Measurement, NAPX-p169635v01
U2FsdGVkX1//P72O7TT3fZii83PsZZK/QE/krU1fp+ZUYYi3SyD5SFYoDeX0UUXtjGMQ2BfcxxtoYYDj1BKLwwEjI1X69UMviPbhTnurNvUnrsTnGfEzxXXnQNl3azvZPUdTb7b0dFvO/KSwX0y3mA7iJmpqPzSljzXPx9sIPYevo0nXPiQ4+mQOuxWWqcTtZv+q5EX/Exab+YMOnxsmth3gqKmAKx07Hj2BvoyYIcSCbNgW8AFDdTBYH/eFaV3jyVCagJz+Ks8o9r1/Upu3bw2nz22wmJyJ9fmr5KetcPXj56F8yepUvbvc8KQ4WsaGt7Xb7iKmqPZr3laiOHdJRON5IyNN6Y38PWU6aUX2wmlWMWx5hPlh+P4tBKkot5rJYTRuqZIYuju+Veuc5u20h6ldTXvleMELcw1Py1rNjyl5QJ60UQ37Vm+BhKDfaFml/lXcGigoNN17afVHbdnrJProjPsijnB9IadVRZVoZRY7vPmFAU7akvklYoOgujE9Y7NTtOs/LIx3ihpVKqqa6Hhb1hZbbIJbADLB4EhRhxjXbs/hR2kUzzum4v8IA3SD88qrI9uyWLLK9uibSU3lIrdF9f3bzWMryO6gNvTXQfNGRc2vIX96ep73yWMfSzMwC7xZvzZ+MKb7Ool5mr2lOfEX/fsp+qfXzgmmOBraIV/dz9tSsHnGPfjCbH+DZ2miB/+vm203K0Xe3HaoE9DxTH5ys3jG1bFvXNHD/7dD5FqjfDe9U3ngziWzjhFQpk3utzXemES+2YkbaXrhtvjz48+YthnM6wZ6/vhu2i6kYVvrTse9KYKQrRZFo2LIjeGBNBJZ4Wp+zFymenF45U7u8rh1sILNmzK4uxBLqYZ3DX+ud6mQkcZulYEcRG5O77T8Cwl1y6HuCFPK2+eAg0NVVW46QXEr+P+G0KGR2eGi98pD83Wes1WD8OulYFkuMsXfO60rgBUe6s9F7Fp6uhv2Q+L8/vlkJEqWn2dU+gjhqsD18SUrzxBXG56EztKlq/wfIj8CuJts6uNBpWZZvuilWVlqb7O/pQorY5bISCZbU+mervqmM/0br3iwtitPSVHwTY2mweqe/pnUcpl9l1aVDuhLr+SPoB8odxXAzxAJvrongKpfUqk9mjvgCPG97H8bzYpVeBmo9xdFqgQTvDSoPmDxnnd5GNvOUsW+qJTW3GdjY102KWpSuIYResj+u5/KfuJefBOAsqJBZ278H4kUghGomaDpylxsbMFkJNH+z3n+1PKxuMMIbbhYGBOUmOo8kVlLVmjPTciIX4qS7/LvBiLernfy0xvPODME2vf3Meg4FmE6fngzBnM+wz3U0W4ld50haEQDwVNf/Bfo4CgLXEjoG6Ai1/g/OFM9f+wNWiqzcvDpMa+ErixSaelNQvMF6NFyqwfpgzHK8swXo2BRcQa0tugHjiB69/2pr0yk4cVtrt3HTg1+qp3G3Ea6hHbgRDN4l+xxEn1NdKEHzbX860gItzS+7XbZ9pX0Wcsa3c/HUUXE7MAij8NKsKrpL3iyUNV7O4NwBnyx3eHbkKhRt7MiixZYswddySwaW1scTCQ+dsmHA3wc7bDuPkpJxMnQeP5xbrn2sgbxUwOj1Rh8w1TbuFoQHcWfOQgDmrESktdLM/g2qcZl1q6L+aFP594AYdpaS2LDB4PMQpaNNFr6fzYjsG4/3fXk29pSP/42NBE8S6EHsOfRmYsZcKqbTCcKo20TeDQw+kI9jFXS2e+1wQbQ3gKQIGhukQsGtb7INvoU7Zhn4OXDaQC2UKHv9vs3HYPXEE+I1/qf6A7dWx8WuCAPOf6GoPClawH/YiL1CFyQ+06bSwhfy/z6JVaw98lIBbD8rN6TtddA+eaoyFVwxpQVlHTVAX0Q8zfEFMFRSnB8fIfJjc9hVG+Xuuowvq9xjtL5ynDgc3DjbTXAXJN4csbMChrKza7bsB2cjgLyM1upf1bLPJA3vfp1IAOw84SWpC+kS5/Gdv5tqe2EtUkxGSJDxMZvby1o8lV9bqE9sKzAUghwYUKnxa0Kp/lWq/b322MqT03eDJfAxKNKnes/4z2kdicB4kKkRqxp5rdYR4PYnN+xEyDA2nWaLhDTs6FLPjL5M2Qa/vz71vQWnr4Efc+ySDjnDanhqIhgtRuW25+fOC8i4kA8KWjOS7y3oYHMxmUcvsn5LUhSUtvnb39AjX1dHXGWKfgvMHJUaEAXWy9JbZYGLc2rJxP/MoN22rHTJfzJDJR8MYvo7aorb34mihNCGWYzjb+3IOrupOH4+WFH0AEBUyCzxLIV7OHOO3V/QLMyb34ByPy8Mly8COOyo2lPnYLvmKXuD8SrdVO4ZCmwU5e9evS++X2YFboB1QTz5XiGIr4pnCGYL+KNx8ZI3DSK/8mq+nSwec3FkSXBenGEgwCtvrRDSqdomfbHvYZIgF7fZvh21I7hB0HEWCpqFi63byH8/CnEC6wYTTXZeI426vhM8NcjvKgJnZwEuQmGkHb/68K826uAvjzeq8KP37EpUghe04WgTafqFvOu+O9t8VxfuVhQPBOqbPfg1OQNM7FdjmtWAPvMz5MQcPHShmR25AJqtO8lSvfq7cZ9BPAI1A8SWJAYyXzQNBWHQ7bhVqBfYbASJ3jY60sAb4rgYma4RWizJBWQGB2ez1/SlzKXAIgM62qKyi+FLxz1Qf7m8GPJLFYsSJ3dcAjKUyM1jKobY8ntG1h2j9ytmXPEQrYM0IIMb8RJeHXXwmgTs4VsfjtfI6oHanSsYaqxbA682uwBgCcg+esiD7V4WrkmsuTYpdk0zJDT13WDV54D/wLJEg3YFVe1JNWZ8BEVUb8KvjfLWyZ+yWpu0P5S2nQqh14tOGBXZ6cadx5Jo8/+A9WZYwQKzQRMtwy+lvff9mY/d/epzBc9T6yQ7xaTEQ9qnsDC0aBwCAxG1dFc8rY9sEAAzaFSlvz7LPp22XyfqMFYtfpUIs067ju/UclB7zOuCdz+5O0J3/zr4mQBxbqWC1nEOCxsAIYnDeip5dPt4LjfptMVc6iuh/9OWlmwWHstTE5gosd49nk/iINxxd2wwPpQOOxm23E2Ap/3kGpFFB4tHdaYjZwNKOWag0T7Hk+krdaO6pqOpKCwhAMYLsDPjPkjQQLh6Ngd9evIyzfXHqIPmz78zCXboS/bHb8MirQ3ixwmHhYI7Z3L7L+SKT6gLI7DHb257a7YODpv1GFn5vODXq/j/eXg/axKmHYsXFtT3xgSugEh193pdBeP0QI9YVAabjI+FWN51uGbTN+Y+Li8h0uMExK9+/zYzTbuuauiJEOaZyq6mvjA2x7WiXiIhOeN+pKtftWGVZqjH8sd4hXDrOzxko7lSJcFHQJ9QmPISZZWRLufq+CjbkeKE7T01b0vW9tdb4g/Hz7loW0S/oIHMkVvlyuFrigefN7ex8NEZ0u8LZSlh9WEzb5Z/Z4SZ1xGsYzu3FSKR/8owwj0+efza1m8Tj3Piem/ZHNUjnaCh+zRBEkXNykar57kb3PQFYybO8VCH3gVUX9CXSE21Cbr+vu51DKHNSHLsG/B9Gzb7TPR+4k3YNqxNvlAC2dHegRxtL4Hik3TqFu9e2UauTfbkPT9cEixMO1P2wYe/W9IRv3dUelLWJbXXh3uFyEkU3uJFgmA1owzjDqIybd+lYm/y42y+H5KB5Pbol0Ux8r5Tq4nphvskMb6O2olzwD65JQFBLcgM+ZhnBhkQmlf5IcRz2PtvfZ++nOF4Sf4hnT5Vu6mioloC27K5lP5p+5RBpTZUXU54Vi0WZYf1iNFCZkYN/SIwbq2Yb48Cf1nI6k4+8B9teookAaS3FDX6iqWqLzRs7BL9R+arAcK3WbSrFpSNIjE9Ax/TnbnPrR+IeXGwYUPsxFmujEb1Ph6XJOCYx4mQP1/Trt7iWbAn/eyXikwKlPjlXF/BMFTyL1vDh9g3tMH8WECoUnItOBurou8RUUmBEdnUYivRuqXIBS+ENW+eXQW/NbnxIzUV/uTaWp6c22EuriV8c7j1YoKO77fs8y4HQKpMu67I+RjmsjYF4SnWL7k4PnmD7MZFv5hxNHlzGXV0eaiiYJjnRZIX5p6zEy7qGfwj96mj3KlwjjU+mUF874+QUrAFjz7IWl07AEXzT/Kl3elNe/6/jUmKpw3/y/tsPo/LlO5og5Tk+ad4C/mp9ZrhvpB4qhO6JVcofccQk7KH4Qamk1ttBvaMyezAwQRo3YIuex9kM2nPQuEVTtiCbFQM7KZBVDUa1D1HP36OyVvqeAgddVpzB6rXc1zFvDvymdzq5xygDhzYKgt22POJaESNFKwkWVTTpzccpHJxlVq9027BCK+2vtPHJzYxGcDnrX70+lNM6TRWkL+K9QC2L3HAhIOaHmOZeS/1rfyWoSsuCQcT8fqjVxMJTGyM/6MZFvvNBK9os09x4Gm6aFLWi/VnDqvd/9AB6iyDoZfgSQQ/lOLKGKx09axMOCi6iV7DgWbjkQTLDlezA7GwvBZwCMf1PkhDDhY4etHdK3c3q6THW1EtZjMWBITvQKP0O4W//kfR77ILoTkkceekVgjP3OdRdIkvWDzn7tKR3oJ0dD0f4DhDUDUIRm3f9wI9+Fob9s7P7PPqloBqStejXhiYirkyvOfS6RsBRv0xYkH7N+lcj4hYibsAzH06nW0YtEsuTYYjBO/Cl0UH18Ke7dXwGQ12EpAgccWF1gEwBtH49JuDHHe0WjiZD8M3cIt9QNbJpHZaDtuaVVMPSdeGOSSm0zxNPkTKqUsyaQUcBez1Ga3v/L9Vub9tAGoy6dnMl/CRHd+xB2pFDG/WxsXMD6CSaS9nAe+6tByJxjXE8iiAyTSIp0HFnYWWC53cUv2XwrJ4JjNsrG787PSs7gz0lp8SxADvgU0RVfde68mjuzu21OGgo56wHSnBeYEVqZ/B9xBJlLyEC2tsDjlDBMKgLNugqqhqTx8PBeGFboJSP+es46bZd2TI+wPurOaSDhU6iXr8v60UhK38l7NCnAyihVHwyB/6ZHBQNWt9bbAvP2dvFH6bdx3gobTVmr3msH0M1Yw7lLAeGg1D63UPXyTKwksk21gIkd5Ok7Q2XmbDKYoPBWgMd5rgjv+nQbwOybPWvCRfMJFlJr8kk9P9G0zdmkuUpVRPohWuyxoOxrvgkEFsmAs+Io/N27gc4yQNjYNnUAaGDc/WzLpZ/xgW4P18+Rc4AZPfqkmtLkg2narFtl59AJHULfbWE6Wik8iYXk7+8lzRbyNjYyNxX828OvOhoSFu9vPxZ2rvytyPAVB75bMro7GBVRY5fVmKpBm/6fqmFNXmLLm29PGsdRWjx0aaAnkztdTmo45In1AMY+WU4SEXBjPZHSc8O5prXvikJBCNP1q3RgF84Gv4+KAG1IsKLH98xH30hk0AKe6IdAN8dIIcD3cuEbOGCRH/SDlpWH+6U+JwX99eweKVcoNuXTNLEpung4LjgNFUX5kLzDfISCeLPTMuC8j0iZHAwjRmKVDmfxfcBhbAM80cwlNCCsihuoOoH/UkVbAyZTkaS0h8GIMTuX4I8v9cvPQ93cBZF3TaVaRHC06IW41EMZHJsbt1yUpVZydVE72mS2TsS7rRbB9jV2i0CQ3MpFuBaKfTcvhik0Ta+ZQIy7uIdAErb/NLErGNS5nRYl4AmbAlt8xUMICb68c6E6j2AAdloikYSKJw1LEzvkchiHihWKmtExpVF/3spKb5th7T8neS2rU25gDXi5S6Vrk+hI7kn0jW7o2M4oMtQO7k8dfS30IT2IPxKFAHfA6r04XvvUn7YJFNs7crlfL7iQl1Iwz4x91o7e0E26WtRMB/wSS+0xVYLoYwm7PKj2yFuZgGTW8zVadwevG6zhNYTDN9VFai0gvW87Z4iHv2iGxoxxQL5UG1lkwmciVy+8YIBapG2YDrLHIU8u/s25x5vZl1FUlfFwbdIKMW7oI3pLQJMsdt7/yNcOLSJ4RQSchF5RdtBqtSS5GTNNxvFE3hJDpUnHr5URsEH1ngLYAZo3vTe9gGVkK/WOrLvVCsCLHmdy2qKYHWenDCjTVu+vaMKU3NbgCqMrBKRUNhDKknYiBveRlEmxBeHjfZNStjjKkvt75Y0Z1wWXZsipPFJDAI5jEu0njQx2cNr4ZH5ubOjl8ZkDa/OG5DdkyJJluJURZCTstmHlZyGdMsPgPx/bbvANZYJHM/W6gCDtPo4/f3iUH/yH3LdVxuSV4OGncjHvo+GjQmu54W9KfBjDSJG1ruSMR/BvTlP1EPG2rLmGPAZJ0OBLSxEPt7m7/SMfa0wZkyAyfDBMOxp9Tjhc3A8Cf4gCCycKP7u3Sfbke4TIqxHiD3jc04s7wOI2zCi80ee77FmXuLBDKT33hyKo8wgotE5RwU0oXPxfeaS0KMnops8xayTC2WQKpz2qM2j25Tv/TfUw+oWyQu9Ri6auK8wkAE95AcGFYfub9YqTDbl2c3raMgOkfNa5MNU1yvq/CKFv1CkLgznglHqPfxEquzeVPcqamelOUVbQVMk6cabtx230F0x3UqoIzvM6XOqkyfK/vQ9c+q8tU9d6zyIgY4zsBNBF2Jd8sLPAu9M1xQGRvAvqaZlUwjKtqmXNfVuRQB/A5rfhJN8HS/8ziWesfHVKKXal5D32rLUHHB4MxG797Gi9tQFThfhNMmtJbMo5U9x8fELDGUM0zGjP45yvCFecgGkaYFUYgWa6cwIsvFat2UjQYwxiH63ySvytsZ/69hjbmi7g9FTFCJIgC0CCVUCFmUm1L9HSgnlohjcH4jKkaoSSwaX7FXN4KJU+amRP5IeCbFpgxhqvdX/1M3RAFKCAdjHaL1eLEJh1c5aVq+9DwNyylbAE2LZZ/+kwosjXtra6k0J+BMzqsLM8ueyIg8/3h3FSo0egqALOE1qmhhpHDC2uHVlmKInhov68o/UQIkcWC5ngKjtriLEBWdqigZT8v7cpVXKFIHeRSa9OXpzdIqpPaU0uN+Y3++UWWBNRAwmd0dE8/yOVrMbWuf9GPDTEsMzyo1e4Ct087heP96T/qP7NzgLnKVD/v8IbUNkzRjzzxhXGPqKFudW5+dsp7L+zYYDoT3KK3BCGP34w32iM7Wykp7KKYTzpCz4vSy0P3TQqBPI3U4ibWcYbgsmLprPp9JW6mMgiLQCV8RlFvgj//eAvG//pFKQfkSVJl/Q6uoJ4KrPbKVWB4DtrxcIto4jCVi8OkrjgGaMEpTcha/TcV0CMLql0/VR6LJP8upF+NttLQxkZXNQb8oAi4dUkcnLF2w7QeX+6rYzA7CVyxIJu1WEhNUfcimurW483L797gdHGu4vOW5NRKSMErZdGgSNua/13QebytkyDZ/IdbuhiVOLLBeREPm7Nt4vMCETuRLdSdSQ2++RmS50FJkeB01MwyQOz7UunseCrQ0v9NBPx11ZnHQWiIG2qa/5T7utlckPTQN+LQ+XGYxDAfdZ2pVubUuwhUInfyCUXrPmG3a7AjzDRMqnHKolIzYIAW5T6WrIZpmpSJKVjd18lg/vhM+mM8CjdnE5g/Mvpzpn1+lCcSTGWAhs3c0GpG8JkxCYvQuHqf/nby4Ft55lrAmJGUWUDbydQlgHwKiiGiezFrq7hO+Q5qLUjQ59x5P05ZU/ZmuqNT45+q5K6UaEkEKfWtj5ruNMTMyaCbgBnhtkLQ+v+IG6CDLlkHlXAE0CKycgdMS/QWzLi4NmmZaAOQ9kPON/v4XV7zGtePA/QD/x01d89ifBGCJ7bY89R+9gk6oO1ftetZJTs/8eD03wUO627OxAhO68jJbYttjl1SwtevIbeiDKAFcwHlhDNJkhOpEWK1oIF+7bujWx439anDrrb+nhDjAVcyXU+u9COoV3QGNTZsGvRYVxfl7cYvkkIvA8W2DoExBz1TPTRqu9QbAf+HTrTsY5NAjyQdTgEBvbMfk77gCBDXcgsHj84lVuVwMRuOaFllRmiZmMDVCSpXE9D+k++e0lwyRbTM67Gs/3K4we+MLK125zjwZFZHsy5cp/4L+NPB7YAQwa5N/SMHjNa5S/LHowU5wPf42mXxakWOnLzl4aU+UiBXvBYRBDuDBaWoD2H05WU2TY6O9AVSXc9pmTLRpSQ8RNcOZq/U+MHfIq8VosfR0ffj94Yj+jxSZSdLnefav7CZHbFm7tJLRylBb9OVWCGI1bs92B1buL6ekiXTEHaXSu/gGnElLTNxawhFQW74rhHyIuq3jhEFN70xF27FsojKyUTqSvgHKu5zj1qMruMK5U2wTRBBXhsARb1m/dN5G43YMUIihmpxVAvBw1yZ7hYXwyYOZZhkuOoVmjmw7GwOTZkw6cUffKqjEztbJtkan2vMlEg1eWsNM97vmqjLzp1mWXmfd8t3Y1heqtrXoqcBCHNd3urUqve1OfrU4ByF95LP7Qr+YgSUETxDOuMBfNDjkL9x7tgWC/1AihUsPx3EeMG/sdDXQcFy5f7MqQRS80gkGqOPl2bugLwMVWxsbOhTGtfeqHD6VBOhixK4
Variant 0
DifficultyLevel
542
Question
Two circles have radii of different lengths.
The larger circle’s radius is 3.5 times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
Worked Solution
|
|
Large radius |
= 6 × 3.5 |
|
= 21 cm |
|
|
∴ Circumference |
= 2 × π × R |
|
= 2 × π × 21 |
|
= 42π cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two circles have radii of different lengths.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_62.svg 280 indent vpad
The larger circle’s radius is 3.5 times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
|
workedSolution |
| | |
| --------------------- | -------------- |
| Large radius | \= 6 × 3.5 |
| | \= 21 cm |
| | |
| --------------------- | -------------- |
| $\therefore$ Circumference| \= 2 × $\large \pi$ × $R$ |
| | \= 2 × $\large \pi$ × 21 |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/lDnFt3Qm2FtrE5igUUGXDP2c9YHm6CuYv8W6ZOcNmGH6o60ba33qG+lJRcMqUqouAt8+Tmm0axKxc6BaLNAfE/oXmhaaxFFTGK1JHR/BMpM3bh+10nooJDx2yc6c2fW+Yf24Es+lQX/ALgcSLaWkulMRyhQAhh8mOZxLv1ZqJuG8+Pc99RywhaORIpITCdu/WOYzWs1sAucJIMc3gotpjPFVmXCM/c6FvcpF9XJll0p3PVOtefE+WJPI5WQOVgLcHtzdQxHWCIt1SP13q9jVE3FfiK+l41+aN8/GtlX6MfS3nrXeXZdVR5Puz/wH3tD0JvuzuhUVtOvm2Ft9CGuU9zCkSCWySf+uFIQaAqysrYQ3C32TRIlklB9Q9kHa4Ceq3lUJOtyQZ/8PqFcmMN8WTxDDQWMSqo+3Z1IcOUxRpFUROeLk5ZjH+MjdsyIKFCaKMlaioqVzwri/w6alz60SiiGOe2rdpZNWbJ7elQ4/oGQWrzMbtUSJ9IlSdvsDeW8IslYqJh5lZnxw+UxTiRCE4STh1F3mpNGpmbCbd7z9cYIFKVpUWJesIggAozQhqUUIcaGbkXhZ5K0zoep2dH4cY5gOdTBhSu84+04qJeZ5KUkCyAedGNg0QwhbrrlXzQUk0zNQ/Lr56/Eo5gSOM4bry4eEPSbrIP6TG6c/P7h6xmYanXuwk747VWBhcYdWkVS2pvvJbOZ9rsr7dFcDe5bB3g6DKCvsPCRNR9UIBoWKvp7NaULHZSPDca00UI2G4VrKExFNDPoqWq/WGzc1W6AAedxLRSOgu6evpQOcvutvttzEEaJkK8OWV4lN1LeYSAoWUgQ6mP6s1/d6aKs1Xs4Nu8v9SLpqb8HRTgYQufYKTLktQr1C/Za2dQGehwdbFZeCUie+CDvx8oX9mEyrrvdeg0OP9jBh7UVxDHLIy5pcb3VWmb+S0YXP96NqM9wd1Q10cScxln3tw7TXAMoDoznB46YVOpTWUwTP1h5Vyi5BNaS1Xng6R6ehz4SBxaX2EYYOxPpdAmGX2U+wE14axan579i0h5gx/gm0u+l3B2gHXuUqC+s2SEjSE6Qi/sQST9aEm87DNW4JY4Y9eyO+dsel7i3vR52D9BxJ5ofAR3GlyzyLQs2gNKpd8ROgBCEx5behNVEAFMuLYZKpXx1grn+B0dZeEfYCGPeAUdXLRJiUieCCt+DRuRHTPlbr8YRteIbeFbhK8FnN5xS+n+4WVArWgatmHrF7pSeckD718dYfvXKTcVqNzzvnrZgrZzoBuBcz3mCS/xUXZ8Q/ZJQdJJlQXaOCKaBlD5EDneC/+mlsyiCyheZ5zm+Ryv9Amx68TMQhSsB6X6SuLLngfDqRttVGwX7uQfZ60eWVNXnToqPz7Da24pnbLy13VwnRPnRBIYvYebMuqwUwemLJFAECXdhAnI7P8bKnL0aP2h+cvSfW2qqaZ10bfvK9KrNu+QoOlvkSI7y/XJhvWVshzd4k7NHZ2xCer/n2+/4LEJLmWsuxUYCVe+rYysI1F4sAbnVSs2W3ubeeT5LrLwBjUKho5z0Y90/8Edzx84yIK/ir0Ps5Jb6z4ckPOQ1Uc+XZOjj9xbcajwQrneI5XiMMJNits+5tGM9f84eC/+BDt2Y2uyRZR7AzjIEbJFSzduSjIieyAJYHs7pmg66mReCazHM5VFEb1st803cpbY3FUEgTczwNlCU/S0JXMx8dB0SfxFQivtRD4hNi23AhyzJgE8H93Z8jzJMbGUoqBzH/xkLWrGHcqnkO8hr+sQMSEsPpy7CrYRj4gZVwRmC1APVITewZxhXs74PtjHKaaWRzejDWcGYKC+YpnQ3/wqUGorcKoBfK1VB6hZlkMzSlMnJF3UkB4prgKQzjz1g3VXDl8wPHFQ0UEFsUkvloCswq9xiqXnu/g/uO+YtZNrZSHp5PRNBrwNGlk/htUIbMNduFKECzTWRZOD3y2BRxVlR3wY/wNYTd92FQs/7DJuQDS9yBl98kjZl3/o1ChL4Qx/Zu/cpDOY20TJKAlb6jbCM0l7c1yChjHPCHdsB0rQmWFXFydfdxJWMyeGA2qm/oSNKBhjhVi+xY0G+dWve/GahaBgmSkZbzWB2MU8V+kcV2NoX7ePjgkw73jP96AXKUMsgpPEVu/tsT2RbvWT/1yHFt7ubTdSYNUd2sT0/G0rYJT01ooe2F+dGaUXaNKTqRp92bOXbaCeT962kuhjfyMEqPwJZQEtNZqczTLqC6M54SbV6qxh6zG0zcZg9FTr8haV3aIPNCW6S5NK9HisAcAevjwF4dTxVbeOvraz6qghoIzGrV4gnnDDQJEdITywLpddXURQO0UmOfnGezhLxoD14tlgjNPrBtm+LEJdG7LLlWTjri0R0bS7Ran20JXKXv1Y9gzkImPVrzeWf2fB39kDsWkOUG/A2reyTHbBH+HFdcl3OfFWe13p2ok4auvW5PYQTQkgQAgfrlieqWrKzZ/Kb3Mirq1JkLJYNu/wptg4YklLV/ctRMQv6ldwdUi//vYqfwgXop9F0QJfOmdgEhlTsK6nc+2SXpg4Fas8I21wuoJ0Uq99AcVU1kBtJ6NLMAuJPfj+cJo6pXqMkWHbv9qqfmpYfczjzGQeEmuTUqMXbWPijD6JLWkiwoYcdKS0vcUewhHgAfYdLf4ClZXySQRmcoPNI2F/wZGviU+IywRiIN1niC/JWzgg1BAXe0COGZ+Tfeg7E7lQJrETJXofrPFaFnIkhjXHc52yYnxLONcRuY+5zydBVcqP0cw8zsxF7/fXqaOZiyN9wj/XwCo2qNyye/IX8T1arkV75o/aGn0kkm5VZ28l5Nq9cqs5H4d2iRFtOVvyFEN/H5WN01EwQY6jj+3DSzDwedGjyx5ymYVWLN4R58J14DjjcfGKHzs7F+SkGwNIoV8oBVvZqU7XmC3Mk9NfGJHNHE1JSUqSvH2wdll91+YdlTus4+l8Y/nZQp6vBQHkhtyw8eCy7HgWutOBPqgHh9WfxgYiu//xei9WZ98trqHFmW+wXv2gZ6GZ7kYz9+VzPrJ6I3Dymz6fnyOQLisW/zUKhLyTGjx/1PpLYSlnrXHAjg+VHfRkIcpSgpL2N7J6mMIzyUihHbrQk85d/VAWHGbncXrsvqrngcKC2zM68IDsC4JRXVNyoxu9+Ky1IvYpnivAyvfJmdUpcI8Pcqn2IhMqQBQuRISfLyFU8vtadotbCLj4Cl8IC0xCvQoA8vVqB+gPd+FCQBwHjvYPhe/RCUA8kcW7CKe3SUqUCzvEIAsRNU+Z7ElhrCKSYSV8RavevbuSR0GBAocC6dbaGIf7Y6vDW2jaACPZ+MORAya44UuPjbMHLNSydAByez17yxUKm4YX/pBz6PThxQ3CbFQ13PljKFJ3Z4hFNFb6GyFksa2XtYt0WmfIw3jOwHPBrtSEImDU3phUchTwaNlonBco6B5gaNXD53g0o9eWo4D13RCdWGVNDtf/JMP1sIWKiYedEG79kjDDJZO7iIEgNUqUxbUMEDXk73qDSQGNNr1tJF7n6Bw38viN+Sl9egVD8sOQnVqiHu7I6WaJEhluE/ADTrM5MZuuBDMrFFlhFSW6V3Mm5nvEaGvPdathIADqJN8ks+Tat1HIxSIuWK/x3EJzb70XQV6TEq4TakM6GY4tMFTZ3LoKo9mn0S+Wk4SQqOvsFWFJt0xcenUeb5ei6oSFKLUi6MuSCiFDpNcY+vw4Yu534PmjQ8DDEoMRWwI+1qi7rCr/TXVMdhYrDm8ltxIsAWBNhkSjW0tdfrrn4BXYNxm6/P7Zz455oWRQLJ8RKjUxajUq8WNsr5tnVspIDYxAniOZUIYQgheZiCmKpBkAv5XVNeEgS/8UXvZWpLQa0ciAF63FsJFehapp6MD1ghQMB16ke8VIbH46Fbf3a/4pK7nI2IhwGJtwynyWFvOShe6y+I4pO0eL/GFNuo2T8V+H7SbyGnhne3d2C8UzKi1ZqcVH6TnjKZjCKs5dPB5L6oawzLLunnhwyKv/4V0dFDYDjlT+JM3m8JrWPSPRqNRhw/5H5TzO9us7hfo4AD/OjN/5Tv0/CQ5gvK2lxyJsQnEpnl7UrJn81CCZGC1J6Mlf6E+qmE3k8HoSltVu98/aWPA3LkzIXw8M6X7Aoh/E2UIu+ecA6m2c4HaRrO6JaLDdQa7qSF73bX+bIe6t9uac+I3rg/A7paF2uNkr1DFP+GSzHuQYcKuiSQggfyUq6u9WbLiAqBAPtZZ9pJ+Nn5A8EnvOAUQH8ZcvAptr1p0PO8g9A9dFMrVsSWdL431JOhth+yl/CHv+2MicfnxtKSg/uLtI5blrczB0ZXiBM+s1lGTLxic01Ku5AJp/VYEVZ8LdiFevebjfk+y0u1EyxhPBx1Z0km3Jsw4SMp8VgAjf/FVpUWuV+LUz6lJ1DMHKVikEwiWEw4tAGzcv+37d8ALCRhEmClVGs2hPcgyNb8+gNXfMBCX63aL1i6DT/BN6Id2cqQeWnPsiBaRAvK4ql+UkeRUBRdghHLE+/UJZ7z+Rw/MleWuKBaoEcoq4HT/FB3z5fLIvXaBNP1ObGCNVh6FlZxkr76xMmL0LjpYHVtO8H0a1ngxIEwjO4VEKJ9hRIBUYgHWjikl3KV8TxQM+BofI5O7ixR+SXSaE8MBu7QvuzCs9yp7mnI7sJV0YmkGxksb2BFVNHL13+zUOd5FR0ny5r0jU/+ewrpf8chYOKSQwelgWwUgKRTG1fEz/kMV2vfqqxr1KpZzsE5FX4Y1l3V1HRW/RtS9e6RXGObG1t6qHHjO1HnanHC18DtjJryCuex7AQZdMiNx1vQNtao0DxW6fjllTsCx1OYtGWkk41GZ5+KSIrqCGL2SpVooY7931ACp6wZvxPSbMVBDLQV3/JgLiVN1lmTL3o4O1HO5M8nOo8rrMMf6jHL/4f9JaRZP7H9V+R5JSbAU4tml/KwduNsTGVzXLAF06TeLJr8mW0+xZWzTtM3Lxloiya/0pLSzcTDMkuUAG/0WR6a8srpHJMnJdFVZd5IvuUnbmF13+PJe82ldkGozVlhvgww0/Yl8Njw0p+bbG3208lA31d2xDgRc47aF2rZpO0hgx50rjIF/SRf799NfVu4ZXTxEd6OwOGAAAGyrSg6tWWJ1U3VMlt4EWOnzZEju4NJjiVX2fA2DARhR9hOMPDgzm0IoVuSniQeoaMxd+xuPX6/HLM8jsps+OZe5WeXGRiheyKeMK/nFt+4SK8rHiONB+EMtjLYEVN0In5AnBSJLJhVZSk9ZQes0PS9a9qxk8AH2RaESbaefQ/MYcxMAI/2UZzSxGZwrSjFmkTAgRvetfrh8pTlwnGexTklywq2cYUq29YY/ywMQFAqI8Opej9/OWlk17RKZ0d9sPgHTT9KcgzbgXq0UqFI78AK11iye/dexEbfU9hwhoSsq0dETsf6xzfA+eTTuE89ZTPAkLUr2HuGL/Y1RWKPaEEg1nJOjRuFyqINq/avad7nBy7UBnsH2QYgR8RK/nAQqxKUsH5XGGj+MWBjThIyR4gMH9ikMINOnx/h3yXSPSwKvktnTxNKtaPi9Id7yJAMju1RrYj3XCHxC5lsfJWXUPB5ckKRAilf/PsYjJVZtJsrS3BB70XU5YMMmCOELuYpArn5Ys4L9d984O1yzNYmVnXKtOfca54Er8vhJtFVdDo/kwUJClVVcsIBeH2lRrbIAsElby+e/7vxxi8woAzWT9MwniYsoqrymk7jIe/COxlvU95QXFcyxz1fvikEWSbKidhFSIJYSzzhP/VoKGHoaIQ0uAlouZbLitI4kQlDIHzqyLfAqRccwa5InT2KGD/DaAcfCx+IM9whoTYMDSvTtB0p48GmLSqwgmQR0+h1g4IHXqOonPzUPP6+kkUXJDRiHAnfFfK4GulCkudVxV3qH8ZkfkY37EsVBo7CusUUzbIfNszC37zdb8pjSJrq3OuTEBcJVfgYkPbvH8N9DZb/oraz7HVUvebl9w1LZXeAXDU+d6JVTCiTmPlQ0NTiSu2CKO0DUzbQWG+Jxq8MmPibiWf0ozPvLI/Ny2efyrnkO9RY3IC++QPQgTb+tlnj4SsRi5kNbxTBTRtFFAkxayhjAAV5l/zDzVZh34306aSWoJMjW919+kodJ5aMuAuGMzeU61uY69aiEt/Iju+xtiMkdPIxuSvnYye18Nc428+NlortdnlBE2UoBWJvDOYUFXCKQ0pCmFtOjNe95o93SJ7Y3n0hTAEt3PTKzNWbAxhdLpkaOwrz37utwjrpM5TFE6yhSx2PEei70xYe3KclDrolnmRVNMQOfzr82krsFsALbIxHRZZfFDET+Jw7b0EkDcRPImbyShnddP/dNcDpWV9Uw0ZGM3deIUJP+xVIpi2/Jwzdi7YcoKT0N2POxh1+KFrcEmM49ic6ICbgkD8w5a7OSqlp3+eO9GQR64BHUOic3uAdqOfkLIRqvm5r1QzX7FNz0RBiNW8jAh+/vU25REdaQx5DXCaco92l9VuBGY3ItjMfWysI3l4XAuJh9S9g2b/Eg9iqqcq5uP/tvuE98o31fZK2DgkNHRNJT+LBRmaoS5qjzA5vb3Zsilgl1+kbMfbaT54BzLVeHvNIvd/R/0/0o5v4z6nQ8EtuSGJLbvne0IodLzZ/fIrDECRD1VSe8fKo39qsmIvdrI4yD0Kqlw0iOtiRIOxRQTudpHzzXdUYZrEuwZmK7swZZOpxl5qHDmbGj7X3+TP92yZ5DkW6jJXc736xOTU+K2E+pTrKxjPT0G8xBjoeyjMyorZTIIuO4TdfG8Ch5ZMqe/TY7pJqaxe4/tjRr2LXNp1tmRQLYB0VoCKH/pXGNEN8IumKcZQzz+OrCKGZwHsA/WfhySFuoP0XFoE4EWiVVlACPbNU8tL7O0aBP4pOxwvVhXQftVT5vABVeVvwrZMeqtuujywckd9gIb5dQgw9GWkk4tQFcYXyc/hy6PCXHJ9I39CJ9Yre2B+nRAdVHubT8UYdZU0tt3YcSN/RNE4KFN859I6cnwwnPS1sWFtfyHCgaFbRBj/3IE2QDKkag9lHNDdJbB8oxiLm7PUU8FQaLo6qmqP17G1f+phe8ycARXisl/Dhx/QazPYQzJvALIKwMPtuKYx1EZ8WPXoba6dWMWOKZybHGffev+HeVE0Ez2UOjJ7qNeEk6TxNuItvHUQt/0UfSI/NYVd1n8dvW8ywGzZZv3C7ED95NO7BIfgZhAOzs+b96yzY3NMe8oOQpJcwAZB13W895SnG7q20yegoxALSBXyd9eVNzeH15pk0iFJd7zLwBoAGhxP/iWqLCFdoHcWfrkcKkS30FF5XRSW5UeO/g00xUEGpjMmgD/jrGdGmwuO8sWKfDUlHiNcW0x+ujcUvt6RNwgalIDm23+dJJoZwNyPy8oeDZiqJID9rtw0cvT+QcUP027gqkRFdvQbsTCLzk97Jy3PiHlcAdyyg4EGZfdixNVKxRs3kcPli64rdjjrbfZxzEo9dJATYRBMN0OTVb6uJqgqc9rXy7gu82GcFQNnM2fyH4RUCZ97FIUoBwHyAjWLeSC5qI5RKspSvtE9zc/x3ZPB44ElbC58xPSGJhS6ZikakJiRjxUmf2ZWITtk4Hk83Ya4wEGt0KNDzi7qFGsNj37uSzwkdoYgvYRNVHeVjlsSx9PQwYYwMo/mFpqFLk2AwAb8lkeZNGwino6u0MPkYyYMkPrAVRql1ib41VUCUSEozWAk7eWVclT1kqb/6mUoTLlaj48uKELFGavJ0KT60NK6cq/1GgfYWCYCBO4IQ0qgjVeckm0hoqJ29+9MhkvJruX2oW99H3XMm+rols9gM4Oo53qHZpoZ6WoFhLfyP5WYDEgoGRh/UCBeIOxcfGeUV9K4JaAYrzBQ9eVmeRNhfeSIAiz/R7OgxUBvp0p5pJEYW22s7+kTRMxYjNZ8j6DYgT/lgzBnlrVAs6s0L2Vo/U+6rIKDnp2M8tqCcgu8DjcFfZDas3Lu4Trzr20ojeCqzA1I6xA+KvD4J7Y6bwPqTOqAhsGZfFHQ0QFmg/9YHD6W/bEymrQnI08GpLBkD9CCClVJszgWryNBKLPPorR31dnBqIZ1CD/khmTgtJTKu+vvBpoamMUT6xq0s7XQ79VnEEJcA46O3KWoBVjaGJQuAz6UZeRlrWDUTw94jLPcgcZeV7U0XE2e8ow5R43tuyrbZFQCCMfO+AePJzkfqwoHyPd0FwvPy5kcAXQ/41h89my3KItfuB75hhJNRMqrVfYjpVMyFXVDgALdnpRv/GQKEECfc45mBUtPPKq+ouzB0mR40FrPVwzgXYJOrSd7p2KMkKFFbDa3akmmHAGlyPypmNjZJ7Uj+vMC/gu3fShdnn/D/HgWjywb06TxZxH358b39whsko1MPUDfiCG0NuJmhlTrMU3pgNtjvjvJeoK79+YVnHgK/fJPXjCp2q0Y7CPJmtxE/sQwfjLNdnZIJnqYvVcC2Q9BTyt4aIUnCf68eEN4awZAzxxwYPeToMKGnJnhWFU2Zurw==
Variant 1
DifficultyLevel
541
Question
Two circles have radii of different lengths.
The larger circle’s radius is 1.5 times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
Worked Solution
|
|
Large radius |
= 4 × 1.5 |
|
= 6 cm |
|
|
∴ Circumference |
= 2 × π × R |
|
= 2 × π × 6 |
|
= 12π cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two circles have radii of different lengths.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-p169635v01_v1a.svg 330 indent3 vpad
The larger circle’s radius is 1.5 times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
|
workedSolution |
| | |
| --------------------- | -------------- |
| Large radius | \= 4 × 1.5 |
| | \= 6 cm |
| | |
| --------------------- | -------------- |
| $\therefore$ Circumference| \= 2 × $\large \pi$ × $R$ |
| | \= 2 × $\large \pi$ × 6 |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18oJMQcAR6EILh7BaRiLitJhr2PKh/AXbGTbra92yeiUSwz9j10mO5GJxqeEr6Q+OT7yvdpx3usu6m3gwH+d6dosk+ZXPoZKhScqkJbcS7RKHch1JQo4RSnv16h6OMq0lXLKo9neJqfL9u+7YCmfgBYp1TBN4kNW0SxPFem9yIxQ6+esDJ4XrbEPDUEFhoSY7Uf3UNH6LMAJag4JMLbV6avLQX6jU5j2N582xYqsUnim99yvJ04ZQ9hy7kesoRyAe42LrHl/Q6mHZFS339FsoohTuYk6Nvq9GL3AzlTnyU836lN9q8r0DyHIqIpIZWx36Pf3JuphLf5AxreDHlyxBr4UGgmkn1fANI+q0VOV5XKF3uySQYhX73+BsqyXdrIWT+ob2+SN8/0dRHomjk4rsQBgxSU4kqgNhoNP5ti8ylEf/VRapNetx00kNchrRCpKbeqIv21XdsVdPVTsoDIJqaknyLPhTbYPmJF3W6cexlQLT5DAOgxojd6rXMTm0SuSPjd11tBOCs81sKxPKeJ9rzyDXMNGdluB/gfmGepPzpNK8UzvMEN3mY0SqhM+B6xe1YEPg4JNNPb2lqlJ4Z5e9zHPCeg6/PAV0AJgcL+N/JbcX3rG7E/AKDn3sNwgctdyQjVaDI/MfzaOrdvE2iEdAno2VUflCeIcE1krycMbtMLe1x6oAiHoJ5uTAJ6Rf3mJV1hK77jxWFmX2ZBpV5zoU26alfuP+lf5ajh7s9ukNzhSRks1Pt0L7poonOo0JgohHwholkC7S1iCp/8KHMyLBRIH2YcLo6YuSTdNF72gaMwlQHA5ESBxNDNb3slCKfDe14tX3U3LOhqum+HdZSr1GNdm33uhz0lqYs2mLk3kauV8ycB1WREn5z9taNs858VNFwGNsREV8ZEvkp33BdgfrLtKiuwgDZsyOYz5jjy0i9s12xDuOgx70tIOzSIbV9gvVA9HirLqIi04SqDRZrAoaqL12kgFwy5h7DoQLatJ9Ksvm/ko5wOW/kTJxtlZ0rYRWKYWzPwzMsng5OsZKBJRwt2szOYTXehhP58mqC9F/5uBaUeNuQOqP1M2jdDpR9pWbMkClOdydENiZBMD4i2phNEiGIgK2qg2c+BOSB5bhE8sKpyhbjEE0rY6xxgcJ9+RXbMM7ATc5T2e7UnrkFy0nDV1PP28gPXMiBLG2DsDsKmr/b2UO3D7onPeIhBtaPRXGWaaZM3La4OPsLRHP3WgHGM8Q/EK5EKvqDM6MMiEhBV1cy8PPHNy89t7oRXX9JbknkdI3zwyQmZK59AKzDKdLfu6l9SQv93LEmC8866TRtPeXtGSM9kQjRirXAhcbf4vaV1gdq0GzwLhyJsirvXzjLbmP8UdCs9hr8xggHMRxVX90/mUtNRbpP6boqVFtIQALLwR/Xb9+NMRa8XLkRbwk1VA3a/sqY77BWiV7WTpvqg0LQFv+w5IooRZ0xlsjsMfNj2ESt8V7iLkSwmfxLfBwdvYKVARCcHrsbF5OhyhYu4ev9lM0Dn1/x474DAwe96Ushu8mZTcov9Isc0WgWTKd4Tkqb/zcmfP7yby46fCny+eG7exjuCTCuw8b/OYM+EkZoE1VnHOsoGBze/MyddoKM+IcHEIqJ47TSW/tHe+EXeGk2AW87KkSHnMam52eO5BbM3hcb8vcLdH2qXaCxBD2vIuWrxNfo7ne1giUmS9fm91DTCqyZDe/9TgXTZT8QSvcsOOZu0i0ZP6NMtLznPyAswAIUea+Hvefo/Ta46JBpLjlw9oGkXzEZOTp/YoNKEGIzIpKjbXVU44ENcsN/wFEf6SfTMnFNK+TjIRnmF8W1P+Q79NGsH0DyplBj0LcgvgsBKuBm6y5PILhdG+YNCjnaWSgzea0gHJx1t49vMP4S1NQxn4sUNO9xDJkgXxseZkdbfuLz7P9bohsVf52aNTS0oZR0V0C814X8Gc8KmuaruPWS+CuY4p+02CU9m9u9YEhDzO5sowLqGx00+IX3dpjP9vkULYAR6DZ970wVv7oyNPAd5RkMM+CeBLA/PzH+4HLh5/ZrroZ2Xad2FaQqkbyEPe02+pi2py8ug9lObloIjcxI/iRrKPlg9BBA46Hwo1BAtxyR1a9/NJ4rFoMCKGsM59MoSE+zIEpfEQSArDngOsPZ1NG2ucThSKY4BJRcAfqX3fA+ennaPQ1JRrtaKMEjJhGeXdVKYpeXc6HL7OROiJhhlGeMvmuHAVRcHrbWxQCj9hJa2NqXYuLOdO8OkDYG6KhLKSk9KCul+WqcVlafyqJODsdew3vjIZFSpyMj3aYp4j1OtucEa9eqW/v2FxX5XFPiTX337/d4yq1nJDSkX6s4RK34lNiRBR7CeFFAU97kV2nhaLye649MuCIxCy16ur5kYLoOFs4rtjFf86Ze66o3Qno7auX4A13HMmnA0hIzbzHGf1KUxt+DO5qhkdBtTRWpsDXN0KcoqLZYmcbTHVasRFE3koZklGZYa1CIzL4xmumHWlwzr0nQ5oqR58b3L9n0H5RhtihUCYsW6zQcK3Z6gNn/aaQpM20nVQdYR/eFIUOAhVKAnqFNhq4hUKekwxd60D205qtoWMRYN9cPcSBbEGUbFoSg6mhMHr0OqsVMIXbCu08tBeL1cXZZxv8buS5U68d9rFeNsiTj6S1KFMR7hxeb5K6mMfed8V51saA4Nie03eyJOsHQFk2R19Z+DJ+BbjFU4CXqOAx0LH2USKE8EuEEsHeJ62r0x67llZKZJ15MCxAIx+guZAQGCqIfZBxHupNFYworontrthx0oCxbHKLGyh6kgoQ4U6EyuCT6M0hpW+hBxzqnjl/TeX0+y4dM1IydxFE4QYyt8IlnRvVWlP3+X734eNj/SL9Bk+mLxwLtdDaXO3EMLR1EUVbAcic0yWMKmRtZh3bAEqTXq22pFZHiaCFJsGf83Imabccl26mEieXlFYkZAwFq/QpC1g3PYNVQ6RR54lbpxFyEkzhC2hJf8YXArocpB91PcU/LWhKPbl6FjvHQx7+8KPQszH4N8RQ3Bn/KdlD2KnYVQIJaZApsd3CCYH9L8jO/RNjOsTwXGNRRqasmAk+8xhq/llDrytUih/Y/vAxQk/anmfvxeVQG6mbpQpOcHOUvUoDE89S7Pt36AS1yT7scPBFSHcd71wPCCEVXCDkmHQkXcKWsmHVldfJdMCgutS2iIGj07H/a5Vx/nRpheXcGjptoztj8wzxeH+BpREtS8IZ7EsmXkQUNnAOe850HvYKQg6q2J9uGhzNYRjYV2sewB/y+l7DhMc4L8UKtUeuHaoirH1gNH+FYu9DWvi/gni3auHSFTbBW7THRDOdxLOdyb5l+HgXbFVqzSnVInOaOcIPEdnZZl7aX/CtORy/dg4rGOLWk1bHKXVoBu7Kmzk2kOa0qYgrvO6zOfXAHd1nMl+xeOxRkxPj1y9Jxgsle3/VR2Mh8lHjE1ZbGTK4t2DuYyZUt3NoEx2eaD/B9Q5vzX+PsgGE53KBtKrQ+1SmkT55p+bn08vxsSPAs6DPdIrEDmZU1XwnfE5vPh7djs8ojA3L7Q3JYuEyWw95zUuskeRbZ8F0ys3a4jSj+OQicTdE1+LZ/x2RengHLlX2yn8Ynd7I2w/y8V5jaID1AV3ZUEhziGvySUyQ/n0Q5S2ADO5hAzQB4nY5+qcUdBba4ws5yJxR5Kd546hp4FFQPWUCcUzOGeCIfijADBe2hNRXIi4Bzpobd+BCK0PPd9GLkiPTmTIQF6dNThZwSHsf0lVba70i1Jgk+jJllKJpwK/1vDgwEIlwGwAJj78dwuNAaWAoDAK/IBVMenqtYxdlbszb5e9mIYonXq2YXqzOMrIjn67rtLyZYijRFRneAreoF6FL+YeWwy26v03PZUfGBji/zaudxVFmSmp4VeBG5+nWLZ2rrPyIxX/uRIjAreFam0WTfdFPFCB7wKQ980WXeI4Ww3mqIPvNaA99atY1LMwx0BqpNxYgOwjmbW3+4NLwSvoDVpoorQZ/8jwG9+jJfUdDaVH/fniuvMr3EpMhcxh6k5StPXl9UEgPI/i10aXWNfHbnVsnUhcAGabid5yMMF7DaiKOq+xmIqw51MvJTxZR+nl7uCvF2N2FRZpY/EhCdCz2w56BGTyqWonH0C9tYUF62IMiFgCLB6FP/g1pCawgH8802rbf5aNsu45r3j16tlZoDshZeLRCbhn6u8K1q3qTFVkS+XLUlPyeZC1UJjAGOeauJaWVLyKwj7sgZETyi6gqIQN7FktI+keyHKecE2fX78VU/BUXgdBYNHFvs8RjvxyUQd4aYjjpokDs0xMTa3h/S6+kjUlQkDNwH+mmi0zMXVGeeLI8KFi58cmLV+HcIe9Fuwsx1IiW/u0Y3s/1f/I631esTodcFXYUdAaqq+t9I1Ooi0isi9XPm70US8YkZtpVdjX4Um0isn2O18+DS5U2SYjQEfSYRjA/z3w/WSJgXveY5TUD7OwRtvcVCY9BsDwF0/k8Vd5rZ2g2tipQ05WWzcQTlptAp17U3PwZf+YZJO11qUZRTtg+Xgn18ITsI160QOXLa8xclHk2LmgBd3UTHJWHz+tpL6/8Qm2/ifQOp4BybhFoB68XMO35fQKA1CsU+GNcXmkVwIyjG2U1iAlsVEemzv/MnQgM0o1gTYiAraNHHldTFg9AWL+n9Q/Bu6G3FOXbYWFT74a1sq1V+s5oYuZWKMXGYxFexH+SHGMnneK7zvd0ALC7Cj3tmLrq58ElGtXNXSJiqANZFcah2ZPA+yjTvq9leD+GXKxRe0iJt1O4GjTq2aJ+fftNwlAdNsogp2T63Ll03amReqI3/9wtkXRRbmtZ5NgtvhXyR9OdivPQulBckSHmuay9bKr+N1l80Rs1LbFDfbNzp95NGiURY/Y4+fiifpoVWsBJHNXCBy0zIliR0bXSXRliPQ2G9p8NB7TLRlc0j9DSw8jZrL5Gp1NrWH3TzoNs0yIoyBPA8PLwUpmVK3Gj71VRx5bQUEPhcFpueyUl82UNf2LL42fsoKMjLsG0qUUBVIqsSOOCtbvlwzoRycEIsRmWVq1jVgRcWrZqxc43gaGvIIZEKty5WlQy2LNRaMgaZcGfvBgdYy6zmMp+ZayUrO6hl0HQYtDeqp8hJ74/Ztaf/JNfXNU0fPLTTaiQObUGXaciWhbVpaQZkkRHTIK8bEFj7kXWnsckAhCJ7czx2BwEr9QJ6xI01CXp+aJmi7Mtuxz2esWGbkFizv1llbHJsS0nn4vUh8t+9yrjpKZMCHByJYosYNum/ee0jktJpXa/JRkvw+BoARUHZUj2mDzZkJIFE5MT/R67MP8BqrZWK5Z5A4G45kcVkjRItyV7INj8fjt4esCtX0SwpCqMn4TRQbK2kUKQ3A60uMSVWvM8Wi/k8HikK2LUbNAM+8tY/1x8wM336JmmEY/gwm+tSt9YXU7VTfqIrv++dD2TKY45HEDPF3k7PE17k+qTbs0y3wdPAr3qokCC7bynMpBlNu4Pz3iw++ApOvuHOZTE1mBHw16d6STLYc2WSSmbJ0onVmDRWBE2bH4OnAhevwFnOS0hsSyW0zSs50we6ionOUMVkMpPEUyB2MlVO2HCToBgO9FHuVjSzF4vKx8pIkw4wUgZkasMz6gxLiNRLxQVWdN09FxDueEqMMIW+daTY7fKCRyhUowxlrbbUKnW/nbQ7zp1Fq8CwPTI52T0A5r46BOOrBEtRBnjJVV+HuCZlpQhynSWA/Mxj8qo5O6WU+eu6YM86LnpptCOJoF8RTwibuTSXAs5DgLfwVFlpv/wD65SExQGIw+8t+Y+gOpJIYJhk2IbrCZU01u/4O9Vbsp/uT0vjwuxp46WoXo98Ze+W3YSPBw5/W1euxzU9WFyIHqpINYQoeMfNRrTgZFEjTsyXxlMQ1ULTK9U8+QpTX/w/UIfPGlaezajVJ6ivTLQgtByDCYjdm08obumWU/QgA2O7j8a2qZcvulTtQWrqZNlB7JKsr12xlN/eJxwvOxa2h+TOvzgLZNpM+LgkLzWCKMRxjlcAwQQY6zxAIKQIZxxj6rcXeZpXE7iGVxRq3MT30eHKgO6dYxxMFJWkDSvAG3EPUZiHQcw3+vJq4m3pLNl/EFA69gZxERgHnj04kQURXjHT7hfr8Nl0efCvtfHtntjqV4aHKy16MUGKuALg9FlzXqNnEnzIIwq4fwc+YVWkWZ6uwdD1as1fhmzfq8d5Lx8iQmJWUpoB7J6cVyHocKxMoQohEpBTBw0HuC2Rt751XGVkFb5GN7ibdih3ollc8PSY1WmDLkN0l8PzJMmTi9wmzCDYRisYHDqGtjxiV4K+fDdl+7EbwdpkohCuL0MIccTcCLdBKqj3T7nrnrFUZGZHO5TX/lHTVy8OjHRD/VddiWRFuh2d4JDyhn2ZqVVHNZuXGQm/YeahPoo1SQI7A0Z7h9XkTSZ/9DDHWXNb72mdhKm8ysrptm7e4N98fw1OizHK+caqSC0bLlay/etcTKrvOt695Co3KiMwHWWnj9aycjuJy8yhpMXfJvPDdWc6PEsUs2oe32Uz6suMIvNvbtapnHl4wnlaj7srxp/WhlqP9xbzb8+c8bYz1ZSUueIA35SAH395ufr/tS3/dXSBvbaoxiOVflSF1yFB6wgpf6PsbuvL5mOiSgvNKAqgyXS8xmauC99bwmmeFelOq8AkNVhJFFPhstgIqMahiyZHNzsZHPQPXCWE91BML82BU/Km7WaalwfxDjxO7v6eiGCjKXYQY2islXPIhSGO6A1+rHMof36uUsQkXYIXQ4JvekQdi/2/eF5ZsR8mOeYHESlfWkMA1TZ0qkL+6cRD8G+Qu+J4ZJd2k8suHwfsFg1nFwhzIkE5B/rYkJe3jyWe9/+eoJq3AAPJkH3DXfhwrVvnnJVTVSwnHMu012jsD6jpuqP1VqvsFbCwZhqdtlyng6tIpvIgyEPGElX1fWtoBA1AAO1tW3lC/iPR+cbcF2JGLH2I3YdkPQ19nhkPTvvYhGud4TWqoq7j3c9Ut95ZA4obAJaaTDE3PFt7LrVnL1Jy8DmGFS2rT45hn7EHWdQy8iHXguaaX8wfNAjSsk9buKxIc2xnTBdxacDCmY6FL13QshYPEZiPHMZtSmvfPz+xg1vAYHNLQRFLlZ4HLxhhLZ5H1P6PTA0ox9JhIPlsIKZRwOI9seaklYlwq++6yUSLzetWroQbDqmaWA7YncQvbWdaAPbgpkhzMOVJyPWmph7IY0Jz8SinU86rkjwiCD755q/9J/Ese8enbqaWkMcELiKt1Z23v5P+IiEKKY6zA0EA+u49rbLIoe4cuf/mfzPz5P9Ywq/ZuoXUE2nLQoD3MvHPjaOIt+0TL/EZH9S3SD4rtdufgjznKDBehYMCpiDTQcAmOS1fbPrdJ4Wt4wIyFJlF0vIQ+a3ddqjx+n9vZwOgUVZ6OapqHPUEu2XAl1SOnXHBLI6+NP2Hhb6Fa+2tfY2TL/I+L06FhBkf2HLfnDYXIlvL+mHgkCYBObsQHY0ln5nPIuweduyjoVUtTliuuT9JScgDHSjQn9Nd39phfhuPSLn/sTtXsiuzAn3pvwvfKH828I8UfZV+lmebKt4Tsyxsvgp9GkAB4gv2nkVoehDYYSsvBBdcP1tP4h0XyJdjpyAuJkYHjfKkEwbuzCVdKSMcHeD3OCdmvFe/YOIxOTI7j9AdN0HHIcqqrh8cRzBXi1pWIdv0k3bI3F8qgMfBrTtkUVgG0Sw/h/AHziTy2ZI8Vhlk7Iy+O99AkEgoqT9X7Na9FsanZbOGVBNdmOKhasg02UIi0egJKnTeYZDOkd9ZrMxjrejWASxLLok0QJQzPV6Jy51z/Gc94v7mPm93P40JwDZLIl5E9iCVPfz1YMBrZZ0QcHsEiG9FjCz9n+d7QUMu1lzsPLrbtYs93zYZ7fG0CGal5KJKrYCjoquoQ5KKRdPowaeRFmLQN6bB0OkPWNnTLR8OinFAjBfaG/HEVtRuedaPRK4o4Z0I4u0/JIkHs39CT/RIEAin2GKQy/w9gmhrBFYDr3JxUCd7WYdX4jjxr5IPCRQvsPzxVUBAeN8Y5rjJz0PEQvf7zKniJ0w38djaZ2MSCDXR6S5pQWZ+MZxQCgv4qqvSwwn/HwMIKkwVR1whUDCFN6el71EiGZDbNIrSvcT0GkP2by4tMHBh65IllLI4Oj7J/mRcWF+9iCeNkoXuKTKZv/+QlVJLm00Q+z0yOFrRW1+04ZKZ34NFmyVpxV/ajVbw8iGfT02nUZteMbUp3aX+YABbxce18K2DnXriVPeJUY7KLhwZjuRI5YMezJcVQq9LYHuhjROnSCCB2Tjb2HrEd7MoSQHjncM1z7O0wd+vjJlfAnqojrdMnwAt+9RklYTYaHSQuZc0kMo8wDigEFSAFnZbIzRG6W2iK+l0A54Ct8EO1V5ItBnlsAWRh+5CaKqnXf3F1X7IvPZSmwSzXTcOepcZWSVlQhXSY0ANipsVN7fkqxDr0rySGVkXAdAPgXghldLbsoXphOw==
Variant 2
DifficultyLevel
540
Question
Two circles have radii of different lengths.
The larger circle’s radius is 2.5 times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
Worked Solution
|
|
Large radius |
= 10 × 2.5 |
|
= 25 m |
|
|
∴ Circumference |
= 2 × π × R |
|
= 2 × π × 25 |
|
= 50π m |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two circles have radii of different lengths.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-p169635v01_v2a.svg 400 indent vpad
The larger circle’s radius is 2.5 times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
|
workedSolution |
| | |
| --------------------- | -------------- |
| Large radius | \= 10 × 2.5 |
| | \= 25 m |
| | |
| --------------------- | -------------- |
| $\therefore$ Circumference| \= 2 × $\large \pi$ × $R$ |
| | \= 2 × $\large \pi$ × 25 |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/cW5vVq12dLam10iwzeF3NvBaLRmuULFLwdQKuFIT6FPXAk6zawuWDNP8Hon/ED6/cIk5guL+U7RGD3VN1y9t7xXuS0V7RVC7GuFUgeeaWNM3a07TRSfSOWFInDVP7Xk99UZhBS+rZg1x5poSl278AW1FHBJiuxDJkj3yjQJf4XS5WeFuY555hO2fFrebjTcKZN+WiPMJ5wMWeYgu/7kzRlJwqrUsHpIcilIkBg9abWZqm0bgfwlcVYfl6SDUkBSLs9byo+dEDJeHpyd+yz954m3AtpyI+GC9LgMybEFBJOjs3gGlP8l/BczvzvYP6lbg4xVlyMIY2jPOyvGFi9zkINS86WGgHYYiiE3wcBlQgRUlx7Ldk5NysrhdGuZHq0oEQzBvRNfoUuLFEKEOlrX43AYsFY2dLvA7znnx0e8e1hWDIiKx+XKV3P0gski9e0lk7ImLfnvgQPTVx06I3R0j4Yrxyj4RhUl8Z6c09D1Uq/v4C6QO3HwZv4zx6avZqOvHMzDk8lPerG5qIta/I16fJO6kLLg3dFZhxn1GlfErKt8jS/uHk+JcMzi1x0uRL93akhEKPBRsR/3fFTv5UOurKFteRW6O5DAEnJ3f/GE76BSYkxkbR1XxhfAozJoPbtQDcLIVXUwdHpNPs38rZGkqAkAyQlr0uT/4jxLiPcW03CWtfLtPtdsZ3c9JYUwPDHlU2aJYuRkOF38vDUVeKdAL2lpG8+tHn9PpeBRtKKwjWlVm3+kA+wCbOlwWAEC64Ao9itY+M7Yb6yesDDU3tqi+XJoOiZCNRhaun4wqILkKrL9+/dpiZHJp2JOD6IvBU9AIhx8ApSifKEtG670fiXFfEKiRzeMhGA6pT9SbmSXqQLZgzkk3dYmL6ckU6pldgJHcib5bgWuKjpfOP8YARbDuUoj8rQtQVUMAmcUiOKnhKo+lq9g2fZfNRw705ERdeRQXFeqbcEX9RSw4wkOYErQ/Dd0X07VvpyFZEFNdWPBFsArTHYtbPrtxMFsyeWuoaXyZcsykNKotW9kMz7T0VvWojyHOORYRglQr+l6iF/zsacKzNtkVQVjD65dtB2VZNREzWuhkWPlcZVw+0R8FpEH+l7m8y5kz10qBDCAULjx+UvGqltdPg2vetE8IIawzFB5xl3dQR79il4bbPomW7sT6HfjgeSE9tXehMkKQGHa6xfmCPMROh26/MgNhpDFsMW92xkye22HR0MRA6aWPCDEM/Qbi9ML+bgfEnWpWyIifkexPhjrqbJvpDb1thfiVtZmiGTnMNunRU2mifVHDBr/hUJSFudIuJCQc+BffoptnGcDR9YBlufG88wKrz7PGSJqc6+KTwEVDyYR5S7L3O6yorUDsUmKB40RZpt0ZvbY4oK3K44/5mxS/Xcl4eIUF2xwEfhrU3W+Juch6gf+/sJjdQ+uo2IOzt4e/q6BnVXpEUjUCC2gX6nT1oQGE0jqmQQGvmJSbxPCOCl5q45D3CkKAZ1l1QaJpfpTm4Ckzyzh4XAy7/mtEy1ySMLmbQxJRcPLddF3ImRRzv/NjfD5Mc0bWhhs6kzgA6N3XvQmmzL9NC3QNN0LSBR497wtvk/oRUmTzBcpAFZkG+zd0jV1iPP/kZtTT8c7IPh1QT4CIz2Y1amdeZeIpS73E35g6OW2+sSt//4AEzfGJZKXXxoue3LzFEnFj9SPFwUHHrlq4b8UP7L7PJ0Xe6i3imZzERPiddNB7Dqx9A2yRbkuSo09zvtlwxJZVL/zcqRO/SA+BpJxnFpiD9VsbMFttyhqIQDt2cJYCiU8pS1dsaQhfd+byQB4Hm31sjbQ9ZF6/8cVp53mmEwLRlHHNETJzEgaq/VNGmETpfT3OeqptL8t97v05C1mA7Oh2CecsfqZZR8nCoHXqcB1STlakJQSV3e4YQ+kszxuDNXMXG9+AgZueOBS8o7RHS/0zCepvM2VzRMs/y1AvEUtMRZAx9V3bKS83jNj2UmNIYgLgjV4iks55UsBd2++C2M3YaYTEbms4BPXHqSgdASGgESVXNcA0jngs23ARzUOsqZAS+LZmffuyBKl2Y9/opWQ1hI3UHS7Z+AMmasWTEv65IRaExscf0Tu3pzC4KyVotFoUGk64gqZYOrKjUfcHdBH3w3wlJhJ9bTjUS6iu3RC0oD94QiLLkDFIyDMOMaRHYBAR+fw0hr5cZLHVligfRqjAt+FWZlrHRMQ8plmhb6aNBkId3De2Jn+mYrr/1/qirHwEbiCXuoSgbbKcIE7nEYITPBJYPKqV/Hf4656sQLXJNcbITnh/v7ZM21qGJTIMwIWGgyusewznoQouQxf7xj4Ir0b4/EdbPxpXFQoog0IyqueMz3LSrYa/DwNlZJsjHDgKZ/fGbIMr3zIzmfghJOi9cLtkw5yrloDP3EgbjBpC956cc1cAurRpltIG/IaRWfrgcKcjEQy3Oz4MuUn0O0igGPsRXkO9bVXAU+oZ0skTy0HM3J7LVgA3x+ROdnGJvvp9svHfp7tbbRTZEUAtUD05SqgntpG83bWJheWJnhP5gE7G4QDwebN34XiK1pOx1Pakn+5Ls4ZRcNtEyXslhvZn9OOXKG8bjCKmeTqRkj0pvodajyQN6yHLnmx8apzSrFL1WDAzXLBQsa485JhlPQe4d7diKZAu3VPqURj1E1EsskGbEGwxhfVsoYGqdg/Wjzi47k5SvhaW48VJcte6ScRipt3ZM1x45GhMtViTl7EXy4Lqz5HNVVgoR3S5a48uT/6+cXcntLwkhHWz0FrUwJ6VC40u/W2otn4mJ+3I1bkzuANr/PH17c82eVEQKgQwEELcgsHtdyyuQGGAv8Dy1zjAGPeMS1JIDHPnGUJEo1H+6yQa2clAbNfwoj5dDYf3IVpaPahnrTbTvpWpNO1TSB1iAkkaxYuOhx4P0H+OvzBEsOqBS/R6DKGlDKPCByuUbA/ucJcGgQn6GVOICpXZ6XTrhmV2of7Lz7q3fRNgJVmg9LuytFMwe8CSxoABrdGfUBEPOgXj5TuECm0FIBKIvhUf/E1h+npccbff2XN9KDyKlYgo5Y4kYcA4v2HUBcLTkh/k3SwZ7Emp0aF6jAd6pSjJ1soiln97DDs75KN18IGqAuRHz2c0++XpIay2HZKDZG3QFaN04lLcEWPBsqpM+f6DcrosjS/B+nNHsNrNQgGZTHZM2FrEvkCQI0IXQ4afhejqPKXpHTyuILsIYSex7o1xBeS+3hfx935WoTOZN3v88n1G6esPyyYOfr8ZUFrSmFg1mf4nUMNU8q97OmqqMEFln24EPAPlvI0VA+h9tXO/uoJl7pmsfEbciOlsmLH1msBRR2yhiYJbrYYjX5+7IVcfONdJqoEIaqOoZe0Kxs6gsNtADOvs2bLV9J/8yKIACdY+zTSXMRxEzeOel1H4Y3HRakNa3Fhb4dW7anOztWyRrx4Dg2vucdZqv4vV+XbWGh4mWhgJ682fEjHqe+HNou7ielGH+nFxLkC05n05DpwdC/TTGL7HJlwVkgeOMA45PyxQ6O6/pXbvAsf023sLQVl4saQBjjDu+UTpXrAmllQAGX0tYMzW6f2O4pib4zsUtVD3Dx4WDM+huBMbBS6bzwCE+FkQqk0fGWgICKJG98RXB90xYZt1/715ShOx5ETTgoATv9n9hQgLjIj7rZq8T4BIFlgBiEJJHvSFJvdL5yh9nfS/BHFMPH7MTg7eXCa4EtyNUGKTBHdA/y9scqKqQgZ5VE3u9xKZ2BY4x4WKEict+vUHpQNlGj2c88QMXPdTQnVs12uCl2uza8eyBZCrc94bdF79lRjYa7sxzVONRC45tXaDixLZcwhe883q4TJsQzesw/xRmXvRdL91Fnznr9dh1Q+qVnCBDATgNwcMO/Zfx37yRIdNrOH2R7PyIXiEGRAbQYUUr3cd56qH/V1nXK3eUshAXQaI6Kqq+NuDoqNuwJ9Zlrb+vHr6ngnphWbZE3roCzrc40cF379rYflLxsSgU1Ns3LdoQeb8FOS3PdJBYzxJar4N6WyH1QwhqDA7J8melH7z4ORSDYvHA5sfkvEmwiTbeGYft1vTgk4o7/yMaDkZVmUqnIUWPzV+82PtZGWaPi+Zx74Xm0xa9BVh52fYfqVjpJRev07d/guO25f288wuM9X6IOuOTZwmWoUl2A2QaIvUyUP1r7AA1ZT7R7Qr/XSL+gbHLabV9RVfOhYTH2W/eh7+aVTVvXX7hzMvC3HBjMQw8q3rArybDB/Xuymp74ALAFjqEsrg7LC1NKiha/udJmX0FVXiVnsXYezkxGZyUlm1Bnz7CpanL+ce8iWHq/wuE0oxuRM0qvQ/xHy+ZAzIWKg/fYocvh1i/s96JU5BzrrG8ihrWpR++TROKsaE3mj/jWj0glv3t4kzBqbrThzTw+kLvqk5/x6q3+jxdCV7VlPcV9fr3O7KgB2J2tCqcR90nMRcQ08Hk5s13aqkR+RFYL754ERPdEPXXj4JHG0cKtQ153SRBh+0g2fB/5zibNmZFgGSiiH6qcELYI3Ei6yaTqR8G5VIIs6A7TM/0MhCv4QHC+T8IpPK73KBk1tjXTpe6mZmsf0e5WuKRpsk8Y9MQBF8UQPvO+0iweRN29RL8NOlLAYsQ3Kh8DXpYhonLZnMgzE7AoOifZDzrs27qsGjz5g3xZZRz2RUhkKu51wsCJaywi4DcCeRDUe1cJv3FVirzHE6xnNxM+1qd5CVPLb7WAgw1T7QlvcngN8RXa8/EpG+PFG5BSlet9hWhxC3iOhVu2i6tvI2vUo+6Eu4gP1P20Q1pvJBdVzcVQc3+u2fSVPq86zqbLxnnQtVr0JQsykulz1Xj9RLID66ud6tx0rn8ea29DYGjNvSv/cFZDcKN6wPLqDtMzuOedchPW287hsq6FDAAcvq3EJJ1DjQ/4Is55uw+CHNuQvGUwGDtAnfs1Er9YjHkIIiIig1wa0g7GxiCxA/53xg7D0Bv/m9h7UoaOQPgKsuNzhYO1Rf3vdjjSewP2YaypkluTDl/jBbWi5IOh8U26eiXT4wWX+58zpf9F2EkFbvaKf2a1uktn37xoRUkt6hTxMwZ86UGOvEPrPKkpureFKf+niOA4vadOyQt+5GuEuVG2997gj48/xbB+QxvBBi8lcCcjih8fZPPJcibnRmxAUbwS9EB7/3beWVY340hrAs/b6h16rFHLF/rN5MmT58rkG3DNuMEcZ5ULZt01FuBx7y2W7NIX0VfRKwc8E7EFo4DLAEibfgCygAKtCx5LgKaPKrSQoUQC+QZTApuIvOVf3qkWoKsnkfo+TEpVjZdmL+s6iP1pXOijsRZFny/7K6fWPbzYoniuooIE+PXo4xFIlMygS3VCOVNti1wsnIF9obXepGD/Y9HfsUB+LOxpPtppSDJTz47Rwqxrj3Y45nD71P+fiaQbDGzstHWFP/YNMUcm8RiXSs91H1WU6qKNuMF2Mb4PHJAZz9QucCDsFVYaaA80v+fpMfWq4GMQEokhGgMWQ6iA9/Omh7I5l7cid2NADuU4N++wUe7m4jWLlEeUP6lWoxA3Qx+aSQd4t5uA0zOBmsYdWV9nwXlpi4TQ8tKOJyYjkM4gv/h936BNg78kIn2FaPQMnMIoLkU7YzCdFBdiTqL8bJBUxTfgfx/fXcYB1xis7Y8EP2dm+iq96LxAW680vWHUaha0DJL9JVXy5s/zgw4zx0VWXufBH1Ob2LbaKfEpn52NywbtrLZeB7Lb6MC8/wbAxXIDPDx3j7codGIadKoL/GOU2rjHJelbwshWQuRmF4yfJCO0yakpJV6GxSzgyKnHoyCsaExuDBwC4PfMW5u9NHOkYPG6SyiJjFxU3/82KUNXfaIoNGlCKwoaoeSp8EzyJ9nZhcLjT+RVZ2D2ZDELX2Gv7cqO7wOYfb0NKhQ/No1jQm6P2i9zGR6D29S3FjxYfFCVbjvoIE6uPkEYXKEAU6t5qx+NumPyDIYbjmZbIHDJWL1DTodH0mbiWHCP0wp6ST5qHFSKPAhNufbf+3QNanaAKPblvRduOAidxyastpGve2RUX7V7xJddeRoaQXqltqTWwCs1RAENMGcharOFNqu0uNXJ5g05ukYfvgQHResOQIoLgaTpvEBJwQQPMyDBVOhkxHak0zriAfo3hZe51oDH03Ruf46uZob2j+M4EwuDqPBJmcCGFQEVZXB3T4cKkT1p8ii8CsiLxnvkdAjlxF6TNFI5MZYR2Atr6WJ2fhFey01gyguoKzxWdTd0UhhqenuLvhALCxWGXK6fTgYZBybsGHPD2HLXjkvriYl72zvtO/LFucK77AK87AdhGULKJ1elA0UP7kdSmzsSy3RBo1XUiSWOX0j5ZemFfKbK53HAga6ePnZRSM3H5FhjHLSKsetsU594u0GFLcsrwjabV4E2NxYTZ2kV2yKo65SfWFqgReqcev7hN1Sjbc4B64p6ViM0JamwELh+C2+wJiR0RPeUo2R0YrAwgKgTfHLVawIFyv7VmvdpRh4VCudYFT2R3JDlJYuLd8H0oobeVZ1Y8bwTNGAhecEb1mWjGDtalpTOh5PNCbCjX3Zl86EyyLdHloLKam4ssnxoRiAXbHme/KnyZaL+tK7q6h4uGKmuWY63DwZJWmj04f7rYIJDy6wT4cXdQkIRkQtdwNJM8OV3IcdrswcDAL4el+nuL8ypbfvqPtQw7CNVOV7RvVmS93oUsEN1wf2Vf5gPCXYP/9eKy7Mv8c1b3nZnlTseBhydYLY8OuJJDUtRbv69tyvFOoNz5IEb6GstHjC2jFk8Lc4ciKMngXU5UQsaCIT80PgHCJBB5Irk191SwEYEYzFJQcmxAj7vNvYVoXq+qxQQlTavjtracW2bYdUfVbHbfq/ndbwCr3L2tISilrANK5wdmYbjnKGRC59mpAekRgUWdyoBZ4/1Fhfj1qgaKBGLZvOhCKbAnt9VVXSuekDYizVU/d1lk9fB6Fh2eYSuxyurKK5s5uZbAWkeL62S5Kox0nSVL9pMNNCOw5MJ70cFWHArerjs8W/1887UyrePozZS6YKsT2Ifq8nXXEizaGsn1fzsUJNmHxV+927ZKFKRgQwIMlf4IHOHkKYVgnhPXBunRQ3/HuD2WkznF8YkEiBW/n2TBVdqPT5h/Wy1JDJFH8H/SJ7isa2xLWItoAF+3eZM3qwvb15pbkFIZo5KVOp1BSzbaKlT+aJ+qww1w8u9N1u8pVfkO2Gh48mVP9fFpm8cZfZ2yaTKxs73Szcwc2S+vtNqezFddUnFw8zerFhsXIEz8b95kMg17q1biWjsx0z/S7HbojX4U88yYdH+VCq2r+0i62ej1khx8r5jvosvOEWkBTwh3oFEuAAKUlOUwbk2BDUrc/1mCTUhXKOOdhe+Z6Nc3YOz6xkzo0DAJg5GNQ8TrGOzg1ksL78f6RdUzJzUYbP7gBHuP9EotrMKmH3epG5s91MpCKYO+FsPh6JMbDc2uFYjVxFIKaJBzcH+/VlljONhQywIdcJ852etV8U4Dsax8FgSnMqxO14eFJtnmUWpS1j8emr+iF5X7cAV5MCXg831Y3zy+mixCPy1vrxzLKkmfXc865Cy5vm6CKSvvnGvUnVbT1baaTtNF022+nEqsTlox4GvZum9nHuFaKvBIJrQ8TpdsZ4VzZEzObcp/XzbpVJ9x8/O8DtK20BYU5YGX4DkVuvM5WaqSS8cNfeiRIjqzE7rxaO6fMpGfum1tDExb6GszRQlTDArTlX+HuS+PEFEyUuGrnmDFJ5wkyKRWiy3iEMNXNWEWLWmRUw+Mm5wA/PfG5oizDpomZ4ox1O+WW23GqVGziStFiGafEABapQGIrTwhhXalTIFU8On1Br7q4FhnrLAwiw1Kg0y+j9u7brihG8nhTDad3R0E/p9h8xC8JzGR3EiFBtek083Xglx0I5vr80MtfrWdyXsKvXdxVb9FnZpc5wmGRSggNMiKJl0/3xSTI711E6S03FmIpLJKjJ6bqpYsqy6rlEkMaoVSt1cCJxdrDc7fJ50rJ+g9pUB8Hpy7a+WjIE6at6cgz2JzAYd32FB4lv+ylidQa2kdcpxSyqEd5aC0PWCV+HWsUq8J82C9jDXrnhz3uPE17ttOL7QPw1KHSU/wt0w4bjAIN0R2lP4oHJBtbfN6ltwwTAoC2TWmgznyUiWHEKji0tstjpKNmdem2+LfxUwCVpdjZhyow2F8pcTMt6AkYAxNay8muDRySPNEtG8A7mdjDKh0Tp9hgDQ7b7RnwkdeEKP/wqZecmUh+jtt1y61+OVisj5YTO8EYAqi70IgMBQV4paq+7KHibd3kL4+XHAs90M3fGhylcO9P41CdzuZMB+qrHdXtcJzyqGNf8IteSbDetGSXW/E+Eaz/UKq5lRGW0UK0dRH9QfOV7hBw1NYkssUHGR2TVL+KYGxvRpQQJpNpzHjWFH7k45X76Jj0yFItTUeZnCPvTf4Wk0qUcm0HQL3oUd0O2zIz2c08w+p2nr41IqRrCj9Xi+VecyECykEL1+qF2xxLDoltivjwGrA==
Variant 3
DifficultyLevel
545
Question
Two circles have radii of different lengths.
The smaller circle’s radius is one quarter the radius of the larger circle.
Which of the following is the circumference of the smaller circle?
Worked Solution
|
|
Large radius |
= 12 × 0.25 |
|
= 3 cm |
|
|
∴ Circumference |
= 2 × π × r |
|
= 2 × π × 3 |
|
= 6π cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two circles have radii of different lengths.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-p169635v01_v3a_2.svg 330 indent vpad
The smaller circle’s radius is one quarter the radius of the larger circle.
Which of the following is the circumference of the smaller circle?
|
workedSolution |
| | |
| --------------------- | -------------- |
| Large radius | \= 12 × 0.25 |
| | \= 3 cm |
| | |
| --------------------- | -------------- |
| $\therefore$ Circumference| \= 2 × $\large \pi$ × $r$ |
| | \= 2 × $\large \pi$ × 3 |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+zeSu3L2K1YzAF2g4qqap2gLnTFBqj0XJnZ344BLvIXZDFCJsnLE2jD1SI7sO6XTTDSVbc3ms6s6249qp07G6ZcnB/oSllpoN6ApzMVZhVq1S1wW8nDC2DM1L6R1MbfWnaDV+CzEez6cwsyB+6X09LltB+m3tU5qvs8dIxPS5ivnS+bxL/Ep9WtqNpzxiB8ROn3ZLIQ+ZHkj/IdL8JjwF4IyFX6i5clr+8bx1eUz66SjvQOe6uLbs5+xile+CQw1MVThQnWQbzay9mNTDeNxMz+ZMjBKgESJvN4jzgD/ld77kHVGEluIuR0KpnuEzqIhA7pu1P7D0eYH+dvt2AJ1wBl9jCpfOEHl2PfXgMPCx4NEwfnCErcphOHWrT4rTrPPhANJrxjpQ0ZYrFnyl1y4vENf1TGxClakthmpVqxpr7n95IhYmemfafGlPzCKWxNb9SLl/atxkRVhWm30HmaVSP2lgqZhcWhl0DWusR1PmnBtaswbV82yCSv9Jvst7RUF485bqyhDMWGWLBniDnG3qiPvZyOq0ELKCMYgrw+MVK5XWUXGTGpymtEnAF2zWmutZ1ES+3kvoMRhRnqTwiRBxzmjKm7dljnsjm2cPvbGfAUNAYxY5B96m+EDkP/XM1fNri/PT1Wj+t7pWVIEgY0f/VNPugScWWMbU7x+Q8a6sXU1//OM/N6gFIkzkNPS+0nAq1wb6yBrSnvDUhWcLoO9+ITr6sYTYSHjIub24hoJMzJT9yMN9en9uBmZ4l1mWQVqvDXtQ8HohcVON3kmiHQK/h5E8khwlY8Rz9+rh3Wm+cUGshv7rhKHCj8ldmDS/cjKdEv6z25Mp90HlrEXFH79T1x5T+6WHzQ34oyQOSpwa12loqHcAnPCnVbgv+dIJRtQf2/93bMtvLFflPZ5Xi2wAXmF9LCQJzsddmyIi5CRpY7/pyyEv9Z9eRIrpPaOjtss9ZV+SQ594H4IvXeiAsb0XXDCylkybznBwK4lfBxBoBa5ZiHLY4k3u2Fb/xuscNGzNCehlUc2VjWjIKsIKxrlIpLU8zkoA9nTRtd/E5uOzmHdzegCQZDd8rh91gv6h2hik3Mywxp6N2QTXEg4qq8SB8S4V6eDrlyS0jH39x7EH6PrdfmnCrII5GKlXJLla0WW8i/a7P3JsA8bbhLLj33YdwC3aZG43wqJMqsp5EHc5me+BVh/a+uDI/JifZO4f9zVQK9TRgzyRb9TlG053My5+is/eG+NjUaUrOkpMwjvfqCchPNpw3QRrfsW5d2Iceo7F4Qv4GTccVjTe20qQFeqMWHAEhYviky59k4937IsJUXVjUyleCV4/s1htazubN/ZP6JXphEF9NCJUSZACLqhbmBjXCmvLnOy2z1y4v76sKJFDakmOO2tbYe5g7rcKydCmfb+7wYxoS6qcjtetR3m4M0FKuEHD/67QbPyF4fJb9xAWrQ6Lqzv7enk7V0pOkRxBryizUEyB0I9nT5Cb2LSSR2c5hBXA2V0ApXWWbL4iEKlPR3LxiZzvoaEW2kIzzm22XPaTG+P7EHqBgqI/ZpKJuWj63Bre/tLuo3LATm3pfYFvEYlnnNSCwSWR0O5itC6gGFA9peqJUKB8t3TzHceCpPrJB2uK6cGBRlsBgzQLLs7MIJ8mk6bdcVOoaF2OotAUM2Sv3Fl3r/XTPIOKoOfiyegWdVIpN+q9jv1mFdOD2S4c0Q7JKoHttMDZ2/DlcnT+vscn9eicMa22fDqXEZ9UGuDGvOVNp+lnFB2ZlMSC2F6gG+R37X4Ss2IRbIVIRLxYksiFnkuinKvBMNsgQVGYbla4Tj49lWut5oVhD42LdLoafhtSB4mf3+ckk9eGz8OwkuiT76rTc29l54oUReX1tymEQyB4JbSnNmVgXYHYx0RUWA6gkuTk6Z0FmNgEx8JZridV7rocba4zHj01v+vLZv7+UFXzv5Y5lnkLFf1upbJ4uH6Yj/vk3Byup3ghSQrSimWbDuufcKkb8K4Cd3LE0GxWfbCqNA7GZ1m1Rx2d7VkVLFWnpyF5LJI17lX72ll2MN/Ksw64TbINPuvv6YVcx79+00HUAznFhfP0QRKeasxrAvtHY/7RPlrrTM8CfYmyv5iT1CbIxfBppjGwvb8QV34lvlsqmmyrrgkttsXTwkXBEzDFEuutz/dDPpVTJ7uhQRsiGE1CrxOHlFMzVKSNax9Ff7nnJWwPQff3i+MYMZzTtM2mVhYEeP25OJIKIrJuYvNjXkUdb7VxLGc7XK83Vm4Z5gZTGOzCGipdkyhUSe+noRoGLBPKnY35fqgzfn3qmZdASWvww9tsESs7+VyiuOpvsVdRXqcschEB5FNCLE/DYymy4F21XLVxBXbKTvaJN2pN5I8W/Xb+MPeCt/8XO5jXLrpcP3CWtBHgFuROGzXzj2EL0iYag1pX+AYRDZZ8XzBGX1yIzkTBbpjdvsDPCWhT48uNBYiWnXgtj9KofAF73dbFZnLO6FpOvXiX6RXBhYiuAlUfxHpqqgiHo0Bq3iGG15gqKBlhcWCBViNcb7wLw/Zhs1eOKsyzhlrokWo16G6+t2akfpBLLECd+hGvFZwEB1U4OuDj1KmX9I44blnek4DPEreLYghahDUZqzYsmsji7MkongURhxYvCl0eB+vo28yZoVbVUsa+p8IQyJXGDliYdvjeaCEwAMbroiY1oVagvsF1/hVduEfYjbrj9S1PoB2wpg3fGXHvn0RVmv+0Sb/4FT90OwWXGIjtncyBajuhePLdmtsExxRBI0KSwr9hjy9+GvUKqi8AB/vefnwAC5r+AJ9/RxVAn1z51jKDGrIjO4O4EJEB5/T/L8GwxPimFitXeBRqWQzuoSaF0wp5QK5hrNo8Bd8j5WakJUIaSENTZ9kn5BNVrLM5BIoXKuLI8x8mzY9HEKl6mE62CaXmeA6+Psm9KxEpyHYkpth/XyQxVtrTtChyu/SJ/MYvO0SIg+CRe0xmQOLg5px9S7NUIFRXUHFvEWBaMserdOPRcUhyC1le4jKllbfOPEys/hC50wDdd8affAO1UjdZEtoLd/Dqf1wroJz1yAA9+bMFx08GVC93WhPTWrsOkGs2/bN76P/20fKK2HSjLOUhQTZWwHGu+Zmqw7dqbARwj4XzfTkx6M76wtVvoW7j7hyNvC6uJGRTcYvUpRXs9Gc+XLFjY+pU5lXWksEDNgQTHqRQict+tmhxgr0Z/qE+JR0YsXlRzHx7EPaocIfmwlx/9u7CSUq2w7kbUxa07QE+ftjN9XdySgQlXVp5ILs/uxqZesQ9eUURNKuIAw8qjF8E+7VtBgaM7xIlQW5ePQVYroxsATG0mNgi0SL1HBIsXx+nsyr3VY2w8d2uwTvojoOM4kyz140VumoBZ9oXQNkFFLkeUAJLR/a+Io59isXCPLmlIp0qDilbb7q7/jRIGnLuUGzfZbdH8HdBNJ4Clw2xanheI0kjW1t+dYkhCl9joSwIi5WpxBg6hbWoFLODvDCRsScB/HxewJpr2xDX1vO1wRigN6rgCBYKe47M491W/2k/46j0K9UYhTRuLJrvC3E9l6tZlKVnc/SV5yroX2YvjixCsFUwM+JRikdTUVMfI4JTilUuoIkTAETjCR9EMs8QBg4xArhIuX7bm44tUqMTPsM5A6vt8tUTLpjyxujO8A5X10ObtOi3uSAtbQ2xwFB+jP3e1cW2N6hSwOS3Dn7X7Zg5hI5C2cdbJySJfcnzTQBDGT8KxqRDCvIwkzzrg6daIEdtBzPGesfr/1dWz+CdO7iyp5U5iOcS8bmCsWioMIX2P57tjSWR7tI7t+vPhzmBRcb6UkPSNE5r4BosF4n5L+TclkCbZ4fExqBcqXxkXaN7MXKZOLouf2xa3ki/KSkfV9oB9xwu/ALOnXZYG1tSc6ziE7kYPPuQNeJmlGoS5dn6dORNiWtgnA8JGaG61VBd5oHsJdKbfLw4B1X3altCVebux2FulCsQCGC/E60L45KZK2MULYWQt04S0rNAKDLTePACd8F5C4fcg9FK1E7lXqoOmyf+PZQaiBsA+zqNN7wlwDd/GYVw4zJAQK9JjpCMBU5xjntAcr6A3ffUhpQXuwuIU/juOzi1DQiYxH3kydFmZpN58BTxxmlqFYJAnrHtO6dihalEuJw59F9dUw2gxE9FF+StDd3+r6sF7kFhw+BCECeOyYtOAyTWA80JlKiWmrkM9bakYXi68bPuGy+FuFyLppcoGhfsdt2LzIct1gmZdEC4c20YSpERZgsvGl4nOyzeK+tcoA0P9dff9ely9w/Q9GLvpz8ml4pRvj/4yQU/7jmcVLvnclmqBzUgLgE04gTlkOVPPJmWe3mDmlQ9RGgkIl/GZUpIFcokw/lxyhoWibkiJSPZGAjKNh+B7BWw59kgmIcMqkLC1KR5TCHV/Q6UNeyctz92KjXzxqYykHWHx6khO2rRqsUyqzJDrEgaJ7zhk4IhDLE2uTqDDykBKZVjhwTm6zDioVP24f0iqYHlHKLi0FNLYITTRp5ZzrVs35hJYEA2lf4cZnu33MMdvEjWpVezabv7KYhMX5p6fFybkIL/simOkMQeyipfc39hPs/fM/fpSi61GjpKUF0BVnm6YdZWRiPVLfttv7OSoyZEytECKTPJJPKpWi2jXFIIyr8+oPZUpGhsB7WdMRbsgtHh9cx7HIWc+DUvZinhKXeKZXhcAAw7rRgGXQY9kcuTyCMOewa5kx/d+A8Va7CeBmapGX3vO5UA266PllUavY/YNDeZ26xgdQnCqqEhSW5mPG0up+CzzCFYtNcb0gH2qLmGjNTpWy1lobmajIhryTkSFAfSIvZrwdqgPfTzTQYr2tcfMbf3W7wntHw9nja8qrJQ/Wz1jGzTJVRP8jgWMRw34UdUiSSz8hINLjrYiiKzq0menRYfJIXQjl3BFBeK5XdNqxEM5CeJaRc/DnlEJ5Q/9a1Pl3Xf/Y//QhfMq9AYTv/UgXMDus5CpU4uNiQbIlxJxGi7m5Yw3pKIWbJmDaD12Rsf26+NY5wP/KZDTnui3WAFwh490LY3u9G5milnsGigTxiQ0QTAt6T+veVMLZDHUnoEzIaTapAshsS8bJ+ks/5rUmXouSebVPm2gjvahQLSxMJo6sOivyLrEqNmmQXhvoMYklAqyKAsJj5lpVhQiTkZirOYAhb/GpMgJWmhjpP+OK/lXouFVeinzPB9771Xv6QfEK5PBpStvX6xyn3uaqJUOq03rrL2DDFVbqif/JzpbN7VFpu36tyI2SOgYlfXxPMhQ7OdWhYHXTe8ToEX7FcelwfAOkvYByfACnhKd9eSjrWdEx1SUN0AUdoz0JKtmqtDTvT+6LNeeBXO72UfBJ3PruGEzb1swVLEHRFtiW9a4zNXGU7ACOU3bD5EIkWzRy103v5dfk9eMV2tD1D8q6c3MCjQGMOIIbTROoD1N/z2EiNBcq54VdUH+NE3rVazvhbIujbSVArK3Rs6tZsgjzh/VTGyUWOZZ/3Hp/lPXqJeEfxaY65o7T3YhcJ75GhPyaP7Vm3Aye9p1wm8inNTy2N3ZyTXN9n1aEMassjGFasdNqo9bA1FWa4k4AsasztONlSPOcPaxJ4xTNXARrfujXE9SOHpTyvxbixeQ09JSk1Ov0pY59zdBuntiJYaEFO8EHn24fKrV1wKmuq2yA5FXFzkHKJffkiUFdMcMe4cDwhXAG1Yzk3C5V8uAqQgK+u/Gio5FpCi+xIN6hNewdZMKoiPd76GKxYfe6WEyh3TV9c75fXj4DTfjrw/eHPi9knEofEeaXSIQ62Mxfx3SZ4Hb/vX1AnSHqItkwX9ql1WXvQ1th1Rzzv8J5lrALf+GWJsga/Eeou17JQiunbtHVMYIaSq5yg+KjZOjMwuQgLyIEAO9M5oB+33rZ72AdUF+Ol9Vg6D5oMiFZ0kgvQ9VXWjWLzfxLHRepdMuN26tylU+U9Pm+51oRFKUuwM/FNYkjdDkAl2xYU7086D4yJkamfd5lR4E6ydJtKDilGIN5aw/NYj8jTkEWUo7vEWy8PCAXkidv+uJ4l4mSEU7wDyVbTZZgdPcFURaBIDU+Ek6+/swTw2xVvfS7MZElyO5WqeNZ8KAN9dinV0Y4cKFoc/ct7Vck2U0VbHjMyDPZa92GY/fbi/HW52O42e48ET1FgK4YBPONNCqe/Qev7A4u6ZkssTq4Ot/6nIdKmA3+dPmpAxD3CSDG3noCjEru/5j7n8gAJVCWOEa6l9/ErjePanXXxxbdNq9VcM1QAX8mAsUB6pyLqBjqzpTpRs7pm3DmhZWpa7AoSobKri14/RMzk8OERARuZvHv2t1pSzJWm+SKzmM0w1YWfiMqF29mbv/Nix44xGlc4RpTm5q1VT3hnmOinmceBAomeg0aMtEJY3BxQL26irky9g/T23Yd3J/FtDKnBuvX69XEdeEN6J33KIevPZek/h8lZ8yWnW/4AmEQOA0MyVFxNJ7fblHN3we4ZK3Jc7J76PXkJmQ2kokFxBkO2kq+qSnZnRZZgcbTt0Udum07zW8OnFnaSqMlYyEUlEnCSMe8YepB+Ul1JHufeuNyCJfOD6iKCKntXyKuSHD5fa498+aTRektFabFeI6nKFDU6hxBc5VcfoOtXNE1tnSlU26p4+c1PtXpEBSbcnxs526qD1cw2cvoJjDTKs7QA0nkE0vU+kICm/C53pXQ6UXKXOsFREVyO8Ux9uquA/xTwM1hswsB7hhP2G0KHZ6CnpfDHpBOU0QWqvfd8ushpDqZ/yNv/ALZ9cl4ebHpSDzZIcu2bbdZHyCelBjk+U1BCWhqCpIfgO2osb198utiz0mOXHvQwPvYLjLbCd5fB6Z00RMoBWR+hMgGgcHzXsctvu1sLN48RjlJgt8RpdQoEhoki/K03bVBIhrW1O5EVuXJ+1qAignAs51BlVh/Tc0sGtX5Wmvbin0lO8bLp1SEZHHX+7+47bxmVw/Xhkw0vhX3QseRL5tXaAYhdguaw092XTL+TiexTSbdt2+8Ma41RBMmXV9JChaKuh13AKZX+jgJMRYgUcVg+agxTH874y5BTavoU1UMknOaa+d4mgT9rdYqDa9bRZV1f3Liqa0FVP5l/uTt/icEnCHauQN60dVMhmvl1Jba2Zrsf3pY20IKyHBFX2ryD+2fxe0vN+s1YnMSIHX8fl9AZbCUwB74ROCs4MiqhxAYi3QxCLBAs3AnwFC6kFkTXKCuRXPR7ry55aE84fZmMlsLijlJ6SdI8pimUW5WNc4BrCj556myxxnceWHZ51mHB4DLWOcyMsn4cuH8N708oCpvDIHEgu2oBEbDtDCHcAf/pqcqktiCkK8Ml8OXbt3f1RO6TdG3e6NarSaiz8gEzyl0E3021ZSwvNjIQw2shAe+HR3Utl8Fw8ABA0cuXIVP8VIO7PZCcY1D5EnL3ZusiRU6jCCgYu7D5RZrm5RBVsO2Xm/XwnnWn2qLZMLk2BWcwrqyWqYwoq+s4dLIp3YkPwVq6xUfOd0Cpv4+aBUA9j5QxrWpBS1Ky775qRbqcWVVvCjTxWbDdQmL1grxb6qlBycbODc+cbjBLut7GxafnLTS5g3QgqVCM0n6P9xnB995AHqiAI5eBfFYMNd2GHqFBxGhql9oQ3VDtZBHPbtJLjLnt9MWyslmhmXMskvtDkJdm2zyd0L8XyHDbc+S6fVhmZQCVVs61SXhJ7lwLLG11rI18MhXCI+Ppg8NFz5YvV+PTQE9FZY4aBdUgdi1HW7rUSMf2IoVjkWrsURVyNhUdj+Oxoj8fR+2uZAIHUF3D77EvNIbD3ipc8+2Vm6llmyTVg0YDxqJPK6ZyNh1Lmy7BroE30WPCng20fYvwxzWQJ9NZY4IjwNIkFt6ASxnQc0hmHic8QLipByGWOhGrxujG4ceA1lgVPRe83BnVNQb17QZ+HjU86GLKG6FGuq+qKd4g8O+fgsKQhODt2WctHJi7Q+tglljVfmPqlzyCfCd1XF19GULE2HG/Yu4aemyHzTUgVCIZiYt/vAQALzJXT3L6XCquV273nR9edQIs3LF4vHUnjVW6sinRUgL083V7EPXxlQF9q39tAfyzEjxWvI4YAPrXWY/EcY7uryHrgVdJcIeqdg3gsvcotz7I5y0XPofZZxkOGUULM3ImqhNMBfxuvQnVqVd1cR1VjxjJo2w/UcrowLrERySNcjO7Ly7VkNbfVDzLZMV8EKh1MTnA9eblP4yhq9y1mwwn/zEG1sZwEcmWFu3Ddjacxku2cqqurcw7ydV5lOLmioawnckRDEqON0dE3eHy042GaHWiNuP3A0bo8l/CnuK+7KUip9ZEwzOTJxcfx50o1DkbL6c8Mxy/4luv4pY+qdCQrZaXkJz0wn1d49i3vORcRc3CObTsgW+nenW/S4bl8SviDr/9I9IIhfuMvl620PNYMIsFrAWUH8840ExLiuFa9DZzfzvbH3/4UItAnLCcxC6boIxcxZyQ4JbEPO/syH4ML9w1nxhWDynYsFhOInTjAJkuXWqkkAojPz5kjXL3qQPKR254WpOfZpf2RX0OvC77z/14Hc1Wj6c+BmjuRthJkvCzjDkQ/J7Q5Dy1d9nYrnc8o5gH1E7DQGwlRNmJcoleW7HYMv2gcoC0NZYuDzumao7mjpDeMtFQbqbpfPaKzOGiM4PT4MfTUkbhHhWy699+32F3RibjhP4R3vssnu8bBRKqpWQ+QYJRC4MlugUSs+k6W3hR46oMNSpJQm7W2pVQG3oSbDQXgk+vqZiPxrO+0Im1uyU3mi+FKufLpAjORE94eBjbo1XuPHkWwwhuJCKiqQlVNDNon22T7WOe+gPH+Q+aEsiHjO5kby0dTkw0tdHEIzXHGwTml9E84XwtL77zxOQy3rED8qCFa7B7Evkh/xDAJb+m8CvgHT/5pRiMAFj88WDIjX0RvZprw2YsMFtaEpgsVtn4+gxWj9ypG56bJRMoUMFk5gxlZXN4EwULpwpQXHK9Y8PQ5zBLTx6Jd9zV32bLSO2VE9j6l+VtbA8xbDvbaOh2EYb9hxWSnxcO99AIQgj5TE8HHQENXiIi/sL871pSCi9mmyiAH1WCfq3fgMMvR1TmUoHjx8cmDKtS7AiievItBBtiN7NPk6j9CI+y1ZzBtc4CeoIVN2wPTDxYXObXDxCYRJ7Kcq3uy/lexbhB9gjF8mW6atC0Y8OrgK+Pfd+GtRX1p8fHq/xrXrH1WEJTEtgDrbpKUwuJ6jXNC8Wp6zEtsO5FTPsLD2KVHKBhKpzZquG0+iVcXbogTh7VoYv90Gbcm0ViHVvJJpg0OM/WaZqVuANuQAMieLdo6+Y5UshDmWDjm+dOB8SVDBb4mvfFs4+9zgRMDSY3Jx2e8U6HUl4o10Z9RK8dZY/kH+RWPkSPe7wCJtLqpiLjWiv3LaFrsIDAe7cr0wwDkYJXZQRWHtM6WeQmqvztidEWyAOsCXkCSLvIFTW61mL8NobjBLkijxu2PyQkc/eLddixySsG0ZjOQOn5oB6xZc3XNLVENt7ii2sTfzweFlrjMRaRI+KPzEvtXWErZmvRFHvT9/O+1hILnEMIC3OLJcX4bWzB7kmmE0rIv84xtvoFijbJHNlCRsFS/ktwsyUDwfm0KAzfO2h2Qw4rz5fMA+JqvBWEuVL5q+Bv+yZ8mF5eLZu1rWE2WH3s6EHiDy7HCGlJjQjXlxBAh9iKHZ6zJQ+SFprDnnt2kdMYZjM/hTYbeSoS5SudGkicM4RaG/oxzhRkiS4fJJ1hnnSOIzdZKlagwOqCCoXQTir4KYrwEHY0YoRy0Q9WSEXoDjlI7LvfN30v8v5F6wmn/Zf3Qosr+QntwXQpQpjqhSzSZS9T6m7wfgJ/uNJ6bLX+nGWcG2jDHi9+A2WCVsXDUK0t7gLFcWEU69pI1z26rPU/7VB8qZOzuQE3O+kSDUoLkq6C4GQJ1VlhymrPZxSb33V6GWLMhKM1f0unmd/rG/+0xdM6xtJLl1zTnxpctTCIw70Ih2s5AGKLdDPGhUZ2E2hUSPbfGpAPvDzOj68avzZuuB5H2HFAD2volHJc7FgTa6zggXjf4f3O13YwaSwlLknxaJCXeP7RTs/TUa/xGAx1rdNVOblS1JQGmcxLSWqH4n/9cfmCiKa6iVZCNiBnnq0Z4hQlpPRS2jErSEAbLtGIaF4EjXyZXhjFYRMj+0irD1LxPLOouJObogTudvyg1t8jaq9aJWdXIL5xoUJghuFI78gB+WMau6WGKxlMHA25H32/YIMf+N97iDBdMYh7V0WRCbDkkANilu/GnkIrZmiTN+FZIeSpvSGp6s2XZNJjkzYhmuqBVdF4JlrpLsfTux4qGEl41wGfLJK3zZGylEUKCQ0jejOQbGbjkw8NANyUvkzqs1ENZmZbvMJgZttgACVHYEpw7yz1lyKnTCeuTSaQLbXO7dkmNWzAHuQS5mAf1yZy/ZogNrIHiw1wU8581mFV5ZA88dKQ1Dspo=
Variant 4
DifficultyLevel
546
Question
Two circles have radii of different lengths.
The smaller circle’s radius is two-thirds the radius of the larger circle.
Which of the following is the circumference of the smaller circle?
Worked Solution
|
|
Large radius |
= 15 × 32 |
|
= 10 cm |
|
|
∴ Circumference |
= 2 × π × r |
|
= 2 × π × 10 |
|
= 20π cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two circles have radii of different lengths.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-p169635v01_v4a_2.svg 360 indent vpad
The smaller circle’s radius is two-thirds the radius of the larger circle.
Which of the following is the circumference of the smaller circle?
|
workedSolution |
| | |
| --------------------- | -------------- |
| Large radius | \= 15 × $\dfrac{2}{3}$ |
| | \= 10 cm |
| | |
| --------------------- | -------------- |
| $\therefore$ Circumference| \= 2 × $\large \pi$ × $\large r$ |
| | \= 2 × $\large \pi$ × 10 |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/i/nlfAYQEtJzuY6OnsQgTT/b3xVZKHgfJcAWI/8RKoeszfxAcEcdiUkgF7q6bhY9x0lZiOUCJJpfYQu4gZz/eM7PfPIPcVHG8FTzQHAdn8bNIdDJi310ap28b6RM0KWymbqKnmyuc/JyXc80iMTlIsf0yfwbTgm+aNtclvQxXzjvjbZWDatz1ldP5jfBVl0bDZFBkauvdpFXTF6HPgOh/gbaxx4qUKYNCBd3YyiTfoESwAq8NpRzRqlVykXJfKnwbvNWvTUm+ge/SDz/qqGS0ysE//BKqZA0Yk5OWnb8qf8lVtICiS8QJxaqTkfkyTB27R1sDzu70USRss3LSFnTLfasR3A9VFwNutt4yCZkMQPvXQ8l300eO6lEzvt4WEtBm/o+nxFj/f/sweZa4JAqTLgbkPIfCexJ3MGKPzmWdq++rxy/O+uB8XCVN0Q7Y9033/q1MQxAg75MOZCzv7cC/IJlagKOaXD+ec83tROD0WXHGw2YP6pRx2QQUfSiLKgm0JmbRc+gAcfe6PpUJVf2hV3uytUTF+Vun/SN5PKCSLBZ2hf5yxOKPGovLDIleRGGIkdkAZcAzddNNxh+qg1MRStuOxB+so+xC3pXxyZOLyXya71qPQU9rgPkK1ga0wYzzDFB+sxgx+u9FQw8lYVY4hkpvWJvzjy6zO5kBh58QTTAYP6pd0X29paq9Ell+p5qoSANct60iQ9Zb3F2nsOyhI+7kJGqlgnlB3ZU3g7wAfzmCM97g9nw1SKQzxy2zRPLZs/zf6dr9/7vjUGLVRVyOeCXRbJjRQmMgqOr+cO1VKxf5veEtiUzxZvVvypOt8J1eT5xtzVJmGRP0vT8fcAE4hyrp+49HEw4qqauSIIOv3L9Jjo/R4Kq6Prx/NxpAPsstAiFHfEh6zm2xOG4vCfScYp9UfU7Y82f4CgatLnii24iwbQW/Ue/pzWPij8Kpsy1Bs8qeVqXf3PNwkjneodf8pqYmFp5nxLVgVzveFLq+kitUy/KU1TPi8ZBQezLpyyttl2gvEmZyzW19QzXd0FemshEV/y9JeDfhIjpEsa0EcodyxIqKL/Ie7kFusl5SL3DpR6XO8139uNeUJGpAuTxhLUXt2o3/70+UAZHB/EstSYiTpAb9G9yuZyLpPC/JQr8MXGkPD6Cy2r8HTO0nu/6zv5m1Rw3PCVzI0A4Lo8kaOkrjiCQGa3mZITZ97wfbSfHJ0LI7VjL+5IF+DNwFxiaImPOF7/7GlDmCpdM2yMTQVlIOoRA51QZ1spiKeIQzgDDU3udToucS5exUgJrd5k1/a94mqrMkEkjPIJjssxEkwSUjm3hqa4qRuBwp4h71rNA1h+77o5MBNGdhacLjJFLiTFveY+TbD/CYVivQgFhpGZA/qOTF1Kfl9H7MrSJtjcWm4yEDi/++l19Ok6VWV3sbj2FoRxo6E7LtFMUnKZN/geX9QTs0jWlwco7v0ffk3x+F/f1R/NJMiuNwHVWlr2bJJSJpU4pkxQbZqH7ySn1sJM+OtjhlfFKNwDoCi9V2n6jN+1rcpfG+F5nZxwr9wvoT7qquzx8UR44JzRnuBT++HorkJGrFn3ctoumJInKvGBjUL87FXgpj2pphTZDuxGU/jbNE6qI9AxjhjZem5HS7GlfIxR8takfEe0hn9p308zZGZJ+8422vMNi5uplEqyq0l74SV2Ft6twW0o6w6MJlM0QuXAVlhLjAUNlt8jJ0Hkhy2+XRyne0YrF3ol243UDQotIOouLuGk2JqCO4mrIWoRKxaiceSrxVv/LMOvkgWIJX877BC/Psu6691d8/JCgGXgh9IH/G8FWOe+d1vGR3fniu0CWL+Vy6yP8DbaK6mkryHAJHoYMxppB+kZhXRbXGxp8ZoSNVGf3o1Ic+CCQCO5bd2RzmEJoXFRIVEs5lMMe1ta3eaEtkuCiv+QqyE4lmJEZN+3SRv9cqIXXzC/sHg+mgZZfO2uUMRrzsKyrjPXiXNpgkHepCb7d0Aqj5x1btqSmtM1/mfwHos7nvX+sRldmR71A6fD+033U2tTtPLJF1F0uF41+8IXXidcsQXQ2pXmqIxtMC8lOPsfchrfIsTM+ft1XzuVUPSP1A08gYajsMUt9ODFvDSH+DiA8Yii7KuPCsnsXt3LRmIor1elW6/aHufuHw1XIHV+XeymrTqiFhF7qg3jJwUUOvfcXy5LCYIOqHFNRbQO0+dTWl1gAiP4+aczcp+QiXiW6Ybh73ZGms/0fpNGtAzor+fp8HoqGWvwxmD8cYZsvOqbGo5v5BciAJhAZ5E3XlLuG1a7ZKnEllHOiiY/6w9NGgGlZkgr3G0O+Uov0oX1r/yybdrWfb913L+o5od4p2oF7l8OR3OgbUXlXjiSZyHaRnpCPzhq2xJwDjxECVzTvmFY1hjUJS2uXBbok3Fddpi8h2yuUpJg5BmKhjnKeh3523OdHZ4OLVoIKxJww/OT/W3oiksDewBf1aGGOrTTQjN/KAnw7A/aCAbIgCMJ+bH/aIx6xOY0bJVd0dgn30YRUhWzxYLKAFXAPw7CIqGevEHE7G1BHrkjgBoXXJ6MBmu4AkizvMAKCOnzjV9bzfVmy9VT5vCfJt9AaIOO3RWlnpLV5n9f94M/mPd87f7/cxwZ338FlxpVj3snAYo8Fud3xjjc0YJZ9NSheethgDyc4qb33k6FzbpPck4ubEmhWYQPty2/Tto3G/0A0ZWfY3gQ6fZADbYjH0tXdB/WQENhGDeHaM+DWwaV4E+OUHWJZGcyONcqwsyfTF4JmUlEO417oczLjSoNaiB++36u5Tap5T0+AEAQD+wrqwfZWF0g1UMsISY+zEAebNyZOIjR2wgtAizsa2dOXhJ6JQeqt92AE9wefxbLH1L50sT+CjGeHHNHyR584j+g7APuqt4epAEkc8nWWMoYvOP23DAriFYuMINha1yXcxzMLTTYjQ1wyH+BVj9Byc3OcpFXXgrjO25s11yQRfO341MhAOqYlR+QycKiveAvpXHigXQf94xy7rWUlxWjbT1mBnEdTfi2PBKDL6wYJi20n+OE57ceuGqabuvBOCT9weXVHLo1XUrLIPY8vB3X0xLDG/N++7XjwtAbhwl9BlVjRKe8Xive2w3KKtuNveEVsrxnMZQyG+53edCkE9PKk1Pz1osgMYj6y1j/2Q316dI/JtQ+sF5LRrRGlg7IpEEOue6mDEW6tvq+TjRQFOVGlPg8PlpoLKoCaSwN9O+AFeMjl6CQgsTOQRmDg/zeIQHTQOmWJkc+53jn83v06eKghu9Rujy1Z79HPQ7z7Q5UoUD6fL1ETABCBfHXmrGGo4EQIVPU+1sLthtVpv+rAO12KRUjhjSBkOPdaJBOiwEQTvhGamviuBMmLpR+gf3dp9JL7Jq4On7tfN0298q44zjmXFeV36PK1X00Byn9yYOtqjGs7EUazBjy+QkRb+H8hQ06dE4hVyD0z2VCOhV/hEhQkBzLs63T0NFfDB6BDxXjSgzC4hOrVralM/+NjohzkphZioZQ0XQNmH82AtDKOiW7jQcD9DAmjJJFkKBAAbQYATHoBhz6MmkoYs1jEymgYShxWVkn66OwrdNlmCm5xrRR9bePSwfSn2NOIWVRPmfO7K4+/QhpKp9CwjXwIVwZxXIAgeJNEEE+YEiRwa5/AQZRv2gzb3/KnyxrQg+1vwJ1vzUHgjoKzlHirXjWD4wsXm/sJq6qYLKmtCIiFp0/aSySEhDWAyHK+SnUJWh3pRNFAuNQ8XdRYZZNZzG6Rmt6sH2YknElkQoE68emBaJnWiysAiIhyxhSethOxtvUWd3//dLmUWQr2RSyLWLAxfAHhFzcSl9RqjrQlbvAaIRg+VLBD2odfLe6IqDngLljcccsDdCvanB44GfaTrdR02s813bmsXYHiFZ/k37cDo074AfVZ86sHv9+4vxrLRDvVLS71Ws24ycm9ZFiNFwC7QiU1gOOOX9F6X/IT0fWUYG1nZTZixFOl43DAYJA3ITeCbjlByUqvPr8q13aOaTge4rPCuHUNf+0nV0bgNwWZHsFlpQPHjLkHnE0zZF4uKSNgbUPNCg83xKykTSRuhlzoPo80pHnkK72CwSodw/aXeSBrof1mVqcaov83aWmzrmB+22x77FBdp4m2ZH9y/Ou+ZBa65DpClPfBGV2IMjscDIApK+h1OBigErkvJwlSrdIt1bX0JfI7u+HW1RvwRaqr0ztYWplEXvCOKPxYjsbBNEln7c42zzGqawfO89Lp4+/BEiEYmB3lP+PZQegn2xtgzT58kg+aGjRrkl6ZrwPxqUUErFs0jb7T5ph1awoi1B9JdUDmLtv01dLAgToZVihkrcIrDXTfRHFOd7i235q9yEHIayltXWXfgujstnEUdn5cpiWrmOQ7Ilf/+kHQomCdD/sXWJYwuYhYaqCIg9VCN3NsNqkjuEuVMm60wWvwfl+q//M1lLOMrYk3REgQ+APBqd4nXkyMhPVT9hrSrl7gEBv1RorHcjlCk42gWEbTnN0FC8prO8dP1uW5oCTlI/VjMWp4evDglerGqOaVPRmSIoT83lsBeUInPFCIGcYlvweJVY82fC0Z9HRa24y4zUpN+YLjvIHsccyt2VrB5ys9++c4bTHne2ytz9GCdCIgKjqBtsg/McUItZzSVK2g8yrEMNBsc0+x07eodxIO5O6akchrBCpwXMyZzFZgBrVt/RA37v4Cx2NeVHJhlAtNu7ahTvNUnFgc2IS8j2hcRKQKelK2aFCDYhsy/rT5wfZw0wZJe8G27SpBVugoGwSJuzujqi7ACRa5HNRxE6g29TT52ZKqcPr5lcB0nlyX74rVBPfpd3qF1JHri6l6/EDqjESaCn/twxcHxVp6qaSoUyIo9xNjzk3tZE6Yg0SA2IZ7nv2WNEZmlsIugrGPbYFDPGYqknPF232RwyydNCKsJMSChy8r/HmuCn+w2xD18Su4TV5mHkulhbhmaBaNX+/RTzFdxQlwp9PcKB+bVouyyIKKHMA+z4LpB1CvZ8M/H8M35xrwXYya3B4q1D9+3X9xfz6dKyMvaRZRq02CTZONqllRf0/pc2hqFpwV/TJA1zYj7glCyUUvLOAxe6ljQw5aDra3SRe2XDG1d306smzUGjDOyKWq9KLa8bokvJL507k0xkl8YRiMw8RYRw3dPGhAv6nmSnu1HbPUue8O86IRYKOu1k9q26NLDFBLN1qD/oq+6mVXFMhhFlPSIknT8WfjGwwlSPr3c6sThIvvDzgwdxye7yoSMN8CH17RxL6WfwMO8AryRGjIPX8fBweYc2zjZa+8A62qdSv9HNyhyKS6/ckXpk9V54BsusbpTFS6nRahs7+NBNPSf3vFfx44hVIFzK+ciTcax7jFhJA4pnvf3EnxmoCbwaPEQlJBySMziJW0bpi02oUw3j+K0FmBlgdmlk9KvvUkctIUDmiJ7yTHyUT+sugAjC1y4QZUI+zuCO0DAVGeZQIMOihnNGTeF+f3NIhPVOVIWB9kd5E962Ps9ohN+QCTAR28WC221FGBulUvGyHfRMQZVEnTM6PB7SPqTkL+R/3rsyg92pCQFLKSENb9fzEBsYoG7L1dCYINLMFDA37g00gJpf3+Er4EOXO/Ae3iV3bvwF3qj2t05T9nHu+JGdKVrRFrXKKG5eGFrsOOlthUwBQPGG1zBQIq9+pt698uxc/u4TBoKwGxUOLAXf4awuNObMfzljXFRdSO6UOzLW7z0Ap87YY5YFoDvfCwbbjlpMqf1lNKFwBD2AZ+PyPEYm86uyZ+ycxPfEysnrUvzzxMlCPnd5Wwo5930yTjDQPDOpGYthdE6es2YzAdOOhQfhg7a4prEm9DOM5zSKLX+7VKrgmaynitZf2shMIrXnYIJFeH5a9+2bkOyUYenBZ7KevEjxzpTFWoPHogmvVRo123tcikcnKt3Hkyo+DPDqsDVciSbaWxI81+03q1WO4It8aQRoT3iPxdPa5goN2GJQ/jbYM4YIMdLcMXK7AAxv6yecIsR0sbPjVyHRIO0B0e5q26hNKTgZJhuexuDdFaYmHcpnQyTy0IALprd71Y2fcJVW3qshhfAb/eOD5TZ4ivhFo82HT0P6MNCvv8m6qb5GKBd5ojBe/WjEn3YHxx9z/aX8gOXCqIknqV7oD62/lkBAKqdPJY3GCLOnNF1CZunSPK0GcrJL92pzj55aAjALDZCphOZI32rToXCigQ1ykEoidr5m8r/2wATh0HApeNCHtUsemY9GvQwRxx7mVIoGR1Fm0snppGxwRCrUJkxJ6RYopJp3BzltKWLnTvokWZDRARqLI2IGzDXVbXevkwDxBScuyip1rw7DgfAVYdtIMQ9yPABNrFwGSrYL+mY7lMmzPFFUYXTRJYeAzKRWrGYA85F3GicsnH5sQCUYE4vNtJ0YnG3RpJ9kdkNFGv+5OE6vl/osWtTxKbGsiwePN9FGU9wMeStkmm5NWvW7nPhnC38g3ScfReRqJ5h/mUymRUbh0W1vuI7KKDYJN9bNT3KiirhAEuj1z1Jdkeu1+kBP44iYYfQBnTjwFMsg/qTtmSJNsVzCKiD7Pr9XxaCOLA1paZNERNMPVxRXB/s3Q/4/nG968Lcvjr1sEhwv7LsTvis/9aPo1HY79/qtEcO+wqfDM0OMNi8RwepyEiK/7VfP5RXaHIWza/dTFIe8k2Kcb0IV4wUW9vTtKAy1iKExMDJA3KxbrkxdTjoUYh63MexyqdLpaeCt4u8XhMTukNIM1WfJgQ72LUHRTUb7T+sb8B36CM5kDqF/ZQ84x+bXkWKpY8C7X80fps2Rb4CaS5zZvSJLCY//16D/ZO5GMnzIdFIJ2TYa9K81j2+q6ixt+Fpkwgm58CMvSlvbCJjojm84NRPkIaC6xmF1/6eTcDMJbfGbrlWmmGkAxNLq1Y757ZoCq93J2oPROQ45OjqcnJSYMhrEfUF9KN13HSo9d5rM10NfKo6oV+M4YcoYDc+fZKw1SVdUKtFj/BO357CejwZs4qVgrRiNx7Q4L/7p0k1WogtrXkoj6qrMzmZV/7YcTWoKsBt08cX+YPEJMutgz/BrWz2jPXpLDuKozukFWsGyOc85LDfzFpZoBRnp6kkPRqrh9dzYavj1shTY3cUUKl/PMetqUJMz9GmCi8Ok3hF5Hy/MoTiQTO1+bytG5Cbjw2O6UjSMtwdIIcrL3khwSBpqW53RtghTOONUZ0/OWY7xbYTASIQDRVL5CStTE7SXcsVNrFksD3VbemT2qmjNPq/OSQe20HX4k1TiW7ATLdNRjjO368xWY3zIvqNxiRYynMb694AkQAdY3UK6ubdM7lVKgv6NaQ0E1Nqy7H30Y8d+8IaqOUf0KoAaX9Hm+H6LXTqMTfaCySyPzOtEc3LqKTDYdsRYz8k5MHZVU24jy+NUWVUpySRjbv4P12s74uI7lCkZhF/XBlcHnQXcuto8DlZPu0PMPRy9A8jktK9RwhS/Nxnegi3pD9EE1pj66kv9aLSciQ3K7nWluYvJVII6C0GJCWM3h4QDVP8hI0KoqadUYWLxKJ1IDZsBEnpMnuVu4bdznXxIr3iKF5mLtTQZVRLN4m9TEN9EFhtFdbxc3rTQ2rk3b066zJNTxTbcC/2K9vRiD6DkMs/MDpgGwJN6BMtd5xx5z9CYHDEH6vDjWdctNl3K0sGxiuxK79qu5ky7EBcNJ6GpktGQUiyeDm0dE0dspnk6guxzG+1ZW3GAu6DHrBfH6U3gekW/Aiuq1aYuRDXtnfymhJz2ILtoWEzU2Vb2Ql8bevCL4aow8jSMn1pfFTTYpjckLDIjKk9ooel4w6B40Og3oJyUg8Sazae/7A/IzKzks/ka2abHdnQWpsXShItyCB2OFiNYCI7JfUOzQ4MjqfsYwT86TyWJUQ8+Z+IdrAWOdk3s2v0WsYW1AtY+pxDane0jsCIr7SZfmUZZJFf9sD76ZcoxBx1mw70PiZ0vyTpB+yZdnahs0mPrSy9vfBgE/EIwo99HwSAdTU6r6ZjBWNHK6UO5HLeksx6/ixQB5hqZAj3dB0Z8XpzaccTIJvkYRkaJRzokpcUYY6fzy9kS0uAuUqQh/7IkJ07hCuFx5KMNDJUnR1OMoncvGI3lktAoUnM6yAQgTVgR9ubal1oUayJWXo/Ud9Ygpr38qxep4xQB5PdPD97uq2xCkC/tPB4NzTk6LrDvQrD0NHkh2gWKJ1SyW0qfLJe6VBTwpmEB4Gz6ix6flVV9LIQiZJwdFa/kScUBC3tSAT09fvWAxV9YiiyuxbBnia9I2rdAlwpAcxJhP+9MSEqlLIfHHIzsr3GtUkwGrRqua/cc2osS2K1H/j5tQjbsYPfCZ52hIi/Sapy3kllDYqDLs3N3YmTrzEtA7f/xZ99XaOBmw0wFB7aZwv27CuEq0n1kcgShWm876E9GLmmqBHQHjJMBofsY7qOFCwgy9TOXXVbSiA1f6LY69PPsajHyCe0fS0Qeu7LMDdp7+Nil0vH2MAMeRUvVb10+IGgC4xwTe2+uz7vpxxhCQ/NgAN0siRWvYSqzeLdeEYZodHKvDUvp5OBp9Yc53f2pRIXTOGzxfb3hW3l56AWh8c9tEBT2ecQextSJmKHJEufni0u1yYQXoTvEU7cVQb63Y4+k5XzqVFklNSH/gaEIssVAG4jD7AwPv62hD1T2Sx9uJNUZ22OziU9FYFdqegew3cUusUCcUPKIHl1ckqP6rJokw1HLSZJFrZWB5dhXiu67EXiaACpO3E8AYlnXebCxJPQwzndKBAIVacOXdheBAx5reCcqL1BFhJiWfwexvLbIGrKBme2ETpCYuaoUVv7mLFqRdSOcm8w3eUV1V71SfzhzStFryKtECO/0pMQKGnOoCEeAG2xog+5yBH4i3S/MhKSuLeb7zqFxRzCzEMmROjUT8vG2E46JHJ5kniQeBJUiSPGU+8eAitwUePntXDS+9VpMfJIHcF3YDisJ+wqB/xsidZL+rxNCETF3BygE585+C1eBcg1uJR+5pcVF53h5cj1C3AzI8y638prI+OMLHUHPJJCOtXnbkE/d24+sxX4wI+Mlan/u4JbK7dBq3b59c3lQ/ilT2FLC/m/tQaj6nTJanhZxTUAj08iPV+JfAcq6P5HLHajXtwBa6MeOfsw4dI15Fm2tqAU+fygp1/lDdH0IIVqbCwJ4UcdHYte+jBtFbRRjSa5n9bsjdTuYG/5FFP+q8aOzjUPvlEz7E47L2bzyPRAm73gQO23ZjTrdJ8mz0cGLnNHo+nXxMQoKzuZ9JLPirluvYf+KRgnJpTBADj4I/4+gZVTpxUvxCdODyGfDk8XJGpO0eCGxa15kxOnonEQjxXm8OXaqxSYSVMusajRmwqh+Rw5A/q0rakTP3APJVi6ZFdsI2N6z5/EHgvb+VuhjDxM37vKJ0Py5JdthCIVZ4EBKUfpKWbKPc8pDd7YsrQbK796NBxQBaofpiuTygq2pkl1hPq6Nso9BmOW7N8OfMBZxuNWro00p9VcIrpXpfoBtHqtL2gkXsSXDNXsCDaznvVXOFP4/7vKCihx4AeRko4ps8eOY/NxYXHV0FQpogXm6+JlZESJ7IL6c3R4NO4C+cVmaeyXqZiU4f62uYKvSFzSaHUhGMHa7JdKTyBj4tpaP6+6ByFMyG4B6OMHs5eylhonO0USOgxJSxUL6BIrDfqsd9PC7Yd4tbuzfaMJxCpjC5e0BV90JDRw22RofofT8AFkiiW4egoCIAlQ95YC3g83eegUjHmTCe/e3TAHMEmLFDUAqWzzQnfsroVi8YJdAd6AvpF454SCA97CTDoSxHtD8MWKp0SKljkvtnoFBUJRAZaVzKIXm0/Qvpg+3wxT5By2GYlY/al2b+itqRycPQ/h01W3yYQuIBzflLsBpU/+L7hhePSyvV6IRoPALUMvjBYltz4CCG7QSh/rS58tr2SuNl6ZsuidkLOGzKs8bnrB4ZQxDfiu9cPkZD0o5wXTInYEiZrmsry1CZRiYbzrT1ASc3nttXAhzylffXHlyTyuB3toC/oJQhPBardaiRx3ND1p1K9Au+mfZSJ0cEacjZJ9MhQ7fLtS4M4Mf/kLiELYq3pYqBDR2l9zVTevBVCJotJ7Gb3onJtb9m9Sq6sT3fLFGxPCzcbOetKIjeYZy7WQe9IImQbQuD/lRSqyHr/67fGfzfsXe8ekJyiiDXe+jja+5OKzcJ8KXvMPJdEd+DtKo3cGCwlXyOgit4XMhCtR+/I5Pj6LlBBzxZtsW1sERKP6o7H9abGFMaZDo2dhvBXWBRHaYrrkd7PyDsTmL+z9SN07nyb78gvirEgrbXqYYGZLLi3fdF0T35Q0N8agBw4mWgEhgL+4Sv3ERELy3AXyGaQIBL0nJVJx5xx0pYUsqw==
Variant 5
DifficultyLevel
545
Question
Two concentric circles are shown below.
The larger circle’s radius is one and one-third times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
Worked Solution
|
|
Large radius |
= 21 × 34 |
|
= 28 cm |
|
|
∴ Circumference |
= 2 × π × R |
|
= 2 × π × 28 |
|
= 56π cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two concentric circles are shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-p169635v01_v5a.svg 330 indent vpad
The larger circle’s radius is one and one-third times the radius of the smaller circle.
Which of the following is the circumference of the larger circle?
|
workedSolution |
| | |
| --------------------- | -------------- |
| Large radius | \= 21 × $\dfrac{4}{3}$ |
| | \= 28 cm |
| | |
| --------------------- | -------------- |
| $\therefore$ Circumference| \= 2 × $\large \pi$ × $R$ |
| | \= 2 × $\large \pi$ × 28 |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers