Algebra, NAPX-E4-NC23
U2FsdGVkX1/XqgdrWIoBAS0gNQuLty4H6MvcDyyJP+mYo6qLa8PoIo8F5HeDVGRzOuKemaimuTuFmf1ALP4NVbFgDqq0kA48tWECjeLy1sf1175jO5GfKP3/JpWHLwCcN9cbfYhbx0rr/bCkoF1J9OyT1lP3DXPzbsqfK3mLUsGKrORUWCSgwMykY7YCtGaFKZ48Ekl+0EpQVuk8RX3SXJaRZ95JiHVlkspLX/wH7zn6yrCrADlRMLnbKzunjmzus4zpbX9rZlL2JRi7Dzorli9ZKeQIRvOwzUdyP/V4fqxWpB96Gu5k73jR/Wqfe8OagqaGN2UfxjLarY8jTIMQitqFeIiWWR9L3qA6nixjlnEjVDMQ7w1gTSMg3tCqBGxtmYhTwRt//wksd8boIBLi2m5Xmf/g6JAiCGgzE3poqcpwDDFK5lGWoB8hxJJmx0IjykevW1JlYx9ukS0FDy8SPjJGw282YSA3uLW6CW4yVIml8RdCTRAY0Y12+8mpCGRPTOTLcBms2awv8CppW19c7n7cTl3hz0e/neMZdSXM92u3ruVDOEQ3YgkHzzbGqtWQNKGBWL7OG+ArZTGXvN/vrrtdIqth+m49q8fZYu+CPAPI7PsNrZl1HShhEv8d6hmqCcQu3AOV4tfF/Qw7FDY6pC4G/0Dk8ZujWH0aR8HohkOqqkcKVoF0zax2aCp/7aQUQ5m2ZmzfbrFF6gLD93Z5sgI8O4dY+K5RZU9UI+zIgh+V33+oBjZULpx05IXxecMkQa7kl/COQgg0/T4fmgCGMY3p2ooNzZMReemH6LZF1bdyiY2tG/n9lZudavxTCKenRjBmhY0TEGzANkUHgdHag46HuVk9QB9+IUbcgx+L9PD9RXDafUFRbYqSyFyuW4K+iLjPiZjWsydW5A4jnD+/YmEOWwAbijZbK84TotfOrOzs9+2uQudyScbUmsihkbHdzTH4cEu8jMavlkR/CLvKJstznNmGPpH2Rp6+81RdyLSqKIn+4bu3eYqgp5G0PyGPzzquW7QPO9VucfPqHOHL4AZ5GasxBwsSuLXoaNBG0ZHfCnswhw1X7iaWibkAWb7BzGyvsh1ZBXVbcC+P1CNY5LwjAD1057UnOfcHHunX0KhyALAJPRD2BYgZHEVcBFNjL0nG2p0je9/RSpp97eHNTSulXRE+VyoGRDMrWmJqeyg6jJf5Ay6SYIjrWClUcQSFwcu3DTXJBq2F+f+hXNEmzRa3VFiso+txKZxdCBWtLu25+sHcAINVEDo3hOYtCrKIlbwyljM3ZZRbnudasC5Et2/nhhQVvusi70C74oHgSPISJM7kgkngN8qakqf/kwLVZuFmFrGtoS0NvPsoEF0ShOFG/NVmxGrYyX4NcKmZ8/Cd+P86+G9yyYILJn82MTjzokYJRq8SrJxMe/bz33i9tuikQH4s+nlXGQX5UoYcwnnKCZas/uPUF53CcATBrk/iRXE1+V748QwmblwTq0A4YqrxsUt6emfmBsoMHfNgzZqnOpR5vJbQ3oeUY+JuJM/q/iXmErWTzkHOFCcx1LpX8SBXzR+p7uLvJEJECqB2FISJqxWg/qkya/ZQU3pvPQFfbZjycv3m+psA+SW/bG7IGJVqRDFTnIacaFySm6W+rTmv1EY/EVl2mvPtptVPgl/0mMepDxeS8eHGtx9aBeAQFD1M2XT+UIhYBmP4j0kvvyPXlsAnSWI44NWOFL84KApm4kH17jfWPSmVOmhR1hY34ED37OT/4XWumaAMM2gHnMlaeRepPEIRa+2w5EpMP+oV1WYcyc7bkmRNl3VYcDmmcnLcUO3XIbWz+z1ZbqJDVCN2BfRVHpNLhKsWHKo0LwuoGXq8LR9EgKbOOHB/GCq3U6i8DlkJO8ZNYuLEevzh3efPigpBVEChLz3C6BSnHwI7S05unVJbGWnq5J9T7Xr/ymKYfjUGZfdkM9fBuYgmZf3O5h0zKlsTeg8dTz+hyl30J8lCow32d+tW39anTSuBQEgi43f6CpcRr7Oy3QtGLPoQpkeWveFmJIIbVYI/JFPftMmw0Z6gilMpMuCxitABPhYgDcJT6mhxr3Q273Jabv2n/yDsExdWsLiyCBfNOMzcazDZLoXtFklC3ks5J5hIwFWnRX3KD6nECOyIIuXZKdC/+GhstILEGFKJ+xY57jSTOQWqbDRVMJQAoFks8sl10iaJzqUHbXzP2ww0c6YAqY/Rj+AtsmZtnPd8Z7hB5dNvSHm8n6oRjfsRxaZY/trRgQbM+XgJv6c3H/fEWvbuctJWKkKCK7xdULWzjMtVCYKCPkEIfFWacFuium/dRQfnt9tk5yNUARluUmpdZ1ym8ktInDj9ZVdeDMp+FujmyJAPdCQqYENGdmLrMlxJRjWLKBK9mkcVxUCeczIlg2P25Jz/Tn1UmC+Zcz20yb1gBEy6wrbwv5xsNguehH/ER8qIiEt1YjbXURa5i0C5WNBubdONA2aDv9/R6XsLzRiX63v76pQjlQkuca5nn+kZxh52F9qlCLI+mwky1k/cgpPO7XXAj6B/VqDX58Er46hPYqQgTL1yIN+Zu3hqf1w0otNzBj1MfwLkfWDOH8XO55CDGVcymya8qAJ11rPcsJsaegTdAlyk+1OhQG322PQCK1oZTNZXYiwVPKtn009mZaw6V944sFidlpDx/BLmTXDB5ijWtGePsHY0aO6o0YHFoqpEuxHF1UoWPfHUt7YOIy5IyQpZcnyXw+4TI5G0zLMOwH3PJyZB9Mn+CxoC7XXiBYOLTSb3VVZ8/H8TVrympOTAC5drAwm9WDOb436q4CEiBXetysWMRoZhGAFLilsSyvG3W4nHVDKyc+t4KxhHZ/4n+XeOvnmqaFO0PwMXebxkTLdQ7vjjQSBbHDZyosUV3xjWiLLiVZM1ssK2QK/JSPyEVe33vn1CA2t+rdxQ4WZF1faeGjXaSVA4ANAywnuu4ALYUSfmrbeYkbBP78P3YsDwmb+Tq3hfDCr8ME45NWQ1v6x8in1SfJASEXeZrHoCT2BZl6IWxlSgeE41lI8Uciovc1rxNTqNOcF4iyL/GSFW6AHpTf/oR16A5RK8RrfTr+gCOZDzyAebCLvSbVqf+BJieBd5zYM1bQy+xILfeJrK7wIEBMmB5JDQS712GbOssb0ZHlnH0diLXEUaC+Myfu5O1xDPlHM80PzdUW7ahCwsyd+nnAogvnLVYlTQIRy5lFhcSq80Nm6nGuorHqyEUyvhkIRbo9NIP2eQZ9ecxXz32JVe00pHIVZ3gMDk2XHG6Z6IBB+FqIbqdqGPMS1yXrGUYyFnFI6nQ83Pm78W73rWc17vPN4WWF+Zp5MTfP803XR9/Em9Zyupvt61oX0EwN5rdKY2lafsI3UiJUGQFrX2W+OcRElyBpksEOLR4yXZmqP/Zu6b2xUjqPpGCkECgJ22BeyEmrOk6gLWHXxWLlv4pi2nlwEKmPBL5VzTVJcs/9aiYrVvbMqCObhxQSYflO8feksTiDVDziijW34rPbEwfOsKPZPjRy5v6cWuSbxjbVTB5guanjMimcGC3ZbYN8x1LgVKx1j2phxKIvZjPU474V2aFOBeSEPL0ryjjsHebDJYwytpZob4mVBKtnoalUrD65utdENx4U7lth1Ke4sRDzTeLLsZTEpMPi/+PBFcyLhzV9zk7A3iiUse2+C+GvrN5I2/bKOxfi3jP+VtDGnooFwA0LJPrM0s6fJwF7OsZ4WUsqURbdQVRUjjNqbaQvY/RQ7OP7oH1XQxN86iPROBf9iuVCDYdWXUlXscGZYkW3TGbrG+keNMaLZJeOwFfdGe582Lhly/kJ6rfQzJrVqJLP08TJg7RllSBJgTaW+JIi1Z8mlMLsRkdAw71RTZZMTW0Bz3r5tQKTp1NEljOZb0zX1UzSgCA9PTMLxjfpzs/NlUgiGUKwbXhEozbApyKxhry4QD1EV76SsDrI3eEpMvSD8ZtYRIUt1xZ4MFCGirjnN9b02bl06ZT5soaZ+ChKsDUIAxNxfRf8MfvOwfhRt/24zw2eHrw2TSeQzKs2clC6qsOzuJvmYFQoT4K2ge1kzIxx+kZgwB0qXeoe+oWvPt5cLdO18BiuHWvedRvr4gC87IRi2K5NTK+p0MvrkPp7jHSu26KaJ4E34nrU+UwhFOyz5agP2HK6oJu6UtOXKi4Mf1h8AmYgu/oqvK0DsWikqAiGiYnzxjIDBejWpuPWlOZ8NoYopsozQPoSrwjWAWIMsS7NTXTDdLnBwZiYDX0grAVvLKyeXjdIWNcLzmVxwhjgiLfyfaIhjuJcnCjWXEvuk52Tlh/BDIXUOYEYiFhcotfCM0Y2QpvYNm7+tLpT2THn7VzHBmi/46YDAVCQ2k9J4fSw6A4Cij76CgMAJiBarlzTcdAZ1P2eIVurBMU5xkQMJ/52elYt+xO94/a2r8JiW2h1jZaN0IY8ctnprU+vBoxMQAl59Y8GrJcVSVWy6Q19yy2jTa+qXfbeOmZaytKOSZzs8LoW4mvfEX+rRq1JKnt73AFk/XBqK3Jx2k+IQ2QHRooCvMwPIF32nwO2wPEYY8GbXhRT8oSoSioF4XW6zBWKwPC/kTE5FqW1HlzVElP1hhS+J0eeTLTGdbgtXvloKXo8H9el6ChYYy+ceMboYIPwbY6Xxc7fvpUn9g2CT/dXIa7KIrbdMrdbxo43ZF0VJRe8fA0UDp9qwOjlquIWuJCwoiAqp4cAiYQFEeHR8BiY+SK/FMLhaFV6kDjfYnyczcJt2UQtzX2SyaSFyJMxyRioiy1EtjYUTffjhL+KmdngZo0/mJsmgUcgQlRF/MFfN3Iy5CasaWAddNL7iwk3GOu4+GlNTRtebBxJuAKUhVR/07C51qI9BhLde90gzI09c2TMQgBjhKm/AWYEoNudNeNoFpNmHctfpLStwfDwEXV1NFaj2BNp5mvIusw5YboAMvYvyatKOOgMu143TXy0l/Fax/Wuy2n4fewPzl8wZT96/AgkgxrlyVP/OkmHLf+rVtKrew3im0UCzI7L4Qa6ZLrTrcg859Iw9871aT80P/5t1R8+LlS8xM7tlYqg4zvd08FzZV1rTyo0yZqs7UGIIxNvOPZqRY3wqMW4NOvx3ANc2HiyNBFntr4MCIHa1aAQhHWo8t/FD39PoJo2q/rKvAwTlRpLuUGFImuMbd4GcSQRZjIb2Wzh+7xB8DWuboukjun9exL1ObXCVbJ7HwpTauKa4+wU3450dG3PxSv5aFAEWalRs8aSOwl8D/5sl4E8n2WrKwb0wUSQzSW9/HHVzfrEgDALjc8H+t+mf5Z4zZT29tN1U+95qMxJh3FSDsPuiuQBz7tgYnj/C7GnN4Ne2zSHjWCF5SYb486za+fk1TEwqPFxMJBeniifsRxAzTx0w9cY3D6HOhmdZFckAWu49ENFtUMqe/PFhsI1Lmcjcotgqv6AcD5XuTvrfv9EQaiMG5YEqgmNT/AUUthHOyIgESRBJFUKoPw8rI4wQbGKfDokmhvSnVUJYWhgv8RDCtdglw4Ugn3kXhcIQNcz6G7pwClAPYeAMiqDqO9XFDJ73yqZPez/9KVh2QvUQxDkXjy/vAU/aNOTUzLLCliWaULOvn4q4Iz6T2MRtyDA++nj2KxbP71aD+6/S6+hRQvpsx+aEfYqPODnF2iXvt+qCnlMBSa9FzJ08sqXyC8yrugYWGollfhYj0YljxMGXH3xnCI4nVzHemQI17BJnl2LQ71HrUmmr1An+9GakD2cjjv4RknnCcOgYVDkaSfoVRftzjQ2BlGoJ1VcaoGlpDW8XhlAbVVw6ZGP6KUUoqnvjQ75HnFDnquEUIJXa++KXM7aFrc/5kFi1ydl7qveCJdUM+UikFAhcVQuMsvBa55NW/EVr1T9iodBGpgyE4PHmWkB1hmFPU9/DCm0fyVDmETedfRn5O4sL/c0Tfwrp8HAPgWJnXSu4Xw9XXQOU2AnVAnHKGjkJDgTe6Rrk5JrarGy46UuGHHt9tnZfKI43djJLJvA9tVpFbLswVj65Dy7KZ/tCspqJ7ASLf8U5r3dfM+XDo/OBuge2MEgWva18lfyvCaq5w765K6bkjZbZmoko2xPpvGWT5tu9Hhycj7q+tFYh5/gfZHRcuv2YYMaIGfLRJ9pqHjOE/t7KeuEHK3g0AMrL2bJ6Fh0QIePVVUemaM1IDuEHFBDT3uAqXP/IRDshdurvp19jtOqF8l7sx/xfUcy95KCbv7kAvJS4lZrxxyfC3tZGyvh7QtitdCjr9wRj6TuWQGb45+FNuMAdFXM6PMlpN9AzRd6Ywk8q2r4Zhwc4JFev1DX7HeLAB0AmmfkjWyfWMhdXkH9ZGX6ouN8I3J/YyzMAhiHZ9Aw/e4iGKsQNxyx5hTcxfzenqOkCF19D2GxwX/s2tWXERpfDadEg81qh0uYOt0XJWhuO5NbHXYkteBoxxtW2hPCEUDUWTGoT3BpcP5lrSMv+aBBY6Nd2yELNae+bn4RPjNSgONLX28MrT/rdgkhaSSfNOBR2V3uc4Hu6jqeXePrNRFAWsfT5nkVaWNVlewIsGZSftj46wjcMS/cCbkv+wzRJMAOZ+yE+TtEl65uJN2ly34Pfd52ch6hCmx93nEvVPeTXEwqgnY6fF8Zr6FPce/Zp+p4iOtTJKJhy4qzocD93hxSYPTg6yUHYYUc15+W2wZOVBcKupT4RcJCzJb9Dr0BK/CXyYCJmlXVjnEawlBT7ZZlMj4ne4UMWOGNajOEvhwTC/A+ap6MnjFtrq4m6GKM6oWUdy4RvFknqjQJHNqbJMqpdUxtJ+rf2SjpjpnbUhO7bsfOteurE4VIdiuI267XonL1g748UM6WMbAAloAzgEXdClHi805F/16ehpuPxpqduiAquKEB8EYH0JJT6dRqvOW/skz3nk7j7lcFCLqqRU+VDqvjcdHQmO2iTL5xKX24ouBNRlgdMZknD871pSzjcsufdNLOFhWPze20KQGXnTdmLJAyu/jc13Vt+E8BXh1SrWocTZp56lwgp8orfXNFkKvEQZNusqj+R5wcD0JmgRPSt7pMgX9oZz47t4aUHE8GDCrA0ZsPyY48NjmOLLgyIfbg0dkl5DE/n9zT/COBDe/kXx7T8TGd3smVH2g4FY4o1moZ9F/68UqOt6RjmvgXkG4Op9R7GRldYzlDjWFqeqBG40RSUWXTc8Zo3GMJC0LiGidGFGS6C/ykjamSvO3VaK4jvJ3i5nJeYiLSgf4oGI7DMCx4pPovC+fpMGCDivCg9d+zTl+CUsPWBdQ+0lwD7Z1nHTTUmh6BkR+Pv3EOb/A4JhdBEXyylKKDu3C2Gbnd9/o41MnyRLrIgTvTqW362VfomfINOrkcli9uvDju6ro9U/XCif24ruvsRWDDYBdcayWhH40lOjIHVr8xfoh+58E26v4IbUgM5+Hvm4fH64pEbaCH/Uv5v2mjsdfVQUL2dJnahptNoZulK8Y8uMqSvcfVJ2yNTZth8Atcl0Wi4FbZeP/9HdVt/EEBt61l6OdTa2NPyeqGka1uR+5aqT1QLWZ3eHaw4C8tYyV+tFCrFnLb3aDiKwuLqjsHJ7cr1ypEceZGuzMpEcBeVMYj2yXAnY5+i/pFMVno+lL58972eI4LkDglh+kr0u+F5kKOuDPB9tM196VYQKNK23SsLt4LUeM+VbZn8QYwh51v4CZfoOSDmwPcJg37fNggzbZn9RUv9Bxnv5e0MRjaAu/xYEkPDKMWdSH0o2s76GQjx+Qjp4N+ItW1j1MFKbtQuEoPksekgMSbNkq4i3xRYiRQIBlskyzHffyaYDQFrG+sL/TbfxT3ZSJEbs40XjV0gG2HjHR7pCNkH9kISjp80C9n+/m8acTpg9+tCgNdbqB653f9SWW7EvUpAARuaFblw3A1AtTCnWr/AjhaCYabJ7FRzg9zzmMAjsOtNP6M2Z9yFP1fqjg/htrVUl5TlL7ZsyA2fy+WLNYmEnmQPdvC+IThFyzaoUefQn/zguXkHpUqf7pzLB1a44rubfkH4oZHBu+cIkEsUtkZouSu5odsxU6eFHeoTOOBbLDm/ORjH2jVCd18UeyoADKZ1IUWAofj5M6KBOEHlK0vwNt+9eogJxHtktgnSKTfjgUvSuhgDxtMSca5mqaxC20Oj4BFJRadMVY80eeUwG69r/rU+9mqB50FthlANYZtqiZRh0XZ3X6lB+9B6D3j1doKLaNj8pZIl6yPIPqtwZurgk9fd9NMl0q67jykoR9Q9eIZICJ5LlhmFJINEAO3/RqSNxAyufXEDWFKbtyX61UtOdsBdbDLqlpr9/nX8+v97zhn70MpbPqUWxnclPpXxwPQpXl3AtbBrj/juyqvVoGC3Ona0VkbCMmXYcJQtq60BmuYfIm/Bcc9dEB8zdIZIuMy9FjUwbDvtRZwF82tBwDMkzzBX0PG6Ik+GtPMz+PB+doGz2N5f9I6XH0oEeYRxlR29xLWbvMQ5NYhJY3UG5e1gMTpDdemYU49xOQ4iqHCC//h6keAE1vwOasLdRqOXKWV9qG+5UDLVU+dz14zngwlD2miAp/f/ftIm9+RFB/hGs1UG3xK9Q8gD5AVelOfRo1B76e5+ArA2yu1/Kyd9LQxNMGj7c21o4GuM3U2r1MUhElAXX54XOEPoKTVffftByF837AY20YplR2/XJ1aL536J3A1HKNorNzBy+v9QFNDWoyR4S9W5ltP+N+JWxvzqs+5R9BkD9mtwxRKijEH5mu9m3AIwUvhLBLRpw6fncBnHPwwSnv2MkaPUOc8O3yqI/U1x0Liv1JIRwlexSsmLIQBatYl/fWsBMq07Me7fd9jKY2PBgI4cwYV3BOxEZDXKFROa5BDFyU+6mVAm1VY/MMgF031ahLvV1ubb5zkW3xwFHNlEuvCv/DVZo/NjORVMYgbBzNjOBDKmMP8TaMb3i/3+4biKmO3xFQKm8nAcFCUxOwfcGhs5b7qinxfE6qbRdOJZyw1WdOZZa0RSdOm5zNDPav1k0cZbU5b0Wyl7/q/qsmNrkHvxhTaTCQmXrcRr9oMtXJOu6T6p7KnZtAR0A1tYcZf1uuP8rTvro5aKzocIZCE4hptZfySxpNSLHJDolny1GZINVMM3KgY5idbRw0SEUnBVwmFOOabQxaaLacz9PTC8QG8jRU9GMtfFtcb08TrGB3ra1GK3b93rj7Y9DpwCiqk3swOBQ1UnSGvWO+dT6nHGreqkMebqDLbh+02xE/y2gst1uUAPS9O2K7HSRXCzWQKymKgh0zSBzQEoLyAiBoN7tKa8ae0f22mz/W5Ay9a/msbGp01ulpQEOWjy6wxOZy8mRmAqL3Xo+nHv/8F14RlHClks+m9DiIe1xJwQ9JwHg6GCdZZgKpJXLHMv9esgDqMbHxKNcChNIUEnvyevurg/zkKqw/6oP2yUZyVzg8m3kls3KS9Vco+jcwS5/i8uQbdZaORMKuHyZNf3fp4doVSsnJ3F5ouFoDbrhwVgIvn3vVQLAPaJPgPMlcy49IQIvQeMIQBGyuT/jQCrrsn/LBDxwI+3Fllun0+LCo04F6K3B8FZ/uyKP70usTZiDswvREtBofsr4IY5RffQwbSbJePkHE/tErSJwRDbqUd7CLTON1Ze4r3AYJHHOYC05Tpn2CEXNtJ+zB/qlaLmyjVZDwiV1gcmCLZkOk2ZRv84IPaMshyrHm9UlNs7XdIw+OC41YKceCla0SvOL4RorGF/WYRNMmyaUvu2pypbfFFcvrh7QxJIt0r37miC3QYf0+gnnW4rrSEGxxNkgFCTAUI7OlBevInDaEqpt60Cwgtu5CSW5rRHYqcJM7sllE/FRwpbwRtWqZhSscKvNUnF4XdGzscdfvTF+LwtPHNniEfKt4ryPbgm8NQ9uMCZvbRGFiCNhNQD7fAdNXzdR+asz6ej0iWqUHDvHKCHZGn3gNjRlpye8SBDf5OAWgYP5a+cMWaanPcnu/oCuRLOK0eVFjDlM4Mbfd9yFb6fDTGHxKOtEEruXGzSrAIpGRtFoGrFY9CeBNoweN8JTL86oDjwNGtHfCo4Jw1BaSspHhziMHdl7gsWrGyeLIgTnYlb0pOiERyaC1JHQG8i7FiVEMCQ3aqJ0nQH0f0huRdAy3d63Qqo9UMylzUO7b/u933CSZQLOmgSqnbaIANLKyiv9eAc/qpfNzHjx3cMXa5KL79iSnmOgL4J1gBfVC6+CiwUd6fYZdZ0OeKnIfIB6cK3Mk1TAXUfZkvBXvXSMsVSOuhDuaA3WoyLR8IMzj36fThT36Tf9UyFWcoeaHR0g7h/luoIouBETuUxQzcyZKel4jaIu9CcQ8BKjXDzt9wR6VlC/zSx53P7LyxhZSs9xcFrJddC5bJ9NodWEDVMsUE1oki+t/kKAWseXPwtLJv0CLbkroJ7ys9oGvckBYdixHIx8N7WKVYHOv0TL+QA9ITP8/dGCT1bHirtwFtkD/yxNpyfdL3o178FbKVe+87myVNGCR8zp0R6gZUBgjm0a4hlTQ8q1YuQ33ilfMrZ59bBUEPkyOvCgBRH0LdKqBYmED1biFhMsxR0QKGt4/pVyREK5itrct0JmnDvS6A7cPFey7KW4gA7hJk9VSP/MfHJTdn6mTjyo3CeDCBBd/ZSa/8ZjJ5aZupFEhbtXJHcbvyULu/zPZ92gnMdhpxPQxa82hizmnJbA5ciz8ouIpoUV/3DeCXA5zOxAdV51HDvl4Zau+KKyzs8ChAv8njVOLqvzlpNRoRSmQun0iYu8ymsjw5Y2gpN+amceog+YugCzV6eYC9HUQmPdbzMhMFReN39HgIJ4AujbQt+cvGnD3wTIi2ewkVLL4j49BfGdZscZ7L4iOv2PyZ7ElrQN9e8NeRtyAm0mTWud+aeiHFLSnOeNa9h6XK2EY6AIaiwjUEwiN7+oJ2wzI6FuWmimvo/pf9cqonvpk5LTRUqDUEISi2h22l+S5BdLpnav2jTJqprTeOv1EzEtcxopj5WKLhLOeJfDSU2Nu8y35zZ5Ye5C0TNb7xxKWldhLpREnuRijB/bC+1wIos4HqMhv4TpvpTwe7Of9XjfLVshQzNygMnPGg9kzT+qzXxxFaXKCUV6LaWIGimTT+Ue0jpPRp2SqTpPevGOkMtXZW8FdqGjQzoJ1/+Cdz4X7TqmiE4RmeE2BsyAoz2ubzcBO47e2ijqPRnsGTBTeQ/QAGqo4vbKMmOT/tjhNrx92AzUF2A0Bzw1wlY+dZUtJIg8mq/9OXrBRFUk1SA5PiJ41eSkCjr/QbdW1f9ymIiY0izWsyPxBhvrnk7Wuyo4q7UsJAU6li5vXRhYTA+ajF5RF97Z1cqPE9HIHZ+JaDJ+Jb8DHUP2LUm54uGnK5Es5gSMJ/eqYkXnZ6xuAaoFYs7CwjkC9+l1NfAnQYu5NKCUdGFEFxV8icaDdqbSHpptN0ZQB6AfROm9apmuCYbWHWZkYN9xBAl3iA72Y9dieRoDduYJVpPQDP8g0Ls+l38TxI5yt50RmvFzch+YTmBtq9TKmJczscURqpHDCgJrx5IoNg0ZRtl3p7RCk03MdOZGmPG+cc+E+OW0rUfKN9dCfhiEqWd/0DVy3wNqVW57y9f/DMDMDp46M9gpN9Ywlbf2k5JWRKDvnvVmvsoNz+40AzeECxhWg2MqHgMf1wtsOX1zzXUqIuphYFntk/+nHpZq1oOvYvyXqaoeKl7mZIap1pb7SvkBfBcws/kpGGdtJZlJzyiB0qhrio7/XVEOTZSnQffO2f8b/7vHX0AjjMhPoXZ9720QUPUvvpSpsmDKuzjQkAEi7HKTAq3qBSgbT++EQ2ehb6p4uaCzq2/rGQWKnXMStYq92r2YgdsXfi4cTdIJr9vKPVMhdUY1drAKs5LjAK1EIULlq2J2OLeFboPQF2Npl69xj55feFkPuz7aaICzXctbLAW6dqx6VJkQHdczRKjtuAfTs2USSsKIsu2NEhYwzT1Uwdm+sJZpNnpbKRwRPUjsohIOL9HPmUSDAjMlqmHeuZsTcEn5KL6Ysy9MiKWx4PAS84j1fAty7qMI2y2ZFlD8GUiHTEyh1aQ3D03i6lIfSQaBdM8A3KxxaT3btoEjmOL2xNicGqlDHsRz2T+D40GfbUEmdSUbOxe49FfUhFlwDUWyvth8oeks9PPinXIE4sJtDKZSAHZF+LficWwMDftLm69hBbu+ca5Kq36ldRHlIh9NSYiI5epGLkUdsJO43Pq6zgPVaqEOJRC/3L4YRd8Fg2nb6iOcKltysxb7B3pAycW4/4daOvfsmM6IGdKNjZPCyRZenSIAvDEt+wUYISwnjn7PHX83qnu8IViZ3x5PRLqet5h08FyOA6TkC5wEWfSf+MWPVtl+r6vsLE9m6UIqV+bbqZHubYKbJSBZagVX0YF/t51zHFYETsPYfaVUgkq5LIYcCzcooslRkm0QtPahAe9mMT6ZNsrCd0/D7Vz9Ki9XSfU48hCmHvuY/++aCsmGnrnY6hMPWcq07nmrnbM1HA+oswYx3YH/N40/vTBTl51U1ANHH+08gKwZLVWx69Obp69We8FWgaZ/gy4YjOPvvC5LjYcFKtASsIRKii05A7yWYXV0R7XLcR0ow8Eb7u84dGadoibUav/EG1Cdr/MOvMC6bIXInPrYp7E6x6YLq1CaS4oTZTc+WyidTI1pY3r3JTvamFgXQocxEKxda+Y2HzsPZSgvWKa7UBhIzX28nSbN0OWfd7+k2BQIscfc1c4I+dPNlHgWatqXodGu/PRaMp5hinaArH9B8PZjVHBLKHWe7K/8gPGQxamLz7ZeBI3cysRumT3DzB3Q/d2i0pSjafrJpYSiZqNkmjuwyfhP95SGKs3sxKWoXH4Bhfxcwuo3AJPSoh/6GjNqG+pXnyeBufpzz1g66s2tFEwUXHVFV00v3PN6MwHAXvSW418XRy8AnJEfOlmE2lymvw6aFHuA/n71W6n3mtej+RFvzbEE33U7nyfDxdo/feupz9RT7fYPmtm/KkYYY/4ehV9nStpf7yD9wiHqau2yjPw2P9WxUxFFYq4IwxGAqLths8bpm9OrMfg6sBb4jiEW5P2GsCcDaja8STl+nC3Xe9hBkjI53FwNZBn1hpnZxzdTFwCrkSPN6AyCStsatv+3N3mb7hoTiDLLW71FiBtjwX6hRiprVEK5Hf7tZOx35njM58cveFamkSCkYkOOS84Uj05Ps/7/SZ8Pchovx+mAybL4IwT3scSpokyQPgY0EDnuQMa4j79BTykc3cRWGOVfT+kVbCpocDdimODw7l3eTNxHwg5GuX42NeoCgDo0E7vx6Jd6IDPsd2SUWthbjegMePfIo7j1QPykbxXRMxTkj0ooqDsrFjrNQoShE/qfDFrpS+K42d8+V9oRwCdt3XXWz/Mlj0doXrlqhm7en4ILXuuJddZK/xELM5qmhKHqtWmnTyrU1/2EbLAnU0E4eLGOpAX3UnG93qMDGjDG9XeKCmscx3acRHRSPRi3DGeFEWQida3l09wi420B7oCx74qvo90wFPhtcO9kcxQWvVm0zD9YPgBByYAUgC1xBc3/Ivdny/2Rw9wSPstOUgxn/ahmGdNJpx1jxpKY1bRs6bORLSvqR5jnQtsc1HxjqMnPL9Gre6CbuyYVisdq6Fk6wtuI5bX7o7M1kgh0oCSVqLxrcwwzmXXHF6tDwXwurUIPL6F68OIzqcsOUlF0ripS70bUgIVK+jyr0Tzs2pLFoj3CUexev+tpk8xntkOMVmHIPYz3oMH5hHDUMw28jq3Xbzmstf6Zra5ZtwuBLCprmbPIQ4RXLsCrIsQTImreBxLCv2wCNISrtfpoczv7yFciRqnvvkvZk9orQTvHVOBlewE1OjsY2gi158quLFfZ/kCo9GsmBs+wPlrIzFksssyEt4hTFxwGzjfgQoghCzuBOCgM4E9ej/eZ85oTX15+z6hVXw3KMhOYPYstlmMV9MDreo/7fOrH906xDmOQAMRrvUHahKQKTkbUNik12tsy9lUtx7oerchzoPJMKUdI5ZgoTbmf4jWmJe5kwUwlO+vwb+gQSLgGMfd3tGR6Tzplw7KvxNjSSA39v5pGvDV2D9K2+TlAILkU/Ic5WPUKHuPdr4uU7y3rOmxVsSLKcwNoS0KUplYfRASJMUhhHriDYaSSj+9ge4Xh17E3i8ZbRu9HSzhOkKsZkQ==
Variant 0
DifficultyLevel
685
Question
A positive number x is multiplied by 6, then 12 is added.
Which of the following operations give the same result?
Worked Solution
Number = 6x + 12
Consider each option:
(x + 2) × 12 = 12x + 24
(x + 2) × 6 = 6x + 12 ✓
(x + 6) × 2 = 2x + 12
(x + 12) × 6 = 6x + 72
∴ Add 2 to x, then multiply by 6.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A positive number $\large x$ is multiplied by 6, then 12 is added.
Which of the following operations give the same result?
|
workedSolution | Number = $6\large x$ + 12
Consider each option:
>>$(\large x$ + 2) × 12 = 12$\large x$ + 24
>>$(\large x$ + 2) × 6 = 6$\large x$ + 12 $\ \ \checkmark$
>>$(\large x$ + 6) × 2 = 2$\large x$ + 12
>>$(\large x$ + 12) × 6 = 6$\large x$ + 72
$\therefore$ Add 2 to $\large x$, then multiply by 6.
|
correctAnswer | Add 2 to $\large x$, then multiply by 6 |
Answers
Is Correct? | Answer |
x | Add 2 to x, then multiply by 12. |
✓ | Add 2 to x, then multiply by 6 |
x | Add 6 to x, then multiply by 2. |
x | Add 12 to x, then multiply by 6. |
U2FsdGVkX1/Z4M1X9jlS573nqFnlRs1kPz6fnrIyTlOnhX722OWD6jPwOG+QMV5nD7+b+CoWXG5Lon3sWfuz39r39Z7ZE1lTBy6Sg7I5+ENwps+7M6u3xWpM/MVYcDV0cH6zQ3yp1kYc2wO/r8p3YGiog/z4UFr/JU+O3uw1ADTMknQEZ09IhVZcG0jLBj4SXIijXA6tKhjG/lKTDPTQ6WDtlcm2bDvRscRzzDEGdFW90fYa0pcJM87E+USeiNG4pCtN0bYhdsr+HQ+uYKUtCsAMPO9kFeIrDpZoU9mh9DPY2jv4hzWykowNpdwFz7xB9f9lNowsfiOC/Bzsunn15PFSMSaJfNmbFEzPYol+8IlX7o8qzj6S4y4cmbFCsbjaNNNeGFMQuUvYr53HW/eFYoM6WBjOzNY4x/L4fTVcIzMQxeWXZiiMVqmy5gE8X1wkrW0N6QO1swG+pz5S/baGcdl92m6vutDGQia1bB7HGbTrUiou9pOXtaeeHGU1w1EkkKdXA9cHjtP8Cv+A44WnucScJ63KbbpfMXsiXOyyRbaOQj4PkQMfMA62VmnFhH+ei4kLSdQHtIva8eIGD9cUJHMbaDsu2xocBQF9AAlu4Vnt/xbcAmFZVlu3LtYiUzmuKFdAul+UN37Xx9vcD76+NJabvQXsb4SfR91M1iApBjRyTtQCs/mHOjN7jigsLyJe3yZncQs9cfxAHH1p8uNtIfvfrXAorUEg8nUUuR0kP61hxAC3pB7Qrdy20nPGtSUlGdQ96+rMRUhf1K+ZBDTtI0izJgOExYEj04Pp5iIayK1Hkqy6qmLPLZ6q1MiERiJRLoJpE3nyrbrHPEKklZVM3AzWKXGsIIfOx1mogY+8s6DqVncj6Ups1U3pdbHOZfejr9GB3nOtN29VlfBW313Zz6L3/uuSXwUQuOfgQAIvPtFqNq1zqANvISMR7kJeh7Flge2btqlEYjGIY2GHQbbisIhPmQvTy6WLkFdGY+XbMIvpdehUXVjaGg2zwd7P8kWTBKDEgR1zlbzQnfwxeUKuqYUtO9mes8KSvo1eLJNHUnj/0Uzoi4VP+AnZTJVpTXmyptt7mHSEBegsrpPAgoilP1R1nQELO8Zg9cOpNcPJw0cO260o4ez0iqorZvU86WVCNv6ypmLaJQtp+kL/Ej823PBhutD1U7/hReaIv95BmJ6JMbW3U2aeNYPMKhtqGgBemjILtjL9yfHWbmj+7hk46SNcFJMd938RiQz7ag9Q3CWzV9utgoXNT7XwI0JR+hrzcHgLzalte/b7whWTATG+mhu56lm4LCRUqw7CZmeGVrIsA94eE3ZrZlXcHmqQ3zjso5AbwL2TkJ2FCHNWPHoBPWsKlTTCocwTs5eFdFeaViDqSMKVjM3jUZmbJTezqBElNFfwIBKeVLcrYaifTPszKNdIwnwL6gOP0mj0AGKF7ZVXdi9uCxh47pP9IZRHYLe9JfFFkjUvVttHogx4ZZh41lrumcSchWs3NhVlI9AH3gLnt+5oAaGHKuAmq7tppia3ImuYJDOM2i7hcO6LipshMb2ANxqwNO6VNULG9qIPbeavIUBcuXJaS1SxNCIo5Pdlp7Zm82qEWBNuDNCHQhd4VPKEGAzu5kQR4KGkaCRRbI8wOPff1Zxt7Akx6yUXAPlBDNnwmb+6f6nAjjPIWb9k6kCaPk8LZB6sURO1GSCxdhBMoAZNgtIYNWeLPxBVE3pYgn7PsnJfDcikqnvUiQYhfQgPkgFZxSQ8NbL4zJxq+UelRWYH03aWNx8PJyuC1K9lxk+7JK97iznasEUK0dK8BkWtpMH390I8KdR7KtdHN+388ZpA0qEtmMeiGrsLvd+ypoD4sctzkxBzgEb3OgmhIDtGOso+t72JU33UUqNf+Ttu4kr5eBmTvRITsr5Jju1UWHbLOSE5309y5uWXladcwCMsma7xl3vTvAaU9bMhqlCOR3pCWVkRmF3ejSEmG1cVRI7Q5McXpG0M8VHacoUFRWsExH5zYl20Dl80y9kmroQ+DJr7iMFfiNjErwqCQ+by5alZa5atNbsJw9C+Oe3jQhATF6g+i9G04bhERyO6ucQyPur2zqv+0MowlwjxbBvZ3N6M+y2SJ5a+PRdk7o/22lvUEvetGvwrfN1kVqgMEpQHyI96TPJBNfnQ2n306ogCcUg5+W9b0hpoZ5EmET9VWHEYyPge6qT44mWMYJe8R0aIsEn0G/DzzYbLqNX4yHonBstWRg8sNBPw8tUs2MSy1XlYnNsXcEfNd1jpjDqlQyPDL2vqPUkzeMWb3eV0iPzMpToJq+0qvSl48pQ42VJSmQ3H2m2MPNBt53GAJVSvFjzQoMVzbN1KxlD93XJOFpH38hsE545hks4DkF6PWVVvk2XZK1SOLDOQuA0myDj/y+WojXeqV9ibpEI9/71ZNYcKBmsxsmVuw3U0pdkCnhyIi0aedGJ4C/2Yfr6J4dHh892iGL6Lo1ceD1hMaDQ9MHaU8qXpkG7ugtmmNKpesMAKH6fNsDiMhRn5fwGq/Ui2x/lq0wbeetMqVE8aS2GkjfCvE/pyeXDcwcduoMIJJ6fKjJLXfvT+7s2HIBgBFG9e1xVyzT45UDBjP0xhAkerey2W0ngqJghi+PiIjV0xjwCeOBuy31Xz1RIdh8zyH+/8dt79hN9yAPiblQQk3/fNw1B4vVvMU7qKlNad8qk8jIKyXzD83RtWlkPIZ5dUXfosVARHmyJWzFHzwGNt/nCRO18Mb1AlEsvVAeJvoWRq4DajxFmW7iNbOGkYCIAGK1sdlQB/yAQPp2sU4je33OSSh4vRCCV1XUm8hWIf9udU0aK+wAI6utgRY+3lJX7iKGz5JuMuibVIGq0DdpzENoJL1orBmqoj7fIhzKJ7r1sL5PJ1XmbiwhGdWduzSxBWtVIefm91MuWqv9pIgGdDuOvy3nKrSHaKc8Tbu3Q88HWEs08U/LRoE/cptXiaeVracc7le5kj+9faX4vLDMogm9V9X4ojPlOeW85QSA+XIATjKJ8ovZgUiatGYcjVHYxkIgYcBnTYWlpDyF7PwIwm5GGixqsa1XZ8YXeJ1Bz9hhsijN2XOZualPuYt7NlcQCnHe24XARBhlXrQqZ+u4tYhNc5Bg6IheAnXgsPoqJUJ2zTRijxKtwLh0/g+RvgxQA0H/A2HA2nBGClut/l/TSrqiUVgNDp7WPtRHH1GLCt17jffsWnYrRgKuMXZkHNp5nC6raVNE7yBFPjUVd721tdoRKeGPKQu01XaLjNj+OXnOSwToQp7hEqJFU6LQRcXxu6uaYakkHZxexHvCitdY4xboHb6stHzi8SaJ52UZmSS6BwFbHhqMIzeJFIKTMvGL/4YfTM0ysGRjI7aarF78NxjIW/jGherobQjI6STBsfEt3YG2L5akYigZNKI48IelY7GeCFWTcsvNnRlkdR3+1XWxfcKFR4V6u9fdsykjYzH/dHgG8E3eoxDzc/TyP6KikMdeoqrfORvyMcDdjL2yJHFSpwxQVGjHVi4WTdyHoOU5Ufs0CLN5iuee5K7B/gYS9/UqOlRdiQSUbEAS0NHsIVvlH8oJAZPjY53RixjgXEEHfX8A1+nn1sJDdfdomHdX5KwXMeGLxteF0SZ7zlIDiPLChBjvrkJVcnK/atQuOMo28r0UBFr+rgce6x1LIiBWQQ8OBt2eBvmA0Gb6IigkBsaaY8K0MHIdD0VGY6p9kzBhzrmpX01I2RqACEzw3/ovq5nRi0X6dO82Q0mQnMnHLOEGGIAq7mR73zpdmadpYZtWc2u0DxN0ZFoKbXNkZkC70fdKA+xK7Gm9LSlygs3vwT/CzU3E4n1jOPy4k6trpsxKBaiLPH9JzFXMppbh6IQG+z67U5GaKEnBicKA/zsy4PuRmNMQ/G8rSj9oYmZVj7HQsINZahGq39bb1YM95REhh0QAOVvWmTntxjnk9UX5XG7hvlYpk8zPaP7wDEQbaUeH4SNOMHxhvokFmTSk3CXcZqxfxbvosk8DtcgfNX6xXcMF3PjcPd72FdckNenwWlc8xG+JkLMuevuPZyEJREYXTkjkL2/Yyi6nC47Zr6A8SnS82vpchhw5soDXVT0nZdGv7k5HXnOfu2WkRICbUn+C5vWYstMZ66uYEXEe15JgKkdeeYrzK1MdmUwZRTaEecpk+wJYFWBrAGW5hNIOmCtlOlSX5Wzy19vRuwqGHTtBM1ommEYWa2hEWYMaL8uzZg3W4S5xmZ8RY8XdhWJ/ODBqdl6kp+yOSHJjdmvGCvo08ENydOUl9qvrmaTUScfwQf3+PhptNIm0LVbwrCW2C1YrUlMbSAT/gPbSmgxq5xQHRkKNMkvhEpCPMRBuqL6VmWbDMWh4yUV1yI/bdDBGc2xpnIJraP2UYDN1Nv3ml9NC+L+/gkiMsU9SXV0KZq+FypT8cDilpvlGrg8DWQbULL2YDIrMi+R5xHdqXjjCVgt5AlMSzBNW/2Dj9DRPRpWEFYIcn9zGgE/N6Y62Sq8N8/SxuHlTgL2wd2PAZoNkQwZPwjFNl1Q3jpzPtHI1P8quZNMVnKnYjeiYoq2yeg/nGBaBm8Be9wemZ56y9eWtrp3D1UrfhRPt+6LKkI4nUxHJR/tCMNuAsm8NUadto0Fb10/6TRzVDyd0zoKmKH8rpdtY8H58+41ofNwSq6YV0cBDQF6KeqV1kHkL8lxka6OX19avisiuoxgqXdRZ3ZmWxMMn0VawH4JLnT2gXlYAuAnbp2YfHks5b6KyJc8drV2O3tBFQ1FhSY8GUHTAlZBncxbSFQm87IYdZl9bfXtlmBHEFAWDdw93fqfWeJsdYHAWAYxtUHqJ8PHJ4dkKhjy33nG2ZnhrbVMjUy/eLWiGLaznBjM00aR02ni5DMLCVUTRsPYoZt9/S/jXdxtcMtgaaju7oRrZjUERKeISmQwgFZMZJ86+ZZ3oiEWSybsWoIPAXu7jryc1S1Tc0OKycnf13DrhHCl/KGjFp0bUDVB4HVnNXluYJwfVdx88OxQqqXCOmn/8pomaf+pfiWX6KoXqN0xChOiSmE30E/tNy11u06s9aL78z+mV3YImcWXOh8PVxkYNr2F+a+It7RCdR0uXF0taruYo98pLzX7rF2TxaHrvaZ5JDHkj/QM6Kwg5KZi8nEwiINMfBglFlhu3EwjpqZlQgLmfOfLYPDiePqEw152OGhVipgtrCVVta6tMLksIcPv3JbGfP+ai66o+zkrvDtCieL0YT7qEUVbaFrUOoL+KvUgjCWoy05MQr3nu0ugyEvzFRmtXr42VqRPEkBCsfZj9lmwh8ItqKfNhHtC10gfQmeIRNAk9hJTh0T8h95XuZvZF2wFl5CVNMuFMieCs3UxprflP/VM4QZo3xNzUWY6PKmlT22fPQlQ9jnlAmHlptAn/hBsqwAHQepmzVBMeXWA6QYw9wrAIL3Clq1+Dk/UTpU8A+nh+S2WsgfSxN18x3K5tYnxwfipR6MEOKLul8SWcqwv1TLgfFNFhqyWh3CjPkL3hVMb+DcosuOdcARIncoBRJ7tgbWCyj0UY4gLwtNLI6C/CYNWRW9/yPlH0WFD3qiQIGQ9LvSDHE793X42QNP4ugC4rKV7RLCRgehATKB/ud1XzNB9PHMMLc9yV6i6jAyWBBpIhBSe9NhQRmxvPHr3shcMfJlKsGV0V5yGWtqm2OSAgb4ydYfsZ65HuEwuluHFtFpnUNlaHzcnfjTnunZuTtKwI+nav9cPTUbQRTzdB/HcQiAeVqM754gDUlykvgvw0zm//s4Ew551y5oIjP738baY2XMAJsVT9Q01AwLY+KetO5fls0Ih+WXWyj5qVzjVDPcWIGGwNCy7F7DJ0opokmw658mpEJVaGP8MSA6i/5rt6JmGLTnxP7j4UaWax56MbtxIvC/iWG61YpQvFhLt3KbahPzjAdCDWI88BIZy9fKd7mZNchGdG10xTFG6mpkSclSLODxNb/W9smLuPM7EIwG/tuytCYxFX6uN+hJcYrlND2dQ3pfuu13sA7wAAV7QbIkTJL/2aCvCJq8tQmpCH2w19k7RmrNucHKh0b90pWp8XbZ8pgdMbkCJRkoFT+ntcpOPZtuDhwXy61ZKtov6P+1vK0BKfmrke5stwggqB9ISIZMd4ifWy3NqAZe43NFujMgxu2pHwz5CupRM6WD1tm1tK3DyD6RH3cOAlAXCLdhVmzvURgdMyYlnAVDFCheEW9SV7gKgVRxYHvlI4KBrkIs5XEpZ95DcXoqfM22z0baIBhM16vk2IET24/89mkrlk7y96jtlyuDEFnN5bEKm0DN7wCpROLdRYG/0Y5+IqqUTcU0iFlKodfjdIMfCJb4W+smxvwzaWI4gZQTmJYzQWPKsUKIDwt4Zn/5A5Emc+TThu9qfdZST2QKhfXuArQufLGnjey01dGCyqu1JK4f5PhUmR3HJUO2sWRGq44MyIYKCOxkfgXyEwUz6A84m/JI90Qs71C2UAyLepAiWgtqe1QlXiYDr9vIGMAE8fqXA7RlhHjId50nfWv2c6HpFrL/fuSlXQAG6dFrwSY0X8NjAzAtQOcL9OQRy/F7Jvdzp+/pSyfivK7YyGtuK7p48a4yWqZO/sAANTeUIXNNoGnkpKaZyegHcWkPV4taHbUfGk170ddCOpr9WDj5+n+HbYXkahdl2/bWqvqNA9T2rqB/Rv0KWgLnv8wSlhh0Sve5ftCM9XKYmd+vyJgMnPjKMW7zoBLdSSk57GrE2CTrsOXp53gzMfp6UQ+XuLKVm3/bNeQen6no9y5DtWsOmJ9mawC+Zp8XVqW3iLduLWjNh4utJnuJK0WydSBkba4h6TDSFAWMQRYErJH02klRRrdeXvxj1+l3d7FgN6Hht+uOtUiBUWKhOJYHQqvMhYwK8XH9ZVx/OkenF/gtiE3dXRCCi1ps3Fe7T40MQYMmd+QjNASunzadxPAjnuGDLe55JmDlCjtZixguE9AnnVcI/S6R95yh0CNi4Ap9xCH8to6ZvmYaifUCgTJpC6CtG84YUVYjNfNGi5BOvpki3+eDf8Z4u8cuJuUrpskX5QJ3tf7ArIefxybT/2afPE+SB8QKXSD0N3Ag5arVUocU2jY5ZWvcqu4izuWNdZZsTMRh/dgI9Tx9ruSnHvOsL9c7cr3uUNb2EytkF9cZ4wFo0z/NxbxLOb5u4FUdFC0FxZvJH0iqhkSDHkxOItmlw4hDzZ0BMJibY4sDh1JKkW29+QaBmJtV7glNWbB2Zn7TG1Qq6kANrDsjSWxBijVY2XKtVTGMAcmGA1+zj1q/9GLy5fUnFG98Maf8FhexQdqbhaqRz+O3nfQpesdqP6IJKXNI2c2Yd5zpkuzuvgO2jeAUn6PcEh5kTK1ys729VGm+vl8oVtsZicH8BgXxeaxr2WG2UOHKG/ddk9E9uMl3frXASKLPFIDGIFLMA4cLs/xqs9qDNNxMETmQw0vMD8tTE9G65QSmwQpgrNh4ciB2XEyKmVJnMQAHImulmT2dSVaMr8LueJv1/2yo4P4HanJHwJdQVRJ6+RAPHznvwqCYCM5LhcqDCik+kHSMJYe2CPiQFt9YqI8yeOJBRg7AayXGZjZdhW8T589hDOiUnfOIXeL3q32dG2wECl8/rxf1+ZWmZs95pqEW0zGelw+lXH8vJRhv2oYXetu+Fet0A4VdJYI2UF4Da+1xFJtyGXA/dIwSrETkN62zuHAC6iCGQgH/vOtlPCh6ax5o1dxcWauxaF6yQpKoKrAaBmEFmDXMj3w8xKT6hCmKca4zC/04Yj8Oni0IjE1vnL1cmwS2k/9oYawhQlh5X6OMzMg4tinPkSCKjsd2V71/VCpjzGQ7EfghaOurbUGMcObz68BV0ovt4h8WStSR3PaHN0D3vtQjn1BhP6cFI8BbcD8Hbzkjp3ASG1wSJdsEZrPE6QvrfTdsb9kgoLROUJIwWmNyK9yir6KrLDGiFTtDZOmAZXV8TNVVnW8z+ZTignhq6BZXPdK2ZD5SeNYNMq7DVdh1YUwI+IDCxfs727L/FQevCWGzfz38PlLpLIBwQFc0MZO1f+KP3wJz7zPIdAo8uDbgX5o4sXJbH/dzZGgyAA/LVrs2t0FKMxrwUusi7YRMW+d59Ebv9KsnDGxD7ILiIqgmfke+Y68or77XaHcWiYqY89Wm8Be9PLykz6VmwXKZJf5P8AcPLDEuEiYiqVQoW6Gchoxhb9TXE9fZhfmxATbwhEc5sTP4M7nKheIHlRRmxd2dNg6DBnjKUyNjvVHsV8WEdiEyBsDcznDLEAdf+f/b3idmPT9qvngW6Rq2hTV+k3fZsWd5SubzWhAmbuERGsm15FUPBu+OZ7eRunRVyyWRjebHePJcFi4TiIGgzBIeTv7g2MvsNKkKd8ceHpIRJRpxCVkOCo2yybOwKe9ESbrU9jGnJhA3wO1X1Or0svsH8aXn8mISLPDUmvlCWV29ndg7PvKR/2LtydqF9xCUhy5UDcGhCb7eouhR7UnIXQ80vn2mG/8cby4csN8yahtNnF7FKv8F1FIdYwKJ5+L3sIX9+m11HZKpK9pFPHS+lA2eMSmS7Dt+jUtQ3a2+PS1WRqS4vs4Yw56AYfeUGH8EDU7+hNNl0z2VMP+CMVR8t4Zb1RvD3PX0cGeNgSFQ1cffWx+henLOWXoFU4wUbisCFF7DtBl685wx2UF3azfkMAxPpAhlfM2MS9M4z2hR2F5iJgtFfc9rQj8hLtIXLW58AtfppTT7Nn18ZDLTt01Pus7bgOdWoDE7EtwE+pfvuuBUz3pN5suSffWoAi6z7nBhGl1WwezFXY7KY+QaWDEulNA86ErDJHBqKFDkfATPjXgIqziyWphCrRZP3tUIDgZgXfAyrkCc0wfAmeYhRymji+HLZWx6v81pod7HIy3wendAz97X9Ay7ze+f2EO13de1jy5m2UAcSxSgfpJNn9fdvSvK2yj+tNQlg7MoHN9Ok+HnChhl89hthMjLiX3cFVlG0RE7LCgY0PSWLC7IUBLWrDxRRsnaWAM7Pl3smbD50fli2w66z9zeCKujeYV+IDzHtLbqRKxXyn2ABLN0yppYrh1sbuPdnvhYOnjgJK0j/0CF6DKWlrGo2UMbohHZT8w/QbLC57/ibjT+NYX0bdSSGH8qY0l6DKiVQlDmsiMSrE2AmX+vUlD0IijTP30wd5HrQORXs6oCnuWOEgiJhmvztBM9htXbLpwgXsDYEF1dGabHQIKyCPD9rhMQ0F8pw9Y1xlTjd8ekWn33ilZT0orK9r0jR4cT4SkF0IMQS7l+sqttqy12Y/N4J10864/SqsD/NS5mHMCLwdS+NCGkZ0tID3IMQYZU5ZyYOm9BYWeuadcEzhdjnbcVTGbgOGwFl5P2rwIYMMN+dEpyEFolCOy9JIamxjjgUFtKyvdJiQZFODgIAWnQMP3HpJ9LOS2eOhzpTfOiMNZAYpLgGIRYd1+kBKM+/89YQyPtNGLXzreNoxJhWpwq0P7B/2xHFGkXrkcgydGmrCj9yD8/4Nx2KJ8eE3OiQO4LFGH25A1e8KjK+HVM+BMOTaFH3FIZBRXGZag+mc5JpSceVWcaQS9QY7bQCiV567a5/wIE1CLzi/Fqwjt7AHDE5zCWdT+efiU4o53T0u/AKKpxFFhex7MQx1E9oeQN15EdqtGtL7UbKyy4gU/eFtYRBBFdLZkmIxp6OGHA2/z2Jvtin32B4m55ZDJJxptYtmocSsyyYtim6u2SBAKou6FffSYVJG7xt4GsitLGWkQH3X6ks0z32ETb+Px70c/Ttbn4/2vt4EFJctkFId3LShIjnIfmaUb7mKDjpia7hY7bMIkabEVeaaa3+uNj2hiSg7apURf0oDbu8zV0AHnRnf7FGpS0XgJyQ8YsloVK9RbnlFno22jzm1hP0HqL3WxGdvTelgsndyzI5PRk2jLVemnGsDcN8BPsH1PEEjQmfN362HtluRvax4jBdUeJfU+tG6vyl7l49c/G/wjBa1zhNxLX8tWnPip3XiQXC/+MV8o0b9XJX+IEKrzEdo8u0xBPa+5bM8IrW6wbhuPl4K3KCroThw4OwU8jjkwbJXkrIcNlPYtmQKx1+2e3vETVnpbeUvaAifMP1XNHWY6u8/1X587ALGUwvrIejSTmIvXNrVdWM9r8N0KOKse3kqboUs6mXqKNKM6cDKmJhekoShfncwwIi/s+BymnVoSZ64/IcoTlDBRd9yMozWh8Z/UdyMi0MnmTT4rvD6RcGACWlvbGgEuyOoOH9Bw4SvMKq1q01n5HdaE2zIXGJNU4i2/UUvmiftj1QQe6cHC0vUprn8rriuBFJW7y9vVFp+WUaeUmR67pLThu4z0hJ9fDZcldcz4/uKAuL52BPsN+4PHJ4XTMuRE9EneMq3Xezdtu3N3ww9hVE4chcq/3QeL4S/pRb5TW+wsAtgUR/Z6rlI/PAIRB11Xcp2mdSMiyIsm0iVtAb3om1+VtEIlffv3KNdICZRfS8c7oZnkQod4RvJ4p5L96sexDERTlMbc6c1yu9gjTjfS8MH2O/G/hBHubJyaBE2T/jFGDzzDcBNoUOUM8zrK0fGbTjeoJSAh9uEDu3TTQopLsEOBJNz8DT/rSVYBc5DTplBT7TtH3Xy0nmWLY3vzpOiKZrU+LinEhru7ZiPGBnRQKk3i0ltrseWqLPbRbaNyGBRMg36r61qigweD95bpdQMRUknIMGAuQtMQK9+2FIndoEDXGMZwugUZsL5CS9uN+xLDjb05DN0BA7tyHy/W6dtOIkBx+BR/og2aGj/pr+JU+WO3Q1YDhpeu2JfjSwkWSeIKubTDJchiSq/cbbqVS5JrLWQ2pOTkvhhK+/CeisG1f0Dq0ulk0bymdAwken+0PkUUtNEFMaZGLDHWu7f532A1RlN8BIVxOC/Onkf24S7P4qmfctf4CnTJETjk6XR+WClvte7PybNTJQfP0oGPMufuNwE5SzWStsBdWsW5g9+vvK7iRsf7oM5gp+XBqTqlNDhtVGqcZEmNeFLWUd79YuDdZDnGy2tyfKkgx4Td3U7a/SuHNN9bMHQ1yJt3IepESAALX6c5w7FzM/CAzzkE2kUAUKivbL5rddt0TmSVfKEIoiuYd5D6WRaRSHU4zNa5LiRr3kG9iveLk7A49QUkgoi5Rfuu8Zuqzqvm5VWLW8gAfKPKqprZLjijm1PoUOA95i4OMGjghqPWtp9ggN1Uvzwcnt/AAT+vYraCgYzIIKai8y4nY7iDFhEfZP2Nq9mKoDX5dMKEmPcO6v5V2MxtJaI1wkWGL5KcsbTLTQvW41KVI7WVaCuIQZY/C4I5M7MwzGzm0QUGhRJ6StaxeGc0elyT54+TN5/4H6UohMSY2pjqqCg91APLReqQyTs66QcL+8cZJmEvmFoZkRS4f/Fo1h7dNjCLb8W+/1zHz683nK1XqwwMObpuMAE1X1SylaqjydLxZV4FbNnANsh4B1DvMNVKvl2x3goBPUqwvBOq78o/i05hNm+q5mW/Bh8qaLIkWz+6TGtbedy5z1VNW00EHXbetgTh2zp/Qgf2D6lwiD5ZAl9udxXdqdh/gcWB6f2u8y0dN038mFDcXwL0wsNX1KIIiMvVHTT1JOfXoY/HTNEm8BExI7SDQW2VsUXn+J1McL9QVYoNyB/mEhotRamCUBLxpOWtNBKD1LQecsA+wh3Cwb0y8ncqkTL9pFF1Z7FeHMP9Gqt2tDIli4PfkYXjXxUylhSuTtyGJhlRQoOkHSLCXizj7uMLrvymyCCpqJJ75tz0OgQzZY4d+9f3vBlxV534TVMgmE2fixdCQlDIrfJdecl7Q2Ck3ejrHixO+qGBPGDCo5VhX2qMAddnCLWtckvRYjLnOTDYiy2nZPpRbddvz5piA4JaRGdOqlyWV4+z/NfhIiFKL84qvVCr1iv7jtiXgHdiTJnBAhlcLteEoc9iv0uSATdv6h54+dDZEvBEwOjRiOsSX3NekiA/lWkQjGBZ7u31VHzm3nQ0t7SFTNDsBVzoHOLCHjpSVZYi+DnyTch043K19jT7WK7qt8na2z0yYPdIxXObolQQtnhUjLmz2s8MNDAN7iWd4H9mOzHTtvYnRAYZHYG22RwyQQMOprcjWyF0nYyBGimIhuUVV3TUAeBWRg0Gi8ookkZSxKMJ/l1EkDidE1fBvORj15ShlfFy0X5LJ3yBgrlNFyKxK+HSgHDpW/a9/tPGJV6KZ/p19v7j3EG7fvqzhsJ4t05xp5woLd7Sih/rEMaXdJqByOWT0ijMfoeT+eWEPWMtbhKVBvSlS3QPJOXkobk3yJlJ3Hq8bmugd/syAj5UQORn2C2B9hgcCxImIgi3q85Ri8Sn4U671Br/8/Y8g9+Db4WpxNv/DkiVMsR7UUuILXmjymWLegkNbQKXF4jAE+4CSfCGYWYtn8kVK0yr1VNyLQJVsnOfiIo0NfQjvwxOZrd4Lgi6PucYvhDHuiBYWi5q24TMcofxaFqrEOwVbqwnhpvDpmFlmoiDnc/linLJ4kbb6XCaftGBiQXb4T6gL2rILOoxVw6IlvrJajhoiB5SP3suWuCDMx6A4nnF2hi1JQzPF2JY8SmOuz0pf9NdPv55UbTQFtmuejzL5LnrS+RwHUlzkri43+HHAc9/F3oIHw8yA12fHWC0IE6xAcf1GZ2r8jZk5e3ixHdqrzdh27mqGeCxyB/D8rzaQJ2MnVcCGDTS5jeR3HEPlehUQzZ5optPieMublyJYqy7Omx+ZU27LpBYTVnMxG2QTvRlFEcqJayxmzYINELO4b0SSZZcwrhqxf2RqeJVo5oFFvkNDSh+wGVYOWA98Rb6ecMV4OMZBpVpLwCFygJhbDLVABrUdOK6akjlrY4KV20RwBtgDZusYqmevyMcZrJcbbhb0gskK7eeTjcLWmL+ngAQMHXLDYDLCrxDBkmhyYIlAYwrj/vht1Cr4IM5u+mc8eCrEBSvj9A8uaqrqUwWa2ikL12e4DuKz39eBHoWSAPWG+thR8/ixlfSvGr7RzZsng9jLH+XagOoXyY/dsAlwKg9Uo2P8vAKIVTtVMqju1+07qgArgQoLi/tSDtI1qxJejHejsKm2btizWUfXCUoTMDy92jV+VeKoswEhvVChEhXWPVw9oPaarSJ9yvBpE6mc8nqnzUq4anCznDepii1fEauWvGTHD44UWkg4dIwpmIlpH9AF793CLcvNxc3ONJgapg5XYve7EfKiZhCRL0DhMgm61ZSxJWVpfYbFqJLEBnPGMxCzSElP0ET/hPx0ZemfQGjJ5LBzk/oqIPWbVwtMATvfNKpLotIFgqQoqGkdbXpqjNNN6mgDpWVduMMReTG3mg5yE4DdA3vNLOEZ7ivoNhiaPw57jJWsXfA0lClBvedBiJ6Kvo9qfG9ybBk8YMs3zH/uWtLicaX7S3edEoIuinA+dpTBxSzKr3gIUciwpjB3O1150/eLlpjNdlLYHah5AaL2Psbd1jQ1gi/59i39h30HhcpPNyxUqZlTV2ij6eJI3rXKcGtKgEv1tJqMMWkd4XhUi3JyBB0tzkocHMFwjR90EjituPFakTi8ml238vULunGNdyUF4UNRJU8vkxLQl6MORLLL4R2mxiYeaKjdRNKxGHb3AKIfnJ/Ae13Cog+RlTD7fU/yMgYt5yrWgUHDT5mfucfm7DKyLJuv8ZJ2Fo6mk4ttSxxMWQQjj6FxYXvj38qmhev0bTqnYKcsgqI/1RkP49PRU4KTOK+j78it1B102pHkhY1g9moUfKtYWenCBQ6kenKOXcq4LUiyS3JhN0Q8dMDt/kFKlxsRi+C6tKjF+5X3bQGifATtIWrpgSHqfowRLzo39Nv7/Xu3NQmAvOEC5t3qSSwIr6mi4glUlmRe3ben3O2PKPJ0oym/yaXXNuJGxFULT8ooGoPNZFCGCwUcI72N6xhU7NXff0FgCpBWcBzIqrjMSH7wT07kyTeroNF/0KNCK5nWiN3MU2ZnB1IEX//npymfCM7NWBQk8VBrjRVewNeCLLWGT9MqxM/sZFPDhGeuweE0pP/S9kttBzKWPAbB9KpYoVc8OOKe66dR5QUi6+UWu+Jywh+/o7B+GL5c8hN5z+wO4FOL4ba3BJUh7csV8h9eXVjIrOma4CC79WJLtAlgIkS9EJKKAScfxYTGR/Uk6vcswyvocCCYACCZHQ==
Variant 1
DifficultyLevel
685
Question
A positive number x is multiplied by 5, then 10 is added.
Which of the following operations give the same result?
Worked Solution
Number = 5x + 10
Consider each option:
(x + 2) × 5 = 5x + 10 ✓
(x + 5) × 2 = 2x + 10
(x + 10) × 5 = 5x + 50
(x + 3) × 2 = 2x + 6
∴ Add 2 to x, then multiply by 5.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A positive number $\large x$ is multiplied by 5, then 10 is added.
Which of the following operations give the same result?
|
workedSolution | Number = $5\large x$ + 10
Consider each option:
>>$(\large x$ + 2) × 5 = 5$\large x$ + 10 $\ \ \checkmark$
>>$(\large x$ + 5) × 2 = 2$\large x$ + 10
>>$(\large x$ + 10) × 5 = 5$\large x$ + 50
>>$(\large x$ + 3) × 2 = 2$\large x$ + 6
$\therefore$ Add 2 to $\large x$, then multiply by 5.
|
correctAnswer | Add 2 to $\large x$, then multiply by 5 |
Answers
Is Correct? | Answer |
✓ | Add 2 to x, then multiply by 5 |
x | Add 5 to x, then multiply by 2. |
x | Add 10 to x, then multiply by 5. |
x | Add 3 to x, then multiply by 2. |
U2FsdGVkX1/BeATVXrwi8Goe96NnM9G4xSWAlWki1nZAqgRVd+jidSJYhxQJaOBmFPHrA9ETXWdoG0mYgtwFh5NqFH95Q4lUBvfrSPmsquo1aqjkp2h3NQp3KP74U+HZ39CxhMjOVF3DScslwCTB8ML4j3MQ75dXoNvsbvIuRG7Ajs2h/fWa5PwMTAmbT7Lg5n1ArZFdcg7qkngseO97kZ97DjQVUdeGdxTGkgsD/kq6FQwoCRyYhT+DCIB8ttj8ptl8Ne5GmO2giG4z4BeXdYgfWn/PtrTv03i0+afTZuXTn7GpSYCnOsDGgR1YNqTU21oAq54qnjKAPtm6X/rocC9BoB0Z+wMf+w20DA4SJySI+/483stW4EALjkD43upxETZqkZIg3NUR3tPxkV/3oUM52CLd5yhx8BcPh7GpFgpXWWEZLy0+KsMMFZ7e2/c2y8aF60RFk7gKvOWJQbefxl+EBKc/BFh9NMFnhCaPOmQzLl4+qy1dRHMaiEISH+ZqsWiFn+Zbt0pkao8OdKZGKDb4ENFjIfGgt37BlRGK21CoRD3YXdk/HqYqZ5nopvJzVuqd6eBRZD3f53eVtyO0rlc9ZUPj8suV7N1VDUKSCKsJ/dBFhQp5S5whdkwlPngnIeGFrOUv+aqfskVlRaYnHruIv31SUi5ReZpVv96OSAJxtuyTtDj5PQg/myExsEo4WZdtEX1B1AH4SdIswGK/NrTu6P7DwDNPSK1Q27DZqtiBkWcIFNmuRak6KPwo5i2zxUBlG4WLzvzoGX9uCfUhDptSxXxjxH8tqR0u74u7TBEfZYNwypSvpBtH3CcIgMT5Npgtf4znM2Kh07hGAYoxCwHczyz6AZqipTEIZgG4fi1XyYZlnePiDEAKhrljQdpzmVZXjNTGLjAVyKBVlKbU2RbMJvokP9THx2d2PXISgQWJqsbWXTJjU8bK8sJJn797t1tkr6qVwbTNPD+jDHiyCmJp/QVpQanGeJqMapNBzxIdM0ClwmZJ//wyy0xQ/7dTP+n/pN8t+lVkft58Y3Bx75tK+WCh203n/cVAE6rSDhkSP7OICTv5BVvsJ5t/FDp+RFmJKVzqv+SCHtXdyXtcUheFleJ8CU+MIlrM5Pc2O8hed/V1ZeOxKjBqkLlzF385DF7UqpgYg6/DHoVYcul+71pvXIbvd2TeOj21pNW6vAFILJd+2jimTy6d04/AtGQlTSeURBVj+oOJEcOCQZmoCPvlh1CsjimzCcFoGe6p2QPup/U2I5uSl+n+LdEFzzNmJJhUsJmaJuEXE4KGVA6H0m1b83M7dPAyfyvuO97/lcOIRVQ8i8So8Ptjj5TiRlw5A7aEHfCLw+Hqscqz7oG8QXxF8P1SGk+PEaDeaub0d1eTl5Tq/CQUEtJH7HkgyrI1DZowA3TthzGvIL0ctia0RXgwKP4b/FKzqqWms4ZN/tTAH05EoIHfJb3Ml0NxJjEK9KIy0FYUZzO2eDK4NTqyYlED/IPiy4JNUkOBL6Egg0G2sUj4OKeoRmwpxXvDzw3HpN6ObKezPmKQFS5jgIFUQN0qdeP+HTe+fXUuaKGaWRg7qyx5Y10y1xTvi3eTkpbgnJdX/+xINJHohPdeH48plWqbJucKastxi2x38UmiPoGBheBKqmhyfGWM8H0P/eWRpgxNS8w8DUN9ieLUegKifGPZtNqilrFnD9whAXPx18pa0cbuOXi6XhfTQLsiPnsU4I0oY9LW+doeULA7oWOD8aXvOAzOuKEbHAK3oGCo7K3rvomFwpseBv1vgfUeNTUwGoAnvmtzptlm5y4ZNyrcgYcCI3ro6ABx3A9hGl7tQc/q4Pnu8kPMJQlrI0r+vAXgyoKNcniYMYEgTi8wpTD0o2uV8RN+WOlAA3zAn8jyH9/Sg72iBOEqxzxG9tC136SDcOaHVprie32PHF60hLTClli3mk152S7eJ8ViczwHr19F2nVvhpQGzyvcHl3HE6a7NL+9zI4VgZWUebBSgy36LYjhFqgTaEbLzbL+lAAvC+EKIM7auApvj7N86xPCevs/CBSCHdgaEe61M8iKjuBZLm7WGPwn7RUd6bFbGFo46LikgyAAOlyp+avuNVanHNCISLVltb5MTKURieUjhtyWkUzHBuk/SxaLeDySobAWVXWOr+kuZK26Kr3SOssmseCIypB6Y97wCp7kLPWPUCj+ezdvld3vKr03S8PpZFr7Pd8gi1RzvpA8ROr9DFCdcTQM/BhhqCfkDH1TChjvKa6HrtRjXBR0wl9i8jbnxauM1fra8ABxl9ECnYITfLbu7YRJApW5JDLPnn066aypT9/wmDYCaEB+EmLORzd2o9BowySmmGACIfTPyLPG/Qi+3+UCjxfrknuDXpKI2SCwwMK2/xXkVR6ILHejvgaw0+54RPnTLDOS5rMEXHOgYhSsLjjCbgzSQCgdANR7sD/+tJMEJi9QTUmiptORA+aSj5ccgv4VmllLKBiSRx6HJjdyTUIKw7dYn7H83NQNn86dvE9vkl9nbT9x+SqjGS/JO9njFOYrXQ6UmbPJWdVQYgR2bfAFEvA6g6HCHrTa/mMnx422fFZMNXjSyJdScWb98nfSiTRgKpdbVY061jzWjs4u6TweonEPVGP1nVGOp3nWv6v3aE3Oe4eLFNvfhGuvYrVZfgpXKIKrCWrIvg6uyFAdPvovhFNYBt3RdLppaAQIKav6E5lVfk0gf244wyNYoJ5xIwYnn3/z0cxFa8GnuHuVZW1s/5SQ1SY1PsvK7dqzE+n9VPHUFkr1racyHU7GAqIX6a6W384842Qh2Izg1ucgT9sQme1jeGL1IgF/QzvokPvNcmjPBOdr53QP7EjiRBrcwg8mXbZyExKyMD21ZAggUc4W/h5I42DqVuLhGLNN5x0NSKnDC0cz6u5s3vNVuywVv9SHP/hp8l7gw+zpW6ubp1gYxWqcnhMXVAMUm4nYVucJaRZZVWAzufx5Qf28V8PbYaxx1hDgv2Bi11sL11TO6QUPKulWgzy4J/wpRgxx7nWKo/2HwYnIgh41OZO7qtyNBk8eduONFgGlg4+NOafWc+iLrZhOj8xDDcC7FiKITF8KRC4keWQfnBht1tlcKQPtIl6Vjm9BzIcM9blfUBlo2g3VAtRVoukWLTJ97Xktt4+9pmR9IM4NX0mJNtAyh50w3WKpy2VSNVrvf8J7BtIuVYjRRWuIHUsPMYKGzgBZsvPHfIXxtirb90rQQb/uj9cI3KNTBb6niv1Lx/WIYKUpkQIMi8HyEyfEMVDzJn/NlLxcCSNvFWGqclbRiWHfIcfKe8m2PKfnMC+rm4ySrF8DQ5AejGwZXwPK6XmNlL+NVHF27vARG3pOB4SXHFKbadFO3lJUef8HAG/M9F7H4lknpen8DGQzH+iNfTmclJgZiGG6LLURy4+/cKmFU2/MK6iOl80ynDqyNDna2/ETF/JXdQwqoqSrkEBrjMFJVS7KITozFfcHBJhB83+ICazNDiOt/wnpi14H0fWOhG+wDbhGGPpOhjQVDCEwwjhDgkRxPGBKx/u4rTiGAQBgb9Z0qqwzRKxJAI1ya6YMplXY74jTbyQwOawDT58dhN7HCwQTL9RgxttHuSOR0Bd0xl1A3ImbW5t2pJHjN5ze5XfWEjeWdKlZO1Hn5dp03dArQnIp4AlI2FHprwYyTFxsVPyT2WkBgdJzV2HOdT8zUGHlxqVJArR2QvrsFRRMj7chHA8D8GUUUUQLoG32q5Byr8wGx9aIvdQi45c7CYYX4Tee0vmsVsT6pcWjsAN3njvuHLEwgviTu6mHwih4t/4TxR22Et8lNHqn841qJ4S5brYjwihlwzUvVvGESagZeiuOuYkxe5DGo1Z0n1mlwWWP9rkLNoL8VToZMkueR5jSjsDW6BkUh2sb+eO9lJUefYImz9NULBe1tEU387C1AhSCH+cULUXgffLW0dUzRIckZcSaH5U6e8KywtdE7oV4sPx15VTtL+uEVq2gAxCKyq8jLOz5rqiMOU+YP0leKRyZvkAex5nJF063zfSgILjAdLKbf6aLFOsdjG7ZFkqxePcf6LrEsPGhUaqu3pcSmxIRK0agopn8Wm+tfkgF0+tfpHiWDumsEsMGhJRB3HnYhvzGM06003ZBz/EVNaJCiznDQqF7hWWBkexrfSPzjU9yX5PtYaIfOYDnGxD+wCWJJO+7Nw9e7e2+Kol2GrM8ABR9h1QpoeAQtJja3nK4M0418rW0ACFvBE9H7jPbCcRzT/CrVhUdqm3KXxMtU/VBtYM7jSlCG8er8RYS6CVIk99piXjJentlRyvDHFKvq/Y6i2ojuSJzW6Blu+FQhvhPs8OXUdgIRqxAZ5dZ6Zhj5+iv1yyBKxgTtQobId0ReQi2ejMchseeA9P0+/KSxUXoGYFsj68wDD9cB7+zFxK/UUgbDE3FTdRB80cx/GtkOKqAr/+o9uqkupFoRkEBO9EsRLZUGrbfkU0kbI8Gu4y0NbiqAXQmnCM0dhuLyQZczNtSla1OLCPcXlDkb+ExwhrSGRmEbeLMl4JzN5yLMtE8DAvf9tgGeNwRb442DYJd9c+g7wcMlbgECaXu/JK/4yWvHtwvUG8oa0DkxjQ3j6G9449omxJHlCcUBGkej9iUUxzwSeYJNtBm5TKFmyWKcmLUP/L2og7vSn9BN6F8Dj8gT6PEzh6urXKiRy2JGsmsIXs+Vn9e2ZqDoJrC+fw+tgHrz+LGnMITuFvrkeEKzsLJVJkOWTb/gn0r/CD5k5+dT5IjDlWnss5UrWlAV/I3Cl52cn1O8R/yUx22ndXwtduJBS4/i1nXdoWPlxJUVD/VKwzN/niBRXqrwJHkKBIpUmRpjbkjsQepNSx/4qhY0OUEyWbWObtx5wY6EZBzCX+IBj0kap3ocXPvI4qkZ2IgK009YQ2rY/OMXAmIOnXFUua5WddMyDuJBRhZg2oBwxUzjh+KHFzVMnyJ8SP1xrjhdf2VnkPsLKdk7HpGK0az/5bN53lIcPBYl1gSH7Ujuyk2i1w2I63Tx4nuh5swhtVbNJNR9+NrtKN6ph9v6CbUc4a7r0fCyDnFicsfoMT3r9a8lkuzCveBdVwWyKaenraSeWn1Yc6JBqaIgai0bdnSaN4qU2MaIiE8H6hyQi7uAWciCWgVBj2wGP6X/Or56LdcDgJKQBs+hQIEVdO09WDeGO+mxobgrHJ01csuo0wz0L956CZSa6mSuUf8vNWZ+eVmrrKoAL3QNFg2F8CRWqyUzQw7oWvLZSDV9Q3h+nlxc+e815RghUfe2c1W0PkLsy8v61eoxUIhiCsf8qDkl0asLqpB7pKZpNKcO2QqOf+LQYbewQjOQao2rv+Abha4aZ90M6Ae6RePX/UKP/RZSULV1XqF1MxeFUSS57d2n0bIe8AT+Yhtgsl3EA0wqn7i7/Lt/g3rur2Pv6sWeAx6qvBIzfpSYXzadu8foTyt4Z2NoaAGRT+hca2ziDYQi+SuNLbtLV/2vbkVI9lcx5UI3NPnJ95iczIje0BdODqNfVfkclwAcgYDT4PyuUJX3+jQnaSMDGMjRoDFE4bEAF0dqPeTTs0TgyUkNJNeFVSVUUs8YLCxJ8shCOkgmsJ9R6CtRyNchWIqXFEzTI3vHN5WH/oyh//WpH8HrZWHE3ZC0rUHfndERpQRuO76NxCeG7RtsLowB4H+FksqQm41XtaPwtOsAapqK5+V+VOI4RpDwgxvhYFfiUXuD1HYdh0w+97zwY0yQR/eoqE4H6SqZGRnM+OxP1tvzvcc/GIm18cVvcRa6nre01pawXNSlUlGvxH9Q9r3P8LU0QOYzuNNGnZGu2zUBj2y7/lkxrjUmJZmkGvuusQljEHA6zdM3m6bCMUwAzqdBz3d2Cg2VESCPqY9jbRhzcpSdqQK6363M3UjWrWoi1hFrECrhDXyExIl00X6mAxdaXX7cToV8gMYrdjBEdG/hQq0fWDMew1YL7xuB1DNFtGR8WeojJfpgCYjudEFuQ4MdAVk/y5Vni17hXU8V1hy2VH2Wakq/4vmyESHnJjemshAkdOBCxzMMbF5bUyYIFwihfYpe0BWkktd517KSdCQ7NhnxX/dwNinUd7U1g8vx7TY13WIOmaHO22q1DLEXLm+4ESPjOj3h9W+Wl8C9iPSl14SP1UCAap0fu6tGUaxKdKOVx9YWWTnaZJxlOxlw0y/kWk5WPHhCTqGTNDgW6D/68e6qNuSPmxMcdqG3yKs0GzKkJ3OupTGiN6uPthCGOKRBoF5T811AuNqeTDfwoHz7ASOfe3EluIOpNMTweOBjvpZp3JwY27q5ZUMes4iFn0RboO9nIidruJLtywUowGwUHDZEoH6M0/kg4lKXK5O5E0d+1vSbQAhPlo0rNlMPuLmBOYHUlEWa2KvIMd1/Ssj15iEiu+uf6ldZxMGbyc1o4T4dNe0oCXIRe6K5BfICLVO6L+rqPfLRMGMXlmzXE2l75QGBYjp5dVrdMgARVxIYGmtMTJTUL5OOCzH8za/m7p1+UqCMDaCz66t1DT6xKtO3akSw0J/4w8fMBiq+UALJxJg6Wji+cfInOObYB8aArrMas0P7j7UO7F56HO+FSycHQF7P3uH78khrlagwCIXSmhcSdY9/ttHB35PK6fjIKmojma1J85nhl6uIaIWjfdBzRz97/pSfDzg0scO/FOssDdWSwCcatY6Qft+7USNidv8yXLXPqSauU9+Z+iBkhrqelIXvB8jlA40pRZVWkKyzeL4pNTkalbxs/fPOdAKJ4T2oVZMarJCx4n6R4YRjPX19wZXsHY08UYZ88L50VVtMWGnkF7lXwmB3Wf8shY2SrXzVmFAeX2ILbs8n4+wvRQbIVgDjIE7timsSMtqrZdIMs8SF59dYfGPCy5Of3PLXNsoONi7ovO1M6V2oVOGAO5juUe61aS4O3UEkLXOouJXNC1G/kIZHntwZPI3EYjgxTCnwhQo/1QJOrE3BODq1ZaRE2Dg6iFSAbgKjFxHk8xKptumFfdf4n14tnYagHHLYN66RXUPKjQ8C/3dFi5DkD8hfoIdJRLmn2sNmbWHg9PW660v4f/uxQhDb7rtb7Ve4sKJoxEKODV9JMw/Q/gYWjdyN+/1yjd5rjHD3nuFO3mzUw+IjIlt2k3Ts6FQVlFTC2HgG16HZiezPlWz+A2dDTSHSKCbfNdALfHWDTIww6LEzKVuOu9fzuSE0W3nDQQyjeEn+qQLxJcjccZU1iyCi4yEU30TepUc4nOweqcWh5MwmS3CgOGS5z2yfQcuSTpUQiSRNudSnbNgtYWOu1ETg+Kjwt8xKY7mUl6qrc4x51GfcJUYMK4dHeE49hrIhzPTkXw+ewq9KP3sswyJE5hway1zwcmNNxtemn0cC4/Xhj0PgsrIvKXEueuY2GqLPJMXjJyDkmbQAtUQG/70M04TUQ3yYbK5ix4ohP2nLMTZS8eR70ytxD2PC6bhLNvVUO8i7sH/oCfovHSVbt3hBwulBLrRVfJuUoTz5H1zL484F4rdKQtFzRtzr4x/NAeeP1Kcedk3R3SBbTPNxfOnyjERVVkrq57uHo58a/88H7LmEGpqks8JfSjeU1TuAP/YEnS9jhgEaCaQPxWTE/+i60yHMPpNsrWgL5jyqM71kCkYKxPTUrskfrgae2+z+sgBwKijF2o12toaunXuEOpbNQhEC9M96e0EHnGJqptrECKiPcTwy5AjECky4MOtpVzbBC9CTtFQf/Bq2aBiarH+luV8xgGzkiWUnmYk9ydhjpNHvFjM+WKBCIqlC6qOF9hwqL8v0rcjW1m/PsBurHGXg5leqt79qs2zKkESWrDA7aC1mgeScClObU4Az5w0YEAlUDTkRGt+PijTHtKB/nogHsakKJPwoRgWyXCcexPeJtCa40bKDQf9AhU6NXtCsS9TSv7vI3quafT728ekLzNzcmKh4TiNkGxxngc3+diunqjxbWBhIn7GeGaD795khXxTrcxiquWfHnVs7iB/a+qe2BKex72hQL2RSFZ9iW79YLLlE4w2pwcOjIq8vd5Jvnlf8mpzH9KdzpajEcJA4JvVY7oCqVCGvBRXuex4CGO1x2QXI9l9ErkBd93VDnKcbFJFNZO5B0KVFSznWUjOJyFYhjJBSxq4MPDFmV+aMVBfcMO57zYKydm0jCWP/FDVUuGY/s6pzrQ1k+K7muJOuhUbVymQBrImTndGADaNULp8lgkvzLMMKVEfMi9DRFLnHbq4eOqSpXPmo6HQIqtq29lD4cVGQTZ/FRiJ1p5cUIB9kb4yn5EA4v7dVyg+Xmwv5RAyoLvdkLjCN4/fYx0c8WkFTfglQcrO1Qx2gHmyBcX7XopjLV8LLzw8wX/SQQncyngQIC3QWMqoIDmJcfmsTwmvB9xdKYfOJo8aT5/kaOUQdhBcJEWtiywxO9boG+UIgSXxc89r1Zpb+h8pXEfN6mnsQTwA/o32snWYYCKETZQgHHJlFZf48VplogoV37rmTJr2CrvqZZOvt8S9WFYo4OidbvFNAOqr6zB9otcQtgtirblvKsB9e025qw0Cf9/o+JC0ylJ6CDkfP5fszLEqk/i5qoEerJQtsNybz/hOwRlCxnmdBXaDiW6e1FsZy6cmssxbL/zvua/GJjG86bCilFKrFMdkYMj4diH7Xcz1hJfBQILOMP8hG0DP7HGSSDmt5FrR9E6/FbUWne3aZTboPDKhOEAxF8Axrt/tZ8BKqnXMXsuRrRaWhEkcMHo56ZncfLSFwYseEU8khPbTIK87LrHarb5FuQsGaxFe+xxb052I2F99jKanABxP1Mpe/vTiIak5wcSWavF838ZtNMzpryDWWu9WzwBwZV7e1nsf7b1MyT+46i95gDq1GwDygGHcXDZwz8Qfp5FagOXfZUjqmlKsocyakF9npqVhOTHK5mJeKATBKZzIwouokDH1AQfFNURCDw6I6L7DnbGIZthP5JllZ6mzncip3rkPbESQE8jfypo0b/lc+TBaQQmFfvk56ryLuDk6LxPUGtrcAP/8254gL8avFnv9TJe5tOk0IcqjEaPoNrHzanwTXhhjyDM/IMPTJ0QOBunHU4VlmG034I+SwGG6LVGTgz9qUq55T5dfmuely/BTh3QJ/A0xJeUqfGkOJfGEzhZCiokhWwRyhkRs3/FzDidx+/ujAFFkdILkW7PAOcPQPXzc2r5VsW+9DO+mJf8qrM12XHcLvhFbYN1PPIytqHm/4tSV8OmkU1K3q1/IjY1Lm7n1E15fnmav/DvWJNf4lfemJElBLuuZvlmrTlsAf/87HNkoHjqXIoyKJ9z+kCCZ1oT09av/u3pCt+GXuBAaXpRAnSxD1HDWRYvMcaNpCTBUam1yKVWPFoQhxro3Qb1op4qoIx21JFZ1tRxnuNJ1PeuE01mEYtE3GBjHQD4s78HBppAUZrNKVZf4gOQlKjf66PgoQyyHbRTXgZojs6rP/ZmTk2jTCAkGHUgETyg7NewLFoL/++s3olKCYPJGzcnhWaPYIqnY04SiFrv/RzxcT6TV4bxgk5u0+AdnPCtnAlljRHN1lRffilxqpAIgrzcjTvJc53coKPX5hlWBDF9fBKW6rjtnQcWx/6coPidIdPGB2lXoDeWL2XFbQd56qGCZxn0/YWMPvHEY7/oLY15vHOLHwYJqLd0ZLVffqxZwzHX2GaQg7u8681qZpEm20dIVNGNshxX8/Sn2K3m+aCij4V9eA9ubu/dYs0rbRyRn6Gn/UnxfmDYEDMc/9W0ltOQuoTjwJ68C9P3fXyrlX2c2CdJpLDbKh9aniQNHQTmg6B+xu5XhVX/hx4ctyAoZiBFY7g5UPLeXwDB9fiuFca5iq99UR4hZvXNYJEwBBfG0IGDjHpb9XMqo8ODLaS5DOq4g/GEOrHrD9ZvxONw3dKbXsP5hZsClZEuJdlraDKZb8qiF8LpUO/CCkrrR9oW/RW3NlwHFnIRMxu3DqFrIrmrud6N7/P8jauI9vpTC1iombMVKUP9thh7e6SH3bY6QNT+eDvEjFFN5rSPef02OZbuhRp9Mvrdq1XnojSHhGtHSjnaA51A039UNK5cz5MWE3H95NU9thIxoxoZj+XFumK/Ai7YDpSzEPxP9YL8VzhWGLGSRiptIAaHfBCmgSZcozjMYqGeNhDCkPh1V66RrtU25yNVGHm3EvHeTss4CAMY2jLQ49iGI4GaEGQvXcaMsL1J554nrWa9Lxjk2xkoaz8L3C7vsYdnA/mjZ+RfA5stynsXibam1yXMYjwKEZZScN7FIbqtz10QPKtjEBR3cN0jIQKgnlGssGfXxBkfOe72z9Fmdk03qgwqDpDyc96sZ4tNIZt+l+9XflUJqYDiy7y0x4VF1yOZkkRcJ285NCeZ1zBI1y6LWJaLzl/ghD7AoaGmMvnXJu7igQ9LXNVCyxge9IuPdqTYmNUCbG8U7TOKYZALqDu4l/L3JxBjY/75eoUPZ4IUXrsImGwwjZUBuBiMjzXpAmkcI1I4/wDpspepLVP+aF/ZWbo3p6MzvtX+A6Vv3dq3OXhtM/7cyBQbEeYcEn2wRhPgQhUdmLRDDY09aYqGFg8NU39avzMG8xV7iDPHAPRuTrO6FLBi3cJ6tTcakXh7bBeBZxQyHx8/7iHg283yAwot2HNCCh5te3vOfCCxpNaN3kMc1wVe1kLgf71cvK31qgkLJTccfMYsk1bzEeah/fpk1GxGCrMLzYEEE/nARJuREF2zj+Z/e2BwHDrJB6GsXS18rLETo/tKy/7DkoJ14Bi805ExWxwpZxI15DIfiE2K/XTMSgEv3gCgUvMNwWoJdjAay27+wcbvTXEBsjPZcuOxRzWF/M76/h1kcD/XqHKBJ/Mt9enIWCCUbBoWKdFq2zngFphNLr/vlJYk3Yp78oLDgK34cPa2SvgWK+or4VxPpJxnm9ti/3Prfkk1YYyi0cFCCgyWid0DsZTUhk8Q6SCj3Y2fWl7gGqFg5oJH5RvKtQCdOz1rlS529F10LCiMj4H0rbq9bIsuLRjRoRiF4bkLOgnvaQtRF9xLDCo64pA+2wVTQK/x7Sem3UJu3jLQ57FWWipPV/i4B6t/V3y9KZ4SjrP+D4NThXqtulLysuhU47mYQTSjdnH99qszjacrJzPbKWoiMqQd6Ea/czLGhH1qvtubpCDEYgtKB4ZIDHHU5iSw8T8ZCo4L5WJC/XRfqDZOSSpWhxZu1A2AX08j4WXYG8qJypf906CbAKcwJUzP8YfSCRqukiMGUn3UitGqXbY0ncuMY33/Re0hpwncYCO4a9BHMuTAup5l1l3nLIPURVwmeYtTISTkTvYlFQZJO79qKuV6ZErM9MdG7IYvjm/gvFuEZbtcdjDr8ZkzpXO4EtGJXi9uQ/rISI1aJuabtEFJmi29AbghhO1giaryD+vgVA0KnPT0iXaJFTxRWggAhB0fYagM5zU4FRYbGOoZYGZAvm25pcKGl0Nw7CFXgY9jpdZUruUz3zsfN8iMeBvFD8tmsuCLmlTAtjyumzp6kgPfms+S9MhzZtU2pC5D2VdC9LfUOIu6dWmEp1ULRP3mugKX1NAYdyFQ1O/om6HiQqqNN7NV+nxZ34Dko/NohOMe9kTt3eKQ8mKVT3KiY5lADmldPTBRn/GxstHxzhZG0eKkvSjqP8skTXM3X7qWOB1P+pfVmWccc7uCUnlZH0bpw3FTiLwNFYdxqqZMwYDtd/Mt61RSKQggZsxlYAD/Hb+WsSDc5YjXue82F9FOFNUZYfrd2Z3bfcK+ArRsWpyrILVxgN1wrA+Lhj61rUTLPMUmyRlF1LQprh0D3eGHAcuAywEg3vnKGObGP+FXrT84lfQpInX5rdppbgjbnRO49mxc0P7Xubi22paoYpxIykeJAAVBWaUFIJO0/9E9osfA6woNvCSsqzBJp0Qqi46zFuVd+D6gRiakr+06M+VboOz9tEK7jM1u1p/jL4s5ywa05MdLseiprVhKiRDQl2Qj6mDbc6e4Eh6WpBccb0lPJsh4gIe7MbhVI4z5dyt04xYFyfX7vBJzmJrQdrvdOkRj88YEkjYueEXtDpWs++l9KJjAcEFecAY1bFoC/BYRt8EE5p/VYmLdl/jCshCEVUOYwyPVFEJSAa1Ixe1PPl66kfp+cyQu15O7UzqBiG3RbekTyGhqDHC5Sok/qlLXXudtxRZ/k007vUCYYIHVsnvj7ECAHb37qt1qEDfy4VzfdxRpsEAFeS+LsQwRTHAjhezGghMaa2Jb713pB+5EZr+EydfZYPPoMeJ0vI3npOQOnjKgrxW0wr3U3JnzQwGj3vprkkxPXZCc6ln+5t4ILPisxlQi6IHjXTEOOacqMWRztLKWKIxSAgw0UNMFXhhVINaeFK2vKwAxRInu0x5VYyC8H/5EMVFE0v/im4+NhBPsdIBQ8WhcbtV73+XDIOqpijT8uPEkdbhHjsjPpzuB1Vz0FvBzDzcn4pWuaDqDq4BR9CBCGIpOQZY7ROLJ/JSeUQvOs+8UD1LLi+hy+Ef3jxFniMGdoXgiEUQqxEZ/+N+ER53p//wHm5sE1OHPcwRjnEFWxRyWCwfkDYLJd4BYzLNI0NFRYodzoM0oUvo2p52E1Yr2sucVVSEfFD5KdCx0eWfhUupO2mwyFKdK6Gz8DRuh94IwVKnj1LRArD6zn6goWA5GQ4EpPqypZBErf2fgIcMHP2wdIgLei1S4g7KXjLcwrF5b5x+avlkvnxMYPuvt3IgjnJgZXeW20Q72LrT0BwIxc/qwqEZejeXmnDij/LzNSLkcT6GpZWJycwiECvjrDn+MBMksFN9sbfdjqhXX3yd1vD+ccqzqBLkBcRUsjhPRhKM1L34l5SVVTVWFJd/zBB8L3EuGm3qRyuRmKQs8uEYGV5Fv5N8vgAB+DNsYlh7nxubGFYvmtmEa86o/cDtNZ8OflA/0ImAHjagJK4Is/4+2jnjneLSBaumIlclz+0qPHCgL/kddVDpUgjvCfb7ASkonx4DfOXsztcC8WxWVR+gULHUlgEVgEyBC4lf6jX5Afs7L5nTfoWGhMIRBNew2pIWb8L9WZBzNS2zmp2jpC8vCh8Z5gXmZA9Irxmg7OUiAQ38/usHSyyDfC7t58SwLyXN6LDRcJKBlRVZesZiZztTS8N/kYkFbs1dUfxTAKZfShkGKI8nzRjpIsdDDG/0xcrDUNtsMBYKIgbQoIdh1sYYrdXUMkDjEjbHjfv1wsZ6FDO+fbtYslgsNnBWcjSKBpe70RN/8fEsnxVcpWCD1qMBseVNC/s+8fRCogRXr83dS2jMSop/OfXLjBN4tfMwPGu8S2OjK3bw3utV+5fMQf/qp7ij8WqfG4lyur+1himAf650wtXYK4PGX2r1tWqjHlnsAkp8ef1GRXE0AneltsVtF560iVG6wCLjCKzMLdLVoIjMlo+dFDMjbFIMcG9EtJhLNw6gm8njHF/ZaJSD+2smBFmVtNLwKArlk5QF++PkONS7bRGGFFEHgUNO6tDE9emDqzzVKXSgMau1qsBbv1jgCcljTZpAlJ9lGTs48THO0PmV6+9rIwwFG6CRA66V7qTynSZqIYDrxNvfEaXwLgjXOph2OdWghdAy574lISpmeYQUrvu1Cm6znvsZT3GS0I9dT73kEN6TbknnwXaGYIp1u0TK7VDv0ignCb2GF0Q7KdVPUWTZR5RuteycOSmXG/L5pVAPo9AUTJtcAc5z/Xqm71vvbAZIsEuhZmxnuBAeltTI46NhAqO2/pweBxtRi07h8QjrtdQXlzNt0GBHZE0u3ydBYDsI/UCBkdVCx6qK43QUwBDA9wlCf0tmEKaGa4gR0IBWLgSms4dl5T9hb3uEhNXcYXzIgL4hBuDVkQtrKtUJiiQoYRsI8DnVl/RGYWgxmrHTqgqVvM2SOqgruD2kacR7IPSAYXq0IB+c6t5SOgH5xHbnDKoliG3Mgh+nnIjAq5LbhzEEXyexwhUoBAjH0iGSL+BKhkX2QBxNX/yHuiuuVp5FbAbPt2zAhP2tZXmjdGzSgs4IY2ZH/o/IcyZqQhEibZ7Niuu27umkSEy8ONn5noeTYRhaWUsiSs2tuOIYD2S7xhM5HPszJEMkbdHKZyuVeA0w5Y+yXMWm3t3oznb7TITZQcjacYFPopefUftIsZpohB9zKDph+J6xSzq0+a5PDollcuDUMG5WWwVk+h3Q==
Variant 2
DifficultyLevel
681
Question
A positive number x is multiplied by 3, then 6 is added.
Which of the following operations give the same result?
Worked Solution
Number = 3x + 6
Consider each option:
(x + 3) × 2 = 2x + 6
(x + 6) × 3 = 6x + 18
(x + 2) × 3 = 3x + 6 ✓
(x + 2) × 6 = 6x + 12
∴ Add 2 to x, then multiply by 3.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A positive number $\large x$ is multiplied by 3, then 6 is added.
Which of the following operations give the same result?
|
workedSolution | Number = $3\large x$ + 6
Consider each option:
>>$(\large x$ + 3) × 2 = 2$\large x$ + 6
>>$(\large x$ + 6) × 3 = 6$\large x$ + 18
>>$(\large x$ + 2) × 3 = 3$\large x$ + 6 $\ \ \checkmark$
>>$(\large x$ + 2) × 6 = 6$\large x$ + 12
$\therefore$ Add 2 to $\large x$, then multiply by 3.
|
correctAnswer | Add 2 to $\large x$, then multiply by 3 |
Answers
Is Correct? | Answer |
x | Add 3 to x, then multiply by 2. |
x | Add 6 to x, then multiply by 3. |
✓ | Add 2 to x, then multiply by 3 |
x | Add 2 to x, then multiply by 6. |
U2FsdGVkX1/nRwQI9Z5W7LcIVfvqxYj78eDS/iuOoufIdeIn7uLsbC12SKShSe2e5vPWOP5dEZPYzILY62hxsc42Po5tzIhkStIoLij7/XLPAdaUMqlEOZPJhK1/1XOCQqcxH9lWH++BWudOcOwzAecsqHlmpUF32ZqVKWWOC2casqHZWNUck+G17eOfVKHkXWGm5DcgllnQkTs6HN1SRa9Npu3rVAwvUnQ2RjMJEFnPvCiPAOgVa5Zq2ZJCy95ve9mccKvA9XmAj2ABpJXX/DhJm5rd5VKIWnxd54f/IbuNbfPDTlf6CFkh13twd9KTbljaFcFa92LCldUWOi/eVX2Lg6705gxrZ2Ce5sR5iVR9Q1/RPiNuD5zPhzgCTuUdt389eqqHp6KDStchz//OPkJbCzpKe6xiliHd/Tt/Ky0nH9aqI42FpAlaekKVzpYQ/CRPh5GD3Pe78NVt2QzdjQEb3p5ySYULxVRIiMb+KZAl6zC+E165Q+U9MD234RSeOBc7aj7H9JJrNWqJrVJAcd3DrQwhM1N58nZLjzj7MvHfQBUfHeZUgMtebBX2H9KiVcGOLrOV4dXMdU1rYdeJchJbEM5cZ/zDTYTg6iCdjspXOJqY8+o/fIjMAhUs9U+9ERmzkzRbC7a8+CN6tkMEmdvlFc6pSspIDNNFCtg0M/kDCuexnz4qhTkMexaV1aG2Q3VxAzNKtwsgIaliurMMyB7xZmJLrVxpvvEYn8WP7Tone/wa6ZNk004CYLfISXy97iy5fRjxrRqCPgMDVUsrfet/9OljAOAXL/Je+B5b7eaOaBHZJ9RGOfcexI/32NJ5jCwZ4wzsZihMnh/namJI2K1IB0+ygos+Ik4Ca9jYOfYc3FRvnStJ7MSA1Q/ud5CQ81KJEJsv7lfoX1hLUOImY+TJAvgdmS6d7r35oGkseBcpWbceEmgPEY/AjUA8PRpS4kwnpg40XZciU4RGtd65u8y/RJawBCstO0COQJ25hH3Tl8CR1Qb5M2mGe0Mq+RiSE8cpIBnQd+xoGqku2s+Vqg4R+bsHKgB0a+OOY9NPfCckR/MbmAzpaTypLe5rftYxdugoQA89aasGMsL0wySXSU1FbIuYc+OZKkPSMi2OFynFoabK42XYRny91VK9fug50+TSORVkZ3FQUYWanHvJiYvmChM6myAYICfqIKI8Y6ps/dUQtjxTdBmLS8UUyDppH+u3sclL5Htbz+5Fla2CbLgvfJHVOkT5NNwK+dkUdMfiIhYS21CpZOSXr3/+vk8T27UZZh9MvhEeo2ag1qJMXvHcYPy/EbtsgcqrQnjYPlL3pkQSi26VuUAxttwnZo71sb+N4J44WSSDYNSZY5lM9qkknQIOPwkRcKlIkCB3oq6XYwPsYZjLwUXNHwqgT1O5xHs6FmSysC4l4YWwUEKsAlhQoC3izebk7PtkPfGJmk/AI4kIGFn+jsby8K3oSWArEcM96/SMl7dg5TFSHa2Nb5O85NVeCVwKSErTH0p7G3NEEO1h3uQ1fgqQ8LW4xb7kgqrI6l7DQxNDKm2qzOkK6/T7nartBG2q17cb3nHvgki0PGdr4geUvpmUK50tMB4Ogg7f5FCcCE3FavYimOBvxYoEQ4ypXGsY8dAWRjxI6Fb18CYda0bwtaq4ayFFR6NDN3qJbHcxoRHyWIvR1pF/EZbBR4wSoXrgbSa2Rv9x1mhf+YRAJII3X8pyKWvokqRkrJW9cCkSpKGfWkco3bAdRv2LfMb3S0OXg62xK3TTHQU/XRQsG07BMpNIpga5JW+YWKW4XpQjOTgF0JblePFMMuJ8Z3OAf1IvWpGtZnEk+nIcBJBw1MbpKgVJ+wDBCac0ChXylIbEOa7dylkQYa1dlzOtI1/OF/a1AWgIhQtvgbN8z3Y/jF8UorCR4jqW2E4CZaId8pg7ASgLedIEtW2JQlo2LTeWC8VdXSF0wvk8c6QxU9kcNm306e7ErOrjIjihthrpyvmGJbSj7DTfw55Aq41l3+kZXyC8lNlmWvyGpXXi9Ng4LBG87F20rMU3M/hZGHkGI72J5/n+eL2SThOxQRpK+7guXuS0WJRBrY1LyAjzYW8+8RydVgWznNFBSJo/GE6jgm/TztCa1Q1DNKjhC6LtW+WbulbYHJGWjdy3hGh7NMwkQqeB2murKByaFfUx8T3OJp4P2OVuPJfUNLA+zyl5ollMEzGctHke1qdEOVTbKoM9q8MO0AY6AoC4eFqjiqKfRelqB6RmYwzRvoeyzd5Sh2KN6tehwGh51MAH/lig6dkIymxUkfRJWrfe+Ga846P2U0T3k8fJsTIYtzTQXS3d6W02rfl6BMImppGCrouNuQWnd2UhXT/ku9g35EC05XKmCnD9MDcZ4rJ/jg8aZdYt/RKpiWrGdKsGPWBzDblSdT20pwFQhywpk9048+ZANleqwgAYynjAZq0PdLXM5590R+ylaFAiznqH7MTZ+Km96HOkXrZrZyT0Z7NmS9yXtNdLtumTqA1CnPTGoaWWifE2CP5Dsv3ae0MN+QABo8ysWqJrsTl0JsHCK7EWZ388OV0gnU2ElnzHqyzgRCc+IwPVV1Aay8Gks1D9tXu2tfHI+jRBq8sMRXg2Ll4SPJu4wuDWl5zVl2DfftZlDWpDvkeAeQfj9Da5UN/aziRy40yUoFHLF46gDSI0q+hlj67g63Nob5oo3Rdd38l1mePo/IH4DcemNBsWSmKrGVAQu7AFxf3MGRwe5Hq+973uxRdGy/9qJUYa1brpRKxWocfCjwcRFqxlyWlvQYrb2qWWUZcmarqkrPNSsjPahqd85OCA7yHQ7Eymo9zl6WESbAJbOnfeHfrp6rQUdrpA8GiHqRWW+HL9YXbLSV+Q8sYmMYwtJtsfm4TIlbXoJZ64Sq0T7HViIaueSI0I1OElQcEA7s2vOhPh1qIJHhwhLJ3YNvgeBWZlWQwQmGq7IKfpLYbfAlXzgYr368I+I9EYogGYtqQr1raHAgealnUQW4D+JxdzZ3gSnfT/uyZbg881GVV0sJnBnRbc6tG6E+Eb7C+9zla0KvbKBQzX87rtK00pJzDnq5w2i6zkkcSfyweW/pK49gEinBl9F1j6JmXN3gklUIb9G5R+kN+9ap7dDzD5Q4nabKz4aZGEZ+Kr/pAWxX0YVZk7CbCz2c0VfkXQBG/eRrd1fJcSPeg3NeRMbdYKMdLhjws1Y/oxxuZkJz/L1RF3EZwBlIV+cil/45/jhWKT42q1cG7qTHrOGApmjtr7Q0tYYoyQ9W0uactjgzKSAEgMaNyDGHExQ1Gfbty/f7g2w3M096s6p3nu3prprKJFg7EWUt4GTGIuQCRhDeJKsscsxBDa71bJ4ZBGIwEroNvnsztI7g5B5QlTTHY/BZ85rJknmrnCyjSEElmuMMaT5FBuq45aFoAKcbSBMoFeKJ43et/3MIhHAMwETxu+uixYLWi8c/FDK6Ct6jXY9IAyLD+h3/MhCYG749NziuPoi/ToYQ5/YD/25KcTqSfDLLM9H4Hw9OXymCbP6fBroEzWVRB1V9tlrN1SK3I3zny3c4dUR/Ty5tkQbZ+Sg0BOZP8uCR7vZsdcc0RKxTal6UoiRBziDzEFFUbkRmZASrIedIpQEHcQ66kMHzYmzI7hhy0Gim6OmT2f2jMs48Xi5goN1mLeTx0RkCb4yZe0+5qhWnPuxew6+/3LVcMv9CF5fhwIvhv3M/9ywyr9s12r6LU8i1pMKZpJnoHZocyWuMfGjoxVoBZUZ8nMEPtPwTXTn7cWlp7V/SywTEg8Jx0tfnKmrGry1cpF4yjpqvzfJLq5W4Rl1LCHoDuZdrUA533vFIQzyFPnunuGtJtMYtikBkeJyn+tgRM9RL0p98rnWWMxcGrJKwZyC/FkZCPuf9bjZcQ44cCEgfQUy7FVqtYO/988VY9WXV7fdn68tlExeMb8teabiDo915iWTC0IwLzPIOrcGV0qWZ9YhvzcoBYeosYpQ8D1sGtL7DNANZBEnaubB24ES8WPylJdiH30jN1AQkxQWvAotNhlyecP0yGiNqNK/69OyFZpZp8fgNKrUP6x2y3vQE+G+vINILx2cA47DK1ZqCErxPDq4UqjC+TLVAHbFHymunCNh2oBdksfvZF2UvW23wqoL8j7adbelQcluZff0L5SmIk4iN7pacl9TrOtjEHmjjYyIP1rnvPmB9veUcCobCbZPR8mFHgWPmi+5unqCeouqAcEohD0q56n3DA4v1QwD9L1u4QJPdEr167NlXVr6mpOoGXQ5rlCXHZz2kNpWO6Fo7qtBSS93Uz/eubJIfI3+iYVPVUHw0vw9/EsBfKQtniPFhzzr04Kem4ws9tygnfZ5wqrUIheFamm5WwKDlQ3TTSj0T0311Kt0IRTKSChTRTsYgS273wtewO8k7ZXlJ4pl04lPNC1ugsY3eWWYm/b1WtjgVEEKKdJTQ8qw3SdI/6NuLgVIGEyRJa7UJSVFQwIRzhwcez5PjFmqXAigyTCuSlToFcjIJ71ApLKEZ5zdLSvw13o/NBFhYCz3/EPQOwBKpaQmRnVDPAq0rDyJI4AHX5DKZ84mXj0qwpYqrcBpIpU3tF3v5M7krffiT0Y9RddlxTqSJ1K+FD0gkFvKozOpPIQQ9dkb7S4MOR0rXz1Xe8mNDXGX2m/pPH08uxjp1tB53xyvgoTEkRnuC+2nWsuNj9pvSOoLbu4Xad6p0vSGKqzPQkHfKw+8tuGcglSSBsWgXHNrf8ca4KsD/e/852jFA4OABtXU4Kv5gCGxFV7ugX72omAiv0Etf+EX4iCsrezyg7VSFm36HFRzIhfMGVjL7zJFsHacqLywket8Y1sxV4whoWyqFtE7kpq4atofxCsTHQjNvLpB6E3AjpiQWlB1fZojFymAyknRSgVvlJaSqNywNZGRwhqkz5XFmZb4JiBMj1tVIFkgNlmkwTzeHvd3mrV/79IQRHGmKOfp16Si0LG4/esqXSgJvitvyMTOJgUg2HpQMepvWSGbT/AS0uZoVEXY5knRG6pksgEyD9RCBGdhBe4cMXzOdPQi+P9k7dbKIJSuHbHa3A9cep4Tpu8+DFDTxpEGzvqKiMn5LxMDJjlq3VZV08l4NSp4O9/IKUuDpe5U+rnbQaUP2jKg0p1CbMtd1L9cWxnqC+etY6Emui+xL83B9lRXXaMEg3tbBmLMqa0GHt0fA7e7M0Wi7VrOWKs+Vp45hELgwqChkkRNC0tDcVuPI/h2M3WXf3bgy2+9wxSsc8ifgdj7dUnV1jqD77HCV0Sv+ExcEc3n0J2TKAJLLQ9JMIM4KC7fu5VI2gFiQy7HLY6rADFjLUu1TjiGb5gztSACLtg/YYnCzDlhjbvaCYTwzKOjNPDUxz7heJL2BxtcbgJQJS7Ntl4Bmkgyf6Wv/PfH0kwUiEJubieGf+1PD6jUQnUL9ie0IdvDijKCQNcNKHxIZGPVDGmpxijD8Ka3yycWX13aIfbpAVw6cV0csJSbcseMnRCDtwFQ0fe8Vie2M+MivCCA1KebWSchvYlnQ8AqlGnt5slTn20+FApCaDH2v1O1b4a2sK7fua6OLuIhJCPlRPrzf79zAnqzrGxJHOLqTVpTWF+HFVLAP1efqml9OgTx4pjr9dw+4or8rCM1N8TRMB/Ox5SFB5o41eaxqpM/EH+JbQ2JJLIPQR1882uKf+cM3mm9Jht72/zyRRAJUqrBx0qbXhWpM8JaStzBL8BTE0ZZuurB0UDIbFpi1bEY+LZxfpvZA8UHzvo6QRghJ2EQWNyhPu03MfduyVutzkMylbpXexcJXVjO1LYhP0an9i5NzlKFamj/pi+rA7UqeBg1RXtGSjC1CGVObfEoyUC3yQoXSUfh1pdQla3FjpHgex5fDpAoY+5eE4oOsPnIvLPdN/Td79hVHra6NyCcA7z3zdaJHWQ5spQ01d3Y+aRn/JkjADjlP1N+4W3QAN79qr8ZAz3Z+hlDzo1JQKbb0TYC/e1u4w8oWwNbSsdrHovKMuLLj5JvlTvGWIcv7qwVl5X/vBrTrKMO2zay78sm5w/gsqMq7Msh8eNPh3LLH7OA8pyUcSTxxLZkKAZpS9jzImvtI+fu/Iwf1zYbGhBFhX/MlEnAukzaZP4u2dtKHkgffKVKy/R+KvRLHSb95I23QKnYI+kxvekmYeyXqsuWvFFNwDm7D5JTipgYzV0eVYTPoI/jRW2w8SBs61Kwaw5lHS9TvikqcSBejg40DFpxS+9YhqRHNI4bimPcb2TeWtlOSwCmj0wpsxGD4sA7NcgD2aKFprMlFN282WDWntO6AZfl7t+3f5XPRTEcwTbeOOaidz7WGo88U/ySXD28Yy+hwE9Hohvh2/ov9sxZxjY0U6f+xtO1F6y1c/TeiAcVhAJANf7iOOCKFP7Q+Krbw3wOdWNM+8gD0td/G5UfjA/O/oBEJ1WhkNADBC4FRbl+13EaI2rqpLy4LozDPndtRtQHGgtZ/toEvkCetIl3JXDe5gzAl3P3eS4vjZ2mIRU3zMzVoyoWn+Y0C2/CX2wK4aQeZ+0yhtfMpf4Sc6LsvD5/pGd6uEZHuI0u6haIojs5kv6W9qW+nYDBn5whTg6UJEHoHmnVNLW+GYrEbkTdZMevHqUjsF8yl8cSx0b7ztkDft+MEAKeGAz11E5zV9iLa6U/YUtdV022OZTHvyfTO7WLY61jmKCVxevHCCodbKNC3XtFKP1qf1ZLv4/aM1NbgSNl0UmnubIazfEwMrTSlbnSZm5tE0NVs+pg76MqssJejwxKFgQuYZVMCT6LuVoYagPGqBy3d1A0VEDv/M2Bibep5qDgbM6yenWgkcs2c2UzOhu2GrXZ5aKLfYK1wFfIRKd/eu0BW+Ieg1wJlbz/sEtD3B5MilQpJpRiMSbnwDS9fAmYuPuiPM4ZMYfzB3NOe9MWNPTgE74v3Av8C1tRR4iENnLli/2dD4youZWG+1LOTDV3/YTdVU1iVLcZM0NTDAN6SZKMxRldbH+LwTJhElQ7+JubCmXJN9MYGGQ/EjXFiQ4TrcyRHmnvV+q6GQB/OJqcXe7e7rFNFdSGx3DEODyGx+TuSuNjdvMvOAK8v0UB9Pp4CGUPCEF2tZ01nzJspDF0E4fOVMJkJnL1jV3alNdL6cdzgqKMfR3grSkBZ1TnA33VH69OJnR37jsk20ATJ9WdiotI/u1phEPbuR7T9Op5p+OzOBaHcAWrNNpNy0f9mih2VgnvhpDIfZloPX1jVRXZzOCSsLEL1MhL+LCkOFH4WH3USOaLh8ocdouhLrfqzXMf9rGm665jcPaA+lAduR2S/wXA6q1Tzs982PnqlyqRpEYuoV3y5TZLOufMF5PgvxqJTdgnhcq9yD9jdFcM3WLoTkMpoAfW+C8J8Heh/0TP/Ew1t14tQG+/DhksMjkcFKPTuIkM9XzP/S47Q/Cq8ZrDhQudtt1EGlZwyDisFOZO8/RV1amunIj+dIJW/40fCovnqpY9JQYPASQiQb96MKyh6szhwTVwdNVOLGHfCpb4KlexGic6SuZcb0u8rlr0ZMPaw9e43LozPTRdTyjdyAdaVqqNAsCuT+IuxtMp6CUOFHER6nIeXbC+e0WzP0xA1p8dHHGzv35tDKR6tVAIiQUDqFC8JENNQiayddz2GCPVs5lW9z4eLLp7mF6LeQTPECjOqVESbXUgWIoh11NKfKMV7HQsnoWM3zGBhUF9imXM7pg3ehjzbeDO35pxr9V5lh5du2pQhkdFHymGBGm23hVoSptZTnKtrDnBUmWc9vJBKtEafZaWijU6OrJEVmd3KZUnu7yYFjrzBtqoIfJoeKlGH/gRjHqGj/VXZZvU/DleSE9x6hh3Xjl1bZXC64yq8vGdbP6uiGgvvln8N0A51uYbQR6aveSItIGv5aGhzsjWaSutyYgSmNbdv/lhsH8RUIg0sO8BSMl5OpjkTfjNmn8S5G6hpsIIAk04yhjDShimW+fDxZjqBkRbfENkRluiMud5ixEO13D4qw6wVyufvPQrUHB5uRsTL1S5q+FLAEFxcmhgn4hPR1BAUnJmCa4kA4bpRgkRXRhID/sw/0+fUYSu4SuGSAykQ/vxC5/CGwXmG1JtxCJCbbwo1P5OfDlRadzqtokSAiJkWGchjZndlHs9Bbek678vTKIkP1/+t6aSB1MzgobxgL4GCi9GGsFGJORQiNMz92CLHMACkd33KryhzB6LSvxlp23sNQZVP9Lcqsk1c+obAZHAoYK6H3yEUUPTE34La26A+b0JO4T2/Rfnt+3gO+90HtbxCDv54/teTNUlYJ0OOuv8HMemTw3VL9qLooTDKIoAgTXRTDrPqQr4MsboJBDpENABUhF0twt1UYsmb/9LluNhe0Sy1GDgQ3OdCtTm/y4SO3LtThlBDbVoGFaXnKzvC/W3Uf8gCPcLcQY/N5NlpkEUdufpnzsoSgv2ZiB6qDbLXAENfEnYRG9PzXoDfSsyMnpV1IwZyAPS0L5e2iZSzIZ7p9UGHYIPFzH0Dv8f1oWtMqjbmqEwrc7uFmjggaS8KFSX9jm0bHovMDKPLHEqrxvX0yeYOKj+NM7bTZlWPhQIA7bF6Fht0ztGBQWitamfNotx50SeA4hz/hR7zwAV5AZXQsk7PEnGqD6IHDYYz7NqqDSa+l/a3DEcALrWrw9ZqHs+Gu5OT7IZFYyaN5Z7PWFuGPlIT2JoJ4LNceqM+zpPlU72p3nAsYY6odFnQCxHaISmVEBHD5X7MPmLKvYCDO+qdGcH5i5YLMlfgxtF5td+dkkf4UXk44VFJEEoYO59c0xHuQ4PATmIJNKVSd12NGl9ftFcR0UYIZ0xlk54aQGKUGD44ddufsTsApMqcckyAnUZYh+NDox+v3l1MKUnNEXov/UTS1DhJ5oFecMsdG1VO+tzbU+9L38jFOpti/EqUSzmMhXtX39AQYPrD988mqTMwjhhp7mliEIyXvGUTR495wE4HIuxkBkla6DT5nINy4F3IWnKoK1h5UAxGBFnWwr2GrOJtHkdcJzoYpzGSrY2hDJvrq+xQt7GaPt1+2uiyY/1eG9rXVbsQbKeAVUos3oUi+PdGLtlNngPYuJE2gkMrTpHmfuWBQfPiXwtTcZVGfAJNGJr3KnI8cUqNw4jJnF0Trp/iMMB/DSiXt1sCQmYT6XYLbhwgVikCYIP7thIwPI2YZtFLXUL5f4zUAXNfAWhj1kxgxgb6vvxz75U09Dtg/BeU9RYqYhSNPboHxHivkt2INYyU1ENm4DTWQMvvR1kEf/I5gAObIplasLSQXo2sX9II4iW9L5H4HRs+rZYVs/lkQv97L44JFUDVBIYHd683m0c/e6zVRfmEF1ZfHCdVJocgEor+GWg6KUHbzbbrfKM9rdw86CH01cbxhWI0I15HmY5qEXLOS4jlQIhqIvJD9cud1O2B4V1kx0xbSnEnZtGGj3j37/BRZbRiYASFMU2wMG3AKpQ6rOWoTZJTXneeo8Ru5H+Wy/sXmnRXUSc94eNubWznq3Pia30miu4dNbSHl4kqKWuekd7Caw7hrrJmE5ujwKVLqBf4jCJaOZI2QTR7EXV8n7txqBcyQ+oW4D0pNajvNJG6lEJCUHf9ECops0iWpATW0wsCT66GJgZ9pqJZczWWSGBlcVtQTOq17iDLkkqOU4ePNRfawUewDRXQl5RrJIXjoe1AflBUcv6NHmwKHkY/YKsouHdpwYPolFmkU2iHHTJfdxMwUnY1+jBDNRDAGJIKpKYTUlzi0DqFhot7gZu9MiMEQLoEHH5frpCKoAtlc74ZxpdTI6advrhD/Fm1jYt/R6fbOgwEBudKgKjNtxBwagLBxsKsLKlIT6O7tGM5i8bhqskxBceyVCzbSrZ35aXquemPco2giOTVSYBTTKJKUrwoI75FENr0MaWyrodpPsiDXcQVAmr4wRSFhiuXXddR1BMSZqfPU42HHMW0yzSSZYbu7hnrbAsWQ3BVC69Q01hyGzm5EF4IIUQwvXhSU8g7PBgduOuDMbDjwRIqoTIxu2fmnZENSTLNUy/OI/Q/9YiNGPByZysFcAB+Szqw6Nwf0oy7VZwaqLxlbQ9FYEiHTL5kyqpZFTeILZSXLtqIOPFTf37uyFsoSAdY3hiwOlmv4lIG4IpC8odzDE/Laa4MTWol9+MTEr64sG2rqWVrK/eYlr0uHF2vdWUqhaJkufF0ZO/q6MRdcoo3SYxg/bb3Y/agwRo4S4BNJPLYq/jbmK7DSu/j+fo3TtZCW+qthFngBt9JMCRozQcZnWYW2mHQ1CGnAsxv7budgqpVBqbMVLb8yqL5e+DWYZzx0wKDPAadJe0zz3NLu9HWqLWb277uBbXL7tQUzFg6CC3aoW7PrjUNwP+pQhqwybjGA7tBQm1bKjWjU4IxPHIZyuZCjtO4NxsmhgpHd45NcePtd2AEYACIyM5S+JPpFLEH1nJnb/C3abnKiqk+tsU2kMjaaGbqW1OvZF6AV/OakNOHrGAhTh9x7Y+w7+MtawKsMyTfbR9l7K0WXRrD/SlpMc0WvlfxwSIJt9vd0HnfXEf3O0Mo9r8QpNCwYKNGglpewwgFGZsg+ncH4zZwzSCLUakerTcRfeqhfIexcCERYQpzbU1A5uFcZlnA22vmR0lVoWkPlur3t1pk4cpjnwJSyDUfGGUuiQCJtUlpq2SLuHif3+anDJJStcUsQGnU+4xV/1STBz9PYQySm/UUnB6QpUL5pl9FLlbe6qnR9Vm7X23tvpo9r4QfIG7sN66WT3GLjS4letvVM3ZKkiGAhLqiJyttYrsnp8J3Y6vFWnVvYwPL6WHmPKZhv5xYGkfg41lhAUXlAbE2/bC51I1qQdFjk3kC9yoVovjcFkyM2ReFin0drSpaKU5N5cqBhhQEy4GdRwaf6/T89I8zol6wFIXXxIvMl2gllgoO6jd2EiGLut/A4Q1C7dS+8/Fav24xVa3cSn+rxwNDGE7/SvmSmxpI5Vu3M+t+obI9nBWwUEC/GxMV/T6yo7nKqthW+1W7kGeRl2cx1z3egrngDMFSkhgP+aPHEFPmSfLKign1vaymo7CaPEpEEmXOg0lHWi/t4XEMW03+wrRRm2WrYdjIqQa4brZJ995ZiNxbMXzg2AMpJWsFWoGMJ/AjYNaguKYE3+qYqUwt5D1NTWxN9HZaHj+oQ23FKGjKzYlCliNzD4vni2w08W/DflQRdKc/buKybqBKuatd11slC+nWF+EX9bqIejCGrNoZaLOTmVExUHnIvSMAT6AXkGNlJ2Y6b4ku23aBPGkp1CHO++4ktLwoNjqAZtcA+s8sYLhz5QfHU9fwDkhxBZRle/t/6+53OTIz2AOoNJh5n/R+F+VwOJML+i6O3gxZL06V1tvn+rb3CD1HfkXjiw/B5yRT4cwd6IJakobUFKJX28WqwmT3lqB60InUybGIaLuPhtoJFnEDMqohWPLk/XiJ7tI9bssMeBPEu2gcHkV4e1VOFPYE0IFIWM5GjBSVIdKRRSvRdQEVkd/mB0/PqPAcoTrLLNWa6p10XC8tgpGq5lPmMaqhWOqmWDsURIQOXyIFp/H5fuEK8IkQHMHiAPIhtxzykQD6D3/CQ5svgByndg0Di1lSfbiWToyjLewpLtURyM3OipTxo0f9kEV4o1nqDVTdZw9bMcvQPcnFNvtiyu7f/jQGCf/+SfrgoaBrvwIzs/ZtgMApNHMZKSoViDjCzBPFB+xAqdYgZNp2NPTuTZDhYXeUoP+wxn4vkga3wRgppsGHc1TIZ1ZUKJ9lYrs+GtpyKv6jjcXBlwlY8cW5LRkup+QGFOprId4bHKqvZAm0wlIcpckQFgtqCdJQIzvI3ctM3EhZ/azMRI3wXzPDkEKXOBZn4hWRS2RyprGghGtcehdKp2kotK8FZ6PJ7tBJrTkdB0BtAZxE2bke4JMVz7U/lLGn2yvP2Pi4r19xhIgN0nnWQqpXlsSu/c6yqjYK2AoZqG67evzypMjqb1W7IBDJ0l/AQWTHwgsavA3+TIM46NHAthyhuTkv1lKHyE6sQLtruyVXtrGOc2VcfTU/XbL5Ak0vnxsVXwVuKjQXzY70rHxeauOuA4Bomv2zULrIVBQVshQPYbpgPlsTQ/lGnDP0L1YlYK5Ujo3j3Hg0EHQ98vifaNFWBUrY3wE+6L83AtSiXN0l/s9beraZm4wFYV93p+3gGMqHziacv9xRyJhJkrXF4tfwLmnB1MKMkprj/7VXYPD2MLQjyQmsbrkrGYYmPhmbvV2ygfxYIMeJl/vfMGdEFcqFFGljQPUUvzBmi5a0/xqRkZ9cAAkvOloIhwOS4wtTXZZgcScdTkI1FKzXRlEKB9hTpQCgO+U1+xGbVSBp7BaaWvwr7Rmv/vf9zX8PJl7uQG7G52Tm3VdgZ7a3RVtGJXKoc4TiYpVM2FyKBXqcoJInQNna3rWB8XNqaCeLl8Dv4bZ/7Ejhjv/z7s9NfN0ckVS63vmbgYhP7AvqcD0OmXuMbsKAPb8Hq5eK8K82VC98cp7O/kMWYNoanThazSzVsxNaUmDJd0XKsLzBV2l9HV+4+HOiJOjShgYCS3u4nsJP2OakwnuMDhNs+kjHmNJXoFTAVgktcCSteSK4zF4ZV7xGPDOqheYu7nnxv7tN+mE9AEGOFdCRCjUT8z2QwzknLLQbR1hVm9KXfo8CRuZOS5lXML7UqP76k63fLvFelcNhHb4nHBlIsijz7Tw08cXKCj7kccBeifhOaSQ9jQbciiUsw0VLPhTVg1n3so41QUKJ19vdLiAsC92F3VJLcLk0rlxz0p9cxpYRceJcgy1f+aZOj+/HS0Cpze0wRn+A5TuOtHWWq086bZT6xV2zu7+1tZUd78NRniMgW6AxkGMvOTAs7zvbu/2Ms5Q+RrLbwvBKMolq67qEe4V2EBVv6e4r+NbutWUqhYWIKezJwnV9WLsrOsc9mg1NtH+REbxSF9VSip4xilNEAbnUYJ0kBn0d/t1EOU6SmSsiWVfOU8i/7Xr9mwZepeklApwwdy4Pg13BkJUi6Nd2Y6oaPjKyXrZ9TNKJIeKjIldlj7VKMF/r7NXJCnLAgy+ggxEYDFOnZmy0vZDQe8TKk/37kSJMk1dzr3jjwmVIvZdj32USpZY7k5FbWGv9fk/D5HRn5X9MKHOQTkDVKOVi9LCfYfWaF9nQNpx8xm4FaHKw3XddAutNzuyu0RiNPGeCkvmQ2wf/NAm2b4xnqx8WMNfnsEZOG7rqK+tAAQSgChk4i/ELfmRQhasbw0PRtKcRaafS8sk2SpbX4TVJcgOZUeBvD5FowPt25ZxkQFefyJLevObzQG9jzJBVrLnOar5YRujh7vQMSis4PAW+8sJ+3jc23wprnnAua0k2NbYXNe5mALI64fM7eOwHzdqLVHKxEJBb3ZeDEO7BGIllZkk66MsvKJo+Fm54q4TuxpGFP7DmhQzUg+zgsQc1PpBI4z8gF2AIQYvLzpl/1BlkPwN46bjoLomS12A514H1xsQxWPH0O1fDxsQNiCrYG+9u7OGDwR/EugpMmiJd0Tl+wPT/RRw2cQ81g5LNg3cnh1+8mNZIpXN0M/LT8J7C08Hjpz9kutYZ3YJ/N5jOK2UVMuXnqNkibUlNyCfhHMTI5+lLE3VN858qW/X8l0cr1+ZmZRASVB9rM41gjFPAjckeqSDmM1+edyxUxFdggm0vcc5aTEfOw1v/ufyaR/5yl/sgquFwecy/3tPyOmQRztDsbPqkff+WX3me6Uf7vAwo/3I1WYe307c9QgYQKVrj+eRhirphRoeJGmvuugHxtLhXlq+LxqVldiOaeKPKfkhX+TONqImIMbDTHdJPtVTk7KbFuYa1p9WFcz4bk/mz6FjEYPNPBqA3dvPI3FoGgyTX1Sy4y89sDBTL50+abAGlGYCboDwDuwsx939TdTjzM9iyYgaJs74NSICBL3ZIW6QY47vG7ZaivXLorvbD+rMWkUcRS900zENwB4rnWOq5lEo/9KLmKsmRqxYNNHGDVuefEsohxaUO0N2UbmeoZFP28/4dJS8mfpif3ukwYUhLdoVHG4JJmokNKaetWl451sg9M+AiOu6OkomYtiEjRtv8In8AO6EnAr9bmzY6QryViqkFawevzBMUUBizctAZvQWKTeeYCp0cXDYkpg5FZSHWXJ3l7TbOY8j0JQ84VCZb9QaqEDmDAuOTIH5Q==
Variant 3
DifficultyLevel
686
Question
A positive number x is multiplied by 4, then 8 is added.
Which of the following operations give the same result?
Worked Solution
Number = 4x + 8
Consider each option:
(x + 2) × 8 = 8x + 16
(x + 8) × 2 = 2x + 16
(x + 4) × 2 = 2x + 8
(x + 2) × 4 = 4x + 8 ✓
∴ Add 2 to x, then multiply by 6.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A positive number $\large x$ is multiplied by 4, then 8 is added.
Which of the following operations give the same result? |
workedSolution | Number = $4\large x$ + 8
Consider each option:
>>$(\large x$ + 2) × 8 = 8$\large x$ + 16
>>$(\large x$ + 8) × 2 = 2$\large x$ + 16
>>$(\large x$ + 4) × 2 = 2$\large x$ + 8
>>$(\large x$ + 2) × 4 = 4$\large x$ + 8 $\ \ \checkmark$
$\therefore$ Add 2 to $\large x$, then multiply by 6.
|
correctAnswer | Add 2 to $\large x$, then multiply by 4. |
Answers
Is Correct? | Answer |
x | Add 2 to x, then multiply by 8. |
x | Add 8 to x, then multiply by 2. |
x | Add 4 to x, then multiply by 2. |
✓ | Add 2 to x, then multiply by 4. |
U2FsdGVkX1/EPJ1199ysYtQ4+lBCXAMDmLwWWRF+HBGMbwsjc3SQv302FRy5aZqk0D/xqAeEdqq2SwdZL4IJObVuKILyNTHdHuiXgfQ8ilNv2QGMq49DgYhduwgKALh4VQdpYqqUY1HnPoKqHAKaYn/3/ZBR1VIuEkYS+7GZbfX1+8y5Oz4s7/iJ6y3B1IhPE5RBABpMt4xTEzC1v41L3OhRhTF33iPiszLA9wMGeeYaXmfrv2EtZsAdcyGjL0MGzQpoCeXm2W+KZ/l0kY3NPNoW9Gl/pifcD9fJzfplDSH3jTUud/H5XXQCxG7HFrrKKzKpOwbPQi0SPCeZOD+gslwoN9q3b+I6KQ0JdXO9RQiCLB+qvJOalhGg9krFfSzjTjHP7lx0JJseWjIb0tzZMKuHyX7n/Gcz50CUG7R8FF5eIHELTRRsxVDPi9nTYYMOcKVfOds7c+wgBHY6P26JWVJCzso8PIGwyg9w+bObkYqn/8NVyTVyoNECZ/cpuS/580hnDAxT3uGkCJtyd3judCoo0MxxjElSBnH0BQCWE+OtVftfTuM7Aq2/Q/xX59NqWpjGbu0chVvJbuv6BIvavpX/r2PQT8ZFas4WcTooUmze/qKw9IJDA9hEwND6Z+LalEuf5psjTN+jWyS+vmJdQWJDEO3zoaCV7udveFsujh0Q85hBBImz90qWdnmkESLX22HQQlqqqYNf5V7i71P40a2O6YJLdhMvECe70v8X1XcLs6OSHfRFCARzbvQrdHwPj3m4keVROOBLsNc4B4xY6PuxZDAjoV3XRJ+4X19bmUsKFuAnJS6W4zgictrA6T/KtP9aa5wofEihwFhtsxn3tTicjhAL1dfyfh5lxvVBcVS6A0dybtuF2BCSY5ihIzbM9g6dLRwATHLVrzG85/p54Qo/Sraxz1tvvXjLdp0IpBbLC30BKF3llLYq2dOcOXv1PmhGboTGzDedKDHwIXvIQt++JAgt3fidA+Uja5rAvtPLhuvJYV53U3XQB6oZmwvih8GHMkwdSlGQBFQK40qbMa4yOxd4CHDpnxg8WJmX18yaZPzS8AaADaT/1O7hDtcwuvKBF13g5g6qTQn1NX++OWUN4BV7sGDf/Q+QDg7tQrRSagprkKZTOeSRFIHmeJLDzR4xzrk9shADsYs64uTxHA8TiT0wCUiqrHdBWz90cu9d6CBgGT31jev84dLTUTcwiiXFCWSL4O589RRIfYVpKAfn0He/wl6/IfdOYbj/HW13s1qKvvJwTk8niqKT+xsl+e5hMEiOvAu6h9EgcqczwSW+gDF4eL5qGr3dib1n1HvTPq3HHPJs5Ycg2xKwoIh78y+GAS7sL9JwegPSrjcUQ8hB5BYr7XOtqP35NVl3jFtxqZznJv01MAJT3VGn8G1y2+Ay/Mekf171JLGiqBI8uPMIKJW3+oY9ZBbZzroKnxNO2kycBF8mUZFtCQqhG2IOhjjPAjK7JUpQ++3bMgC182x6rOFJ34ykFU3IF/DwDfLIZiEqlk2nBTPZ2s4vIq9n4WIqlnHu1gaD677FR8s0QdSbd/kQfwCR7+UoKqMfC0HgQFVnwjzsthLdZrC1FtWZvtIs8tqPOkw//HJSqjPS+/b8Otx9mbMPiB0r1KCfhoFoF25aJkIAERIAj9hy0gXQZ3HeVzd74NofxQlX0mgSe5zA/JvbXeXawsv3ouuMDOj9JQn0d5RsQBWAYcLlsut6WrnqQXbQB4GTcOQuQKhGrbDvBluoU4yLBm78LmOCq/z6IdAKJwViIc2gF3k3Nu2yk6V/bAGZESJ4AjAcnz+80PYITJ5zgS5SNpND0YCoecBRYih0h8+Di1dc7eoamJIsVxdymdIF4NPjAA3FeE02UIYom++OcC1/YMoYuYSCzTUs0Wm6MQwFPNe1QwuZjNiUKLfVlYKCp43hZ1razrnI3HgTCJXOwdMqDBIpDlpgaY/U4u6UG/hlwJNGWuGnp1rj8UxRao0Rk38k9o8gQkV4NNOh2oAva5FEKVTlWUkY5lEcmuKfWyGqf8JLlFxHhn48BfHkQgFq514hX9miSKytN5hy7k7rFHhsYRHXMZMocf4vkvUw0Y8TQ9J77lVaufpeH3o8Dp1013gFI27EEvDuoTyI3uHHlhIrD3FN44iq2ZBoiGVVyjdQ+n5FAdNZdFSsFRFpv6xtdIQZuE9ieT5sQVYlx2mDasNH5syH4AS82VOsWJNy1TYR0nS5cFLhehclRZ2nZY/7BaYTUDjIWnx7MRsSIVJ/I7goEvLNyhF5gwbZ2JFSm0+LzytI5aZe1OeTHNzjnoErRoFQRJklh7aoz1dN9iIQNtcKl54h4kf8tO21VtiwMhnQ0ueH5wOV+KTBnKjiccSPHPaIx5mhTOLBhH9lC134YBI47+VYJczCwu0d3eSPxesbbG/yG8HuLjeWe2owX7YmCMyGkrTkj4a1fbvE4FFmYaq61L+NKWqdLs2A28z595O4lT2YimNluZfn/8wqTYJuwfHZ2vI171cQvIfe1i0wFzHC5Vp55NS/IYSVNzog696H1ZdRyrMR2vwz5wt9LYAp7iyLwQgVzoshH7NC5pTQJO86rjoAHobpjaV1aY3VZALHtE0GUsRuBNgc+wuofS5tpxWFc7oPIYyE3TiIUgkg5+x3s2bcf4q/9HF6GuX+cFRpkI9fL6zI2jZpTpm4iO0NKqtG5Kp197l5hha9fID389CJLMN1OGLJbQJhBimru4EeStEZCbhlLKG1T+nLANy/YN3ViE7/nUrHgBH5Z7nlyQDrxwWE1ClhkitZoeFHcq1NF3VHgDF3NODPD2p3tGAx64VptoKRataVbDwn0+wpk4Mzd510GkoUcXaoM8ZskF8cj/gvlVQAn5qeAeA2vLbl1gbA7J5FJlSRHdY1Ij2q1ETsDOe5NBBX+N5xX6WXHYNFBVfMZf8/L2bT7W3IqSbmx5szAtF7WqE5dh/DjpRJNhl518BHJwGfIUPrNv79C00DkerTtwUhXMMbeM+clj4HGkCMVAsMC1erNQWp3vU3vs8rDeodfQj+OIYg08M752OrTSSnFEX4NAb34GXuHSxpEUVLvsou5uHJflmUHCaJKg0Kb1Y7E2ud4zAcZ/5afU1E+SqYSc1bkClVuKy+qam7pMxjfFamktG0rwHoTGiLpOYakyUgdOtdY8j2TurMUKZn+eMF3rVVCeGYDQjXIJfWAANdQySSLOuWH8Ia8gYYKmo275mp0XysIthixqYLLUKwMx5sPCHNaqyGlwQtNldYhvwsZ8Md5pTri2p9on1jNtSkpuS6LA8ij0vXUtre9TObmDGLa1isf5YDfGrhNg+W2P0aKdQRoagkUQfxpmbCLls8hcBDVAkmhxilH6aI8fH9IF+UN7e0t8+Ec0dDvsQzcsw/tQ2i89QyeuwlZ3HLpP/NQC4Fn/LLpR0QFN2e3+/mBXUs9mjdHGI79fyn6P64bhsBhfD4AHyeQfcsMN+7JRB9IBiEwotMUj94bLhMge490IpChV4F4cHcfxVB47qwSu5/vQ37/3REa1pd9vUqrIptPAsxMHDzj/czgK67dcvY2ggCtDK8saC+sS9YWijexNI0GF4IU1nXKF2TkB364PbFYUvdUgC5GTXOPLeGX/oQZT/MrFqEhO4tdEGms4gK/pprSILhEqwmDVfwAPVVOejnfodQUPc0LFhxtmhmIm/ODESiv6WmRwdsIDw7EKwWP/0mz+100exnqPjmeRki0KIriGisf9fzukEkN7GrGoINqKPPqSM3XM5Dl8kopnmhifkcR7E6ZZ3dzdGUjVQIyAMiLf8U8sPy+Z8ju4Ww0lQ25LMk7v5tBNwF7xgqtoOfHeysvECPutPOxpJY46m4FfJJL4g+H8FBED0DlCuWYKbwiLsLEkGyUgX17/EyQQi3Jx0fkFSERuWKdCQTBMtN4qJa0Nz03xoV/DMGF15HWir1J5S3gK/mhTQx+RfIa8cRSZX6BePDwHJQ21lCFl1Pj2WLzy80MrYHDfblwKKgWLojonj8c4lYj8R86rkkNF/9VaBrGYx9K+7Mb8e5oVkjXb7dJYwmpmorTY1kckbGg+0NDnnN3S4eqjNm5mL3We7favhWt0ZntM6TNDs0MPyzpjMo5z+sCyXkFGOnofcpXnZ0Wo4RHPibWgc5b6WKVV6HFeS8ZZ9jwyj/VDX6FbcbjyS6DMscGGQHYNNXqgMrqTP7Cg7w4ygPB+qI/IWr9rLWd5R5RKjiW/8AhRdwsGt8gp6+aREASXxqpo/aYbYQoa6290le4cKqXU9PFqw/hctZcpz0sBSbNFdY5R4/jsRqi6RU6Kg8ipQe6NBVTlVlv6jMflkB15Eozw6OZsNNjJFwgjhoXpJFTG/0SojIInphi0W+0FNxjZCMCIO7Iz9vxmAnt4GM8gG31b8K9oHY0OkQdD3dun/qFPeijNqb5ECxkdxc2xIBBWzlbZYAzUodetXgHgs5t8iB19iZoMzp2v7HX+YfMdbr0li+KZjbUBJKmG4ywDUcZF0aGCuFKwtnzJDvPIq7tbvZL8sQRpogQJ4LuYF8Z6aX4eq7asoy/a/JbPikRMU+MIkXo0NNZIgiohMMLD08c7lkRG/xi2SLrccvmZBCY4k3UP+STPk5iJ0Zkj1CQ8z+H4jk+KYfupMC1rYm363AMs4DVAhauZLDLQhS6imGBpY0K7blbHfvGYSNYx0VWSkMtE2BHfadeOUUKzVBVJk0LFHymin6Mvqvq7PmGilT9ZL2WelFcAN/rCWJ+U/Cnjdn78rFtv1wyrUlytsVlJeUaAqbmT866ImHrr+yFacQ1++nO8U3y8k9qa4eG1M+Y5vjs7UXvoNLCNuiqVkF55ALyyg+B8ImgLW37w/96JBZNcVU9ySELklcJVf2Vlu9+O0ycLQKV7uUGSL992mGT+5zpgHHtET997VuBLBfOM2mMH0P0z1KMeDEj0XGpPOAtsY+LHIbn+PNDE2wEyq+kHdRilUMxdZQqoHkSMKieUaSGb/e1sPdiES993pvg+Bi468FDzeF2owJ6hsU5lnUm1bt+ePM2yAsww5lSjPc7NbFursQp+9mXdTTT3HZCxJqjcIhosk9WG5ZC1LUHnq0h3o0vf1G2k/cgMru75gsa/BCi1TK5a68ncdmaHqWE43XxKNm8om1hHpp1EmtklTnK0CknncnUmwpTUsywPCKDZwHPbCOOSG4kEdRFgPbZEc3V9yBcaGfLkl/bqE+K514gCNkr6FZJX0ApBnYiYSsTQbCvlAhDVJoeKtPZrojr45W5LTMiAq0IG+NEBpaoV5ax4vcs6HTEb/Y6h94Y/Iow2wso/9c5K8pBBKkNwyrMxR766x2d0YsMy1Z6jU1H2+qxZURXInhzibuCPFPEzUA33l9u9HAAG3in5bzhQ8FTFXLXijXBhSS0HLHG3jYPD0BXogvlP1WY+GX7J6son6NN6q5vaIoj4zYZFiIiLP0/nCWbXl0D4QZrY/S39N319uGOa426FZavibaKcNkQTSj6953xhjf0v/DsDavDcDwiHX4f1PwRsHwsCscSUvj2vUIFeAQuFwPgLEtRxGvWTapqOG9vXsFNsGUvwrGVwFyAdEoyrRQZxRYM8Fn+2xhsTj7MLheZ0YLsopN+NCDHOWwvyaoiIcMg59uyBu+J354uLHncXw6u+h+ysi3yGA38mn+BNwDFA9TqEUOdWJ5yL1z8dACgGN2Bxhit3VjEcx5F5lh1YH6HpB5LfUQRjgn6ZrBrRzKRHZ3Std/3QwTn7okLY6WXU/K2/3Ohw5T6iQ/lXQSnjNSOxO+n1XWPKc/MxJWbmjVUqY2lvhorkronqYjcbgfkZb3GeqTINk/spYxW3ojPOu+L5zs9pKm/fLwN5iJiFwSIzyDe30Og+NrV8QkDGeNWkHw34B8pK72QXMAvDf1/vadqCCPxv1aduVkXIYduVUMNsy9DFzONCtIdCGdac+TXKfMErXr6Uw8ohwD5gNjyyKSc0elchHes6gIfhJW2fNdqQ3xzrLIrEGRsKhjUAUe5XxjsK8Bb+bdJhSybYXLbcP/6/jwhqUFFPAjB4D19oZATuPbuo6ePiNYpK18Mn9kh0JbLO1ZEqTFpc2L0sVEtZWDrzBmMrdpuYZlirsB+40QnQAKu4lr82vIgjQsrhyXytCK6b1j4+zjh3fhubOB7dAClKcH12cg9IW/eQsJf22Gxpv2Rxx9xWp4yAi3PkLfZo8IBUlIqWoCG/X981deUue3dQCSmldXHAgO3i+nCrnvpf7mElAq4gfWqiBIby4cqnLqRkj+YP9tCsV/V4hstFZs00x9g72JH9P+FFJ38S9+4jxyh0qM/zXbFpZIgWCmfaI78C8Zlo3bI2W6kYVCC2YGVGP4Fofn0Emh4+0utOMp5CGMy4yKTAd11AIk8InhWsWbfevOk3M9WX8r9QpF3StHaYoBkdA1KLLID1Thl71tR3l/JYABz5EgGT7z/pgBWwLem7W9U7mWrnlKzxmWi/vPy9+KQ8dUeJ/6ivKrz7wgKF9I6h/MpyjQ5xdu3DCJJPFoZdxAJs7HWu74Fnw92S4RhQfTTngxtiY2TT0C+rLUVC/5m9WFFjeTYCyACx42k2n4/N/yfUOoNMVf5Uf8WW0FWIu9h2jALH0Nnqc75d8+iD+docXhPIqh+ExVZfu3AClj4jSl+AX54P6InVgoBwRcfoXW3mBQRTHwQpYB61aA/4u3ieBGrwdEBbVhAUFRG72uMCkz5ZizFzlxZAspoZ+EIIyRmgvJ4dWQ3PmU1Zo7KU8kyclYQaWBZ9hzUj0whvQE8PPBTPcn8h51uzvRSrK7rdFFnEw9T1otQQ6l0XOQiV5z7fzCpzQdiU16L8cLxKfmPKADQnkDT+6L8Sx0wrtT5Lu3r9qcHTkixisWleg+1iic3oakHRJkRu49juxiRyJujwU4uiXrxW7tXcE27bxKB7twK0tDhnwvuGLNxPos0LXpVMxdSOgsrquVcpQeSfeu9GgyS6HQIzpiKwQwWYCktxd3UVyS4Cn38SfCDuuz23oghbuFzsynrF6M8eR3+rAxsY1dDIR4sFTGy3hlpStrHSg6aidMSZomRghL3Nv7+nXEW1m+jAFXuAb5El8ix7DFZShJRYuSUcbvyPDXYfRYyfmbcYpAFky7j3FeWLB4wbxVqdvxx7hDXbEAMEbyr1QvVEGoEjcPYxrAoBmyK7U1yLFZ2xuYDikI8SYYOA773l3g/Huy76jtjFVlE5UrBa3e50/5zlzTlniUEJztNxD3E3+FZ8PNYtLjqeqPb+QayN2JnmLM9f0yY50FYrk5F30iaYRLPHv7mORO2+X+Wuq8RGFqVZTGbeACkfWMNRemHy0AcUAEOZqijcRqqqDEtm1ubt7WxIS/L9GODbDI9l1qQBLQMlrWSDG5KTw0O2RN5tBf9g1vLkHpj+pNB6pTVfN9b2YQf6f4K9Tq1bpZTk2255CFKBPqkzk4cdgA6IN1FBjupk3VRXaDzLnHqBgyURoP1pKAqaFgON+bIzAemIiYvMyWUKKk4KcYpHjAG0X2xUGUUbsAuEC84VLhooyCV5Xm4lgFgvh1ME09lE+LZFEO597o2BUNu4RQFVmu2h4ejzAyIS1EK5IODE9J5Azl2vbEIrNF69gVBWS2hG0hmvcQr+urdfSUaIK1jjYwwTqWDMXfgcIaU0YoPZGrHWXLg6mGnlXk0I7u5+VTZIN0GUJJ2Tq/ZCgOlpe94zy/5sMyNf/SC7vTTUF3vjvuHorW5YioC46Rl3GSGxGZsDBFA+bLhah9FKc5oOyqR+2kOTG4UXRj62d6749a5ELqTMAxicjM/W/SfLhpQH11KNiv56Q1X2omtzw1sLBOGOeozQPEGEEG/QjomcGK4dv7PrfO/WT5DxGDs5GDzKxhNR7I/8liTq41NJhDgWGCvk66IufW/au2TuOTL8oqKNuY8qEsGXkl8WucAKKyDLbCpxHS2l6NmakLnV/g6QVfu4hWVnOGjep+t64JupJaiwenHdkHI/vWmY4kROWsLpD+GD/+RZ9Oxpg97xSR239WdSarqETBJn4AM43YEsOw0G1US7EPPW64YuVCjC5+9pPx20sqyPXSDfDeL7UOnrKzOBGChsQ90shb7/SIThboz+QQmui/o68bJYeRCrLEHEJnfCoxbv4MMn+9Y4DYTk+gtsvGb/F12B0X9/iss+j7shSiZ5aLwt27H90xCZpNOClXejmJvMm4OIRfyb/BOYSO+VOVuox0wjXvSv5YhtaNovopV5jwu8LkYn81bltbKr+1pnZe/JA7t+woawMuPZ+XG5VPvWGe6YWBlcy0NgcyY8hKxF+ZCWavNiBSFQVOFlFt5gvsRoEKK+N1ZK+Umi1M1bHDBeBioBHrP5/Ookwa2f5k8F2fCbd2FKAaQ3BBF9gfvUk9stkcxnhYhaAJGxeMs5hO16kSDLq3FI4qzil9dN/90OIywPSBTRXdEG1zJ0qqUY3FY0nKAxWKrwtnB1wezpucHsLYDdvSG2HMqCkHhNGxmVKr2QlYbZQ+B5j8Jv6jiootwdPCDRG9ZODGoDuye8bEFFbtJ6B0KnHFGsZ55xkpT+4k+QFxNeWBj62COqDH75u4pkbHgmiYaPdu42xADT6P0UDaqdpxIYSV5KT6oWxE5FwL/P0v2X6L5p3OvDkufKUVTD3xBGRC3FpeSppeBnX/wW1j7CI7zEtguglaql2vgCRRukijoR3tVC1rLt1SBcvKjhVgx5omlMkeXyf8efar49mMQaDkunETgPSKSZ9ldBXF7q9cSuw1h3on3NsV6eHHIHriB7EqmWo87q2FFUmENFvVxsUMexVGPhij63tyULp/0RHEIx4X2RlrqImoDKcHu6iUkJ+bew/dNIzMpFyn7VTWY+Y1FpgCCs0I2cvnInvtthS+IYdvRzwkFAMWyWtksjsqXTgbF7H9eF2V5Mk7SeYIh2qeGjxVVL/19wHLejkxGa/+azGT2Snljby2H0fM7cY1qU9MUb8cgGx/OQW6B1mt3Pc7ib15o+yV9dZWT3SnWC6mTsJpIlDGvGZeK+gp52IQfNjB16JQqcuqllWTCbkacp1sSVUIQnRvC6Vr+FjFD4oZvHXlgAGfFUJCcraTgIDR6Zu2CBGIiVGwuLSxILLmHKra5DYysA0x5auoWRsafOsyio4KCZ5x22MMvIoxu2ljtlGMwgpzEPlOfCn2Uf0/5Php0gpjq3NF7A9GbgUZ796zu/1epMp9pijSoKYnjo1qzf1zlDK+CeG17ldagSNud2dcHZsrqXUBr2ZC/em1Iakn9mL1v+uu8XSWLQ99OKmzab7OXziiEsBHOsJ+nvXHMJwVGO0TBtDu5/71vJpOwO2qtKgSOWVnDDzTFnG4ino2ISxkZD+dJ/39jm8po+Hsb92ViyUI5zXHnMMZxIzvw18teXGK3Mk0Bk/Mylh61RS2dz7Kapj9PBV1Ibyqo595Pf5nS+AmbtPedksvZlOtdX5VSeTsbTuJD0O0gVpwYeXwWpg7dL+1Kq4vTGY5AvgwM/yxEGNo/cHiVh2xVeMtnqLTJ/FxzhLLtrJ5OO3UjN/jqHufb8dqd0OxuDDIl8XY0t0xpJRh82SOXUV6bkWjLxxmhDf8B9vzAw7K8+LpI57zt/8J+B0TzE8UqgodL6Ooh3X3SaqUSiI656FB/jd6XGqhkF1ON5SALQmKRuQUJ2RW1vHjcDRM4WLFqnzzJzTOozd6XABHNLCa3VTGx2ldCBuJgWe4ik2GKm2/hXpwFIqVj+R511NC1XHKNZdwG1nwrVx3TZ+YVaSB5DA8wJY7GyfRX2ibfY8XvLhnbsDVsK2Eug6efig/GQNFkBdOnhj+Xilr3af/LM/QL6ugeO4hojHVMIH9I1hBsO+TVMkTxk9zGb37pJ4CGN9Us4WynYgrjk1ieiCeVWp0ShSf/0dAU1lHZFbc/XD/icu98Q9OKrxD30B6aeFaHph/5fw8mklemn1srudvGpkajk5+WJDJSghq6e0MZ88RcZYqPfonCQDLZRdYPVQ21PJxVHkZSnyjzj8loMWg3R9AuLqas5QRmv4tMalohdVDHI55Pep+Rynijv19vED//DiXEtSWqVxCDOFNXMCMQi7pInirpFAbghOexfnSoeHAlwKumG89bjN7FlAJMI1IpDSy+NLKFeO9titda+6UtWQomGB5YBAZUx3x3iSOBkALCGnP+7w9HdGX7xtDkpiMR72E4cOgq0sG8KPevTqYKhpsvBeR971eUye8jJfzhVJ61wfuAguEz1Q6Cl1aXFlesb/hz8pViS5xYFXdGymvDe0Vmi9kuE2caWSLCBiZk+O2jD/uCZmam1r6IjLXIQgSX6KvoBk5tCOQETfV0IDZAll997SiZN6KUV+eZo8TB7VviU2QnYP6/ro8Ve9eVgSoms5lwTWbD1qJIq/ao/VhDA3NilaF3FqLE/zluOCgE5CIQBzKACR6pKcsKYikgi9P0pDZPmCwg1fnN3GikXnfDFULiADM1U52mhTWcdb0jytFmNJzOqe4zm8y04QC18RLs8jB2ASl9ChVewbaRmC7B3JxIRHROAJ0hzp2+RD9bL0DT3VBXwGHD2RNLBtV6s2wz+EznRDWNW1zmrI6KQESJNG8Lq0wTXTBUyHXCe56wx9nW5phC1cjeuGWefFY7x09lwgsE4+v5A/DrogIu2NPtYMfzmMxyD9bWBAnJKHCw2AJBUuOi1MIXhXPECVWJX3n0VkDPMxNkpage3wBxyUpbUE0g6oqMrCjdqZ9ngi2K8Oetcz5IBQjc9I6Kod0sbxMRjrZ5qkNOUyEYV8TdFSqnnZhfM9YhtjtUzSiVAw0BOK0ztrBWUDFOOW5mZKAgv+Q0QOFzR5uC2xSul/EvAbgOULza8roNn3etxeweK/CV7FcoIU1txZGqM2CYM8gMQ+xY9YyO441IiNuCrGQ2NfNXVXjmzr6MRnukZAAhmV0ucgT4nun86/cFZaVDMHVRfS/cjTAz/LdNk4srIc3eJAW3lAhNSSsEJE9NfmwI+SHd+CNKGEVIoWjOuwVRQxuL9UEEW8G1KSSLIKp0inFwN3gADl4nUlZM8ny3uMs86i9S9CzZF4Y3mr4He1nHyvFZcAy/cbIUC368t0K8L4SApG7PZAPrcJNK2lw3zA+DyBxEdrL3bRkegV8Qt90LaxloiiNiPwg2IQ1JdD7ViKnKq8DACKHcdcF9QWWz6ojjcPxpR5R3WzZ1msfF50sA54J9pzOB4dI8hfaqLxVv8I6QNOgMIL2ZETiR4EdrT/j8Xjdldp6ukWk26ZSCcNwQp2oyWXvw0zImcNlKE+gjB8UCi00Lt0ICpDhlgJNGAA4dS3iiSYsSAZnTghwxb7lg1mNC6x3r24M8CMnl+qtQ5umS/Hl+fcMgedlZmlN9Y0kFH7Tt402QNfC3PNyAsDJzYORaJYzeg+2yRzKopJlLdCqCIEOzkIW5PTTCNjOfvoROFkxVZ+gQHhhYDEX/NQ+AufbgcZQUJsPETLhcxru31oEH7L3tZZ0QJwN6Rlboh6m1QxWLyN67fHEaezwq5uZRi41BTenQphy0LSTJCQTBNb7vOp96Zv1Y/4uDFrLvlrpI3qtsJfixKPD2OM1XFRwD+yrtNL0rSUCkZCnFES/VG96GClPm7iccdqLRcxP7ZUuMLojhgIRi84/u4OofQX9w/iivCpXLspB3VHy72yc7ZwENd8XoOw2+Rr7vk6/a6Ryjwzksc9Io+kNCeszQPcmuzOl6Vl+OvkMe6tRevn2iEUYf5bjwCrNpa/uuP3s4AOuuYh6itXlF46BRquIpcesAydyZ6pgeb1M0KMbCvpJL9tG5qQsfTvoIdUIhiMueK9QMY0PUd+1HcuydhuL6NT42rMU36uHH/GvgQ8xDekZTJtmgpuFHNvg5qOB5ZcvM+5GjnYp9Xf/3JxboheL0YdaY6ZliWdToZqn4L23RBGnFdmM/EUJqXgd96dJs0xRz7Zp5/2wkrLJFa6JLCrEgC3EfPRFP9Y95ua5Qx8kHUvIPQUJ09DmkblVFA0ycTSG7nUYDs6kZJbHL7Dr1VBgncIhdzYLQ1bealEHSmoVB9t1310VdL5jDVoaL2SrHP+13YS+AA+GHyGKEOakP6xkCpKeKDRYiWBokQMEhrPCRB0uUnkw8wwMPl4DKvQI8wyO5i4Q+Dxg2RlfgcDMVQLH6Nm4GsUqsv69L42wQieCCKjEBu58MlwRNuGOlKlKk5fakW10StvHlZlZ8wsmQmEnQcC2ApWdh3rlHOfIlJxsDCIDfrNJBfJTdy5RSOxmIBxz1D44HO2GPVDntc0Hh0/q6MvMnywMuDQ5/kwH8F+gA6EZQ/KJZdaS9JUHsd97vXx9ZFYyKfWoSH3+RKJxNiSlwZeN8x+FTyY1P0UOrvCahjMeyzvzzRafNkDeAYrgHXnQIS5MtHC6Zax1Ydjd3gmkH5okB25ckY3YsNLGWIVc4awq7nuoj3kGg+ZV8o73o73ulCYMHra3IrHWqQCxPPNgEwAFhSi6z5GPvhBLIxAxLuHK5DKFprTQ9PISTzq6spgbjjiHnlfZ5MwJhZZP1imH2LHY8pK9dhgj4Bpx0AtFKFMfDWebMx90bD+sJtp47NVaNoHRH8oqQTw71XJDh+HqoOBqpRbJhbyHeBju+phZYeE2FJIbZCtJUddJ/yCt5kunsEqmoQuSVJ05+2XzKroXfQODc5LnF+fkERTw9ZkOX7Afr1RxJVgAk2MpuUeqHtBXsGtvtlQJELWvgssSDeuDLxr0VifIZlH/qJl8bM8+XKt5xyHErtHmzdPI8P+HFv93d8DCjuiPCQec3s/DjbrokASX0uTYGsrA6ruKSifQ/6/HBJvuLvrgNSSb9XfUKWb4AWuJzoVLKdiKRz2NwxfRwEzdE8u2A2ZFcn0meydn9YhdE7lbTqnyjeysC50dRab0G8zjfKee0y5xiuKXZ7ynnnYfpm2JqPNv+SdsdygjpGDVkUCiWnleEZY3epmSfR5o0XpL23AVHIUK0Ag9jTibdbNMo47GiIJhJArAajcLP5FNAieDp2CHvDRZibtA88gu5buzaOb//8mEXWDjx4Afjg+64n5Du2msREutmIOssFj3RzISBttI32uOuP4CQEyPAonr66Gz9BfcjFKem6Xp9ArNIaKs6JHsapirApgO5J+rd6sO6KaZktu46MuePtIsqqcSdec1BpkLGw8YHvHzY8YPSBuDXqcJIGWjdHMcn5ivHQ+fid0jCn9iH+monqFGsK/GUGKv0GKqxOz0Kc3bXz3wR7oQtmyodSW/ztCGgUvp9FIzU/DcUgc5qJn0eJJ3sXrKaMj2K7F7pI3O8N6S/GGSZgI1b6WYPVgL2iSFiepVTTEZrfGj+Pftb1Z8IXgOII3EOG9Q7f2SWt/kgYyoXUvlTf6wicAWMlTb4C43DhE5lqMYIx9IDcLBmpHlunJ0WkHmc1hPUZRRNDVCF6DLFjifUuxgQ77gqPZqGnUmdgxGNzw9F3KAf+TQryXPKYXIS/ebMwEtkAQeYQRu/CLe0vkW6doegHVtcra9W93g6JiTBwOHaKD08ZVqwun2gVuMm7ehE+3GBSX/J0o8VSv/SGDZo6bbvoG1jZJBW98Qgqet2Q3GNN+LRRRN7dtxldmshYEy8sZRhB01azJW38VSdzDTlGkXhUmcrY9o6sQfFqLgKaDFXhzlrHobEmufnAvAgf+BWrX6nz9910RAs8sZn8E8dKRF6dRTABqY9OAgOdXfVLUAnzH0/r8LU8z/VsSFy3qHdqemuPr04Vug+GAo3ag0AEwzn9ae0wvcvzhq9HsEHavURB9KCUJ/2yZCb9thKIRaXEt+jmSd0/qwzABGc/ObreYyldHX9Ii0hR90UOe0KrITP7qmWnsMxLffXkOZNy5ve009l5PWnb4qTIkXi3Qur0k8jXguNBfaMKOH6uRh70UkBqaruE+f0vMgkv/SQjkTb33OeMvDmHsRWwW4iIRXsb9qBBBw3dOBCS13Ik95MwLc2GTOXW96eY/ojb9KeT0TSTJcIZqsgTf/kWOrdJ+dLl8NLGgmdU+S5U/MdzfUnAus7BqeemWaqBhzn87dAIZrzbt6sj3HOsFUuem73nnMDmdIWnuEmKDlqfBKxUKCgczQJeqXgeHgzh2ClYU0BBhLc2Xq8JvbjRcWc/dtwfI+imavVPp1WxRilVRX0xLecF50HlQfcagLDJid8OyPEjY164RMWBarpK+CNwutRyOuGlDT/d3ZXhRAFftvGta6+BvGfIEqoKXaBRLezxIpCuYM+RjNKx+z+nztUzFKBjjCfMVh2J9wyPO/AlLB6eTsCGaNguYUmH6U9zIoLrChUd+HoSsMtJm0su4YxtkNxmaptAeqfmVpMknO45Wn8QWjl0RSonnfzZHBhGvyvY2RDQTHE4yCeRUpf82h5STvHO/dvpHVXVwFpGP2F6NABaaA9koTKvbcBKuSLofPwf9G3KIRbb/y1aRnQwjf+lUE02TL5dx/1iDg9yS46H+bxzXRJsoyoIpojtHwPppSwjuDAUWRVUBy6aJI7QoafuCjKV2an509gcjhqd34gCO2SdOPqcXpdlw8NlHeklkMaptJHAUeIlH3bdduOlWGkgc/R8g7P6HAl042GzFc1mM0iIM8q66Wcf0tHHK4xD+PMJwX+VhEG+xjcpvCBaPdhILQsOj1cv/97Y8JXHipHN3N87R5sps1fRPRQ5NkE0k4JKv5xGnlHJnSg5m8eTQjVfLBclkHGWPMx8cgJ5QSfx/D36OhfILG5aVSMgA0Q42CqxtPti3YCEsklbWuS/TNUyHgyoYd/ARbxdHkDaSVaMcEdMLzzFgdVwQ8lWyQy8u3iMe4FztX0Dc7yNNwT3pV/EzuW2haEb/ppRvzq2O/CwqPfkyCO6SHimMPFvQ/na6d1gGuMxbmbSnlLQik4hDlj2+07tf7t2YZlhJRkkV+w9rV+D0eG2CaMJozZ6KRrAF+sfDKPvon4yMS0BYEtPpmuOsseYxSpyfx14bPsl4GgvA64ebcrkuoncv/OOfZOZ8qfg8Etb0SqKg9wx0eH4/6sKNBlFyxOTyFivEPbKNgMFxKPtu5VbXVsJx1xXDWLGAXsGReWxPX2XiPueMgtz36+erBq4R9TenNkb4E1S4eVzN3Ao3HBWaM7gMDxnlN1nZx2CwLYuY0TbzWAk/SrPgMp6axcqGN0iNS4pbrRo8rnwMBf02nbJ2XrP/6065ujfmIEUXfg3Hs3Cw5TpE7jpTUPxnakVdwRss8EddE0saPkvYo8FOQz2xLkmfdrSkAGOtzND7E8hzZ36W7Scs1+ieAmDVlwCW+Q4fXr6bn20T96GoZfTCWZTleZkJTVJ81QoYcGlaBlccGCm01IJKRpy6Rn+Tcy/J1wLmA3a7ND6U+UjopCDPgOXQeHckrjjHJuAkwKwj4h8QxyBohJxMaQtxTEaycAa+EUyDHFkaFuNL9G4MyHSg0x3nKEp0sbU5WNvkGCaEhrG3tfxZowelJ0aNjTNcVt3xdUdc/6+IFWZ4GutyxuhoNN7KzN5ZovN3PWPelLjt5ennwwkYYf3+lLvGdlaGtZpr7PzKZlO365zpTY+9YH9XBkZFf/wPtefITpIPuGs7rLd+vszzqKuSUtJf2/Yfh7fho77es9zj+5ggyoHOjM8pcm/wWJEK6wcJ2osgqt+Ne3ISH3+Jz/pjqa0aIeJHdPMIzuFyzofpdRwztPnUW7hQuVKhCTjjYWr1Bw9EXFz6ChrPg8sPUTP6UIrdK+WbNzniMAzSYXrpSYSJXgHForuLSA28DUCFYHgZpBChkb1GQS1zIMkylK3ASJA1yLUPo5eLbJO1MzTibaQmxoeQHu6+4rekwbH+PqZ/YVD5+D15w9DOsrFbP3RCuFKlSBmRDFnA8METhMICK8GNMIvvYfE5mSxaHd5nsncLYYXb90rtflsQWXEOMcz/Jbo/JvcrmsmvVt6QEJNtNvFsFnYuh0/k532gVqI8YGawiqqSmpcdQ2/SDkl+jx9Dp3vDpHuWuui5lPkV0ar0beXh8qwPCQbdYcYjmNYxGt7QwtMbkDIv16xLz/ntG1DjEbQDeI0A6CgpqFOZoOJk1LI0i5XTo8bePkSZ7sVkUxlqb6J0YyKemLG+AFblI29G7kIlfp97bw4eoyNDGABdSocG6LKdH+bCEGmDmgeO+c96jjuEITaThdWmSL2acaUt0gt8WNYFM7JqOCJEO96Onnu4YkCGyHbYP9b/M700QkDPy04FiuEt4jCi4Mgc2m1wp6Hhcbcq0cghUYQ/BiUQOkgc2f4utDCjVE7+FvPlu6uKFu27F7352XWxtzf3/C9eAXIOf8ZZvpWnvPikD6SE3lZxgO3B2fSer18+Uyug4c/8HQcZ2p+jQdY0qWI8erNYiiesZtuBlmqGCWdC9Fwdl4QDerTsybbAKlGstOtiX0rW3CowjqFegNhBp+AWwLawa3Vr7YzVjjrCowY3XUHhd+VhGLsmzEsLORrWodONUabixZ4Agas29YUwHvhY1ielVIyzrduqMl0cYj6X2Uw0f6T/8j/ijn1SQmHqdWlMULfU2jmjbK04jUIq4fH7LLWuVJkMjctiBtFGBZkC1ADxEBhmKIe838nbYHI2h6WNmoFk05+ztJB5t2o3F6sW2Br6XFzUoQtSfZQsb5Q2sV11LAQ6UWW1LavEAVB0Ad/KGg3IveXiDjrSgYF143PCvQkfX3KvXPo4zCin/eA9PnT76AozYWrMw1O4+293IBkzSMlNf1v3PnHxqRgXfmlqMOqe5bFIMtFvZbwDp3vpvIdZ2vfParBqMTpoVfVJYKN8ekS9xZGbmYHdaJBNrSIMFc4MUJxVvWsNMdcP1RgEPRJSHan//cJxnHClvdpT27xfQp+9uBwn0KLRGPRc1ddf6IAEkaH1hNjNjidZ+L4u2L2pkx99OyOCi2H4PYsADkY5FK0/DjcgzDovR67yvoB2gL6Op9nWU2xvk8BEVyuXd9SXk8YQZ0b9vsrTUojoqftHD7FXmLLpZZVjS16vWFQfm4vzyHnhLTkZgdDLR6noM3Dhvoye3B/cJMFMJHjgM99gpUrOFAW4xRb43KV8UlF5NAhL2SYfFQRcBNcTtXYhTLhGLFEzaXFXojnRlKb9ZLvd249LxdEEirE66TuQA6T8X0iuGW+D5zVJNhGhZare33OSFy7YD8gn05rxrt3SBswEy3OXFRdu5y1qRuVJ4qVJzj3iTDgLsFA0fth4pJPFaekaq7eeLzhlb4gUt1XVbePpNGyRezD9QRa7gAiXa8wzKabF9leK8Aqv5whas1jOtsl+Db7bI5Dwppi1wynnaHxi7G8sKaWi+jEXBhLWk1+w8nFp567kzGL0V+Wbz5/WI9UmOgwC/kw051qPxgCiDHtRBOpketYPR1XOfENA8CrcSVsR3Wu5JXpdtfPYKrmPIttkY4Iu02koY/cCD+7G5/AW5OEbj5ftE2hG3FENPxiEfc4Ssfo3nMvSgP7igXnql4LrWt2F0vtI8FPTWefdxxloE2tWIrbR+OmJhvjgR3tqERjP1/YwnHSz0GTZO+bYkgx0YD5MOJWH9vffV2/ODQd8fkbdX3xr5zM5MPAGXeI34rJ3oGLawqJPNkztqS0BCykLlBcwVhVMfnmT4VC7WYi2c+VkGLLtOAM80wYjBCfz4UQ+/j0ga0Tr3u9P0MnBs1soYGK/POUbZaqpLVbAwqQ61z4xc/qifHZ+iJN5UCfRwBvvIQacFPz6xtN5EZhL6u0ThkaM81QKNiOkrkrsl+E5k7jyry0t9fubPT+fbp/Z4ZcPh+Iy29K2kVNhXcCAE7lxRzaPH/CchRBULEI5f2YznaTCB6s3owtqQZXXju6TvsdxP3x/0D/B5X/yokrWjzk6sgnwadtofWYTLYlcXtZDjco3cvO5QlctZJTMa67qUx/AjPzznKmy8KKsUIgi7ynmsAsYcc5wSRQ/uQLPfQLt7KxRGowYND1A3fg4HW5iUi/Ob7aHeIy6iZntONi/OrXEJBO7mK4Jf1kumHaODYa1Lvb0sfKb+kbtXFPKvS8/RsDGyqM1mSpNuDbHGpaC2QGTomN4qPwUAZ+QJ+U0bdreMM56xwNT188Pp5c+I4LvbQaemaIHWbPan+Lx/usJ9a0q9H7E0KxSHUtmXGDVIks6XiPIFOkeTNK18lTCNKvDWyN3b7Is9VH8Uhsi9wGWi1JspyxeM/2jtLtaUlu/t6OkfL6Z1gF/PQzYEkunv9abfdUaSVznPBVO6Vy7D1qYmCimU4+h3lNGZn/G7wcCciAy934yRmc17IQ0j08UX2+VwZz4+E1mCU1o8KYCeQNVnpTBpChw1kCGUJKsl9plLL6I6sHsK4DXCT3SRGfjWFmSPacVsEcUmIKLEO+Ufn66+OLOb1zGbc9BbI35yDRyM3lxjdHS4lB61XKPlqphc3AWZ3h5b09kGja8NSopONiaX9hXhsmuKcE7E0urDe6wcPsHmvSPo76YnKwlV9IfKpS85OOvcgUJFtq2MAhChLy7s6jYgpnhYw4QWm9Emqds3S0r6LYeZGZbft+voBBKI2+Zxi22ypk6SgJcE3RZ40YahRq98wrDllQ1Hpi6XN51USQRQjQKyd5kQTB1Ce9bOy1A7BsxRSCh0k9e373eJA3B3Cy9uffdrxubO4uRK7QS/QlcMAN4DfYp6J+yqNwwNMTBNjFMD6LhQrF5ijM1BwtHaDwkv8YMhmQx/Orgt2mhT60MXarx3pljwM7UmaDD/1bD8Crj2i8m4xU+sFHCVFg8pts8uwHj5a0oG5FLudZvZaN4tsHc4j5U64PMyLIx2N8VZDCjVIYd8O972ingKBtKkF4AuwAneJxFIK7AccZwbqv2sISSnSGeAWBng3aYEDjtw4fpD5jxafpUSXhd8cS9qZh3CmnXKko1xPwTVMKGp6slxXgFr2BycHGdu+NPZ1jvhOgxms2S8Bbhk1Dt5wN1PIgqfootGAmkoN8dxphFKXNjr656hqnlbxLkV3JgUWF4kYWLgbE6bs3DyoFs8QbpgpsbhKcilRL/XTiqwHry1iyY9rQq4YLETWAQqGUVbRP6WK/1uaft99UFhcWLsfXc+MK/FCXoLPEuIl0cQwQUVqo/qLDJTtKpp/RRFwsYPXDPeqSur32Eiqs0rALd+C2ANkLjsVtAqbn0DCUtfHRqqErxZSNSEoL+jFGFa87hmuHbqPoz4vIbDwVXclrJUkLVAhnYkVTuXPRKc1FZDSVk5DagClslo+vxGyksJAhA52O54vGi1iPZsafKc6bRtDLqwZChSNejkrH8F6ifzhIJe5mCWRNWp8/rk7UcXBAV73QZ4eUD+v3XZvMuRK5sZLZu+DCot/waaYqSMV+9h5lOqUI8EVkU/Emcx98SphhJ3VhnW8K8XHPv15V3LTHWg4ORvqKmrR4jrSp7UYcM4axnQIq3Qc9/9/UTzpHs0JCYdHr6sJCMJVwBIJ4B6aOZfuI625m66901Pdb07xNCWmEg6hxGXA+WVF0WZv7lTWXQ7BI3r0oBoa/rqRN5U9gvYe9s/NAhnFuGe8/4kZkkM8ithtP0QL1+DRCRYlmzLKNryFTVRWTLYDyFjVgAToFbQ6V+HdTFlH7iMYUKCmcXUVtdPDoqm1wBkJt4UDH+eChmrc3AOgGminZQzPP9Fcn6ZCTOpu86Tmg48vAbmQoL3+Oxc4VbV+PskY1p90jz/+VTwjdGAlIjQkv0gcpylQBJBwjz2OQc2AdFFDL0DMX1J7m/FVf2ul3UM1OByzRQa7nkZ0t57/w==
Variant 4
DifficultyLevel
688
Question
A positive number x is multiplied by 6, then 12 is subtracted.
Which of the following operations give the same result?
Worked Solution
Number = 6x − 12
Consider each option:
(x − 2) × 12 = 12x − 24
(x − 2) × 6 = 6x − 12 ✓
(x − 6) × 2 = 2x − 12
(x − 12) × 6 = 6x − 72
∴ Subtract 2 from x, then multiply by 6.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A positive number $\large x$ is multiplied by 6, then 12 is subtracted.
Which of the following operations give the same result?
|
workedSolution | Number = $6\large x$ $-$ 12
Consider each option:
>>$(\large x$ $-$ 2) × 12 = 12$\large x$ $-$ 24
>>$(\large x$ $-$ 2) × 6 = 6$\large x$ $-$ 12 $\ \ \checkmark$
>>$(\large x$ $-$ 6) × 2 = 2$\large x$ $-$ 12
>>$(\large x$ $-$ 12) × 6 = 6$\large x$ $-$ 72
$\therefore$ Subtract 2 from $\large x$, then multiply by 6.
|
correctAnswer | Subtract 2 from $\large x$, then multiply by 6 |
Answers
Is Correct? | Answer |
x | Subtract 2 from x, then multiply by 12. |
✓ | Subtract 2 from x, then multiply by 6 |
x | Subtract 6 from x, then multiply by 2. |
x | Subtract 12 from x, then multiply by 6. |
U2FsdGVkX1/4TeMr/I9I1NOzChnQ4RPT4SJcNFYQKsgGJHWQwiabIHlXVvzEHsghXwuKpjnFb5evXncJVwzUTVbzKKCapv+XW5kX6aUV8OOkr8zRZ78nvWinfgKg3y67+1Vf+YEwitjdIdNEaVbSe/f1VHGKyRKI22MeJ6cIuPcs7qfBspyA8eyzDjtKDr3fgY1CiOlOJzxoGL8qzHnX+fPU0ovPobdvm/JIZjjiYHR/JQwHm8sCdlZQi//vAP0ot+pFGnJ6Tnt8ugWpopmrSyKjhc1vSTO5ojQXoFMf4vkbhEh5HlV4LOx0WtcnRdwnJjdWjxG/2NV8dmI8DM0KU7Yj61BP3ZAFGFcmKUmW7EqgXVRv2S15F1V08s+wuBGVTm2aW7dPsUJeJmKuGHzB5PXBUXb7hBsWxYT9o6o98VrxIcxX9+12CQwu/S0+eNPZysuuIwu9vzc7ICeogzOgDTR2cexbwNFBvh716quGUo0T4R4uSRpOwQIfZxg66v6CBKUcYcWLpB6/xtrJwKlaf+w6L1OxNh1ngBFWv8SWdiyZ12y+oJYpyLWjxpx7bAyuLCxs0Vpd0vhpZrDNxoI4D+CTMsK2frUwIi47+NRkAFSdpFub3hJQPbGiKvFA1u6sxb5YQwMURDh53i3MIdyd9yIvgI44WUVIhhnY9n6TEHwF8RKxRMF+wgvfpz9J5md7NBnmMiXZeWMhVmvzSZwEpeFkYINywn0zodsnsI2+YKebR/0Y+CmVpeJFUGvE7SzG3T3uNoi+HQAiBPqjcKeh/RDnIh2WTxYgh4FDY+IWJsw1QWP9w1IXA96Y3W2oYBXrv+RZhOR7vr8FPJeU7TtVVU2fxitZlIdjraQdT45lZciDVjk9mg77YkkTNqni7ymnmJjAEoWBDgqdwKF1xOC+P+ZLWEX0mHHUZwNPtH2sKEW1ZABlVOkeSlDmAga9+UFvy2aucJBKHse1ruastd6ny07kSBaAoiUrQO2pERyBycWeGsdhShAlcfFtIeRfGpwEBYZ47ZQkv/lOhD4e0BOeMjdMEApiBWmmL71BmR+I64pQ4ueUL3o2XOV+VOQ63Eu9JGG2RqoflQQRrQfUOlEMY1ThyThBN8lmtrqm+Al1sVVxWBEoZxIDlF5A0B44Y37eX2i+AVprikFGoTJ7gTWzbAz0YF2zDY+0ZGUEo5XFu3ppPkYlVGaJSYfs7PVDMXaBLv+uLDBU+hA6KpDd8km44rhgrwEYYr9Skc4Uv3R+G5h8kxODVrWzbY393EOTnMA+PQn57g4Lvqe2pOAypuWv+O9Ed0q62BgOYMLNSBkB6sIRMdS1HL0b3RLf+gVQM8fYHXtYi4ISJq1DMuxD9YjFpCPa662nyq4Ro6NV93BGwvyqA2ue6f3sNXcHkqf9ZbN5Pciz0hdvStW+8nauCGknTGtSjsBNCyTEgnQa1fC10TJdpB7cDorDKxQdECpb1FmvSw3hwjWv6s53bn4MXpiujnRvf55dc1XyTXExZRHDOcp1Aqe8RpoYKl0maM9wpiSyjIaVmPzNqvVhl6EvOym2BcI5JOvZjn19185zinx9S+DdPVpWAxF3w71BoC9nnutoIm30dzMoq1HaE2q/ONGslyPVU5YP4dPnYo0pMMUTaQF1EkCefG4KYE2oMS7A/JbRZA11gIhhYkupNz7JoqBrbKsBwaPkoTVhxLYf/N31JQtLlhPWAJakRAh4ZXNaKOxG+tBCqIENRzRFhNpgWg+DiRbLt8IjGcjDghgFGR7Ei5PqTFHAI6W4VCTE0VKtojcnfl3kXGeba9DvJ5S1pGbwi6JwOFJmpm9afJdRUQri/yyoWW2OOoiy6DesTnyxbITDSbAA4BiHukxWygDkoWbjftTuF4yHVycMRA6xHLEGkU/cu+gka4xPOTwl2eV+u8ato1piraN2eLAozzQJp2g44jUuOvanLUerr8XLQjUt8SdfBjyrto1KAa7mLNyV/uFtkdb+TGKTp/byTuGb9COmvdzuZqGQHxDrFcclhkHl/xNOXzN3xET7a+3V3Sy5y6kY06G5UAk/wKRgJ2vtu4rAD18nX5dZr0g6myEtnTlgxwRMDq2frCQ4Z3FTjGRnIh+SeTQzU9jLaT5Mv0TIN44JI3XDmzf+tIKovP4AanU1eEGcMNC4xFWyXNgx9/T7viXnDp8+VsssGWoklT24rmqF/1SY7OkmwIFE+Cf1VKG+d+vTaELsOK3Jn+rq6SxhbPmUOV0P6yd5ENdlEhiz0deU0NStX9F/h1RRlt+cwal/tNNr068Kuj39zajsbMoua4wc8dR4+7ZNmSvL1UwW+O9riD60VG7Bl3K8xvh/NvD0bmvuMBgtMUdFMkJHtyy5fj7mADJp7EDkQNf9UR6sL16WtpeUArWbjtKDtO5VizGVIw5ypzdKuAipvqVGtL+w4r8RYWrmgSoo2RHJ/CGTchmEL80tluyfZKSxI6QBlwQDqzDcqaIAk6NLctMIWO8CFVfbbJ3SKyzDrLkB8FdzrLszJJRKfVmMubf/biJJOSSrn7QLS08oWYHT/Z4mCkggRXJWfcO0gYsdn41/xJciTWpPHkITAwxxEgm09oXD+C6NmUw3CQ4A9g0pppUdH0hGrn4L2nD0MIryCdkKr6NCppJ/dZixzea1n3kKBJVuBYN7knMqUvrmfpP81egczqnKhiuyJ3xcZM8+fZTAj/+SmU9buuMw5rAYeIgNOmsqP+ONu8h9tiMdX+eOdXanHLLkX5AHelt4KySd4bOB4u8TJTEFio8A87hOtIfEFO9HepbnWMoTAJaIf6Kcg82C7F9K/jMKicwVOK5MYc7o7zaYsj2vfLbI6K1NY6pgb1AKvhe7nPEGoOB/HEZgFLeTh/DiZjAzJilKIPa7E8qrNRixYZzHwYqDJ/2IlIACkheW9WebjaGFUCZWxja27kQvq3ZkCTbYrMcMZ9ay/Y9r2U+eVaTrnMWW8tL+YJYK56wsXoiXDvGtxH5RbKK3jRqoGlFPYA/zJG8YINjWZf+z38igVS3uLiqEUvLV/6X0ax6MZMsGWyHAIen9lXq2SBMRg40iWWDKMsSZ7ug00MWIk0jGXolfCvedQUnsF8AdBwtxLZaSTvp3GNO2OhCHqo9utKnSzpLcWHkG+HO/BwdlOMPD10ZWIKtnIOqWHc2j4IRIgR8W02RN6bGA2xhbRs1ad84Ncnmb4K5VqicyQgwStxh1fs+7AhRUel9/8wikV+lKwbNqJPCrLIDYKMo1Xm7Jnry1Q1wxbEQV5WukxYuCpWHfmF2IdSCWHKbYrnAcaPewLGMMXGuyg+o8PvPhXwK8i8IeX9kBoxd1Hqe29sknn1aYqSs3z7hP6G60dxssSOX7VnpBgjwMtLrJg5yWgRV2/0aOutxi763mIkRfaSg3xFo/uNOT34dLswo9JbNCPs6PyQ27PVVPjiqaoIe/SLumpA39tae/95+F9KmxJDVaUjHB1YUaDhnaEO5tJTe2KJ33HTzNQpfAgRSWKh7KOPeAYkwgUeDip9y3Fmnwd4X5mb+hO7PFueoEzDKLAmVDWXrKeW2VN3Art0kKR7x6h/aOSVaEP7jQ2GFN7lesfbQrOZOP1ywIoiMeY3dd2QqGwhyoq2vVhPNVecDpAPZgZXsc77ylgGeG7Tseloyr76ARznkG0sAgTh8NSZBweIkfDegxAmQmbXvdEIe6NyTbEM/ve5tNPMAUdn2o1fMiOvRpzu+JAmdr8geRMLdrUCpxjB/iddcv0d2uyZmvY7O5sdyd9XEvE2PdY7EOQgwzu+0DouGQMTdlXxze5DUjouEgcchd6EUILPrOTVf+oInQs+1ogIJK2mfreqC8Vhlc5P8qMnn2hLqoLyqsAZE6VvPypjiqaLVL8N8//QiA4+0r3Mf4+y60FXu7k2LV8TgD8KibFHn8bSQ2BW/yrInMNmzg9bEQYo6QDV2TJrVcgDUtO4LW/h+fRIYqrFcgQbFgUD0O2i6Bf7eZ3gDESDnn4JbiCI3q7qMk2AzklyiBUFaR7GVZSZzWzAg4LEv4E+ujSzFYG+OAAxvxvKXHtKgA6tkP6OrZm0TD7XWrup/he8TEJbq9LO4qoCFL+JB3QPU3lbYUXO4nExxef1N+acc81a3bST6/ezIpTxJ3611wx+PZbqA4k7LQyMA4bf17QhegduZQZK10iDdQPpgMo7B+tdZT6Y9+SGC18HQ6ftwPU6dIZngumaz1VSto4vqnuzSdfL+EOQCn2FBd4XRDUFrHrDuT2ODvwQFE2SEPGI43L7QU9BD9lLAkeW/8ryH6NBZ3XMFsFD7pCmp2+K1g3Z/q7tf1gvSvySALdQ48ZfPlNPwhEajBgho5hrV9eEkcWEao/bhZmifTPX26BrU4hBw0a4CwBW4V+Zh0Arrwr+4wthqqNyFyZzlpGz2wYBdwJz7Et0+Gc1Msk+7BgQ8YL0nYPk+tIirLAvX3N7rGl4XXxmv38a0e1s7ttPxZsYuv/sY3WycZM6kcbgyiwVwgqTG59VyrXs85y8PSOg2sGNsp+DxX1/l//T3XtnKz5hTVSs2NBMdAR83japLrsRp9ffNKBshabGBpFbrp8tfsZapM92jK7dymktSFEuSel7K1ktPu6D0JalUo1VCfWXHDVZt+j4DlryB5HSj9rFCnuao3FYxjZpMssto5z3glpXAzEsQ7yd7kHbMxZQhdTFu04PHjZ8uG190xoOlzr9wm8GlGtncK+0Zr7pOlorvHEcpnPD3eNz6xjidmYUlKbdk+FOPy+5pxWUJBZ9rrt/wkw1UkE1WF2hz97J9LU9S3ATP0693R/eR/j3G1HRFD15fII+Y9ANBa1hASiFmjys5UUTsktpc+BWLCTJ4vQu2ZUIrC4HFCNZkdf9usMAUBtrT8uIpdjtxqvwUPSvCwPqWpYehbNFfOUQJsiQZgWVTgy0HXPA0HXYc3P2q3MLVxXB5hngFsvHsYTg4W404CBnMcZr28pKjLzy8DqNjhXLVTfOvElNa1X9KjubD3tesKbvR9ryufkmtZta/wFYb8Y5I0n/rGhhWkkHsxe0+m7Nz84kkO+TMOm2iciNxhjRC98vdZqmo/EnrXRovmzNiBCXw/t6wPw0ARUmpgGd9p6eq7pNXdscobKS8vd/exJ+7kt6SCZYFInPNAXGzC7ursaVL/4cIQ9j5loGQajYtMD0m7tHRIifr9rERdWqy7deeJUSdgqzbOmzq3FZ0NDB4W8JnDOH4XsUvJZrsbn9Pf8BMt7j1us+/X/YS/lpRYIuI8SelKoTa6oE4xhZO0vVdRtlP+ok87Rg+XV7I1ombZFAIvkQa0ZvMIsK4v9w2bjAcPBUYLXLaodcN1UBb0YSkUTwi4mAD8pBvLnewovljNanOX3sRhsx9SUZMiN642DbtdS9GLktWwiVGe5q94GMYwiZ13XmJhUDQ1TL7VYS5RDUM78uVUeApuwFMs2CsUe1GKMWnN8tlZ6sf7LgUilhf2pYo9zCIX9EIIZWaEqr+4InV6hnS4jpJq1UNCvX+E5wmKBb3xFnunrHkkuCJc6MUzuUaQ6nWyRS61YC1EAfxIdzjuzoXzgIAGZSCZg8V/MwHPAGSJtyQMHcTXr6uij9v0oMatsCJ9i/D98SMrJOdvs3Wu1G+uDg2zy6JZuKtQFUDSoVapbUeOJZdDmS0loiVzvQlVOseDkfNPv4zh6Cqk7PRAlI/wwte6AjPXdvW1wqaHwDt0ZPp1m4tXCnOwI6FCmXhJOOehyeXkPuh4NZnSpMMPUbhv3WHquCzHKh+58Mz6cleYqWytrRixYB9nUgNX1R90AWMOwR1x5emnSo4qhUn+f7FsHCaAOK/EcxJNSSWy4yum2OUt0RiHhG9ncoRyUXBFb6IZsvhOGD4m0SjhLE7TjtxKncWAMYI4A7zRXc0xw1UAC/VdBUNDKd8X+lqlSHCmNaK6c0dQVc7hpncljOibUqL4JYtXgtga8qIiRoPfhkaUHU9tIdExR9qGGiH+/Q0/VZ7goqXevr52QJvZRcU/XWZ0gN9V++vOgQTt7gxQDYPFluTmnH4E5Q5eFtH13iWxDCqHUwC2I1fxXtEWvBGAK9l/PQkNvUecnfS7r3+OEXCxNEydXruBZMoVRhzWm6i3uMakxSaVY6RHWZcmwkFe/l+47Jd88ZTue3JoQ+VDIFnUee+AMnNEIfnyO1Bi9C+LzQemLJAsICuaDBRP52Jw7kAzH8W4rIukyo7l/Fe4iaftz13IrHPPqK4JLoFQpgB6/bzCzly1wF71WN3cNQ1wU/dfBs6yC75VRgmy3Ioin3mmyd3f2tyfS8fplboqbbDJWgfU08uSGc+fIChk1gcIWSRaWEjUCEm+fP1qCY9Rl/cyOAdqc/2LBPz3PTq9LQ1inhIhu1WLs8MyevMLS35lYarRSOxUc++4mtdUlDUPRYyrWCXbYa2g9/y5jK2Ym50bBbEdOf6Mk+any2IyWWiKnBY57eGcHvfjS3EqvOAvktpGzxwTALgLBf7dl8H+7H0N9jTlOXNsh9urzViDuAxkhZQTzm2GXzHS3a4OqCGxscXMDHyB3QQnCH8kE/nXWTK0yy/PmPKEJ5Iodz7P/bjEC2aHfUlcuYr/n23Y6AnD2x5jc1EddUg7YSID+B8suMyGsf8QRzMLsSdiZVGaJhKV+/+UdIib0+5euG/AtOQg8VeP0XA8AwESDnk8HWV/LQZtYCAbitkHIrlOdK2Y+bXX24jbc9lZg/S361k/qH7viIBAx9Th2TwqmDDQQBOFPRXP+Og3+XyHE1/Ivhdosm/DGH9u7CWIIZ6a02soTilwuSPEcXPvUybr/D/ca0zf3rWWtJndNN7CBfKEjHYgSX1qi6wGsa7cZR/nzEq/hxS19FgVIrgvqIZ+qnHC6NTe0hyXvvTzmSx9dx3V9xdL6hXjSvaLWSoX1cBR9R3D44PvM7M88ZrHrgYUjPSDCCh+sCIW0h4S1v4PwfiMNfLQzy9sZ50VfkqpV6epzqdoiK73tRn8GQ1jnuw8uixAJA2WZlGRPa2PUP4UsFy79GhJkBs5hZ6HsPAvII1u8+krV6XYFuNZaXkLGCfux2JwGHKB7DhWoAnE23hPz4McYYnQFmEfbo1ErknW9LaF92r5VB1Y5qcPlEDRL/mOrL0nSnMWhtWQYrBhy6IsOLR1k/dgpSsJ0dv04o1ft/78GyqOJpxNb2c9TuMRtQmh+umM/dI/kyTcdsShAGEkASGDXAvp14qdvVfQRMhrIiPQrROhPoBAmzD2SwENUZE+at7leolk+iDio0Do3H9kPP0y51qQD8z54B1ZaCS7e65BXcXueB8Bg4QVFO6+BI744QEVUqD2eekR9jJXagIb24k5KB5zvjUsinMtC41jnK10VCLYiVttj7NTi7mxmpu7EjQju0V+O5q3Izky9QZzumL/WMO3xNxwixx5xoOwEOAMfMnHoFzJDWP33NTp5S8IjOngnEepnu6chyoKj64QDbv9PPWU2p31zxpPEo8ml7hogWpVFTbe9g6LHPvHveH/yVa0/S+v1QFTP8eoVCc6eVv9jYImgsoHKigcmbsvCl0Xkk8GfPADTA8w69Um6pV9NFiuyC5ei2Q5TSfNuL9l/FVVUX7yNE4iSUo+7IPTiI/m6pww+01GTXGGxXSBTkCOk1CAkIGfjxqbMYFCNNs6557KpUU9rz9mvXcU3X5NCDqXExoiEgcpCdnaKG9fcoDRnJ5rOH92bOzCf8Ilm8q0q8AFXaeCuna+Nd2rx65JruB+KpYVK4JduEUmdS8N2GOn0DcCIjNYaje9yeKzQcdSaGHBibaziXkJIwsW0uVDyhh7HQagXHyaqt3BPrv9zJpvuHsGED6zUm6C34oNNvesabMdJgKZqorjtqKBsICx9SG5FM0iWm1ysAWYrY/mMIsOvKvoJP8tI2tqpKKsa2MeWBCUi4s468qjYbfM0Y/UqjkoxLcrX+tD4Ta+uVE4Fdux64ap1Ze7E2sRh2eJvSEeK5Ai187AeT358s0UhrlZOMul+qV1BKpLeFweeGeH7tVZYiU4E6qbs9TYn/SEyyFte+IVkTZchFc8XjTr8NFHitXKUd9lJ66wdZOttnGbp2Yymd7OU0A22NRsXS2dVh9OeFHAPQOpItnB37ChRaBW2a7RxIqFdx4gv1PCFour3oqTaojZ/PsWsawZFdXw2lLwkGoC+fbfc3CEfBSSWDp0e1MzZ2+0afCCngtfd/+mHworH4exYt+ttE/TFmQPKJNEb1xA5sN4cQ4eHzgXbA4/qaHYSe2GD2cYktZxi1J3kC56uEVyWCrT2cn/fWk7dWbMT1A6MqJ7hniyBlk2eNqBcUYxtz3zQ8Eu/2VEEPb/pnYkwbY2ssbokq1NpGy6NO68/iDwbuq3kad09+83ZCOqX9APMKcPOt/4yedHzPU9XA2Mtf5YOI935dfKE2aKg7bpvbE595wCoiUrMSyIxFAPltF0x08DzM7hOsGAEep2qctUG+4E3fra1bT/DpXAehxFIqtj29zM1n2+n0wXMHyWWzek1gv9My+Mer2nd00huR9O5o0U+05cBQch+liPxuABoMJTv5bY3Uia4Yvi7DlOG6MGPcxD8tP+eatSQgL3a0LEyEHQWXYEDLYBd3TEmlw0voKOTQHiJD8V/Watft8ScC/u4/8re0uEtCmCHGumQ9KOp+YE9PU0hqS35PDSG8ds9ej8SGXWLs4A+9VzTj5yHACYawV8keH5J16Z3/dW3leTSh9BVITmtvbQiWHH74IQVxXbdenr7yK2fT1rM3eOR2vL3oCyQr2c0NqbI9ft+ArPOjjh83QmiUzTArCS3McfN0i7cSs1ho+zisvI5dTPSd0DM4HvoqI9+22w0bTvGxVgD7CmHvMnpgCHOhr5MolB3K1Ix4nX5BzHRiHVnCnsg+36Wv41j1bOygZj//f8dzq8QbCF0aFzwQkM4c+jB5ie6ELn3AoNtcaQFHPG1to5egme/+EY005pCfg4vcSAfAxetfg3cadnA2lMjkJsjmwYa4+lonpBOfAgnlVG8PGv5xnh1WxB39BXjA9X02H7G91XHHtZvGh8Htgqm17e9Qp+hOR9lk2v6jUw+4EPxctgkQwvnMI5f0dZe6WbYcv2SY6pnyiwEIRy8234eGm1gOxu4+3RGVtVO+VC6tgt4NS7wO4b0r5X6ikCCXK63rKrY4HW1GtXZej7dWVHHAbcI7QC+N0FLfsGJa5NtovHzmvYwfQ3ybiepX/y9jaJ/QCBcZjwcsKsksy/ufK6MnU2RUbk8dNgSbsv3GVPFQApSDDKeqUVzYx6HdhPGEeNRrPWR5zvL0HZn12qtfvVzuNGB77kfzWzdGu7KrzjHhkN6XPQprk8/5O67cgsIHXcmFhgobU8mrFWy1YCltb5x3qU/U3Xl3AczJvws92oW+IIhUFpvHm3be5XWKv/jKYVibdW+u8ALRWGDMqliJ0UGSho1uX96ggS9YwnVFnHafOrPyAH/K64YCN2X+xWhvW9jcfA+VwVPbM/D0xmougg0832D5AnDwxJWx5ak1KWXEXEd95ai3wIf/fpA4oL+RMTJepQRyTvpQD3GJj4AMhocou0b4rqOqGtuNAynPKRtii1RMGcGR/fnLfDYpGJk33EdZgQOANvqDenA0KZFo5rezZhUm56N/LAZ2J/Rht6Lrgm7F/sQ1niLlVq2himOv6B35OBdbEkHFUM2XIrljluGJAUP9n1nmWxZh5uYCvy7ekkkmIV8F+025kPSbxMbejY7t7x6dkt39v+piobHMTdYWenpgHtSKyGV5nluiFKSpnf1MKiJKx+j9iSfdLrxPu3P9h35Ce4FFD0FtvK3cwqm3LZ5BDMDlEup1ZnT+LmAw1uciQBiQZVtsnZqh1rZn3BIDhg82/bBaQZAWQozTLIcSE5CQTCiT/O4VdBjDeO9/7V5fMihjoNViw8XHvl7Inex6JmbcuLGTPbOzsjDujIIojDcVMo5FHjDzSFdkut5KUvRgNDefcMD3+eoupwGJRKXOCnxKU5zJwqo6qNrHZep+gFCkqc3ihdt7ToVWy+WQtTUxQ8025L69XslftzahurL6Ko7L8fk1IMsfAqnV3UPfm4nio1rkk+NgorYaMTUrI4R0xlre6S9RlZY/cagxE7cgUxhod9uu94hyZCw0W+fDEuQKHb4VZaA1Vb6qxxfvDu4bCkqnq0Dk2jhqw/B9EJBiR2ppOPtMSU7cGik+9qjSju69onv2ZJCSGG961VovPXZ7MDj0AJvhbrX60YV6srRaQaZXG246zjKIQoQ4sxyq3SlWFv7PHn8sZJm58CHe4B8GhJYV+7YBFla2WbygjyWVe8g2ukJS1hDtaqV3fmkhz90Q8fqt1WQ6GB6pgePd9DRrA1oELR+FT8c9yMwWez/Z/LebLl2Dv5+ThgEwFZU0UBK1tAcZvClo05hYZFeJGdLG39pXKdfxWgV/Gr4seBBR8EKwA47jahAV7YdNtLNbeMjjQzPtkaOGpnKj6PMx+0t1jbT+E7VgcdSwV3D8HafY49i3n9ET3oKwA2vkvzEvKDJeFXQ+ReU4i5HCBZywpfx80B7/76/mnBxBjjtLgs/TEGpyBNhyf/YHcM+Hqvs26oRDyXMlYJGT+I0LqGdro/2eS6NZcKMfo0ByvvSrcLWQ7hnb7thwjskrBQlJG/9ViW3elR3YPU2N2Z0/ELaP1K/XBiIiWs4Va078077eh+BJ8Bb1A/wEP8L2aaflExwFSj6CVzGx8AF6uI+8pnmXcsT0GqJNdER8nU78ZTe5UcheZOhrmHhtizgI5oYgmQI5dHEoV+6YiBbiszfGz5QwCpDuQVmRWfyvIMiWWSefla9htGw6AMGcgTltCQHgL8JYXwusNMVPob3Zfmf4txBCCL1B85h577aHV6mpYfQm5x1Tydy8Uk6pLc3LcEi2y7VbC6JkkSYPX4DFyCoJWusfjhnDYpeyy4+V4YkQ5YtILd9Y21fRdzD7U2n/wecybqCBQ9vLRTcN2sADrJR0AS38QnrIpbwK/RiEOBpK0liiIkWkj10EtSdjlvlI7oIvO76XubH+TZRF7SjEO/oIyJetBlhVTLdgZzEg2fI61AtuRlI2bCZMWTfMbfVb/P6wG2g2Rvvxu0fXpezpyBI8/bZDJ4V/V5b2IzyU93SBMir0DVhPMzBTEz2t+qdW0LRb3HKOtIy3Z4ZYmHNnmYRq7oMhomfbwmErt+0kMOfJR8x9Xsi7TzdENKN3cqIxQR3AgRpJmNjhscLqvz98BQYeOtjXu6byylwEv3KHaeU4sNGtIlEJy0lmVFmLJK2eNiIsD8O7OcFuPcTlvkI1aDdwsonaWAZUgfVOMgiu+/Tp37KTBS/72MYo20sSykQvxxdXEcgHcvK5LdqFbjlkpQHMhzt00XJe8NVL3ahJuhW6DlACnsN6raeJ8HXfmhpRN4ZBwjk2dmlh6zDHeX2zbjE6TqhJ621mLIp2i3lG+JKgUN5FTd5a8wUeyblWWO3y+RzR9abkX/XXl3f/Q/TPCkshwt/+OwDGmg6Vfb+6lwho7iEUvSTF1c7erqE/VbT3+wTTIq8g1GvxM3uHRaMbYki4hxkbMKL2pSXtJ9ec7V9Am5UOM0NYo852ALH4fgRjQsz8/fwbp4x0Ync3ldPlTHx+HhgBYL+SEYCxKHXxgfJU9dPn0BYOi3HXyPMqOQ8O0h/iHyHrJZzfOLQ4Do7nIg1jlYCtiY+oM367mbDh6/Te82/XiGIRyRe1hBQDrWTERupcgXm569xw8dXr1EhANqxlcls9jh4fU+DAuKSFmpjFs4oVxzs+HB3MPBnP9bX1a4pLEvC7zTe3QHiKVBMlvw8O9A8RR8sRZjvnwZV93TuapXurRUwfQOPCjMKPFCvIxMmUgNSz+KH84TPEBTwnrEsUwnLfV3o2chSaUKWn1x6c3vyoUodhq59OLgPsr5lgPnFL7b7P6rD+tME7UYw8Y+sH80vudMIVkWrh1u+uCRR3xzpmkebNRkStQ7odAT7F9FbgvfvDUYiWAgOgifT8ACypL0BjwdbuE09HF8RPEbl+S8nzKLnCRYRR0dt7muuCYgtlaRHi9ytpym/VrvVRlt16/vH54ZXxIIexoIsAMZN0Rlmk/0mizTRku/BEP30aXj6eKyXGtmpokD1JHTanePWahd1LZMUEI3iFfA44ybIW0AIz/+Y0JBz4soGrP6uvxpTLtQkJKLks0sASW+VDZrnK1qFr2WuohA+W9X/Oj0ogd5iuD3PEWMNpxK77/2gbUdzY53+BT3eqIwAXBrT1Jui8072Z3TZwhShCrK/+MJYbM0O8jX+SY9uIs/4PdJiY6yc/bW8bFIqRdHx7Vj7W53YJy5B28pWw4tr35TU2YFIKdCIBRjWeECgv2XplQ5cZWJg/f1yxqcOdtqOt05gCRSl65n3yivHUjT+8sFOOM4K/lqJY/lFW8vDd03vdYTExG8x7k3savxA3qHLsb7ZnVcILxILSnXhGpEy1ZblTKRBuYuaUfQsIjV9kI7ZLTw6Vk83ghfujx4b39CDTU2P3yV/246Hu2AU3w5aQn/KwRGCvwbHNFTUEC/Bt6MpFM2c8LZabgKRRhiZChren0L5UWm4BonQLxE6G+3e2Ln4jnkJdD1xPqRz21/4M5AesVL7LCqUWn5hA7riVL9eVcdOK90mEZA2RM5L9DFcPTJ8tQNc9Iv2WFiUfTxUlEpcO8Cvnr3iyGjhM0jNDbKU0ixGp8RtBkEhjD3iHZQnQNla9A5QlC3wA5W5yClJh0T+x3sGgTlwK4/xnavfQTF1Y185ulVS0P3yXom8sMasdFZysSNLr3MOVR6alSAC8cpaWnVeVOLv+ddyhFjOE66fIy/mozyJvTh2KG5882sJe02yMvP5RMO9C7tr563nTNWhd/ovoEr36Cm6eaIOuDkXOYHJjQEdMGjJGW3FW1b+jWeyYT+WyCeR2p0Vf34qtsJj0Y6XGWOlrwRlMh8G/5abdMDuNE9Ju0hHNUwMnonX9SEBU08IugIyEc7utZCi5xvdRkwIJwmVkXSHc9OfmlZHV5k1wZTZ2uRgsrRTlpXZO3wJ2sT4BLHZ7B7zffO1L5AaBYRYNgCtOv9aBN1Z2q3nslH5UAkorA0LakjSrEuNk0Ac+Le8JJzEQyLYvKu2KKK4ekjBxQl4u/vVF6n8cRWUpu944XMPERrmdtIPvfSu9kVk7olQ0RWFPS+3Vvk16C1mG/sbU7aeKqIw3CYhgLW7WLyzLx3T0n9LpUK6wcrcD9nM7vK2OKGlRyLTUe8aSkbRhI7zHpnTciZdVW+LI8uIzZ6JoeuwuIGwvCWr7ypjox6aGAkjZYC39k1IEQTMpHb662S+yLIiUaA4QW28VzjZf5cFrBAhG9njjCpraDet384NUgZADn4wj0pRg8pya0nZ8jVxaW73zT0/RgpRqBp4ZIi4EXMV8QVWa4uw7lkN6B2DZvH9Ab0Fys84URPvyRYKV6Bb1ZbTfRE8bqOqLsXP7r3mFZ0TPOc/PLF2yZ6B32XgANcXqsTz0dy0AYs+QH9Tg3p9dEC8ym2ZxxudkIwxzYhwnZu2r9etqfhJd8smOpVNi7hlABMZBm87QslMCUjOovt1vCHQ//5v0tWqNWfv9fcWGQ44xRiLZG6zF8HfysFt37LlxrS8yOnG/CvtnAUlhJXRUClxWf91+4FplFROGWLv074dXHz6G+DCa8f/wgrgfJXF7k4cCIbVgShH/+gjubr0NKn8IbshfLo87e/I9zsMKC+ELFA60tEOZBAUGiTZCBU5T0XWV9CGVbY7AHaow8yS7KAfFYboQpamKVFwNRLHYFGqlmyRUQhhvoM9BumHzCPQlpOIPA8dyRTIieyUBtiC0OchDvwrhO7GMLtUarXyej9MHzpk1kV3jzRKHmCqYoAiOsKI8uJX0GJNnG7S98GobtauizVrx6k9yWy3TF0PYBtjpRCMSY+qNKpNCXoIaDZFWvEEXoVLPuHUXsfSm5MkTRQhkKtWiTgNen2GQC6B5GCHTlJNlOHDBDThcTQYfW26V23x9kQstsHocSb5eSO7M4QdvYBXWhaomuMtC+Je+OEv6sZi718aZoy/mRO9cXi91dw2ZsdKUGJXxb3YWqS/oo/3t1ANVKocub05ONOolPSm7XKRoOyCRDm1xcqY88luXB/d8vC7D7dZZOgzW5cu5k7GA/s1gNk9MpaxhbvhNcRPiXe9jTLt584y9/o0/cM2xCIkTsN6kxqdXTVaP6Pqz41Lg8Yv+NIuT68k0SjQc6qx6yi3Hc9iWNo5QaUxBKg0i9PQbN4bGFzsWsRo8tbjhAbzVkQCmmSr3WrFiqxAhJmuqyskbbsX9EQy3vJ/v30uux/hgPb54ZvFvETzUDEI5frPMT8EcWKBTD9aYNYShYIhxYFl4yvAu10oVLqF3NeOsPiHQoe21Yci7DkeRhKLzdaPhB9xXksS4VLDENSpIau/PlgJ+50BGJ+XE2nWqw1hkv4bsobOGBnQMHTvhukHR0g7eS9/S+NF7ngBNfk4ZVdwRdID0Dz8fViqhVzaEmICxSIDdkhIxcIsom7xuhkT42oO7G09pmCnAHf0MGuYa1zkpNM5nsxosKfRwDMONPp3gppwK8XIR/FXYYWXDZuqquuMLsF0FM6uivTbi8MeBrB03+cgQVxPGesGDwBD5zvTeLCiiSen1GYxTs5tz31sDgA1eBAqrziCYN1TpCJ+2JhkzlCbrdFlU7eLgb02ESNQfPR9vnG5btZ9Qj92G/1pTMd7+vBpX5zWpO3MuAXEpa9fmBGf0xIWXSH0MBlrpUtQjYARJpIR/0crKsho8nPsIVaHRwz1jUpT66Pp9mVrQEuJFzdu6Kfg4M/8q3MNLyYMKIKmAjwWiMmh27mrxFqi7Dyfk73pnLiuMb1yoMeamwY7OCsMkrFmxx81jVWlSOrTcMiwZtZQnaVb1n/Pdr6jiIhsjE751Mh059MkAqoMk/MJQP2awVplzxOL6PVTtPF3zVCX74wk4p5vgrKmhoIP7XIApRU4vkSA2VatV30ws01+W9pJoHPTXU+SDXGkZEIIPITuTuh1ECghDwGqsMmjs2Mw5j0hE35/YY+UFjTlb0Um7StjWOTQtMQcK1lVEbw0ayGt1SUmqBxmrChNSgsT2crxVDQpYtFLRifNgXp3uKzh+gw1TWxfDJIDFv6UwEgsCWU+obRa5c7mQC1BwzLwfcoWue1BUFk0UyMCzi5A0B3LyGlqdOaci8QpWsmIOQvnLsdnKDU2VubfO+jviaAFdWdsc5GvJVEPOwjO7nJhyq6ihGsqV7qE7jJBVXUrzd2pEreYb2I0ohWO5tuonqNXzxOqNOQy6u0fBI3cCjJGMOuWXHYPb22WKNf5T6EJQXwCy3mh8X5Lo0YUrPRsaW2e4ln78zO8JU4S30qjzzf10tR1paeZgVUW4P0YSHNnLNcxtTXvataGKZM+h+1gwK/U6OVXrDlxXBWJFYzjW1F7Xljvpp0ThfGYqHljyphMu2n9N3JrSS+2Giuqi6KL9dcljpQfo5x5iC1h2mxVXSVOHnw7G07QIjBh3U2pd/tV66gsxUyuJ9p3eJxr3EQaaebndbZZdon9+1lDZI59AS294CbnEj3jUCJor/4CS4LEww/4XDyN6jfNLm4dxhtU/0qAH5wGyS0rfnx0dTlYjp3HjmzpGqCLvGBtA+zDKn6xx/0CvEXC0Mzbo+aJhgqR1mYSppnUVCNpk3c4Oocih9WDKg64NOPU0KSxxEwPWboRV95zCPMppJYEd/+/rseFDwivVpyPwvDqM1UWAFgq8EOJH7VO+KH38R5dJCF35yp24dMNSbnNee4xQSawLo01+pdQKh/bL2gr/8LpykcD0m0wjXOh1fDOAfy0nQltzs6TlGLHYCcwgtFmZ4naa3jpidYOJtR71YLEUPwFthwm9JI1AblvW35yCnBXJ92KTU71iqW6RCdjWrk+dA8+bQPQScxsQvsLS3NcK6S8+Qs1Wt1o0OTV9RaWCJbNiHbAVJkKlYLzrjUFwFdulpt7gZyQWoPAOgfr/cJh4kyyFWPryQIQDKKZTQkutw8a1mxQSe5qkAsCy2G6/Dcgi5so8u/CSnkVS1nKNz1s8XrxkT4IgnPi9GJIG/tE87yeC7A7vpnyh38u6vZRsi34a0ty7yHYzAprF37EWp6su/K44PVUeB9uHHVNpjByoZNnfvsGLkNL5U1fQBwRy450BZh2TTyUlvTl4MfVg+vSO6O3iuf5rek7ICjRU6rtJGsc6A7zap7/qN6Qs55j5MRi0PzjnwrzDd3spCP3zd9MhCsoAEqkj3twx1oCRJ7lxUhRiwVSwkJ9k1Tgnyx7a5tDcOh/USa9/Lwg0s4MtjsPyMic2OxSBNIH4UPaewH6AMi4lRbc18wnZImQ/KwkNZfAMZcqPZogPz0VjyZzuJwOBHvrKNbMPtFsvPdFO28c0r7+3jjhrmnr25MtNwOWXIr6iiUic829U2CYhPgS5ubVn5OQhzJPNCFYsmsLA8nO+jBd0+zo8d82bCZkcxubDeTJ2e+PIgGCM6JgBdDyN+dhG4bdAH4UxCHbYaLbOu/9XVnceUKGCX73GnYMAV82m+12uGexYtrdqaPVvU46nFebbx2AT2MDSRsX8ujpFKBIHUNokYX2Evs3tv6rO1F50HhyTQ/TxmMUFpZZwaRNR6QsWiEIJUDNSxzsDm9zc/E0YhlZxi3ppPxRLBJTogU7DH0+SuskoUIiESVsncTWmjRWS3UKDB/xvRBVJoDqgZit+IrH3pY0rWY327xiefm8Oolz/TO80Rvpx6AD41o1LxqvNqRW7SlnokgZKzao4wYt1+NBdmTomIyB3h/HKWD3dqChX5HVT3hKP9HkqpyM/yqi3iEdyXy/56YlHsb4tuhztT12dWC3Txiqt+f5idF4LB/MxgoNpXPyeQQqPOQaV+w9noA0g4HzxYMSZw1RNGu5NGWJWZCd/KLAG+G0lK/OWMPUZsn6dPdkDDaXFCJYuIXVtj4nWx5VSzncRyoHKJbIT/+5yFJgzwQ/aTyfjyunngdbleqnkHOLsyJpGuS0yIBy5yxMYBfzRJ5tZ+nrXfN5qDVU/cEXhnGOcS2+4zbswK/OziOdxPKA5COcr3LbGcAzmMg7MNgHmsa8o89A4STb+axjdad/fh4ZP7MXtzWHiD0TEH2PZHNSJBYVjpviRid3FiU3hTBTS6x62mLrQB7y1dLz8HxR0pkQOLlRIbeyjE1+lFSd3xT0uBAxEj+CYlt9KOuyDxdVAOH+WXXQ9j6N0SE63K03mDE2X94ZHEwvHKqWjNXHtpyTBB4bRpyll5jQfiY9fTrOC/Rmtne6kHOZGU+YOtfzhCEP+ZOkUa06oLvOH38q7+eCA6494tebr90PbVDtwV0ViAmb7jWFSS+2vyzl7PwUB2XCpQiP+/BQrAMZazHsiohg42Ua4VECo3L1ElBt1NYB9g0h4lgOxAC5Pvhncr05RjB0fRxVqrWVcUtgGQBZxP6Z/sA2cVRUu3udMOomMSVGFk2ZV5p9Y6qN7u9B1PRtDFp1xyabesoIU8J78gwHcoOlDrmJZc8oXGaaPEFTLiAbFoHZ1Y+XJEjbfaI03gQK4JfkAm3YVRBL+9Dx+yNwDDKf92T9FdodnZOo/GH0VKtQy3IwSROKZ6OedN1hajRn8o3ct5cD+R41txNegehlcHGdKYIO8c6FAni9TiBk+sQ3an76yrDiO12iK/l0AcYG9dY22oQnQVYxp8yDweNvRs8oEWuEQvFqsd3MBZRouQ4hwlYG1tREIrwCR+YPO0b7lqjLo4eE5bcq8kFoK0cd9D4WVGsoaSfkmm8YFvSnC+4/vDvTcrN6KNLOS9lbERBXSzCU13lRGXv+DefSnH9e1wNIk4t1EG/vjcvZwbjYTZm+Vx0uvNdMq+RwyrNv3D2t/dfR6lqU3/zREJOEwSVGaQ4WfXVkDQ594dZwFRAqab9DtNG7nXs0fyx0/shbdJKw7cwleKHpa+NvgVqYOssub5pmwtrQjLWm3+0acy2e9ezgbjjCv4Yz+bCH6tq4J7UDDQVO4TzZIq3aWHRGuz74I8bl0UcdzBeeax4FeSNrGnVHWsFmiVpHBXnqbG0oGQ5+gYqT4l8KQm4R/wR7cMtT9xvaG48v0eGRFR6S/acvHeItFdTVDd1V3bIGMVq4Y4CmxUjp9zQeI9w4tYOLABZECeC0YmnMhmaoQapHJYc0T58pWtSnRpslq9Of/tIAvqpV8WP5vxeYesnJxIWG3XG/yA9PZykJQT/5Db169Mr5W6lN5va8GLyshdBNNWk00YvyIY83JOXQGHYGQZvzLGEevEIpxBVxXsZYQzo70Xf2LYOTsHuLDmV8B1osq8wZznYLsxV4ku+YwfFpBOzmnxWaoTsbLroeGz7S8qLkzulfn5C2/g7xhDz+LY14kRhzRtoLoNdACeP8a0cEvCoUjNL1kxHrJRazaUmiutSzCESeriCriYaxZ65J9ISDnmNY57v6AqE+fE0KDxjl7AufOrNeamj6c8jUP0vZEF8EqLwDuQmVoVaOjLFKyln6M+irugoL/qmEZJzOjbEss4mTmHh64+Pa1/rcW+iuwfXsrPdC0UxDj6jwWzK8w8AxQIQtJPaDvdlIkppM8bUEnFMwTMQXJS6IoitzscmYEl3HtnWLkPGuPpursJnc7YLl0vMPZW6oJcOsUY5Ksw46bxMDjHtHwu93qD4qo0P7mgwTo5nPG/ek4fA4ZbhII7jl22fOMRhbHju0koKkB//2/mfN5D/qKCTc3AiyDZS/7KBBVSRcGqYF8IaLGmTJsQ1H05K3rREb3ToUZe7Anq9UWUeZ52oLzq9c+t+2u83IyYS2X4er/Wq9Tuov8i/ZZS+k3beGlmquwpbj858yY46ijovfDyVWuOnIOgEdqMzwZkfsirZj5se/OcbZa7/XK+0eXiFns7uXuLO5e5GjfXzs+fpjiR/7HVUcC3JErRIxbi2fkOpDhnj3sbmjlTrBAtliGAV11P52A6emo+UfgfKsIvAFWNxH9+M9yTew9XA15pfRErZA/QGQHurPSp/H35q0kXEXh5bRL4fKzvy9zxq73nwK5DvDN4RvOksXb14hhGIhEO/xfdufQhI9aG9wgQ6myIH3KVVizC/eYrTAuuwWrW99viUDxJwnAZUi2faUaxEGz4MoAkH6i1+iYM4ZGTlADlCFl4UrJWPQuOwS+VVTTX5Ve+4P9bkUEprZckbU8OpU12fRNJytEuYCZ7hv8v1scyMcij8nsa5uppQMlG77nttcrG+IK2dgy2EjlvMZjkXmw6KiriCzOrMNz0b6hJlcwVRZUMZWDLXlNbsbeXw/6+pk1IdyAPn0WiNO9nI8O8AhYu1NVkdKNT0qRemkM5t64bF/OLliSvM7C83RvDygT2463RmlZdLRkvQsxDhoUsMEn+9LvLiWByIJ6c7uzcLz7pThR0ARji+NuA6rCZ2sfI4MM6nQtteAhSAv9DFMfakMeThvaIFnuiMDgKCXoF0i8LNYJmLD1RHUj3cc79L/eP4JJll9mapZErkbFGUXF10E0vumjAhXxvincOg6uvlMveJrGaz+WqufW6N4+hP+plC/n8CIaKN/BGMGW0lTHhbN83210nHkD2XsHYgdkebbGjuI3EKGLheJzygofJam9393AD2P5A/7SGo85TPu7tNk6Hyv2ZSysFPxsiqP/MDX1gMJLcQxo+pZ8o/qERqD7wP6O0vESPE35TIsnrYm1e6Y/4Sb6p5+9ZG+TVDWpa3lalOfnKT7H66Qv2PEq1qQg==
Variant 5
DifficultyLevel
688
Question
A positive number x is multiplied by 5, then 10 is subtracted.
Which of the following operations give the same result?
Worked Solution
Number = 5x − 10
Consider each option:
(x − 2) × 5 = 5x − 10 ✓
(x − 5) × 2 = 2x − 10
(x − 10) × 5 = 5x − 50
(x − 5) × 5 = 5x − 25
∴ Subtract 2 from x, then multiply by 5.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A positive number $\large x$ is multiplied by 5, then 10 is subtracted.
Which of the following operations give the same result?
|
workedSolution | Number = $5\large x$ $-$ 10
Consider each option:
>>$(\large x$ $-$ 2) × 5 = 5$\large x$ $-$ 10 $\ \ \checkmark$
>>$(\large x$ $-$ 5) × 2 = 2$\large x$ $-$ 10
>>$(\large x$ $-$ 10) × 5 = 5$\large x$ $-$ 50
>>$(\large x$ $-$ 5) × 5 = 5$\large x$ $-$ 25
$\therefore$ Subtract 2 from $\large x$, then multiply by 5. |
correctAnswer | Subtract 2 from $\large x$, then multiply by 5 |
Answers
Is Correct? | Answer |
✓ | Subtract 2 from x, then multiply by 5 |
x | Subtract 5 from x, then multiply by 2. |
x | Subtract 10 from x, then multiply by 5. |
x | Subtract 5 from x, then multiply by 5. |