Number, NAPX-I4-NC12, NAPX-I3-NC20
Question
Dave and Helena were running a half marathon.
Dave had completed 54 of the distance.
Helena was closer to the finish line than Dave.
What fraction of the race could Helena have completed?
Worked Solution
{{{correctAnswer}}} is the only fraction greater than 54.
U2FsdGVkX1+XN7npnV58r9rOS25baITAgamJWXIvtBcRfA7I2IQgkqwvnRjDR48/s9jiiCKs+nqEPLhFsH3efz7qC0HpOduhEOlW9IWE+/5U4ap0GNVXfZFAHaIB5BMePRrlfxZZVvt3ycqCLAryQpD1G6eubtV/e/vIl3MF1KFS+VdpsjD3kLLGrZ5/SyjIJDd/RBRfc2ZCYbJ6KXTNio/+PuZSoWw8yP2eM8mgR5G5bSMAD4qRbh0uzS/OD+xIY3TPC0PX72XtCiSn1RPI9oZVKihL9NIeXBZjNWZV3DkC31CCtzsZKWx566sgKoItbxhXgg2kGtbp9911mz7i6taih0K5UClSCZEO7RThexDJxsZ4FFGonWXXw5o5jOwNEYeXm4IzfKg4DcQIvBK0QYJ+ifck3USPq6bm8F+CG3DJAjwQAhWmLkRYtzjmTXgwdoDYa37uBhwM8xVwlcB/LzKjV7tzKGJLfeXAdjoOh2ygV1eCrM3L2oOZddle59eyBJPBBouFuj08XvhV8i+ZSQypMewUDJ5c37/wUhQ+g9A8Y6j/2qcLkVbIikXyt5dhW5XgjOX3LlFr0V0clQ6upUBS7Q+iF5e3CHvsScl5eY5fWqfuJO8D/sHjB57wqR6+iRmzQZ1+5mKZuBD8RtZeo+UsQiw8x5tkwg0hKtWEDW3y4CiDp3Yr3JB4yvW348MCjhUUormK5L8h8QYMzYuFT8aiqMIjINi96FApNRRQrFHTBX1gBrAzaBTuImC4azrSp7RtW99S7pJVck98xbUx00KuCivcg9RKaSVUDX7uFY8ZMyy5pUepg//ZMgQXUuX0ZJiY6GeZZmskPR8auhVUOXaQKidoc3D4LgSKgomKQ/VvMqKCSMxe9YNMRhvnrOXYIm6e6EtZy0wQ3xI01NjBpGItj6CkyapikPPm6ofiaOhRFb8SSgFhepHFUDOJ5OkNUQF7tKkptPGOJB4lrNtpGUVQ5P3c3sC12UNvS6w9/Qyd4RTAmQeybDf36bxk4MyD246P+0penky7RwG3Tg4NS1LdZ/apdahDpfLPSQlV+lEzY9Pt6YkHtyqZP9PHa9mgwMs+xjX/8FtwL66D5z5oPXpOIUuVax6xFasEjFMzRK/bJH9uUnApoEidOxb7d6I3ZChJAnLGgQY8HhIhCdbddE8FG5NDGJrimz6fjkaGTTK535u6CxK2GqSvTSeyHXUOe59uLWBWC/lY8Sj6z+xL4YGRUkH0gWpFVVKFe5TeotMwLR+5hg0WJOIPZByNcL4qZMNiGEsCTFhyAIzkanhKgf59P66/tsbNyuB+ac54JT40dJRIIljDHhK9hh9KLZPcGRiDdmuJxYEa9CHF/+wrYHjDtQtBGvjSEesYdR1nNWea/dLrUkzS/vLlPmVlWBo+wmmg8GbW2TbADmAJoz/sfDfHdE8VRMiM9NPD0Dl37oT8KhzGfU8/HG9/Qhxko1DDc2H+QN1R94WKYmyKyGkHWCgITORskZzAAPN9EJeZmrlqveeeXc3CnLbE1oweY3YzfAsDpRZQxqZa+P3L+Zxb7EiZGb91PFzPA6Py93iiLalybg0AfdC57XEAf1RH1V0HW7I6mipBhf/G9m0qwiEBQJEJZ04g5w27ZqhS/Z8/lpQvvQdLyF/fMCd0UVJzVJ8LvtS2D76vh/BT5m+sXuueRG+JhrhrzOTi9l6zdhtbtyR1efeS9a2heoDW9L5s0QxuSKnHK1JGVn/rvJVKl2A5Dkx14uGhtD0sAZ0b9CeNrBIIkwmCclL2M1ZIvj+JuYdu0wlXtHlUH+kBZ5tQfyL3Ir1jBWffQ6Syv12N21X/u0OcEt2SQWzEEqWVmVscHJalvs5N+fE27eF2rfMnlJfsdEDIv9c9zfSXJWjd0NZVGMo8di/coZBJ/JBZucNGs1M1Hx258IgZ5On2M2PtF+LASRMPfuLSKL3M2BRLgrsKSth9OOf/qHd5LMlJvwX+tXA8v7b+O+2fo0bRh+qolvvymqZMeP5qqeFizXbykyKXdD9X9m/6PjYN2ZrFm9IQO/ZU4mVHVaEPVKeoGzBcQkIQXm2WSOzxIEAzdEb/Tnyf4U/OAS/CoWwcOMpy5JrNPNG2YS1sOcyTrY3MhMc85EQgDFGcUbKHXHUynnU0IHb7PeE0kRDKLpRBrZMOywBxYmiqFeBOa52hD5rWOD2RtT1Pi/Na40mZR9QQQPeylMh/zMcVMtCwf2cWexX6Fk/6py76ehqWpCThwdXsqaaoz8njW6r45vy3ggZe2LvSSPJlaFH6o/b2Ufj8hi9Rj++he5r/wMK6TqJSqTBZGUcFnYCFime/E2Sgj6iIBCA+sl9s3i6qdOGnMIfD9PxcogrRd1W+jMplGgdlrkNfhZjwCAssJLD181Wtg+sxZsSujYwEjwlPF/3Um7vOBATXCngBqXJCS5CtU18qiU8/QwlxJ7yFn7UNCTxv4qz//XWUI5zduyAvr8t99FouLgm9KCbw9dgHnkiHAh594kLoOC9F4v5ntPiL5vvglrNt+laN2/BHzrZGpraM8T/P2TpD0n5+h+gQwIJ5inKl6n160yt3BVegCvwY1DDWkH/FWmDVvHBgRkSQcNC9mfTC7ZIxs/zK/ImYMLieTe5LMfLhaLdJ6KMtVkAKl2TbpUfklHV0CgYXtx0B9bBeu30QKp1MSt4XLeUrFXF32CjLrzn52SQzS5QDdAEvDs/hiwYVWNVA1zCC2MyXLQ4kYeMYoEkCNSAznlEnH9d7kai9/UATtABueV+2LcitrMZnlblzMc8QUyqtuIVJTDhRozrimZd9x8QAQQp7Ch5khtSfcBoyroJwG2GeFmbeDWzSRGraP1ICbMdR8enufsMQyDw2y6NVhxHhihkiY2CTPTezx6WqX4KiB1YSpBK4a1GM7ZWClwvMWGaA9Qd66yTpAdr/lCPLrFBQjfXx4kIexQJDbHFPUnrt1S9yJSWPDP09cYwzM/8GaNZW/8xx59sbFhyBkwKwu1b3UzxfkAqO9Y1iQfumMxCNrGMItIyhoN2BXVi9ObkHle3UmZBL9B4fKrCUeXrF+pcG7mVNwPRJtRw6YYqR9+JSevYorYPiSjvw2H8goYQh8VUStM1CSJNGXMlY5t2tV8Ap/wMtgtg8IGZoj+8AU/90g9YZFW3Va2OIoELmZWNDrKoG/PXC0v8DXw5kZI7okKYlcqVdDGF//z0wfFVeEj7QVMuvpeaO8W9Dc63bX0X/Twt8bZUbFBM1YNUfpukiXVJp7iVA0ESACyOMm0tYlpjndEZGi+2l7I17L05u/2vyqiPqCZuG6ufpVsHJHJ3/simXqG2rC1Sg6X7rhdthh5a8KoaBkEJv2km9KOlWBxTjW9o5NaS800HeqMk3jN8FMGFsBCCpoqnjzI2DtcNIVJccTS2lEXstJeys6j0qP6yURuKgW6thNCHPqDtNkljmEHv6XDZwsGeJhquqf4p2Sf15bwmQF0H44W5XcjKeoP2RcGTRX4W8Y5kEaWuEK62/vJtzQSZz4sqsm0Fjcai3hiK3TLmRuJfqytYfKtBdrBErF0SA+9pE0coc/z5PieaYWSvTUhUrqoIJ7DFQ0F+17GRWYPbPCtuqeZ07bogl2a8qHL8VpEWpDt7y9Nt6+PGs3l3K6EAE1p6At17t58vbfdYfGicfq/XvAue6zTv832/rAFEB9iDzkLOTK9k+cDYJ6XUhV/2oHoaZdlsfdgo3ToWyflkwyi28peGfP3n26G+q8chHpFeKbPoCZPSjlajrDUzZxIG2Dbu2oBuW6asWYryV6nCtxeXNfXgXhuq4hi7eAA5QvvsUHcww1acp5kfEyvJH3GGt6XxvrwVb+FlMFIqGdoDq2KNmXUpx2rKFofACyC7WTqXejqJt/VV8WqqXBTICNVfIY20z8sB1+adGdjhptsXhRosau/YOYtOqHNAzcMKtp8hp+dsseYr0jLc4Tuc9eGlItiKrMekcrfhMgITuXisv6tCEHftlNq6BjaJFgZD53emepSSDlWVwCUc6lmLGqwbRBK3OUlzCeuJm94gad77rJIenOB3wdjhfaJKsGg6bEN0MAmg/FtYneWwa03g/xoK/p5MS7sNxF7WefbFsjPFodvrugybfiVt0cfY4c5KLXQIH7MbGzhqpxDsgWROqq/FTA4j9vjjgjM9BaweLZrrLElEsg1V5DYfJ/bujDbitKvh1b0rjNN2IKwkHmsJTLpITkexAzlrzh5cH6ILF0iXXARzTqsoJv5SXLM/QsAyqUSzwyS9+AoziG0iSmErHeA5ooCnPMPc5owGkE1v90dOvkjZIdSMfYE/GZf+fvMBpgRHGZzoM6gIWBZdJSb2AFqgAsAaqD+62YN4Q1msMebNkErKqya8MFEIxEz1R5Bi2kcRJezei4DdIRMDANFlaFJaPMVyKgMTRvcScsaGMQNYIhH/wv+dqZHzoqpZwELe0JAk4nky9qIij7O8Bm2v1sivvZhlwpWInfmBF0zj53mhtkXyP3SmLgZYM8H48/27EDii9LlxHQVmeeNWz+58CGSLNxFnK+zgiVGox5+E9rXPfSN4Bx9EpZnwo2hMY1AVZDree6ekLrN3vxWHPi7r1EoyGg/HAZDwJGOVqcLHS+Py50MRQ0HDfbeMCDU819UJDUB+uw5yjmbo2d4xWIC4AXospBpUFvp98XsZ639Hx+0WFeCRNNBJ0ymzp5IFvDz786m541ez4kZWD/gc8ENGZJepz2WuVOTauLyW6FIcy2IGlcwvRk2sinBRPTA4RL/b3/NUWAhxXuSrQzmqywUQs1+X7Cl2mxw+ei02Q+5ZAJbrtAVsXChrw9YibQq3sujMZB/7pvHC3neEyoxaieSDKonY6yph7+xkKtHGOajXG0EbxBODFWOf4Ry46t1FCcnaJZFk0HqSMWlEHL6kXbDBIy82QmTUhSaiGxkkh8KOLmP0wd/wKjRId0JFkigUxHxNUwkPYQrziJ4I01yWKwe89RoF9vhJhXD6qW7nBsPxmOviRmAqWqGXq0kj6nZiNLQYEvkR6SWDXPaOHfVJ69Nq+U2fJWpt2H0NPqJV1Rk/Dk6SmHONZPSG9WJ6//xljoX9XkHSi1qXi+1jwpv91vqVb5x78fmRAvso+l6I/GidMwzNlIxw5F0DJBGyvmIO9jWB3p1Um36w57H3bPnT61N/rjJP8UlO669mDaRFu7SLStJ/VDBnIYjTWD4dP1TBm+oI+KVG7fROCLD6Ti0Kd07B/W8NARfKYhDIiejwyDMtlfoW4DUD09Gt2UYUKIJaRXePjfTVPWBeQf46LN2FSIb7FMF/YoJNeK3cB5GiKKvj4SeQoGVrU/9tSX+GnvgayUDkA67pvHy4xo+l9ePSJWTWPwhHgQl/VgaCw+unKB/Ki9aKk812xJ5oIccHC6oV9tAe6PzoYVDOe82UqD7ThhhO4UtRn5kz9aC0NqvjZjUJ/fFFROMhyq8ystOH6UeCaLVJnucLizQPF6n5JP+RYb0CmlbgDgXXWdJfCV8031WNkejut2PvszsH6OLcq/Zj0j0rBUmpvJCEHnMVb0q4786Lri1BVPpt6f//w5AzwDqz3/0/Qout4ykG1WooGNrruiFi+bw5rZuRj7uWFFIZQklx8VnMa8I6vTGaKa8BX4C/RcJDzkpbmJf2giigo4luxfzSbxdNj2wOc+4qmdblBx+Oou+Yvp04qiuiGC1f6DJklfq79+mEYYF3fdqlJfrmG2W7V1UsuB0gooO1Xfn1I24cpIZsNbPBzHeegJGLIgLGHsPhl0Qzm4t0XJQdoXg4jeuMKXAkOfj9ycJd4KIDoSSKZWquWRVkfWj2nZjOD3xElrua62HMRBnnn3BwacTQW0sFsLFz0Sc7zk3XIIvvf0XndjGc9PLn4T3fwtBEysm1IUV7boK5jPWWUyzG5KSJGi24I6MD9nocMczycRx/ugaw7frLHD4B1A2V9EsHCYblFrMI/599fxpdh4UbdrnoULGFd/ZP1paVFXkqu7xmmk1qWo4wjddRJoLOsGk87BuYHmIaEkwr58Hc4rx/q3KY8LpN5aV8GTqXDVjG8k7J6GkIPRUMaYCwg5DCxiJpksTodluYkeoduyBnhZW3DudtHZsYLUc4lMUVqou6ROvYb7GCM8gAC0hul1OKr4aGWwc5NMO+sLH70mXQ3g8rYIxVU6UEjLPO7BvR6wil0q9yTwQmDroX3Kg4WWCluQ64Fwizq98HBtO+9slP2zmSLTTIg98oQraL2JPYlwCte+qGDCF83IGbz+rvir0CQz6mMkeZ5RAcNknIQ+0iIwCb1JWd/MIZFF6c7JtVvAf2t1d10b0wLW1lZp6q9018N40J59/KtoO8wAKfPWuGkt3nFKVLA14z4djWBsJB6pFmmVJaDgE2IIzMgrZgtKIfeSOUZFm1WyU7zsAHhldkzfWD+kc0JkyKMl/1XR9enVLtVCcjqdQdH/offuRDxdUZkCb/F5sT8JbAk1798X8NqCMc0MNeK1uqwiwVzgVmJjTFmdjjm/CTpxgTG2M5vB6s1JjRLjmJFTNXqF4p6YqcyNHoNuEY5gbDcZK4vKvLui6QpTfdqpU2kGacRwIhzgtt3fHhRQz0EbwakDxfA2C+gxk1VJQzzI3EXavUAXRapmT0+Uf4sHZrFp3utlM7KH4F6W4EQ6aYvGgMeo3L9OgsSjUwjC63mkGZi4gL3lT3S2PEvxFl8PmxDv4L5jmaxUNtoInyK0ZP4LJ7EAsZXu8hm7jYEPtMKU1o6CxMT+HubawkHpJgTjtNjW3nKjTMpePVuXOtk1iV5Aj1t2ZM2VsAc7BTRzi2OmgAzJkjHGVzuhbKS6CI49ms7+qfyNAHQ8hrnvT9t9hmkE8jPRr3KH+5b+WxwNBKs0l93D5JOY9yhWRyOW6c9/FQsTp3/nxCeEcN+Zzci4Nq6UM/NEh+mWTk4X9Uocf3OxmFNRPxNxPI1ImLHUPydGdFdiSepg3wft6LwXuZtXIrM1MCKbHOr9Fd0SSOje+Q7M45sawYc8hKVlLArIuRZ/Ia53hk4O8ZTA3WCwyoBUonQd2VIfxLvfCLC6bwltDf9dwnIowuZJUE7Ow/xcWt0v1jdTIaMiVJcM8Vjr7KJuYf6N5nBTgiY9Jju94gqlYaXk8WGMBLexMgQufYYkI4ibj1/mCmOD1o7RNkbNT+d/WlHjJRuEyOrK0mj2HkhQoPc0CL2SHcwfgCzx/155za6+4vInLJHxei8dC8/y+O9s5YxpNTBdBCYGcpu57BcV09R4oYAnNoYOpnrY9hS7BhGAOEt3Q7MU8yqMEEibjzYDvsQP8ZS2USVXaotOOje2P9f9FbQbG7/z9Gbo542zOGSdfD477W58jtT9vDEctSEXr3YJ7KgwyZwEpb1xWql2+rsL5PvlfSYr2US/bF/2k8QeotLC+k7ns3BoL8IgKSaV98JFHvJV1bB6nqgtG/ePJ4Liq6Sh0oFZGgSz+qjXfC8jCCY8kaJ59sMnFd5oBEGAj9EF0s7H3Rk6vBgN6WZq1g0M4CXBM2Wif69aUSC85KutumO8FPewsCwU7Eu6TijLrFQ9lZkb+cyQTU5xFCa+cJGFi+2+odOaxrc8TPzFr+1ibt4TYICJokq0WtWyRZb3lAlwr6XLgaC/eafKCEztTbGl8GU0NdlB/FaxAOVDV4RTLXCVM//oJ5XI4+8VjaSaHrBG0dbWrdMzv9GrQPVfZfQshK+0btd05MlMdiN2S76Qt6AEC9VTgk80EJYP6/frGhDFpwR7caRAo3c39e4o/GGxWbKqjYEtw7nZygF5Yy+RDole3O3FtpisJVCLCgdC9AvzDgqWjUuZTM0yt+u+1f84wnxYb4lpqEXpiZdOCmJootCZOr1Q+njCPsuxwk5aSLHKNUTE0Z8Cz13Ubxg4d+/UfdU0BWrw7f2VXGEDemacHIqKgd7q5ypqFIhWfNxvk6T9dwUtNgCbzSYsOjXFfrv0CKq0XpGt0etpJ474ra8ST2FK+NNF0L4pijFh11Z7yXO11ONkCsa3NpZAf85du4TF2w2+N6yFPRGL0sv+p8HO0Gc706LIlFYehIaHBtgDzvKCDblrPFQVhp0J+fdVJ+GKoJl79Rzu5zo0ypQYq96t1PhaIsdaBXhQM9HP2q4tGLJ+OJ9+f5iwUcT+VYFWP66vn6MWDj+1B1YoCScHGLghoczk/UX/JOEjxXKq0Z6X004KSXx+snPjxRfWv9VhARoheZWxsPp07jav3b/YIard4XcPABhgDVZ7uwwfe5Kcatym6jn2XDPOsfkmX0+8YfR0DTsC6c9Lz7JRXIHPUx3a0DNI8B2A5rXJt11SSo3iOnfFSpkdif2iFR/20oJB50SGx327gxyssXCIPZAcZMnQgmVqg2VLcG/0+34/o6bbyDbeJH6NeWXOsTeRBQKfmCGQnPWTEfXtPktcTiEb7vlskA9h+oQK09iE4w+MRJjSqzxxvQjtlyAbV1jCg06OH8OvQEtg03setAX1RnaCDWCpefYIxBeBlDYoUxtc2C+F54KxkQMnUXbuVEX6ykVCoKbf1vG8ZEKF+CMlryF7akpy7+zAd0ZRXlPZm0a8YOrfyDBa39H0hHdvzN2O7m0zOk/v9Xlrtliwa7ni+MNoCtHXW/APkb2e7sDyFxBMskyDcz5IRRVR91PvcsqsairAArt1MYudO2aRCKNWx6afOZuzhVCiLAqXK3l0Xgnkk31c3IzIqiQXOEh75VJztgUpNpC0XDWvZ8nEyD3u3Y75T4cC6kVSLQD204AIZaqX9hRhwvkWJQ+uA44ZmrKvs41PlNKnaxyr31czkP4OdSKzpX85jsR7bs/7wJKwhEXZwweASEc/QAk4EzEr9c37dtoFwyeBIZCHJBPNzxrhEnD4OzCzEp1qDARqyQa9uP8Qcj7d6b9kIyQW+eE6fdOQF5Qpg8F2s+3uJv/MBokwQ0xBF6ZdY8YRK/C0PB2j2UYjtoBGBVr3Q2O/L6FETzZUQ38Aka/Z4Y6/u75EIPauBn7eG9IQigtkl1vgmVNLL6mLEJrOsvxWwLaInwyBp1swN8UEnTxNNhV2zp+YmgOW3HFb1L1KzzEAd8ZUXeuaiwnMjuowHsXzOMWjYnnlPXl79eQcJEbX/Ci4WULkLAlTl5lPnFrdOP52A3Ehf07I8VH4Lr1p2xiT+KHNSc9GqziGNa/P6hFOKdcwaKGEo0UfWHjmAj6Yj2chHQ3rWyR9s4hS60xNTELelVmR3hYQ5KPfjBbt9AhKaOJISDAu5NWrTlOQZsePMOCuLaTKaxZCvULcRd3pY2DM6F0Mbw18DbR9g6ElSd6C//e/JUP8uMBwj/AbDHY96Ovi2ta7MEKFONnSDUxVQvfaQAPwHoDFaRKFYCWK9XdhWeL2vu7GJkNAd1INsAGoM0Sk12GMbUvubembnWDtBVsDth75UjXrTo86a/egTfzyBvZCMH61Uad2thkiUnnyzCKbtdCrIGV7gGxaDkGII5VaYkELv9lTklNDhEslivnbpyTMHczbH89m5GbYJ9OvFLeQaYrYrCj2Q/uVx7DXp8Sj8ZT6U359eX/H4ulqDM2vEF9ldxgnewpXn0svPMzX3JP3msIQZPtMSX0ho0XNln0jWaGJARLZ5LkZcfedqNuCh5J730szSOZQ1zzLSLY74s2mEiXTZIg5jGuTHSuDxju0KYsKVnKAyitDoMtC987JQ5cGKm274BFzTF6o0V9qSlu7Plp+lgjdPQaLEqfGuoGJ1KgTbg+Gk86XYmHCGiVtX9HXd/yplAFLukuf/OBJWFEf5vQYCba7BX1OYsETww8uXR+7tIO5ZlO7hZaLLOy2rJjsGb6E1OLKZCaMBt7WWC3cg0P+28sVsCpRpOC6vC6ID5jz83e9uxPbZNH+r9rLZKDbIuqngEs+Cmr7CUtLDa+Yt+yHkwfqz0JPnn+pqtTzoC/L0vCKzy8XJOe/OVnwN8PcRePViXSJ+AggQcnzmH2Bvkn5GRMbxjZpqi7NyEqlEN2O34lmXO81Rz5tN3wQTiFU5Xu7TC39vxbmpSqQOTjRXPpmJEKQT+DX9RSRv/+ken1xbosDAiGOakkTRB9KZTh64Ucv5mC2XR0g5rCKvQtEBZjS5fL++tk7Urjwy19gvSDcSbueHwfzFpE+RmiA5gmb9OZYcEXbcnVBbi9s5Da4FYz5ddOSPSZ6Ou53LRyGnXVy7cfn47Md9QTz2fLEvD876uNywIYm95ebK3/K4dmuTnhJjPZtIezuxO7zi0rTXRsBZWBh5ty4p0ogrxAWwXXLYGwG3TrOrAPd988PfN74eFzwyoVHZTM6/PRY9m7gN68m4mqC5ZkSPlCeFmjivgd3QokkCCg35HyAmZrLJ9HrmZBJbrZT9d5j5IeZQ7Dme6H4CUv65IG3aXpd+S3C5x0ATr/4yOShzMClV8TaLSNkVyVWtW2CUUsp89LssJvp+bVANNTNSRwq/Prco1R3iZWiN/XkwnwM5w+sQfe8GvdbeoWlveUGnerjk/nsuofEvwvj2go3hU6a62rS3NqxHuwh3J/Vxo1G+HQ0NlzSTD8jPx6VC5tGqbSDKcggOGa9hmavtW9ds2i7lbrod9XkjBVZWxSHidjRfPXjDqZlMZ6V51dqFPUr7eJjeCgjrFIxxRq2RY9ltvXa3X8aXqhmwwARN3Kr6qPMMcFR2clZvj32zbQqBesZgS/klgo2+FX3mKKofWGy1WEaNLI9/CHrXnAXYHfZYdHbEiIZIwL0TewBkyM/ggYoDpoXCgFNwH7zrcK23TAuaKNXA9ODNLKNa8f41Rh8k5nxLqkOEQxkAx4lxanIWUVW3TdBHrfOvURmNjq0BEuK3hTtLHn9JMqHnbtF9o5fhBJPp/yy7zxYXoc6JIYkdN8CA9ytdfkE59REk2Dm6IVAsotxndmHTaEvaSowp4WM8K91FfKCoA0ddCcMzZI24RC6XgKZXERqg5ELZ+ClweMtbrTFmwCKmgBs2YxsfA/h2kK8gGmRxaiR+OmSL89iiJDuGOF3yivCYeVdRKCIIMmXCZxl3yZb01tyF7QCG+dsRT9aPI41BQHuAF2THO1L1CYxLkJ1WMKXjQmZFQkW6yUQ1xbuQzyZslB8vgt0gbnf6WoV7sBSOJOYVBOmcbjHKsIOOvgKV8Wiw8FmDuu618ZaBp5GIO6S8B1DSmbVbLMwAjP6SS4VCkYxo6Fb0hv2exkMaTEW1nWBAHoPbIKr3caGgYl22xC3JYMEdyR8PF3cU66OVdvZ3/Rl1fEwvy1PtJwiYPcjEBRmEP6TN8SlRkW/kf7E99OmZG9UrmWt3poCe6dBRhhngHWzZ348Pa6LxeCcbC0ev25H85IH+mX/INu+hMyB6QcI/zyAVgT7craT0lmJd30CSCyCO7RxOnt4nFtXkDNsFlz9Lri/B8J2BQK/ZNzPn0TRKYMcvFycnggK4BiPfA82Ji4qqHKg0Uve+hko+0DXz/ppt8acLSSeVh0M+fbs7iPedx7/RGA0h3TGk4D33x4nB4WkaLqQ4c4LpZ75ASinLIltTU+Ye+V3hs+rESwuRLemfMhijvVGjNSxadlmtzPCO1f1vTasJ2/WH+C/ga0E8upLjdJ2KRc1B2wuYlRpkkPeDjNpoCNA4PbujLzHNQX4BXGeEM19MQ1RwIgifNB3NSvA6ipv+PhEgDBTtq5Q0UojboPcpZIKIUtevPXSCPeSrYbNDCiodiL+hXRTGpVQapu2aHhgnLbRm6/xR0c1jS/rtl2pvODtfTrw3QVx6cLwxNYDy8Eaz11xZxp2oSFJciqJW1QHQFEI5ifr40C1OMUWuQ+6D+dhyN2osTFWmVE5z7ihDsGVkQqRaVc7GvKMgXmgZkgHWvWOn6ro3uoR5sUHp4OIPKF/EbeyMSFZdOhK10ncJn5VTjFSucYNNaCyyW10amwyfzVOvQ2UoRqPsWvhPFefSnQ5r2pTiKad+eY1zvLTOITLfm+Q2qRuwZPWQuKUCnhyslffjhdmhW4vjqbKnfzRnUf/aiMrNmiTUg4kZkrH06xNG5b6cvSubQbAjse9tgiH0kHjKLSF++WyuImBJgHTJt1Z8k5+qO6sN8M8C5d8ZIhkV0ZJRL8WOjlpar/CDYY4ND6uLnuf5EkIn9kidYLkd1yR3xNWN2adlNQqd30ju6OyoP4+CRUsknne7hc76Mvr3luBJ0aWtRnkk6roFsf8WcU8TdYcY3silD37jK8NOcjmvpZHX/X5all7dhEDQMfzca/S2/o0Xl3ab32fot3QHAAXmOjdYL5SA/QfvrUI3HY47pUrdUyJKiJVXWzrQCMKVDjUiUxRm/6oBhv3XNZlX4FnM7tE9JME7mlENiFjEwL6wXSImsawo2qSeAh1TOyFrKk0m+R0uZEOXD7B0wXy3ebR74npueJDHl9syI3phKxttUUgsdYQZ0OR0qQQHVTEx+0uh5XsrCvGdutFZGH2S9mXH0GsPEJIdJKtRHgwd3ChJewuhov9ENSMBQ3QbpQ1MM2eiwh1enjwyUD9d/m6uIxKq+gd51MKeGLGo1vOl7vn5bszN0ia55JMdiu16zq2SYe4lvSqhse/LjnFfmM6nSnWwkoMpJ0pthl9eP6QMbC7uYmiAJASkv4XsXpq57Z0zsdqob58b4l2dx1kTY0dhwg0se89/2Z137Eqtguvb9PJekl27qO4iLpNEp+nhVmkI+AVvFWY1tN7w7Aq7eeDLG24EzfB+3VG77Anl5nvfGu1XtJxbyX9LqzowQApNt9k6F6cM2IndIq8BXopEDYb4+/v4BdwUGDj0no3iW7dW3EXM8LWJi6+vE49LPNLUw8WfCghWmzCokXJ+x2iHVOzMNzqSSo1fCEPXGWTUQcJJk9+4TYZO2cL+3qyfmVm7BEKXzYPP1feBRBmzgUOb0rBouGTgM0Agas6RNpBPIMRgK1p7jKTZYOuO4vOo5n/4SGxdW8FR3AdsLBqoSENOWDjCWl/9Mn2lD0QiiUWjiHRXEjQSSXBJqqu+Gq9y7Luxb5H2XXjIGuxtWRuXHx+wNSTu3Gsc4d8XwMSpgsve4w1T73EmF33DGJEhFfozTCwojGZ6i1nHKA3yT3F6OnWiwyO5gR7vaUO2zdX8Z66OC9Pnn9AnOHbnNKDLw76nrVQLZgwvx9unlKFq9kovA7V6GpjC0L+mfmSXhtXTGqrOVEVp8pxtjXiLuG6DKWDxUMN8sXJRqNq+D5mPJCMSujzeaHazXbHt2sEY53eu1O1bs8PFhcuEUVtICLGaahJzt3Bnf+s5nccDK9UOwEbc1F+wo+LKYjzxV8DFUln+XnLljFGFjZYn7N7HKhO2d4honZZuuiGTVVkh5PmyPLEah23yaE+EtRr20GA3HNcKnnhKZO79sDoGF4EwgTfs+4qSH90jTFxuJsZMuhd1O+Iuo3+3Hd/fWLR4GtCKDxwf+rjLGg2ruvT8zkPhsmdyYnSSHLzW8ioP2a2k+yuiswC8nRvIkbirGZ5FH5JJLXBfYhPbqgTg4Q/v/b9YWOwv2awKBbTGM9kP3GMxKzsBe2Y4zGZoM16CaY3VFigQPrKRX/yUjEBvc1GSsaOjTrXVjxDom9wzftvrXHemuEKFnIBnFLa0A6WTB9pSHdbn7c/1hSq886rLVezUup63Qnrv7eR7cnMnD3AlrPCDyh0uBNnnbvHRJgVwFYfNKR4oX5Nb1hwzd7hhwzxaavRiNdAUBr9t8KnK5bm86uBcYNNLDhkgl/PPcHqvyo4VLrc2OtJCdovmnYoQjTfhHJtCYL1gQcXWNXTlnPpFYVWu/JT0nbnXK0wd487jqUT8P5hEoVEde/yn8OnkFPpkzIXT8Ur9FiUblGT3f59f0RC6dFToO328SeF0lguRgZ7XqKr7iXqzWVmAZUG5UmsyKYRS0JKcU7tk7z/ZlDEDPgaMRahTUSH0ZKcAET0rLW0MU7MTvRbWsXTuS4aQDByjNHqoz3KOGn6/HDwd9Im+CYBvQq4A/XW1psO3fZTsOhTWFOqpOwO3QVvY7u2Zja9CHTCoqVd1z6rt4vVlI62AaITi+BCWM7U+QSqMaD7UOZSBwyjlBQgd4jE0KC/6eTTC/yn8D+2J/ReKR5yoYwQHAhK/H0Vx9yUxEiqCesFbGn/n6KRoyGV8OgX4LI6TvLt3uMaUJ1bqF8nqQGlcgG0E1ixw==
Variant 0
DifficultyLevel
606
Question
Dave and Helena were running a half marathon.
Dave had completed 54 of the distance.
Helena was closer to the finish line than Dave.
What fraction of the race could Helena have completed?
Worked Solution
65 is the only fraction greater than 54.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers