAaTekL2UulVfyc4MwVbAMafBlH25XTZ/itHIn7R0rNlv69WiQHMylzZD5gD0BPwpbjCndBa1mo8cV3i14d/jAL/fnoNLCnsoxCILQfJ8KqyIbT4hx/Lj86tI02wZ//ZjubAtA9vGngcBWRXJSCUxZzgbncfy8/B6nEYYQX+9xkWJeM/Bcj7HO2VzuxUGxYKON0Xv0CVKkLFIiSAUze152sEEZdzcYZFiQ854a583mQ8Qp3SDSEQ3ToEwRzZWqvKe5Q79wPGlcUzZtXbiWL7nprDd3SmBdPFFm9w55mOntP8YbpsdGnHuMMGWHlWCTifVJ1ISHJ9XzQbqf65Mphz/2Z8iH4djszKMiLS2JOKHyBN/geW6nh/R+9FaBUOQSY8rWuJyYUJZGb6UvEKyBx+IfYkcVBG5QxhLTTAlh6UuaG5WmCXBRU4UKnPDhJ/jH4WYwrdUBh6diGbq7sGacceykO4JuNHh/MqA+BeskvedymnHACM6SxJco2n/p4YzroNyc3hXM6/xfN/uH4bsOoogh/CuOaZe1v7jKpaKAn93bkrhvGx4U7CXWG/Pu7LmzYWOKQYxCtEJfvN2Nt9bTCYW4DeYwFDIQ/rE+KRFaDLOJfOgBBfd7dElEXdA46aldaUHBXr5o7GLgl82zzvsFdwtvVNUZzOl8in36D9QVVjlh3ShYJBTGXKQeFjKhYDQ0fsmTyjJMOv7nxUf9w/KaiEcfskGlfuI32KPFj+gEEJIodg7TzLQcOkSxjZCczMaTQ/AfBktBbUoiZy9+FNXhQNpTGZZfGOqv6P2rH3pmlFnuYJ9TuDCRHox5I9MH4GgXs1FMWiuJQ5GIbkX911Yhme8JpK11nC6Bnt14p/R3orIEyIszkJf6E+cyC/yXGND4J9o+BT2nWFEuCamRYPHD+Lkw+o5dSOTcW9w9afAwyaHKh4FPDMfMGE2FbFUGwauI1QEX0ZpCKwtQ9+Lcnx700fD5QapXp3aEN3ov/xz6tURJ0Xr0/c3fPGhzLvySZdcgbZGC0+6ECYxZ90MjHXZfS1fotoQ53D3/ZaV4rn75Y4TzyJvdZCz8ZmLD1Q3Hx5Blt6SLLtDxnx3Z34P5bZI/ylW9kWkm75zboO3WFn3Wre0fHekjMO2bxIvfthmBg5shwNTXLvTK1eBwVPS9GjGr1axT3NfrGovnFyXG+mmirNJrdT5oF6IVlMRMvyJ1ocrgJN21hTtXYej1pLqtv2opaOOjXU/CyEoPKTSSg3fO0vMiBoyAX1GDBW4uhwVt38W2E6PKBaIG1tHqIit34pxLYj2qM7kZgBmq+NDfTEdtBE534fmOw0vSVIvZDBFqqVFOcbIivuazwz6UW2BgNY/sinre/Lym5N23evK18ZsGMqgsWOFCmYFXSJGlRh0ue4MSL9lcT1lT2lYxsCtctti1tLe1MRkhv44xLlrFgUgkOFBNrfBUcuEvIsFGQXf/LlOPZOEffOtxN9PvT0yX27+4ha374qCHmwlswMyOMP/GUYoTlHWQ5KmECLn9TxhwPrkT0pwpzTQmos6LcHgEvvwDKCJcjeDLHvX6FhdGJw1mocpZ7uhzuPPbtAOvACViTNXbD92LL/xVs1PZWR5f16LNVESLCpOOKYD8w1oxrr0c1cZ+8A27oXXcK8rl4n4bJOEixgySibUZ+6aOuL4FcEJW4U6OYW06L/Ybp5VTV6sdzTzbnTVcxs5J3vkCN8p4rKcjFkUCj/owR5U4ufpGoJ3wb1Pcu9HdciXVahbmkvnvoUBC/jbiqNyZSqTOikVpSdCUIRmTMlNaYRGrbyc39/qfT1UtlDg6/GmfEBYi5g1GOKOw1V4gI=
Variant 3
DifficultyLevel
580
Question
Which of the following lists the numbers in increasing order?
Worked Solution
Converting all to decimals:
36% = 0.36
114 = 0.363636.....
5019 = 0.38
∴ Increasing order is
36%, 114, 0.365, 5019
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following lists the numbers in increasing order? |
workedSolution | Converting all to decimals:
36% = 0.36
$\dfrac{4}{11}$ = 0.363636.....
$\dfrac{19}{50}$ = 0.38
$\therefore$ Increasing order is
> {{{correctAnswer}}} |
correctAnswer | 36%, $\dfrac{4}{11}$, 0.365, $\dfrac{19}{50}$ |
Answers
Is Correct? | Answer |
x | 5019, 114, 0.365, 36% |
x | 0.365, 5019, 36%, 114 |
✓ | 36%, 114, 0.365, 5019 |
x | 114, 0.365, 5019, 36% |
U2FsdGVkX1+J1jSG7jgS7PtYiKyzzX3QsgSS4+RZ5yK4XPajb0C9esI4XpA8UaS0nqQlm4QG2XVHtOOyprc+GIRWtCHQDGPUYyrTBdkB43dUonbvtpVHtEyx3LJBIZj/HOSpBGlNiaE7vqiKvfrCgZrG5p6PG7oPUEZn+wP1VRpcznUOGZhdGZvbn6na0EcZP41qsgFR0S/P12i2pwA35VlvcKe+pKIfsmPxf8yRsu3vUpxHtC1FSj/LtRCOAHUMdL/okhek7DSdKbWFANfM+C0wrTy9a83gHOU0yu6izlspiefm/dNyOltMxLw5J9zt/XE5FrT4wWwFuMdUag6wdCTxrcJPzstRJzP0HZrhIKNbhCw80MIOZKdrCR8tmPDYMpwgjGJrSDFRkv5xMUnGM8guVISrVUmLJj7lIP+/1qtFDPfYOtea6z3trCs2t40R49RHHodd0Yq8qGMf3jbFAZxTdOSw0LGGOBBFJBn90icCBqn2CRmTPYpAwEhfFeWSMG42KsEKFTRBK2cTtS1Q8iDFXvPKP5lbwzauahhmoYITVJzJXgDwxjY8vGoXKHmcLXCxBm20ptF8c/MLz2J+qCeVsuOqWOOdcpXVqJutaNhn1d5y+fgGQ0/Aux7w+AM0BPsPQcimLrqHPsETyU059HGWe/kNF3MjBliHYtUwQr/zuOYixjc7N9EuU56xp47ih4fhVB6c5/JE00HMXZiwOz3LmXpbFY7nTuC9g2uRSSi5QyaWOHMUfkfdSecCPu099TnDChC9l0cCMhnd1xm+D5vBptTy8YFSAEP5tFhkghCmjxiQyNYsFI2rI1KDJtdHxkC5WyaOZ9zjTZ2O/hBVPZTm4thAWN1+3Y4YIOglSYaPrh2v0tbihzys4xT67mKYpNyrBTQTR5Q2BBssljFqqP6xK/oiPdS7/My9E0J3rLL9N04dbREywu6EOZHhwlPU2AUFVXKfC7O+ND9812uGK+5N0Ty0Msxb1/QxS20AftnWwLblFEjSOrXmrRvOm38qFcl6gKHyOwI/S4/FhaYuI78nGB23l24LrXENox9sbJbkDxTxlMaIENko+s988+5IjNAaLIlnv8T22e82uWbT2E8c8piJuN3qyMgfokutdf+psfBHulgfGGQ3pkBHnZn7d8iKxzn7am9EzlwVFWhvEy+PSdU+NrTEceFgF6yCdLCq8jWzvPa0XoNI8Zoi3qw5sm8twqhiPvIPpVPV7gDz4klMsmRZzIkIin6aV6fnI/uefY2yP9f9D0jCdAQNvq/QUvYSRH/EyV9kBqifenCWJHG1mg3HDW+GkynvzsyVutNvDNdohhALr905D3efEK74tlqNj1D+WdfyOism1B5sauqBJATyidmDRHMaBWIU+FP014E8wpzBr4lPCYQMQct4MbzYml9mF4lfaXRC0DXB4Ub3/ecpF+kkbs7x0MJ2whSMNL3E+dmdfjGBT2iPOyd/svqJ8m2Jo1+sKGpsF9DTc+ZBxyR0KjAWcYM+9nm6ms+CeSveUoD+MZmIufeLNL30VHWfL33tW872f/iUIQAjF9ywn2D90eujIHaSEz1vz5XvW5Wawr3chxAMDSto5CdlnPaNHGhcGwjz14ahjsaxUAz86pEy19f0/C4ZyHKfHOGPNUqTX+2nLeYgqJ0qfRwJ/bC4G+VcY1tFG5oV3K+VWKT2m0nwCy9iwdt0qGH7iLkkoHeG8dK1DfXQmd3Tk7pJAf6g1VMEoJUC4KwxdZC183cl9aLq7/goflAzfCYhVzV13Iurc1+BzH74Z+UUxDNYlSPG5WBrtx/GSJXaT0mMTC/KjX5hxjmkbRAQYZuuJJKYLIUf74k/pkFuAdyo29kXbvQXEj/+MOrJci86z3vsafv6j1BP0h+EKWfszVKd5s5eVh+c0DU0M/cb8RUtBkVCoKfxZlFvoLedbgKpzE5YoHG18b4Y+JLomWYribzs5FzP5ht3AFXBADUqixejdfYR3xzdqFmBEHlR5zV0oX8DxJYUXJV/mIvMqGQKNK7UWoBfKIYrMQFrhsOGFs1KSfvN+8DBL/gEebNC0kN2LvaINxxPLGHJj8dj6DLpbHdIvRYKYlYp9B+BTQ1yw8xKDETe6g1FDr0nwXK/+vyKlXMJJBRzunlyU74DUn0WrBDerSYkAozohmZKiQBojJw4rmipQ/ttMKoAZg9nYbvtgMPbUHIo7zv/xdy3F0hO+Im9al7hgRVu6kgv4EFYLjMd1EMpG/gX8gnxu1AAuhX8Secw5vZbsAvUEQYN+5zRqmBeP6NR1G8S1cJl2fWqjmA/Y22Samnl3BALJfv8vZKYa4icYNS9jtuBrkWLXVzZAZnoDuuM6I5i/IpH7+iPqMcSZV7X6EQZa8QTP9jNR7NsjW1XvXTUq/5eTcjxTny5Yl48s9X9R8mNbI+7xzHNQUnWIG8w8s+lgRfBHY5ThqYIv0dTJQGcuwR7LAltRvVWmMV0n2j9cd5QaOeGbIfoiEhbPwoXoSQWhSzB2kqYRc9tpKnd9Ysgz+YdRqQX2z9lRAmF0hsF+Ygvq1QBvA6oML+hEux5TvqY5ufzAazSZ/4naEc8K+xBwBnprOWymMzQ5eBr0tWgc0swgeoUaNKH+wRJzDiJQOyPTElrcJOmqNpCH4wzEhu0vOS87a3cS2OtIwJqQ21uheuVWWR2L5qTgm6+hzNL5UAJXE3rVFMR+ECMvJyq7L5GgtsoxhZErZS5dM+wW7W3nl9pZvgLYTyHdt9oq0sh+bJYtgO2Sk3KEMHOq4Rt6TtQS3gm+BsOGUXy9W17yV3CDlSja1gKBc4eOJbUWtDCNphAEeZfL/Bx6q6tawqV/BbBcWMpUXjHfyctxQ4lwQ/gocEIaBHKseWfA04N+eb8ZzLO/QZIW4zSxNOnRSykTv4nKC+7PKXZUU8+wTEQamX58iSw++Z9bU+0A3qlIuw6TWX+ZU4FgEsLpt6nE+XcVVC0fkETw8KMUFNdEkHUPJbFYPVCkdBIYeR0UWi3csuLIG3jXHdV8PJF4uLFr9+Ni0xLwYx6qg+35hD4cEpmfTCk/wF2lyOy6ayzrMt1wX2QfPV6V7KB7NXSQsHe6m//X355U2+FlPgz/OJna1oatOHSARuYCQcjeDMqMP1nUCEA/Zxun2xM/rKZTYSuBUsi41Ho5z6cn8zcN8mjWsVikBhFjqE466+SZupRKEBD5MXiVZt5ZWEM+6R36/v7XbAhnqDNn5MQ3cLCrxPNi7oKdBYweEcIh9gN+2h1AeFCEcThZ2HUNQUyeTuaPOzn/OHP/W+yxJTEebFRPzLCw9fNcb4mQbyXYzwoCSHGuP14dYpfk/cr1s+o4t2iGoMCE9oPbJ83GkP8TjDzOdWSNb/8c/hdIS45m7qiFRr9Rb5Hi1sxSjwqyggdCKj0FCUkdUW+mr0IAotf/2lc1v8h639xvONcpqTt45pSW+gop31YpHHpG/gwaZ+CxoWs7UG7Jbhf6hgEMuByCSeDtOHJQ3P5h/a28QnGiw4FDfwCsZAVpFRWfu5UCPN2U3/f692siNtIGhGs3APGoDrzsr+X5PL2fzcA921bIzSOguJV/WMvBXZ+ZJeehIruSrpGz+Mx+rNFk1jzCOY8YG9LVcAqp8WTY+lyQkg/fl67A+DCXpR/0M+VSjMDWY27xO1usKyiWxQ27LZ/w2MfW60K0rnXIJ9lhLl+h8U7GDUDPqMWWOVQfWACVaL345vlc87ErO9cz5suaWaJ9nnqJFtPDA2BCiWBHSjs5bK4qKVDLpine9LlV4GYxAhS2obcd4bwxKoy3uRmf6GVMxSQ1yVDYXixo0NDTdDe9m1S5Krb6qdkPKeBzrv1Z1M6mvpejdMc5kwfIjH2xGRTs07lbHurYAc5mDaLp7+Y1U9IchvUZcNQCyhw91kb/zFmIOi02OJDrz3298CKEN9EZdN4mZeyNIp6jYftWi8ayrfCwldStyf938Xtx8wY+uJ9gQymQaY4x2BxZ4KxbBhww/bnNu8uQBaujjktmgHqc7W2mns8SAQIU4sISivOwpY393YyBux8JMSWY2iN8MyXIAeaP60elJ1q3Uqu+zCCvCicf7CdkZKc4A4cODVKzzT+lcZ1Q4XEATd371ujiTfLP3VxpUoIZOm5pMHFJHsPjjVlT18Um225SrzixT8m6+xqcu2NqYk1qulFF0f8RK4ZmFs5iQ1mOVIMkVPjLgA39egGm6vWZV6q8uxGjO1SiQbMR7yn+/WaKSbD88SmL4anSowv+YVq3tTzw6F1moBYSyg7z5Mx5EzxUpjaUJVtKSwLTGMqb5mhMalGHFldYiB/tzL6E61oCWzjqA73rOurq0aKnuCRaVj8603LMdVrTpsFr4EwuhhRse9pOlIGuicZhsMRHwbPr9iVOCstXV1kJdyam7/+CsE1cScyuLvipJWFDiWhC7nE+5W3H0ed6x06lOY3IC0MUryoPvTYyZYnIdlh7ZrC8MKvVJbvSaIZPAZCJFjCfMHcSipRxdqkM1SvBOFsKyEPuPi2wJ+f6IQ8GHb0ZeAPH3qTXr12v6itGnOilzr6GBTgK8cyRI/irIqQezcDR1wmmbIwiIQWRiLsUJ48UgDwpfm7rPYzerRuyMk2zp4+v6Lee7MjCIQHGx1MGvn48qbDlWVvCZqA4P6IQ9N7g9WZUdkIFn9wOj9KMg4U8EwxWarlXwHY6DwobHl6wIdM0kJbgwUW7bXkIaIT6g1mPBQdN2fDX7ZWZolgREYYPHb1OZISjIg96y3GLgYgKkir+LlySfzMOpgiBqE6Y0ZiosQWdiPBR4MO5QoQ5UUntGLz0Cu9mt3KwMvejWIAie4PDDEO6trAgMEPOJjpDetUofGaC7Q8PbYImXbieApP1wSTKJ/o77+Jhcb8biuxetk0K/vvhJpiNMMWcMCzQCWdGDLXJT3MNhOhvNjBVH0cpRvzTbexOck1h4vZ4UvIXf+WmjKZizlu7oGl3temA8ROfg0ne6INrFl2aIQ5cez/cLrCmmZhFZUqWKf7s8o7kkuY0UnJU58UBCy44UHYubIJSkhovuMUgzFC/U+mbJp1S0l2wQ9w66/eWw7ydMHn2JZkIkeRA8f5WzewUXcZGZxlDPpUFNJNkIuNCGfpAWCVZ4/lBpC9XEFr6YD4f3Wi3u52bsIVacNPgyqXA0qykYi+etOkRJZEpEi3ouGg1JPUEanNEFkWE2O9bOEQw7mIV4+hYPOHLIJjYlcIl5WqKOJ9HqU9Mjvg8t8BhoQIV1bA7KiWXenMiDspJ6aJCfp3nkycFUfydKpFP1wFmkyVV4UWx+AkusKrZnHKcb9cj7VUQ9Kw6a8O1LIVOGLIsLOMbnKOEduNVnIvoA0Ms6MmlFCELJ0L1Abx3n0eb8fAEkL/4V62o7j5aOaX6mO+SQk6pQvuz3Drygs3eUcGpTl0FyPg2qUkp+lMgDkiISGZUOm/+dZG/9hk00e6qnCfjp3X2ZFZBgMox7h03K7XBb852nRx4p1hrIvDNzPSSrtEXVrvihakmW1iCI2heFRvcTemwcBlnFtSSoL33kxlx9rKi1lcdznXElIqeuUEcZRc4BEckITR1/YUx0ivLKqu2ckEJCejJUor/zd+XG+hcAoq685kAlr4PsKlK9HK3eq5k+uX7OZdjjCSw1elZVMsNLZ9bbo9VgOTMzIVNY53t2CcEXxbH8B6dbb0sG9taFnuI8i83YkYHBcClZeNf+EzcOz3ZJwySIy4GZSWcxS5wnYqItmkkQuO5PEQs3pEfPZo/+UlaVFNlyX+zKVpVUtjXVaVYlz2XylTuVllqmATQ5cwh9AXpxgHHVSua9d5rNFz7ur4OtVxf60YsA7FiZAubI96nP2eacqhTrFbPjOlUqcMjoL9eMMY1bod/xWxNU8JbBKGM6T9AZjjdnoSfEq18LTY3mhyxfLBg5+ihEA1HwbtOV54B11sDWZu31WjMKvKGEQts+SxAu0HDKypLo3hTpUFf16XU8tHBOEnp+z/BHSK5BFCJSUENKJSX3YosxcopCj33se0mSix4CNpUmPuB0Pg1ivyYgmtADC2eVwqvOdO8Nd2mhmre4gvU9SUEeyw+4oXNgvwLDSOg/tZv27btg17T2k6h/zkLalueawGOtEQAXv0cnFpGbZwOH+19MynJ4xW3reZoJ7t+AcJVxuW9YRUVtHsE7E0Zu2CLCkbaDLDTpLTJ3HajSQkFGmaIT459jkMKpy8yh3ByaPzaHI2D7B4joCOiW8nPUzXdlvHe59ArujE0MasWZ0KKxumtzwM4ckdGhHBmmc5hUolIlQieAYXX/pDZNf3O0cfv/Ng9ANk6lD011Rnt/gGUflA7fIfSel4dqecnSx+dmrAShrJN3AgDAOva8KBIHEBKP2pE1Hvd0UCittZU8gMHzlxRlENJx4z51f/XrjNLSOGfnrPQzMPj9MwJmB2KIoaZ7dVp93LBpPwuExMA4DlH0gq/KHJTLcajE9ei/ob5L3fHPEvdEEgEXZULdnkiYBnXYafiOQQvXLHjNgDCY+W01JK9cc853cRnnrkWA5M30sgupjzQJJDO0Gj+y+GwKltXSqW1HHsGnw3dqvMbwK09skRFuHjmqRG3MPgmgBKw6KQcHkAcmF4jbFs8Yhyd6Mt799bKyqV0e4Ns8D0b1GV2wEjjvpNXDYkJSJ5J+KM7LyVYCOfNrKzQfgdr+7uMd8Zd2CHxWLW+tbKYnXWUb2U86dIM07SvtnIEmzH3yHuVHbKGyk3kdfWvolcDj40DV60SmgLXO4oIi3ju5qQS8CNY+c12xK7D/h+lQGjAuOOYCbPN1wR/neJsyAstoggfI+WWzhfbcfQILYcjLVYows07IKs316INSPH/zuZf8B7A3eLjtfA9nqZwIcdp1rw+1tVuorCzcaOa10snqoh9W2gwayqui02xP1vLjrrmFaWhJLt8Grj1Z+wAEu6tsFcxKzkswTPBQTRGHrqkrMOnfD1LrLRvCx0RU0/kFz3JkLVwmCex6FLdFsNqJuSF4ocS2JGR5olBJilPTQbPxQkgFMnK9gjJ9WukcFSRgxFPaCY/76zwX7RHR9NMrtxWbE1LfLRtxSWK+UwGpX2JaA3TRt0CwcnBcdI/32m93ulPoQRfB/nFKnuHU/ylXNNGWy5zSbUsBZgDHab1Mo7vz2T3mkHNt3ah0CH681zcgOshraqkOjfTAMJhqGoWaESjlfKG9cw5tArc+pbYCTGZ7gUvaipO/w9WZTXw23EIi3L7hnWPNEqR+g+/IHHyaCJS7L4yIDtPM0CA3z6oxhoaIhGaosSyHAxSlBP+t6fAKq/ex00Ual/clUsgNXSk9auQJyQQ8+v8xm1uWO6c+vq56AcYNsyQzRSF8Lh9pcouEnCo3/hKzG4ucSayVgE+mvxnEmKsSJ8DVO/L1wq614K4slwdRXVEl+oNRS+7x+XzK2h8iJ84uWHeOlUgDYyaqmF9LauIomcies2V0t37Suzdzlo+LLnbtec54J5I7JS8FEJrYQNppgk6V4Gtg7V30AAbytQNiF9dJ+CEAriqY1/ObM6RBs1SYTiMfglIm7eLDAiK5NZ3pJtxvO2a2baHTm2yJNgEhKeqnRWwWWnwl5JaMp2T6JvLm4FkcjHunqvkZAX7BVV7SwDpCRBJRPuBpSncq17Laa8bFzvGvfqi9sF1HF4DdBhdcY1K5epSH4K4aaTHfsZD8sAmsI26+cUNwiAPeON+YCeYyXOIQKWNC8Pzql0Mm4IukOPTFqII7ola92fIuu6w0mC3Zu1mEAiIRSxjLWfHipuvYimfoIrMYSC4vzvNHKtnD3BxrwmoUD0OJU1S22NLarDrRPVB3hBwodcByJRnG1K2C2/sFWmwlVLdTkFa0/nAZd7Xoyo9/GeGN6Aifny9LeZz2jYRRPvgwu8/g9mzzV8U8EL9UKhWuv7TTiAkWZN0jcyjqdRMd6D87CWxMF9qHT8fzQ3FDMFIEkA6uXfHs8XxsazsscPr6bXzBw11fGTW5O8aHP7n4bx/Yxeuh4X5g+GWvmFE9HG/7da822uogsN1P4rlsJdK+1nOxOp65ZDQbp5RuvGZUXvn4AiPPJtROE2dGh5ocv+Rj8osmJQGeZPcVzkoYi0vMG87KXIdPdGEs+Xn6ruCmGLBKKUQkH4xPCXs3RlmCNC9ewKqrQaQhItDLqVyS+oPqEd/He/EbpMAaafoVCwjPJ4GmIM12mTXr0bkzkG7xhKFTXeUwU99rtn3wMKOfncpLuFjXPH+lwtl5c2VLvREECR0uzxhVjmY7Il0CLZA+h4kLepj3A6HFMqdS29qnZEC2wLzPo+ZDU++d6MJ83tsuvCK9cITXRXwaN2AiqfBdtbk1Aedl6SN5gbzYbAokijNaVJ2NUviceHeBQXO8YKydt41+S+KFw8Cd/1OporPLXs52rWu7KWEbM7ZHN0eV/C7yncRauzen7IgWIvIpdfrvJ+qyhf5L5hw3D62bB3KfYKr9L02oRUEJKzMAi6XCngdhyu/9aBkjaEhezjYVjt6401Cfv4DvsxtbdpQvUMx3Odc5s4JXBB0bCZcyQdnN6iNQeKMcVLiZkwGXZtWnzD/VMoqRS1tW3yi3MCZ3P2HTKscDXjWis3b4Qs0JhTQpjQUlvzrlyqQNxcRbpAEt6sdylMy8oWLYXwO3SvC7n3fuyXGXv9P2wHOSvxSGvXmd3M7yt2WqgmkdWZqdWvEcaVd1x2ya/Xxrf4+QrAenlZIJfP4iUCNEqVxU187Asczgtdp5YTglrHhrJUR2ENkQwNuooj8h6FsoGRcLJ34qy9iA5r0XNFFPvro30EeNgTL+wgyFgoey7MGhHhITIzOTxutFGg98HSR8I2tMdIIfvVzQdVZZCdOVg1kb7GyCFbN/++CKjSlEsFUtqaEGFyh3ETgO/YkjZDluSp780A4XYJFYevfqnV3xirzfia6Mhw3R5X4wcrPlm0nxmgeL3+eLv5Tho4rbX3mtrfudQHBhQ5m1EAbwkOS5LvA+51xMI0LvX6B+RiEukYUH8txyDxBQ8roIMC0am7QiDqbpjMC4UvbkyUXUuiI3gUhiGe1XqZX9Af/Tv++EuWaqXkZMxYUChRIpz2bP8sh0eULAeuqO/SOlYET90QOKLOLdWYaIyJg80cU6u+FqeiIQXG1YehecQVneL9Kzt1eMBAKVOVwyFNDBzbKUF+ZwevZjm7iIDmMRxIF3am2Rj0yjSjNvWoSPLulYN38OIMeP7bweBlOYKmsOu0MZ7gq2QAZuPL1I3vlyWXTcfftYTMzCHPlsthA2RCTQEkB4+9QK7pUGwxiEO9Egv9TGwyDd0XstlfCE6O9obT1UDcB9+DM8PQ4MKAfe4QILZodoGO6+VQPuv+b6zazvnU+GmspfNsYxP+/pDtP2mwcQ934V5bZiRhhkpUtWbfBMwJHguirFwgqaOki/I6+cs1OIl2x3FdnTC7G1u8QtGfBrC1SqFkCYCfC2Pxjwl2krFGXaCoSrTm0NEm+sKpXSTvBiXUMegF0G+e/bYtQb8w9yRM7YchRvKbwn0TZvz6K1lzEoX8BN+rdzbLDGBCaHndAX4qwjti1YglbOyckglAYg7tikCFb0tNaVljtbVpemSrPtKKPa9lmLQxbN3NWSyrha0aXIUq69MYUymW/bybTuqEzI5cDDaKO1Rx5Q7RgYkAmcHlxo1Q+GZbKM79kloWjxLZ1RnTCBTWKV+25CEBXoVpqs2uRN0af5PGarWi9lJbDrdcrDMfolptsTvcbtcowOxaqmbvlAwRbZtbVlSL9xCQXWKXOArkDpyc17h3gwx8hka5vCjpDFjB/qXYm3h87miEy2/0TtpX6N8fAl+JkLNvr5wKlkowI9tGq3qgW3XRlPkfuwKVhDs8IX3ae/6lxGRtS9rypyTkWO7qmLzhs8BUUeQkVKiVAWCTE5J2i5IojM/7p4ePNnhbuqyYbmhmQx86aka8GsYr4hDr22z80S6R56IoXsuCNsjntG8oVuIq0g/SecqvhAF2yWYUEGiVdkJSfs+dx5HnOzdEsr0I+0k838RFkPcfYqKne53CyLxsnIowiTREF4/NaDoHu2FQGDjUwCfrUVN8y4612qNpATIN8jyzph0JCIgtnRuX/jYCb/p4c8kcEEyyawjsxrCMNtL+u9WrAs7c9t3VKoxBTi1iTUu6n61QZGhLvq3+1tn+f4OIh6JQes3fiDm+FmF5Y+pibihp6If8wgZDzIJOjKKNB1ptq5uVHfEV70To1yBfmh8381lZpEGsqbddMnmUGzg8OPnAH3ImTYvG6274hrNhnOQFQfo0qa7dhFzQVd4VfApAlXDVPeCgATQ28KZ4mD5y60p4Ltk6lG5IOs8gvPhk2hbxw1gEHrnc2j3KqvNd7KXoXAgcjvQfnRmIDMYCh5v37nqDkMd9C+ULLwBI9oOxvJBBVQhOY1v3AHAm55D6p3yvT4t1ypQ8gEcRe0bvv0ViXq0LJwQ2o/Sz/bn9s6r2d1ldB9Wi+MPoMarcxGH1AJBTts6kgMSor3E8MrB7ppNSc7S0PGBY8Ka7xq5Az2Kr3bzHXfKsEDXdUVn+zHi6+cK2i/8dhh0uGRtjmOScc2+pL0eB2Wu0PNRC+YcTbh/eLDUBOKcZcbV1goVpdzjsqGPC9Q0Cty0nIQ7HHzjmYtLrIhvACRsqIRyrg62/WsspOgnS2xgWvz1pVyPUtcdGe1PlFIH6ePILKFgHC+aetQ0b+qHXydFP7LRYxdEdAHqyoerAKf7afJucyS4BYj5OGyqQdemyePjhtxvvpZn6DYFAKr1VJk60lD/fl5Jiu7Ue5b3BXEOBjbmzVOpXb5X80PbOSbkae47sWZeZdtnNLmBBLUncDcoUMj9gQiKJa4eNInSU8TM68T8sOf2AyfzWXcIkec9XV4/XZklwSAZ0U+ShNrRqtdYjgEehQcNKR1O2bYfWNNiMk0DoFBK3GSQUA4Q5DMO/xVFhs3Npm51jrF52/YQHW63ZLapKuzZ+T35VlcmboD7jZZwD0mepvUx3OfPLXJSSlTc4ritsICT0h2rjeOVoxiAq4aLMMj0ZdVGIOmGGQGVPz0SR29HcVUmg1BL2K2RKVoK9kKbFLDky7CAEZct9WNlbYZd+sauE4vPUHPjlpbZNWCl4Vv9FS0DBYF7ISpluI0IwHfk9sdiO2hqlFevmCHAyEzaYRw85+FT9K4JPvxEMd14hyXPKDdSONIUz+SP1vrg11GihlhQtMKPePetzZWRy040bMQlvF4TQIWi2IO5maXgjWd8trPc5U2RjlSIuhflectHyUwXzivuMIURCenA1xXTagd48tnTIPDnc/K4KXn7+ESi8woIz8lLX0j7FE28NqnDaoZ65nnoEyEpcCb8MKvEzrotbNKtfiRW+be7ZIdaWywV1W+Z9n7SaeraFcJpRNrP6jJIdrW02PU8CYkjj/rd28ITLFk5nKEzMxmPrZUxiQkq+givC97THNQ8AqetcGhWJA4vETbEhRHaa8sbOpC/LWjhciNwiJPA6J8ywbLbl9onJL9/pxlT2d0iq10/im8B6QLK5DGZkBF7W9G3oX94YTBKwmmHYiG0MffoB9mz6gxP7clELGvi3bAH/WgxVMOBT6l5Czx+HQr5INDvAIgjda/OxMxMHhf0APdw0Tw8WvvFEqM43m3dYW57NCLG7sscFPd+iXZFOddXz0YDgZOq78DU3glDT8D3qCQx/MGFel3vAQ11k5LL7ndNWF8yFaqmDC3FmgDQRhgDlwIZPxKed1EZHpsQVtiUgNsFQC7cx9GsBhU+5Gdpjv1OwtYevBpXl4A/028XKb5PC58DFlUt+lW7fzgezEpxRgjemoRIH9NAB7Ty1KrjSeOQ3cGlHYz0Sjd7XLtrNjgkvuR8WzxqEG+2sfp2uVn08fNBlFx3GUetYwR2Me2KOjgVk8c6eUal/1KlIoZKnIYY4QOXgVRokqihBaia0feH4qz0zKgAlIsQ3N2nFBgBMGXCXMEKM4My8WLmfy5l9d0MdkTamrdop4Jr+f3zNYm3ebcPsVFS0+K9gbDUZg6DlY/Z3b/KJ6mYpTMLcBqVAL4rO0AeCIxGGdXfzJ6sVyNSZye2l5qUMDllCokh/F9/XxUfG8Ahc+cXSCgFFXBBTSgyZQeDO4g9DMWMYVEaDHlUzzmrgaPBadiBCO197kgoLLEDdbc0k2ajHNKNsupRtmk4PKmqe0lfBerKXrfE6Fkqv2vFw5d/XTkh9eOQeJRWLNY31wz7J0haKlWzqsDF/A3xnx6kZ5F3nL24r2DWmrLj/KLq0OkmQukuyGhuhSNINFRoU6FTVZnsJgqr45QQj5/BLbMiRWnXR2VzEbLpboWAi/cn7bUtzZkXlOB2j+8hUSaJxQBYSalWbFuf2YqYVxmhPfr9t0/MkT9sw+NSRzLZi7EzVHbdK0U/Yo9a3ehKZs+FTPrxnbcOnysTZvh00ng6UwaJenC848HOV5VswYatl1IXGm5ye5ozQU7r8UGPRKzZwtdHndr46kdoT1OygzXHhPs3HWxGuSieab4kD5VPXEsE8jSXYA9lXNgcDbzs8ietlFKZ2/UlLLon3E8vinuv+MQgjOemWyQPqhtEh0XKlrl/JqD9uvE1OEBy1rwIoJKhCPpolYKi+ZCpFgmz91+TyLU6DilFBZZMsux79U+EAN79SYEUx4+i7DoMnFaqDjdRTDW55jI3PZdXZcoK/zyMo4oGrezvSpcYBa2yCfoL/rGahcNOxcu91nK29flwCPJptPSr8GoyLWvVnEY601WK8AnLSecMVdLFpIB32dETSExB+mtAZDWkr1QN6apRHtzOoHEVJhG9kdrE0lmbvGot5W0AEJoNSDGS/Grj/2RP7hVx18Y+xMxygYaVMYjua2hWp9JtZywQ7FIUsyGQN2oWvzzqaOzpXFUAfbqF3ugRPz/zott5Duy5ReBSLkWa2o5BrYdNQDqWsWly9Peo0xUMH79dBp8APWbORqz+9keaKptYAWAJLsGlGjZ45VJ6Z+z9C/MLuFBSWr+FVHl/tgP7qIO8sWmvpfTbOhBPk9RE/sR/Y43y4ekbkwItZRNiiuiOZZ0XK7Qpyn2ffrSoUqKZz9uo4tjXQKvbuJs95N9da439QFvoFNsYzJOBjobzph7w8CvVtWl8CNR4BDxmR9PKNqPh0K5m9WlN0FtM7XyyFV0IXrQCZeTYlG/blOT53JOP2edrw3gOa8VVjlrX3ptp7xApXjFve6Zj8ftlIYgd/gOrE+uMXNNm+Je4i3IsAzTd+vqdESMfYg64AGvXhHBxKyTDOHJbuAfdCVgxqLTE59mtw8rkeUqnpPE35VL7/AvlsMXG4Fy7Kr23HdjXwoQQ8kWqeRIz+XX7d1kECIFs2Wb85MWW0SZKzsKNjcUbPeQfgi4lkq8qUegcx6PAneP2lR34UznFWQuTl2HC6j/phiDok8i59fh4ufiGizlz4e4z93dpbNhFKgyMbcuFfvvKbciYVnQdi/3GUJdQcPvxJbZZb6yOLGek5WLTWzcHOoOSsRZIHUI7ssfAQjOJereCfevhgOSTdQGR0Vo8Ed9BYOG7u7nn4/GvmN6w/6C6aPTeZlt8f5dFVbxNp+HxotxEcbdJLWtGlkxtIik4vM+4/jYM68tq1wIlAdwpvx+KmSu6RVZ/KIJaAEJbyKmf/Seb+21r59rsNWPMwPuxN8el7uesPt4AfLQLIPlVuWWq+iKJyZ1ZE3/YK4SKaxFA0h/hnwmbgGjU7qU2+HymdbRx0Udi7nvGzxDnmD9uKSvnTkmdV0ajQKtwZCf1ERfxrHjyM7NtVCQOOn1NPSCUlvn5tx5bUuyIfcS6JoKJvaxRq66HhR0ZT7loua3btsGMss9yUxWRYvYVr2eHJqubtwhq0W5TGYh46apQbG0WfrAEXPqevj2WO9Ah/JAOUiKMwkDmHuJxQ4Mhq0pGiky4NnsMGAXgT349DjikqMQ9SIybsKA7ca+W3DbxmCQK9oi5pvDYA/FPLXDu/Sx5XI5VH1A9E9XZhoeNe0r/xMGWKunZqaidw5CSAz3C7OxFuyebEjEvgGJkn0HiW53vh/ddScgrbSlnvQOg90UZ+stiWJFymXJjE6ZONC5i1NZm1a7viHzwyhNbBzmhLnT0Xak53HOcig6IpS/ep8N07jg4cZlF2SK2iZOr0JUWh6w9XlPFdP5WzgtKRSHfmDVNTmsd8H0FXZmPtoZGCXrUyJf5dfrTMBvsVyQYn8WdeUN4JShRynCtuSw+OX6X7SwXWJ8U04/vVbHFREoPBxIfNFiMxQ/y9U5LXB4U5Wg/v4999t/3sW0gOQdTkelopSlJiDwuWeyPUuxqIOK9BlJbU8kH6RRPRMwOj0irkVy76bt4ik+QnSm5TvitzmLC1ag8HcTCfEQeQnCFUzNPUADYnJ/qJ2prtES3v4wApfG7M72p4dG2hMYdv853vO9sCwTuekSVFSl2ngdS9psd2jBuBYxXfbyxQFUIoOWniq+7TZ4c5tnvrYqfcCn0xBBYagbutVBtknJNj8Gs8Beec5E55JiDeT4D3BbbLp3afUl/1gdlKU9xf5Jjzxs3V+52ptjrT/cyZyhaKr3Xx28dfi0l0dB1HzM08LjM9CUboEGwg1rD8qF5SJff3LDHU3PSfqlvUyR6moD33UXkbG4XI5hSGGCM3RcFw7BAM+RNwW9loHikGi7QrthIICqSr2KfSlPXvbPkwxUUAuBONFryOSDbUnGCY1MSzfE6mj0e+KSyXivQbpAeabGJcKhGlFG3O8O7c+IWHlfT3xe4aFxD+uYEFx+KX6vlRLCVtZ+oOOjGWOXDmLv108pv4jI/W/GpI5mCNGNMjHh/P3oTLku3Q/unIIpTrkjT57MO6fE83KVmlImMTU+OdT2cqP+RbG70oSzwfsOHYMutb6KEWEUi2olb29LqzTy+FNvH4egBhjAwwytq9YALC4eAV8d/66ulgcFU+HyGmuNx52JaITf9lp6dP4hF4qontKeHsWFzPHphFcgYFguGXXPjPtrSPuXggZF9B4ZmLaKB0J533z5u7Yh7FGejgN8xc4jgvIAm9lO7KGBqDRnK6Kyegq9OLqo8/vYwhIHKz+h1Ap58h7KQArJmFTwI4AOv8izk+qd7NIV9JW6KNXo2K5Wu3Dv7rAMNnCy+Sr5oh4iepJCDg48GmnFpX2m3QilCq9xrdZ2H3/AXxBuK06T+J/g/pbv+j5B3x/3HciX/iDz2tzelZfDlNjSKwsJz09Rhg0JVPQY9uDalanEqLRWoApabXbG2IdeDkblzS4ebIaSwlm501J5Gq8L+ukQQt7kGYaULMcXvEHO+qfTfe1PNxZ4JUaWuoKO0fY2pxRH2OfxWQo9rtgNRLmpZg826zfkzH2S5dgwIPdgJlfJEDOy0soZvtzbfeEbtemw8IlBe2XANUeJgsqPeDeiO4EFYsXbZBgupgoVshQp3s04apaEG3k9TyTsBhSQ6/8H8EyHyXqtfXpDzUUeiH6ZzSWK9G1n/T9v3oYT2l0/UGTGlN5usujFMCrCjaPKXf8IBvYjq4J4u53rKiVwTJAG39lDAJlGzj5NvWLhNm4iBOtZKfpxxOxo0ymjAGJ9RyH2dxtHA4/PQGXX305rx/E7XKZye1lEqAc5M5iCjMBSX9zOVqroTKIJVtTAzt79rF6Zp674ZASKx7sSZir31aFArXwNUkiPfuuElHcXxCmQKTXe9xlsOrEOBpoVt0ODFVv+9fZTjTc5Gq3961ZYnj7VfeeI0ur4VboPCFGmUfYtyKWfX0VPKCpqwKt04ZGnoQgBZtjDF5dfR4SDw1PPlqkiceslwAHyH+0eOle1csZOayW1aIEVMRb7V0Hh3rvtLiNky+IaZULMiMWgPXPAee5tkdGl4InZRtSyz+74f+ewj1ykiFxH00ZFrrSjNkDUu/uhD3F98wcVjlb/7GMX0d8NcPynOi0oJuqWntJ/r3V9cfXVL3tvKaKrkpO5vA3Kz17t6dUlkSMvQZ6Ynf2diNMqdWMH4fhrPo6urTbX7eMa516tt97+APJDiOSsUtZT5fyJJ1JLsB/g2IQqZ1JPncc8UpAliEY7z2LiybJsxFRVxeou/Rd2AAJ97drfB8d77vJ6NTiWyhwnsWiSVUsoNEufZzJ6awA97m0aWQ6toFwoVnJcGfI6TiQhv+WiPZcxT1H/Z65QrFBafH24w75Kra7kdQhwZ84QU5x5AGcMrcAbCl5cDIEwwqzU3pigRtb3ihWDsjiIp6iMBf6Rs3ivT7xkCFwoNiBcE3/5pXEoPTDdKLDca63+KLJK22//jB0ifdMWGrBuDoFNTNU6wb5sMUm3Y3px0k3XU0RdwjRbOQF++BPaLR4VPRw+Jds6UuOfeqXaA0J5ij8wVQEJHIzMlH9hSqzyErsTEbSkjuqCcFP1VDCOHATmvYGKyAhYf4Shrz6s+9yiKuTJS6S0IVfOEP9eyhBiC0mCawy4JNbfcKPjvCyycSObtc5StwP6cGxVnxrUm5SoaOW/KnZOvO53klbg5EfxGc+tmSg3d9VnN7xxWAlSYvMoLbuclUiurmivnEILdKgRVSuGyId0urq+Ify57CGPj35lwIwDGvZMZ1IXkTrFxgRJwF5hoLAvn4PF76LHA+BXnZNg0+mypJXqsTAxDCf6zRf9uEp/rtnPC2I0nO+2kTUITgm6cK1DVS8oinfeCGw4l8JoA3+CW5lpXC1VASC8A4SL2mtY8P4oo6L1KKdO+6lJLL0an+9uNbPrU8Jt0n4kL8uMkTP7+ysESwpPod49XLZDUtJ3rXrO7r7bUKu7ZBwdj3bgduVui2AgBs/3xBkR2x579iNy78sQhm/cl+TtHskuzau+78fyGhJiLn5ijIOkMO/xoxALM90czMHcNayLjgnNcOKmHgGKdvAOYVTOsciPBfFvN9bMXIsmpHe0UBqu63jEiC44ny2wNZiioJP84Y8QkwIhmWvd+yh5b2IcS0iugs4MpcXdmNl3XjR3167sVopYxpwVHSdGFStDqajQ7TqPdtHGtnZaVnpbgl1K5NM8WvQAXYraXXuBYP8VHhh0GtS/wXtTw2Ff0Y5wntOTBSpMSUqQewc5YdTv7ODHG+hvG7tVVXQnwVvSdtWbaVGTP8NKgktYwTWPHX/NOHTjiZ9Fod/hLoPxRWpcM9LgaGGwg079ITxZxIjbo73eGz1nmPeyvKuP3HChnVcQDK63KLpShCBCuE53HPprcfJXEotuDibkSGFJZbzlX7TUsBzKMKj3Su85/IcmqmH9SUJDIXNd2zPYU1YAiQIDoUf1fR6RVfzcNpzehPKHxq/SYq2HTQB5dCVMctU9pnw+7rMvItN06edBTmES7N71/7J91lmPK720qtzO3pEVQjDi8Y4p+ZqDhExo5hzOpMMqhglfpSY6XZiRonfreI6W4iN8xk8xx+jPOaHuH5O6U8FjIu6hEXK7ecoQW5H4eRspv6uMmqB3bRLFkH3pciUWA1/fRQOR1e0m5+kfkr91fElRWpe9jthMl+DyjzLtUeZgYEzEONhSNGeCS2wkkodsieTJykvkFRUU/iRenBu7jg26U6YO9IBXQLZFO3Yy8aSB92dRk7NqaKtXt0wd+uBuaayVcZYjmq2CA3cFhiu3iNt+p6aheHxEp9/KeqhHesKMMVR5GAxW6Cu7/o5lONdrX+9OD1ByMmESVw8IV403odHNQMmTjMWaEcSdQbmBE+JigKZbGceFswfcxs2wVn95s/9va0cLESnKGad6zRfYiKcgEup8KOx0UMRq3RnoWe91grtW3QIfm6rLiyOW7pEr1DYAZo/Qkfx77YBsVsFyAT7xNFExZ54gpNjP+pIFfFR5VIowRmBxzzAnA22+/oUiG2EGLjOJdA+lqPecJZtJeWrDPRMzQh8SFABCdC2kDPklVzL+2xqLX1JAxNuzmTc8VFDTGYbWrrK3vvvEOdfD2dzymiEnjk5Axk6KdvFGrSGxvw6ZB1TJ/9cPOcQC4e5bNClio2dtPzZg/SrjEGdqOqolc41y+axcSz0To2Zyw+nZAa6F8KuWgi51TfESBOQU0CLdNKTcWgys2oINz6jd/PNkDM4C++ouylxgbMIQnY2FCeuAYcQ4mRC452sllBXs68Yo3S0tPypzO1P4BM0CqXh6DI/lGv0Alb5o2NNDol5b9VvwZjWFLpW6gf+qQc1vx1tHqFSxx16PwqXEvesG3+42gSlIuK1lBsUudB+57EJUQ3X3BK7SYuzn8bGLpHf1sZnoMlEg8MPumSh6V/3dNXz9glJwWtpcPJaQxaikCfYclgyhGBrf3wGhKpC/oda6yaeTjSLFzdsKrAxTkHqexNmOdkz+tURsAegQYp+h8h6fu6SoIS7wN86vYYBCAiF3dZEifTrIWRgDdiAIuzpotjgkUYKA3s47XhkI0buYg9AymnHCb+MzKY3r+hyVWDEzLhJth78C+7nCKg+69ts4rrSeLUQy5gC69MElAA3qAGZFAMfM0HLzBEklkEXBbQQT7v92SDmtLxVHlcZEvlvYjkBHO8CnrHrmxhmP5xyL+daD75j9xW3DHov93+ZcGLpX3x3gcohK/9n9IsIQlmPmYGMTOGGYM+WmDLjEShRILGH7idmO0O3NmjmU+2Lqx9Em0PI1ex2UQrdweUWVrsNCWC7MRjP04hSxplQGW8KgHCf6OhHGuBF0fjWZHZm+n3B2zb6p6ML+5hr7MOwPfN42775kaUxHnbvPd3OsTUYFUqX1NHpEmskDZqZJvhQXKm8sYurgqMtn7XzisTec1VpCHoQoWtBCNogNsyTTM2yd2PVUHzQ704M7vFM+b0TOwQazfa2l8cNVw2CT5GK6XiIFli7jp6IO1/9CV45fjzUOYdrxK7W2rC5D7sgGOOM6J9WyzzOKa/a3S/6haA/OLYKCNbNLDHn+cmJkl9ulunjqBRm5dD4kvvoQi/jyNXFS8xgf21lsPcvIUj1fM8GvmhirI99zatsArfo9tXr/WYSs3IwoEU7KaUF0SHwa+oYkguMsi4a+PoNnJGiw9/cgI6/4/ZIiJKDAhXL2/JxsI51oWRPwSuLBVTBdhDayhcXtgKq2NqYB08cyAViknFrtvivIPNwdsuevrWburyjXfK0sC3TbvcWCuu7hdMeETP0ZNFz2qpzdZOZ0C+3IXGKzuFlzNtx71QyDO14Zl8ju7xpT+vUGsifrKryTKBIvfvZbwbkwa+/vW92KgKovijP1Z4hN2OYvE9chO4FQ+LZ9si+F2PZ7zOt55v0xZFDJqD3n8A91Mv9qf3LaFeEySFF1CEmUN5mZWmYdGWvR+zPC3iI8gbDbc90r27FbaPAcLU0KhMXobuMvqsCOMy+gebdTfbAvZ8cKWy8zvJisbj+j2o1EaQN5OdPH+Y/8gkyHgX7Tx5I5rHZM5xeCkOPK+0kFNa/jQ0PV/wS9IeL96VaL8fSf4WwiQfjjo5up0YE8fWC8XZkV0brByYscoWJ0CiorwrrhiDv7uOrv8PTURxA2SlWnQcdv3f9ZA+/AeMTOgjbyKIe0+5dqY3dMTEShfTGaA7/OaIFXSmtqYwFhwnObXrz1B7Wjw+jc66mrzolefubhcGVqTbFI1YRw1KOD3LUe6WSuHY4WPG0/Oo1GpD14daXrLTcwZfC07tiLJVmhW/UMq0+JbpfxPmVT8i4tYn48Q4tZV4Dxb8jVS9LQ7cBGsIljwbfYBC70VQ1hnykETpLi6w6wACLi1gIp8rjD4L2S3jLxNcrx4HWEJn6TegWQgvRzNAjaxuGnR31gU+ivEQ7V86Ri/25eLM89OfXYcDkncVwlhGXMJYqPjAV8Au8Y8ScBwsfzDRilBuKBA5VT9MsivJajTlpdUZy7F3goy7972rNezpZSN6F27bZ35jW80WY4OePEZXs0e/iSKKJzNhLzFPHTOLRBTbhLuHYWJEgv1/ExsFyU+W6oL39MBhkrr5V7J2Q5gQtSpHbTXeyqqN18U6nUhpj93EgtYE3WIMqe7A2CjPFJS6+PtgLs9MYa8unl985ThvtUXGgnQxicPhaAvPrpVhcyxWrBmmEBYFAN/oj7wDBwtZhEw3A2piIbdHUKP+vxP9LT6ooeOO6zespMB6wxbqpieCvIKSnk/KhAT2L7a5Hn4cvxVVxU1Npb6ZNcylgSQS9tz/u5I9/Rls6WIpi7CzHATZtD0Z5ohS8ii4MDuBBWNLPM/Brq35OJSr1pkbN1Zr6NSfNbEj5bJn+0G6I3CS6rHFWBzuXnlJqWGDkZD114bM3M/6TdFR0l+KDhX87FuY7vlZONoZLTPQ+sxO3ZfmR2nEeKvu6JQFR5YBiqBy5nncDgdMgdldmWtWaRyH5i8JQQ01kWONpBEckK5jGL9Hv3CRRgEtM9ohxaJGiUALX175TBDTW7SonjGnPa59P6SnTtnQEdKooCCz1id6kku2GYzP8SnsLGpl+0upzMBER10BSaKjt4DdRmABRrJBcWGWDs5uh0o/FWLBD8BJIdd0i/ueiJ4Jo6mhy5El7H58X3gXwgSsVQkoffrTmEEIVePKLF4ABUZnpXn8MyyPEnlmTqzrCjKOPz1GAbNhZWL6pA77zf1YlnnigMWPkOOPtGMcwD/JzDfm7ChzvFQuGU+Un42PiBsWxkn8+Bo7CBAHLwNpTQTijhK6DoiEEOLMGgpRO6ORDdml6wFuu6uDGi5v07aMAm7k6DN0/Y2UZli8aJutuhd0jBAZjZV1zVQTt5LRG+LNghqNEkAcMhpQyj6BCoNUTdEf7/Gw/RybIlP1yrBtw6Pk9GAtwqfTWVkVMy5LNeXbcGLG+lwAcDrD0MI3C5eJE0wXtaiobU2Ofwwy/95b6KeFkQRlA6F2t4zrfHRs/wP5S57rW05Isau7TD5MywAQB4xD6fR/vzOnIhbnjhkhVQiguFj3gSOf0dTHYZB1pNH+lgq1wryM62bf5wI7lhpxs/m8j2SA1X0Y9nBHk145YVBdJAfREHuV9gBP36YORI+68KAbm/Q2sHeND3ZKnB0h0pG+ytOhRfKQjMuIPT2Vvb7kiU470HQJewWea/JYG6yIItJgE94DNxp/FT3pDCZeO7pwMrHwW01yFKNpRXU1flFjRNrFgQvtaboE7KLZx5uTtBACzM5mWpKJbuZId9Nb9VSK2OqtaOgbEKmLYfGU+1jIe/RDpMUm3JM79G/X8MXu8PZ66TsHUnfgX078OjQacw8ntdoVm2fkxQ0QjLYxyhUk91Iuy54y2bT2/oc2ISBEGTPRPg74h2zEjJ1exGmvgsh48w1/H3EvMBQvjezs2s3UVTlz9jlgPdFBid88V6g7oxZ5H5a0mEiPZMyHgnavBy19xueRl/SO6kzkr0Y3SSvNAdOd1yRrfQxL1NfJpjvf/CnXlDXItcEUW5lxAAw+hs3s4IXmvY+5tTIcheweqMYh0bY7fzYBPhWuvfGHBPvpbi0LaQVv4PTDPWs5H7Zb9wMjm7uyfChmm9P4d6xZpUtn2sQZueexh6JBwVKZ8WJ3enk4nz2ABR0NYp/V7nKZHdKbzKi9Rf9z8tsEXxZZWrl4b/5Vo+x5yRA3/ODJ9oaSOxdMI278duYqWbfgrrEi69aaJbjmpJq4QtaRj8sJtSujohpyCmYKgsC1ius+2V8CfFGA+Q8Q3SCFMwr1WuM73DwMHFk53h8AG/gvoLbkGxXuqMfkONF39wNpKI7G6+1dXeIe3k9QRgeaZyaq0JfcVZA0aPWYswNMfOkcKaJ8SB0SxwoEaMptzHXBmU3vg96ZvMh8ZgH1H7+A1CVguhK64kFsvCj3rZ8k8nsuFyDhtnoBLzG5zCVcECz/MVbLEngC4fbounVGq3T7KOyaJbTsDYzC07AONqZ30UP4sGa9GBfYZxLQmx7Bb/2qcV8s5ZRe6BcYteSBmXf5Wq7GWHhj42ygRVw0oLFe1FGkx5buNhN8Jrhz5vSg+9g1cqZ/zaqgearyr06hCJO06bZBoVks4gs1Zz5Hp2uagj45cgDwZP15BVVEMIB2biJPZDmbQYzC7X0uyq5YSQhkBO1c6PRikIFdTyqJW71WQ3E9rrWJpcCgjRfJ+dvm65463A9NJcPbXsJhht208eXm8zzqPwmGQZol8KqPhk3f543qAB49xdFOsaqsxfeJQdnbH72jEYL8P4+R96xDm+zCCy3NZqtx3+NzMbmPPkPnKBz0gAP1N1Qe/zOBVBaeiqgQexRcRH7s/bbEj8B4PSsH+lsPTXt6zvQR5X3l/bI487pOV2oyvyCqEj98L1PqYd3YYPHsak79pdTCWCWX8DxSh/U4GmtsOOgDmQVwYbImecxTIvgaX45hiXi9I/hz28zSkaSiOatyXn9nKyfUu/ef+fGa6mUsyUn3+U5pIkfQI0XKRwPCnziIHHq1MauHrgsmks5/DfzS2c0ffOBMM1tqSlWCIm3zaNSYsQJWb6pQNUH5qxfwLYcuz4Ext7EhC8H2bejNXNfHI30P/hr8CSrylzAQ4kIivbtwooBqIczvYhcp3vMCFZ1cGiZBtS5hDJdMzpYMuoe1Ho0u+Jewj+Ei9RUfKPgzWL1rXE4QMhYlHlhzOy9Los/1lBPHDGUo4vvfHCbUde4njRQC0g4MIL77XTADxnWsLIykOs6M4NrhaUmddQM2BaIsaIKkrA+g9P/Z5DWM+shgSzrT3T09ZveRSKpW0+dRFUYLg8DO23O11u/4yXyGFXVWewoI2Mk4rrTsbhhzKssxlXJB4rBWqekCyN4nX5dVxmsRdZQvC+EVesDbV9ATCN/VGCgYa4W8kOzX+YLvNVBHBuQNQsoHPLSgGNc9lOo9ELGfIrsHhJSJp381qKEoQuGS8dxRRVqIiKh00neQDEjIBvnY7NeZwfYJ/1v0Cyx7AawD+5w6Wf/hmqmglaAjwa2YiqM+oGgw4/9o1UFiCF71L9eq2XPCYCuZjmQzT+nTSfZp9YgMXimOrrNp3+J3RiO/LXZVLK447lTPGFYge19THOiweEhUq6k/bNu6wu7C6lW2TymY5YZLWMo529BEpv4RqEEIVOvvPB1BcjFSySQkskQlb9fFAowbLWMMjbr4hVbhhY3iUrl4cljiGL61+yLeQdZjWMhNY27XjXKWzXx9RG+/1RO7rbyHPwAYWOgHSPxiW2PTFZZIW8j+Xg2Jo9+PLds7EEyO3j6c7mz+Mu24jHYcvRCJ6m9wET+u9n0F8/CJpwk4BolKYe2YjMo3Ho0Qaoj/aOA+hqMX5AYzPlHQ8JvX9vE56a5zp4iBmYqBB+341/VxbcTLKNdKsmatjVWX6X9yuWixnqCIFBcw1KEta9h50S++f7SueBiAQ0teo/oLBlfyde1FngaU8tlfL4mmkvrSup0RUZ/9/E3kYlYGGtrml2ktJC0R3phLFwQcs8bO/nERr2ZmH2eMZBNBTeq5Rg3ke+/tL7j4qgaGKNQENTRVMGvss1szl3MSVjhE6aU7jKZm1GgoG9GoWeNT3ynmbiph2UZyCwQDH2yRjVWuOq/GUVaaBH68nVKQzInWsvigIn4P2RY2M4XBn5EtMngGrWtmzKX8iOOdOg0pGfWMDZiB0CRzFj1Cp7QlP5qSTip23eBBOazcu52MUIkHMk5sEeqZmwiOpZMYVQdq1xf6co04XF7BBoU18QDTh+g+/x9ms1b11GVMGZHjNPEPcT61CyY6/l73X8mtUdV8a8fB6VD/d9h9AFrFrnLDAeasbaWQ5Refq7wh+9Rr8Z0R5QiAD8JerVw4guAS9IsMf46f/Cm7TqjTYf32pvNM/z19zDmy+O4wE/x1LUyq4rWdeVP22H4FgDxnS+8bYaGkXJhspWmyNTRqu1LSSYE36/4h6RdMI9eXweTnxNPT+HWtw9oFnVpMhoJ8ND8cQ5Yrd3BWrFqJ7YzL+lFPle+KJhJOqFD4jXQCk5J4OWKTCLJ5zAimOYd4GmOLNTfJmqK7E9ZHVIPwP4TBrfwCyUaSTldYKbNhxbL90QrdjB9ogFcWNZ12r9RgS1gPN/GS90yFz1V6NbFversl/YJTazxPQwBK5yO6uMZ6rdK1uI107DECteadUxq7K4vfwvcQ2aMK/p2xHNy7XDe1vPLoWW9+BMKXuSmZALJPkARIbSaqodxQHN7BH0S3bt9C/s2VOPWplVKIUpD0Cr5RS+IoEeChKg9PEJ78IAqqVVP+4U9XAT5NLVzvNsiATLBvtVtEQ/V2098gR3DorV+eiRB7AaiPYXMqDferuqtd8ambW0Vn4trh4ijOp0GwPtbTdEV0Offc0qPGMRzsgy7w11oV4oqX4ULNVH0DPFo2ml3P3GMsEkU+n/yTSKmaG4+dW3ATDNKA6d6YLGtxQmCWTj34uhl0EahCnhOjONvzGgkmBaq5/3DaSNmXH48VmzwHLAcUpduXQ0LLSyfWS5sy750bmTYev4WtZzyMNsCSqGLPSMIdoDDAi3bAA39qaTgYuqeY6G7EQa4eF6KT6fR2zyps1aTOjXI3Yq2H8OMZrPjyBnzmBD8M5N/BLNueupEFAjPkHyWYMheJIjL2C4kFICy42l3mhJJ/gVbJD5YSidvImiiAxN74AEoyzGfSwnWEwyNrMCZnrzVHq18qA7U/I3NT2DPcnnJMP5xQx2lvALn6k77IAsCSZ3upY33bCKwJSFMYEew=
Variant 4
DifficultyLevel
592
Question
Which of the following lists the numbers in increasing order?
Worked Solution
Converting non-decimals to decimals:
44% = 0.44
2512 = 0.48
94 = 0.444...
∴ Increasing order is
44%, 0.442, 94, 2512
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following lists the numbers in increasing order? |
workedSolution | Converting non-decimals to decimals:
44% = 0.44
$\dfrac{12}{25}$ = 0.48
$\dfrac{4}{9}$ = 0.444...
$\therefore$ Increasing order is
> {{{correctAnswer}}} |
correctAnswer | 44%, 0.442, $\dfrac{4}{9}$, $\dfrac{12}{25}$ |
Answers
Is Correct? | Answer |
✓ | 44%, 0.442, 94, 2512 |
x | 44%, 2512, 0.442, 94 |
x | 94, 0.442, 2512, 44% |
x | 2512, 44%, 94, 0.442, |
U2FsdGVkX1/M9Iv0e86BwxNup56PVuyssPQ6Oqot2+jexovGrKAV3lLQu6KyuZxOY9ONZZ/GsLsDsfCCai+57jDmnEVSrHFp7rNMHzF4ezN37UTPrF6+UwTXRXJTTwNHYjZ/rzH6pvuimz3zSXiVq2Hg4siygv8GUiHu500jcX3YjbGnACg8vs882JiTPcAKUSwV5/Bg1a4c0wDn+fmUlwrFHhc1Yp6H/YgVlF+P1QE032cWWWgrmE+g/8ifZH1/cUKgK+g6a3hBrmj9g2JVB+BKGYsngRLpp3KyxopPcoQPsmcBg7D7xDIVXuvUDLcKdwkKp++ZprGLiSXa3a+OoBgr8RQm9NNxSXirPDycoKzm8L2XX3yqfzkP+UZoSzo6SOgnkuE3KObatv9LnTIMK43bsplcEnzg3v2ODBkioC9tJyXxGqmjYxhjXZuMf2u3bVBhwBZjnYH09/pFEmGib64OEyVHas/o4RaGU3oiOET230aQCR5UmNw8is/oeEP72WYSDJAgXWUbs+kAry/hKWGDMIIxA98I6x0DVCdZeSofa3PPJd0RbUE9cOnO3qGZsJL70U78/LZDRsVQaMy2U9rDJYiMJGfwsdtWmPE3Fv0TP4T4ln4gCvmtbSxj0eSQ8PXVKFmBawJI8SwLY0GOfWYFsL1UESMd5YNMex+QLe/GyMsJ7C3SLpzNDxUT54kQIbRvwuH74zq4AB4INrrP8sT/3BkE9C80DRxs5n09YpXt3eL1r17pR5dl57wvJ0s0d1J06WYszN0RvbzENvDg2QXYegX9NhzM8X4IQMN5SQXlbnluCQLWTvqJoPHlHpif3GKgwSK20mLKzU+JebCHojHpWD8SmBDkQYeCHAOTeZGjK7t5KJo9a+Jy810eShcMbcQCTsTePT1M+CR8z2JnJV1fhUyiyoJzBz3BPBqtxMn1I3vgyIciKO45Y6kfTNLSFwl9IhQ6W3qIGXsjORoCqO1RoI2qEUcZZqWM7nWfiijsjF1Q0m1lsa4RuWCZ30AUT3d8gSVnMq3F/f/U587AiGA9v1kaItBvkKjgazkEW6WaGZYzXghb41zaSTJM61PBfOtaZ+tWfbYGIBqrVeVtfx89Z0yZJKPZlJZErAzbXdyOnTvii9W0bsQg/TlfCS5nKnxVh0Rl4ktWkO5f4Aw/hzF8zV72c5TWlDsMl5QcEpkyhAWTWctRGs7bZ1w8ZM1onq0bf1ieRyEUbVApSGvVeWuR2V6hdiF0Y0Q8cOby4Msi29jKtRIxOPbM0Zt+qQTLX1+OQIPWfPXcTeC8GZSWQLmaM5JSJDjiXbdSE9poKMwHJOA9aw5TFaXLWb7Li3mQDuR8jE+nqMO4T5aQys/5/G44b1VgJch8NZ5F+KQ+rwLcacT9OnfmbReBtS13arkbC+lZpguteQlaf9BFh5qhZQKMBfwcPyFLs4WKzUSOjF+1ROzFjCt9O3R5akwq9XQ7th6MLhcOkz5+QcykaR42j9Q+dwBIRayprl8xT1zxlYD+qEahtIYeNBFgQ0x01DkjEiIaO20VNl5XpVmpg+e99pg4IJBssHqn/sox7awxiTmQG9tuGtk6DKVNmzqeFkzTcVxOW5IoGSxy6yykVGg+aH7C2NjHPOYiGQyjVCl3aYlZtF0cx353JT8W6Gtu4OA1iRtvzyk6Y8FRXa5bjNL2lEbo4barbdLAElHfbrR0F8XyIatV86LGVRQCq+XUPLKurxuJIZQlyCstvMhY2oK6ucW/1s5hS/y8pfTXLKI19zUzcjstmrinNyckU0iW++hIygaujBm45abl7UOv2HxUKEtt0/rcgA+T9von9hBpB7c+NAL/bjnSW69DT1/aXQkxRNwVGuMqK+yH/A6/p26Mfv2brLtEQhpHNdfoO5GTENiXHLzl957b0NwXcN56jNBMa67Lpt1BctcCzKjNMWQ5UIJb5/05eWNJDQUVASWS3SZuWaYEbYCx7aecjSn12EqkcQPQXo87RkJQtHNwZeot8SjdX1xzoO7sDi9dRbf930oPWmrnc0dLq7YJfxBCcWQ8np0ZFG12svV1IQGmYK591ooBVDIkYdzhHVloXqhIYOZ2t6KykXY3s/kmOcijf/w7ym/vAG88oyTqcHsmTq3KdgE1uSQZ5mgWrYUNn+gmlIoTS3aM34chihC9W7TjHoHOzM4busOwP5fbV0eczkstG+JqVGf5p1Wrv2yU4dyY5MEBBm89IGBBqv9y0hvibhMK4tNxpFKmELhn02KGIBBhAsjo/JNcSEWGoW8NtmvKJ8h9tevBWZVJUt4Hb6rLQFm/PmSoJ2ZJFaZczUd2popyoFrExsiNld9QwVFUnJ4hDJ0BMuYP6uY2mcDgZHhJfOm89XPtrHo9ypzSBR/wqqYeqtvu2NcUBPeLthNlzPMMV29F3AAtwLGXBEnhTwV1MJIBOxckw6RfEDilmuBS2EVlobjE7b+JFnpldFRnmRkp1K4aFYQy35dq90OkX62jcIA+Lq5UjYZKU4lIHVkwemNhYt4t9I1EFtekUWJJunH0dd8t80vI8d+C5X6NzWHpAVLhBa3I9nQ3L0immR81/GVcZXL7EG0wGlK9Ci5YXYmSmXOgXTNpeVUdMaRBJrGfn/dCjygfCVd62wC1JvWzicQqY6BwAG/oPSD6JqrxEZ8VNiaOC1z+uJge0kRllEwWPaCNAZewOtwR32+anYopRoATodYsf2pp6py0lk+q+horIiKEHtirmFXnFtUudZkrarwTWPx62LYT5A8s4J8AgmE05qBL7/ghSLpBupoTBJufPinwRmgZ5zzOLoQIYLsTFQUIq3kOQZCuYY74pWJXwpXuXynLnzjkFGP4Mt5lfCLIWocCEUbyWYqTPfkVVJJUOXmEvFEqPJqtCKhuoiaGrvZ7D0Gut6OJ7psQ+GbowvWiyQ9otv+/iQ1HQuhLqzb87YWFp3dMHv+Wvh1jJyrapW0s4F1VgR+PinI1eBYTNCiQ7ORRIjNC0fn8ZpKMaq7vFbhW4gPhS3ZlDHgzT1BpwsnuhutPey7vWwzks0zOccjgCYlX0rgw8nyroMTxSqGO8p2moY16pQEF8te11VVtlwqbajfTC0gZbc2qKTRCHfu7c3jyuBjdVamoa6OIAkMAlD8w0p7/S8x8eJnL4PGfRxAOJd1jpbunr2mGX3V6EZmG1/eEDY6QJdlF2TmMgwo8oXBaYR5k5qqIOOkS8W3R+l8puQHBmxYn5d9hAma/iJ4hZmbKQLKGP2uvSV3Y1yxl9tVP/XMatN+CEkolq4nbS8+Ja1DMo3Ivw9FYdp5Fp+V2/PKdIoW8XNRaBm1bnw7iBSa/Xt1lU+6agNO60Dar1Q2e0Uw725g/yhWX4EFMn6zMLALl5LMzSmnFI7IVJ8C75W9W66C10P6veOcR9Q/UXyvmZGPqoLzRHc4h0fdaZcmECPhNWG7UHhokTIa4wNftXDx3i/1g13c8O2ZtIuXzOVBsqb9qrlZEPjbIBBkoNyvuwgwp/6Fwsb93FHWv1tXmqA2YahyO4sveb3mUDD+yPJSZ+3fX8FiSISGUfaGy5+LZXuUwHO25UeeNGUfK1tKhbltGZp65iIwKG4NPkZzBlUBf7QYDew1MMu8vi4ALUBe6rHYk9xV56jpRxJEoJHw8a1cTVfajPDMwq7mnbTCpo4LIS8SOnj2gngPeS13ML5xij0lakEhYK6H6qQ0K6ILzfRz7gDBy8YFn7qJIOv4HqOVgI1RMbWovS0vHhj8alaq1wYnobyYfmNW6yWrQdzCsUMXVh4zIM1+49PcHWzOSPAaK9qk2673SO2fXXQ276j/AesOicnKRYPynBKU1LNTTVDPDdA5SF1VGlfkRYC7V1ma1WSpUrKccYKozyDxJroPFq/Ngrd7ivtILbEOfUmcQjc2NLLAov4Ovqmd+y+9R+Ni5joTKF6gDdAtmlE7qscDJ3IS0e3KrG2fsJq98CFDh2zxxjb9Ow9/AGth0YliJWUmsW/l7twqGdUehLiuBS7WB7fOFHV2crMY4/M6NC40Gm07xT4Fgt+lXxDpP9nUYDi+SA2qd6WWszT2KrVX4Yg8ITD839UHjU7xMg+7NGkvBGjqrXwojzOZ/aPdAj9iTgNw1hZ0lim+C+DeW3YUM22ZNjcrrSnlnkbqcziThlvNN9CPwsZAYngjfChyqswcelekI5N7Ci8TaOVi61Jy3Eopqb+3p0p0yoGBBG45PL/AItIVPbZXxG6EZJHFdix5I4J8NKLc4/k5x1SLaAhhB+q2TRBmnGD5igGKBfCdks5bNsvvddlMsWyiCTt42SHhtWZkUrVDeY/xkYfthHUZjd1h4raWf0Ox3/FmFlT9WQkuC7Mz+XG6RiCCQz8xXqB6HyFHL2LcH84DYMX+pk7DpE4udq1X5FakMA4zobWlAcBNQWH2XD7ymzA9ekTm87k0YqehbyEdQPBXhLpko+WcKFPz6pgwNrxlvP6sYj7mpYjXZnCnvnuNcBofmw/7jiG2O2XF84VRJUJ61AcIH+6x9mrWF2N9hhsc9JUQlcVpnN4E0U+ao2umW5CsHKeaC8QsW4HT0Vev85pBIAa765kZAOZKyphvSNEpnBKSk++SH/YNVGG2N1PHh6kZtCwQPJVKMbk0MzKaQE0+FVw6Dwj238gNEsB0q2ciMNi+UkNOdYMO0gv7pOTUq145NFAZTUtrThZgrtKpHqeKBHkfhrZXuOEeVVV+aRACrowbgiwa2SQXAElAp6k0c2ooaJWOckJ86IP5yZBrOa2pt1xuuDiAYvrivRPUHpgA+xS/9GZAdVULALdZFHLM7lnsyrqXlBjGxpX1oNYQjlTp86mx7BeHROIoh8kC/VpqyAN0WnzLkNudUt10icKMJYUJHgRUEytxu9wXzHxQIz0s3mFKcq747+gOvUeyZ9ZLovoZ7I3vWBePpq2sS+P53CC3sMECaDrF/9H58diU9MZS7saZkdJ3Px8SIsJ9qWKU0MzM9oSYS49Egja1bWC4X0qDjinmu83W0BJuNwcGB0SEb9UVqt44nY/UKNuy77VFVWs0ex5qYonxkGkUbWWOqhzsuCTMb9cDpleXwN+hRIyX77hQZ1e6GsEgiYMau59xDeY0eWOre/5KnvpVHh/O3CT1Xjzk8VytmrdsDH48JNs4tWcFT/Ni3H3F7y/WnxEpqTKT+UqSQ1pFS0GM3xx10MBRH9Zxda9wFSfjdfnrGjyz7cCF/wbsr90K2yZVZl2F0z+NlyT6dP3dDDVWrBdayoJMrujrv6Nx88j274p/ZEgDyO3vtJY08mHA7sHPi5lbOWXVyVGvtOgzH19+EkBMoIANsUjFlJB01DSgLt9cfoSlPhIpEpWE5m61K6Cw38smY0Mloxg7VAnNqogvauI1607sho7u0Fb63+niDyQJ4PKu1XL+y9u7Bj9BxgCo133dvca0b/fgkI5zVdyix4PLUnguxYUY0UHMY17TULNcY9SKzaUIQFXPrYCldTMugrGoMbFAArjYvfwsRvrFGC9wDmWyXLG+uR0VxuxP4bpYJoqcdFYrjp/csP6+XswX/CGJFWBNQTrtDOAIMQTIwTgZddGdpKeAuAIYTDrxTZbYVlyPAHyM6IMK4+LimQJToqo6SATPnlg1JVWoWyHH5aIXja4v8Ek+TAlawh+woVHmdo6rUD5238lKCvEqrSgwfbVqpLxOf98cyzw8ZyjDttWnaaw5w3YWVGh8K+bnsbFf1BFaHQWLfYSWmpCZkogRfq340Jkd2oApPz1s+moD3BQmLM5kzgqJpTBQ/iuShyuBdQuPIn/Q3X9vsEWo6tt2GKKZo6Kp/o9cYoi/Eawz475SWxkmgPe8wQdeNHa9P0ZrkCBdlkZlN1/8nPvdpSF5p/B5bH0ZmyFgmTb8BdEdDRbYmGXcK+iZGT9S8jQw+/YTYhg92ROSDjX8JSzP7jQilpUPSKzz/cT6WcbWlE4YpJcusCmRyFp1b0UJ8J8Ltw8OW1aLEemNfp1IylgmXcL4KpE9f262X5A1bjxYAIYbfmbWWNcACWD4xADbe97gaN3wWRlrZhQPTT6cLFuq6oquqZgxT3XywO4wYKmykmPiAdWvys47ZaH0HoneQxFysL6xuqGEsQIvT5CzPr0uuGB2E14pOTBAmTzDX/J4ePVF9u4qPELYM/m1/PduZDh8nXREz56tq52jKzlddUbMFZl9zzHGY9mAZprSWhvzCpFgChI1LnUHUREyRRaWLScV6y3uQbWmG/gBqRQKWl1KQ/rsCBehIAckrGJ2YE/fQmwicCMbN1dRla4TMNIypxPUkBy9MnNQ65iH0juKXljdV0qa2bBMFBa0mYDuXvpkBWRKwvoqsq4K/1oAKNZlxRwTJBgnywUPK7vKUhrsMvcjij59iV9HuCeY0hZO2N0foCG437OFShdnvUDSaC7ttsgHdaSUr3JY9ZiQkylckAXknwXVG2c/LCLNuLWtUJXX5msIS6ihFBiGqGnMCikbimXfeATumK1qFkfS49ZUH3C8fb3hPOpDVH1Lu+Q4sGukl5N4xUI4Du/FRcTVpZkjay8JIwNXNYWy0GbVKDL9EiuPueNJByhB8KPonvX6yITKsBK3+YE6ShldqhMu4+Oz0zUY2jl+kVH6ctuVLjqcKrw5dvdzRGGx3q4TqMB+0CZPL/Z38XaTHrtNfJhp3DmSpDkPNleqxvVdKFlpZT5tXdSML6pMIVtRgfYhDXovp9BXLjP5tPMGPw+8M/OZ7pu52cwbX/3jjl+4ZH3/x/459BN/fvbU7JEKPzJn7C3bzDx5sVActt+Pzvv1HAuzLFVMFRfOs1uJKV7qYUfWjESLwx0CvWJyumWYJnlOrWMa+1dg/Z0ol/u24DJPymv1/5Oaz3KfN0XJaelcs5VMGxThBEta8cYsAovme0suVEEMguhNZlC54PvG0m9nPi+JMwWNJZoW1c7vUSXidMh9Hs9rFIIU2+R08jpMqw9Emd6lowZ+fnBK8KYm50F/vUv+nXP4zsczMeDiQxs4Ds/eoppfsZOYDCqYKslqkAE7ncU+jl6E2PRxZ2y1wmoTu/KJJ19pCTjcrkxIJBhIF/DIimfKGXoZuL/3Z3bjOjiIk1uQLBvDtdIRxGPmm9nSvoKjXwwN85RSJeN4oWR3pTYY5rsjA5W44nwFybzT/a8zstSAxh6f9jcJq8LUzkceGv9jb0ovVVrY+uk3xqZcMLjj6SIDlVOcJFdMvIMJ1HkxNiZCfGJiRXGcCQK271IVc6bIpPyGwsZM56xB28NK5B4RGoWX41NZ2SVnEVjHUUtE8yeKsNFhU73fdrUGhUivKlhmjFd3hKR6idcSusaMUhptEtQi890qHVOvGGdbBIZbUdLnMMD02X9oxEcGC782Bo+f9eu73cQ1bULQsAIqDn2EySEE5NgehbRr6bJXjlETlynFF7KC7frNcBx+ex8O5Y5grShXskYnBgBvsHPZXFZJ2bfVMXzXZhS2izNFG5R5/30yztRX+X/MS4tYFLXhLqMF24k6ZqUpNejS8GGOcq6zlyul0MRKSzwEYYVryzg4rCFNCDxSVVXtV8bG0aYxzoqNQWcM1+R8xivdp4FZYD9zI9/+nbWQYMy220Z1nhqsZArlKh8U3BXJQ2S9W2KMXkiqgvXMto4DVR1i0w5QJDmi+WkDeyqGrTKP6KAQqKFSGhvPAm5gJvATOkjZayi4BYnhUUGPzvlnmItPTUn+KXEP46B/NkmxH18Ytn9vikPsfGJPxBSl1/DwYLiU8n7jRf49Nr5oQxbmP8PHn/USfnKiK6isjJj6kYF2zLYi5wf8KQCFzIETmK9eR+65+0RN3cx4ivb+bxrEJgT+MpWQONv7ZaOOXhGEDg1SqFrlB8emkveMbXKihtzE6uj0rbQnW2lz5vOdU/dmkZwQBSao1EjHV3LEy2as+NODboxc8FIwY9wwY+Bons7VAh1FBs+L9PTAH5Bdvt3wpr+QT82f5fFwDGbv4tUu4EsbCF7tznCUVH1uPiUYrgCkjO3hxAZbbsH+JMq4hJatbbGCYhUCVtX4rJH5Kg954HPJNN5uLyN0IC2H85OPcF+9g7YjY9UrBdUikTSY84A0elKspYWas7LC2V9pmxcqP6oAOlVK2oYyzx2lcQAm3MbkoMQM4DbCMOEoYYjJWLE9UmP5m80QC0N16Vsmy8jkeueQqxePWz8C2NECONp7y/xpf3DZhdefQh3/L6JcJyz2P5F4QlMYww5XUYgXB5hbhMGIXSpmKXZZORzCIBbLvL/2smNDEl/+U9mxNEXpZ623o89/ap4YUkKmCokNipiHoSeug5r/PQFq7CRKUI9mofsSq0Ha/R+Uq7u4NaqTYv2fB5StcWESulQrOsUzSCi8S1DHIbzipxOtcfCZKLwZVyxflKSzrz+qgo6MivnUFl3G7Ss6UNmqYnqd2F3sliKb7JQBFF0Q8NoB6NIy1eiWuMxYg1HSm+Q5i3hC0xV10+WN5Kdk8K6GXFNZ7yywtY3daF4u99XmQPGyB+7dGVHxkK15+MornxvpG0bDO7J7xr+tvH5Idd0fOapIhwquH37OHK2O4JnhmuisG5Scmy3SlbtA6ouW10wk4gmpVcVvbHcjV76S3II1I+YxbAbhnXuhXym9RiXtiSF3X3pJeapZ9pWfIntIWWnDolz3mMpXgOqxakivKhcoEnm1tzOhHgJ6J6g624b4EfPLF7w1EW4W4bF30NG3vYU+uUqTsHsT0imYupLzoB1sUXZHCGtCEYLt2TQrUZHl1zsKYjZ78PPS2bCtgO3gOKxYb7mE9wmonoGJNL8sxtL281G84bfgIeklrmrLMJCF1JL834LiPC3p7m5SzF2JgxWJSiz3EsI+5JglSiiLPwGjwI3wRq866dBFBkuBp6V7PZhjN57tK8MCpQtQygMMbT4YUMF1loX+5dXOAqpiOB/O2h0u2p2w7rI59gHDrMe+D3xb/PNIj+7HCmISJRJ829TMk9La+xZcvXKYj2qVS48lwM3bi6lqHkL9uUkSQqj3pq0FRzeVJ7EBM7krnWiPExzHe2gmgpt8eBOediwz8eYvG3QzP1PLfC7wmeNBo1XnbxFs5dQbd9XqpvwWvEJ8XIu5RDZhVdYabKX2W/BMHgXYkdngK8bPl/XvG+5pPKtLnUvTSxRFwM2T8zVfyZH1/zT6zv0sIUgZnT1q2pwh5hrTStosIJew3oQsImtcTNN7FsKsbYH8vHJLoM1Ho8rQeCMQcIUCNbzej29o8iHJAd6l6a3WawYCSMJ+NDuUYQnG6Z1Q9YBPcWBtAvUdoaEZtll36opDwoH1Tv1RkXAI1pOBKe9s7ch9alqhE4S608iCGQgY7SFpQl5DbnqvZzG1mcWCT+l/rwo3Ivyg/I+7Qyx5KTBtiKbxzgibKoA9bbz7s6WVTneZXszfDiXtbDMkqT1WdVhWzgGjUUvUM4h3yULJNyD6qSMnxHlm/YZsdR5IWYZ9dHd1HFmxiwVNcXiQy0MuwXoaqpRgEnZiuA/6l26xAzoQ9VJ87BIvazd4wU8XtLpdJz7GvKnDkfewIHqGhiEetVEMggeiXxBwrtxPJyH9wcXLGEHuLY09H2KUuoLKliNGxK/yJSGkCX55UZ7UmAX6luhKk6kyVwtCEYOx9Ksp9RQqpYJJUZa/Ovst6XtAp8bqwKkCAkO1VNrGnrvSI3TZlIhVHzcU+mh9mXOcUCZzSRyC8hmnk0HE1pHwq7fOcJDsKX0IO1ZBGjgUO8eVpeIR+btWFt2IklzcMpzvlcCu9A1TdI0nQ652k4F8GS0BF+H+4j7MjjujKWPU/CfnvH5LgIwuSqN2Y0QVtkX3mZEwhJDU2ctbIEgiyKOX/sucN/Z2XvW7vi7vOKwBBZxdz6nOD8SWCnSlBOqcCBC8+jmLlc16ZSAG8WFjREm9Y63LqyIRosjAQp2Akc1C8ZNvATtNwGVt2Md+9bhifGDK7d+0yG+I+JVWqgUiqv8bSMgYJpi4tVBzu0qDOxRxnnnSVuWF66DvFMK3/Gou1/rGJ0Lw/NtpT6GjZKnEyczGdhD3svpc0bIFAtnB6akxTAsch7L1nd0iTo+NlqRddij4RmtHvVKr7GhgT+mECrXCZI8OZ4GmD/8EnBgLWGM640A1AXkxY4a+2tV/vdF+Pb8pWdf4vgiCsya3DodR/df2yDDe55p8t2jGOXV4UmLGyhSdczXurpu5tzvMovCdYab0UbLe1/MFetlMYzUF1QOUDK8d1t/ZjlISnzuhTCaFfEgbtxAIKPGUm0OlwNd+EFtDHNjk71tOO3dBAFXUhn2Deq5lDaf7lFs5CjVDyOsj9DqtCKSrGkm365zLYCXmveTkBduhprfdinZSuzFlaKqf9V2lBytRhBfVSDP3uN13qI9VMzpdFiBW60HleTa4VOxW/5i45UgowQhy/xGBQ1l88NALSzCI2PiMRPAW4wlX1ROOSfB0xH9XzwlQGCm2z9OCtmZTAt2QDvjOlc1CwIFuQUmQ+wHjY1ExfQnYEU1UWwFLDY+Az/MXbCs5r0xTb2sCGrsEib1qXF3ia7dIAuPtv6HdDOGMdZflDpS5UyuPXbtIdmIQDqLWDdj76+L+e/zAVHfdOUP32u8C3gdjLVr0Jc6bT143ZBXOwfSQ3aIbB8x7lbpWTlRBEekZh9gyvoXfFGhoQBQ7iH2ur9H0MYVRmhZ++XU0j+Zk4TOmR7GvxaTfHrCbcwExV19Zl+B+XXt6/psB4KHcCpN9bkpA/WyiC3jBEkOtjEIf1g/As6yA1xKBTYKlOJcmALGTd1ObsAwlv4WQuWt/1tp3xDobsIoPBE0zRw3sfsivtF3sGe65Zan+jdcvy5THClvErgH7gph4uMm+QEgKv2Uey75nHhCgtXuWCcIz7+CmE08AjSkfuG307fe5dU4S6egvtQzuLsDAegfndYJrPC7ZQNo8vuKKAxQQ8gn/f9FgrkaLpzCABDAbgzyLlY98ARUQmysspweZPPH7WIgDeOkXKI1bSxdmt1AWU1lYkr1G10QrwNGPQi54Zg1XhkYnFyZ1nkixif6dXyyyM57uYcf2xwtYynjjUlqOjFWd8xqgj9jwYpyWqL04qCxRqZzBjaiXYDJdzAoYke5ybO1nA2mhahXzlgo/VnKZcEzsITAJyX4qPpURPRbR/oNMi/J/zaAOE2Jw2TcpmTJkxdXLv9DjEGKgVS8vAzXbsnFYDvUgsSCqEWmlEh7R63QP4TIAQD3JYMl+zLROz5gq6t7ShOiHPDW876J02VHbnhUSegOoOZ9x9U8iEyIiDKtyKQ9RphXbNTK6sfXkearwAoJz5zVesU6gyI7fAhPIj36j3n4Ma5E4GabuBnO0pQvkFToSZ/y2CpBIF6nfL63NGsJnsKi0ggZciUroOOI5fi5imw4S3zV8Lw3qCrKBr/HK/K+SByuPDxwx1gy+PFlTEVDyw9Dm6YwPYQ77FaJqX2SMsGAIQKeb8ageaaYDF3I1/B/aIik5j2Pbc8SPEnqxeJt8SMw0GFKc9VdmZxKqXKhHBCyK6mC0E8MUMCaScO+xEvNqvUH7MY/IjSlaMJkYFWgK5q3fXGo3K6yJzyIZgbYLyS0ovIce3/TYdoGVJttqyw4zpibL86CeFhWKvsdFYQw9lzu5b1cC3yP1wik43rZMK3ZRl6JgMdLUUIJQrQEzye+BFByj4F8xTfNVHEsdu3ewtTokL0RlzE7eb7pq5U15IeL1MYOLe7gqLdHzY9urg9JgnlsH99w5SXXM/YisCeD2XZHep4O4RD3yXzqgmuB7NV7mbkH16v8ZDJ47f7S3HjS7xISDrsgmUkjuCiqPuOJlAXOrVIpnuZx/bbsO8GcDmqKkiuuLqEbJ38sf6UQe6JDdpWpHlXuh1ay/CtBmpEvJkNJZZo4NdaBfRoCBWuW352T2OD920BIh7ETx6UTkqtjDvWDvIht6ivNWba7p8IXcFNLRV+ThnYTg5rxEj+3FVCx1ykrWomN3TDKSCg9fGdcmuonCNP4bALVU6/zJwHTfUnrmQwdcNO6uJcZ1hBKYduYwKEyvwvqjn/n9LKGAsPz3PzwVTQ1puV+gsr28RJZH1eYxMCIV1M22MCGzyMkjdxQ+1d80tVD8EP6IdP2CdqHfrA4bJLN0w+p3UbsyILtEd2OtpJXUbXKD60juJUKb85Cf40RGNCzIOLu+BxPWY4A1I4YqZNQRDpDx0djOeCDc3TlplWJpD+8+Gw6A/CsrCaBHzjTKTC6zgybLeQl6ZgCTLwWaHqnbI9oM0AVuLH+FNOzNk7olMUJnHjeQs1eGbUA3HiLFtUdztR49h3PAfIgZdStyzenX4hTjzVW9IxRViSaHbUkJZDegVROORfpRCAWn2DhkWVLDsyhqF5w6lYbML9j9a/UDBoCrGZ2tXFGlMRVN+j3ompOnRQ4vUEFag3ZWVLmcH8RnuZ59KHH1UFIboHdh0brluexhu2877ndIIpDmwbTviejpcJ2hqZPCYU9btTenmoKL29lHzjMbqWDxjscs2CMSIV1Q7BWYXlzt1dWM8ecc5dXoFRAmFBKR4Gp+bOF9g/ATsR4wFpQZOkdM2CmZWVvSzSS27wP3WJ2xdfjiYACcdMJCv4K6mK3vqKIdTsl/2YsXqwqcxmLg5N7oWDe/MI0NSvSjl4uiiKZGsULuY0t9YP/pvZUAl6RBhTv3vX4ptftvkxmV9MHEJM2prDZod4J3aeyanWl7/t9y3D/VSasFdj/aGvJpxFlsAnYZWCSwA4GT6cBYSNWuPM3Z3YtsU+ofdOgG4G1Ogk4GBg00M2Al3MuWjiLi5Ex+Z/32G1o8FsJtlac5Ph0oMJlSgsEmuAB24voHxxrkZH+F7vpM/2aRtuy648qGzM0NXNiwQo8d823jlL46QeXEGgeQU3iqz9xzAfdmC944M+pSqd21qsDCUwuDnFxMXaMpt63blY3Dt0bjNANNmEyV7WYhBQej1VJY3Ijz7OfglOFFhxKdRkzEe9ZUVN6s9xuxQ/FI8vxTVSa0WG40o3/ckkipu12kvkz5v8OK5Kzi1f7EQsNeq8cpsbd0SxDV1EJUYLQPJtXE3tBUgqT8BTf46YQaQMK4gJ2Td2JpIj7Rm6XV6g9xmqpUHTnYmChY/G6MY8qTX9sSZ9BIvXTjaLM2WbF0hAgWJxIYgdU7YxsTvLOT0XCRZ3S+3oF5fkd5I0JE/TVjeh2VbDO6lFvhUOFKN7Sx8TipRuIIwF3mibxTCIP0wms5c/i/OFzEN+hyr8gbDt8m29EivF3LUNt0OWOVyWJRbeVyv6LDsGdrmbsjF0Um/hctjA7clGeDAUPiHbmD5J4FglYZUNMfIthtf97r25mZ1ii9CA0/YcUg9bN+5R43ZOmIoQEmuxe02ghqKLlt4SaIG+w3hG6Q0MpiNEMqq26IzJaAwp9wzmPwukMpJ4WCPcGh1I/dlUWJxGCflE70Rbuqo6R0RxjRGQ6PXOTzGuYJjcird24GmoM6EHNpgK3zEt7Ta/ETDJL35T4y8GG9t0YPdsJUCmlwfcpr5UIH4O2Q1509BAHJi7e0JohQHj0ZFXTGBcQ3YTNHy9v+RFrXCpT1z9/4AQRm9+tNuPceac2Kq7HAED/IkNWXDqgFED5YfmCkXUrVdhX2QwcnGPIK9yA0uEtGvhClMekTVXyi4DDl+okghf8iZ47fkfZZCEZJFZ3qsiK4Ck+7QLPCNqeH1oMmotbKRyv9/i9vYip7g4ypcR7xW35oYfyp6l42lWBF7ZmtgEln1hc+ShV+eYVaVhpCUJmjKtat0tZwZIZU5UytI1Kr3xC1FbTo903JKvJEWFkiyyQ+Zy9+g082BzxQZRxwQoGxip2ViCYiT22yX5oH8VVPQKC3zsWbMDLCAmuCcRMTrkafLSXRDWJjkHe8h88hHqUOrgJfl3SLgoNodiSMtn+ivL/1KoJCe7pis0xIV1Ad67wIXZ5LYzrHyimZF+rcsuzdcfvYv6IXlIgbqAQ2wxvKzQDtA7Ab4SS8EWshf29Ifokd6NlEpAJuEH2OKTxJMKxjBSYwns2jxEGxD0o/P9R8WpUv+eXIgwMz6HqFdlSrT1GX+oKAEDDnbI80ob0JjFl4X0Jq6+xGmWheZmFQa9KT67tsUOsloB9SiG/6azI99GseCjg3LHFAZw5FZfIMjtb2zJa9pDeoL6/vNwEezCWsIqHwk233oPwoQCPei2ce3rDliaq25WsW0GisWwp6xjn8VtTGmbKcZK5wtVUVgZPhQ58VVc/pilGeMspbv0sqEwgIhsaj2JxIiFgIb3Nm5pDPJkz3cRvHxKPyW/bhPKspxQeGyd4cgG3MX4Q/o5RACxOLtmT6+cnAoPPJpm7YAZWxaY3U7HhibHEFbXFqpmLxzJRBb56JcWXKbDaNWE+DJZgf/RY44eBvvXGEs77qcT2gg1I/geu3uFBiCdFEtgrxbCaIZ3aW5eL2HKQ57Xa3tlLg7uBrz/5WUEWhUV52EZIDxoU58J4A4EvSBFLV0cSOtHiC9rf75gTJZ8/oNG4sgenO6QGK7VHjPbgZiU6mXTI/M4DL0e6zSLyoboFblU3pHH+RmN8XvW25aBtEO7as7YsdIqJ93J1OXDkCWOoGYoUnXy7Pt0CEmJCwA9ykVhCzIUm9EUKqNvUxJSlalKejI5bDpy8eKyaUBHe/Pl3z3CRKzkZnHtVDOiBrQjOwLmx3dEv5yx+UwYYytgWlByA2IEUgZt9oJfcfmjp8gBiKACkMVoBht6q5G+C0RxXwsG30DGfVPG9+EnqYZjNnjTK67+pYmfAuEqKpi2CILoHbhi9I/tWyqFC5Niu7N2sr/yCNQ2l2N+su2UukQd+hoKcxkMrJuVAFiN/Fu8A2NDGymgbYw7x9nbb8UxoGhqxb0AI+c1+tU3ko8ZFbjPWf2CAUeQcaIffXuaNvZ/i071h1IV+WZvvWntRcgSv6p+6uJavMAGEucPOvCe8Vwgfmx0rmS3zoL26O4GTKpqtN0ca16KfMb7O1eCXoBiQjIXg9DwDk1ezljFqN7HNYmGpHwLGV64+oHWn2ZQySW1LTvdwUq7jPtV1PO+Rms7HuPmN9UYNhGvMRd2NDQNkFwTFYOQOuSbTQUo4tsyTbB3w80QnIIHyN7Js+KVx/vCAiUBuh0oibclEQMrU9VmYRuqAuuqA7Pg1dsOrCUWYpmImDH1lwA35Mu5MKcJMoUXpUHa7DfSE0VgxZ4Z0RlHFv757w4elrmt3nKf2nG6OFPW6l3F1M9szPiliTkMyXK1vEvgaeC5vTCEQ8PGNYGgCs9jl1zcNpjH9Ck5jd3SXa3Q1lKYhj1nQwCydcVxMsJkyEMA2BZskFsa6mvtwDFbsJHbgdgXtF+8yeDNO2Z3ReIpF0Iu8WgSycU/ugmvwlUbgL46QMz8toXK67NZXhVallOWElaXh0bvThDeaFeUj1nrhrPruaYWXkTFghLQjzlqc25/RfTbGaXWBdZ9W/UeDLJLV3gt9cvWZPvdQu3ybxNS/2vbLUB85LzFIZasbp6hJRjDHykaChuSbYboE7wt2c2LRJRC3iFWB3eL1YVpVKe6V88C9+gXXLmag2JqbdU04em9VI51xmE/kOb017VT3NAvnT9IRjXfmHsPrnVFYHiROpFvtNcVpza8Pk7us5CJOgUFpYODEWhAml2nklttuD/V+xwGze89J1X9I9bX55rodVTrF6x+QaTtYuoTx2vl99yvIFuBJfolPejBne+sabfTVTf5dn+xkLNJWRF7gDlX5z/weUbc2Ocj4wUZxvrEmMLU2ie4nLKXnKktqIE5KFbQZRx9l+PLDb3nJH5uQeE+1p34bXQ1ZmVJCAfQqn4DSMTA4nitEdxebfA3tTaLnAAFTc6roN4zru1VzdemKY2BdEBbzgXtvWWSjUbkQUj/tMJy2z/+Nr3O0GK3K1c/YGtfmswxv17uvh8i0MkgyaMGxveOlMBMDsLMRBPkn12dHGrC+I7ghNeW22W+r4Q8jBmtE33sOIFxcYgZOVRxYblWiY/nhUlb6bwAAJrFOBZxOXovlYLVGr+/U+2RsE1td4MqvXqcIjB1eHj3U+tjN9+rbse05VlsAYUjP0MAthnvaPVm0fUUU7oeo+Phzflu269ZCi7GueejYZlwQiPQ3kVbOdaI9op74wFKY+eSHt4ChGDqsoukrOHcn5QhzgtjvNqVQAUOTNKdl3yEsQbnuCCh4XIGDTCBui48b7vY58HHSILWzOwc+6dEKzW6u3/uCndUN/dA+iKfohEN5Z9BSdLeS3nJ3lBf6IH6GKrIpe7SgcXSZwMWzSuj/6976zSMYjlVyGiN+Qvt8pwuByCfpZBcDMtN+L/7AkX3x67l5LXP2gsazgtXPGF4m1bL3KXs99utl9zGnJ4YQWmM3hY9jeqg/XsQmBbxRXouEfcJfcBmhrN+lAsMIBQGqKNOJd2YUsFBU/7EWFNMOAm7x2uylnB+hDmnWBMYmYVrW+3pYfk7OcEFTi68UJoo1VehIdS21rVAIeXKxtOpNv8lpzkgpYfqVCuDtHieOwEVWGy0NK8j8XOYq3ZEkClsVnPSOPFfC6norkdPOse4mj/wCbx/k0XbT1KHqzenXPfUZF/IsNdsBf9dXfJMZkO8kq2I5GUl4fWaQNDelHUG1iRKezw4T0b1+V2ThZaA0wyq0rlkTv8Ta+KeBDpJ2erScXPVg7Yerx1cNI3VoMEeIKxZD0iHVsUWpOdVzlhXIMHz8I2crq6pLsEV7YaHyprFx02L28YPCpG/R5Do1rNZ1DzNCHqW8wtiFLmyWnWDMA8XstuQ5k7oFwt3Bzi2Q2f7xA3Gn4CiTugCbMJgr18R/nfxXn1V8uYM5D56U2C8ubJbojeW/iej5zl4xyZruogHlrBn0a/qfrX0Wbzmb4+oj5cqekZHEdtVEXrJYbEB3q0+w1kxdzY5yiJJWLnd4xCJaKZkABIxoNN5kkhbElRVmtfIkUB59VNs5TPcGg0xB8cG6Y7gEBYMVG8QQn7spfWl0Xg/F+ecyUHqrb9tW+BoUl+MWMLLRWl6XIJHXBkxZ4aSmlBJqdezk09uAIfx+nSNm42y9x+Bkj5HVkzAYpE4Xm2m7/IlV9tPMmYk/WVyuD4VZ1GhIcX+fGXe7VcgRxzFj3CT75T0MxjLcpLqdyw8A4r4y0/Ca+zNJbp3/eS+ERCSRbNI4gSk1d57tK9jbfCaK9GhLVUUZY/XA3Y1zR1kZNp9jsRqF1qass8iUw3naxN6uWBTIJ+YrA6s+aX8oyEkGvdeLN6oX4RekdUd3Kfuaqvuj/hMm26Hk0G2NWT74LmGw+rfTPEBagflCF3I2UIMpipk0haTN6rX1XjWmY3yonQkgl2+WvHVHBIJyPHVpUjsUmffARIZWG/uY063s+4mj6fYsA9+5NUyQ7zUVvHP4X9kMx8vwyBcfJ5cywip7+vrFgCDKH6EEhT9uwRtx0VtL4oklMQZwNXxIRs2GYG0RIXgmXdprDKBJ52fwICAkMcXEqwv0iTcT6JUEQ9fnh4scLYVovyDJTLP1QFLWGc4q1bHGFxdR90CCe6N4YRZR/QMmWeZxWad4ZV/VJmIfY5p+43TEbvncqGmCFrSOrCNUVv1v8FTtImvfa81m/58eTrxbfli5R0/9kMN3NU0F0lfnA89CYQ1S9LaXkTQWEZhDX/paPCe39K6wjAMSo8oKmQp1dhkwE5aSCgH/uOwV0i3BhcReoqieqQKlEbzYc6+wLOoeghEhzf4bY6b/FNiu8S4CqVujRPLbweCgwXCHZus7Wwq2QvEfqp18OmRPvoo3pm4tU8RiGZZK4zm/MBPGbc3QFDsrG7kvaRgqh8gkO4iryFE5GPCrpwcyA/6OrJKGe/n81rL0H83dwpBBl76yQqNQj7zpsgXNjloWq9XCUdqShHNwZGpVZaCyWM+zktERuZ0ICfcN9ZMaVFb33m7NNF+ABn0Uosq/965e5GGZpbaE9VVnazEzbJ3iX9jhJA6B7Y3IU77mXtHob9oBkm9miHCAfbKFcvhApW4rVoTv9L/lE8TcNx+dTMk0/2MFxthjxhJD90z7KMyLjf14dGvOw4bEAjN/R3DvC08eeBSXR1arRMNNz2P5aoi81KeNbPeDAR/Ro6LDN0tQ7iCioQoUlCAaGAavEHSJufhxSZMhs1RTbawyrH3HZuB8bri2EW7MHNkuWOO/bLoF2f25IkM/Zb+k88ts5xcUkNPyGxOn314dWPXLs7R2NStTEVRMWus4pvRWRnVkPhgsOcom7WILCLFVg9c3QnyevyRT6CBLRBrjffUTJYoE8FFeSap6OkyXQtRh3P8vcZ4DYC3AQWvqfydo5XDYFovKZqleixr9f1zuprBgSrjNujlQKPrY6YQ20fjsN5603jaARUoUWWCOiq/bHAnV+49J9miVxGIrT3FjQsq9YNiNHkq3cyXsFTau/R7BjOR+wdtP65L4CH3FvJspzA6wUU7M5wiiTJakuGuYs8lFGcsGhxxyZL8xPBWvVB759omMGjtyP4NA7YbX5WdrvKxYaNr4ILPGax/lk72kN8vv7MX6RB0OqUqqPF4x0yH16vuFGT0ulo84TkGFu1CC/61D5JT7NHqPh398X20U4DSU7CCD3MpLz5udXnuneZcdpGGo+H7JSOMlM/8tyxnPvHZcwnJrp/O9V5FceIigAfKGDmAuYdxx8JC5stuyF5/NufOL7CK2HhRxV7GKIOwCh0FAHcbOM7icmz3wBuj4l7cmupOcmXnkWS5HYSVIUOoWA8K595hcO2ZaSlV6oiX1mhf481tiWjtJPbPQyLnZ79JMIQQRolnSGJmJocLX1VY1vTFUrdFq8gOcJIYUXpfmVVR/Q3LTuiHCN/PMqdUmer96YzjstyqQiEQo7QcI3EBWu4Ig2NIO8tke3u8jS/CbW/Y7VPWrC+vm7HsuE30/u/Qo6KdH7A/NGzqXk1aG57JGYMDPy2GbwBTXZN+P6g07ND7lcALsT6aaosbCji7yiTCMViGLz6EeuccgnZlDWJHllvmnViOb/vpnjIne+b6o9qqx0P6YMPho8+f0/8qpfGAb1smOORY1rn1m63w5RHXzEi9Ua7/KYYGgWwofS4EJw9QgKrn7+6OVCo9I+RMhDzaJ+qUo/GP0O4/M9LQrIgGfSYIxI1SHHUzn/6HGjSrLV3Y3+PjZB/y4q7QOKyNz9Sl9XlfPqZoJ/c6zyyfQhNJn9Pzex9Y1upSZm1dO++UpYh+9ayxjk3t3OlTuKeufy5ZmFGvucCNXEIQlmToVrQHO7ps52NYZP0dooNTLeCLAKfjCmkvcGtFEb2Ow5qUqPXmCrTc+366dnGmNrBc3BXGqqIDifuJL3LdrHfcdBWzTjF9ZwxJsTU8Gnt8po4ZpBiWHvwa/n7dzOQ3rfyOxFkqi15ZU+HwW2DnTKNO7C/CV6mSAc7rdym7re+FSslPd+PMo7dTRqCTsreAr4s06FovoGd7QNw3mFDX8jZZCMWJMqCMs11Q7LV5u0xR3ViDQm/kzca9lsoce42N5G/NbT578stvlwWKMTqQl/DamIUEwQkN+Tna1rTMn5M4eo3NQUj60AriQ6VnDXvzGfrsIazew0HydGivnM0b6esCMTWnC4ol5FvXJOmSCPy6A92jFVI9gy3zpgd+/49XSeMf0/Xc4ba9/cejZoNN457LNPLYfhq0Uk7lAYF3ih6ABKz4RTVl+kpzW3jtfPcKWSD+Xh0XIFlXja11Mcf0JnXV7d+lSvlW5lpCtVbG7zv0CkgkFM0QbAlzzlGhP5mQXFvvBygbTuTRce426ycW2v9sz93rToDsWCQjEvUd10RurAyg0ASs2JzSkKFQYyFMokG1712U+Kr2I7VgsZdYF6KpIT+w0RUIFkF8A8rr+VekmTc3/SNkIAJTacvnefD79oswNJNc0Swv23VRM9Dk0247V19k1tIQtP3fcwAtX9MEoDjM6cTtav/QO3XZp/35otxIE/uwZqudARFdPyeIMIsPJJyzzHvsB5Y4L82ZqGGjzoK1zv4EUgtef5MBdoc/mDWwHpq5UXI9bLoL3DGuUKD9PCzhtN2GxWxkYgUGckatIQfMUxZ5sxwpe9oNqtsKJPQ4hX3ZDVPaTpIbz2GIeC5xgowVZrxI2wLhqoRYc+35d5knC16RpB2wqwkcE4KzNz05KkAF21D2w3Ky65mmRE48EXWC5V7ik4a980GKxhiBBoBjYqNAs+M8+5Yvt5CU+U8D+ZlaMzvs4SPLFfutjzCAwUCGbn6Jn35x+YsEElEO0Z8qnF3hnGKtFJ8wme3xu3MODs71qjskMwqKer4UR84g0jFzNI0g6nyazKMGbXIVyQTCLx9vpuX9a/l3rsFvQt//G47zIS+TY1Z2wGxzC76Ub/6vSvvitr/nf3OUZG2PTN+VH5gA2Mq4lFz80hBVa/VxaJ6oucM3vyUT3UVjofvycpeAT6GfuKYY0K2dcrwlWkaJhN9PKec54EqocRpZ97YXeaVyoWfPvaJz6LEeV+tx2tPKXiIAMo8wzvJiNJoTnS7NYeKHuKgm9HX+8thVuCAwpQByi7/fcvzdDSKoOJAA7VqVEqqFCTnid+5lJjtSrG4ulyRjJxJl8eCp5UClFui1SQ+jCjPZKX/6OInJTrmpDSEZEGhY7zdCtppCiPIWpAa68rYzOpF/JFOrL2NFGpvslICcuGIfbMpJOgW/961Zi30SjXAtZRRQQuZaMWQwrNVXxtcX0ZxiueKerZCyLcGOh95PhD1dRndKN1vSf/YmgzJ8/AzR7JwOoT8M3Mjq2/TGQIMGz/erG83IodZzeOkUbxkakb3grl7fJq6JAwpHn7J+3G+h70Mjb8f4wJRhavm1ZotlNhjfxmK2UmKAs4+5DeAfplnHiF9xzhShO14WQFrgCKoeGpYtLSh6JXnfb8WCgyTVDA7X+TBLn0AxRQkCSea1C2p0QZbhPvOnpHZvqVZ8tp+X7EnELLmcIsD6lBwnUrxJh3oRNx1F/PH4YrwdcTAFVRdCWhTnuczTUF6gpJgnaC5ekA9J197xJI17PtQMEKRFud2vyijRsFiYKDvLb4Va6HJGXen9RoSACzq/hT2e8p3kJwez6LPPn5uQM/r1ZOsNiZVa616p96iRjY4tAiqPKZBGE5vIUUvE2yy+XB5pCOenn7rRrYlEmVDRRJsUGQQ4+JiGRVLzOSX2U0vrK5i25onmNwHR+H1xXoD5Z3qWdtGC2M8A+UVXM12KT8m9pxkb+q9U5NzJ/ELR/WDnSK5mPkXo7wWRcq5u9F+k95FRcRtKyYiS2v0XTHKzV1lOglF3FqpD/JnGDUbVVbc0R8SOoEwUzG9VWFpR0yrLV+qjMSQqPhT9eBAi8ZuFgIkGgqmzUIYIzsh/uB6nFa9jGbYR9G200uK2Kppsdp1E+YJv19AGnLgET38al2cL2mzxur4pB7FtzwKfwoQA067zyVCWzcSBJttRa79UsxpRdX/Z+DXytO+vCs2C5QUZsDeX+BxgFX0u0QHrtyXeAqtmqEpeI7OWQG1NA0tfZQLL0C4NGN9ygTzxIoXmlnMg49rKcoI9yuKUs7IkroX3NAqkB/eZ1edjjRJkTZh4RbLLiiuOblN3uxsDcC3QdaWBlQJb+k5d9rDMOWWVuyNoW1NPWxu3CHN+mhVkF8wvcDVbisX4whTJ+gu4QA9Q94Bfnd3zQt5qBIYPybXwh+LBJdMfQH0Rfarn50JuqXROicoksjG3n/47bon0nkNhdwyTJGJqJzhsclA5oiHPH8OgC7l+xoVETmES5Rh4QOxI7DSG/XOfiTt8R593clyPmlbRHlkXuNBQGKueh1pJlie3jnMYLyejDPLAKDXaPe044vyZyFzB8k9cbiZVnSBtcLq3Sy2+gUfCMF2oEAZ3CKgkaVTU6y/QYd1fIw3k+c6C+kWwnypXZRrbqVOZ2jPViO6DVcp30/fCHPQ5mHJVit7+h3cAfNE33IFVhM6huthoiixWrrliw2hiyhfiAPyv5v4PzfS1weOBYAzhKSwz6swUpg+R+jN23GnUzKvWhPIUOcLuuTo/HVGMDu6Ej7sW6zalrzkQuAw7ZhAXIe97U6RqcqWgV13nF4u0nEqWwm430p6QfP0R1uo88n5IikAVGoSA5M4Vdp3Wg3YUQzgUuwb+5E3VFBDMULySn8AZQyuJb1ovYA+z7/+qnnuXLsOF+wzasnHD04yivRkFNaQG//368aIO4V1pnaYH3TQjjq8eQHwH4UoctWZ0HV5lSC2y7IBQFsfJdVdjyLvATb9LLqg7i7h3LsJ30ArQkVyT95884fY+p2NLWi+5RqS346pyHGj/6JPQUY3NSm241sbRy9ZzUJkDDh8CslJSnk9zoeVY7NSjPCK0KTX7Is7c3F2dHpGaK0tCh0NIKZ7DsT9eXEnLOrL6Xp/YBF2LGNXhMe/v0zquiGyEkPIKK9JVVM/yxi3Bay439ZYpuz11aN532gcq/HOXsxfd8HtXq6EfRwK7JgikKhRgw9PFBcEQtHT4JYBcAWGpVGvKHOHaFbKDb6+uwEVuR9iBrdrNnLSEl3XLaqVq/yCT71C0520e6rSiGZh2Grm8rVUhSwg12x7oRsonnLnQ3awwzoo0NmQjD/pVX+LHLx7PIOVQ1j7m6tEmVPMYJsimvhtFOYfSI5H4K562wLfnDoPOiwf8+GfMGPcyhOuENgJi/S2vSkal8OZPOxN20v5vLk0bJLyKVyRPoFVOgLbNC63BrMM6gVsB8Eci2B2Ll2McEeD9QmKaorKNp9Bb3bkGD+QBD/JHaznDtJ29xyRDmFg0ZXt6mcD2gCUvRAJJXM6wtlc5OSxU1qfoYu/eSwDJgeOUbJ01KpU839DWlWeq/gFQfFVdzlm6h+IlwBQ/305ZVjiKkASs+Yj7jRHlPzTyb2oA/ttbHd7fHI4jQMBu0UXCKBXsvCiRSixkRJZ/BNmuWbusv5YCtothlg6nqdgjWG1FBl1SbZBdSYUd6Pz2tW7oDxZB0HBmiS73hs7KcyStQkisAmAzl74yJjtU2vWVpK8+3FcvH6NZZYnKHTaJZGuMkMAL5zaXt+J5TKgcb1lBuuGb4yDsmqdh0Vcmb3SZEIXuj5Fop8ehIogR1vzr2QDt/7vm7P0PdAnWZczMJRP7Z6UEeEsFVE/kAVsjPUZq2enMmjcx+0zoFlT7HIi4iFxCsiKgKNI6gt/rsTMjv0JXTS+ENX4Bpuy+4Kvrg9FmeH6wXjyKrdf9ZUZUBjuyTc/44FZjkj1tZXszgzY4hbktcKoSOmCS1B5mIe/hW7ylAr0WS6POT6K8Ln6qzyrH8LPaq09G7HmjOq2HN/sDKTQal+Dvwlr5BNL7bw6WOw9FRBVqdTSM2THV3XgjRvPu/BCqp6AL2Ej/228eBil7iFS+n8oQ7faK5WQabCU3GMyVzmuTdKllOotl+7dnT1dYXgWuUWoX7gnwuNtWcwBW4KxSOdOeuU6vjfnf7HziFO4lCfXHHxyxgl6RReQybmALDcZLQiCgIMFJDjqOL3P7bb5j2wqGb0EqOCJyNsPORqcIjnl+IupulmX3LXMYXB95ublSX8On0njz4yCtMiEqMf8c4QKEbl4N+Cxap4gZaW3SH4F+Zf2mTbPtsjsxRG0j8ZIEocs+HgnNdaVC1NFwOIdY630eDB9jEUpUmocmrK2sMXJi92lyLRIB3NxTQaddC5m0VMJkSBWjIg5MkcQzdKcbouYajV3EAppgVZWHkcdKt7I3mz6FIEmHXPW0eAt0oJzjsh2QY8PVCYGCIeSAhf1Wm1oXQRDNMojtG11sP9OIWIkLBoOEtUa3P38WFkyvGlUd6pAKIblw5OLNSOQgR/ZAEUM9sdAhyhqy4EpFC7kKLoeyk0IrS+Vb2wY1ER4/d15u/AJtF6kHmjosXibKa3dqmjc1p/Okj3vLCVxB0VRY0xtbA+adPlwG14MUeXfmDN9P05KU7PQHdSa2nyndMAT7acJYwjlnpku9om7CkjRoJR/oXMKefbjQWX+mTek1flMU/WxGg7IxdoHHhuN5GnYRtFoAb9aytV3gktBvbLBEBXd6HTVJK1IN3+6j3ql5e/BjncPgyEYIof8xqUcpfbTJfCBtsPGVw13rMMnew4/RJIlQpc+oxSNjjqmI7YD9fmUJ43GkrFitPQqXEj3RZMRd6wDGb0EHrhUkseGBh0oNgdjoDx4vVTnJbvTlOd4sBSOX4mAPT+ESkbUa8Zrqyk96ahmboY45Ia7//CM4FGAePopFAXkvZCCGSND3iAI3pkFFqn5zueae+FiK3IWcv8f0x0+HlDDK4bqSUjsulseiwPWDbqIAoMeXIqcj01eH2OZH34LqckMTYwmJI9SENbFB7KSmk9lS33mxwfpb9z6NN5UJQTXW2hclxrfP7bjDH6AHgKm/jzl5NF2A5bCiXilw399q1NmznmSVgS+Bm4YGJJqFfhDHV42zGlgzHF3XXcxuh95cIx5o1/GO3zqKzCbWLI7gnXyWoreDVhDnbOeTpbHmh5yRQ3yAOl9uXIFkaX4pz1kFRpB5Jnz8wehS6t4ptPFCfXb1f8HU7lo881yX6v6DV86rvJsziYi8p9QUdlRYGL0SS4F0LYOjhKoM0/Qc+bJ9dI8trhIRP3IOojMOc9fnjydGLPgDHDBMiiuBOEV0Qg=
Variant 5
DifficultyLevel
589
Question
Which of the following lists the numbers in increasing order?
Worked Solution
Converting non-decimals to decimals:
65% = 0.65
5033 = 0.66
32 = 0.666...
∴ Increasing order is
65%, 5033, 0.665, 32,
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following lists the numbers in increasing order? |
workedSolution | Converting non-decimals to decimals:
65% = 0.65
$\dfrac{33}{50}$ = 0.66
$\dfrac{2}{3}$ = 0.666...
$\therefore$ Increasing order is
> {{{correctAnswer}}} |
correctAnswer | 65%, $\dfrac{33}{50}$, 0.665, $\dfrac{2}{3}$, |
Answers
Is Correct? | Answer |
✓ | 65%, 5033, 0.665, 32, |
x | 32, 0.665, 5033, 65% |
x | 5033, 32, 65%, 0.665 |
x | 0.665, 65%, 32, 5033 |