30101
U2FsdGVkX188s6AYakmxON5qaeSA6VhvZoSaVo3PrmaVdDfXeds/+QK2DPAozAOWClXAJkuuuTgiNuSo05NyZopzGdKEULRl5HTbpyIBD51zOFXXn0YzWq6hR0e8MiFcuEp3l8h5Q+h9N93ldziTcVPCxLkPAwygMknF5R7x1TB0DyxzBSN2yUUjJEqKo+aN92CC7GQyMckjruVkNpnOgkT5p16VJV6jMa1umd4TBSjBtK3vORPq93wl1tSCV4mRL1RBzE0p0waUDz3BdSbokJZvdRboRfOUCLYY9e/+JWs74OJbLJl/sCYb9K8bdFbxLMQJID3lUu2jSjHw+8byCQDSK2zAvdZKlnbI57ByYJDN0/yAeqGVYni1c6ZG2L9OydKN3mdSxq6+bWpJ/bnQ04fJihF2QNudbQFWhrZ68okTvphZSSQEQU7WCz3Ts7tkqmTsXGFuXGgGDIkDjZK0zWI0Ub38+N3ox1/s5gJYPYSfhSkP+8MVjG3+aUibRblheqY+DBnKK1WCdXMZ7SQBPZNaZaUcJMc6mCt0YtAvxa3xfp6Q7fo7UOXB4shj5diyH0BghnBQhFIUkZrwjy5d3F3IHLAq/lFpIFur4eB8YliIyCMpuSLV8fuvYwkH/x70ojb7uwLaragfffIE+pOAStPNwzj3ACmCud5j67KxK+bm1qZ+65UYTTrXXRHWGdJwaQq0pAZRseNcLFz4IjiHfDEtZZTxMDMKhJCJ4iFeCs0QV8AK3P4yRch4isr79QFiwWilMxn4CzpvSq0SMT0Pxr8bz9T0d3dxs1hYYDgE5m6OBVeFPUW+1abtB4JkRtdR0pqNux6PNodX4AQCdq1xqCyjZUpCZSwXmNcv5fDu9v//PF1ctNJmTlHLQm4NFajS1KIElQ/CLG6saveU/ewX+42L/TBHJHDF/Wh34BRmQzQ/oXckEiOvP2RZUfNLH2YVPdYNifwibOO8sce1kp05b6y1fEEq1ov/sHQBVcrViLqgnKwPzbtdYzV2beH/qTuQJgm2VgxSh+rdCDW/5rl0NdD+OYm8ij8M9vS7a6LtP256GshRKuN+hqJNOgDOgOfXBkeGEIgpWR7lbNYJCB6yhSiHR15mN2ScJZjIkgH53CHFccRI0bc6viA3CpFbmtVBxhyMc8cwuXz0rxT4HHyoukwMuEmS1xNYw54HSwznuhmWK2OZw9V4Qo1jX+UnPisQlEMucRMSUNddSpzIf8oMYAR/ULwMMbJXP9XTGooRgPfVmnbWb+oBBUf575B1ACiPIFRcg2C5CKzckYCWs+zNEoWiDy1EQyCcub1O+7ONdE8J26u/vmcoChRLi1uE69qr5TYA7oych/W1kHp9nU9b/wv/2kg7PmR5UYh5WT8cY9QH8U1rjHDbk9eI4nYEMLDaXcObiB5dRDTMPUnkYK4LZBN/WEBnfHvSf5rtQWMQYKgHblC4D9nZn5dVEQ2/3KVTKT1UsLl8FAQi1RsdPt51OBp8E4oR5JVDnDLDc9rgJq6XostZtW46DozaJGzOJ0OekRKBfclOBeXe6eKLS5CA+oM2xDgMgr29RziixNDfCXhgSBasaUCwqSrM14/ogfKeweeeysOByNSOFVzEn1dxD/GyWRGN++PC7CTFkR8i6eSQpaf2f1vWBoX1qLqZLlrHpRelt6GlQhp1aX05JNBF3eGKwOYGX87IjpVuyUHJwj6xJ2olHOECZ2UafGl6xlLsj+qmfFcRhnt9uHqjzEc4/Ux5qLP4eXaXna0hWh/+XsHZjKR0E0gr7b7Zpw1L12dAiWLEKon6gDwHSFie2cgfMTvjIHRBf4u2330IXXok1CjlEQ0e6x9WpHMxIXUHW6iLRrq1UIiq9+A1h6zOMk6ZQUPA+0vQJCuYOVxcXcSDFXVoyMssDLB6k7d3sY9HB6DKZh+wr7aD3IjvdstUJgC5JVZmsQEkxDI8iO0uX/ymtf+cCX5zyWLEFjZeZhVp5CeaAbP2m0tOA488RFN9I5WddiVO7a0tCw3zCydjZ3wyE5/2lvP0XtWGWv8MNeGceqoa/GABEgX47Ug9tC1T7SW+yFMZKnZgMGLSUNdTL8c6vGKklPiOZzukocSAm/i8F5KAFad5nel/YkivwsHSAZQLVZTe3HV7a0YxeEDYLXwLxui87QULyXciyGkrj5enmdMvodCSjQSDB2uFr2tbvO2RhlqrezqRX/aXf/kyj8PaQSYWsHBOo/kZJL2wd1ApZG4ZUbzZYbgYCUjuGBZQ7DfxzIsjZ8aydoEQoYvWshAYReiXYrVoTshmmqR0hMGsr3Y4rrw9sdcnAhu4o+HAhi/wcREusQJjQAJy8QfJGowGB8/tjIE4MkPnmxTQ2gsfy9imL0p/rWCLPmlCeycwgiW9eu9gZqsHfuw+sJ6WW6e+6ArXVReMP+TPvXSk3vsIhqPMNhJUZ6MVcD8d4Rw4wzSPDV3FQ714iGJfMDQGOvFZSL+uP9vlAFswgZ1wYhy2qOhd0l+0Zk2ybYh0ods48DVHwDD1pNnRbB4Az0aDAnP8sN5uHB8fD4xoCCtKaeBmr0HQchKyxO0ClmOlm/kXbK4QN2J8qx7NDR5+IZTOzrzGG3/8SIkSPngtwF11gZKVYQ41WK98Cby/r8+2I9kqYCsHH7yEM3FnpgWvi6xbmvVHtkfiqmAoi2ijzLHvG3qgCMks5PEPDvtlRUoGPGKGRIl7zcCWJ0s2HJ78FigeSsF0qhlsIOjcVfi0n14HgviKONQqadOAPuQEQcP1hyY0IAxwB18Ot5t2tlaI3qon6WbxUfd5JGMsq4clbtVNs1jhXQQEQ3LKi19EL5AXysLpETeDtI9Eqa1GQiVmo4T0mZC6oxvyqVzO7SSffbsSZzhECd9NOAbjV3gpONRoaWsm1YxMx0ApR8anxvApB0kpfo7y6dYBVG4BHoe/XmIr1/HBX0klt0GX7yYh4N+9qB8NPvaOPQ7YQ+i/7S/hKAcSsy8vK+4VN1D9Fp/anGDkmmqQaF4Cc3uGvtQS/NQqEQjWbyO2+1WhxEKpZn49FFCU1CT6fidlnXiCB44RNMZlDt1bJCxqvGhl3yD8d89uK4vJUBVKXHuvvnd01iLN41Z+b1Oa3hZFxBjO+MZGN4qHPshgrL36OpMtj3CmQCctpyGxd35U8dF/OVUMuU1u4Xd6kPWJhJoqlGawJFHmUpIgCruVGDc0fznpQ8casNj+sdiTAzaCNfWXTrBilex34q+aMXWPEbzfO6vcALQHCcAgWhQxTobKrdvqyBMgXVT7B+d1laQRfXClgalBZAveRTEZruFuGMMjFsBKbsUoX0mPTbbTrYAODl4SaEgDYP72RP0QCHzh1cEULtFPwNuGETEmcXotwExJucDjH8NRshJY1xobH34/4qoLqHuqs4y9GxfF3MB/Mx812TW80qIAGj3IZ0Nt0qSXbVZE2qHy498Z7u3CJ7BqI9JVq7gY/Oblxsq7i9Qt+itQEBAb5k58oP5fgS1ATkfDEAQuVzbmpU3KIGsst1V2HgDnMLaGcZuQ2O4Oz65YvVCtqLA56Voyzwd32ay9s0Gs7huIGF/SMuMGOHfEX9ECltEutrYHuCGIJBbPbIf8zqFBJ4I4omVv7195HPXIV2FGpxRKYRAqhX2BxTGrE8NBlO9vhrOeOJlzHD9QfrItcNpZtQtPf0nmseMd37EwVTvm2A4BMOn7+EQg/AINvU+EW/xFUqpfHPHAHP2yzEGK5HMQtQMC7vPhYVp1phTrnlp9DBHWsHy3iRcdX9UfmiDQmWZnCjPgH2JoDXcKNQQDa0C/yo33CwjeOXZp9iTOTgBPKDcTG5Z+7MrM8meXNz/m8/EDb20I5v7UNzMXcYjT1ZYzkByR3+2m22y0uvbeXZlDZYGZODxw8VBMUPCyS8GyclC213/NPAlEAROa70DLI2RANTwh1avJIRozJ8Rukuh5eMKGJKj51p5t2wJjJi+UUBnq63bLY+4L26wBITJs9YzRcMkeJirtEfnKl0a/tOScSkRjRb8t1fzX58NCSTEM6aNC2uNX37JQwiJZhyfdI6snCDuSCVIb1cmUqheWlP6RVKohMqI+li1jMgM/K/X4G1MCCzKVBQbTb8FkHWIeJPRhUeH4xUdnCgRq2D51WYjixDv21FzKTJlqv6aMa8xDKgeq00FUOOy1p2w2+hvoHVlaTIXc464yURKjVVrtR5OwqjB3LjS9Lbuj9XgYTKZJ3GoeXc/zZMVRhanXngRFaCBoFvIsce0pJmnFR7ORUQoQ/laJe7lCQoE0ILTO44fn6kcydZn/9YsxV1MAyF9heSMX6Mu5zbwKnhV2iPkouVLan7fvF/kGVa2wN/WsQPzAo8BPmib/gl8DJ1z8G9LpPpYvLrCpXLDaJlHtOXp0lzBtutdXWm9wJk8Zr+llIFlQjFJMkxzOX0FwQOpW0Y554GF7TengYylddkvcBWrZLJfNsIupOzhbUWmftysFlJy7S/UVofwva2G+zGd5htGgLImdRjmBWtKof1tBrZaF1yDfGAbdiqlzN1Tk/p+EZgcBlnv66PB2vep3+oYROLuxD44uboRMSFPRKA8KHLNyvHOCO+4jgTDEHiwBNfeDUtfM2OYlVp6iLU5BqgITIb+rBmkclhL+Q/ZblbqeYTtaAHEQzeGuw1ehNMh7Z/zXVZ9wwYoBFOe9kyG1z2J3PsOUe5JydqjmMIV8Ww+7rqwfUQ1UGIGZSHGru3ZvpXFB+FrXSrWwcae5zj8q2C+7I4foiq4GlWwj9L+wa5dhS/iqJJMhRUxf919ZZX29eTlYwsdArUuzrqi+IKwXDdYWIbH6b3jLftWNiny+lXZpM479PSq5VJRO6/s1jPabbiCzAX3PEZAhPr6wlAL8f8+v0v1fDbc/mJ65YdNrtHkN1htF6yRd68ML0a+fmN0e6fOG54nR5R/f9j5lipZ8keHUVPavMERdH/zznXcQat72JrWSecxzSLApSbCqDt/JIl6vKfFrCaMSSyS0MbtIshk0jPrFqF1kI1mkxGfCXlvxkiZ2kCr0Q/YDEZJqybBTp4gwWkyWTWPU1j299/9dZYgyC3aiJgUyu52IAkYJuBpNcP4sayDwFoO9H25ya4WcAVSBTOCu0dDbng9AGXbhni0Fze4EAtGfyNPTGRyPrf/oRS95d7J5AquF97GpRh7+twi2+Ih2BfLYnmhRUh6LmE1bZE/Y6/QW+SFbsSCczd/WnzeIqaG+tueleUMtHYX0FEtfTPl0RNsHLhaFLpuS7HVgdqumDNkBcCpxjuvyf7HhppmU9qMvwNOKp4OQqajPNNb3UnAbW6Z8HZrqRMThM084yEYZvWHeWKgkvY9ZKeBECkaEJwRu3PN92D4pa62Nz/aldx2fEQEUqXdv4wLOBYLghf7Fmlo4oOPGeVCCCtbRqArkJ12eCRzdaG+7n58/9BCcAr7rZP3cpahWZafukBBNzndOdlkEXFPNqfWGVp+eTWqGwteEC/RgHSrXaNLoR3W4RPFauMIwLtxB5LHmJZ9y9tzqB3hTRj6kbOfUUNM2Owj9oPO24sY8xZpD+abuVppPOOnMKoEqN08pxivmLb5jN0594h30iwgBjOZ37K3Y1BMEIzWsZP4z+VIBlvsCXBSeUgMbKJqxyo/vhs6+7v6XbOWQvwVTY53Whfc+3WIBQpO6GTU8VoK46VAWgWtpZWhjGIimlQxbhHvn2SaFwncpV0rJx+/RgBawyIXzicbbVXVgaOGxJHQuC56+Dfji+JQTiWwEd8pzOtbEOcpVZ4Ff9ppCq5SUOnphOCqB6cbd45MhLvvJhZfZD5PcgOCo4J7GYQpn+6juI5TTitmPl2hibjA45B4l3H0TeMvAAhMkRs9GCP/uTiMrTCHt8NWbwmKxYyrv569NHdVZAoTelamHlUJsyd+yKm1pVqxioiaOMnM8UvTao271zyJP5htBuQ24UN9h0yQpnIeCXAW24LGjRr4/U2zu81wPlg5vIpLkVFYg3NRmJtm/dZfmcLt4yMaJCtGthDJJW9pNkPrOweO/gxaBQ4Vhg/48NSCl7YOAjE5Ahu61yLlNlvn+Sbi5pVgVjTksLdbVeSZw87FrYLew1jyN9mOHHtnQ3L9LJ+BjgcOFsXs3o/R8tTiB/y5P1Lhjga6qk98b+HC58IZk4bfYKjIC7+0GMTsXbhI4h4jQQVmkCq+6eXEqb/XZKpNJO4qql+NR7j8/ntae/l1/K/TBNRZU4dakwwzRjDRDi6c1rsMOa58Rw9vTxJc+xaXLPvsYlSdLyqgSWhEsA0GXgfOTaUVntcXaCHaB/tEwAx/2X5cAOcM2/MSHQmjvQMIMvrd9P7b6RWJZhMm1cQs701fhDUawWiXcn44SDAJ1MWeMKJZAYEuC6MKYvRLW8ql+g/DsQLlENd0lJSY/C15GQU01pU+1vqzW74MKDfsF8xUuF4ud1noqjklQCJP1vhfnuSNxumLPpv6KACNCY87/uR70ChhKbKHwdppiUxNPy4dKcGCuC6c2tWI+vGIgvSlXc9CIw4jb39zh06iNnWaShMt0UjL+xagbL+uFKaqmZkHCT8qqm4Mk+1CIQlG+blPSiztkjk/bVI53O+RDrnc+8mdXFqYGJLIXIwChiKIZCWxjEMOp0Qw6yWTB1/+mdr/rYqQPSTh8i5VDlmCV63yT8dqaidc/nCQ83MtyRnbCVuXYddDgQHJ2ePLoXeq2iFhlFNUsMbb30zSqn+tj0KDmL3D91Sxii68uGNgBYDGoG4AapDe9HXodg/Nf32/hmUhxckV+of6999IQbL8gtZFgMee0dSKrJNo9zidd94LFru7dnrI+coP6XH6XokpsHthaZV4gmJ0L1vhMQrSrYq2hFnlRCXWP2u1cl+VgzXjiRQ6bgHkE0xYGuqWgquTILojNyPKoymzdDoLF5PC72apslH5GyS2D1ZXTSvKmiXsYqUuyXPEQfkaoOrrbdlaTbb3yPGWtT2Vw09vco09/1C5HBBwpZg4E8pbMIrgu22uczqpJmnd6wdodU86xo0nhwOn5DW9+nGcF/yWSgKMT2hhduVn9pgnEGXIxRk6XcED5svHcWHuln6agA9f7OqTpK4b17A+XW/cSqNris9Agv8PgpZYtbT5OjRKD+Zm4Zx1hjeb9/4Rij8vLSOwS1fyh4NpFCyNSs3xVUlvMyCqFj4cnxj1pTmYPhSCGqXiIo/Ucll2e5iQfroDaVY1Zd4blOTM2+4s0vLEr9P+12rkyKx9SqQv09WBew73v/3XljevR0dAGbY/iqTaygQU3ZqtVPb4ZuKB3srb8SvJVmPA0RkPg7sROsytU+t9HSAJoIjnlSS9MM0y29qNBlumcrFQXglvHxnVSZ9NkxCL2ILP3/iyTjoFRADavOl1GDFgZNFxDoYjaWCotmBL8a40z9RD3mWSJ4+isZW83JtgZioEDNokhsIiEl5AlbC8NMUyPv6hDxB460Rbgs/s/bG2gP1WwfiKf/f0JQZlAHuvdS0zipuVDVtxILlH6Zc5rLhpAwozR+42CNnL6ikIFMvIpapa3nlLdgVPva0cHK7owKbu03TZfEEfn5JKgCvgpJLw3c4ye71yNGpfhAGUPX5Dc+FyS/Rf5tV1iz4cX1GgE34/yrs0q9XdNR4I7Af5hU+y1jLIXlkCu/rrphzv8qEArnpGFcvKC4uvrC9j2FJbL+rcyqdARoM7MJ3FnVU4JylsggaLIIQirREJ+rdGijIQVrsnzdrB6HhUi0IBum1b+KSIVrOYvbXbNWsZFGbWEglfozYaBRu4AKll2bXqFMDiwyd5JgPPAQAiIPxpfjimYnQl0KzkwqyPyQWzl5oy9Zhk9+1Jol7nbpe9zy/odc71hwlBkUgMmw+xZny54IoODNb2GUYjDWJjKNpSenViyW1XOJG1UEuHDa4pELIFPNHbXuUuJbYz7x9cVHyE0cnRYmQNDUTwDgU20pqDqsg9sQhMmJQppbbUGxmYy76iqRDAqEw41IOCnRIkWycsH5+WJBXa/GUweCfKqtbQLWm2zBqCXBBlEZ+30AnmLJT2+MPdEzkBKoE0CClEihwNx24PFd2IWIv9V2qvVWhlakwcQus7TN57Xi2q22ivJZkIn0tUGk1WyIzU/JZz8CN4RKwQxfQ4ha53MY04fUkkOy6PaS+ES67CAZC2P2yaR5xsDhWPRKHpHzlw+/fq+FWWuj0iO1BaxzvyjEn5kyQXf1ARkNlUxrWCZy4Znuixk2aRWnBLq3LqTo50JSLbrbQWuSSgowbmu1hrcw+AnZKFFgkTYBMeYhl5arbkDlmIL2xgBt3GnK+bd+qMbDMayDkaC3AZ2aMknVfPH/jJqybyjlukpwCmSsSFCASdzhSkjD7PrsrZ+paWQOH+i8HZ2TzuNqkZSCukuUyfoWjrmxnFWt8oOqYdS3V2zmmGwmpOHH5/VLrcTAQJBCYpD/c3i3qmK3vNnvQvuPmnkQNIpXyrh5tBVzQilvv0Kes5C3jWDx2xxWPHPQ+jhzz+QSorgvtXuJJXavPUoJiAWG8oQ1ko36t+8Y3dBnjUBP/6hbGppAeviDRpt0c5r+v+mvuJP3i7BpduQJ4f5/3qKAnBmclXJMn/77WtEjckAwWozxfJ2mUnuVhQhRcIr/fceZWGRtu5GtWOHdIflN/WwXDQZKK1ywgwj9obg1jYLbQeTeku2PykbbOpwHs5DbOre+MbTp70/LlFXsim/05bNk2vDtQ9arOBaVzHHkEl5QgMgu5zHziA4rYttBCDTeaNhSIjx5V8fWXYgrNrcHJO0qVMLSTrwVvpez9wncLUGfyi+pK7OW18eEFcJtD/cE7SIa9QpacQqEMfcQNzNy0fWgeFR835DU6Yqe4hn3prC0Gj6V1WAm8rYgfJMJEQTtD30VNTRECsj24PArJWJ7S2Hzc7bemFpG2wSkFkk0VirVIqWjQA3z0AMeObmL23kBwBl0IdejTLYhABtz+YcJ29IvWBrFZeHHLq4w9BYlZIMHZc/RAd5M9FwaWNo4QOUF5MH5NtjRjm4PTucK3UxAG2iRPyzw0RHiygpMTXUaRKRE/JZNv8v3YMQt68DmBODQhvTiy5HxwFa3hv8YbbdxCJPNNeQl5CTEl1lkvrcJmjSf7lsKDefA8LdiuMhgCufI4TQZGniP/s8EI8hv/FiLbwVBNzS95F8RmIm7pQmOeg7WbO8EEts0HMOO24Gvnxu76HETtXgS/8ujieeQwNObnrXPYEUnoe4y0dVVn/aCEU3V4pEjpl8wffZyY4Aq9Dnt2ecdfbliOU6hF2XWO/ahmllprYscaGkn+Y8vqVOxx+Fojq1BqtrGEzZOeZtWe4C7QBLiJyHcnAJ5wkRZuZ+fy0hvjf3j2ZfYZTrZ+Z3mrBUY3iolqDDr3kl3Af/nZ2w9mblvew1rTPHmA6tyhrapCZLlBt+fggu0JqKHgruPoqvqjaINAjDmpUv00S4aXSUL9WCHlOZotqVJPIsrRs6XJfoTREmY+sPcyULaKxqWtK1LRLa2OuodKfKUhMBkH2ivI5+rutVBm2epb+8yJyfyHrfLaJv9OOorZLOXdecqn3XkdQy515lOrDDr94vUuQFRSiUuVc/6qOjaVe49p+CeNPg590l3hHS24lJohPqmumVy247pdW0pRbfYHtojttBNuvW0LyAECaLoQHXGjlIyUN8quBmNuPHLpex1AKmYzzetIwzTRQg2ljIssMzzvyAFdGa2KZxQoNXr1Y38EbzMxvveJvSWE8Uoskd1oSj6ZKThA5i3iufhhfMaNsMboL7/nhq7McTtTbedyDMPiyrjToQlqrUGBBeQ9GuBqFM1RiW/ozSSSgg6Ay9ry6W30W8ROhaFRpP5E9TRti1BO+RC7hXCWWcnuIx1Dq4nLdqzjBe0NCyiWlIbDfWaYjEdm4gZ325Uh+2h8GnG+qf+KKQFiopg30usark8bkzXmZxCa/NiGFmvunBW09eH9Uizos9VF+dgfxSjSty754OjWef8jqqYX7tqCAFdJcd8Iwmmhti9a9fM34AGvedHqtHwEfP52wacOnu8J73SsH10AGqQad2+oT1VOJ+gtLOhTWY/uraBQAFoh8RD5vmzv/5Gq09/w140tJdCoGOkgGpkS7OapojU7fETFGJ7yZ+gRZH3XFAVEM3KxOzmcT2FDlKpCNt14F//K1JuDUS64BeWyrM4aHgY485CQ4106bxJxCIAX35urEPMoVupxsdtlsWvhcpfOS4N9kR51EmcwmKDJHJhShTuiSZQuhMgu5pJQsbWvvCOjE5qyBmxJ9KSDLGkfbfbwtAx4kJYSWB1oo/UMfO4Ay+5BF3Y3/ZeRzXhTvcZdqFmbxPzsJouzt+kQ6MHgIkPifFCZUgWse703ZUkEQziozwEnqNLPwdQdah1cgzjZ4rIjH1FYuE2gS/QVCRoXQDiJF4U9TcFaz7uI2ri6YumA42IRaHJSZBJgIEIJPbWK/BqTFmTZ74cTSXfWvNUQ5JF3euWAIHwSBghG0GxJiC/8w+Akr8Nb6dP0YwwWFyG86yTulDQRmhaaooljYptNRipON14sj06FZEaN/aol8DC1aYjMJbqezn1EUrtwLfcl2wDKaV9lqnLBiZiwgB3uJUSXpcC2gaj1Je+EJ7tGDPo7HoGrQmjTQPbMwX0Tljpbwxaz8PIDOCtdRq4b1Ox0wuqSU7kPTHyyuydvfGC5Uk+IrYAN/9o5aE3Xlx/BcwyYiNZaBPy8aZ96LDveTUbwpdubejIjUj/c+hbQbvQ9zKyre/va8ngLJruTBlP+kjOaa7QGOBcmBczv46B+Dy3BmamhhTwumo3FkchR7/RN+O9v2BzWfkb6dR+Lri81XDWnMUA18x/zSECNIZ7SNbyxenQ2KQR4Aoo2RqohZFh9fjF5gk+7BBpujylHGU8N7grNlsrQN52BN2IrHtOfw/Uh2XRIZqgulAqDMk5oGsykKZtgyNzJekKAOpj2SEUSKIa+JkG/h/cO0Pw8lGWJvZryJsxBIKQTxr9/LpXUr3oAeJ7mO2/MRgs1u/wYdJhXaA1GNZafEvY1LEQ9VlzBA57npDh1w03dwZF1Dz7MjmDs0SXDgwvC9KEM5Ndy8xxmSWsCSTHA2TfV53OxLMLUSmduygTOBQh4FVpY65DdCMI3ZqbfrplL1agV2gMPYegw1ECe+LzLHS5FrdcxOgJCpiwNcKSaG3tio1/dSRc1W3nqUDSMODr/ZzM1xyK0OhPlNTTI6RO84iPYb7b/+p8L/FgYlCs7Gh/5bPxwN4+9wwwU1xDgn6HYR1WBOkliGmyz7uxiEnJsyzYBbPuKQZsg0nAEF6ztib3++A3RJNaAJZNpPGky3/wskmf5ilOE/Ms6I3i3GDI/tfC8I17hIknrXAm00Zd8H4Fn5cNyroF9/x0KhOzStgmL2LD+PBr293W5y4RLYVVrigKieJufZCfSWbVZgxO6KQKvgsPNAdbKvFMaiDR6zdpUtErODduIgShvajQowAkEPq2Fuf/wcwiUy2G0oqxpzUZOBNC9NXZ2qPPf9H0AA+1BSzXmsVwttt+0yqyAE746ypDY4vEKjibRQJ704lTWhhwIBHEHnbBzYSRruyZmHXGhFuMqHawu+MnGFBdGQvESafA3F2W9rlOwLEg93tYVL/yOwxJ1mkyGdfbz6dF93N/FTNbPGotb+s9gxoYsa5kl1QJYI9z5Bn3XCL0QwjRJZOvc8mpbdcFuJiFaNY06+YveNWNU851jB/XNiQT4YX8lVOCoKdBETlOGsS1fDxKs6YyzM7sUboMcJIFy7zh7nUzLrdWajZUqcGUs5f1P1tVmpBc7wxOoxDva3I9PtWhUacIjwRBgxsVjOPEYSLr0dl+rj/z0UVpL4Lwq3Q4y6s1DwzrDoNq7Lt/CB1nWi6+obvt8vTnUGUuSkXg7jjGHO9oaNrWwiuyb1v1BCd8ErBvGfCChPa3DtHO9rynDTc+dSN+lgbQca5h7q3fwwyc2hiNY2/vgHihspkdqyMuJxpwC+fP9lAnFqtzxW3Ia+XB7ZHJI0rm49LHAHdVPtpV1e4lVMoC5xtzq0PGSkycdSb4aFAKCAwMiL+9LZHIFOBaHaV56Vhz4l5VLKTvTEvp1YeeaAV6w6iMuc4G690kZThLpI6wiy4y0RdFmTyBvQdVuk18UTMwa/LeOAE0D+wNGJrX6BaCxHE5QtixRYviK6hHr1us7Uk756fB08UIrMpDHww47eE06hGBH659BX8E9UmfP4KbHc9ry7dqmTGkfhUqmT1pS4Qa8SRKOU/zNjZICvjJHxzuCEnwCZsTmPuGk2KX1NyRxDp32cmlk/y+1wKvRYfVVf0HJp4IJv9jj3vNWtWCdZna+/+/fPeG4UvOMqYCGly84ANk5Juu/QkrCobHMKB81duIQ6pDaJmefd/ZMBPvKMErHbhkjZ2I9OBnJ3OpSyOSVi4cBNl7JAy+IBVw8Bjhw4NR6lU8O35x9GTwGiU9oG3bXl5AxcUEKwI5gxZMGUzyWHzgm0QpSNe+jOrGyvHaoSIDNI=
Variant 0
DifficultyLevel
636
Question
Kramer walks around his local park.
He starts at point J and walks east.
If he walks 31 of the distance around the park, in what direction is he heading?
Worked Solution
Each edge = 81 of a full circuit.
Since 41 < 31 < 83
∴ Kramer is heading north.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Kramer walks around his local park.
He starts at point $J$ and walks east.
If he walks $\dfrac{1}{3}$ of the distance around the park, in what direction is he heading?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-E4-CA22.svg 300 indent3 vpad |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/09/NAPX-E4-CA22ans.svg 300 indent vpad
Each edge = $\dfrac{1}{8}$ of a full circuit.
Since $\dfrac{1}{4}$ < $\dfrac{1}{3}$ < $\dfrac{3}{8}$
$\therefore$ Kramer is heading north. |
correctAnswer | |
Answers
U2FsdGVkX18Z20HQoaS2uVyH3nBP4nfdsjGTR6FSgnwrjrfWtyYcnr2rWGsDGSHoftBOxrjPnTJTfpo/se2iRbCV1k5p0OACOs0VrShAthpBFFh4moJPFmzG6zyV8+HHoKr6QpJkKG09aF6X+tFhr9dYCWTcKPmryc7sxhIepMUC8HglV82jKWD6AYiRnG8k6NatEyiB99iB0lU0Pj/2DaO8PHKNUcv3vEBi2ohIpVwZLSP81SJlhNHrLlagEh4H4HFAvjovGs83TCWKuwDrgjMAui80K9X2+x/E8F3yCtNYmrhJEUiH8iiYb50kbLwy5Uq8cxjZF0e4akRTvuMvLoeqn3nsCbS9otjN84zD9sbTJi0VmTgvXNrcmGZDPLjnqeNZyiuMIJewKv58tUhZ2dIkW0zpVSD2HnGEF1gRuKirNG0rkeodBFIgmDskfTUZQjP5q9VcMa2SoHFprzoZf5wKx0bQmK/aDzrPr9FIJaLmsZHU3vg8FGiWyEWnQtCgctciHIT6mw45VZR7x34vY0TEY2rdpvsI2AyYULc6aG7ie19weU17rbqijQ11aDktzh3tFMtoaD6bqHTd9W1StDhS20d6868wSYEeModuY+qkrg2VFRWTqRf6YtnU+GC1HO2UTtZlOpQvnO/Hn7HTMPH1nDojTOASnM8hUPWVdvbTTKCD6mDcAhAmSHFQWPcVYoK073lQzlx9nh3o8s8Axkrl7ltzfhf6irfoLOGpbMktn4IjxzEzPV74MX6R+4/8EH7oDP43qQd7XEbLuDFsizt/kjELFodbM176KEZNLb6xT1zgsmDtGb1fFSGoXxq1u7SYwq8g9zFg4SxdSHvgZg9q4gWqY6KawHo8w9er2lSQh04Ec/GMp4iG4bm6UfO7en1ACrrWPy6h3gtCSFIIdWhtLAKmRCyqyQXaHPNJM6L8JvPNtyN+Eu7wR//6XzT+wjJdjKnjf0rMpp6oPSDfv5zuaJb6ujEV03JMdvEpny1vIjTM95Iwfc3G2Mk/QoM+GUNHWrxC7l/E5qD+4+/sh058bSL+aFZ00zBrTpjv2vnqI4CRnFX6HpY/j4JNFDB4VnceQQmG6h6bv6+Jgjw4lwdEA+MViPY7O5EgMu/kmbtiU2rLJuZYEe2Rd3BtccNyfi+g7206oYQ056zQJhzfYtnWD3InM52LBa386cxThhOquXchZ49/MKhicsTvXpp466pXHEg/MB5NMGy+yU9eAZWmXlHOOTy+tbEPWf0SRykzPl9ljuYWt89eMvc1+jPp3vAMtGmYxmyZN4n0NC3k0Gu538iUwUjZCXXR4BXW9nlQCZppeh3AnIKbvs1Fm0QB+ucxBFr7Hf/9M0uvJGlXgwU0zwlHYGIzPxbCcoukmBdK/lq2fk40mhPCfWdyRNWaGM22ZVWwzIXE7IQfMaplv5tHwe/PpaGubucaAV1rYkpv3EXZU+jpTLFA72ZK+IZw+Ehzj80O6N0voJW97FyUbuf3QyMZ+UX1pgsdjvh9vioIiId7WF/F4P5+wEzHXV60D6m+f0QMKyWmJDgjo7b3CKeKIElNxuAHH4SGWFfC4Yk8zUI5bick2/RhkjOFm65jT/W+2Gs+0eZXDgJ7TwATMcMOYZNEFZD55D6LePB1p9rPI+3lBhQ3vjyZ2UdAg0iXZnp04O3RhBC67cd729zqDtkbxHOEdS4KyjH2wauO3ruWaCh0tthGzekX75Aq2XcS/AnI8gFOVNyDbNuttLnyAr/N69kM11s6hS+qi/1kcxP0vGGn7bTw9lvc1WWtikml8DN+qXxXUfMoOEYuF1JKuJleFxT4SjVXcU1VkoGPZB34fG4aN0GtnkF93ojVg/9ctmccLcyqQirS3EOFt3Bwjt+J+t9JMM9oMyN2UdrI/aRtQQZy5YyHwfey6/L+bbnre8keTmGNLRpm35DX8d+0MTox3HGYFTIIpZUlnnDbXM3+tLPNnxd7W55YzaawlTfVdb5d8gWRcLNY8Hjm6a5nD5F0/JuGBRbo0vS6KMKt+Y+p0POwkVdW+42GzC7eX1ns9C/XpELTD+1mygXxg+m9AE5tGuzUH5DIhp/GmiyBmiNxRmWC/RQr1UHP3Dn6vsaTAgJ5XVzXAObY8Ehut/LNDvc+zVqVAenoDKFXeLbPuWsHl4tsUgfu8PmkE3ClfYR31Cl4SgUilZyArJ/WvRVBYZ4jIxuZfEajuG2+EWSFHzH4Ms+uMLSQFPdMcsNLAuZJHWYwP+gUYGxvrKWBXcpu6M5cX+P+/9vpP5HfS9JbF39GkaWRBmaY5QXryrlz0vNBKFK3T/VgM2N6xMl/dSbvRH3qEZK4tg1PPd/niwepWOqxevlzDup8eBkMI7sjiIcn6lydxPb/J6mRRT/uWRJzLt5j8MlxDbtM1Tkjrr7icko8YxDF91nBDnmFiNWmEn/ub4kWMvoYotSrnZn7fjJFHtGY+8Zbi9MgiLAQ4nfPmnYJWbnFH3zx7dnn/6sYsJ7gicbpCv8H6ehzJ67YXH3WQp3Z8VSuq2THF2QObIhktKRhrhVJ4A48w/qs5yN/JpjWkz7RatgdJT5p2ESZBIUODIpYETEdCSpFohV7NT3qA+75eDmrFcid7QCK8UXS+qs7kl+NF6WdQQUEpSksiwDOKUvkaNzylidp5g8v61O8yz1gPYyiUq0ILEd6aFvQp/JVY04OgdGcxTS2QRbbAQHw7HQW+bDo9QpdWHNQoRXSsF3ayIzu56JS3JvxgpiuM069APL/gtY7fKE+g6nK5oBhCQpSB8mni8AgLbde42mQjyjmi37eh0Lqq+8VHdkSx5d3MTPs648AIVMGf1gHXH0UGZyoEn+NC9X+vE/MwdiLgBfK5OlNQgi8xyq95mSBRdGSO9le992AYdEMnmok+VZzlQiJNzt3TNDXpuRiDjVxSyDfUgeYtMKiLcUPPTeGLLweRY+MiVTMOEXXKvZN+tH6eVGLEmQ1klB7rna81Gg77+B+tYpOSBML/O9M8TdhxvJhKL7+d1ai5nZAgRObozI1XFDPXpBwnCTXhUiOh8LJPa04tXTcAv0F5ZazYjONJGTEkpwxlwFh9c2vyWvcIPq8r8brFjs9bJzuPmqmMRpsKPM7MO23UtEGCNZyQ1GhNSw8lIMJ2tKayZ84YHLufhq2fpb/GYzej/IdShs3eiKSKVtezfzrJlHpU0z8bMmH7KyeqVniNXNTtTWfg6ZnfIjGpoODJfx0z4VLTO2bCClineA4I58yNeaQGgpvDEa7MDTZbsnwIFwqNLWQDSIAK5zhdXKrNRM9J3oCy7RYIN7wD63x2d6qE2vCmNBoKbooM6Z42vEuNgad+MkvYc5KYRHakV5dF9/RBzDdUVO3fS8PU34Tw+eU00WEtiHBxIBRZcTef929eb9uXd82UijvfqVLJVl94HisVWLBECoeWB1x6Vc4/kau4ZK7qfPFlnh0k+6SZvALaGuen4ibbOsMWcNMJAwDyX1ptgbbwc1KaLMBXm1WsbZeVxcK/oH9ihqr9lvvKSOQeiuC0l0dCTGCKsa6VcS2eBoDiQ4IvRV87rfDaE+QxNj1O3rllJ1zPWr7/J99Vbko2pOr3WO3THt3v/9oSF7YoTlL7lPCkWSOvqKoqTYENffOIuoh4LxUFoNP8FEjWm8ts/Ed5IifIezsj6882MKE+C8phvRexVh/DSfa6ukXoQiLBf48fMP8rKInenWhD8ZpzK2nvcISuWjMXl9UpsG9n2Wriohl3mKwgsW9oWLRb2KwD/cRaLN8MrXRMqNs/OYKd2Asl2rIgKxkgsuodO93tbL4x/+4aXdAVpRUoVu8nyXj85gVUdc4Bx/QxKf+5RtGF4Cofv22UkzF10n5YKKTHY0an4XcdUT9AbaKSzX3QdawgNRUAmpHi0gRwCFWetq3f7ak/VghK3fZRxF7T5aSOCun4KuezP+5jf7iUwUQVWiSynELvl+natYhtTz02E2sHPrQgF60CsSE4nv4j6snR7mzVkuxLb0dGzrzA4vl2LgLwFHR9XilsJfq4cMXvAmTnkrt9Wjxor9ipci4l+JlrFX8FaP2kyxjw6kxK3lNj5In8A5C5KIJv2PgGvfHxbj4y/JXvrlCjcKpltiJ1ahYL6IKnf5KQwBm8dpxFFidYr02w/z5+5fNVN6uG8CHJ0sG0ShON+LWiDhbGJPaXQNqc0VYlA0qYSkb31tMkcK+B2qtk6ioMkuekuXBlFLN6DDx8GEkU0nudesvPOn7SaIGsmsSxhBmbJVSrGp2h62s7iXQMPCiH2e6PeQ4Iku8Zw9AHSyJj29Q5iW77oZYI1rT9yXNNbOKq0rxV3Lyk3kcNjIGN7u1TZuEykVp67bN3uj1QCeuOo/seUcLlKZNggHirjYLEGhc5TL5UZL5fndP8kJl3lu8DtL9+eQqSso0IH4HsFBed3OsK3i4nPfZ8yEhJUvClOAFxFmjHbBBuwR+mpNqXskXmy4xL7j34UzYqlKqZ6moWs0HFPolYKGj1xCJ77xurcoJbGSPCrmsmgQ33ohRZBXd5rUemJb87MODuycE9duAMlSToaHywkK+g9mcpMUzEplas6pJkwRPjMbCs9g0AfbuoqUu1G6kAqpKxeow/6XkSll9Es3Glg/OcroFAsSrytGfWwOSvnWbDjoWjOo8eTjAKgizuOUZYtiYNR90EGzJtn3rR8+F+G24TX5dUlCepN1i8IKeiL+C5mvTdzT3/doz+AAO4RwnSRqqLBoZIFz66NpBtml2z0NwF7G9fBnZKdSdtZTaPoeuCP7V5nOroHvcLU6lS/PuV8mHATmRs4L2BOCL+Q8/eoWMqZkGWrQoOjdXaS96IAWeTw3TkNQ1MdzzxWgOrs/7gMhyvMK/3NfpAx+plDX/TrtCABpVe+WDlpLaZw0W4qifrDqnYAK0pyyVOChs2LDIqiIIrp8GHHvg5+QJJ2PWMPE9OSAvdsgjhmvJf2srO8WIkuhy2A+Hwhj1CbPTS364pAy4ruFaHkNEQNgRjZe8TiNL+SONR8DqkH5w3fvF01L8F0TaTl3QVqZ7fgTsZDEEOPA25EB7wVwpdNfixUZ4mnK8EafuwP/6B8/iclnJwgqMQYVEAl4oOBIRcC2KT/L8DIgckpwOzCnaew6Tyb2esyoISKVhVeDwTzvahkcbGU/pU7vjhwkafF+Mn1erIen2E8DQmtPBOKr/w4LbpCVsq34kpOJmVmqLB1914ULexm6062QoHGAN+NhX5rZwaYftJmn7GY+6vEfKyjVFcWUFPrx+0GSWebgJxUTPgl4CIQhBLYlc2i9OS0Zr1nWrmJCPpP8RNnZPwx2nUcxkLHUMpkPN1VdwquBDIuJjTHjray0801dr/AyVUZUP1577jfcNTbPX0m4z1Rt43qqTbCOJYN0g69tACu2jMdOa6DWjUYYgiMRGbzdc4GX1cjfeUK9v5TAhp211UnjlMhJsWrF3j3+tfasi2MiWIC5ljo0F8pQ8jeCwtjCY/UcKvrCKkzXAZ6AiF/HjiYYR53XH8O9/XWxuJvCnTTDrTsuG7qodG7KAYM4Fe81Pk6afC6LTuiYsjwrKlGpHP0Qwc60JtEKsBM9Jje1Tl5exjVOxp12fpHuWNo0eJrTc3UW0AZAd6fFy3idZqUwt382XKcR02esErbSJnBBliyrPSXmBWVwrNZGJrNnGkH7xpChQ24+AznH692Q4T1RQgVuDRmiAlVLwG19THUUkBhK0Pk8+ZydvprvMZh1Yx86D1S/lfVY823TW38i4zAfpNOKARVgP1v8TOU4GT89yB+chv4YRfT1cZAOvLpBHdO7oGfn7Zx+W26NpW4zMYYBE4stoLtw559ciVwNVEmYeN5vdTMEJ+BhefkA7bgCcBMMxHrk0Q3QhFBbAL+cKPQH2dQkI7NFQqOQxWFFAUts366jxe/UtO+lmyh0yR6J3XoTWghQOQIYL1bu5Kh1iuOi65meknz8q2/c5cq8OXo72Lu9PiGB0q8fjPv0sO2bzaN1Kp9F8TrU6kdhPHFtIny97G4HgQrSyb/XsfpNDyJC8hej8u2khtC5m4dHN9OBMzNZbS6eObDRhPVG2uDhnlbyQ13dIbFZDjCF/FhXCv6BiMFWYsDAIf0JucKfouR8PXVBYoUv8+LpYdwyVl53snclSWY8TdDsy6CgdTo0LjkE3hnnGY+1vvHPco+2FfEAo2BddkhyjQBPjPH5S4VaGD6DUe0qZ19zcC15dpTFq8qMGc76TpuoGTS4e9vSVcxZoRpagPe7t3h8exrJqrFegdysUqfeMn5m5qtpMlRmVcjHr4o5tA9SC8DLLIOCetKXzhSIgsZO79qig47qjwH75CDC+A/z2lKkHsWCKmBWF3EjD7TCg9uXOEGM08X/S+AVW0YzlQ8S9XFcC5zkGwqv478Iemt4p6poiPA0B7HYPYWLpQvg9ABTIUoYEddtqnOyvTh9/eGCtRV081NqqiV+XA8BBb8jY1+kcxnHds9v/QLpX8beLnalNcJ74tlMrKP24tZT1kkYDkf2M39LqyfI17l/4BVOm6mGjSxtqi8XNNINEjv8zA4EqvkY1ibip1wxU280fK7C0aCQMY74f1ER5HdO5OnABgDX5klo5D9ynQcJ9culuWC5U/29MWFaVaLSFEm6zwGi7SUxE4QYA2JM14DzyXHbB9CUTI2fhpS4YSBaX9KRh+xc0h5HsVyXsZx34x3zLoRlzu6HTN/s7ngfHp6Yjj3AkwkGUf8PQ6XEuowu/NYnU9X4Y0UGnnHazRKM1ZPVQN6YTNNvat6EQZZXEtU7WsEzZbBIccBAme9xDyNE5huCn2rGVBOMuSegmGP3EpXAqc9SNPi46udsthy6gd8J//9X5qvs3YnU0GZzMovFuqVWL38RqWv2SgtQZmQp/ExMyKDPSnwW4l/+AD+k29MkkXSCOain2QnqyFr2GKJTMZbElb+uc9JXsu3U7ewgG0lidiuq6sUNIFHJJXXwsNNLhHBmZDX7vWfyR74KOQwtQntdAvyHoBGKUqT3PRpTUvtos0Zjrsba1DLguJ2n1qFojnWeS3oYTpXFGwqJ7JvpifeQEtvLRTyGMmqmlG/e1WJcd6m8IqBREHHq1vFWR9N6LwHQVOYZD4JbrctyUDWz6fG4S6IvMwm7OHvc9WFZVecrFxj3loF2z2di3CYMDMcQozTjPYh4FbUAoMLiD0MLtGzbWRiv4SL0N4QsQrcDv2BM30Ed4w4WDmluQa8LYjWWY+cD9cBtJ/b0N+2OZlCPGoVX4EszBf5Cm5rF+kHHSBgbbYUKM75RN9hD+e9S+okCYzYpHGDhnuDYl3UdHSHnzD3Wd2LFiFn5oFAiJWrxO7FVLzo418YL+xyfg4B9aqyFebhbBsfiz/Il3fGzqI6Csv3Rz9GZtdnsINVcaQy3JkEiCUy4H129hCbdFp6P1SBRY8xwNuCVMXrsad5n/cy6xa1LQr6GfhjTdRKhAg06t3NMZUj7/B1pHxKxVs8YeHaGy093n6rzmHaBdBmU/IKWCIQCuYcQWQ2vz8BApsahAJ2dQiEHC/AfTc5tG8l0KMY3LYxV5eSZxTwPoRL31YuQKmlautM7wVE5mitgIvmgaIhxJfxjKmlZCi7GBx1RGxU5XrimTAhzRzMVJBqRUij7K2bw8tdkNwjX19nz09ncREilNhEF2sgPSl1bCxpAjmnvhYoKELNfwZGpZvnHAEH8rfY+ldyayNDshq3MqS4ZBgXqgdUKWj4B6ANJb+2hVjFdqjOt4vf+iebCmpQHr22renJAnfO3kNV6CcUqWldOIujZu9l9ow3OwDC44Jg0hoIEF6uiCvDg2ECkAdplq/kkoHNz91dWDk6lkL6cxgEA6R+qMW1NUZEptQDmGnMRu+iNd9M0xIrTzNUWNYKurw9496WX4a7fKfNvWb9fqBq64xNlwVONZLmsMyrp3fZ1PQBKbSXbqKwqeyq5AZU7tO4+CrdRdi/k+PfZNlL8MwroniJhuHKlQ3prrDxWLRbDN2SfqUz64ZfWTdM40l+noHrvVj2kD5pMpGyVjU1XTllwyznyxzdBrikMVchXMs9NWoaitE/TM2wCyJ0ytG3iLb309DkIJtBELTCjWQ3CIed/Hnzhc0QzaytqB++gkejAvkSB7PPjR4lS5Qgo78sQhUysZpKim526XreTZBkeHjPCbAb55jQPtcSbPKkgtWX5efNdlKJCQRzkWwUTGau5kotZK78lmTRAnwyjzyIuUVim2Nog5A5DYH72GdaL86O+wIUXGx3BmeKkZOSocmOAKWd1g5aKTCTQnmSk/GCNzzoqZ830uFy4rV3O4fkraIl6VwR6WFEF02p6stWSzb+jX4y+nBlv7VEBq/Xl1g5O4wyvarvBnJHyt+G0jNCu47lvKOIaCm1ghgu1JXbrtgrdFiO8dUVkxlLezD66W1rSBnWHomBjOh3Z7bImN4x9E/oPlj1aOYlvBbigAeO0K7SgK7iSo3dR8uIYUXx8Kfm8h0A8Tvl3u8wtAHFLen/dyjp63bK4Vatc+CGBqcYq6JVBf6GNwQ0+6K9bRUKzOBy0zvDgrN5g1dPY70lQS+qm3L+E0i1BqmTEd9jgR7LGpUjIV5gwdOlSEy0aw7jM0Swiofk4mrfBOQbnPVZKV2oHWM/woP1AXcI1P00ovPmPbT2XZ9C8WUCLZmWnIGvs6mB/AHoTIxydhNPhkbn5Ky/jsh7ruLPxiNdSH3yEcF08HQEWlkqgoU+5mjgpeoccafMLiKqhPnXHyt+YZsaQX5Cn/U9FW5301Vy5eKMXNkBwKL0/Vgk+wE4Xq+fMq/pfReIUgej/By6QMD0wogk1V9prvkTHj2IGxlbErF/5qwJ26OEzc5xDlHTumGFblG+nsEj8v5saKkqpCFh+ktYfI/DxLV68bXljc6kA3DR11deVPBSaWytvVYNUvIdk6lDDGhlV0h/h4g0tPTRgetF0zTvTyu+8I5ExRWusQoHXpcYUmWd147FvNSN9yK7xXw0skfil+qH8rvVqUBXFbsNoP1HPEC4hCWRblz805FhvfdzVFbz+vjFH5OAjdqKFU04pFhP99CBKo4UVbWzZNxQeJcCgqzbp2BSFjTx8/x4uOwggjuzmxPjFqh2bm2xY+/vfY2/F+JasfxcTPiICew7FPKulK4vjTipGuBHtF+YclNY37MgZZVZtIsJi1zW+O+DkvjuhHRc9v5SLbsPBFaGizGeeV1xiTiNfbEoOoEyM4uWIgx1D2k6g9r1HXXkS5R8HZ+qDNLruG5RYLDcHdFto/0zZxfzTSiJwRO15CQsqUE/mbdsds7yCJjTIwOPcXWfwXVwF2BrF9W2kTr6mVgw4So6MFXsq3FiZuDCccxqxDH+Vt3Byk67rskDiHT0lJ8cFFGpPuJKKC5Tk7colfHrfm/Q0TCLHpOvLrtZq2emtofQ0PMdn9Zj6t2s5VAeYDDd+WyLWrhFhGoyb3jVagV53Lz1hzDJMi3DSdwq1Lj5NCgHjnqiWVsulFoTmJF0xAf/1TeXps9C2XEuyk3BFpD2N86Zl4xtZhzJAWbe+vZIlw039Z4VXFATUNVTo0K4ZgjVLY32zEHvt4N6iHjWqsKZMGWsTTt9kBZvWzi45hEAxq4FU7Cs+i5KuiYO3G6pgY+aZvsHOdEvYh3eHwcIfy+beKW0HwIsMLbz3WJi7r27P4j50VfUfCUTRs3no+QeN1hQv/5gu6XpoAniL2lENxfU4WpyUMp/Ug1o3lvG4p2KdkgVqd/pTWliYhrUBmitdf7n8KAthB+zzA7+c/mKBdfVxYOG9oGjIQvHC2eG9AB6lr9xGfC4lTJF3i0H9vlo358QNvFJsxft8k0E9zYkiwmA4CaOwuc6VMJYDqsMsWtGqXkhhEL+ERewl6IEc34gHhOsagUccUlEfieKEFbDzeykHiiF3qIf7pHw8bkfVnMt5ads7xRQP8ZoE7+zOg7aVttBDwfpcaSs+YO+6c/Pn8Kvb3g+SvZzUJd2mXz0m2mrfOJ2Zly76lV3nR/SKyEpOl+bNZFV8Ixl66zW75FTGwpZ9TrxuTpXJW5v1A+EPWgbguAgxWrG2YLO6N0GVnIH+FKo2NThO6pD9UnWm2cR4XX96v4QAwX640XdLuGUNrcoeuNL5S3eygxEc7T4MWVto2ybvstLWZMIoU1zM3g8vTIMJhn6Rp7Neg/jhOPoHKpY5oBybkolQn7aeT6Ba6D2KbYcfXJ0ibg/xGYrWJ0o6eGp2QCkjsDZmF67ZD/Re1P+T7yv9lpRKAxA8keGmqIZjfFw8Vr6U3WBZoGv+UrwY/xmgzGj/AxLfk/7SCdWGGqcsWzgH8X9v9iSsjCOzZ3I3dpv2GOUAPB+0ru0uKPkSVNMHcpCcClWDOQkK+HvvPgR3vO3Kqx1FYxFpCLxiKpsImwAr+Ym3hIUIy8/9abWg8n4WrD9oD71feWSqgwVBGzn+qa59S19X2PfKN5/a8ridd8u0etnDjJM+moDfffCNAMLXoSC7VVR+Dud94rkCqMNne4pkKtqP7jh5U8V4bIxKvODVEWmaSWjitPdjGaUlgK1RIq2kpeZj6Dy+0FdHPk3V4p7LDSY6B9AT8Wp+CfN8xT9k7JQSdYdtoR3OJW/C429xP+dSdbIKiiD2kqOP2RSLdFXUZDjddpHWSrnquCtdKK822CcXgtvaRD506c8Rk/UEzyViVNsq3rXYLMV9D4Tu7IuxQCIXIh0mFykOvFOcHJnSGILSIxAh6f0oT7y6iNCfAEV7dPCDf30fS5nw4PMfUtTzRpmqyrRZP3WWVCVstIAHXXnrlqOGQOomCbFiCMsiHJVfYI9YuKejmHQOl/RuupczummlR1e5HVcv52K5qfUL5gEMfqSd5oTETbHsIOVU/oAvBzYdfwYsHmU++TsKZXE+QrLVP3wwLXqSrtBr3mLhqO2ZGtU1GBeDbXGkcGWYe1Ut4NUgH6Q5KPP1iNREacN5DzjInv5RBSCPTqOYh1lxs0ZS0sXgNyHXDPUrNFPCTEW0BJq4ISEJOQCLjlQ6Kq3jJk+YYW5FpO9jYJe3XwuGaA15n49BTUIZU/WXT4BHusGmQeTM/mfI8p2Svk4PldwYz5GoNmHOjlPwMuq5xF/68WN7RH5LAwByZTDz4ArWEVLFxMpbZZGWV9fGz9NJdtnW4bHyB+DjxN0UU7UIiPwdO3GnLf7fqQhUZpa5hf5HGCBATMgCw6EX4KJpTdr/ibZuKdI+e43rwOeGNmw6w9SbqO+w6yGJ1yv7VeJgLxJBMN+jDyVva3S7ynbu1R24KdYYd+eQ4p3KVfA0vLFtgJquupMzo2Af2BavBZwRyjDQ0xIFbXAme37niyt2JS/r5wDafI4gZjWX6wUxGLSJ05CC06td4lUn6ptISEJD940R17xE8fANeDbPuj++AR1dHr8dvlzFV89st7ZcSer0n58+ps5oTOJsjEZA4EUTPuP6P4bhzdxiajDCtKWpER9uUIiAg0EkQ7eeQ8FJZCYbuYwqULwlUKD5jTR0725iZQobvvfLbB0zb6md06vyBsiBHBzpXdYcguv6tJO0A0bRsRlmwf8rSX+GHnuwg2owmuW2olRpotPo/U8Zam8MhvzzRVAUJe/MtghMVXWtDFGE+UIswf9Xs/2bK4cm7/3Btn8ObvC+MR7JP0z2LzW7jjXwyTChC/tSOr9tnDzLvwnJvO/9rnBF5Qx9R3/AEEZtAYitnZN8vyFj9kud3JDqk/xutD6iyXfBr3Lxh+V+79QXQyVWCIDZHWznszfZbmyUQwI1JcxUi5rXvFdLKpH/Yg4Ncv3NQZtRIfo0IMOMsU3ILHy8XYi1BP/u0XXl/Q375rNvFCIwwyIDq/JBCnBL1VBQhDTKHUozeVkiT3U08aulgG7DSdDkHr5BGJVH44P2CD1A19FRHwVk5XeZMeSOj5qe8LaE8Twr7S9tTdj8C+de+IYynGx+P2nNWmgK7SUCsDe3Ei0obLsTgqP4loYWlAt8HF/Oj3mP1mySWJBk5IKekNRgvefomPqTOda+aaGZNA3DD9ohd/gKmUdeUBKSgQBeo5niTyyZQHMNgIb1kH+lddOmrpHQ9GHNmxM5B876/Ez3at8N5uW9whorYQFVsRjZVl1pJi5cNzB7RLHa1t8NZgXGeKBNj7pzEaUWDxZa1I3po3+1phQo5YL7wdgUwL7ZgrsCv0U3csQOf47ODzjtFkNwRvU/TyTPJ9pq4EaWWhTe2pWRIdMkc3ZRLavEWdFYe2xaNBxewbVx2O5C/5yr8yMwjeh7KCGPObtnONyAX2NCthIYY5UO/pG8BvAgxvgd1oSrU578XNsSoFlF+zn+v/YVZg1HiHTilCN4QZgQWwbh+LN3NHMB+E4EFcbJhcw9UgYoaqnqb/6UXQEcNgnT0y6BaBriJDwmWpFd4dVCAvRRdOOPBd+gy4gJxwLJgsmIke2Z1G+CFUNgzNlQdcAzNCN4xXLIjfcS1ShZGoed0znAhiXDGZ2Hq7jwzFqen8NXwlXjAVnRXfIZLCv1OhMU6cldfFZi4DUvhQdzqfpPuXU3yXDKibhVVv4yE+aA7xKa3eyDYPt9AmVjzacdwrL1gqpb3fqBO4R0bfemFELeCOs1YD+eew1MVbFW1Ph+vPada/Sw9TlhJWQ==
Variant 1
DifficultyLevel
634
Question
Etienne walks around a section of the gardens of Versailles.
She starts at point J and walks north.
If she walks 31 of the distance around the garden, in what direction is she heading?
Worked Solution
Each edge = 81 of a full circuit.
Since 41 < 31 < 83
∴ Etienne is heading east.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Etienne walks around a section of the gardens of Versailles.
She starts at point $J$ and walks north.
If she walks $\dfrac{1}{3}$ of the distance around the garden, in what direction is she heading?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-q-var1.png 350 indent3 vpad |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-sol-var1.png 350 indent vpad
Each edge = $\dfrac{1}{8}$ of a full circuit.
Since $\dfrac{1}{4}$ < $\dfrac{1}{3}$ < $\dfrac{3}{8}$
$\therefore$ Etienne is heading east. |
correctAnswer | |
Answers
U2FsdGVkX1+JVXkh/t8OQa0wRvYoOZXCWHToRMW6XZ2g21VAy16q5wEiKJ99uQBU8nGIIe9DlY+umJkY6L8LF0jhYkDKqJBlaAsqBf1/39U20TKORy3NFCmtjxxe53gZn09V4TeKxi5/wEFehZKyYv8aXQ0EZKJcPiUiW9KNZ9GfEUb+gnHL0dZoqrBr3s+ak4Wja1Yz/T9XHQ350bUh7hXk5wFBNy7znqWlCPSAYhEYEjgewDFqv+1oWRDXgwhhxDGJmqZjXZVRSc/5aeU84fI7klYSv1ZrtZ8dJ4c4R8NR6/RosLeRL0l3wNfnWne0AzeT0go18xjgbY6CmQfNDwAQi60tCdEKbNJOoyKW72xxrFIJm6N3xDIyTYcUJWEPuM3kpg3nWID1j/9GebEem9+5GhT8Akfj3ZbruaafY7n3OuY0wpxvj8ujR7ItOkkvYy470RRZCHUd9CMVDJzVTbSxtDagYgoy4Ty5deeJD5X1F8fOXfgcB6ihiUsqlSqzqQZoQaQmj7MKJ7VvK1qxkp1m04LeDG9qKLZXzQJANxDdOTM5qok/3gOx+txnrsI05dRNreqXXwlmBtJESpfBuE3rGqGe5VgGpieWUSEHgImuXkzAIGbJ/n2M1dt2CcTyn5QI/8Ll9ZV5PbLTHNAf1muLKjoSDmVEmGqAtSLj6T2++Z/8ORGLJxr0h48JPT7A9P1z80nWqm2qSebdZkBHv8v2sEohhoqfqmWnADz/TJ8my8XrRATkHvclp9FrX3kOyOG1pMinBqPngcLjHFKD4uBmt40OomBqKbcGEJHRzCY2CalX9FSEl0dPg1/n+n9xByZtKEXk8AscTdQI7XOxw1co0V6/ZpT/mOotVp9q8Pa6zAhI7OjutjS87MMF/+EJKZsmzO0DcRvhsdhf1Yxjqw3xBO6kfwC48m5HadWEraJALbnA11W+BDkLC6twZ/e4SUI4dbAclvY5vHisKuBnXgAxHF7Svqo4opYMVHcqKMwLj1al+PvcGKQI5oMW1COPevJFT/tO9DMwapduYAdIewwyv0cNYOU+wxVVJkrZV9IRUJVeppw9E1fhPxKxPQMKetDJv8FcZVZ6OmE6HYQwbMtzBMD7i/kQ5IFIAm/aH0e22Ct9u4Nmggv0W9/RkqmCxoCLHPwt5qPeLnkusqMOzMK0g1WORPo3M/4UKTRhSAaVBR8Jar8C75naDKuXxIE5ShEEvbSahca4d61c1Oxtfq/6oOL4EnseiOSsgRF4JgfPmwpefozIr1tun1to8YAD00AtsQcH/miDJUUZXT+ySEKwG+D/gdNPjH73dZqVEW4qsduB41Y00wnHq6HVG6xMWM/EHxueIYJXlsmFPGJpgfqcEDMB0Wa6+ix9PlT6IuFtIevp+bniljVdC3WFhsVEObJv+j1biI88w5pjcpvln9Dp8vz7N2KxQ3em+QHeM0ChtDSP4sdkpgXvkVSM9EKLWGB0CkonRqV/HTDmdBkTzlbk+PlqH3SfRRi33VVj85g4EiIPIsVmgjNH2dnieB7Hlt3LPApGiLDooHJrbWZUqU1+k6P5mvSLUrOhVMLAaNRnmOX1E5dNGDYDE56O5oio7R5j60bWikTjeNUzHR0voVcvOYEWF735llZETtomDG3XI1BG68qLbPcAGWYhTPagRE/29bdGh2n5O1iOWHc4whpMKWZTP/X5iYxIe7jJdRfCkULjZFqQeFn8hhIyxW5Buq35SipA2JwXiHi1xHkb+vb5Ije92rfudNYLbZZKnNVuM4cnxLoATz7VREWQj9AixDTTpiNqmTwYtlvH7rZAQXDLrv/fOX0om3ntE0A9Vs0x3NrU7Mcnd9eHp7i4djYSAbrZucyBpXXoUTgqcLi6f92PxD1lhR3AiCr/Y0slBn7jSZKpM8r3Ok960muGdlvW3Q92R0tc/tUSfrk2eyF+3njQuw5BeENndnHez1i7gBMQjSZNSGB0wEXGOKZatjc2OFTTRmfGdqesRYL6e1+fRafTmwaClvhpU5kC/C3AODpcfbPjxzL1aHwZ2pKBQf93JPybr0TpBbfhvEvEZcfjSBIEw7yL7GEmM1vCPS50g10Nk20GDSmVZSqqCe275K6mJc0+DHwwQuWnA5bTwbwzriYweTDwZ3CF8/z60U1weu9QNhglhYcf34Z0xm1JHuazjlp9ayt7J9qrjqGwF2HN1Rszzo/Ny3bukSWE4CndboPDZJ6FtQCVFj5+fo+s+qRWHMJ+PzMH4qJBxQ99MUxeq7vpy89VDgKpKeEfNRffCdLjCKhsCKFsuGn0d9Y4ybesG8jWjBqlWtEEG9ZyS7wI4a+TVyhg3HWQABG7d+XD4IwmIRSh8bOGIJFbUUYpuG2hzJaAbYcJSW8m7Cz/hs2ZzkOYQPMdTuRVuoct6tuWWxmpZu5qLGoeQOuk2DbVP/5G9fENTBLa/4etvmq0RtuJ9PxaIzoXjAMTTsnI2KbP0daymzYPMLXIyGsMrV8ZPYOd+xMHopyN6sBh0I4KKIAJa24Fn2TCVVjXQiSD/p6O2js8Z+39Kv8x55fyibdcSfVks2PZcS3zO8fL4PO3wsFAimSajpGAWc8RHQdY70iPVBG/NAIYVAY+5hY33nnaSjRtT8qy//BAG/atk7Uq5pFwSj6W+o4/pz4Xl1k6Z8m8BAbuTZahAWh0SwFhc0LChNTV8abPztPudqnxDpqHlEzllNd9FzGCRC3u10YLhd4ykLsCTaN3gr3ki/S8qgGaSQyFOpOlZL+EvsJZDUIHedGM/qStNkgSQaiuvdLo/2kK9z/mE/Dczj9+DZEuoaCC36hcdZ1Rlan9HNkCnvKYdHU+8SzAv2RKNb5BTCbN1+dXZiKS4KEGC/5yPcOv06KKKx4NPgFGuXcZ0va48mm1NNgGIHBqtpj+lwGg+NVhoB+kYsnbt954Pmpex9wQZRod2MRyd9zgFpIiuRE7hHFImqQ4i9la++dS/p2gH8ZALJ2hqmRHBK0k2d2SPXDwHCml8V9hlYYvlAVzEhOPu2HzZd2HcDXHxKtGCcxi5uNKuxrmZkhA5eKtDiiD2wSlFL7wBqPJnjMOqL8N4VCkP9JmKVwp9fmZuBDPzZMookDSiGTbq5NZOxZoGiTFx+oOd58dYYQtA696qd8PDhI5XQ3lJtmuS/iKgpFB8JOb78U4WofNuhD9cihoK6vZcHTcOpbHacsdSvyg/LSEXWW6jLUScAcK/VOimu+Y8hhejw3D2BSek0XGL2aTbfme7mgNJSeszj9qQi7cmbA5NNjRKF4NJvQOsFQNwFfwD9UbFO2701PTWY5q3IzFn9F9uOSAviXjq6KNzxkao/T5Zj1PUfqCjmmV2cpoNo1t6soDInSSclyo4wI2nu4E1aFQRdQdcTc5ZWJT2NOFaK6ttl3pVUUXmhNzqrr3kJwdd+5DNG8TyD22CcjrRqSoGjJQQ3ycjTDVi4xrfPi+dcZX3epiP3zYAj4Y9zUHE70KRXVCDrbn68tq4UpHx6n7YbnApbwPb86bFaecqXiw6xdHP8ypEeDzFNy2JQK2qw5cwnqmDCj4Del5K/jXBWJH7ptallOnJBoQyn8kn++QduO2Xr8PNjCuc4zV/D6s3Ze2ZXaZPBkbnwaX9pQ3RxmnyHrCzoloAXh2+svTho0bLAC7noNq7W/dj4ToDnGTpOYZpSALqCh7/UrJP+TYxGlB/C32A/WQLGWBG5Cxxc12tDVsoew0SWPLpQsflhyB3EwouYXH7DEIQCUx68XQYrgAYiagr3/VzUY/i8BBJ2h+Lc3x1saG79HNVU5OnVaQXQhCKWIWx3TG91nxm3B2Ms0aFfjENZsXq644h0kQ2TfXcLONC6ItcTTbycOYSYpuYkKSUJPtvSl7M6qrau+vtlZIpyeHUP00wzce9sxbTK0IJfQ8zALSwCqX986q0IUJ0Sexf1wWX1NODXAb2njN0C1EAo26YH0E+Y7BotQTpUndVQWEOjGNtLCfSDsO34wPhkDqm8C2BXSzFMYd4KvHdfgMT6lEaicyZLPmTpcL3S+BlI1cH7R81VY3r/Iko1xrXwC6hq+en+EUy7wZAtIRuXA0I8okg73kRGrXvLDb4Oax2YPPq0mV9+qhAtHZb5AIRqU5vfbCDasZctmAeWUGMmNd0rnbFHynLeSYt5eNUn+piJjj0HB92Zyh3yOyVV7SYXW4eFQ4LMz0mN23gQsoLYDNaoBJmnbNQ7FPx7rOeQtf7RX/hEhGjy2/bE8KQRjMlgToy84FlRqIiqmtcALJVfrCUp7Ew9o+7lGLxO1qJZvtV7vapvVxqhImvBeQoJ6Oyov1yTXfK6zrPDFbRteJs8GAFS1fwvEMxBypOlGkKbqSq6o6PEIc88jdCfh9XXd+XWyCtoMxjV9UtCvSnA5Ynlhki7wDD226bO30FKvNLhOvBIeJsix7HwTFqTt5ACGiq2rkK5czDqQlx1wiYEzHuC/Pzd2UaXAj/Kfu9y8GL5olirRCTssBUNHJg2t0VeymEN1PFE9y4ItjXjVU0Ng6b1+vrbctqCGErgbNlmh4zkVJ89diLSqW5Mdt21yI1/SBaP8cya4ms36IYg28xcUhERNhju8zxzBFAGIOjANG0tcrk3Yj2W192rnOvALc1fYhQgTSE8j13Gf5MJPboqWW6LBbhNhcj5NAFQJTqxK3x+M5l4U9VwLXArNmD8WdQrN1rvJFSM1ixcMbYEGqykN7swI0YFtIQcRkuAKwINndurWwArnfsV6JLg0hKoLTiVlgop9XMDBUo7fEFxVPC8xHl15g8X1W+gY0lfMd+riDD+P2DngYFK9PvjnA7nrqum60/i299FvWyQgumeooA37vzPF/gAcaCxH3NNxLOzYJp1JQWZxIB3G155HLza//kMdWnY9aKhOVbBAEPn0kUUTvkvbZR9SBOyKKopKqosfnNpnQ+/cpKPaKxTqbme4TwfXmO3eMUrMnWhA/ouEUsfkyrYrahHBJZMT6seudJu7vFglbIWkj1n5GRpg5NsEEJC4MybMy9BiWcw1Y08wE/Ota79EeA3Z6auUDmVdsvdUlV6O/5L48in/LbSnWVIdCjAX/D10IWGU5klrF2CCkkSXZiiBxakvRiKheCjwZG3FEvTQavLwAGeaBjMIoKw7ImYwbRzeovJ9f3PApEKdDzX8W0+I3qbWQ0PSiR4QuS1IyUWqjI3MdNSw+YMv537v24S/w9qOcBLm6ur99utuRCWaNmP47QBPmXWZAnfjg/6cx5GcE5foIphUCp2/RyrwtBs5g3n3tPv8OECgeWCA59DmlbCgUEbgchLWgWd0PmfzuRinMK3vo1F8HM7FUfdynL3O+d4fOpjLejZkehHvv0hLlI/6dhOaPbIw2mr886qP7HIukAcs1UdsNjBWCJ3YVHc+mCWYidP82N4KozxIXDEin/sR9bT1B51ZH/wzHBa8qb0aFtumoOTqw8Rlo0CMf65Ak+G8uHR5Ukm0IttXUY+mpneClCuSZd2H0eR2aWYKhKUA00KS19RD++GIEZl5r53OmSbduX3On9t+RH3PSoCWScWjg3M0+NlArpbWXwcjT2rMkq/H4fvNGI/Jq1s9sf41LgZJGqjYiQZHlSaugnFd7CtWdK1GGQo/IsS2DN2V03YW1BhMGSFW1NufvaI1aRHY3QfDKc5J/J5yCDNiHLcfPIIs6yzIimklIy5t4rogHqz3JtIhi/jeaYnIwKk/9OAx9GzkMr6CRzEGHZ+xnxA8utEZCWiCl+3qvUrlO4Ls144bRuzhzsFsuHqhScX5QkIGbkwLtSUZ4gBBycKQZGN81XlymCBx+Q4x86D7DniZ9lVdgy0zb5S7a91713VUxkZ8p1LQKhe3j+luQlDDdE7IseLU4jC16omtj5CWbjRxCQd8EzUYAengq8/HKhT7WfHeXVEJzHpvlU/JvffUCK5mmx4FXVaILosuv8n0f33BgBu7b7StDZ9ut3nLR2kWYjKAV3NMxixCLR499WFFQH/Dl0g4gKKl9C0B8uKO3P6lfgRKW7PjFX2qTqPqOvTcdnPUOLvNA6KiA+Q/wTYVvArN0WftbcxPlU8TFX3aHNGSuT51h6470nY0UMB3DER9oP/+WMCP5ANSo7/Y5/b9b/icsdFsI/sIpAAnjwn1V8LA2ymEZcxVvNoYqxOR+a8S4KQi8X616JdMeCxQqTFFf2oyd0owJJsbUkxMXtqMoVDWX+t4EreY9X2CrWt7vzpTY1jVD3536gX4jXdSgw9+rD2w/idbf1N0Xn/aDGWHIqI9zkscPdHV02Rf4YVuzlmNJ5+ssH9PGEZWhg7vtn6OC+p1/JqgJzsbMQ8hQqmaVTM7Ut1yjPN8bTziSCeFrVsSunbZaxaGEdqkt8i+a4lA/SQ1sMKlouu0UXmB2piyQLB++X1dZeQL4iZOgx4xAVFZvnciR7DaC4LXdyaW5njbtHarts1LCVH5MUwyFrZiDcv2zCKTmPeBf1lVAM62wpk+CjhQlfuVH1cLSI/JeC/FuL9JR11jaQLOyt8Xja4PmQWeQNxJ3BNdE0g/b8RIkCjyiPS+h4n/zpOsqko3zSN4T+d9p3MfYn8seB3aYpMhF3je3KOxXARdN62LLiQWwlVnIx74PowJLIcahILT3iESxZxutDYteL1kDqzzVXcM7Qr2Udo0hEmKegPBojeV2E5mmDWobD8q7IP1XI79Yb1hKTt+1Cnlt6QFReuiArt4uIOXa6LcrBgIyGz8WUmlg/yO0inUBSdcaTCs+rONExqNpkU1cyHB3XZlTnIpVRU0UEs7A1WYvssqtGXYVy9dy6E9jZFf01R75yXkl/3dEY02H7Ch/5lnt1zOa4fgQLmzYrPgIlz6NA3gsG8OAst/AAf6WrWF6AtX6zrwAVL1UGw+lnIisHmeRqmMa5x3SV4No4H3KHEl+k+0YWm8F0f+MXEa4WTTcP4wVmSvH50h6CSrlwGPs83rExj2wOTElYBjgygz37UI+HuTDOXbn8Az82fHqzcIUEY1YYzYti7S37UViaxdYMeT+puAhah+FsxpGOFqPKWXdOOY6COXWIQX0XDG9AcRABzu6aAjF5XVHe3ktCgqdHmusYWfa92h9MFyG1ibCRrtrY2CZjiNzqYxcDDqlA8ak2n0iwLemHsssqTX5Va6nF9PABW93QbX0G3uZ6bUjFE8uKLHchCCnTuh6FR+tlHIGMBSGoPQ5a2id+koYHw4iaFoO9LBL1PiKYL9yRnYJ7piCwORntZQFwy6P0/FwOCjl0TveD8R2yGUcd7KUnkSjybCkweZUeYiwdJTbzLSUI8MlMk2K6hHcNZC5/oxQEsgxaeEQ6E/D4NKhtG5Go995Sx5VUy689T7TAYAYckvstcm9+fQZ9hZl1HAs/Hrv80SfjCEIGPTGaxtu8eQhm7g5m2uXm2oTP4AdydDhv89Qu33lh/r4+jZvI3W0AbF+PaITENsc8w3oZXVFhh5DBfS33ytdrlZrNDIQ4pGYfRzYix8B8suWLAtmvJFhzrtT/EDiqdjbtqNDXEj6fxRkhPQUE6YJBxMjuKEwIMgnh9JcQrQPEF1y1buGITRcgLQaeg0TzQ+iTzxbGx/3YCxTxQygoZCPVRCADA3R8IkwINr80OieXpm7yWM/v7D3b2w1vwqsqXuRKcLpOyNgqOYk+T5sMvhg7iSlF+FxkZlUQlkjrpHeqE1FT2oSJvw+xWnt50SwaJa9D54PXiPdYuVPq0w8DhlRlYlu/PLNifVrq0dw8h5nWMeiBDYu7WjbFPNlUvOV+kZdNCxOHSnQ/k/PfhqYB3UwDoDnRlJwUdFCFUB8ekpBVrVrQAFPZy0SODXkLN75quQMOrjFCYH7/Vo5D8XRBFMOF/sIlgjNlvsqbPhkPoYRlARHsB1koQnB99GBhBZvf+6tTtFdPzbOZRb8218F5C4G2V/mgpjnBfjrga44f6tm9+IBJgxva7/FT1bmesSeBT1ULLo6I27aqafuBwc5aLq/kYmKUVUbZgQ0h/qZNGmqtFthe+TEz8nhSvfvKUruqdQuP5mIb9darCOqvtJyX5O9N7Ym2tI39ArLOsUsrq34WZfz0jjlBRMEeYs5q44o/4agbYrLqixbB17fDYfUzyXnQsqGhrKIDzymVrC438B02042Dk+YtNSiGSG+yH5tlxRrKz7iTgp4oat6bEfR85nu68wKbXuZGh+j/YmZ/P3sYvqHmKe39oebukRvsAOgjNPnGCC/o6p/2DvcVjCl7k+K0ZRNWTTp2RBzIpb39kg2dAQSd4zOqYwS/BVRkK16cjlFUTY+8SqVpWqzpnK0Y6DsScLmVFA6ozx0ehUZxTPQVFawRQvueWBlMePUT94FoORg7UUcc0kTv04hNa4kBouAVaFLLnFIr+bchOtncjjJZxk/ak+x2o5tZd7vqennQn74i5R6mPolsJGDKDmgJ/xVFCah1rXQFXENLvBTQP5ecqB5IX4URpXEc1KaROniBoTfUa4jQ6H3p9RmGV89pwNXV2w9PUw4tFOyw9bN8TPwxaUtvEX8BmmuLW29sKNr2WLbPHbB5JqOEcy/HB3t2hRiOHTmV4z5OPT+/kH85elQSunRnhfnh5UV7IY+0mGpio+EuRwzFvLyEXSFLtEIW3xFPrMV+oP4vBpL1AcQSVtyw3xNWmlrKydXkMLKMMqiuPDgwLxD66OO0SqUG4stY2NzgLAV90Gbob4D+P6lJiD/S+kcQ11AORH1RmTkRBJHVyqvXA2SUgy5CU+q/E7arW2c38iLgVl0T+4bS1WhPBYjByh13W0mn6t+G6OiYXXAqRes+L5/cbciEw8RLyODIm/YyyNcKJyNJJ6a8JQP1TlFX9HeEpAz26Z5v/ds/UJ9553ifmDDppzrC6hLYyG6hSS/KPtfzxRAkDEZNJvmm6OgNo8XOGJV8jDjBsL6dr3ezn+zf3on3lTjmovS/kLHKrDEumQVVHzo40HB6Sc7TVZg68r+YmW27+bP7rCKup4dQfZ2p5nTJ0eMG8oblzo3cDezzcZNWHzPcm79ZFiWQ5tAa+m4uQuEY1rryNZPW6Z+WB5gT+29f2CoL5XKQ9Jimajigdyd3q5twkcMrQdcdNj3s/6BKqpxEbB75lRzO6A0/wpiaUW9gC/02dvv2gGE/7p98T79cXiPy4mzVpnAyQNdNwbXeztubz2dGacGSILEEA8D7fSbvNGzb11K9c4tcVMgDcrrcD9mmOHljg66G1ji4XEFzsnZtXfEZV3qQgD4gavYbKlGudJUtKQzs/0I9PRRNUONuofihcsVk4VCKXaSsfzYMaq4dLo+VNxpjd3VGOitP1v4/EZhtL3pBp8ZJ0O+VVLoVbJj9dCSyXZUFATGbIYWrQK1FDnSgUu+p5qlZA6Fj7EDgTHCHWJhjR/a4PX+InB6TH2buqxkRR66p4G7zvHlmaL7FcHGnL/vpCmR+PGsMJpSsSEfvSxL53XYPgKr+cNtQ25pNL1cvLAl8VkZRnUcdeF+NlCRWJsk2npl0GOQPvPWRdRP4wBdEzaOxkLdLeLnNgKQDc1lYWpB7K89JTX8rer3HpSeRS1/t8QhmSLaPrfHELX/h39YG90keXhMiyHxIuMOnsbBwMXvLR4HCqYBztqm1tNSGb74Hj/5AicDQfk8oh2m8OthtRTucUhLuz/tYaIsY8oxH85FKcNBJqEG6DZgNIookDRnMLGebpjcZepXM7vfxJD8flVILtyXJwibQls5totx+d+1gh3RWWRXCxTD6N0ugKrOeeY7JzW+02p1IBjij0ygAmiQxBTg9wKXN7CDoUPf9fCKC9yFDpcntPXhSKzDL5ms2OMgABzshOH5xhq7qwdI7xg8rqMqnaE2w6zujDqbmVmjWX/9FUGLXRYNMZMI3qo3Mzhqz28xDuc3/Ho3GgjqONnefZ4eNgKISx0jI54oGG13KsBufB9OuAuoM+7B8RNBXhAy3MhN8B5avkGsy2q6pDON31hVstXEFxFT/ESLCgmykk6u0qf4T4QTHYhXqHScumsbcnGl7qBVu/u/XtSt+Hu0T3I+ApLwX93v30bbNQCD7wjcwvhiqDEse4mjNV2GwpdS/pytsqwY7eJZUHEz9uG85Wb3lxbF3HXCaQwgWxahsJrWGbqKEg6Z8BJ6K7NuUrPxJdX3/bYDjM29eXwEc9H8PcCvEsRAD9OlDjl7YIXRynYqjxeIx/jUwmaITP3D83ItvAKjRRnCi05Kuoni8hhfA9qmN+WMUQGe0BhhgDEiVjIa0u/4ip2eOaR9I/EPCamrNvru0SeY3aJrE01gVTRzvqiDbdVblWKPnpRhENOy9gndovSonbmthY+KQBTzDgRj7miUSJH7pLqR5wT18o9EkG6hZF0Wgg0Yuh3Jk8g+MgHtcs/mBXQ6ozKLPoFfXse/qZDhsKYkQyB1yxaQmqQayUz2b3beN1mvVyfjjhjWvoKCzKkg9eakotsOBiyChnMROUn2y6a3gdTHIu619o8Tzp9S7++HfHzpWyYQkM1L/++yNv0cpQmUmtAFg64El35aIW5Qp4KhhTengwHQOmnW/WiJCYCF7qEbvm+1RzMrcYx127R4dy3IA+e5RJZp93h0/o7smPXzcEuAn7iBedcspWfuef0JjrdAvuFquHNthmhgYrWiCT5p8n1SZzFyYfeB6ZayePPOPgrKEmf7I4DmESV5SwvR80VKRCbH8XembOM4s3N1AEYsM8CEBCd3pLeK886iHDrmm2tJTaXLD7JLFCA3dJ3Mz/TG9c5ps5ML0uvpYQNm2ni1SaPWAJdwW95cpkJd9OiENGNNw3KJsPZAk4M26xnXDzd0667mUogB7AGtNYTFQvOPqQBPBCbu88o1SfsiG0S54xoUS9Jy2zf+bWRLl9z7N5vnF8p611+NnK5Msdfl6t7TFnVHY85yp0i9mDsketAox5i97TJPa+jzC68tP3kktBygZPB8KB/8C20bnNs4sdwwO8JYliDl+xVw6IB3ALXCh0ygTYeZBh5C/Sr8fVfVrIfg/aKloU3fAei9epJn7jT++IrChlL8bVyXLN6meuhhtNiQR6O3i/OtqiUyd3dQtxWI4qz9piAJg5v6YkP7dJYM5fHpZRdimNgqfct7LEE9sxX2+txXCUMyJJSmw2d7DKkuzVRQnF4lpVhyoNMQedfS20KGY0bwgfTG0UZfq9KFqxnyWEpGI/aCmghjsy43FX2DFIKq0DYD3hJ35iRwd2EROAXSMP8xLif7pcy3gmYkTAQRA9xyGkI69opnkqfKqb8dcfjjgTj3FBiW23HEeMq1/zaml0gIWBATFIiFHigAyzmPCfCig7L6ica8ZABUa7tCpik5/CAcFI9PMpmaJ+oW4V2puKol4QAcAC22aqITp+sQ+VbMilN2bVz7V06K2sIbvHe/Yz5e6pYcoD0shlw6+n0LEwr337nUz8IfDBg2PybYmBTD6YKfXmF+njl/LgLgNAD0wBeI/YGt4OUCnPZdT3JOVqxRXJ24VxO9y01NYrAjFTqJcPDq4h5QPbyb4Ez0wvUhc9KpTRcHSMQRVSU5vvHqfh9aPZo57Kq2Mlwmfmql2g048b9VVbbhKQwygCKkOuXzPyot0oyvvAiiacvWh3evZFp7XXoTTvopBHPR0W6x40f8pTJWszLSJI5nSXl6GRnmZcVDngODfO0Vvw+7Sn6N0urjzWdcTVynFeNRWd4Eon1cS/ai1T83FWEMKdrj/5c2qK1fTIrtpk1XiLjUbEkxg1s/n1lQKwVTdJV0bbpl8mc7GbII7g60c5yeW4tLlb5RHYNJwGlWX73+iOFeYUU5aIVmoaIACnJdYXopSbBnLxE4pMdObITjuE7V8oo/y53Wicox0iYXz42i5maEX5ri6bMUXq/zPvACjfUjiy90mvKysGbajd8O7bd+hwHQmFnj+wNmblDCluPg6JUGLDQwVqdCt8xErv/gAnCorBcJpyGf7F2mCX7qMuu348tuvGmd5BFvkarG+Av2HRMFtgqKVhhqbCZ/DmASEXEbs6HpsG1P18fSCLvtoycL3ZFywdnnsPyx79Yju8F+/hBAiXwlNZ7IU0N3UXZLpYF4OBEJywFHMxNXyhCZVBLUjsMGt0MUz0C6qd1GyYdx1L6tnrJvjZMyv2Tg59WHjRLBjYB9Mft9M2lXmOHb8rzrprD9guxJsZYZfj11cyCbyGDNe4GMkIQNQpoQ3xbYrj8LbbOz4rWJkiuSEjmiczPNx5MS9R/A8TEoJX1jUtjqFfpcXkMiDvQtu2g9fIO88AS7c4uGA0JnHLDMH/L6fH2lPTjTFqQAawFFbzo8TzdbP4bjMoFVPcxpf6x9TM/9ynm1I0upowMvP1z3McR1/FWc1rILa5KncU7XsottwFq7Hvc2ArXM4s7areoLru5SDBAzW9FP7FeHY2crckR9CVwcXduM74u1BYoqLsXvVtNllhpV2IEi2jVpBmY3L4pDN3+3OfShROYLbUHqcM3jxfcCidjYsLGoLn40E8x2cLn6L4qRYl/uCzAshZuvXMCZMQZbVT+hXuyhgrTw9X87tsBtzr2BujX4kXoR1sOKBWkIOC56I+Qh8WsBek6JzfvpZbV28yFGChkIpKmLTdhQne/UyEST6cqlikWn0e//Yz0BdgHKZ+O6we1E5g==
Variant 2
DifficultyLevel
636
Question
Shivansh walks around a section of the gardens at The Taj Mahal.
He starts at point J and walks west.
If he walks 53 of the distance around the garden, in what direction is he heading?
Worked Solution
Each edge = 81 of a full circuit.
Since 21 < 53 < 85
∴ Shivansh is heading east.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Shivansh walks around a section of the gardens at The Taj Mahal.
He starts at point $J$ and walks west.
If he walks $\dfrac{3}{5}$ of the distance around the garden, in what direction is he heading?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-q-var2.png 320 indent3 vpad |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-sol-var2.png 360 indent vpad
Each edge = $\dfrac{1}{8}$ of a full circuit.
Since $\dfrac{1}{2}$ < $\dfrac{3}{5}$ < $\dfrac{5}{8}$
$\therefore$ Shivansh is heading east. |
correctAnswer | |
Answers
U2FsdGVkX1/uOxUohrPun8r2BBNGuC6Dy4cayHGSgifjMa66Fpt0xRGQSAdCdLD3Etblh+Nfrc1buckm4n5hlM8BGZkenOH98lHXToZCqz3/DxIveS/x7FpzYKIvHmbLUdr39NWptE8xgj95d5DVZZ0n/UtLd/o8TOgGXgRrXYHKkEQyprN788Q+kYzwVEV0YRwtrpZVcnbCA/bSQFj5WQqlQu8I40VsA0/uug2M5iEYOWUzVj2VZR4wUv6rIuyxNDDUgqBYE0XfevBKLUduQJAoZ/JHSCZUHoOKtzY8Bppeif06kr6xf2GclZ5XDzi8wevvtVn7DB/qHJZqItm8dpebkHp//8jPG2aJggjhNH7gRESsVmjhQeeBDyH8MVXo71YOHGn80G0XBL/bbb9cAOjcX4Vpu2TAWeJ7Cap9twp3fF5mTUxPSS20Jvwvt+UKJJNLIGCXG0eavYICEVlLWKrKh/7wsna7bs+be/lFEDHrnmP2E8DpKN8oi/p1aedkUfQqLY776lOT1JhTfALwAZkaR9W5NXTRnTj5iyH03ZR7WXxkAAwt+Eyg5/mhLkl15UqS8iiBwcCNUL/VLebivsdEcWcVmCH4bnY831hJFDTNT3nbzYTecT219vbOwT4VHdQs6iHR+MHYWWsCY6JBLM6eRcMTNFSuW3iLCAhx0r6Ms90Yx1rwjLEq5ws4P48tA8qo5GLsGA5OH3jRz9zStlxew5VCLg7SO80VuGpuImtSxMQ9RhZYIqMtA1PiIIssmMhDV8AxMXAWJ0Myn/LPen2RRW3m0dXwMT7zsyqwGPRgL4vnbg4sseZOes1E72NIKGNwVVljw7Nq8F0Zve0iBdOK4MJP9UkfjLtYn5dY9ajTNRlB2iFYIHJ5NXoAcxxLISN6iLbWM2tgFJiuBlVBnwxupey8+eozKGBKXhJtcGf4AsYNe1Q5aNqibEXk5e/lCV9pMeokefQbHnaGB75iXtnSi2wTUllchFOas/kxQCK8+iK5nqJBjUEN2OgptWY9JQFOuDovHUR5uZSo9ROEiGfZZ8AIA5ON0ZoqhG77bkEVIQG07GaGwXsgrgJJ+GfoU1pfLzdQ594mzbeM/L2B92bIoVwwTjSP4DVHXpdbRGd4pdwgQpvEXX775OCLdYT7OLlRhDO55sieay+AuyQfDxhzNFTAdbUtAUq69OWqBGgTHkJrxNYj8dlFORFoCz9Yjt+XlCF56YXeEQfZuGBWHfe3mtfCW45zaeOPGi9fyqnhdKEok3BPqvNkK7Czk7gmgzSLIKgs7nbTeWrgFx++Os0twx4zN+XVFaWU5O3w2XMrKf59Kf57nLwtmfQp6EU2oWLeAah8+6LddjRyGjS1Z3O7aYSWAO2JSTio26cPutSYeqTV9U9G87SCxtDE2Sh6ty/sj8VKn0u1oaywtqVC8YyTcDtsNdhWvEmZua/eoZI68Q+ekDFS3xgdtdOAXGKxJnwarpxvzfvda+4QkaJpDpPdKzB5OMC7WnENQJ4yO0520x7LrJ1wEx1b93p4+RZM9zXh0yHaqCF22zKzbof8s2skdWd58sNMXnOvaZrXO2FEpwKPcdX+BR/4rI9wYRYnZQHafyTK4yLe3Dcn0V2HGIDKkl5EZpNOjKJ3gGtoSoBXPlki5YvriHw8iIQO49/Xvy7niBWLoE0liTf2uPuaeD9fd1VwdrZM39J4qo6pXljXVlJtC4DljeEwuRnifKzZtau+c+rsmszYuK7oaSYIZdBxI3fHtMyCRgzVGzi54G2mRiiZi0LY5DEcBDWLsL8bDD5U8lWCntgqme/uB4KPTNJrvqkifXDgDhb2F/+KGqtLRUc9gn/lf8dzy4gMo4hiAPyxUYgAu5mt6I3P6soO+qUS/PfUVhFK6kgrZsV6CvihDLKuuC32CdtZuKNRZVHOc+qG/wB8O4Q11K6a3j5HGxOiknV5IxqqO0WaNmiOlN00A9iAKgypjZHxcDSlH1aZyn9s6yzoz99mDE0xcNr0FKfQxz2iFU4k/p8FSiW8igKAHRhpBa6JS9IG7pLBXCEr2mkgYyUN+X68NeUdMFOA7Rg5RFayedD8E4WeZxQpRwpLjZeWwhrlaOLopY0NGqUd6drUiTVsVJY3w7aAtpr3Zd+1EaTd9A5aGO11AG3FzF3HEYkcOu3xQFEikAmv57Xj/lI43E2vkukRHh6f0UD3Nc6cgFpHx7b7nPZwhtBf8UYYfZibAwZn08VePvFfhZ0W7SvDRNdcUWfBPVgiSoomQzxw8gCzFehOEoxyiO55blNDiB7Nh/Gk7AlVKemXkUCNXeuEYfaTTnCOrPjfJUzewGRtdLX94LWdOHaqJeiXmSGGgNRDG1A6ibO7mlgXpJ2c8nl4SXUIvqLqyel3tXnYwRr0WszHZXD+Y//4F2brsLb9+0xpgCbWrvALGF11cWUYddG58IPJFUmrf/ipqsZfBSnCsxfzvd4fzLS+6pOU+Z8vE+FGarcaiQrvXEKaw02cnug0GiMfvn/Xc4AC45XqEK9SUM29Xi2+tClHKlH5ZUfS+uUJLcuOx5TLqIRAgmHsX6FiTGrnTKOQCdKRrX7KYYon2uyBny2VcB9IDb8bRA2drbl7Ha7f0NCJZaR2UN4qmK+gMmuxo33nU8KY74BPuv0NJ+bZfmGXVw/JH8l9pikVousSr4/Ph7CKRHECixap/dp7YOYRGFsNtVkaGszn5DWelWmWrikdRKmtC1f+KsUQSOgzdsQngFFSFJIOx4OPTAyn+NLel6vBQRfKu08H+duZSmsy1dzr/VGzXgO2lV5P2jXak3IeHYByruRuhN1jwZ+WDnHPTsQNn8LwTpvA8iDOSU4CALNTy0jklZRe0uKvdfG6rmeDYqg+K0jPbFc+ryLNlfTg/LZZYPdaal4bbRhZhodNOQSYNgVtKq9spbeE24eUEFZfpy2U1R5mxfdeVj70yCum35+q6NmhvFRszWKQLu5/9winZqPijyZo4vzkqEb8PmJv6vcvC0x/WfNHId6GJmzCnjOy10v+wjJaLbT/tetiqZ/5BRT8Cx/RAqlxSGxFfsoBzi5YJp7PFTrksf6Y23qj7zCm1oNvAUIBvw7b6GCkdxhp3gee/dGSJC9vir/nuidUFhCGHKRaK++W0W/GGuwBXc9qyOrUx+YWgCUlYCXK/gjWU7GJOZ/WbtQF7qEfbHcWIjCBj5S8wvHdzjOH6XZQN5dKJWpEZ28ikxaGGfwRtZ1cNjpyB+b3ug7omszt4MLgjquYqeS5cdFfDsiTGH4Dl5pxBCDaAmLF5EWAgs2kTed+XMs94WpSwr/Xcrc05XpyYEuqUhBRVoB130DveCbEiBknixlo6MuXC0s42NtNiDF9wWkN8GY6omylP9HHEBQ7uvDt2vChLW8wD4jmMMHYRRnNT/6kNfxyGaRhybZuUD+bBZUNgkMO4wpLiaUY7t+uR35uPxZ5e7dnGinJUmBWmDj3byPXNbjHX2V8t7DLOAdyGns+yix66hZ9VD8BNhaM9h5DfWLgfHvpfxeFKMgV2g+V7wHDwUyOP/AV/H8i2HgZryMu627WRMsnUEg7srSfRKYDQHhr+WMkIxDST3uCipfm+nQx2Uj1a5vZzzpahXAlrktg/tbim4VX86lc6tjwsaUhrErHUn9VKLUHpR7Skh3ByFnO4LagcZEpu79hIKslqAEGj3MIQ0rxCgV6s0jfw169Zl2ez0TpQjh6S31nrnpsrbBe+///7bqUXQMCcKmKFjXPlGf+jJAU2MAu2omzxQe8TqkKnBLY4vmANRHVsRqnuKTYPrNb2uwMaA/z2r6qG+4AzUfMLSSmLDwZfy5DnTQPAnpsfFqPFF+YQ3brLWjT25kyasw+KUdlQEtqwOqFOfXwYS30R+EwdrP3NTs4cfWOsiRcB3LBwJtVCkpyKlujnSeW8Qam3R8bqrNMfrdhVPLKs9Q49plbUGaeKNpp9RXg+uigcT7jG8Ix72tHRhPYTtxj9aUMzMVfBx3MuhM/46ci5YKdEmE/yRj+mGIpOvp9eeqW2npnFPIAju094qNJx/YdLySpkrWRZoHOK4pNYcYOYH085/DauUAz68RVaMlQW7qRnj1cIo6H2g6kBQCISNxu1QPUv+9o19VEa7psTEgH6UdaFuh+8QxydantFDWC7kGO6yolSdXFynT0WS3E+T8YvJq/f12F7b9RWFB42gB0P2bjDFyj+ODtuP4tDv42dOmUkXbhLY3dnQRH+K2VeI1gCbdJJQLWcTabnzJWffA2jcIj5FLC2zQTra4P2R60HteM3nsg3pPZhWJYFvUZ0l3VcKaPHEUF499fNvYUv6lkv6lo/utHENPTQAf8dg8pZGpvUJbJUzza9jFrQhZyjSyqkiieeGjbkrMbRLskeHJT68cLlOImCbEl6neupEdifXgw1Dyt5bY0ShWgvDjC8IzA9kbBLl8rQEbRo2u2HZ5KpUEMbUSm/2fPz9OyjGpg7OkzlKlDBvHE98kgsY3toQffDtkxwZf2yM3kIXZkPqEbTJmywMu4qI//lWuSPi4EZur7COziH+cZr+ksNX7SIz1RGShTzoh6Ch+4Idj2RfhEZpQkA/uIwqJsyEfYbgWHaob65/2hUOVdj4kKUcyLDpDfR8Dm4Jdnd9YteBiD6CxGT3hUFvwnaUolGUPOm8AoGQAmphChyxSzK8SJW7zL37WlpSU4+buSSKC7li4GGZM6sJvLYIr/xfeeM4agDBKYvyWJrTgQcH2l6UBXX6Pt93cgyF4A4n5dgXzY+z/EZxanoBTyOKrQov5D5eADnEMwJYKvn6ofpz3IR+BDTIb61IqurbhLYch7/Sr7AJDCV8Boispz1xzeEcASdGgb+4t4XOkJT4pUEcHSH531pPvXJQW+i0Vgi6+sfRbuF1lwvlG7eRxzxlMODg8f7JAD5vF/6K9StfbmjZ1cjrj0wb1DvC1lpEuRLBty53jenX+vh6kbR7dh1HTBV4RxnSdd+/YrC7OUx7wsJKTtG8IqWBRTYxAyLVqyAwLaq3MOxOf3l1kdobI8zZCHwteRQfj7NVlB4R8btI2nX/g6QH60X5IyHwYMaUhIYa/iJ8wptMw3xDQ1Tp3VHdF0FBMIHT8DET/hofutR/pfYqzcgFZEoYGylY5dtyiNTSQ5sIEUom8JCJRu9HHA47jlh0WaLfLuw/pld82Iy/jnHiii6XL5RkutJjOubWEJURybsi8qo4m/KuR+qptazvPEdbLIsuI+f0cVNnDPoOvU2hFpi1aAD/ZspZs0L7KY5p7ZBKXl545folJEh470kJPldh/m/WFAW8EmWHdqe0Mgytt/PcfA2Cc48k2S6mCy+sWvB8hMaihXzc5UAoXFp+rifoA249FvQvAaKKvSkx4sWqpg7w0mbMOcGAVJsVAfz3+4CDnvkIs6u9TbQstwrXlL+HtGjvOv0eSdn6Dlf/oGFfnbLkzMWfDDQ68yxv4bXUe1JfTF3cuKLGbZcVdtmsa89PpMpnV4JICf6C2eIK2sTIuVrptROMfQDq3mRtB9t9sIGjLCNU/2rhTBUZwKig2dqJkxWo4jqs0Knx+c7VpEpy0C1Hy7q+CBIkAZT6axvav2YBkvexvdcu52yzy13T0aw67ug9aXddir2+2HCEgdRPSytrX3uyr0utBoHvHc3+HQMO+1T6cXNydjggL+4RX6DcTvVI9Zf1EQrcQC3oK6ey6NFGRxAm8qHCuywJ9srKIIxMYYtaAp5RMkDoT1+2ZCl9FkZaMHwpXT8qXizDKJKDgRGp+QAN7/NFWby3/VSjydBt/MOKpLrHQL/Nr/cqTCkhARQWvzkj5pdpAdAZi0vgJQ2H1QZo39TLd4zZ/b8rSTosL4yRj3KIAW6tkHmP8FQVxLoUTHq9PhFpl3sHxvFormMZ2u0vW7Kbw5B6wCTS+RUQVSkbzdm8a2eh2LMhVQv2R8l3dmSGgb/19DDQN2zAjW9tXV5O3y5tY8FKPW+irtyWJe/UQ437X3rmiGTNWx4vtBJNEzlgy173pqFex1A5fH4O9xcOPtBDurUFIBi+J9fcI6VK4noirr/4wavYS3xpfd327si0XWaFhS4+9Wn77+NYWNCcvU8Q7Ldo+/DpT73NtyOCuOCXkZ8EWA3TbQ3e0wrFH3f5F8arUBJL+GH2mIv+moEwm+oUl67pFhlBIPvKDJNqb78YozlX+xlDi98rB5nyVSLWjUfoZVusFjIDjzV4zPVXKNC/qIJoo9DKipBe2fBQr6MTdkvNxKHLspwH5P+MH9+/9y6M70B5py28pauwocu2h9sErJ7/aBjW3UBZOpyTD8991dQjcIykfB7CUhrj9y4jCHvlMO7kjca9ZOWnvL8hKaVgMXAOi1AF2sdeMnOF/gd6YsZxNSKo2r9vlASxXX9jhAMzyD3SfbRjHghf6EPRdx2/Z+ebfUlmWfY7zPyzq4Lmsm8059gvfShTp2lNiaJ9eM2Ek1OtcigpGUpZcINPmTIQPewt2aXKDccfuV3zquLHDkKF7vjo1AaUCfe4w+UWSa8sHhVz9AReR9X/LgGZD62MFmBrAPmdXOQJ2JkwqaC9gJN2UWEU3dA5wG5g5z1rb/KcZY0245SmJD2r3NHcZOzYYv4qEkES2YeE8pAY0E64oc8tiPf3N8V3jRBrMw5BiyCfM8LDfn+2hUCMFVd/5Yu/BqkDnbBDIaxtR51hEynxTvTBfgWzyIp8V5E7YI6NjxcYwjrchjpOWVOyr8+4JYWpYplf/gLl59nNPsT6mgJs6g1ZlZYdr8M2dbb0JN8Vf2esvB06pmlwnTCbRKP+aZbWpnp0SP5ZCrCyosmgHeZj+DNCYn4AAuzxIp3NtCqpcgI8pLLDwKCcJxElpqiTwfeFR94UCxc01NdQpcQ/t4YwRW4sGUS7Ak2Y2bCiwMxl2dpM50xbrOncv9Dau9zchyVxwSwJ8DBHdnor/39XOAQQFS6MjubeM0feP0XSJceFq9SE/3l1KqllHxlHxG8xxIBFlveh8RyJGwU/MXbklfJmrphI2GdkX/EnISqrQUDUgfjjexMonUzYuwC8VbvmR1IR0jIVwMiZoOD8V4sCwqvZ+sTP+U/J4tAkUVLdUsd3wguxDHa47eTNn/AYCqhfaxm1DFO9U3O4GoKzKHjwzHTdbD2NrEOCFRHVZoZSCVz//rOgbqNdxp7nZNZH8mYJbZcWhHER75fWBY/6zvkeLn9STm3l+ikpuMR7jyXRvaQcWDxgYo9wkxWFM6hHDJoejHeTwsfdMKzbbNN2XhbTKf9b6WtHEo4iqlQiwzzW9YQYqKpGc1R/L5jPGUhnlSLM4v8qB+FDWlWC9gMCpx1d8ncT0ZZ4xgCIi3jck3TaWvncs2Y1wb2aPuRbkQDA8erwy8De5MEMC4gZzwTpHqbc9Lq2VJh0pnGrCPAMc5B4o4zh++pKFspETPot6119DVY4Isdx4WFTOUOLULydDoH8EQ7WCQUaTFfCCin6HvCWS1arurZx3E4CdO6nsrAQdjdgqTmgUm368wwfZBIpMc/D2OUXG84F6CNZvlniqFeVPkY0+KOXXJwhAmyQ35ec4n/VBeDBef1pNCHCZ7i4r4gn2quxckPTxntTz3Du9FXGYCxvBcl9m94WdGfWiuYooKZYPIDLFKwAi/irP6xhgS0N9apJW56ParmPnr55tiz4GlsvQ9YEZ2qiRZv1VM9prFZjBFyaQ7xgQNfudtQxtESAGCJsH7qYRiRDALClJMW39T/kaCyFCPhO6xV5upY98yFI8PpvzPAfpI6r4E0yqE+WqS1Dj+AQZ8ugYLOVtnECdPxI3mG1gvzZF4wmtJkUM9ZquoKHK4o2UJqGtgFLkPDRCxMx9h/cKGUepkGzQcsdQd/qpjjaDb2mZC8Z6s01/efK37kcxMRHbFI9x4NDh9ttYMzTuGHCbPvDpOg1ML9KS85X+wurgwS4IbQqT5sAlHSsOJd9g5VkvWsCclfqOzKsEGztMfM7EArmY72gaqCCSfmiDxzWLs+A0TKL/xldb+E1rz037t+deXfTEEthXwNz7DhqeR9puz5AB365U/wjlvf17/BjMavIWki9vu/HLeD27KUxE6pumA0g+W4nPx7YxRP5W9FDpDuDnlk6lSLVkXKHCbEJVPB0wT52dfAgUuP8/hFn0sl2Q7xLKspKcdMhiOY8Lk7u8UjQVbqxI4QB4imw0Kl+hOiiGfB//2IDWcxArIoDlWUljaKFyhFBLVGdF4E60AgqmBuKYmm3uxvT5L7BNHDsa8Pk0bP2ph1CVtwcTTT+bodH+46mv1HaWsyRl/hTOst5QMbDsSxdceHW1Yh10gHLv1Rjw8ml1u5l3nEp5rLrQxNePpTbSHlHE3qmkDScjuJ0puv06QEL4C4mwvqqEWW9mbTCR7zuIslZ1qBWyWqWKC4JCxtXZCsAsvPRBtzNhYzxX62GpYDJ3IZGJSHPoNOqmrjpcJv+5/Xws165puy8b2PZwxsd8yUc6tw9kNVvCLln5Dg6sBe0xfjF66tqS8yPtGqVnx0Bv1I8QUYzmRxxjZOWyyGr3tpO1XJYAFwsxBWpvR15OaPLb0FR+zqocll2/XI6PkWu/Q4/mi9GONbYca/7BSRbqKCDpG1h9UvwI70vCk5+m5+GqTp0ePUwLrgjownDpvdiNvb0Dc79dhVTzXIrsYUwQyIVH8gW1wd4kvaGIsrsrX0JKc/joePUTW9946AuuEvxR6OQboFEPICXVZMSw2bbZtf9sl3977JDmDyNY8eBsn1BVPUzOOvKABfowarvJRM11dwZ68DKHBe5TbVvQaeOSvicPVpE+c5MkX2bhveN5QEZuOqbCm8cNEdXDGQkesd47dtDc2F3eJpA40qJtH0HCnaE0D+GAv7Vg40Ty1dps8+WK1lZCL/5D29uXc4dIi/dJinhjDunDGvzXClwmLhOj2QP1VGrdcakislCGX/FLZj6VXEPxYUw+q2sX385PUZH99UMZ9q9ugmzs8nv8/KB/4T0isRx9D8Of1FERGBnG7xdWi4tKvxmoF38Rnt7RYRljv3y5WOsxiytYxUgHBGGmfp/uz7gjp8Dt3l0y6mcU0VmeJ6Y/Q0ZyQHKBNJq+8gnvHwI0ZfRBZg7NX1Vebj8qCTSjF/6Ax9VcfcRG3PRSUPRNQY2awD57vvFFFmIf3Ol+Dhm7hNYwO9GOyDAFg7qHfJjBEriGp0iq+tRzjGabwlgde21tMmUDMHmq2Nz9BrOJxE2xqnMPO+NuZ1JeiRBvO0AsRb855izzw310vinoHkHDOSUSDYqVjDGY2/UJjVzbWaXdqTeBSnWPTlMCLbVSVHxVae1ZrrKs3IKfrZ40LQCp5NT9N5wfqBJ4D4BgxLfFkiIcrp1lAYRSSig3dFuX+xTqTwXeOWP/9jLS6ldjogo4O1Snj4CKF0GfPL2YXNdDe5p6N0t1brW5OJ1k/p2O4cYgAcEqt/n09y8AGwC63LJ/zdctx7mONDqbgWdLMhrL8cxpfhDEvMr37XL/cdWVxcEj+Hl0qtEupWOufwGNNV5N9+pcfk2TUXNUwpmfWlNtLvVoLYyDFsCWsO+yEfaA59RMRk1/gXs2LFXxcnt+ICb25Jz4d9RkGZX+FYUxZmvLNbmNXMzqjWwBthgQA6KFKcIpqa6QuuOlpok/XGXXRrH7LTxHT6X0BpxLbRCp0KH0NHDWh2e2DgKboapMf+QEBqmqtae+ILz2mQlD58/zGxXZS1+tdGI5Z3bms+gpV3PfqSZGc0mp1bt8vyr1//ft5bhyEkgsDqluqVltKIOaFUA2GtBld7QaJ+c8RXx5jM24aYPdA9nBpe+GT7iOpYf/jZ+l8t8qeeeejCFHHlfSXU8P7kZvVGEdA5pptK8mF0LO3T13xczHVYAyC/32gHPDpdNEWwGsV1+KIEoG3wcFeIO6x8IOnjxzcvZmniKAvvXim5VK/FHlq/hfceRhCBMF/0gzFkdmv8qut+nnM4yYsWyeBeuSD8U4fCRGVw70SDDeJsqW6FovEmqYwAvlp9w7y+3n7qWMYufe09iKBauOYx5Xp2l1t+JUi96MWz2YW8s8Il4XNxTdByKe24YI2SvAa/icIPjkqR9FnFLj625QzdXFBihDsmYicCsxgKJg2dTiBvzzCPaQyhyGoV1uuqdG2tj3y1HXo2nv1GnJqcuJkaAANlr5Ty8LhYZYm6VNdTzmH3QN5mKtycpNLcjSTP6bfHDDqJdzA5FhfrfJtHZgoOUZjA7G5KEEnLQD3AftmjkTbafwFbcO4x4TQ/gB9u1WT0NnJ954nmsOe4/m7HVuwaYypD6cj2kah0JeE8xWz6+yzQiMRqjdDmE2bzj8npJFNslyLRAFmXTxWQcTsMR4kyb37CgbYfxHZqsvmgOIjiUVmpVQnuXD7DDpcLRGa5fvOQ/lgnBS5xa+S+MhC5BDs1DlcFe5fnKd8tYRiF7vnI/BDv+M3XMh1B8Iovw57mg3T8aVl9XE+m3+AH0AksnHSvtZjJhdypbKUjFyKyo5yFtjN9CY253zOliHTymGxmvYqckthrvf1AJGRDRR+G38QrBqO+YPuoWk8j1KKmaBl60iz5/WyQD5J5igthM/iYNQkJswpvvHXdtrAMPuYYuiO19tb0PyobT94FQOH7t9JPQcRp0qNgqBczyaN+YZkC4SldW5VBkFs5dNXVetIe6RTvpZEmBAFiHXyIL5kibrLbwgx8P1XGb1jRjJdFBwjb+tuGDV1qhTu8jIWVa9tbFtfCa2U+dQH+KuSrsyphgX1r+gdzEGVhKwmaHspbDYZdc+Ryew3XhoMYiacWgA5wq5AfIV07xXDF8Rq56lF/6DXy2zqHjchZriBTBUFBMlK3lmE7OdbQVHsnqIalrhuJ13tgtoUoJ1S4G1uD2tg5YjGB/I41+ZAZxMUmQ0ezUeK2HPwtbyNG32cPIQayI7bJZKB9J/HjzXSFADU0QFIHkWKFeJRnDQSC9YgMGuhvti9orOEaNSRhEqv8J7tbWynIqhAtaeJtNKVS5y9hhzL3UmPJmGBHWARqiJoRRSByTx23HETUXa8rkZ50aFbzF+zhb/GaKFv8Ns/vOFvSsihq3WYlrNFItSKsoaZXCvD4igao3geHTWRK6Wg54tk89BWUjK4rsrPItbkhhLI0g213o6bbUDnNS/9gQ6NhejdAFbvfaV7jimkT4VrnuNb5l2dHFsXbeSYyDL60TUywvkUkkwrQ0oJalNZUZ5TEw+JO/VbYaKioxE+vxMJHBulfyCs+p3G0Xbb6vWYry1yQVUq0tBbA/QIMJiCQWBvCi9K7by03lUBuUOuOdzMbaxWv3aV4EFNt5/SaQIC71KMYvA2Sr+fJxlKA8ibqJKzFJYt03kxN8MbLEqhK+wjVI1bX9vARCc/ai1AbVdFo5+shM7ToGRwXt8V6vlxLhfeWNm7jYuyIvx9ArhcOYt+cWZcRnLc709upnKe3zomLXgwKIFmg1CRpoR4bllIqjlVwiPYJL2hBKMGLV/SuSGvgn5tjCcYhjgKVdscswJqdAzaOTkBErVnwPUWdlGvm9f72IZZKmUgIe8uDdtCHIu14qgaNpWqjLBkJwBy1Tz0q+yDXYK3DTDCtk9acEM0QbtzPi7aci7lHInwx9GWcqfg/Vjh/s4gvIzvfRxofkMgLpEsFjGxVpy2MkhLqbVY49g3h03cfyIsbqnAmOo+ppyNaHB3Jvr01McIbSgiptrMF62sKu28JIkWr5rI/fut5WExr9g+vmiSTOgv8J89i8gxKO8q3/GRChPSsvM7C2+rPqfy4+PLDCpnYi1eG20yr60uIknT22OePcSS5mfSTRGPpuQwh5xiGeDdfki+JqDTgihXnesa84JGKkV6EHLWpo/OtlD0iJWweBak89RERwLMewFK3Bbat8F17YEFa14ixsVJxPtMHBoyPVsl4hPYKnRXlPZWFfI8OAaI6V52/bJ9q+lyjzmUAe77npHbf3TElIyAH4SyLnzFFJ1R8jE+EY2T4m7LYQK8gLQLspcNsg3y1rbmWQy/IwS1EZK4BDDU0UOxiuuTqb4yA6oCLuSizv2F9v6KpOXJwwq7tKPIAJkgTbEyNImx1g1tI83wdiep/1ste2GSVaTJ1AwcPRUjyNDAPkXA3h9XtKSHHFZ0Ia/JV5dFNqf5W5VyqL2IuOy3us92LxW6lSS6ChoGjE2EX+MsKG6qCVPRB5H6q6Mu7wH3dobTzNwjBtWEoR9GtnOrZOI7MEdvDV/usXpMeOvRT+bRqwP8/BIE1KVn1D9JN800+nhrD+MVhpqC+cOiqW8HwtXMXbIPcaebiDyJ3AvBC52w2hG1s0TPmmKMzoDZSPaIFpEY5aDiYnpFxLSqqyPVU3l1XbPOaqSK0naNCir9dI3XvMp3Fm6d96cQ3m0y6K7RsG+kO3WKRwgxjRM6jjqtVpLxhpv7I5iyA84mJSztP18oFTibguLvWkMiG4CwfGEKO0xN0P6iCyYEubBXnlfzq5fvwDc7EUBn43fG/lpXaX5nev4i0km1JI/vJiKJtWLNqKWMXv3urdvt9h8xKsLm6pumyEuMZpmdcVqPL9TKvl+FnyDXF8kZri9mC5zlDr2OaNptG5CAmz4m2Mfb/V3xRUxsKT1T4257b1OD9xD3lWnk+Vpsz7QFXg==
Variant 3
DifficultyLevel
642
Question
Clifford walks his dog around his local park.
He starts at point J and walks south.
If he walks 52 of the distance around the park, in what direction is he heading?
Worked Solution
Each edge = 81 of a full circuit.
Since 83 < 52 < 21
∴ Clifford is heading north-west.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Clifford walks his dog around his local park.
He starts at point $J$ and walks south.
If he walks $\dfrac{2}{5}$ of the distance around the park, in what direction is he heading?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-q-var3.png 320 indent3 vpad |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-sol-var3.png 360 indent vpad
Each edge = $\dfrac{1}{8}$ of a full circuit.
Since $\dfrac{3}{8}$ < $\dfrac{2}{5}$ < $\dfrac{1}{2}$
$\therefore$ Clifford is heading north-west. |
correctAnswer | |
Answers
U2FsdGVkX1/G/1RRcrmn6QA8Wq93OsdmbaauKWiDZt8OdHeJrxQNRkbiO2ofqxUGMVd36YRBC/2dw7Wj7tJ+8ZuYGqNL3DNtSoXEGgxSi2O5aXFE56ac40vLD2XqUGPsfomE0vJOkRuwwNPPVm7X9d8EibhZl++5JmVMg6OmrzcHJJfhnDxvvo9vlQS9GEWSeCNyskA8IRFiAKMjsyYVj3Jw1Og8DbD/7A/gE5BgPjaVoz/8r4ONRkte1CkFFUOvB0HYNNmlYG7tJu/bdhBlcvHwUgRA/DKSYD6WZ/VUTsguL92yzx6XlDIDC5gi8crIHeuevhMF/a7nikWr6rxEJ2scR80pY0eR6w6Dk2wPxUb+qsOUIWEdWi1kBYP0qSWpCET0tJ1HiF3vuEtv0lL1wXhcA69Gk3c0Z8/ppNGoz7WvKuIdj1RDtNmPbw8YqTcD1i+XXKx8yEcq3W3RtIhwbno91l10fX5cnahM/uVNch8Q3JWIa6kDcRLdT1a2o8nNVBdFh+DXo0HuOcXMmITU0gyFyfVzXPmFjsIaAe1GPE1TPI1tKGFyDni1y6f2RGwYHfQQeQEorFcE/xzqnZ6ELpxteSa/pHGdPZb8SUBPXoIeu2qTDep+RltMoNH6f/v6lOF1+LXnRHEmCZS3kmSBehMGQ7Xn81WKNXMYlwAgoHEvHPt0CSt3YSBHlshGz4uvYBjFapb/yeY+2BbgRRZEf+eliDJft2ssSw4dxCBNOFEQvkiqQ1ltfvQ54PV4upXhRoouaIqmkVYXtT4pgdMuZzU6Rw1g04AYdqotkQkaiTKrYMnLsTNa/7707h/iPAE/IrDdXnNGw358aVMDGfMvMO3iPUYgEO5xEJT8vZMMoW4NaTkWJW7I6iOEMN+a7AuK/ANz1pmZcoaNmv1osaAgbc/RWnSDk8HzRNZ9sCjDJ/qRcrRVBqX1R5mdc3LG6AHKQ+V7++TYhbKqKhn5chk4eVSwld+6/jWvqx/mSbrik8yf/zjpOlIMQHrhV9iCZd2CE8vlgSwSBa0oB6AG8TfrgUB88JTZ3tuK4lMJ5LWDlDnXYw6cRVjrBjEOFSbR44GmE4SN/6Apxkzd+fQ140KJ1VL+t7eMGhZD9ungXbo6BWSDx1mcfcgLGvwf5RcchEp+KaIIY5BSq/YIS5DoyZVWQicEFlgmXWopoqOqpJUTbhzpWIGUjSotoGrb1TJAtfpbgxUsmcHaZDcSsHn/9Ohxo4UR//vUUoJOlRmK7nH2YKdrXeBdCkHzsGeeLfW6aJbu533SpPwotrrLLgBAefUAC5QvFK6T89nB2QvBo26HUEgU9Ix1jyE4IOKrC8MO2PzN4dcROTuv2Ltc8+zhL2XegHTrmHZt6RMWBC6I8s7oLlIGvmpI3xFvDvCrEVViYzenIGJdxufv927twOI1XVXk3kZVJNW+Pkps7afKkRd6D2JMy2u5uxHtivg/yDt8ECS6F6N+iGgYQ/ay0meZdhzEHlBcv+JVjy9GcTAGpHqY0paZu1UcYYlH5R39zv61DOdTrfdhzj6jtqZKhF5dNtOn0kSy5DoOLkzxs7hT15ia5BGWFoYgi3CldltzF/TyaLAOSLZMGtYYcojYc5sUPeCNqUMV5c3mbiWFUIuOQhVaDWSb5cppq4vO+uCyMxHQOus87K89uHCe1VqQj/yjrWkg3lM20AK4rIVr1h3jJDBFMiJgj/wIK48GeHEou2Kkg9nPUoyFB/sWFtTKKZupy2m/9jGDsbPofgWDxceKdl/YuBMU/fUQ8pDMackndh7vcTuTU6ipNMigZfv62rXR8xL5UHjTMf8D/PzNE92U+KsJqL9kUJYRbsBYI+jx1HyuZcApSsUF+K1LLZ3CmvMkKaru8blNVQ/n9X/2ObirSFi7LmxnPdDHWmuDp4agZRDcAs7WY6H0vmkqtjhns2SAJtlwCQ0J+F+VwQKB/xee9JdKUYU2OxdI9cM1ZNBEMlxHZR/3+higcnpjVCGR2HpxzNK7wIvkty1EhNovkqw39sgjVW6zYzRbhKhQTf3ZkBB3ZVzqPKS6EgicXQsQLGQmfEYwz8yy9XYoR+9z22arjdy8tN0eQlM8py5c8uVgpzki7ALqZmxwZ9/tMykd2WzpmBjaeNyvhEoiaY7Ysg1tktA7z+YNiDviFFr+lN5wTibLHuFamMSjMVLWMMsRiKYx2EJmsOAIWcNafBshfHhKtYSBux+f/m0NXnaP0AttBlVLiRYK05P9gdoNnCKyhp+gv4JK0pg9u3xrqi6N5VStxSHipt/9cb8Jara0hZRnQCGlSCCCGYtA071WIK1cipcweV4nrBlGFLFoDlwaJyc+7EdOe/EOTdvuEOQVORzbx8VxCVxX240kRCf/wkFaHjf2GjKwVfeXsXnrU9s1Z8SB1KIVBdEXOqSJgkx4q30S3Y1ksf9th4eFMkwEwViKd2t/zdwQcdXRYV5zn9IZHRiBKIoE+gACZv4WraQRYqouGdDA2wQZHFBbVWw0aCiZnqz5C+kg6PzQ3CvoDOg4SbF4dWE1sZEvdHIeoFnx+vBvNsJlovRx80XFnjrokyv14DlgGc/qcTAjkwsuTXA0ihcLw2uWMLh3g8am2ndVaR4IAZ45njrIvSJPp6zN0QTZuQNd7CdBNWwPRBELnuyqnmBHa0fW3tYv5o6ZsqyqYTtiDUhP7QIouxcGfDD9/dHy4hVzWDlzS6UDIaU5vrfvDWU4/d19pgEOOmXsO75WC3fQqHEbTsJ6NRI6lIzJj5oaf4A1WDTkF5vS/Ji7DsKEb6hjJMUJwsNO4wGjJgsYzrSTmw3F5/40wlqaEFjmiw5RktRvHOA5nxdLiyl4um57ZMcBXtvnBhgYhqhGFPPA9IRY5JL7X6kMlqkNjm1J4ab+BiusB8z+/tTI/q+Och/sgAtxOhhWtKl3+JyPEGTcG6J411jVhP2cuD+lVZNsZumYgx0t+v5f/jAYoW7KSsFkk21IV/6KBk5NIJiyBGG0vJebcEJe4pZ7xZGdBmzhnYmgrKWBy5mzggbPxDtIYXQuEv4J9gTeXzitFTtuttB/SnG8y6nYBLz5/WkHL6JeevaKr/b6P+QRiCU1Iss8RSi0nRXsdww7hzkH3gP/IeDzeKe6jhOD0vJZyVECfTB6atDsR466fFSLtK9bezOFQuoeQo9E/P0MOLaRv0oCi7EgP5cnKY55qBwUBfbUGVnskAw7ZX9b1Pau8+jafjU2eV6Y3TZOyMZY3RUZA+uKniPTE7yW+8mSteIl8e7I1RZZ26GHWHKqm0ZKxGPQqL5D7050wgwfpHi6bsPCCvcgo805znuCtYQGP25OzNy5TUjgkMsSw/QQugNWIPwMh0iMt7Iid8KofDq0NOZIHCai7J5eV8HCgp31VvbzZpWPyknKyyGKSLUcvLMJWIloQSIE7xsCmwUcDWxcz6jepGvEwSpObx6YWl+9cFgwybZeg7nmzLhhv6/SgkXt9Gr4N368AXCAFaViILa4AsipuBjYqHQdubD0QConSQj8hbtHz07TYTblmngOo9gjDCprzrgKj8BKj0dMj650fjcKevxZjePsy5ZrPVm2JIxlajH6NIZWCskPWuc8hQQoKyofYI9Vsx+l0DVprG/4AM05RFvCSGq0Z0NKivm33bAZ5tqOKm2V1Y6OMJ5yt4eXnCaMtmb5c8SkfPWTnBsYdzNDH35wV5YsUFSrS5acVDmswK0vRCU4OSevc+Q7lkFzi3obJW/2wqQ4bW+qSir0WBfOCq0etB1YlFjHPduN/EFyO7ZkAaZ0w+6eqfFwLRZcNhUlwOfggSB8WPPr0OojgoIhxemdIvqZztoqtFZugP3bTWdC1c+pd8MM7YFuvyBjU4Xx1nA880RzjYMtqdmR8YU2hf7lYCwlOtIxqV3lO6p/p1GRnidXGntYcBxhAeNz6R4XSSXGRaeKiF7wPc2571/KKByllWCFU3GUoOUPqPkK3wBM5AfBp58Fx1NnFSvRhtBg+JiiBZto5MWWt67zX1EV6m5QPlg7Yk34iZSqtZADohx0x697ZyfXEAyBZs5xYwiam0I6dwCbTUe1sijblfAl+07yOi2WcdmPA2i8f5wVJuWJQZRYu097DeR92ZckTD52L9/lKqbL1xW0uEYT6LkDvPfn7urmGK/KmkcY8sWV2lZUiSFXUApPGC1kFpwEFxSRiTvGiS50k9ftQz8O7XQ4bwDTumMvJCn76h5BX3k4NwH1r4XVYZO7mVVI8IXq6SZxP1O1XuFrmK/tz+niDsKlch1NpOn6t1tN6gAMlE+O58PykYRsa4WoxZAIxpROW3YrQptS/xITSlzSkQvMGprcUCPTIMl/U20mL7to5neCoQrYsxzufnE/z2h9IugV9aJtpcgQtCXplZtqBmpR3iruoVESMX59jY6+wCiLgfgG09chNWVWAWtjwf2Gla2IDbmcrzkWQS84yuCUpYXphy61Xme2N+RX+Cj1SvU6MfZ7EECM8WkMF0b+51pjgD+Qynt9Gd7U36pb/uePvwwuvjF2ZbZmSdBrcZK2A3Rf8KkM66Y6nSkQ5J0enjVwdV899FFPNA/nBPX4CoyG6wvA1YQKdmxL7TwOUA3/IA64fTTcIGjKoseEVQaAvW/NW78/BHNHjyBMc/iUWvlzweD/0Ztf+5o/R5t31n9EDsYEXLKe3TMWonHIXA56cC2Anq9VVjWxcCjWlOUa5JE4Urn0up8sC4NuGsVx1wNwbFURmUXo4WuxSPFx5UxnrW7hcM2rK/SfT+VOqtnH0ZMgVJxaEaXhY9PjCRjJ+K22M2FRufLtWybEg92Hu2VHmMR2tIjUv4abavXbqbfgJ1KajIt4MGnoAvcVD4gFrkTmZlvPj5KPCoDQfxdyu4q6R+TY09oUtqA7pUMD+7Y/vtN9leRL4OOHaAhkQYsLVKGp2xWNnUv5d5U+0B7gAdP5+qahfTp4vmm+fXvVKz5iUdvSWSczLCIG/DMHFqk6BGxNeUCIguR6qTjph211PBG+MJtPRzzKDB7zrtJBaPbVOgNYGeyb+b/AROLi2FhiQv57IhQ8SFBdvTdtx03o0LAaADbtrMD/cK8O3TcRgTsDw5OjCgbmecGzSz/cyL+EitY8da3LXeR4f7lLb4wlwSNlASBNvLuz8/smRJW3Rv3dV/8YGCNr6G/W3afQGUEld1cmyClDzdA4o4GF9A8MyE2JbBvSedE5VmzsCpd3gO3skCqyIBJcP8WxggzHPo5uwpTTlSECYnelqPRAnX22NX+9E58VBsvus3PmK7kIrKdgKxsRwch6Vol4qXfE+yTlqEJoHicmeV1CRtXp9T3S3wN+GmN/49HHcwH/aXnToFFG2a8Le+BBjZVMYnmjLTfRrPEcF2J5wCEJAyNqg+JcSfwB90t2ktrV2beatOOzamQJzUxEIaZsMVKtWpZJgcVmExxeeoyzpVA2BSSKFbQntYRhIHCvdBCKVgpJQqLBWdotZ0b+mdl7mOfDy268oo5+7JM8ypgutW5pHikdY/JoPdav5r5FPn3zaFTGkW7m8T/vm6Vs90bpqVZM07mxlQErIpRnF38YVC9CeK+Zheb1bNU86aUgRxgmDOKqAtG7p0mvnm6DxFf9fbAQFmR4Dz+aG3kIh+9hfNRk2dnWfUPXych9BkLiZc+2rCyOtYFVbKhBeG2mdvVN6ayfEl4N7yylXW/4hJiKZYPmT/Ok23c5a8CIUzb3KOQcOL9JgBEcsSM6jcoEY7Gs6PA10bZwX2n3ddMgZUfvJOlEwldhECaULauJvQza++TbGV4eSnOatYQAEvg7kiarOKAxZZdPLtgEzvj7qpLJueggCphEeiLKmq78/mFPnpEQUo524uuE9SnmhZFxLPgypCu3s16MUV7cPFApdbuY/HquxcW49nWVqu2Nay787tRTf1QyUtbR1OcocDO0v3OBFPLwhYAMdcLKZpFiieBOeC+EmO+OYQ0KKmuBf7JTpNWDTch1u7h353CfKlZPIWxNhnnjRf3472jolTGVVMmeX+E0UmmVmORLUA3DTM0lj0cLN1+O201gLImOV8ND6TnXWXXArs/XNVDP9U9wEeiIrnReXE/r6MHrIsn9i+oCm0eJ2D5+XZOGlL2V64+JfhOq4S68CAz0v1bh1Ubj4nU4PqUdZBJp6N3ZWT4eFmSRqQbV5nwNaRRFq094/a2y+XqoTezeJwEJZrKS2kGiOodEuX0MNTJfaEwYFP9nJ+1C3Hxyl2aGCXYgyinvyyikXsCwzu6hI6JE7sSxEEo48+0syeGpRuRmkdWY17T3E+oo9+tZZqnIng2mkGdJ8ZE/hb+yoZHBkriKGI+jJ8UsfDSRLm9QqoS+f6y4MOM7d58kjkH/qhoLLjcP3bm1jm1HX0S1Hi0wV3UbGC5P2Xql0nXUWHuQpO0jEf92lDHhj+FbapgMIfLvZcz/G8HLfbsCAdeKdjpw+NniAO6d8Ju5b3dKszNHV8deoA820ZDMXTjDn792oQHVUv+OAycob88yz1eRDij/RIusSVXDobXv6NhF25hyV0BDbNbaeu4ubX/GInEkfiHB57nZ2zvF8yxoMsXnB9WsM927sbcvCDXEZ7f9lhz9FLEtxPKL6w1xZT3/L7FZpb0f3bZKZ5RtCLYp7kMFkGOO1Qqjm4o9knc4VXuIN47hTsjKckQCllN7+kaSyty2LP4dFTIo+rUpXWyvnmc7YCWsjwvIWohg45jlIHtTdAMNCH778XavVI9YUknrHSnsJeEERON+0+GHQPw7NJRTye3pR1wgF6e4zv+wLaG0mV9d0tu8xLH0GATlBI3rA9+/RMRPYltkYGCZjbUGKou92Nww1714teOo3mxUobS3i+zO2snruckCQDaPeemPG5avuzqQXL9bsD9YdICVKckdx3QLl8GKKUbtTS/BLiVGV4RcFkOQqIZxDLfoPgx24P9QR+SRt1A+hj+lOkpR6s2KFQErkqqbsYZM8wfIe7mVzmg5Cja2WvHavbV1XjbhqhFRuz84+6nxte5Km5QXJJdFY3rUwq0VZf+w+4R2WYv2k/xoCTkK7G9D2PeSQzkjLYOjKY1ll9OHg5QmRUXUJKGzOkbGeMbS/CYUHU0nPocDmkJLELuw/j9tMsp6SHngZvcOgzVRU1TK/WxiqM9oM4RVS4PUs2gdX2IhHjwQ4IFZDoh3Ot1pSzEePsnaTHI0MdisqCb4bZTqvI7oKg7xagmlutQcPkaofLnZTyd4KWE8IPxSpaVY/4T6DzQiDGMyCJ6jV+W3LYVLB0e56HmgnNcHRt+yO9uikwtSRjoW6GIz8DW0Vwl0TDHuElDR6Wb3sp53RPAbRB+d5vPjMAoMj/6kwn5JeDKakYcwrE1cRj9zvJVkMWLqJ1iGmqz5oHfh9SDYd+H3t2n+/YpCZ7VX6RO9PBq0UPKSSsFS3pryb4cwAsHOpp+vL+/zDyjTp+0v2eInkpOq2X+BF1SonunERxdFwR8UKXW6UEr+F+lxR3zQ7ymAzlx5jvDxxDh0PU18KiDI0pprGFGKqeGeyP1WqEYHC9sgQUJsKl6co7DNnKrliAOCKcdVV+3J08rf9zVYh2eooTKhBv8BqFIyxcHAOx1yxjBbyvw/ySVGdPVrRsqkGrUhbwwGX096V8HCIOCR3szfsXu2VeHyKK9J+HOPRwjchvs70CqsY60cejSXWAcEjS7zBEIgsy3tCt3bMt6vRsdjBtbIxjzGglirRN04GBsDzWZH1h0G5v2P2XT7opqn5NMvjlnVxbKp7zBUJaZYi5NyAYcNV24QuIZekNsv45btIEHG+PFkeDjTAb9Mbw2U7NYJ34Xw52ylc+2EOgmapfAaG3cNiu/+eAtknYdS2NS0HFeo6WghEBfQNc9T9WNq5DQMJAEpqyG6MjesFh5X1qg7INXftGBmgdMAF49S3ExKNRalktqDs9yEXauRA45sv+UTAjyWJoxCPwWD9S+6FKno1pA4IgTyLfoarWzDQVm3TVwtdQ5bSOPZbe8yxHnNk5W16z2iGWdTxEfANZ0z2usek5rXd/6rSb3uieGlgyDSsF/oCfE5SxQnkrjyhIVqWPG/DihEPrTR+zqjwZkkl/rhzOCFTrXNWik/dF+VWJdHWdidzqZLMzk+NfNRyePlAw6R+oXGvw4WITpqe6Y3TsFUZwaGw8X7vsSbSEhaBfj7YVQhA3ZT2lEtJo2WvTKb+mrqROdF8dVcdOo42dX6a6pgrfcmGKm5CSbu43tyAytqats/CffGyMrVwlhV/yDCrbOUcYJ1sY6SrKVS8cQxmiqVA27EimYM0IBxq4ptxYWIGqXU/mjVIJ7U3EnjWbn7M4v/GYsTF32/+Qhpm8ZQB1rowTdAfCQ1pzrgdc4JaaQmAQgoiWTni/tTJ9JQcUXgSR8N2up3BMuXT2XVdKw/xfmDafwHNyVWhqdoaLO48VkUd3UE6TeDHA4CXzjwiz5cFGBxGxRz1jIP/qY1xjinJgo8U3O8UkVF1+gKa2TGUyumtKBRMBRNj9YB13mpP1iPus2y8gpjaNl8rCZNIvnuUzVfGrY87hEo1cxncp/Ne4u9rGpoOeI8wrbOWHMry7dIYY+oDP6zRzBwF3Lar7/q6tVy86bRZdck4bq9ZauG/DAvXZaBRcaRLCqlPO3pdBOdYpsM5P7WeUrkc71gn5VlFclOVKOpqpJwAIrxJ6AcEUcXRXke3XtxY0LDQexzb1R9BuYRJi6wmexxZ4j6PhbHip9pQlRSNe7NYl4Qqvg5tmStV/NiVYCM03KuPlnH1liREykoL2SKYlYtpALso2MWDK+EVP1KZuv90SE7bXzQfDqc2nWl9l3y7aHzcjyCZ9/1ENB6httui0QUY3m5mI34Y0GezNCBoqcl7K5U1ugX7Xdx+tOtvTAhMyr1m0hAnpJ3KDO7+Eg2dsAIlo2le6V1S3Qle69NE6x9yYOkkiDIV6WwFSNi8eVNFX7kKmrTkpNvGGZz+1z1xNh4N6eShOeWbzVBGIeqDovXhTtyXhFAihlLrT7Fl5Cyy46ar3AyXxYQDl9h8lXolg0WO/CgNmwsvOzABd1Hl7G8DK81hS6u/a0SdSFFZQzCE84su/GDqGXpoKfjDMphZ0p6Eb0sp+bMymOTDg0YM+zaMAVFnq7Dn/hgThBJmUfcWDhE3cZZ4t/fsjCnshYBb7z44NI9GwRdNboUCeirZDvITG9FEIOLIeo4gkrJRJ08SeN6N6ee7om8PJ8osonrdcQIlhp/F6iJ7EUUmNNj/xRN9euSD6q0655zif3w76XYoiyonzOsJAcXg9sf1YciKDZFX4CB3mmH383pQE4oYiyBl0yq2PjEnyWtikMpUvA+baCZjL8dsgr4XHoAM8WPs2uA5RI7/fmO3PkzglHSSbF26bV3FOGR77F/yK1dtVK1pCZvdGrkLjGBSJWPUQosZo2/d73OPkykJ+b8w9I8RYtgFwsoQJUUYO6fetVngUQ1kL3nfnHc0NEPFkyF7iuQ0akbFDn4Gbte7LU7ciYC40NHMKHbY9Ro3+rMXcI9WrRfYR3gjckeNy1KFChcc/GaA3MAsWS83Zd/NK0BE5lmtqQ5ijTsg0QY9x9eDA8EIuYDRNvoJuwE/CU50Fc7L+CDLeQiyccVVkwiTGP8Tmpt06kxB90UjK7zaPUlAVDE2pzSk6XDWseO2H8GjPC6tbFcWU8Wbpp+HgV9s0CgDHbxAMBrLmRmt4HeVdF5OBcu+3G3HuGpEjP8OCSEk/GkAlIwnO/zefr4gWzrJKn2uU0FWg+q1+kvUsX3HAmuZl2QRXWzUJqnTgRwMauyAcG+2nalNlbrFVn+uEbtIg1FOfFim02/VU2ZzRovP9NM3xEeccfcNaEfJv0IFhugVH+aH+pa3UlsbuQXQlcDDVQzxWKXwXWxwl7Br9v7B7OtVYECQsuId9LeHTz8kpC+Wh/Ix2hOX9DKnb2GAr0Cv33XpiqrOglY/9MdEWj9ogW5WzvNdio+6/FI00HadB/MYtUapdCHMw6dWT5AOHCO5S/pN+5O8gOfjDu5++FpjCoQtJjjpmAlw8KqpTYSosRCaEw0naWx8og+VTyvgKHngF97XUIJC9mZxAPs9MJ5aMw7e9D5tqTSeOUNtY6O257NXxXvqaGl48iYOO7Augs1fBPP/g6MIC5IiRifZkoi8SyTv7ZqEVNT2OicPUac/pOZO6RsnmoOlKPtlCbqdg05ViYPbVvXL7Pq35f5RoxFL/fCu1UiR4N2Cv7vxier8ojBm8GGzgJBKVtuZHic+ANsCfi2uclZgJxhWWN8+zc8qMlr/sdyxfgHnLggVcPmPgFCNJXBrICHtCGeRtqX8NBfVOHE8rLGPXDernZZgxj/kocb56MVsCTqZPz6GN3j/IMnqKDsOOl773OEXVKW1/6XrGJ8wK9N+wyimECx6JRP2i7YDVhEKV/dwVk3W9VquXTpajXGAxV5Z3FeIwyN7oQuIss257VP4tB/fugvr2qjuM1SXfeW7iNfGr2Ia9DN8ynslS5cc/Oce+flP2aH9ZKVKc86dpAjFQOREHDwVIWGr3JWW/k/6YQqZS6DcQpcR1tgHlZ6UFVfUQw6+0POrCxPLTHTQITTbiGqatiBr1WQs32sDPVljyLi/3EwzOIXGQ+gsvbIH8Sb37H6GCZF6DOpyGHNe0zpkZMbPqlCEWzbl7oWeFzZDX7mWHmamX/w5FSuHbvTvOEAYe3rCBaVrFbz+QT73CAGlAUAifvocSNGfR2Urgv6CM7MUUKX84IH5Kp/g7yI9+XeEw0in02Rj+nPsX6fGpAY1JXfp2frI2UyMqzP166qxpb/Ec0A2uptMEIPaQ+uyMjpQYeVs+RO+lYNtk4wbxwwGV79lgI/R7KqgMrxwj6OJm6KTEWEhV5eHaqlpJvfOq78Y3GRUMZZ80CXfKRLoTDH5UG0nd871gaZbICEhKuLVrlQhTpGJtauvAIvx4u1iDQlyvOci4lHoNoUwZSzip8yt/CuZE7bhfcTi2DttJVUn7VhozyZ9bdVoolyWKAK6AwkQLGJL3lLVEDAw/Kj/66fO5HlMk+qai72zLdj4o4RQdanXUDg2pWENw+CsG17kVjYBOfjQ23LpF1WJyslF8l40goxvT3rceKpj5FOi3ivc1blNFLME2apltIYeMXx3EpfSofiLE30KSQvFe1HAIV5kuuu14M6VKhF14YjV9hgcokQhw4ikpRP5GjCIJgfMRWUuC2fiYognyTWXDg92qfV54vi8d695n1zSmS3mbPwB8EdMSCMVj3q6Er9Io03glvukd6c0fKB4WUplobD+5wwy/Gz06P8i1iTXYLSeY4JCAfEDOmlT3s7eByw4qD3ZVHytNkenIF1GYHgAHq/B5C9BHhE3Y7eMUGbLTLeem01iuXnTXFb1bIbfSDhJUgseclaZG7MQQIG9knPFuetLyVlDVSPKm0Y8PsR+I29YdzdbxslfLcGbT4DT3G/FCrA4Ek34IvRLct1rbjqGZbjWkaC+RvEd78SgfRayBmI13E+VtM983vB7CABcSLTwO/r2qZ5iSX2p6F0gbMkUKcMJcSIQMJ2fD4ALGlaXKc5opJ0VARxuqOobbFfeT+Q1X4nsH52K0f4PvGkPvu5uroPHR2YZ7MGhXQK+yczTpiu2/M7QCydsCT0A/uSsWgP0fySAx3B/DzSVIY0TAJSaWUCmz+xqDAL7h/pGH2Ha9fKR88ur8XXlqEG0fGfVDuvw+OLLvAdYl8NTEUjJI0R+QiFf/DMsWSpW8DRznwBjpDim/h7zYBfYDiIp2ociLH6V1GLZn56BQHAeNxK4rWi0Cj5SgZ3uXeWcC/Jz8Dnt91TCsIR6hs77pGdDUsJJ+hhfZHRq4O7KRxWhRISEqwdpLJmLZm+Yp6DijS80WJ6fmI68OJHpF0NmxQEQ3RjDe/RlgsenNvUxWVosaC0RMQcBEGP7jUyARuifTrHm7NJlUdhj9DSOCgIZNl5eZNG3emM9i7SY2cJTcNUPFAoLEm+5G9Ny99DzDtISIaiCTXm+Cl6KIn/Pi8zJoO55oibRsFyuxFwsRr8JzMsYLCpuvu9AITIDlXQPHFDDmPEBF8ZNQRcpuKg6zb8Aoo3SWM0+oUWGKhluXtG+sH1ApLiBl/ShnsgTm4hmUqDY3u5yJJERd2KvtdKW1TwNbNm/P0FD0LiuZxnfBgbRnAQgHIClTD1vNXZmx/ccRWwC11uAaHvrBSEg5qdVvlQARmmPDpw9Lok3ki52XujpIpWPqwcQud1O65qJaJXh5oJjPfNSZMTBucZ44Z5bqn1e9dKf01pVL6Vfr9ugpDG1yyFEv+A4kypool0AhMxLKli/UO/aTqFAdYPRe1Yl+uLMuDKbrE8gExSlx+K4fzeZhYYcTfNFxV5A31UMLlgIlz0fAmE/MI+069yQOPTZIJCGB85DZqvYrOonWPjt0AdSVTefu6OiVQIlBdy3Rz/trQqUO3NHWFTWVjsawa5Z5PG1g7U5aAOUMEOIFeaLSiqEcWCfPgYFBynT35z2ij7LWnntcq2T7UAbJjk6eprFL5pGU1hlgii9NPMN4WDu9O1ztTSYiNJs19kBUc6MlOAjv4J3LXAkh1U5lehV4k=
Variant 4
DifficultyLevel
628
Question
Jackson walks around his local park.
He starts at point J and walks south-east.
If he walks 51 of the distance around the park, in what direction is he heading?
Worked Solution
Each edge = 81 of a full circuit.
Since 81 < 51 < 41
∴ Jackson is heading west.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jackson walks around his local park.
He starts at point $J$ and walks south-east.
If he walks $\dfrac{1}{5}$ of the distance around the park, in what direction is he heading?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-q-var4.png 330 indent3 vpad |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-sol-var4.png 360 indent vpad
Each edge = $\dfrac{1}{8}$ of a full circuit.
Since $\dfrac{1}{8}$ < $\dfrac{1}{5}$ < $\dfrac{1}{4}$
$\therefore$ Jackson is heading west. |
correctAnswer | |
Answers
U2FsdGVkX18R9TRg0zVC+/p+xDG/eqSJFOaxkM/SGuoANJoI5vTFHNpGA+txT2BncO5Y3KFM0cZc13D8j4g+SCvYXpzcZk2mczVp3G8kk5zoKhepPtAOnA/kYFLkiCCeP1qWoT53Q1P9kWkcYEcbOiKf9JuyiXZ3BTitn1zw/d6YJy1i8OZy5zApo7f+MDvnzCkG3D+gi4qMSWh8cBDkMBOhKnW9B3Xaq6HVNxGG4UoAbIDJ1KhvcOygi0dhJZg1hEalEkc1PmeIlnm3844SeJOieAsEhSPpq85L1TpjmzfTz8l+YCxgqRWAhXqa/LsNuRwtyM+dJJuzrapik5Bjhm6jmSLladcAD2IRfGFr/afaTY4vIbCO5m1MO49tsZbl35MEiyLokbTpFh9eXbduMk/ka2/WL+yHQ7InY7zlY6z50oHXL6jpRtWUxNaYcnKMjx/+FZOb2uvr2oe0tqiER3KBN9ohm6OO20W36v+Pqj4/gprTLZ/sw3KN1c+3Bv9kAyKSgBDhHWetroZsGa+6GQwNeWMnvoV7A6mkuLApT8kE91vAWZZlujqp0RtS7TX+3Qb0+xRLC5ClqakVvousoxa4qfX7LPwA6Nf+G0DbzikJ31eZjMR6jT7FH9CMonHm/8pZGOc3/UbIZEzgLge44Ghw8EkLf6j49X21LFodrTjeC0u1mfW8NVGXS3Fo1pnxlnYJQLQIi2M7etCmf+7TCiE+UKFAGNasxWtZsxBvQ2LDHyigwEbKuqeLw8JJL7Csj2uPc6eLv+CPo//cliNrfkC1Le1d94Iuac4k/LcVbpMtmyBJJFSn7TArl86zQyFPAHiY4+q/i9i3KCPPBzbL0BpgBXkXRn4M9LtUAh6yaTrMoiKnO1fDC94GQNzsiE1SxfzNJSGWgqSVvUmQw8ZWc4jUGKxbg64KBjzVNgzPNHTz+w5qatbmV9SvVxcacEQg6pm0kQpnjXz6wM8hDUzYq2zHPOrDqS0CCYWRGiMPF4VZE6AmZNVKpMJiVh5RDqgADrdLUts8fwhRFBbF824KCIG05bLbdoDbBT/scYRn3/araTHNtL5ykoxeXZdQts3Oi/zcOSPtFffucJYknRWv8v3XxJJ4lHuS1ipIqHJApkhQXveEl2WGSy9IdUO1lT98lef20SptiTHND339xPwq8+mMnDn70dAWmLUl9MblSVr7tZYqlrBb4qzaYROXM9Yw2NVQ9IVsA2FKnHbrVLxORA9YpmtursMOYU7DOhajR/hlO6T/PUc0PvghGvpR0U/hr6c+jQJK0JX5P3aP0qZAWQDvDkdXec7YEnkUSZyaGnNHNN+ovTJAlCfEXf7wbxbOzTD0pzziwas9iU+6ipgNIgphYC0LE8cZxZgsWznTkaD+c1XEopHwHOi3s2abbaLA1dd29byHXxT0ov6IGG6vI/Eq4RF3yFycayonGxhDnxMTdWZf4tXmE9L2lO0hay24YqAUygzKVkQ/bRWhZu/BTfOQ/jRqMjMtFRE+npj4IPIXWCq7IlzrENROeokkxj+Km1RX+aDf3gvJHdFlyPrChIKXHeWu9DyJS9iFUTgDf7xJP4YPSq81JkKjrEE50+SGMb5bOn5s64FL6s9Kn6FQQoH1mdo6bzVWzovTMhyDQIYCa2u4QYd+x7/U4xTw5+HQ/4gJIjOVrVtrKuKy1xCPdQTabcs4iPmaXpkSrGrcDEArVyFJhGMBJodjaPKwhvfmHzHUAnIBHu9Vod/iFJXeT9ETQ7iHyu7IG9W3Dm2FdZ8hbLS/Pr41b2Q9opMv4nkyEBHUvrhV3HUev6V+IzIyZga85JhWWIRsCqf2RzZQRl5HPvz3YRtuO76S14Jfoqa7My/G56GnLfjw3FkLfXHzy+pfe1IPX1IfCLo5MeH0dTN0C5uL6fuwWoqoEC/s0sgy2qKnN9pGZpNB12yPDOcPkOpjSrEuua1Z0U59HeGeg6ESgRt9zy3l5tZ+nIw9jNwb814Z8++28GtD1VG2W23VFO4opPAa0v5oxPFN1pgEuCjNSiXLNvkRct+d8g96kUprhERzgcoWKlauBWZEYIzKXHUtUODjIYZhAodTU5dee4udgBJ2eOXpacXTagzcFdwfPEGtLj8jO+ldILPOAxiPv1MrxNndWsZsRkg65bS2+MW9AvJsm6I7Tf4uTiRsReurnEURpLsSyJTJ8P4iCouTT7LbgCKMktQHVJaYhV4TNpbyWBhuaYSHenPlTWHYI7ENMmyApbxyjANkrUrU5a9ajT1dpqF0Ln1CtNWLoa8fnVN6GqqJ8E+UAj4H9b2zSzOcTE34t16ieAvAANtInmrdc+RKNcgii2TC0DnUnDikKo9xqB9w7B2o3vaNIP/TK1QB/CdodlQBLsAbgPZC+uy8WTdai75hvQUZJ/TiIq+cDqNY30DFOWz8BUq/3zToOcmbGcoiXakFBvDNDmm8JLVAO7VIyMkVbtquaetf7DjnRxJbtME0rGdUr0AuQO04s5/b1G+vvUGU+f1rkCpJvZudhd12NHBu+B1fkcxMSShofWOKww9q3/ZFCxFqrYY1LTWXZi2ZDI9et373/Bna7o9sX6vYvWthwxx5ZLIr6Nw5rcGhB31BoHiMh1V7hgbVQNR7yWkAuGe9hjzz69bam2T8csJvcUSflzylvQrrF/XoLOeGICC4lX6irPA0W+5DLDmS2qE4BtpmD48Z3XY/NL9d4BFH82zLFNmOUnaX8UTH4H9N+/1g7LejaFpXmwZoyotbZVPXQXYNUxtjPUZvBlfv/c116tuZgkIZ9F1lme6ZrFi7icpjZ7Wvg0PbwCCPagsVNWjhgAqkCX0W4okSjhhwAlZRetUS+VlBOUgALw00z1w6iUJMPDWCk4Q0glBtJFZSRz/lEcMSvqd8KXanBMol+x2WrnhfWSRwOhvN2wiFC4BdfOavmklZNNelOKJOTS+oRyq7Hm697zdNSI0LBwBR/guq+NQQvjeB0dr6DPXm+48l9oclemS/6sDtUjXrmcUB8ohIdl4rCJmX9LL8URGReTsm69u/DTYu+YZYmE93jCewi7gG/XDAVFgNmAbLM3pdUdRrzc356N+CZuoTtBJXCxNDDU38SQ7aGK15ALgWhCnWpv+MMG99b/86IFq17ME7qXoc3gKuZv/mmKxcok28a1PeX/MfVcsphHCj7ksKN18aroqABj/272s+XtpSVYEVtJTBzZ2JZvQzGU4FB9NX1H9xv/gBJay0NVbA16XKIFOfs8SPJTQL/XmsJ8rR9XG1ojZWUpLO3KAudMRhRk47PqAnlq+8VzysuJcxJrytMCHJFu1OpGDopGyt+XCVnCKmHKLD3YQiTSlE1Ix75FN/sGoUUWUglEV6SBgYH9hcUXO8VViEP04ge6kB4X7VBCP6p1i+7ZFll0tzdQlE9oPDRGodQMhmYsUHirmGQf2JUCcIMN4TikOOUa4LFrB6r5oLM0N7MPD0HEL5S0ZmauFcz/ScPicPBsTmiZlSVDwJmSRKJOsVVjunjLKm+SMhxQU/0/VLlpOQX1uAO+7m5pXx/B9o60QeFdlXPGO4QROJg/jIVgrOysfrqJvwYYODl0Ymh+1wZWcjtHvld03p7GRCHxmTZ4rbfqHOG9Uv86OW59ZQqLyF6ZOlC3AWUEg32TfMV9eCkjGL1zVYL4tLHDl28hjR4v2GExqgpclEtaEmk/J8X295k7nyLyZkvjUD8eOYih0H4DkU7xvw2vklF/xV+t0QXbvvgbJeQ4/N+Z1ZJLFlvLlbcB42oGkawL3+d+ezhu7LXa+dyU/4lfChg3c449KLKHiB/1XFB9hT5R//oqJqTmGqF7uNH5AvJ28vmi5DfMhy4V4ixp8EGrjW0x8g5W+lKwV4NGJhM5Opx5OzW2NoFGGLgCkDHy/4PW/eKRgrdUCxLkWK42jioIy4ZkDAAjGv+iQ0/HK4zGnghcwKPdhuFrnKCrAGVfJmEFvyOzBZvGIvM7jwl+lhUhXxXSZ8J4krngDLLkV+PbzkbOQ6iIxO5/AuK17wuAYRbXAxpZAdnw8H8Zj+qy00z/Q3xo/uCzHdWhgq5ZwrTIOkXsy8kNK2L5dd4HVK032a0m4gI1uG2sQlNlUxL53YYDZdqztU4P7sH6dfeRg2UPFNSzsIN8aJTz3jMnFSLmGKeOJLqWyzGOJWG93KmRQuzCSWpQZlWu/st69AGfryFOclNq3aRpxmX3HQyIm8sYVFmbwC4WrnhzDbCC06dCEMzF13iI8R3kn5qbv+E3wHu9PFuurL/PmaUag8e4UsjRQhKdvY7ymlK1d3cgltuQLOdiV9I7F9kE/oxYcTor9pn/Bohu2b0QPGiLJhIOE5MUzdFSuV+D/yDqMijnurWuDOjTwRUZr/r683LdqK33QGahkqKU7AZvOLwErarmVoINFdpYGfpmfEZDQt3uhxGngrLx+lHScm6hat2RQCqzmTD3tD/hg3TVweSb3hOHsF/jp+FE6YOcKv6WoJi5lK+KXOZV/W344yhu5KmneU//gGRVNZxIq0I8Xqb1aMab+XEzIrNROnXnQyqOb2dg8J7CY8S9z/oy0DR3S2g9IuEDJqa3CoMLvog67uVGXgA4TnWCfMgJrIblOgZ2r4xGJCBIDG4RlqIQYrDzQnCUPidtwUUukp2r5TgLT/pHDSwrq5nXBgdbhBGSeZqJAcPe+3jmoDyMvWjklSYeFoUiHribKZAXtKsQvTCjwI3SmXHtDZ5uEDdwG0hYcwjli43OSCAY6SFl38mufFVn+5bMB/O9UeS3NyE4eDGdxv4rMGxC5Caw2YkxEP45vA2LD8UoKyEMdhcViGIxbqCtOFe6DotwD3xPj8bEPYrR+CEJoA19xj2gp8E4HnfnKhHbnqx7iMS1ZUaDVrcH2Nblhuuzdn354T4pJc7Yr6qipDs7snb/q+wrz+KHOTlJaEyiBgfflI59xHzS52zkj3G5/OIi0oz1Xo1ELyv2NBDh7/BfTRfgWsnDcmv0UW5+kToM4c/RhOrH26zZVjTl6GnD5WrsG20Gf+AXAXrEiozBNlfQKfVt8G78ynyOMupQb8peOTZccQ93VLy42/tcW94dofuXZamdKRpUozgsxJvA0o1lFraSc4UZQb8pwXnJoOkEkh9Dt9VxyRVbG4Yri2J4y6KqSFKPBrpsLlBcjCdFNc/OLDRk8EDMqIHanT8/V3HWjNS82vpl7VcovO8aiHReuA4ZVTa+hhUX/PRj6kxoYPZiBLHY6BjcodzJU+uRhpiD/f/jnuIJCCWH+puAuULDYIjf9ABC9mJNyyQZwmjjQ73kSrLca9DmQZPwJ7BGO80ucMtgaWNnGw0vtmwX2OLOYJT0XQqBzvOMMQ2ztSZRdF6isy2YCLuongsoEC0eV4P1Kjz1gOgohxmdkppM2GnTI4jSZlM1rZucYcaW8xRmiE25evXlz45SkQTv1T2k9RTKOZJKy7fvyGffSWq71Z2+tf6E0Qche2F1r6QmQQA4BvI8EHKEY1geKGuZEkf7pdQAbTm+41wvgOtniuRZmmZ0LLr2QRIfxTuBTNYHZRQhxqRYuVRMsZQxJfT6XkcV4tLT0Yp5Rz2Nr3h2psS1r7vPgqQg7FLxc2YSKh9RvepyPcUdSXXIH8Jk+5pClXqoARXAT4FcqUl7Ny1u/L5H3jTl9L3+deJ+sfDhK4cFPA5pDrUI7w2s4cymve83IHbO5xtaOmVKo5cAFjDqA3KLXNmlmBt1bmkTwhSsRvK6+yaPvGfZGABpFGmIsFUu5ufyk9UxhvfrGwvUXBcNO8gm6V2W7FHQL/0Lby0+9gZyU4cEQoF8p9Id/20hqvlairhGnKrIHdJOc/5ZRQii8MYtcJ50ctKsQLBKOxQZltkgUNmyQVwzK/G6nXDOj8QVtDtgIZ9/DvgfpYhRBwwiDOj48887vXGXzY2zyzUx9kEvAvd+TTgyMwvUBdGzJ3UO7EcRrEiUf62bN7T+lIwwzBK3bL/LeKtK9GpttexiehiWSeI1RddtafHz4BY00GObh4bVFwQQ3kPijKuMNmxyT0QFAznTdCSYSyX69DvyTsdxIrvbq7CKQ6sSZ9c5T8VxShAG2OE4nec5Bcl3mSsoTxGeyyc+T4YUfgbH6XpVGXftHrHZZUy+u1WR767BHBkGVBVewCTpyS60A77Ll5M18oo9HN2tYlpcjsljtPsF6Qx9ODrHfQUfvdMITAO0eh2Ae6fM9bA7anjcykAfqWLE1Eyay5ufTOGQnCk7pwqRdfUxMSpv0+/AarAtNfM45lkqK0Vw6Yh2qbDCneI5kVW/BNEhRkBNdlA6XE9HV2wY8A40920a0154WBQZZXInob5+4VMnVfEMxCmXV3W6xOcBIhcYQwG+WH46hMDWP89yLyYHAGNDi7VdYv4785HpWEM+MY/fPVdHagI475PYsKemF8qAv45wd+T8x/gnXbvPIcxznnYkvG2Mwr2XWwQ8gYq5V4Dbx3PvAdNTsX5W1KM+S2FvhrTgqvm0OGE/oMo00jOn3AvD1+zRCLUPEHQ7NfZ2rN8QLy0W8jxB9s0PPCYp5FNnXBV8En3wgbGZ2yCaCAtus9lmfO6JXWPtzkmTl3pFrd0LYHuqpqDC25v07eaqco7wdCFQMelEbeLO1OwMvdtv0xv1XfHq9+dsZTQnsY4D9UncZ47eYvljnuOBM6c46rrNd2bbaIrpRTFVYxigyKcMQrY7jJa8JO4RYRaM3rwFhfJPcLDwJanbFSv5ij9HIzrv8X/LMotUNCBHLjFcox640+6aUepBtOnqkygsIBExt6RpX9JXgWHemaQeNwkgeAWoDz3fdPJmqiDe4I3Q4xURlghYbmqPoeA+sLp6ynZJwNznj9DfP3h5972IVsS/AN8JX7Js1RJU+neSGJKHpO5BlpbXGX9wPXTq+wtaAifzfEzwc/Sc45fwO4/3Pj1JNb8if744o0ov3rGgapFMsOT8VHiq+s4Pm50rzxii2VO1+7+ds0lFTBzQ0L/9gjF6od4QUMz7+myFAl5FxOMFp0r7gUxWoPk3sQgaXHC3ilb5GLh4rJmzfNE59T5SEuNhrsWzedIYQX/ppPNqi8jtK0HGR62QSwNFmbUBLkVwiiX1OZuFQ4TRg53aYRQni4SySlCOkYwpxla2Kwuzdw46NlNNpDETfH204fEjmg+E0w+JUhbZkC5qeOVsL2Kj/JYwUJIbaf83mrsw6xd7gSVtWIIiCOUzA48msnEgGsLsdhkQTZEkmjNkbC9tSj+ydAg05HaJyPH/bSv9DagHea1VkpCYDCp4oombSRVGGqOUrUmJkgm7di2G4i5HSpMWAd7OiRt+mYOm+UffsQ2b65eyOOJiwzZqRdL6sKx4xPPBT6Cr3RcqFmcfdXHy00hvd8byK3t2cWWIpvsm3yqmcU2ZJfmGXQBbafiqC1DDy4aiJRe3X+6AMvX3zaDIXcPshN5ekAROxCoC+eWuR0BeemJXYhS5ukXH07v05g2Ek+ga15L5yOMGwDrVIUDdEbi0Sz+hDCBzHltA2xYzmQ7QLNnPbnwhZdxDdhuvfG/wD3WQIA8G/usNrDAgf+urAe8QosRMElykOI8Wi59QTCzLYyarIrmAB7mOUwKN6ZdyrvPmPEt3/ydVAKwCWAgE2vohq8e/HHL7VT6Pue4ZPxLGXh8929a4JIkH3iYTiZwmiCPJt3S3kN05BxJIvAd5CdoAfcJ/e+AzU8m0dgMz0wbFr2QNm0NhMSDNGEsMpilGHrciCJ2lZ2nd93WzxN89lvpmQqUvZnttOCHPULNZGyfPU92kkGkrUQmdLtrP+f9qM4lY3fi0fnTkFbU3hgBEg4F0Tga9GPwJ/WPWW5sSLqQ8KffF0a3CBOQyAaGoO+8M1dhCAiXsu7Iao4TutvjI+q3inoxAycL7MlCl6FrPks54Oenie5vNEU4RoDpmNbNR6/y+Qs8b06y0aQHIoMT6YTcPbB5ePNjMiDrd3i5gSW9CNlH4rzonw5JpZANbhwVI2GAwgUr1wltEQrpk4AdP3T765e+vyAQCC6Qc9BEiesvcCZVw/bZ5yOaBx8LD2jkVEfIoHiV5Db6OG8u1N8I5xM8cq4QWATBAUDh56uYSgMAh0i8FtTjo7oXn3NqiZqiYbmZo4ax26m63QBHyEm3/+m/p2mWkVNNV3VP9I34+q7XyXIkAERoUg4Dl+hMcJBZOvsZI2JyNtA+nr0H9AsT+B1PnYaK2W20mz+6w/amX5ImAMqHoz5UUr9fxDaJZPRLFYJJHbPvqd4f87mVuON3aWLxghZS+m/8gvL1XTVhdNSbKGzf+4O62Y4GzAL3F0GkSHs/Thp6HC1hIoueOTBQHnoLtlq8P/1pM2T2/Gpc+v2QVm9hCID3WBsBhSxQIMNstul9ckq47ayWcVhzDLckOkmU25drZH8Jo2OGG55+kn+OP+tzHyrR0XW7XbiZGVLUJze7gt3y1y9FDkxlDso5Om7gMTOqhcSURlkOaGMzjzCMZMgIhhVI+MU5OlielSxN07Mj8x9asgNhIJ/kAqAb392u+7/VPVlVWcuLo8MhgHSdckehacaBrBCJm2spQXUq4dNegM2dzDJmqgr4t9ickAmDqKBikWZyqEgG97W+2bVgiuW2x/VWCXWu64TxweCIjSEBYh0eIw8wy2D9g6lCrD8jfls+5NBKsqcVIbYivjg2kznLEr/yEpyDHFGRuuQXAVIbzjfxBFbsiJktQ+5IMl48mDzM4UStm760NAJ+Z3XaYtbMxHajgh+W1zlNZUCoXpc3TLfKy4Sj1gufovYVNZzwJsCJM8/TLlDsCxFU4ZSdUGumTjeG2W4ZgNPjUbNC5RC7892IIY/uWXX0NxNWDp9UBMYodc15DzzlPUXRa3KgEzCm9VGJR9Xjakz+Kb68HWJPIyiB23Dh/DXcv5JBQ8o/XmkuelZLPSpBd7ciewfhxaqOXo3Xoeqbn6NLiWo5x3l9VyNN36JJIYo84WKq3V4T98ald7wAUSufileyDQmEis6qmJg+cSRSBNB1y02abJmbymg7x7dN4IuVkOQz+IgMxxpq2qmwBLUCwwLsSx1Y+J3EUd8aDESVBtNxN6jWnwpI91ChUK8vFsMRWjVT6BX2MAJe1PbbW8jcmbm7My+V+0nTlgCWgmQEa667j6C+8DNB8Q4gPCMsj0ihKguCkqu9bfahK1xExy2dRaipmqbqDeSKoMbfNqz/2y/A5xH19dWm6Um8JOQb2uavbsUB473hCp2apgQwOTv/f8wB55SaLqZcdX1U29/QYvtuL7c/s1fkvV22wWiqmPi8fu3g1MPNdW/dhwnIvszKXqTsAgNV7qszT3UTCAzecIQvaxsSyCiBKS5FZYEku6XIP2h3a9RN1/k+UiVl8nturwLXzgmqc/8Ix+FsjZnWIi0+/8mCvgY0uO220qITXUgNr64luMFpOf7WrRXvnghucQhbcDftJOcvjjvYkfaOvSHfWLT1QH5KT5T+sr5BFFP8ZDvObPzmy2Scr4UPqvVSezuH75xz67W+6okQj/wfKMAuY+TH8vFWmsY3HHb7lDLjpmfzDAWZsdonRajcEzmpQXRXPl/b8txBytuwCnJu+4OZ7xBYiZtWXNonYhDxgsl3REj2QVMKiTQ8YrxO8wDiVHO2rYH2c+p7f+2hs/eHxa1akHlbfoJp9shBJ5Pj/gRwrIB+WSFpsw1MT6rJ/HjQlBSaZMTzQkanFKIrH1BbvDx05xtWTZdjgGghGoWr0ENWSf6Tn3//6r7qfFyjrHAGxH2Wl7/i3SjJfM22Niu7uJoBAC1SMREi8BiUsyfN2ercQiV/jzmWrwl6Hr9oNk4ydibqPxK1NsCVAjIStqgm556ujcaiLF7+nfP46fY23hB2sDDXrucfdX3vWyGRHu5/G4vCrtUkKFHxYVJae+T8+FmXbVxRcMs9sHKam11L7bd/Pt8hskGDapPh/DK6oXGkjc4j1w3BURUWepOc7jMXXyo4zjrwElkwCsdqtlEK0s9dHbqDWoJTrhJRXpIzXLJVgHxWHZT3Sz0arIMssmc0D3TUNi4lHat4mxHpp+tgzBGwFXTMdFBg3AyfvPwZ0StbUgOogBbwOm8lfJ73HRHTaP/WR6SvrKbF2f4ccJ/kRoWlenoLU9+NxEOQ0+bN/Wu3lIrG+vqSTimkmy/D6Qm2Ovpn6JoB6sqUWTQlnWLG4WAj4HDcIdH2LLjyRUhaTHBJ3A0UiFFvdPStJyvywUQTkGtEWah+YHyoxXVHwpRGblROcrnfMT+71Dxja7g3Rpmie8OVWGHQIFa1+Tgq8aiGswTOg5KRspZqu2igOvPjiJO6ibu58r3No25fXl66tAsDjLyrpo7mVNb7zlNLDpPBYMxewhRamsqBboIW9haCUXGX+4ELNP8ELxWoJD/qQxJlr5015nOUCZyMmoTLcuU3tOX4F/Jc3xIoLeYaSVXtQ7ktUd9hVYMEhxMt3GzvkbA5/NX2/nlgbBhZebHuSbBCichLT9syFOsE3I6ahTbD5Vnu5ycN4gJO1RiAI1pdeKaYLAJGfjju4u6ocny+LDRWSwmeYL6JSZNjJuXSfYxQkWTvysSObhJqK2STDYUmd6YIRcmmG0+n6Edkna8UoBNUK8apoJyomON/f9DybWRsrwMV1Pe72pwIN6+M2i90W7K7ZgZA1vpNIkwUU5ZvSxuSbTJpLeotBJDzdOghBMA0rS6I4Mw30YrA74Ab97HUqBxlFn6DAdgcozwXUjkyf6Us+eI9QZ7nH+6U9l1TSfDPHD2BGF/XiA1lblu6N4ANiBoV8r+GCtZFgzTUu5jRE8Qef4slm628fxQ5C2rr8IOl9J7EvBEmuVfCPYua6Hxf607drsmJAFOdkNAfmsBtTRvejDJJcmdBRyhrTpEIQA85hXwHexIXCsU0qQz1VtgBL7mlI+sNGvU8qt0bwCF0QWW6de3732BbcDHtdfBi5vzaUc3zQG30vcwfCZ3FYTteWvGiVmBSAHefidO/QUo36VLcWz8MvP7gGgwNJCuMwtwChqfbpfc1rOTLy3/Y2uCrheVWgo67HFooFJYWL6QyLNJnFGwgUJcukw7CARlcV7K333syD8+11IiPLP8KO28pR71xpMIHtzwxC2uZd/G2CKrP+4MDPyCkrBjU4s3xHlahygpQ3vi5YwYFyB1H1KxnSOFp0uO/6I2kAhNomrStH7nhfLAhxhmC1f3DzJhydun1L5zyPY4Jb9DhmkXvTgdkzi5a4ux2ScRotlLBSVTh3ytJqEkmC402vuCHiFLrbXSliyIdbSMwgZsAw+xtHMmXv0ykopxe1dLr1R3kysSW8XOblutHy8x59p+bkY1rgYvIoEArOWxIPNPqDocQZLYKJ3WTP9RvCpORhMVovNBtOyjqGYcfVaGflf+20d+yj9e/llRcElmbc6Gal7uC1neoueRUk95y+uwCiMs0/S1nlPShQL112/HZztGxXKMEESULQTwn5wPCukGr6RYVR4Sh/jBApZsIfSJcaUthYl7WEoq/G+LQlcIEJJtZXADV6EY/DoyQml83vCzVKhvX/1CHggowjxYSRjS0wgJFMA8gnXY1vc9KltpGsMiBdIKxnkpePB74HOBRcWXok+26gEZU3IqnlEHKnDoVkmACcJsnoRRkzl/hSWEyKMlImvf7Bw7XEd7WVQeyojoWTyCzQxJuBVYmIZGBuYGglLLliJXAw1qwOdOIH5ZPC96hYhBhDNslHoxc6MNyO6HlF5L0iyfZlSt/z5eW4n41ubXMkhIbwtCFS1KY8gmrbzumcpdMxJ4hl0GNeBG+AZoxRb0v2lvgYrfQSmhE+peFDvIckjogjgC0DsqyC6Or603vz9vi9FzdA4BJYAb9Ir/M6ABeUKouXwb9NUFM1gYO6gn99Ny39CEL9A3v7DYUIKOgiNAwksPlJ+Cpg74+XoT98MrW85ERZ/AP9UQEXRATug0bHL9y22LnHBJaQQxy3hy8eAOlt5ELbjBaQa0bbZyoYYJALODlyJnj2e0VLIAmHV6EbBoT+fDESrQCa7Uk6jInXi1uiu/5aPSZLIXDg+QaiNM90iiKHt966WFgkmLPotb9bg7rFsKiTWmDsD4F+lA96cS9j6luOIx8CSQtp1F9TDIZbLFa5i93Yn42HjQbCyNostlvSFtVKGfw73A2eGrthr4xvkCwkQOUm09HwLzsDMXL+m3RcNarAMIoAGHerrAZSRy8qgqvKvjLnuYIBCkkM0+Y/0FI2snvUut3FfUTQXLbiZlwOwAik7p+E7lsw66+xCq4zCg1onIv4nCEE1SjHoiXhzWNj6LzPKhFz0FIuBRI352xSfdORXuyO9DW5uXNx0Wd7udJD2z3lhUrk6u16zIGnyRgWajJ3v/LRntugW3a15VLYPxHVdmKPoE1JMSahGtLArEM4YOHghse1NBaedg6iBmO6bBI2oxAcP+FDB4JeUij/apd89yAbsHbxy1lbb308dEJmEHOaUDlVBSq1LS0bYhkOP4k0viVEL5HbzvPS73jekjZ4iSukbpk0s7+Cxkfx5kg317rsydhJFA73YspY/8IVPTOHGgpyPPLuCcQ9lMjY6DYDt0IzOoKOZnyOOa/mNrg2/3s9iDycux+NJgupL5Fzw+
Variant 5
DifficultyLevel
641
Question
Yui walks around the centre garden at the amusement park.
She starts at point J and walks west.
If she walks 54 of the distance around the garden, in what direction is she heading?
Worked Solution
Each edge = 81 of a full circuit.
Since 43 < 54 < 87
∴ Yui is heading south.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Yui walks around the centre garden at the amusement park.
She starts at point $J$ and walks west.
If she walks $\dfrac{4}{5}$ of the distance around the garden, in what direction is she heading?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-q-var5.png 330 indent3 vpad |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-E4-CA22-sol-var5.png 365 indent vpad
Each edge = $\dfrac{1}{8}$ of a full circuit.
Since $\dfrac{3}{4}$ < $\dfrac{4}{5}$ < $\dfrac{7}{8}$
$\therefore$ Yui is heading south. |
correctAnswer | |
Answers