Measurement, NAPX-E4-NC32 SA
Question
Two circles have the same centre, O, as shown in the diagram below.
The radius of the small circle is 43 the radius of the large circle.
Arc CD is 24 mm and the angle between the lines AC and BD is 30°.
What is the length of the arc RS in millimetres?
Worked Solution
|
|
Arc ST |
= 43 ×arc CD |
|
= 43×24 |
|
= 18 mm |
|
|
∠SOR |
= 180−30 |
|
= 150° |
|
= 5 × ∠SOT |
|
|
∴Arc RS |
= 5×18 |
|
= {{{correctAnswer0}}} {{{suffix0}}} |
U2FsdGVkX1/GUKg29qfoT+fyVzAM85k2FNjBzVH/t+vn2ubUeLMt3ofDHQ1EcXgHWrkOmPEPRDbN0mHs/N1mF8/3OKsLhVJlhQkNuUQmFOU7nk1Esg4PHOUHgvhm1lRKxvQzUBe3EZM742qdmd8zr84II/vP4xEPsZrsZmphysph5OoD2c6yd+p0sywRZDRWyBIgiNaXA2uY5S/UappEzqB8tMPUAdWg7e4CwFk8+2WA6ycW54dnRwxqlO9/aRaG+fY9AW+AGM6tlZyYMSqD08Tnli4V0LNgFE/giQTkbEi6nIDW3gjQ5JVlRGKFIsn55EUYEi67XWsCQXpVgBkIPfLxodBfyAqO9mJcZUP3MzBdweKkoD09xeQ7KwokINOxJNX7WOc5rIHT+va8t5SxTALflsKvJyic8w4cRuufzvm7TlxXdijjfde9hxoZ31K8wNnlgy0zGHMtmJD0FcTFO8emhULL4tf2+ZTsUJr6MDh2htIFVZZUepirVELGPfNPXrXVw2IBAspF1Kcn4vPEFC5JUXZgm2YbanuREVUDYD2YOcq8DX/9l//XYVuArmIQXMwuFlGVtouH+Pv46/xU48bSkjW6UbQ9lHo86J/m8TpyEbmI9rxWXSD1pt81QOoIYekeRP/GGJ5cINn4e9ylj3BmikAdCqZWKH6ePcXsa4u7yFcU8mOjRmOfr2cSDcCdccj5nfeTO8et3uf6uc6mpdHLOwILuHvO9+kP/B+IFJO1pXaIsKsw/Qr5AuV3XgT2jcpOMqgMK8SBQeEtCcU72v1wSP33qijWhLuKpYWyADI+xbVIibC8kXA4VAeNmQYvpqU11OnpRFNsBIegw2M/X12fZcv3qzPqbYSE1WcpS7bm8dDte4eDtUx780/PKURKKXPkiAaL63bO04VRj2+1DqgNTnyoV8eAMkoP9roJPsX38mXz08iTDoV0o6vUiOR/Y1JbqQFZ+2OaspdJ/uEuHnHxDQrQ75Vmzop7PXzBZsaKIgxRr9niJ1MB2qqQyaK3hlgtAG6TO6QHZ7Jh3DTJEKJNin8cAwlr1r9Gn0VwYAjkH68G3VBJY3l+45h+wDhjGFSIT8bKNL/MHSOzE93O7fW2HXkcydcH7OwRu//LxunnbpqFPJkJu7iFAgjBWTrEcwmodMEC8K+lHHCG4o6JHbxDuOGXq7kHzzokPZAyLENt6WeGppknTVUc5JfIIwENOvqBsYyqqQ4Gfc6OXQ51RSQWjQ3vJwTxHzEpDQoENgNllKoQZs+N3SEICAL4y17LszMWXb9nvYzJupfLyyKCj8/ytE3ep2q9Bvd58QPNxWYDrj3+I3Zolx6pJQ4PQu7KFCS7w67xUyf6LmL8MhgNmBoJkhPhoHeFtdulE5mfjYShOsvfkVFYWvyOAldsL1xbUYLaXa2vnwz27Mt+AzyzoA64oDztYVF/zVEWCBizETRx8Ak+3zkm0JAlv7NvAnVYGj1ja5PEHsLbf85Qot39h/c3wZZXhwOQhHBs/HfpOfnj90vQOO5xt2FUZj7uwNEWsJuRBJdZA+myksHYzV97xZxjELeMjq25Xbr7+GMAshIDaXbVBi6uEmJeRNl0RIH9MhLMbjMo0NgOq/a+s8eEsExTcTwPMxuV3iNA03RhryswUna8ZaQll6BON0JVZ70QZDBDES38WtZpPr9Km5ceWifc0xXJWtMv4S1U8iPvYvX/SGMXahvszZpXMKmtm5iN6W5cGCcPQz3c4XyOLeoteLy2c6P3s8NFZlAc8G9FpHYnk2qAfFLxe+H8YmpqKkIfRL4sM8a7wCRjbQsqoPTSUGlx6KHbJ6fVynUsUvOidIeQyDhNeZwk/HF42bBimCpfhsvefopQPxHOgPm47MmPSUpUPxzqlAFl2+uz0fuffb6mIp5nbf0Sco6JsKTkQgInpdnub+lbdV6aSLRs3mEBv8H6y2Fax5Zoas5PQd7qO+JopbXpPGSsESILIeRTcpmOBXrYALSnPRnA6ALsX0o2zcnNfx/wl3qJwyGAyO7H2LnkSf0O22bhXUhWdc4OqwVvo4gUIGnMgvTqgpfJ8KG7uswKQIXPPpi/CR1FL50S1DWA72NVCOzQMBY5tfvH6cXGdZZQHGbh/VTACSiQuj9Os4+4C847IUIyoNqiWdhLu7dh2PHbGv0bI7nrWhMIBm4lWXYiYk2/PvGLfzhpka4fjx4VXUPxxlZvEOFQo+z/6QDMfLtxIMSeAB3PwPo2/Giubpgns5w3ILGNcqJ8UaYsr57F+qDshiTHAhFv64xkqVNY7GQe3l8RHm+odo10HAyR40i3dpt3fkOf0kdddBSD38t4TSjZc9S3qfqfEEXJjJO0MKSogFmpoVAxMIhyq8Dc9zbQHppxBh9oEhK3DF+wz7F3z9/3P6ckTSnvsGwqlL1kURNG5ldXvq/2sdnA3/zqy2ICzf/VqRhQsiN0lcc7JBiTY2I9aNYDA/VsmXcvBsmXWBaHpTZ/CP/UDFKrOnYTSqffgf3wIR/gORvZmi5mQtlLiMTLZ43BxWXc1o0izUTtuAbOjLKHibglAuP3HpRrajgGsaSAOUeC43sfbl2WG5g456TdNgXFcZPEm3GCoAAHUUwOiiwU9vNIvwEmYKi0CD912dYhm3TlOuQ9h483ZJc9SVgYS6HXG3FfXrRW3fXyvCUpKMYNJk8iALPt4vmAdzdEPyJZRQPN+KVpjoVPVQYCodlzzNpwarZx3zPIXDxgEUQvIODMD7nidmtepyhrirFyZdofP7aYbSVgheMHv6pN5A3Or9w2tVskfNDCPmcNfL9cwYr6qcwEurKKkKvWXgknsnOI5V2PgsalRW1ytBWx5N1B0kyhPkxULzEqSgR888bdoIKJLM5C8+7+3NEZjacpLvVVzjVMaas6T75XrJ4SlZz1Lu4WhGq12tOBfC1797xCX5id568Zw+kRBOIkYjIpLGhCW3Oib9ze0ZrzrvQ1E3sGaLqXQ+DECWp/ycLRlK2k/1H39PAu4rGk/81joPbmhZsjDcAuerbF7smvGLO1cMXG2Y1HAzauGs5tYxpn5QatyumRPKfuPtCjhO6Jy/JEVXYygoQy+5Q4dGdT4pM0oGereCDKsByP7zkEOZq2IgEcuoGLJbkcll7HYRsHFcm+GzI1yoBDrpUmWgeeLHhqVAC5CbUGYyerhkDMVepGFsgff7zRWyx5zw6LcbceztexgRzeo5bOekMlVxmCoJCZYVcKZFg3tAC4UsujBzU+ir4wFO0n8QdOj+6I+tk8D6SLikyldxqBh5UURRF9Dt3YQPfZ+MeWyBdZY/QFZG2irNSuniwJYeBiLNLJz4BeNNd+G/JLNhvP8fauD9X36KPZ1KoMMPZ0BZM85s+3vLM/O3lNLjkdbZ3+3qwaeDUwHDkbnardhtiGHkOr7pK6cqOicZ6HQz6Ehp/yd6Cp4gy1h5EBZazWtPOhNxc8+nW/pcossnAJn7CEQXp42m9Qkgcj/0QUBc/UXpFL93zLSxYtc2Rwo73kZX1OyZKBf75R0LCnLZBzQR5hVZjKsNSqYJGuI7z2m6iqDL+in+qLFfsgCn4INUN+67JJ6zui+svuf+nEhmR+u9zPULGY9GQVoOFCeFZ86F0GURB9SQaJsvkHLauklLNod7ihfqEnT16cuyLXag8T4Dd/OG4p85GmUGYcuvhSJ4w/D59wkUqho6lIOwkb1eCvTru7dwxYxTtckLo34a9Rv5S4ExAw69PJDFbLncNOoXyZ3nQVxhBONjlQql3T4HQ4+56XMxMB2GKqAHv3nK8yNnyWioiFexA/QVRFBmTvmReepKjgmJstcxoe27i81w+1jxdSHWTwQ/igT3XZWKbP+QG1rE30fcrBcjHPSE4L3/QqOHsaTBB0Vew78XP9ayz1C8f9cLWJ2y38yDOcwQk452GGbVxSp7niPoJODseFXnaWBFlts48Gr6OdJ1AvetXIxQ+SuCT4Mpym2fj7g+2kNI1mFhgC2QwqSuNP6PDGDuYafIvFPoB/lbGzs6qC2fnkQF9+C7HEoM1qVH6fU05DeF5Wn/ins7RcYYam6KrFn0zc7XBm96dY26+KYxYp8S4dzNE6zOpzEheIomxJFd+RFW9Hmt8QhMIz0KZNsbjtgSy9vDuV280wYmO09SF7EbLF6+anvVkz5mbTyQ+ffM/DKfK9MA6jbrrqxuzxdmOMY+Js1baEcuN7PmDsY4crhVWNXHFt8xY+fgeCMUGkgaVj+x2adcuv10LS4JB9VbRVYfIhUDUChWBUe3c/BCM6kHenEFJoL0My574zB0NdCQh4+hgu+X2hOp/Qbg2SfQdqEBSxFrd4KeqASyPxg+pvYASb1NyY41Cg5bSxS8jEZJQNAg26p2LY4TGLPYjt5WKGtYi127gjPgymvdd4s/7pb3gswTYC858pUIUF4IEVPbrPoSjeNmJw45hQCk/VuMgv+nYBetwp9oVSQDN7loq/gnV0TSIkH7ytlNVDDQf/6UTazkaQDUWY9KcO6uBTenHMKQLWiUzc9qUaYQDxJvVGuUJTorEI6L/xzOmxjUWBNslg1Oo4XYbqFbjLcy8FBtRNGWEHJXXEsbeNHgacvd9ahNkz7nZrdvGDZWEqkuNejSukN+Ky5wJfew8IhrSNhHdvbyAWkv/7/AXyCI0TktMKx5EiwPstzG0LXX7/D3Z0P8vSjfdfvlFnCuzVI0RWak8vZYRRI9hcX+JwLA7aIvrbi6Pr53xkES8znNJzMgDxI9WTLPagYwPbYF9aNWtL2JAWelVlPMVrFTygB/unAx91FK819grBeu3MoY/PB+Q+PopywDLwh8ZXNhPyafGizcmbOssnbW864i3TB2TyAIhN+d4L7x6TH0n4W8A0DfyTuNxl1kv8/3WDRenXpZLBnXcnbpchr7oukTBjPstKStYxZXGjI1F4orK4ADiznE4v1VGTs4XgSsurP+8d6YWbxSAvNHweDPADUqG+vNq0htcNjkt3vJjJz9L3v+l1BMAMYvoNQXNevanxmAwBArOC4yflh/TZtN3AdKDk27ytXmDqB2IQgrheh7ZNUN0C9Is/6Mb8qCZLh3uqRvt3kSVWpmEfCdGmjDhxcmcyminCn8O/aWiL+1+DsShKKSNS9hIKsWbFJNr2GgyA2Ej4BbiTE3U9PPZOVm6YLARdy4Z/Wpp4E0b7QbryHWmH5EF6zq4OHGh+7H1NUsI8qLaR9hXDi7eGy3mH2Un6r1ohSxaqOWicrZRHjNEHb/TA3N8GTom4G7S0O/VDZCPYFNik72BOgR9OxTjjBULAYg1OCCVo7hCg2zw14qP6udsuNfkoTp2PQF/vvWn+mBNt7BniYQfj89z6tK1WAsloQY02ZX2yb6WzG7HDRHg6FXlnBQSEo8ovEXYnMhWNCVHJuhFUsmWHXj8Ir/tquhH7XrpRgjtWkgeDGp7m/r04naQ2nglqDqW9GlB2gxrZRHwuZP/Q/VVZrbf+YvDJNRZcFkHWN+WIR0FOsmHxsjXc+8hT1gGQC5LobKgZedWlovRqqYYKzSaFJCLZBx2V1ZboGOZ5gf2cu9Pcd/bFTWOwPoq+aNqYHWSzwt+jRawPqAVR9cOex1fy2vqErZrcRKWJGiPUcAj641eOCHXA674LO/lnnJtL1HNHeqvLHVEariaNGW7frA2d/o+vMNNEsBL31MfSCvSeR+9zpewVrkJIcAjrD8dpWLaLicbjK1tZQ0WfwcIbvpQfG62w6o6L43hGfRcnbjrBSh5rFI/vIYubzbhrVb8qIAsVtQQ88rkIrVwH6N1bIG8tK7Ofv+BFdAy3aL+nJF/sOL+/v3rzzHRJ6usVV0WC8+HaYWv01T0gg9MyM/gaOyPJGknXs8xLJII2sybyhyAjz001+RgBWzP+vbWhjiGROAVYLi5vIxZ6DG94roumz7wYWsxR6/xEP0t5O2PmyyAkVOZFluMLyH2FniNWwH4ABSVtGArd1UOWq0O04PUneZMk79DhxICPHDi323KbTfOv54NjM2khp2MaJvu8NpRYJkYGxiU7chqbZD+3Ex9xhNInGIbRGqU1mfYh+gAjsHiT1f+rbrNJCK/bcVNTq5l8D1XsvkchwazJh7wIMf29hrdH7zgACqGAjbwyZspOzSape1wKgBQUQ1Q0ydQyOa5bRLshlqhgv8fGdZfH4lyh1zJoVPi3QntXV7BHnHR5FZEJFFEplaChEAJv3+EQUVtJhXIN3CG5SYlY1M5P3zMmciXUrwAxKC/zdh8HAZLthDUGFjI7+Lh7LG0ux2WqSuBxT0SoLSyxcToK17vIW0uvvnjver4OUFKhQSDfCUuMg2UpXBTEQCOnw3amM24fZ5FsAjwYPqvsKJfsBsPP9dk5McEd1YD3Gxpt8anbgWLwAwq2PUeWwcPa3yLKNXl357XHoT4C4dEl8MLQQ8Ogz8uX8w4TXhayjXkKlTIXnlqWfmnMgnDCdkFyrzKIaMJxgwKNCikiM3byz+0SJQlY9CaNoXoYhuR5+NsZL0eTySuFuB9p554NS3rgPp+ugVFXFua9B7c6vD+St6ztHQkEONlYaU4618HmZujACgc1WdBEfeW03qv0XGa6yiDehyqtJoQQvwZ6QVf0rHyzGdrvc56tE2lvxLoDVUVDOOEnCitFuVn9fp1jTre8cfgq+okZCqNy/jVwyZy/r2vcn8I3D928xzg6TG/ImYzxL00fl05GL3Sb+n+vfrpvFKB7tN5y+MlJ4oogDOJxcCc7a0sljmJGEga0a70oRDfyqdAC7M+d+3XQ7r5ulh3+Zw7xDnb+vtU+UKRhRpJIJeTaEhRPCxUox20v5B89qnUtUcpQOkgWQ25vBsw89VbS+TbFDyb6h/8jzhHKjU/sKiBcdi14ML5Fb5wabS7NcWiKrfnFFmUEMyf0GZfNyC18IwA/KmuDkp1QanfYkBhUSnIpmjkmXd65GJLduQolikXMbONNVrv3avK5ZgwenZxPLiFfho9nD4h2eaLd4WeONA45kTxiwLjgtMISftlbGBX46EbRpW3IEyuCTJieIPQmz1LNnax9QLOyPhYIfHaPEbFam2EUZfMy9RSsll7UzyEvmtkPf9jHlHsH+QgTib/5GghAT9alvCQyy52Sjlt+02heb6WMK0QdznoNT3fUDoKpbZvOzg0JgCs8sbWCBse9vrqPZENlX9Ix9BzQ4yMRDGP6JX4gj6njRtLXLRRllYU5fVhzWOBDn7ux3hmXNPLeWKqO44etQDqActB1qo952e3HkyTkls+WkrYXFsdxWFvGXYeAWvewq1Sdc4g6wNOobBuHjnefLWW57ZvIosUTicUmoqqDSEhCZUxFB1CkjPvYvYd65efM+hnuCe+0qMz+itpgpE6q7X7KEtD1m0JbEM1ThQ+o5u3Iyz73T3q1v9AkXQhpl4pZy5WrCXLPcdDEAEoj5QILljuAYWGXdIfhG9LGtXxr4QTPUzQCPjSMuuMC4ha1SKkjp1KTBVJEm0WceqdupWOcxfJdWnEzcv15zY3jwWAMCrKb78xVZQI7WEewQBVNK4rLiRU7wdhDKFLmqhzLbR/0myIoxw3L3/Jkt8FGRDzjX99DvGPckjE3e1bhQAahL8Bmqn6kiXuhDa6FijE3AHF/P6+20bPfdvHyPUdTef+PGVkpo4yVzKTyiQFxLz5SSccKxSVfl79H2exvrEjbRiCHM2iZK3oDrVgV8mSvVrULCcQp9BO7hIK673m1HGie4aDI0yygmKPUPe0IxxWQjQ2AzwNrvQKpe/qQ1VmAF2CvD2T5Jf5HGp3HwyUOXus2c5zbd/Gx54Zs/4YZDA5DP66+YuO0GcWRVpBMLMGTyQzr+C6XKUWgXvhTT+gKrL0dhQDiD3+02kcGcNOZtMXc+Iwrek9W/wJvLowFchrkHuHjrJZtsdw9p5B2C5kHCUBvggqzM7c0Lli/eV3js4QfCTP4Oq01b9c2bZmEj5z78YaVfJBob0G1Fpkh9fCtvwcE8o/FWPAuArBAX0h2evbtXG0ydB40vnhAzsaZ1OsNKzOWvL1M0HqJjjSqJ09c8KT/DhbJM41brkOSkiZ+BsCMNKgUkPBlDLXXbGTUZ3YHdCQKc1I8Wkxr/LIL+8R9psgGCeNeVQuByMU395U5E5m36H+i5hxlmuLIeHmy0F+NZ3T7z84mYckKxeLLKryMSCYQP4NT8lzyz+lNw15eWyJA1nnKCBBxUdoMPlOABauCbjDWcGa17A8dl/r8VLhXmvAn4xrdBcJGCKuhmMJg9tm9XfSi4RPyDIHOMzGgzOCMXqVJ7qFrhf7T+fAoIrY1XLXhTHKhWp6o4f96xUo9EEYC7sDNlf5tBmnoYE4h3uTjc1yLSpU2f8uXR9lYZ/anzr4XZpOP4/GL9suJjKA5Rrmu2+EYaoHfKbwK8raxcUTtuUaTHcjl/Bz+1KFQe0GGeW9aZh0+Gnbl+V7EfZ/EaTfbLilr5PIqMARtkX4XSqLDNzHoN4hiZNNpBJwKh6uXNy4FcyfwQ3E3QJ5FMw2vCZOMHvo4VJ4KBIBTvtUyCBeQCqXt61wt3whBwT4PxFbQ6Xj9HzHOgFTkOcTVSU0zEO8TJkClDnjyw+k08CIAp/a5A7lzJQU8mRdcYcdKhflTICgyouPNMcOgeGD3CEKLMeTas47zG79N1iPq8/e5b3UFMW1OA5qqYQ+DAbWT9ugOzHvTjkxEmp/JPUk69PsWgl269hSZ0/k7tWM/cQn3QncSXdp211Fyc7A/hsxIZLQWGSD+xw9NaUO0Fab5Eq/Jih4v+Uj4LXEGvhhzgcYCI/tb0xFSJ1D3EmDOyA8apqgEaaGxI9P7sCnJCYbIFdMmrTFvl2m1uYAj1uIMvjEvb4JppSL5EqTf/gh4hZdWFPdUY13Am54Irk+hUnIhIo6mXvbo/nZ4wCudKfv9vTivqdLFOHL4hgAeqZcJZuDob2bZgrqGhlHLRSwJDaHXgaffOVq0mKDFILVApnQURaV9SUvSJ6uxGI//1pmWbSZ+ONiHum5VF4uoppYBI44EeNY57LEqpCIKCMUMPLmkyL31L+kl2+QlzBJxIapVFxv+XehGnTh5TUNSDAh5Z+cEs8gqcVqLltw+j9VQQ1GgeV678UTyJkumpkQU9xgOhMcc63SkBuWEXdgTFyaI17iz0qNq+S26TX+tGf7jiJ1DpiksO6w2zOkIVH6YNJZQmlSTRFJvllmUBZh6u+oBWplketLs15Nl7VRZ2POaYy0Ng+HZ//6nKIR0S+BwXD5RFTOGklfI5Edx5Bs89YG5KuSdXNFUDgRxYCF8J4eXd3bPUL9lkquaIt5EgqGufI7x/sKzlcKmzzYgJnPBlo5f744zfB4D/rDGpT0TJv2qXPCd+vINcl8pvuv6bO3lVDDcTdpR5hKpjArLDbLIOcOGk2LZbzYjDjulsFiqHnD0rlmlNDiJf/vITzSGysrdQMxiEx5Ps6P1hRnrB9EInkh9lPHxKmR7USe1fodj7salchkeTQhaYUuS1gDwtkhzQ1t88MGM7BqGfr614Pqf2/yOgP6VNwRiFC+24GH+FjWoocARbIRYbbIWQMcfRZCOoc0wYWjpnN6JMYPy0Bz2t+POAZDegjDzN7rPJAz2Y0kDc+MpSQI/iJaRS+CukECQaQbrr/FIrfcctXFSlnAElzsBvVeag7yR+EA8lJXLaUuViO9B/THC1DWcx6sMviguluZRZZG1W915CPku0aQWe1+qJaLzeBQlQ6hipg1ExgCrEaQAvC4GlqK5sovy7AjeEbwNYIYnb8xdL8+usgrflIvWqxv2CRnhalIy7o12xhnpCIf1pkSxOGGGRoq02ld+13zHDUzvanAv5YhxZQDysmHP684eGd49RGvCqdc4PhfLM+VdyoGShOfir6tKjTgdWM3ZTCMQnPFptM56w4rKaEXdMJupUU2qC7x4AwQqIoevxyeIsChn+skJrf++B7ru/TJO3Mj7j3txpcwk+lz6nsfw+zGUmaRrqVefCeLkjQ1JlMVGh3g5/duvYUHWIRE1cPAXFj/if8yybyHRcHOExi//bYZZlG/yLG2vIZK3580Kz/i9EUOQBrlj3rcLGzDeXCHq96KKxsweRQ/obnNsLsMQCt2jU6xrBySx956TlFL1f4nzeyMLTeQoQwvbZJdqj8Qno4wjrhCQOQhFxFsobPOQ4rHOGVkIOKPMdfZUekV/0D63ta5wXqyQYCGlhxQM4wojRDMsOgMBpY2YrdVK1wuhfuX+xjDZr0K4EBbqoBxJY1bVcdzZiV1ymPdVuGDazmTVzEDZ3M8SeuGp7HfTvHgIS2SoMv6TxvKZT0wHz97ptK5etmaMrJJcvwwydxtdBdIGHsKflXB67ph2F5hd22ACQ5XVtkPpWu4F6Cv8iX5E9LdquSwbbSXxt7i16b9X+dvpGFz1wO+dV+W6vonQnbM+ZxvpHwlVFEJplmyTvyfzUeY1opbEaWAeG73xrCH1iaTyDxCYVF2wXj1SjMdG5lFvQRoJMKa2txFEyRzNFGKuIYBNNEmluEdf757onDTFooODWMHMRRADq0BAbDZh1A1s07WWQ5TdDnzbKCC55bKmDm3w/JCg9qMsilz+mY7nF1Ni/0rsl9mUa6jpvl5g6WTHDCBSBp9uPLG2qjA7CSsRBt5Al44gNpnUBzFaFdr0WuJtGr2pTYjlANL66u59NsjW2nfySyGJjgYt8B7RcY9qOg8g66+MRmrCJHAwTDA+JpBs9/H7JCWeJgasGzxmKW+YqkZx5KET4swrreCnij+dqhlMAAay3qpRn7iGgdIp+706kfU/WxKt9sStbyGyYvFdh9tlbc6cj0teu3wsxekX5S4UnO66aoImGt9csqx/OZ1aLfhJLPF2Cz14r5mZmvRR8i4qXy9Z0dmdq+hbVLVaCt7EihFLATvf6k3433aSJDAG+e0OBr/NFcmjeO8fWB1ZGlxqfYfslx0lWwOFRtt7FZ+BIYOFcJtGDNVtqfQi/ELI+c0c99tlYREdWjonG1GNGpD9p9yTTZ3BBgZpz14z0iH03yzRsWNGAsibbQ3g3XwjfJHT6ogjdueiXpq35+B+PnXsx1EMD9gn1nyfxvncE+sJiiX6x0eD6IFrewdtbPDVRNzQOMwIZZouiAA62m52XYJb/hie+LuDmTv026fGAbQ7ysXUSb7VgpKHPd0AwveYrdwxohZ9ZP3IWaJ7GaUnzgbEKzbyWC2jR5dfQHjA9gn0zpydYcKr7/54zYo+8ckWiYjC4rhsXRasZKJNY1t/oW1e3p6idhHP1XjmH1F8Vga6hZhl5fayMjbI3Ip3g4COg7TqikagI58+l0PmFIBdbsZd3kP4kaadrgdyV95JpaELAo8Jmww3KfkSje4TiiNOHqQINQYh3JX5KPOzf05m/ge2IRzcUh1/6SHaeKg8B8HB9zQAh41nw48FtxQajEO+uEt2Zjpjip+1jbyWq8pnS3P/u5ThPqXWrAp1dfJhEkJAZjtEca5JpACDPI/gVCpeLuhEN3+JGj4k/pjXsEfNOy5Qa/LlWqKtOxbThvZdB/I9fDpwfnee0yFN3JjOmdSn6+tz29p/Tw+dIS+9grP4L0i8CS+vtpH7hy6L7qgDy9Xq5hXophDl/mMGJuYAJHTXWFrnh7S49U9gLjqPDdvcQ/MzI13CgqkhwAuyWIpf1bqnB0pzIcXdwpdGM8XQY5iICOi1QICK2jap5Sgo+qRH20RQ2zSr3R7XMXmow0oHqBUFT9dPIsy0x96+X19ode15IT+WDhjTRhQTAbnDedYNj8bcS3zNN8JuSkneCJfgHvHVzHreD/nZMzwGT1z1q+vW4Ek7NnmZg4loIsgEuKvoZotw3zwgfLsvUMeBxcLpkR7YQQkTWIenHGoeywt8nTwE4G3Y+s2HPM/pH6ymc0B4QQlTeLx1pY+HbDYNH/3q0GLI+gFiOuST3NmmgnM8b84Ypu9qho3kMaoKPk9CrTLxDasLUyUKDzRpHrjzx+qLCAnHe7/xfXQ67G9+vu5b3lRL8M7ebtKunk6+NK1OSepYchumTyZigzpogVUdgeJSibrpUh+4k9evj++Z19WWGrwjUwqAW1Pgy/NbOmbe22cm8jDJDXhu9xMsSPn39WZcxE+quarD8urB2UyUtgZEYmRDeW/DXJPAHQuWCoHgRPSJQIC1/jrOV/GtkCkrBPLGjlqMcI1uokMmhnfwAjsuDltE8+iv+mf2oeQ3ciOn88Auyjd+etnXSpB0Jk368ZJVR9L6xo6snqzoIy0+Y8gtoRLF+BDHKMjxMaRxnPQ1qxeh5DhD0iXLU/WQ/tnHe2/b7wyWynGtm6uYPrvC0HeU9w+ynCfSeI1wLkylgeLt8V5a1t/eNS4onX/Baq6Sr7tfNMp2ShtY+yPJbVmxHvlossDW2mF2ScdEpySe5R8cJvFeLqX3eA1d28XrANO8YKI1qaqZRYRuGgls+v3uojG6L+hs7Z37lb5a4D3zZOgKcPV2JwKflRF4F6NWK5Y3v/3mw9lrBDN3j49Smv9LpAt3oSRY67pjwWOCU+Bq+l7a7oxnwnyYTGA4AHM0MOmvA3oEYR5rO7DzTPH2k/OmyfA3A6bcYb8AYfcqNxZ72HvtZse9qDdeHqvnC0jos620lTGL3L6a7qjEcOQPIWR8WUm7JagYdbAfJKB32a7jrrz29QbiahG2pCriXUF0hVFAowimkaIGzU7EAj0VCcXsaj+lbOZYg3HrQNzG1VLJbOjk+5x7JsnV8cGSX2/8Rx2R1SAvOoLTeG5tB2s8i8RxA0nQb1uDtUPzWOPo12LYcAc0u6DXetVDsiqmf7TiKwGCSFajMUXKdg8/ukjfhDrDtAiyEZsOb8QNxlRNWb1lSB4epHyYa6uHYzyzjrRT+sdCUmvZFdYZ3Dmz/NaE5+5cQIuMWPrjHSqlSd+6Xpjx4f4UHs4WaXmHi/kWbDgutSX396U7IQP0fgLQry3f7A5AtABViWi72ZM0D4KDCkJppH/3fIXfLxBh1LDUs5ABZlUZpreQq1u02ez1t5G76wKeC5FJbj4BWoo3TJ9/OvzmjED3KqrHZy2fqTsbJMgEUOPBBC74yevfavqV/1u+NMZyFb9X/uYJZrMSnqX7SetL8K2lY/uMzLA3G+l17htbhQMzqgk3TcVC0LMsGJyhFoMcyzhQVe+0T/Sgsmg6eKD/YjH1MH2MxOweCruQ2ZU8iGOqknJ5wGSr7NZ8b1BE5AV5WumRKT+cprS2wq8Ea/gStw9eA5/M7U9mhJJtkHR+NhfbI3UpeijV69QWX/37hwXOq8JoWe5TPw5kpF8JbE7s6CHsS66uQu/WJu7OyZTvgALoBMKT46ullinZC4m4DUDH4x/yt+ANEYBsV7vJ/O63hFQ/W0SGsKZxJstImd/RkiXCcGI77jO9T3n26BFobNRCQEPVxvX7kbjn9SF2I/Y4YnxcDlbmRXW0qWaw0XdxhLWnG8u4U20oOSMncL9g87sLR7qRi4bOsfybzanldI9y6OpQL79JQmalIaC8x9iJbkD5zmrQw7CaGj7jXbUzM6aZzmzaHGIGfjFbN8Se3sjQZfyFNRSZV8ZdojD+poo4EkVjRq/4b3XnDpknCbvrBLjV7PdQ+RRHJVYWqJxl4zTAoxTsdsZNYAM77kNQl/83UbvqNU2/Mk4nDhf7yk1J22OLOjoYFahMlkkEb98kziOkHEVlzLGh+vMdH8CpLqspq91JFihdwjPO2IKWLc92QdqPwVo3GuDYeia3NZnSk0N9eZMrtIuWj6qDmTiiQ42/X4+27uMPBy/e7saEraDgmlPdTtplLD6e43UV15NUwZ8z6IDrEZc9K0MnhIBXUltiVnFcaJSH9zBTc5DmXiwwZKWYL9WGRUVITQTulQTUYPQCXn/fYRzyoyq1PdRizdX3XfTmMk2aeXs1Zu3IkAewl/bd083AAO68wx+DWAA40LI/dnWcjjc3Kdug6WvmbEx7zfZEznP1Rgdlg31sgOgOrh0/uJ1mrwP9PCLRBr0Gp7dVPG25NgXZut0qO4PkAN4i/pmEsgMy+lm7NApJcaT6WtgAXTVXW4sACB/KyVwtUb+KIxkrV7/Wh/ZRLEcZvVIlju5gkIxE2hg0HbDfAvsAWExVG73RiDwnoP8wVLx5YuYc6ZVF7TQrMHFI0ayR5xZlGYmPMZypMDtVQwQfVvyJK413x0vdRpqZdxcsdr8D9X0k4X8lZo59G65nqVmqRrg+4B1tR0Rr6/9QIxc5uP+f5+pK5Zr1ZUdjypEbLCu838dq6ZMTt25dbt9b+wpVyIMhVvnUNBdV2fe0IaHhT3p3TKIxNI0ZBFYRH1fX5ei8tzCsnr27hCMid6o4OjBuRaTF4UCaHl6TZOcsyyGtRyqNTDytOHiprQJQ9Z+ukRDUoOwaKMv6qPwHFxQhIM+KWBYpM4jsgmIAsgIhKzxuenFKBcej/VH798pwZcVl3iy4r0SwNOKYdlAEkJo1q+MabzSbzogbtMrU0AacXbGM5f8F/CUG5+LNJqU7ZkKjK7/ptv39UCl3FW1FWFJxtA9avtWRimYHx3kf6jhMLxVokuox/9ANMz1XCUp+koD8D0gkwYKgmq6/AQYI4PBlCxpT4f4t+euri1HtGz9tvSi0UlVG+eyab8Cb4oiBa8Fsnkhaua4r3D8daUP/4cuv4+QeB8Vegf5QUXNtnCdahK40tevhBxtyas7kZqlPOeke6SjsLwmhg9wY3omgFuZW0NiP7XlXxbRWOkSVdLPSaK4r+KNLrP9ta91Mh6loacWgvRzxrSB/Lu47exNRz0qTFV3JAz64lF02P4qQG7mbQh71nJxULFuwCXwaCUMVvzBpkc90axgF6+Qu5Co3b3UfQYbUtYxoQqlkRDXQrNGLGiFywfHmwWy6i2kzrIdjWjhqgiTjp2pmE8fSkrbp30d2GXNyIzyJrgXiPQFrzsRq/zeSE7uZeYtFodDQVAz6Nlwn7AqEpxf2Bx9YIVryG6VPl5LEsZDbeLqBB+bxgzkmADMvSr44To9+ZjaXcZINhFLjwhfmbICpxfiiqvxQN/dh5RatF+DSgprIuwMY4jtnTT/b+WuHsz1D8epAYElZbMFDe625woGqrs/VZhe5zazoJ0803oulFEZI6OWe1DifeTrXzr7SE5DBOQXLQPJJbQdS71Rm4kdykq+nGzCOugxILOOinRV4N7rgjfHFnwMCqjA1OQwsh/D3jKXw4RbSFb/+RHz9wWe7Jsfn6oJPjnnnqEZw0hG/QLB5Lo6tjyJlAGrp44dsi9unIN4RJm7694FrHF2LJi8MxYT9NpgPAwRJj8ER1r60RrrwNNgAly7Eerugv2Zv7sjy5S2+RT1ES8+Nz1jp6dKH18ThFXF5riFA6y0u8kkHyXGBjKOwqHzrWum0GwpfO7Uvogyvl6bZExtl2IOEusm+ZBAoDVUfNm+nvG5cRba9LPRItQapfapLLItUAhJb+eeXKeRe4JErAY1MOnbGIolwCaFbiotB89Ki9eebL79T1D/SujzmSoj60OJSLRuIyxzywYTMLQBSBvbLvy51exYpnc5znNmXumh6Tw/Odk3PxPZ9I/b57vQoBoHGO/FIa2qjbOGC+poUZG11PPTQ4vCS8Nmdb70CGVMpSxjvmpF85Si1YeMTLxcULFbOU7DPPW+qmZFPwIskMohqoqM84nHvOW9FY1LVBYCyJY4VLjMhvoDGg5XJkmIjzzrPcF0QkcsLVLiIHx9aDvm2dN19MqkGMXFGH1xg2KxRAoc8ecBy/DVp8TeSjVXitchrMIFm8z8S0YUfST2Kdhq+prvSulTsV2mGNSwX0DDD77Bo7bIhkuTJuUOcXy5ONRQUf7OyTtRtnrc0dTzcy7TpzE7L0S17FNVUfz+QX0xLOXvt46hWAQ0zUCYG0Qp9Xp51O9Ccmuf6Lc8URi4FvrQGisrgwUhXbw39Nli6lHATeZ99NycLVAfDmrZJo4O902KkDNXD6iJWyQ0TYqDqiyNBBiFG3tIktvaYR+XfMVPIYoeoFzw1KakSRylda9yIo6nGjRGwVftSomZLVUQQh/pDOTLXR//4s8VXMn77ptnmtZbdLW0THIENiLwpqoG8MCqij+vuUy09JIJnPsFMtiLDZlSnEZSu+uqySw7Hy0+/50KtUOaoMno/zh9kgOaddGt9LTb3OdMelo16i4oVa4lmHQsxrP7733HCIQLUdrhk09j6lnxnUe8YiTv9/MBx46PX3EmFLMJS6D+RBiLNu2YYjnE1O6quu2dxAMW0uRYAZQCnW3zq/6zczu82XYac7/QxdVZ15H3M1fHbSK5CRiZplajUYFI8Lsm+mTz8Zp0VEtw4kJG0W35vGy9JsKkPkjpNRQtoLGxc7I2R/QHWbMezUqa8qNozjoAqa9IPVnXoV1g1Ts8gsEKzKucCemzgauI1WZAgkFo2z2HscZjgqd62NbZ4/MZb/n/ZJit1n8XW2d+lPVJHHxP1m6zylyrrHrT9A+98NHH6K6HC3R7C8Gzw52GupHuUR+LwMeiL04rsZnk9Q1g5y2Z4xX/Am8GWd5BCPx4GomDe/aXMoBhb5R5CVn52j88nx5HI3NAlOrld4JW6lQNCgVClEXokHH7tw4GJY1+UqfzU6X0ccLtk1E/Rz51P4QWqTqw3QOxeWCphg5MeERXOqn08ydJuWKkuhMGOgYl/uga3yg0jryigLsnxk7HdGf4fqh7u7LLc/3UTAc1ypQw/5iSqY0INaqxXkzhPPqQ1V1OZ6znSuEIskAi+B50Qb1RCsTlEiUDGnCSAtAhHnnpFjXoBXodkqYKyehPkBjSJNaO8YzpYCmXou4B8KFMGiIZsP4yfo30PPJLPU8lGy26rSImJQazCCGkh0jmYZ+EdZ/qDpBRsGwHOlOltXmo3M6qS/qUOTBNwo1ADIRc2t1JGOwjJ2UE5G7PnGOBVf5yrNzjCVBdrOKeHsceLzuW+ary8cgEyfJus5qkN1dBqFnf3j30jbs+rXxAPypnCpJOJqk09tXdtjCAGfaCIKumceSFCi2FyVWyIH27aTTouXKBwOaH/tvXs5R2KHS+38qfiZCgbzrVSB0OP+VnkMI2Hx47xlFNigHSh482oAK1k+syI3ciRDt+i2zoWUltVuyIcYlL7ycqrapXsA9QhtXARIx0SA6bdlzwa9IB4Cr32ls+kiJvb1FReychi6zu9Un5ZTRKpv6a7tlDEl0ODiORG4eZ0dW8eKMz+dThZutU5O3GqSWJY2jfds2TQ1fklmCOu8c6Yzr1ehK6LTVpa3L88O2DtX32ZLQTdY8AnsnCRchD5h0BhnMzhwLrSrpK0h8LSb6xNSif+NGYyAC4uXSc8l3yb7sql8G2NgMyzF8iH2/d5Q9IrR2KTuTJ+krATyRoMr2uKyd4N41UKXraPICXMgiaALMajxF2ECpcy8MW0srjn1lTWtg1lMFxJS2MbWOJFM0wHDoT2vaBrJD4yuFq/QXTl9FT1KZZQv05RQyv7sjCbJgh42mzdkLagFRihuvoofVuVhE2BeuOjHocYQzQHHgXMZ1LhS7XXTPloaJ5TSHCCPOZS9WcxM9JTnxZCfgtvSHcfA9bb9Ie31/jI2KHp8KkMK+JpytTYcFPRPRHE3PO5AKorVdHLDHJ1cgs4aUeQWnRPFC8bKXXThr5bBsbx6HvBwDbEyMY3vZIYqnajj5ax1CzBia5Zg0yzyKRggYUbJc+XY1xdBYB5I59OuLqCWX2iy+PzkV0YvNjJc59L38r96/qlnccMLM2eoRrC1mJOSvWM1auITtZqu4UH68jOe39+SDgCWJAN4U90lSCyfgKH6A6JqPBapsSyiVpB1VaomKLvgY+5xkQjtS6ZXdiNtWF9l1YpQlKQEXPCWmyEjH78+blTrFfryBltxjNTfF4aErfoGuqRDsoefwmpUqD5JoDr/vt3ja7PO/98QDv7pY6hE8WBmVc6+qfoH9ogMuMTz71BeyIx+maVNksjqndBDJbWOvn7GfFgJ8WC+axE5ACCSUch9G6XnFAfoS5Yb/Oy9WHSXvhqYclgMEPBXfLGiIDfXdsgp0yABGbQhKBITaHDDWPsD+heT15ObclSg++TqN6AB9C82zRxs5cT4hYXtkVx1KIuuw12dlG1D6l6nr/DywFxlockJSrWGmatgWy1CjAFc/lmweDIKmLIQhcMs0blZc5vS77M7113pdsZ+wumBH3WkPS6nxF3alBWgG7zzcUT6IQma9cPMYMrwsx+92yT5gOPUq00qD51MiDoN3QPWS9vtYKoHSlt114kvqa80tSMfcurc4nAdkJyrZLT8nA2gQNgB9jOtM/bJDClrDQAxj/Ls5C2dzg6O+977r08EuKM4YsdYWT2NrtoUBC/yvOHiOVsiZRJOS8o8A6qVrRGRsnlqwfTNyT1S/aSgIrTRdAGhrUD8LU8+e7E50ClhziIQqRQehTut3UVzwEQUpnKoJXp65uxHObLe8fTkucvL9KfLfLxQ2bykXbn2njjQXvyId1L5G0Er5YsKCAdFNhRNyaJn0owJQROR6gfgoZvcb61W0gYzXvO9W45PzLmhDHIdHUydUc41zN88NfFQRSJWBFhjuw7DqGCjqZbwFuMN5OBmaKf7/fAeSmUOFmi7EU7TrhhjaSr82lFP9QmFYvulkBcSuwumBxRR1RwUKdBYjhNLeu249Vzt9lxTAj2rfLLp9MamH2CFIjc1J946qBc3kaJv6K4bQE5ajLgLFPIc3dZNLCHUcx8a8F/QDpdnRva17p4SUnbRDXD6gCtCLM7y1FmnrCHnclKz63ZxGra00XKEzPAerhMvPdLczGR9LRK8oFP5sfpDLTfsp5mF98TmfeLRMnbGccFMnk9utULCaMrCEVCC8KFVxahoUJ8jqPfG7a1oaF+vIoGBZJhs8UCWNn3QHISy65l63T5pBfruVY/tpET9pyvnYlFqqtt5nxfVUQh37X255M3ERl/5/LrM9DcXBd1hWKRYV/1JNkFktH4r35kQkXLoIW3sf4EEg70EVR8ut1nDureCsjJ4sSI3+Klb7+K4MkLZglxD762a+YY0A2eJkAAgO0z61qrnUtMMvmUviNts1UDxSefuOLjuVsbEB/V/fAWJuWfsxbc5ct8JcfQcQ2yZdw8wwSwRAZsKMFi7HFr+hLl3ulfAwIqclzBrkFvoXfcCC65ohyQNchvNFUlHDBpY9qq0xVhLAZCu0cr/kCaT55NfIY0PCkr6RQdLY3QdkW9n4VerYv7bY+S/LRd7MXE5ISw7VTb8L2IBzhOOFs0GY4DMeHcQqPL/gAghKcvvyLQeYXPbgb49Z8CMo0AahkE/Oguhgg2V9o7lKbjvvur8idtpoCDfaEEYFmomh8FcgmawQvHIW3Je/Zv7cPeT0oeZunqiKWNme9oNET46Gv8Mi+FJJUIVRe6Z/zTjDBoS9SdAB8bDhR2Fu2ySP/OVeoDfgEWzmUedoETE1VNz9LauXY3agxVKA6xAOLAkco83hk0+3xmgHfTB7jczkb3vqLFdWWL2wPC8VYGVxCnVSwjAvhAGj0UENt6p9WQ4S4NsEScIisLw5qh4gUs/RsofpsKpGobw5zmFGLoAtVoJKABA9C7BYcDLXTugzXNAV/LBIK+Iz9ABCLivg12y11lSGlGTT48fd3Yzmgz4PJYtT4MSTyjiupzX8KkCoRwPOBAZ97Vt3C6LLZTmQekSEnMpxvPmYkrAehaO9eMmJSWtAclDWu7UzLYxsCKWE1DUhowMEJn5hMHlCu75CUKlRV/NWU+A7hzuBb5REpzbfYahK0=
Variant 0
DifficultyLevel
727
Question
Two circles have the same centre, O, as shown in the diagram below.
The radius of the small circle is 43 the radius of the large circle.
Arc CD is 24 mm and the angle between the lines AC and BD is 30°.
What is the length of the arc RS in millimetres?
Worked Solution
|
|
Arc ST |
= 43 ×arc CD |
|
= 43×24 |
|
= 18 mm |
|
|
∠SOR |
= 180−30 |
|
= 150° |
|
= 5 × ∠SOT |
|
|
∴Arc RS |
= 5×18 |
|
= 90 mm |
Question Type
Answer Box
Variables
Variable name | Variable value |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 90 | |