Geometry, NAPX9-TLE-39 v3
U2FsdGVkX1+jc6OBXyDr5gUiTSgiLpSKH1/F+yu22PNEOKt606piT7+LHZWbeezo+rT/uWeWiE9yZb154wPfnR8slss1n4axg8YiDTWePw1ASKNzxRx9wrShpzM/OJcS2w7yarUjqDrUMZaDI1geL0JSFuPD37n1ogH0xj3YfF82fL3uKfxR9bx7/QQsbWM0gzIo6rQb0Xaeozf1qgb0WmkWJwT2fQVfvWut1qQsWU5Z6ohNgnObU0DjCouN14ixHAaucYRuw9V/Tri8irzuiPRSzI7qOoyhbi8uu3wWFb8t4gRGQ7abEUm9y6K1f8bTcDHutVj+0LuCaJ6VNpe64OqGloc60qYWS2aDyW041j1JuepOb+4zafIdyxLkz/9xAAhmClca5PNBc6ZcLYGA4eKyrhiH4u5W04beupUYvdzbKLUDhgpjX50QMdypVX3hHpLc042F2OZJmtYHeMKvf8WZinmy4RqPzcSZUOQzqvAltWI7Tm3EhgAG9YuPEj/nrngCzHhNYmJWPkWjp1GO2SdfbBsUcA++Sx5pJrbtmVBBOfSWcTXcO50Eo2KrFY8IpWvMh+9SeOI42Jnzgizxl8itL1hQC4JaiWBFncRkE447qFszveDvqHRitKSFmzQ0l8/uoGkGoFJAAJx00vgYEWU0pubKoyt4Hbr/bAE4O/lqeSa9te9KjNbEb0wQ21PcpUbjigWnSMrDeS+6j7KxHcSVIMB4SCIzHVQ8Jao79D3fUEBsQ48s15ZyJNusahACWAZKziKGj44XR7SzzTIC1vJmF6Uda1hWlJWMhQaOkF/wYoZhUk0i4qIBF5suPK/NKB4qyN16LYDy98ByxnrI6/W9yHOCfd9Fa298oLXFJD72YuE88KL7zvH5r7ob89UDdkRf5rEEJs9TZdtU1yQVRM8lLtoslQKQ0oreJMaq6ncbCFgVQME86IOUnyWQiTO4Tf/0bAp5OGD2o+KQBo5H4F0VKCGToIWiXLePHy5gzl/nym/rt/+awaDQfGxKKU8RTNQpKA1vhhq9HiZdPR+kLx9i+GWg/xwBc2pUAt7+Z1pivB6RjfezqFugGrpB2wHepVMHVfU/XYhbCteR2sJf1RzPWP4iBvPzCSZpYtUu9iwg7ZEXsVti0Pz0HqCDbfR4mKXOziaeuPEly8AKFnhIOiuR5IKfVBed7lsHZ5Fwz5IVAOltTOaPJ3nIA8WUnaLTsVoRhjfPpyQ9SLxewVvTH8xZo+Uk5CLXZShxUF5CltlxsZCqAsUFpzz9CJANeosPCPUpB4Tbe6Z7uwYHyRQlRpGv1DN2kXmeMKqYMcOW8vvL+zov27kRxznSfhIb4mTYKd9jDYyA6+HJJ0x5YIWKp8z+lBuqml3Kq9qcUfUdkqOgGQuVtJvsMuFZPXzfcrsFNaVoO2befaydegPGkHuErrgBc+e9J+fSo56Y98W9wMWE971vF+wkaUoegJUb6aQWTVKLbCAEsQ11ou0vMra5f0WH2FyvCZwLM+ajq7PcMZs4ZmYgjx7oEybY4MKNLU5q2KXFw/23QZpuDJJyhQILgTrUyUVMbF7zua3kjC94qgOGDQS8kalcuBBV777lqKqayvpT/GkhnX92RHTnmT3Gp67AAvLpDt+1KnLridrtgR1STx9N31w/Wk6klcjrjAJ75A62h+lb/3EGWv8g1H2N/9U/ySuGmN6CQRp6fgF1/1bCSGhg0enyZoXPbZA+kSZn2E29KOD43I9rTvncyYaj9dhTSubg/hh6f7+ePT3slOhz1mE0gbPpbbiExIoT3OwxLB9u4jeyCZ5rrJULpPMpUKkZ6PbZ5W4FhizpKkbRoH57ijz6+IKHr2z055OjCbKkFLS3QFinBviF7zrPCDJXpSVdcDvcwIbxnZHq5l/pH/KOUGuBjHVvb5U9yvrVxIfB99jiK8YAbRr4Ev6dFUQ96CpYwY97AR22qwk64XBwJOri6J1cIN0/yWdSpIWuKVvwwnC+RM3WCEsNi4dVY5M8oW4VVyXi6SMXeMDwxqU8ufgl7SgcRwWi1gpzhSz+bNRND/nnvC7Q9KIgikCY/OIE9KqPwpMiK5nYxlrE3JBhBmS8nKtfzRihqSQwuK9YyURfPGX5X/z0IMn3peMC6HCPu1q4AM6T9fkouT2x0J4AGPgl18xRRdanocV1dpHDHSjOR5/Bbtc/XnlGV54DKNy9FwgV/b7wUIm0tB8XkruWePYq10tIxRulOMgbfUEbQbNWxrW0mOelFkG06go7u0BJCo4jgBfscc8Zub7HlCOnqUAtWl2yPBxj38PG0HAbzLuf4ppxnTrw2Nk2WWDF8jLeykaAf3GGs6UooW1hYl/+EKCw+P9+9UGPvnDt/Mf8gDNskvwkuMuM/v1jyaDLYTvuD1TEXytdQBKPeK/EK5aaE81ZojCEsZIGmQwapWBilRx1DGYUJ5mWicECaOThKotmptvUKu2arZ1GpRKmHBSwEYxy1BH9cNsrelaoRxgMy6DukwTE84u87eimhrT5mrvOC59ZHz2IQVKvpWvFkrPRfBpCVh+JFs4uu2Svane0wa7zFUfxB6yziddpHiduTnb0lTOgq1igUDwhlbrokyefasTCgn+gvYF/hSdhbYbhlLRZAlWyCzlQoSit1XrqRodGwJADIsFaoCg3YlpWjlaaxps5L1TJpWQkl8byUIPPVPgPBS24wkcYU3hsu/HfgNwxImDVcC4cP5AYr55U74Vk+7DFrCmGRw999uoyqlUBWspZU0D6u6FHTSZRKsbhKabBAm6wfW1+EYmeKQOeTdwz77E32zO9qJVRETY+T3s6/FE6IuQoMgd4C5rQHXoGNtB3VpGoJnLf75maAFY38UKE94jZIzUVDn9cWgNuA8jQ4AuDhZjZPA1klRTYG5veKAxS0vOPxsdqHTQ6bTs1ezp9JeGqK0GgZt6Hl2Nam/jQ/Wu2lrHm3p/1Zh0RJEG/fIQL2PVMVeANobO65QnWkgcEjyHYUFrrGnnTOxaLF6CuFGPYwYOid0Ao/mJa5mtbHJs+55A68hrwl6afoAlY9VhfRF7q65GfQSyir35s2XewZ7HUER0z30cJjuUzeRzXIi1x/BTGh2avvFgNnwE94hMPlCYbc5M2UBq2kKL824Q9ImCqGUu7/HB+f5Y78d3NJX1Ki78ZlIuDwgCfR/NonRLc3BrLM8lOu4/JIr8E6BD+4Ng0I52GHHNM0G46o+z8H+A/Nuej52HfS3rVqN8p61sqIw7WAFc1TCBB9a0l/iywn3S0+J+BTQPsyOtYExa52VziAAit0T/k4sgTsOwdUAoh42AWg+/WM71itDrU3II3WVuShbPe0o/75Buy9K5Q9GXv8zX6QpPRuvxAFpYPcdgaa9acI3btXDVLGF7RGgfkV/lP+s+/It6a0OlYmjZDCjqBUq0gf1mpTd0fdE71nPJ1Gf2XQ0UdOTLXEsolzA1yQh/WoitQ7sjj9U+BPjCvigWRvneFVYz2RkciJn6pXfEylkeCk8/BguZ+SAUf0H+j9qr1hFp72km0f9fm5K9X9b5O6qAdY+jncIHb6aR8kINSRhfmo5hBuH5ACEC9f/z0fy/UoUhnuTGhHWshZSOYq93evWIvatI+aJu/dcvI6y1c61m8dppo8r3tVxkDvQQBC5FnZKE8Inmkvv2MGm5jk3m0f9gY56NED/jJ/ORmh4FBVbt3HzAuLqu05MpojFH/Mm5FxhuizExJF8q45LsemUtVhsI2cYcsAgdLRibD8m/q6P4dAu8Dx45UiBSRjOWs2ZJeWVbYFEjZ0Kuc4aMSnyW8d5KlmRAKCPnEhk/5kKOXHHMyaG2dQBzp8UUd1FHukTZg2zXOSRyf62Cmv6K/WU7eMKEUaJji16HmZSpsop7849fzTVW33FGcDrY1cjehhamBLqCwmwQiYeSu0OazrKJwz3SdxIe8einmXDMxyqR+gF580tG5nwl2ECpATo4hqVoFOr4Ecj6ak+AAch7BIxTzENgrZKKbE1OtOSXl82jzsnXcuEf5bVC4NZKV7tW/MV8P+Km0t2G/E3mYU2Janvr3T5NDH/PBMZD5Gq75isoaFVcaQEF5EjFxLI5q+t7vnSF7zGsVbYLrLeMqGFqNr2r0hNXH2YiXAbkcKFuApyvCDY4MmdlKMke6NcNAtqyb2gAt1xd6cT0SPhKe0JVeKho6UVs8SSUSlZajXHXKsW5zHhG0oRPrYzOexxao6zS66L6W/fDfoiR3gKYlmmH6FXj4lgEUfuLCpycUYLvzwOl7+11Tu53X+R2HaRpIcoISk2y4JJiKE5Qq33aZQBR+6FMZKLGqutNC5xd2I5CNmpTuOEgyilUnBdIumvzsc2eit9OD8gLWKfSZTZ+1Xna19wuDZip9CTC0qaXSHq0ASRVad+hMGytu8WvCdHYqfE5EwOkosQYl01BF54IvdWEbeI4a420DtuTnJfvCPwdRd4AFls/oPb8L9WYVztBv8jbp7gdRKpGb2tTCoMoWJDLxm8A0AV13L60L/QYs/+kvFbZhrXMjeNlU8aW9zG8/fXWf1RrVCgETJ3NM9j9xQyMA8H/GhcpQGUuUKFY34ohTpMV0ZP345vGwyXhr0n+TIPcC+ZMh9FzAwL5zgOgabxRn2j/jdic08KywpZCw+PyyNTKCz/1BePxJPugQcNO/KBBLiA0qB2X1Me41JiXkDBDk3H+YjR2NXGHjl4Lc6tQJo1ptGDnhwBqbrPMNjNDpGzELHuN8kjfGL0waTb3Dr6WIq/FZ1cOO2SYjD2SWhnLiCSeYbqgKcLbL3Qd648WvaehK88SxeYvIJMbPBWC+MiOfIeUhHYfyC1rED5BqcH5KliYUMFURGjZLKqnlUG/d6FsXHt9Fpn3wu9LQ0bXDNHJmD50pcKnB4Sw3IR1HPDNBJ/crqWUeS9jh3oXuDEno2N0fTt7MwWW2Uit15/J5ZOgdxgfNBdR8S7kQs4dFuHC+u/r0X6CqK3xXQiQlXz3s2qw3dUgpdXzWAiw0CuLNm9FyBK422O11eWT9tH90uCJX/U/34zaq2wmxwc2LdTPKoUPI7cgU75WGG6JvV/zgqbBtyT1c8Uc26CcWarmmuIMybheichnCnUIzuKdk8W4bm4uTukdYue1hN6vnG8xTdact/L6pMP5rTbaQ7D8xsxLX2NgFoUn6vNvc4CRutKM3SJzUVpOZOtc42K5QtK2v3cF/UyAEzEDEQyH+c6Nf+Cx7lzkjd8PQbmgqgiJDA28onAGZFXJDbjkd/IW9Ui1L8Q1EJdfjCSowO0X+5OdlfnY+54N35BUNIOsmRA3L8i+idxVUZcepASZShUdfaZlD/bNXVat5FGMj3lxP5IHHviNQvMaosOpgKtN4ZN6SQOLHX05LJ4wBur+6SLU5NhE+ahNIAGT+58aeIQgdnihY5ucQO2qmX1sg1r77BCpMWs/4X/CTx2slWP6MfzAixtumskInLipkUDYAXXZwUwxFCLRrbPbej33syQnmbNmVPmdt+9LHnbhrPi+GnUHgJQealaa00bUp9mwCgsfEnJK5WZE4Hpm8w0S2fyWMkB7Lbo+Oyq8UQg15/wI8fI3DBTzXZV/V6sCWLOrsMS5pjHU6chDn8PQi+BAFmPqbJJNs1v9lwxdmA8nvL/JRgceZkeqrAE9hZzvLhFfjfsYn8PbmbHE5AE2wGDOQUR4V+qMKTyC7wno+b7j0YKOCFJjEnQuiVyXr5T+kZyzSPqUdBpCgKXPsugb3muNQj+o0pT7/q6oTFaJgcUw/R9DJSblhxyysgzOcs8sByI7K3wbEjqdwwM290/9eC69p/YWnIxAyWNYjADqCzmb2Wg1sP917aL2IN/B0kce7gXFF7ZEiyQ7++zcvWWnaoOKmOdQqmSZHdXncAmdTfmuvMbm/NbMwZUnxfOICb2zerKaJRmq0qXgAXWIM6A9rIrbrrGv8eLAMTU+op7gpeEC5I9dvagV0X/68s8jwkVh8jDmt64Ekr2/2RZI5NjQ4qRB3RqZbdZLMufH6SDRSL9VmNoa45nTYM4CSTqlxNtAPxE2qv23IePqT3E2fnJ18afHCmRCOrM3L1NsD+iuAMeZsGdOy7s4D/Y1PRWpPfzwfK38a2eBqpmMCUQMUvu7dSI/JBkFR4UtP8y4C9M4fwC/ZPXChfV8XdpdGbah6pedcDpI6X+w5H5gcex4fqyDF7WF1MzIKWJkSdUPLfUGuoMutVmKAjtMucl8WcKExhDnriCPyOJnSWwUcx1p6dRBb/mmlJyYZosXuAFmA23YNUZE8ZJWe+OsQwnNqDU7U1/61g67ZXh57e635qLChVJTQkJWoY7rKFfuGQHxx6XdTjIrmK2hfAIPR/6WLTUJDr9ujwGpdAegUPWQ7n6/uBgHWlZ/ffXTO/LCLFY6KoEB5crG/0TmKAOjEu8yg0FdQJXB1Pp1QsP+WGR+VnEOXxzP8DkUppaMrn8L7aG9UC6+Wn6sF/pTzKDp8NL4CvkrJAdHfACn+mFHXNz6htZqFJNtcq02Qln9opERRM3laK+F/3/82uaaHhzR7pMba0l3GWXJuMiYvqzZix/FJ2TQ7oO+zJYmy6+K2Qq5OBm8H6o8/6jLwmusDjFnRwN1MV9X40ngJTn8XTj8gw4HfNJXllxSDIQdx5ZN9MBBNFIllVzwYudNRIudnfxrMH2MRt7/e1uq5ytSirfu44fTrcsiis2fOM+FIV9shceiy+tgGlcsEJpuNgDitgB124t5mP72l/7IvzszpiHbxDUvIvDC91XFS7+CBjVLkevOpqDMAK4K/xgenA/n6qHy4TwGPfFp1FTzbDXN1nNy8KxV+FS/ySuY6B/vazT1HKhMF4odhPDA2U5WM43UvLrwFoghdLWTZwqdicvxHKDxDPZ8vRrWfVt1SqmtZxV/vPSxVFnWmEmpij/e2Fav6NKhxfmpbYil/yxR3HN4D85PGdDEd1T9J2CFpWegbdGDkSb5vVeXyhSUo67i8bOsrm6xhb0M+gSMzlok9RfhWPyrZU54mTq0y4c8PSCp1z9ioh9owDVNCsIkPCO5NMUHJ1w0TRPbwwidUSWa2HkOZf/y6DazlAzUOxmkJ+i2TV5onhsqH6Gb6g+VWtWVc0iF00wdQx4V9DZAA15XgAMJaNMSHFBWdu6BqCofiRfa35JYiMSvNlcQJpdltxFHyg7CjfaWew0yTmJbJ4OV/o09CR2wKUKr6owbVbZtV25mbduFEK78WQzl7aM7Z9ZHkiucw+hvnWPyWzNGYc+thpfWc1tMd6xH1AOKTCFpj/3TXDH5om8Z6sop3kozcTvGxQAF/h8txj9tZKdKDumNCqzR0FY6OtL8ponAsPa2IcuMO0rkw6IcHhDsLimyj5rMMTjS1oPEVbnwPl/iYUPN//ZfuNjMuL59cv/EfvhSuMMQH+ZEyDPSTirGstoj9ryXUN2k3SBUzZnRJvcLxoA5DTHTl3G05ydicqx8vk4sW9HCyOYE+CaZT0gnfpclU+KEsD75Pd5GrkK96/tOASDnFrOmwjtLeN7cQbf556iGBINLn8TpZKRRg+BTqm5HkFvvJSePV/VeNnL98/d5UsdH82gJqgkpWN6AO8mOuj3cUuvMcazm/FA6AXeOBIjKXUg3Xt2vWpTk16n0MNBb+WvoiPOB9uCjvylWZsEOBt+tHvmRvxab3QXkV+FHBzw/m+vXZp2RrzoC7Bs+A6T7EEIDwFuJBo0/Ml3Xhyzx4mjoHZERd6tcEXIVlEmrgpkyjOnbXvhjmyDZZR7KtHSPYrn9nd8Wz2Sltxa3WdGU55pn/AfmbMpZFoxmdchsoWV6yBz3qRtZzRUDRn+1FeRovbrxbOi+NVSsLRIPCkWc+p2HZiup2qyCRu7f9esWnUGqR4yGcV6ebcFTf5oAsNiW/iC5A9Mz8jCJzNOmu6E0DpAp8QE+D/EI6eCbLhsFoVpU/uBcgX3zCOs9i8jQ8Nl3afTdJQZg0gnQDqB7v7ajrnXFKXS207LnwINm2E/bYNnTv1swV+c0lFZoHeZxZ+fVn0I/cTD7xy6qA13m4Eeh/wrtynYweX+fOaSeN46TVc74aX57xiRbz7TiLB+2Wz+ToLA1Q0pedKvfo2fkvlKQ+0b3BPVSB/+2RO8ywz2PbAhhxNEnKSbrjN2dc0UiSplYU54bM51yyyvoMnlKvAO0P4YQ0Vw75zcilejvK4gUJuzJSOUmWSJe0C2Jn2P4nl8woD8eBs+lK09OLSZsmw6uZzyIWND3yEstRZ9zvIziXc0khGwdEqdsAWXBCZKauEWo5lvypo7Vt0xIVH4pI1ocew+Hi+pqjp6LYHwyAQVm3AmXwQl5u6msaU27R+snBbpPv2q9ZnRlIO7kRejouctp/e4+0UF/8blgEcK6rYEtU5+TAOUVPWZwLvvEAIVvhmCn26prNe3w5+Hip2VerzSMKivAl6zDGQySwp4Pm/1S26D4/Is8oVr27ui0HIfCTwAIkQPz2TNPit76hH3ij5wwHczCzatBAbnX8u+A95tvZYo6BubCrrOo7HmAf1o/8tlR4oc6+5yPPmSYVbPJmzzF0uiyZSj2h/UHDZKr5SFw24hrLQNY3grv14yXNDM9cce3vv6RX3Sr8THE6UYbCOj9PmmF4WxvsLktxy4MD5ZyPxMKBpvo3LbXLyxVzFnzM2tdqG6+rtN00FXhiqJmkZper8jMu3noR/9WkPxxdOzvo2QXtKxAGz7hpqzvKoyStBhNXbm1eHOqGw7AfdZhm5k3sgeyep4yfg4ptLxkSAZLumfEKCYqKSM08r4BLJQV+2khghypkVOpPnY20OP3kgNvJSRxKwYPuJGbB2MK8ankNg3nNHG6raIf7a5ggM39CxcdrXO9XSuXaFzBEVs7TOomTrnxzkzoH+UkjkRQL9YyjTYlzffuJCqthvSJ1TCm5RElH5jT+l6JuCA1cgglzyP1v3vo9a4WT00shQoDUA8+b6XkNrYzH4B3NvAZH7pYVHF5IZZXlVU1prvu+E1k1l4Rb1/r6LyLQEefPHvwNsNJOmvaJfc25PbqsG9lg57KafY9dpNOKdXjJai3ENXXpJ9kV8gfg/SllpnhPIXszcdZNrX7N66wbN9PC+nP4djnaH/INQPLigAfKh/oimGbUdcQRpPJtUn3xv0j0XTTpdx1sqQngPl9e4IBJpcvJOeCd4VtVH2NPTrb1JGXmuACCwpn7KDpW9WmwRtSdSKSsO7HpS1VuwGMHs7K330i5JQ8kU1hY9xFlVRU0G+gGzWf90QMX3/DVfFxtte/oJxxX7A8InHa2cH+e6zzwBLiRGDjB5nwwuHYOHUQEJsh6Esbd2nKWieVDFr5/ehhpmezo0caIkXYkupFzae9ckAZqMxBgpDOMInTFrR2UcKaeEj85wAHMKBzf1kOVMVHMRTg14MNzKTfIya5hNfwopDZgY+IfJW0kYXfiGlbyNip1WHiw+QCwagou7o78TlR1ijxl71NphXZRg7DBguH+01/v8ewqmFmW9QEACvw+PRr9OLAai9eAFkRnuHY+Aw5hmpArpNtsZnx3EaI18Ew8sTWPd1XaAUdx2k8IwaWPYOQZL1Onh82VQxiSIGBAEyBBNIsGsUHm4hr+8+vKUVG5PCF9bCa87VYEM9Z/3UIhB728Sg0d9DIpYGRRFzcM6Ai3Khyh60mR7q6Lr29DErxj5sp2gFCRqE+Mfmzu+odMVjSVCj4uj7cyrHb2adhTy/KWD5UYvUogfKOBXvG71EWvVl+obcjyr3mIvDRxGp1mS4MTP36R4CvgCZzEjpDb5Zd8HIfX6Ms/YFHJ7wg7AW7964HpowMOpyh5QWNxJ7riyk7DmIIn+P92pIb5jW8I+c4ShJC5X4ciz+95YE8G4NGcNhI5zDzd9wkzz35Z5ixoncolgKyIBdbyFR35C+3GajwZOmc7Rct6pfBAZs1x1araSKOzY6c9MgRBYRmWo/9YokcaXfu55fpjhGjkAm+TWf3Jdx4xiZjwQbhpN0cqTLr2VlJDAUxe1YjrSPF9bVLLRI8RywT4gnvID9J5h2wyMHUWFnOyXcdRjPNqNMMJJ5DCxYJeguBw6cJsilTAi++o3JY9V26z6b1kXeuttl66h9MLO85C53EuiS/zX3PbwG89x+xqOPJ/ZinX2q+utLlddkFWW+RpHyG+l3MM3OcHDZUZMY8xoQ6xbSU14T/+CkE32vVkmr86k+fseqN+wq8O41xxgoSJw063sft/dt6f4G5TjX89JQv5OMhIj8xmLCh32MMA8CQdW3eW+3KaN7ORydCh7kt5PCTLpx2Iep3aHaUkvjRbLQkti75buoVchgWLuq7l9NIT9Cl+FJ2q8F9pTaoQSrV69yFSpsa7ukvirtkGlfS89j5+jlfegSdSVfAJaD8I6wtjNI/8tn/XHK24yBJNFriHdlCwoRHXaf3PRMMQARTBFxidZJprUyy3goV6Z5MCMMm8IFJkG1ADwUHbMi0X5CYkJV81I1pzYY4K+oZ3jGlPHBgB9OF85Ft9PFvBax+s68rheK5vgHMmTSOZmnlhgTXGcBG+C/UWI8pcxr2Smo4djI7QPi59EyKQecpBEqqww6ZXHMy++8nLILcvYMRfgrm82/QwV9ymOhyWB2m8aiJF0GtmS9gq0r2yrjPfjpV4dkvXHbAyB4pEcBmEflUhxj4xGcplZH8gRr5CfO9w9LmHldnF7637lxPjpie5S8AXSY596NuvrK+5bJXZDczAqkrpy/DN9yVctb/b18ThhZXSvil671H9xF3YsG6wTQNSRMQza9ha0FEAfqrFJKHTwKCjSzapqV6NCoJNuvdBtKBOtghHXqBnLEse0/aKxcCmWynJV9QeFkh7r1zef9yPutctCZ76i3VH0p9lfhlia5kkQneK/oa+vRECimhr466NX1vnn+AM1ijp94v8Baxim7UXlRFsXgdhLu+ABdMwl2qzk/niyVsXq7qvkzTVgGrbuv9zz6ZqU0APxGoJAitES2UrWjelr6qFAHTPvMjw6Abm1eZ+IO56oR/jfUdRNo4jTXwSIyvSItHcnLtA2Qu+E6gqND/zd2GJPiCfgMyubH5I4J282FnYkSKsq7GQSr8QSjaEEL4RE/WxqhrI2cUtMahIshRvVSfVs9yjKOBTkHdAIUgMxHoZ9O4mWhuryWdbgO0ygVmUll8qej+H3czTF6uRiCBQ/c7rwsXTSa3jjH1AyV1VRlw0CUcsIdA2Jv+HmXjbYLdQGc067+hajcCDeOT8vYsgl2OHWMXr7rppjfR3o9BilzOnxk5WGNxuUqaIkacAZTlkADGiTL0MnziRY64wDz+7A8nCntGelQqHMRFBV5GFmlhDT6u1AvkPELr99QlVeQiwEBR3kak2hqQ4Uox6ap/AH5DAkX0loQwwlxgjB8OHvO5s9cPnHPELS3ePhKy4Ag5DY4UJrHLjyM83C134oyiyVy/RG9yXplstz8S/rcpSARKFB3wkLDBr6MInaOjGjfoHQuS7nSd+MiSmCtgnXfaDwhRop5+VEMJkKxiGsz4jKV6qOqPoUBp7tyG69qmp9xc0xGy3EQL2EKQOzjl9sHt9COvajQjk9xNseL8Cc/r11i+fdO1JoaJjyHWxbMYyo7iz8dMA3xo2X6zfvM4X8p/pJyN8bGCTuCZfssQxqvMiHsRZ4rRt7TZDchuDP1FgtNGQInk9ncQl84y24dpJ/E/z5WdCL+/Fibg3gCf04Ie0jj81ya1DayUGh2WA2pok71b0yawnLL9vExr8jWWLZorMkjTMP4668/6NRUJz8O40KILs9VEs20ja1iG6VQ7DaiJr6WwA8gsHVsVSU/b2yGA8L8XjZGA3IqQ6LR02TuWuFwCNJpABM0Qp/rbKE0CrWHGygOqpbMIf+7rGtUgK6ZzhKfvCn+LtlHrCDDMuPWYlUhGlMfiPlBCY7xOwht/cRILZ9jotXcx/w0FRC7P4Q0dG3Tmr2DoWQQ7Sg12ZA7bt7NEVZIxXGwF5Ynuh9Tn8fDK+Khbrars+oe6vkKdo52oMcgnacTjXUxCG+dJxgVspC8qJNAOcbQJjtgDzqn5Yg99gmcLAcz5XnGRz3POQvtSiCSco8BbAjAmjYyw87DYBk1E/ntmLQ4dteOMseoln9MPHD2lgh/IdpFCoW/eKgu/6ZzhXtVfx0PvW0eys2zqy9Baax3J/W4Nshqu86qbZNkDQYm/dKD0K5yKL+ubM4P1D5BVFihCHFkiioe5EG3Gq2u28Bjag7pZ5EIFCXLcbSl4Sqx+BtBRm/3NxoLy0KSLJDHAgvtm0i+dKGglyHyVRdxgfy7So69NjGsvbQH3tpcxjVqn4vLHwaPOEP4RiduPFHiTtiTlEi6cY4jtzaIdcwncQXreCfXVPYuelmo3oxum6hnATlLNg9XJWfgkuw4l9ioK9RI7G2XuMfvaf8e4y5SD6n/+8bIt37mbfiwxybRy0WBVAIvuKB4vtOyvjDWqS1y5LvZuGsdk/RBZeUavAsb+dhcP/RtS/pCd60NuDgMqlbVH1WfTJP8ooXvIamQYY10V61GnE/nJRSSNczwHehPqQ72T2ec/77Nl5fXiqLrV0h3RxwYaXHqXLxXa8leWKbTxK+SWDlW8I7AYflPXvYAD2z+EnUjLbMDVYd/w7DIHmEAV+xvZT+ahPaJQ4poHLfloqk/7Q7KnkF/P5DV39nKM9IfA/aE/H5xstXS6pbkVSDofK8+BfIkW7hSlDR47/1/x75QBqTTdt8tuPIVcSqiPEfK7B86F8vvBsmGKIG6v8JVXVaALCyRn5BQQsFjIYO7XH3pA8ZlUc+lYgbsvpVkvQFPMkalyz5huR9s/fG40gLESAGLlxg/1JBReFol0o3mQAlUnTtfHIJmw56n4zqYpXz0FWErU/LS1erJ8YaKsTXsgze8uD/sIBupiJPrlUonrQhIQzHgnytvBRXYcy/9Q4psjHCPiiB3WRdhe+svWwxVzmESmPDvIAUgHtFHtasWChJI1je/E9m22iX0RalpyaV3XBPOF5sAXMWYXX038pSlWgYH2lwIyrx810Deq/70MntsTZ+ZYPsqn5kXU8vf9jIc1KouVfofpA5/OqAb9RxK8hI77nf9R8wBklTHeadnaqqW/tM0BUi5N3mFuRS4Olur9T5PUTfq7EQCaL5EFSLDz//rus5aa/aB4yUZB3fGW1tCDp+jsYT+CsQHeFkrZeMpNBFmQX7i+sa7M35H3xvTzQ9CszwBK0P0MiylCf9s2s5yUCmOIAS9KZQaf1mMkwwGOsfSUtyZrRJ0xBxtuVzjtZo6qWVvvSpDrK5414PenHt1u830MXSS3EUVXFIop5PwntNtH8ZFb1+HWUWqfKf5meNeusdaZbGol3mYGQzhtKWi3slBFQq4I/xh2oKnjxPJh/RxYU/j8nbvlIex5SBtGWbg4ytnYp2mmckTy37qeytynTVkbBTTrni9OQ0Zv3Vn4vsq9Grwaw6fZcyM8LXKVYk6ilCnstV4cdjUdpkHzw2uhA6AjySe9vzAJ2d1V3CMjPkdqd6IEfOWCUZmtkYR6zv/BStZtLuUGWRdxyElsFzrIXQF4uRfRwPx5g84Kk8FSLrgxip7iOhVN3wNpH439Tb34tvXeHOw+zPZFiooCfJk/9fXuBG+kGona4AreMxu+lLhHWnXEmRT514nnkzWm8SGcdnUhG4ZIpfgTtjNLtr9A8hO/ADQyNq58LIASM+yRAc/weQlyI3BSqmdX9V8c3JT5verUWk7a4MasDaZwxJpfQFDdi+2eQ0C1Guvpefotd0Y/PhnN2lmG01apYT/QS/WIRZ7UiGX65zX2VnjJaMSw4YlzM4/40LZdTk/iNNLfCKeBhSSvrD/kjFhhZ+dTWEPrH0TzhGXgLsdMSu9MVjiu2mCk8I+yD9OeGB9FyADXMgS3M1ST+94MRgeucJBztQPvoD8nGdKmz6Nx9NyZ58790TH9gZjHXPpcLsVKBReb+atpuuVVxwLi+DyxAc3mAG76N9YY56i6nZmi/UjtgJFcoxTzGTwjJd1wROS9eO2AUJWFr9pcYsu6tKNzMUY+YC3UdSzV0AhESUBHym5zzwNzicmg1otOc5oxKNUkGwTtng2MZzbxDBhC4jUxB3cLQG3Mo66oUoDgwr3nbTQGZis8t4SXIu0xxL0t5fYCseFS1gUgjSS9MhlayzMX8Lr8UqA==
Variant 0
DifficultyLevel
614
Question
A parallelogram is drawn below.
What is the size of ∠BAD?
Worked Solution
Since diagonally opposite angles are equal:
|
|
∴ ∠BAD |
= 21(360−(2×130)) |
|
= 21×100 |
|
= 50° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A parallelogram is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/NAPX9-TLE-39-2.svg 275 indent2 vpad
What is the size of $\angle$$BAD$? |
workedSolution | sm_nogap Since diagonally opposite angles are equal:
|||
|-|-|
|$\therefore$ $\angle$$BAD$|= $\dfrac{1}{2} (360 - (2 \times 130))$|
||= $\dfrac{1}{2} \times 100$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX187vEDXgpbmKyZiOPWzy1Xj5t2vTRKb5Q48i+iJaDj6QtZik7FOZF4jRJrLoQyOt4nNGGmv15GtBwXh6wsWfh1YNSFPP++otiVJlOHT7ouwoVQ4gDr7sd6EppUxzHS0TvWBvp511zAecBIiql0QlMXR0oZrUNtSRUSfP3/94MAt7yMtIsIRQtXNDrASd0Gt/LZPTu0fKtZPpg0P+ZgNM8OpOtVw3eQeaN8eER5REcUsDvKg0HikDYl0jqNrE6ZauCVHeRrBkUJw2ruk6cvmvJcBH5ECk+emIeFml3aRjXDitR5nVSRWKzkvJgZaETAixomyUxHovwkPmd/vKmuM5+oL5VrU7dZSvQ0Ej0+cqRRESrOkNWHwTgL5Q5BuDpttJGo+URWq8avmjxnTjzGLv1G727rj0IfIPO+Z5/C8V0Q5AZH5kl/3+i2visJ2zxw9B2l14jbnk/RJ0Eemyj550AfmhHk3vQbMUbJu3ap3wR62CNQiwGyZKgyRcJucJ6FH81JR4/1qtDsmE7JW3miIXGtFB3XkQKXgDS+czpRit4V/GbZjS5YkVISPfVVnttiwq52bMvbVmGGe0HK1yLS3wlaD+A3c6eMEkxba1vJZEkWTrioRUPFnBJLkvB60QxbQgdj+2d4OzUTvgr7S9gvRuzolnd+O3o+Q87t//B42tltBrSo0nVdUnOHzgpoAgeB19PsBPMFqpT/rtszWe45cTyHkZUKY1xbHkgHDX8zyt87Kzogf9rQBPAFWauRlyUIbmJEMImsttn8++rkSJopvclwUCvJiUwPpmZEnij2aQClBvps6C8G3HJA1MtvTjw9frb8M/+0u30zUNSkGFyQkMKqLFl8Eb4qHtSFKNpwNqcKhXmKi3WkhyxC17YOUuqNextPafK3M0LsL3p4cNMO8SpCWx0qBz91ijnIC33Kj7F7cBNnlnMILehg9ZTF1tVP2y4aiuLEBSxev7OSRBJkoHXGHtAwMnRW5E3Xk+FAy4kBWwXVtn75KP3tlYom7udQrc4R1953AfdEccWz0K7iD4Ff/NMeogg8421RVNRsnCozbciA6BFj99x0oUdUfTu/5roN23voxrnUeLxUsXxcW9j03eCMGGhpW+OQJwDF3oP/0yssGTAXC6lb/g0zWI8HDgoFJ00jQVfyAxm6tSft+KL2f6wkN9xKC5z/Q3LYIUdnj11nsA89n/rjqo6Wk3BI5flcibWdEdC///uSjQOoCWWZui0yAlzOzlvfzA7QvPfgQYfseDbbzdxkXZAWlRqTK1WQzE+GYT0MMTSJ8c1RgSvAYevJBVmPXOg27lV0VTj9sGRlke9UBS57RbluhcCe/qD2WDIUfUuEqem+kaRCuiu0LeleI1ZDIn8efuvGb5k/eOwN7HoHkwHtd9LyH8FFET6fTDharCubk07Q6GPUWD3Fe+nfVS7iuWYsF6jjpb6ijrD4iUcewmNF8lnGUrmcICtfMBTORMvRVqhZlr1Sehw5LY64dpSilKICG0QFvjwO9+lXglV0ScJf7Qiuv/P8XEJNaZgXhMkeS9ZJ/tNQpkj0GCzH6WA2D1vf62EbAFCLm1InqbZhjeJUwTV0AOeytp7YRgjYT5+/mUKaaMHRxN1Vtcs9Tx+drn4iCsQahzi7EJuStWH3NUUBFOC34BygMfF/Ijh9jDOO/+Sdf2MnC7ndJ0pmmWBH5hJDkwCTXfakQK9UvgG3oFv9FKjnK1qR8yzOOvjJgFGKaJuZa0bPzh/mwHYzxIcpC5u3SYBM2Ust+bbQE5eogVRJv++uV6CzweCh3VDLwjEvCuD289XsiUYheY7bgVlPdvA7tsCpEuGYEK8Eu9EGgXd/INq00Ym08A6tPOE/9I1S30mbpPAwopEBtgQ2KR6kiM9SYCiGDpBSQX9dokzq1tQFnuLTugQhpyrakzy58Z4d49QpuPcGe94anjjc5lEqeb51D7SqW4hxp9tkpVtFSCfvAysS7Tb2te9YVQJqMYaCEJd1eNmR8b8q7DtJX6jfnBmsBX6YFXqy8LDPNCXF72GkOnrapCtC3gMIiG1ueBRhUeqypsOryLTvyRRMjMIhGdAiGwzQSpnwYf6wHUq3RP3WW1IJhIz4UV1Lgm72f/WYNCL4YBAB5xZgXWjW/daTi1shwttzNQdgd2gvPVQl7ivHd4SA6lnJusAKZKzkBjomXqjCfrORKuj+2s/kU6d6vWryQTofGnqjj+da+WbShqPFKiH9aVN7wUNcckcw14sKvo1i4JmR8A68ziBU5iDwCh/7mNobNOBvT9RDXScltGp3gSE0JPxXzdX8qaYmNYSPa+j4IzKJRD+YHl5ZB6S/ksnj6RtMu6HqKsPSVyr0s5R6RiJMsbwrCDs4k2Us/qYi5myUKMSOVdhFZUjgN7ulGcSoI6TTms+nU2uJjPuINBZ0otR9IFscbFBtuG5zsfkjTi6cUoUwbYcOiLHD4q23FiKf3Lsi/9XC3VNBL167ZcOAJnjhPx6TvuJzbSvBA2V9LyiYE3EKwRR/zI4UKwAMrr1AYKbvgx9Ge2jMJb6b+opYMOBHxB5/Hwc0jOhwzi07t96oJkCbCn0MsQC0PGU1wCSIdQ6wWBf2h/HNyV+k6bT6mJO/mC3dz+LqJlr7HskKCfjZsYwIsxuQG0fSJpfy/dMnT5FfRv/i4BCaoOVDK0Vw/svPlwtBPPLczFWgUqmEd+kgyv4hoK1Y/rLCQb7yMaj9t4Ut72MQzinTMDwWwbtUvpJctoDi6Inic+lrZDH5+VBKVv3IvjFdjRvGnalH1YvU3i3sFCCZskZGnLotCXNTd3PadO2EzzeKWiUY/BBbVbYUqQ+9UHcjA7XRtnO0VvirFwN34S8zmACjlQMlK6L6A37MhXFzW1qz8Jz1rvYgHJploBIsRQP9TwzKp0JRup0Fzs8yjwM8OJL+gJhycrkJBpIW2qbRZO2hDmPdzX3WqViBvXbPEr+0DdfiAV0ifi30goI40o8I0k2k5tuECDTp4welZPDQR2rj98XiJRv2DVb4OKIj4emOea3gdZD+JlxTuwKOSa5n07+yGk+p3Xt6lkkmw6qWYR40oj0IbuaT+m4EBWt+aMdG3Ye1x5g8KbjUjjpme/n401FQBls/DjxXuN90GsYTi4mDVMo6UY3/YS3TfRZgcp+NPEzCDubd2rlDKAAHfnZKMiY3Av+AVHy11uSpSL1A/5SqJeEZFg/awBjcZc4XYG8Q47wxQ6B4jNRfMZ/Ov5iQ40z/K6ZBF7EMCt4zFi89lStAMWxwtv+gDhBuELMY4US9Ox7H6oa6ELryouobg7z2T+VClrwpHANQ7E+9saceAnY9miWauYC2cABbe1Uc/qoUEc5OpZvedc4SJVdSi7OTCquziPBN12BQ5k64oLSt0DaoGbRfxlWdO8kXS2RVRR4GSDEtCYCukZ6T+13M4WF7u4K9ubSrRSaY5Vn/SMpM5+fCmPvtV+Gk3YCx0hkOw6Lfne5YQUimHsvE/KKCGWEQWP81PHTbsaC1H2b4673cZR8W8Rxs3WxVNirp7rg+5ZqXvnG6G6VJn+ay3i0lUgAqv+rwDKYGOIXkY81bHUK5pwl0xQvVxwxprSxNMdU00hAyJynWOo6YMVqQG8EKR1NmxHsnam56xSx7fSXq47f56XOOW3pnDmatSh3JNAYTlkWEa6bkhTJGiYCgx32CoF7zUWPTtbvC3pqg58+i33nT/fb3x2qQpa98/Jqz9AsD6h9GcVLFuR/0/C6sbPbh9g3DVSHkI8/JH1Vr0hpvxkA5YuiFznkyBbIO72czqC3+u3+wTPrQ9oU5wLCc2NlGH3ssF5vvGf85PIF3ci3KiQ5Pg5mT01pottXZo0C49NoYToXkIU9j/e5Ro2Txmg3kl6qzvxT0hyQxZum4RaqUlGq08OEUImuZHxxIzkDa/7xqhDLEhklCS0btZ39f/2rkeJw/L8oOvdCEU0z2eFUuzUsLIe+Gm7gTjPsA4UfT9o/3m5fZB29ABlJqV7R9hMVmGO7DMw4EiSoDwEjK3qZBtXDDqOmg1ycVhaCuRZd5aC9yKDMUW8hY8AHkiaJhgC7yuF/Z4JfrjmfjFltdj/9OSFie7rirZXQyg6KB7oq1a2HvCrITD9KlE2Vj1GlM7CySOVu3RA6WZip1+xkm0O9ApWhRYJZ1SC/wnIu57GnRZRjrmLmWUoZxf/CkSM9aL9H1jT0stXj0NgJWPdhCWUHvYQqjLk7RLx4wiKVUYHQfcJw4HtGei+vo2g+ivYUThl8P3rY30SuJYQ8G7Thx4xN4CAgSLo8G8QmM59zSXzc7sOd7wS/1peE+jYPOvgietYdfMsY0TiwOjWr8CGJijUaXl1+YE/hjvQzWrJPn2yqlhy42lePB9FftDXdTIulie1uEaVKFeJHLOUYu1gFSFTQQ6YBXGYDwthNBc2Jab0XTUXZvM8UytjRyra45jeH9ncGCQ64otywcoll23cqTpWVKwL+6oQi7er5RIe/lEEoBbQRNb3xHTBuR3oursSPPg79CqYh4OZMu2smK5ekYdM7PdF9dnBrAjaLNNnWqQSG7yCQzbXlwQd5FXlF3dkS3YAw8N3Q6b3Kyuz53UahzQTqllPo9HxrqnDtO3TCouBFDw/ZaALW9jiJC4P2D3ziLp2/KPPC2zfFFqNdbrlobIkSFPdg3x/pTDnFL/DO1HUcJlg8quDQiJue8oos3lfHPu+6AijwdS9c0TKe0AaKWsZBqM6Uu4BUFAKl1zOB5aGUaBHKddwOwhvIg+17bMKdNkyHyzCadqzR5awvn6DidReOFnktjVFNHTqti9lPvPlWZzNly4aSHbFwkdMT8C1eLjcqTe3Fn2y1w4u/ygaYk4M0z9wd/KKf9F5Syxq9dreQIza3Qr9j3PTcchZAV+bKaiHomk9tr1XVfR/KP489jTw4goaOpXHwacVA3HJvzCsoWZtQtrEQYeyRQsFhv35iuNalmwxSNhcU8OBgClr+eD9k0mE9MTP8iVVZzY4bGwMHMlA8kM6wROwKlqIOaiyCnZIGtgzmjCcWQYO/6Lh+TjfksE+j4X03ZgDGBzvCusO9+doWmcgKBNig1b8pa4/4YgovU2rMUppokW+wK63w8jPc35NrjSacM9DMaXHgru1juZ5yG9ut03kmUgdP4flJZOAA5QZ0+PmbVis2eCmeGOVryizgtdzbjFJTh56Kp+6Wxq/wj9TKyL0GImQh5rjg1h/BGH6Qtf5EpKaUzDzTJQ98UQ9HwLeBYm7ses7WMGL+R0iB2AEkDOl3cogH14HpiFsN+87nxYj5DUNXKXSKere84kuo2lMARzt9g95youeSPJyePRSlE1nM0J0HlBiq8JpVyu1zAlkyZ4Zj0A6y2EyA5iGmY3ak0pQio9F1ok4crocww+c+6BTcTbG138K9XNkPyGePLYR1AibbQZjXHretutbYxnRbVN9L/5Qp+CubicOtJMf0IvrKROA4Z25Hf9kx+SOFGueSqW4KgH18LRZqDoAzUxrmk+xhZjqdbAUW11mwxvndBmQ3fRrUt7fP6rpRAW/7QclvnsTMls42so57080CzexSStp0I7qFK1CmbavEvL3pLKcipglj585sqAy3/PQh395qGE5+3l3JAoMe5FhUT7VECKMrA4Q4zILigMouOyu2DM9KxzWEQMLyHSWnGJJhwFCrrEGdo6P8BGnFV/rrGh1PKOy2H0wfEYqc6Xn9OXUUTQ6LzIOUgUOh5fj6fMy2aVkTCsmlQlj9HYfdPsIcL4oCyeynTIePEGF2MzpBX1mbh8hkt2XWO63iy4qA4AxfXyV5OyZ1eJe1KInggZOgaQmlCk8emq0DfF161jdlw3qSWUZ33e6Qogxcg1X8BxYEsvBR/iYNUZmJ79o6B1SBSToSxVZTir5JPP0ESn450g5mg4E4iCqd7G/ZqbwmuOrULpSy/E9VVZpx5E8y2HcQ71DddizPcTM7S64yRrSTuPtRQpcPdonWXq7jmRTK1Pzi95t8vfvvecPt1b4LTJPr9Z4+tWBLUV7FPpHc54KueMkZXq/XNQ9KMA+IyL3CJ48pVjOxUw+fwvPEkXR4U7L0Rb2l0YXcS3QPo9acGnxcCBAK6J4xaVg2HP3x7F8FS0eYGARYnSxZmq6tyeJw13I7UbGeq8oMpWSwt7U7RE3/DaGAtb8c8US+xlFowNP24wlF0AVRYCovKKc3Mpbx0XasDxBxr9tF7saGNTB+ZyzTwkQo4stZy9a50sqEp/RXODrQt4dXSeLjrj3boktjSMTYO03agWdvasYcJ5gBOWLC91fRMeUJCz+gX2HM9XxtjVpJFzt3RLeZHvlHhBaZ/S45iqopKalDrOWEl3YyfiQLUZnWOUGY+dodE0fKFb3G3j1xLZWUOmI8CCl7XzwCAqc9BuA9/wHBw9wRpVb1N7+7DpJc45LGI6qWLP9B2MMWq7BmHUapfUZIGvjcased/zsEAm8TsPppRybUHTTg1HEQ2emJYrAcMWiB676EZLEI0OI57Ts/Qr0W2Bvc+KMiXOiB2HhMhe8HW9GBvTROaEkW4MPQQxiEdWl6uO2Yj54PB0Db8DsM7rnI1ypzWyi//PT0jXP96sYu2fS+HQIVQJIH4Xp37QVnF/NRIvh0rcYyoqf0kTi5G2t09kEtQCBbcBxEuzkbKxoPDTjHrN6y5JCtwhF+QTy716/L6F/7X6klY7zcTQW9D6qsQn4J3Icwbir5O/SRMuWXnd/xxo+8K14MEfbAmAUuSYBHUDwvB2vqn6MpHtbNReIIM2ymg3o6LgTCTgh6jZ3CA0vB8sJId8dfysXDJ0UxltH6rdeyu6fdHCdyFBeuIdG1hLbiF/CPbxqLxiBGpZEF+kp3JiVWiIMJGVW5uCpUF2MgvYxkeECaSDuKwbmaRNRo2r/A3Owf0+VLUHohlTtS08Q5mJXyez8mKzcNgV97Jcr4AJYO91k6HaAT4NU+81+mUoD2E4lL64DwqrcXbbEbzopDm7fRwakLAH2O0X6la4QE1vliBRV/x5puP4dOENL9hB1qcpb3UuyXkLKfzdpQmG6IxaXJinP49wKJAHsI+EHaks9+sh7RwxfQKfv40bypN2q9rw92cKEJzPKxEXZyJjMPbM2fCuiCNLkFOqnyhKWuoipoEW9Lv7KYi/vggDwIAvaiPylPD43P2Ri040xKxOWZq2O9YTcXBAsCizFg0gMsvJEROZZZCi8mHD72ocK0bPQ+kP4mhFVccjsKPPenhWQj144IBUxs6+HRPlxzr0dq3sbklPIYXbEW7l+0trzkmg/7ESTw0m8hlvEhX15MXjelyHC0OLtIzX4JgycuZ9ubqJJsirkj6aaBZUBqEXUIml4UA+UDWGw8pT1innLfEGU5jJNpxH5i+ALi+9cjIuILSklbAFJMgvDK3LO17DzpL8r8ukN/XppZXj1wUy+H8uhMC4wd+0TGGpt75LMnFFoLzZWWW2iIxpP3WpiQh+x8S5qHdJGjkgF6jZkInQl6eooQtujNSx7Gqir8mbUvlofM/LemsL6X136ua3l5UJ4K8zVy4vtz0xqYtcOdmOL6xbaVzGm2swk+7lzmRGnDgbhL6wbIXGpObVGBv4t56LKN+b19KesMboiwU6+PRzZPYjLU/S8oI7No7nliHWiZtPz8qOUcBEupigczOCr5CdOLiXa6b4nFyTuEwARJjS6SZ0vpKi63mCKl0zXHZqtIuPhfnzPKgvW8zE/Ti5S1HVcl3NPOHUK1qBUYFwU9SKANL3o4jnzADBRLnDq7vkkASdEyrz2M8o4Y5N05W6+Kf3jwCO1RBK5BlF3KlPbKtv9Q/UPD+Pu2w4frJqZa1JLZfj03ByTHJU12scZTXMnDfnv0o5bKpkgUG6zQ4Gau/pVd99+yqVXOuK5qX7Gn1e/BLZ2F2douqrf0arlCvzJvR28hebHETff7U/NeI+dxT/2bEJFO/RtFWL3BYT8nIknxEzrCondAbw34sVDkaqq1ENmirQFnvzrOhUDbYiBdIEuo91DpqCiW3RO/K83tzDsDWti3Zj7p6q7YiR9dTDsH3BnWY/T8ehbu2ySz0wVLCmKRECAGUcV1fBA/wwktCo60nGJWjGChS4LtIXvgMwa1RFdZP9B1Js6bvpjJ/jqIBt87/Jr05yAS8XnF8Jt0HNRbrO3qQtrSdZ+ymfv8UhQewCLsZkGduxxfBY83WDZXY4MiOKvRmuJOVE2lYVB6ZdbrsfufuxIUZzjvABesf7CHfT7HkGJAyh9FTvatBdzE6z26/pTzHxaN4Zg8UW9iFiaw2zzjpZX1NhStLKuKIcaxOJMqNslugv2WoyQre5VmnVT6n2xrOs+FJd3IawU8kvV9Cp4K4Rxbu45o0Ape4wfdsWG6YX8koGykjp1FdSJiKrgEaNZqpQ7hMSwNYn70hvTzHMTr8LhZ4hxRfgyQ73nG16bRHY+zRkAF4rR7hsykXZydC0qgLweUE3n/CdG2+4pHfnAVbAJB07yAMiRndz0Ga/SKs3U2FbuSn3EdlBHDmg3enIEMMp6yRNU/2ActAB26E7rBeKFcaXyl5ROnmsRGY6pys28bFTL4PA2hzsiIjmumjM40N/fz0vub+MAg4EMhaYHIR6Hac+YhGFNLDYHc5cq4AZ+GTR6vLszJXRjb1XNoKFIPR/EPZYWNcA1WZSsyDJpv0fzw/OAuTuC+9D8DTTvcthnBPooZZtsNjNqe4qCfNR9TuBAlgKGLumW7ucHrXTQo4D2cpXysFpgWhwmrAeMkVGP9VBVMlPj20uZ4R3EOxI7KIOhu5zODPbVBNO18LtQPs1LX5WJTA6NIFR2jtq0pffbof5PXYVklMr9nelY83+c8jYP1PUFlmJHCTXhfDwD9dVN3FEEMNjPQDn1oo1MV+PPm595hfVcAzWLDs9iuTdJomIA2tT6GMtDwbsD92u04AKtl16orByzaf7UX8nMNIjqzvAl/swlTQXRtK69TODHDr6ZE5FRLLd4bxTImmXlzzvl2WvkYBVFbgI/VyTu4hPL2iMMHohMHO5/exQsMjxhSLoTUGjd7o+ssvn5mFmEgkV2vBVKm10Yxjp20hMf0iACZoqP1ZMAxDWCOJJoDtTIaTY36Oo4kt1hBG0kZWeKMHG1HLcCDij5itOW+74XwxZmYI5UBCsD1tsEMNvlqTqBQQkPGMFU6nqT0uZHO32qaTOEplHb5j+szZGebeKsOOIsxSz7l5IhIsdsXXObDXxZVhgv0BdL37wiAcrR4jWDhk6C6xcFcaBPEyp+9mvLJuPPrKJGm0KMMisYq06sKZ4jo/+K5iMLZ1oMNONqMk5Oyc+I85PkhyWytlFiEePL3swIYzP1Dh1jsoDwDeuK7CJkxfOhUzgdWJHcjDrr+HmSwjpcMJR5ZMCY0+lLoioeFn8rez2mciBjIMkGUlTdmVFNMLszPdZ6gTqbx8zdwn7FRuT8xVxVDW2mmH1ML7pr7L/4R9qzUv8kQM6J2Qr46ATTv3Z/iXPvHy4bQ+V/gDSC+T5g9769ncGAg5NwTgwRapGKN7lxUXv30JE5eF+AnlL6/2cSGDwjV1B/65mz+qyZhnC1fV2sCaE10pcDoDb42Qs1AM5W9y1P0vQ5orMG/Jb+PBBjDT+Z7Ufo37ZTMgfRfkeIr6dnnuUrZokzk8TKFt3mzFXMMPOIjcYJ+f1TK1H9I4KQVSQXfSMDvv/q3+Wm8RR1jOViXhc5yrELUTSFFlROrl7FkRr95C6kfliZRQvdQouH48dHjWct5xfkE46+cjmzmmew0PwAYpbcGhY49frHFpDRho2MUkelMDL/ilPkj81PzLLDaHQdOf1Beu/cYKMr/ZA/0LDJ2mXb2krEhkJQS7cwhBcq9nLOepziFQt8Y35pGy+Zz32lwoU25KujAmAvG07QaX3b75diqSIixpvolg+LChdvSAvcvfOBKLvIg20lD1eYzHb3Oz0+npAfsmHOU0fTAJ0VOvp2WpXhz5k/SNaqkULABhuE+WnsfZjz01tdUjXPIdzCtV5HmZD/cMAfOy4hdH1Qtvyhgeep8XYv2kurEJO5doARZdu15N+SzUgg072ejWrA5NqtWVVwJGVIdF/1SOgAmXh8v+UvqQs7og5nRnxwQWzS5GAepchO67THEPIkogAKfoKLskPa/gQK2+4pbtnE6fYUZdru1nLwgsM2cXaZdXDBr2k7zzEKW53bAVFpLGBhA7C66u76/iu3enm5ExRz2WOGx75BB0lVihlrOMVFl1fPVqI1Q3eyhGZmFmEj4jODHyU3cQiAM+EGjCxhpowo4eAQ6HE6V/5XYnCsEcGoB030E10dWy+lBkhQT6w4+eN/xjp8Eju6pDzRVGyOhQ1UkCAMwAeUYOLQFNytTaQ3UcbnEdrQgoUc61XVfAmR3PTkjVYZKTKjlrzrDyouxBTNeICDyNMIB2vSW9WBA6TTti4HMzVpUDyTmv9xCNajNM+GYxhsLIy6iflMc4U49K9zQbo1H9p12neqMTJykgfd8yRUNYIDHH6VAkOYvPKES2TQ56rcGhtrCfc8+dUJeoiTaRa18OMpaEbkDo/6jbPv+bC5UWW19mBQA4EjIDQDMlyRZI1fPvd9hZrgDAjArysT+koke0lvDa0j2Z+JJWnGk/m3im3rbSncStDbd+/L580iB8VD1+yMUJLYjERMHrOFoa2co//EiFWw6qSezubolcXXxS0gMao2tgVZmBbdJQciVc9NpzU/9CcjORMIIaL0FaH4XtIOorVm4FSCG+wWeqYEnyli0qG1HshRnRlHM7ki6qcdRn486zR3bcrdXdrUSZXITT00GOI8wD4rK+h1iqAIW86WX8PPNLLmy1xOS6IijtGoqp/A2CUXuCoBJThZa4Gb1dbL/LN0+XCIg996eu8JnAgcNObx/8PqqINZ8bJE1vbqq9Af3fRoc6EC2ltn/InO6lBTh168aFJcTRkPdFIbo+MYj5tnFTeLntx9/ZSUF/Ze1C00USoadPDfMrTxUsypj1AtuGhsRW3XtVT4OS8U4+aIy+wld+GQyW2gt+GZ/7DBo/8eBhMkiKm0bAoJckq01+opZkFYVu/XzeV42GtWfsGBdLxZnI5wRf2eBxA7flvPtgBPZZNbs1L93NY2ZQF11QPv1J0VbR4O/pJQmgRksVg8Dqtexv0evjagnZm+1Spg6crE8Jk2VmbwlbPMJNcPhKl4stpkbNnStlQ0u6QfSVYgDZwNX4iDCE8FVXdM07dZ3QtzbLTRn68moXddZRmJc2PTFxyQ6+UtikDMprdLA8riWhPPQJmKDoqVA+8FKWabNp2M0tcbcqcLvGVWH0UL2En03+GVVR/NhKbnYye41PA3NGMrFW8eEB7rrRX+9hBbcdDCwYHx+7XLv83Q7d0Un5ePX0nGNMYLWLvkWumE7caTqiPB32QSmoWIkbQFsbz0HmRdZOVXulexcWbs4qd1PHfKmUxD35HWlDqdny57fxfq83EPoD7AkZdN27TwyyKeYjOKTPAUPrd8YtuL2kLWcIDS2s2ZFsm1OXLNYG+l31wdlQu8G7NN+Nl4VGrtxLyJTOn+LLtrpVT8mB+rl/Qt/iApzOje9r4xXXs6K3oBQS20TfAztRfpnYUTVIm0rX9ZnKPEhQJTJ9NW7TBueHpcOLfjJuHrEs/kHNc0S5qPkSttyDJkxA+13YHbmL/ubmvecbZd9uo4RgL2pYFJC0XWnuspgvMQjAWRbBNuNv75kMfAuMb8lwEtVQUqKUTs3c1JAeaOknfD0MnQgGJm7Rq/SFLLL3do1NM6qDrvPS+H9+E73btkmiwHWw597u7wfhmansEHZU0OOBH+WJ+TJR5D1HmbeyZhK28z1e5NeU+2YAv8ra1nt4ev28b82NS2dZqkWgfJJx2t1VWkGQdP6HQ7M3cD0a7m8/8pAJy2gUxcZreWAcqNi7BTyjWUCGku6qqe5Y8qvRHk4GdZ7PBt97BxyBlJ+C80XgBrRKWERMAj5WpWh7qiqXakMWvFbqErLPaZq63FvkVUyxULPGfQ+ZEQlvS+FO+pffe1vudoidubrvRMVma31p0dxRvGITpmu6mAhXQRqFW7kBDMJvzZ0GU2WPgB7Lmk4N6sPQUmYFDqFOJsx0WlwgSQESYdirUNjzWFDPOrl66mrPih4fFw5Zch4Osaf24zuFFRrPj5PpFNXLy3uH57pN+cQ+7KCXOE5+/jLqtAAmioTSvpEjqB5O1PPCyur9bVyl+/3o909DrgtYj7BCQ09Q05x2MLerCnAyEKkW/u0t6onONwmmP93zPpN4ABP9ypSa+vo/wzj1nQZS6oT6qLFM2hh3LDUlGth0PquiGYq+/yWnkh7j+bVraPXZd6+j1orgGFxr2MODyZRCDJ5W8JYr82KwEWs8AkK6q13UzX9aozzIVgmmaWQhzBYMqjeL8zAWy3difJuAIiBTQmZRlARz6egVNx4OUxKWRLVOMAOrD5GLkKNdnXq3C7T4pX0snWjW1Ebh4o+ilg+YHCHfUJbwJIKYdsNdrZIvoliyzuC2nYQFc7SHNgwiXRWzFhyBlsPSKKQy2IZXBMHX2fzBkI5w/KbALNz5GdLtb1mEdF+TbsFPUKPlSaEaF2bsj15rdBPTUGDaFmdXLRdUhD4TTm/HceAKlOCCQ8kvVlBbjYGO3u40v003dtKEwLrcPspD60SzHgpGm5Dxaoz6qofXwzeKGiw4EHlKuHWw+QgKDifoFLpyQgiyZ8dGdFjPIW8MwwdHnCTezm+UH35Ck+97NqWhsTt2UPxIfq7Y7O8xiF7Cu369cJ1pMRI6SCRXr6If87NnlK6AxFvRHaRUlWb8NacdoFOCZu4ajCUzY4wcXY4M2A1AoIiJlS/32eVdxHIqptSrJDkTRMhx1W0BK1YHMcOEyEYWprG6mj0C4ovXOqNVsHbJaZte/enDOt6wSZIy8El0gcIePG9ILU6Ax6mJ8smU/Sryfa53HKI2x2dqcW1MVOODHAFs1rDY8+MniswX7DGEh8Ead0lL34zvbmq678Igj2etRi84gWUpgCBOpqzsNIsCkb4FpGIG7WykKrTrPD5u3enUl7KXe2Z8yLWZCMFJgQvyde14AzWQJw+UwWzruHMGzx+FwjRPSB8u5nStNNvcYv6vuJ2LcsugSUaNMjKq25iwtqkJ7Jc2c8hFh30ko37/vTSygvef9azve7vDXp6J58TElQPPxLXu6hV3QfPXtiqBq281/6aBUB3+rJ+N5qHb9TCjvSSotlfToN6bge2Y9uVafQ11uTQnN0ghiNRAX2Qjr11S5G0R/EGYPP2/NaTZDUz+BvUaKo3zf03bRLXWb2HxhwLDFiBNgMjSbXMEM3jEmFut0cYcBZ0d5lcXKC3/JCirCXr308qG5KWu452W/Dtt5Ow6regRJh4vVTSJZsa8xZLPEAFSwTRGaZERXuqxaNNPGnp0lcr9yXc/WOQu9dT07DzQYb6rn16NE/rNxQM/lcAJYdGc7YG1/Zq/+7Y6mx5r48dUQ+CE7RZFqZQeAxnQ8Qk92Zls3b+62j/iDuk+gyPocoumLV9uqhJczgmG+dW0OMOZW1Xrr4xEzUYSs7FTbj7M4RBi2djlJNm0kA4pBYl2zN34VaPmZwEuuzEUeGt7nHU/46qYZnZHlnLicj0nwMamvFYXwaY65qUnZjHgaxLSHfy2XeXjXliRsb1SpMl2cYMe8CHTkktvyTNbzFfGnXR95lxfemJ6yh8ieV6VbGeKVbqkAnXkFuquBCo33hLMU7ZLiENpdLfhudo5nFUrwVIb22XqB2CvIwmZ7tL6Dr7iUDevrWzjluFSSR1OltJE7N2FJC2XspD10CFr0mEBFEjmwn3ulsfcu+n09q6nTTtnugZVY7tMcvpK1cCz8cSnlNrOsVHAnD/KgCaxIA97FfE6ebxHabKqvmQZJU2FrFBWg2CEPTaholtjafW4IDB+KR+ZI9CN1L+3McBxpoaUir9PGB8blfb+/CWVuXO125v/J6CkIXoyjlu50J99fz9uqRCdszN/zqiqaEyO8NNm7dVbUd7aMQ/TwjymuzM3koRPrnVhmM5qLCM1qIbtJv5dXF7TqQKl/TWN+e6OXjy5Trt5H+rePOrVEteOuDz+uqHF3jBS/woUF8iCEOLbmsadBRto6YuLgE5sw3Pjv
Variant 1
DifficultyLevel
612
Question
A parallelogram is drawn below.
What is the size of ∠BAD?
Worked Solution
Since diagonally opposite angles are equal:
|
|
∴ ∠BAD |
= 21(360−(2×50)) |
|
= 21×260 |
|
= 130° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A parallelogram is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX9-TLE-39-v3_1.svg 275 indent2 vpad
What is the size of $\angle$$BAD$? |
workedSolution | sm_nogap Since diagonally opposite angles are equal:
|||
|-|-|
|$\therefore$ $\angle$$BAD$|= $\dfrac{1}{2} (360 - (2 \times 50))$|
||= $\dfrac{1}{2} \times 260$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18b9o4hzKttGsb/QBOpjhReDORlki9Z8yo4ci8v0lhoCMVQdREq+sC4mryMh7CZPdlmwTKv6JIWsEt0cMpRQP0vDT8rs9aL9/raKZsg/BaTFs7oYdA8RYmQ5i6cXQnLAkHNMvzzrEp9JbBwCUHilitFVVZLRc0gm3IBth4BYp8NhgghAJQzWJygW4wBjjAK8i/Ad/EeAtqzZX5vrVb5FELocGyG4JP/oZJaNtMjmQoN+1AMpU12WBz8HwBHZ3Jm7dZUZ6YASvvpnjBhWtUH6/kzmo6Wkew+So2v/Vs4rAnOQV7GTppdrGsr2fH9MfMTyQgajj+SkHRQw5p97cMjdBJFZrMlfQsuzU2btixU+v34N/t0y5Vs72abno1FiSQ6QCvkOphje+JliOU1rJ0acgooLBF1dX5Oy5Yp6Ov3RakLkzLvJncqKB55Kv5CddjJMKKjdhBjQfJZjlr/za1lA5ozMsWTGrOMZ+5O2ABNzGH9vMK9hx+aVrH8L/vaxMpFWavKfj/xwGXZ8gAt7XyObh3oxuwnonSXFY4/fjO01ewGC1UkIqd8YJCPsr0okWb39sJubQ1rT8zWFNpBJeXzoWw2Rj8V+Q38yQ14bgpJfJL6uS90n/Az70WIOz1vdzkhLfqQSHofxbCDyg9y3WLLJpDEKKVtufrZpI4aAG9ZKeQ5jpLpU2wm/7buTdNUmx7RcRfyL4SNhlI42aYw6v8ZRC2KNmPT6gZ8oeZvvYgoV8cHJ0WKZnzLx48PNBw/fB2zpm2Ya7E79EqUNt4vxTfFKtGvj30IMyoX91lnLSw0livt25VTCTaqMcXonGWGQ7idays78KWB5pdHx7ubhl/2bSZNnjthuWsAg7nwONVxHTggFbNg1dDpCzK3Sv7bqsRRyR8d7bDlSKi/QLcFxzmg4QgVHjnCM0ylL5iF476RK4J4MWWP2yni5gWkEA926NlquerQF67m3qxa/Y555kAXHv5ftNk3AeHYuSOneiy3Z/BFdYzifulNFo/IqzDR/9KhWY6lCmgHcUSwf1XUTd/IMbhDLtG+SJaXAlHSHEi2c1yEgo1GBreUHue0Aa2gGC/rt5l1+kx7s/V8MbAtRYf0cEBibIOecY97M6fsbZhm5A/8sGI75cZJe4HeX5XUlbOK9VSuI5DwBXM7NI7C0nol6vfpu+SISmxCgigt84Rl3s5JbpzfFYonGAYAIqMtAw/cuQ21WvhrnX29G3PoMY/zFxEfixZT91UdZIyjpO+hByZ5xqNdz21cFienCcrESh73yhdkPIALFst1RZny8SxqZZgzQ2Df3Sm258xQQr4leOhAFnXjbeZGiycWibp4kEy5awG7EhGj+ut2SeyBimUqwDvIQYt6PI1LPE7/T1y1Z5LRRXGlRxQnOPgxhhec0wl+z9ohttY5cPDW5Lb/0TgPYFyFagAymhPNftSn1ahiwrZV6wdAnre5k5+DJ7baeSPeB+13duGmA9hY+M9IwupTy/mPJABZlaQd1k/2OvNS/As5DcHcXnX+fbaJaDHLy7ZgWn94O8e9sacQjtodfEstRQ/6qx+pPY6cGhft4IaViB9LcM4xf40lOWpfLDwsN4l0G/PT+NG2B7LdE34ZZwxktJA8Y6zEYUhe1hNSadTW0PeT4BC25IiZFBWZxZRua4MrFpUWWAl1BfdBTnz9nKjJAn1XHD33Q2imRAs3SoydF7A/b06qdS9wZ2Gjuv2M7/2vOoThIcHD5ScEXJuRp2tad8GsJ3yXsAga4O7F5hgPQZkg0XM1oXJqSGXuT/sbGCABtlXYdAvVeGQp1xk7Fscn53SmJTCEFbUC/C6S4ZWkUjH/9hhBF5nVq61IF1zPt0bMkz3w46VcdCCYwWOLoi+JaWqRbxdHNtAlxxAFgZgEAzWxlcfWg0R75p9AVFngolla1FAWCT3hL2YG64xqRxwsjMUjHw3zMm7bcsMsOaMcqxXcTD5LC0qPtjXWE97vTtz+Yae7fbjGWOkxIdb0tdvzjqFq19MlUbPzwd6HFIX4Lt60HczBy8229EKshh76NYcxWu30RotdlsvneY6uMImL86Zu9w5vy1/7OzPp6UzkcswhOZkJ8sMcjm940Doj8ir5fiITTF/25wCQr2JNRAg22q4A3LqwcN3ANHawYtg1zmlAohKGw0aWpwKUd8MZd0/bWMVCSMjolY6S0SZot7JNdocXIw9UYqQAAFg6amUtBf1ZVoa/tzVXn2YYFlliFQ3HVdwwbuTn6pvi4oZGLoBPvknZ/5gibUhtqtVxGRRLJd6a3wzytcXw4F9BlHbVLW2FbPxJR4M3bcXe90m/4V9KShLLpd7e4VuvdFk8020hjrN0QctVtCDj9BpwiiHLOBY7KRjLvFt5tbHfUuvDZhZkGyW1OEZMeL24WFsafGF5lWgWEPITN6DysZen/2Tn2KnCJz68PrwZWf1y0TbChyAIHEi/gyiBNYEbAN5+UD/UcSG2b/GTwMjM8G/5vHM0Yu1m90d5SAl5b7NxMr+NYIP6m4AqtY1MuRhi7ewNTYVmyZS3VKhzlbBhAL8jbzgV7X8fkApb0YsaFWxi/s2Btkn0zS/86D26NFJdmCDgKNWJimrq2Nf6ZZfRudjalxZV8fXHgBZbUHRFQpFgNO7CIMnsDZLpnub/VI42KKL3f63kcJZMPzbgbBvgwhBZyke3+yOiphnkhGguswCcZxBu0chCOVmeWbu0mhTnfyvSym+lkvR+rbIg9PwnFIxVikbiFYKgaFc1N0I+AteSnI7T8q/G4g1Y3HA1XsYx+kSAjYOlalysEd1pwov2XNBbgUxkVu5+YMaZX9wjq7Y3h3TsgLjon3pU4x7tJy8aXG2dblGoCWZgloy43pv/BPufv3UrIMxjQNIrxY8Jj4XEcN0zVg7RZlmf9Tz40NTWf0L4XOQFdvPyG6cAMkOmBj63Jb6lgmWqf1CxlSyTenXYFDFGZjtqGa2b0g89Hx1ZFcdpv5+GgZffGmUsv0R0tGC2NdEERqXMWasmZKtIik40dfxCq0ZvEaP2ljAXDoLTBkeUWjeIKVvMYFRJIeBiJULLq3L/dGt7N/Ykcjmpn7FJCVPzoU78Mv6QD9UKGhmjqssbVbSC+70xNYKTCah7FzzrGYnu0VqN+8FGxLG5a/pOEw91kMNasOx3UkNlfzxtkakFxEVwuG4zaYGtyj8odJZnmBoY/huboPda/lacPUfNKKm3ulfvtMDjuLTlTOFwQ4+yj6zeWfqJ9H9dx8qqswpFoKcMGTth1rMtvMBelULEzfjRkn4xn5LqUvmAOIoHukp+nAph7Fjhq+iVEvwY8dY5hsiXPOke1cuKNyf/RJJazlgTKo1dPG7Re3BK8Isiqb+p7UYGqPp6fGEe8iq5Mh6LTbrO7QPI+JnizTK/R31UWnJs4kkzbxZuM6i3zGplIeueT+i73sMwOjjPHi7UXyDJgOtcmJGrxHFueQ1oLHhDVKWvN5L8ip5W+0akf+zghEzs3UW7muRCIB8BkF/lgVyMRV99rdg3X0y+mXQIhG8XNFY+lJmDNwMSO3aVyOM27hAUEqGsfmThz2kyMbaNDObX9/ZT/lbqdhsKOqPfFgyNEFsjddXLF6JtAxCdsGqq2RxW3LLJQergKqpGkRRh1fPpvVNwxhqaLp4enFnzyCMhVHNR0qqXThJwGf2EOn0Eat1vA5aJgBZ2KwGCA93ExHXb2II5U8Y+ywR7Y1ym/rmnhLvZWq2uI3R42y5lVQ+7/e1WH0Ugo2MEB+MdzIajbttkR0eMfgKVIkR5alxSkWKnO8WajlMygg7CoMu5pHKY/Ippats0wmuXgcOqTcpbOwMAqctm512q3wF9gw4ww85jpoOIRLh/6wvOw8P/V8e1fL3h0vceosACGAnn/sRd3ZA4vVUXVQeCuS5CjEi0Zs7ECyIxx3hyKT7rdLg4ubJPf/PSyOfStyZkwFiQRLvMlPOu/KciUjKMmpYP443y2N80zQEmwIf2SGCWkXV+/nxnrTpI/q3o+QA1uURpBuYEhLjFq5cesS5U3wbJulD7KNDW3wLJXlJN14N+/ezk3/F34bMaOuUp3wyroJHtaixbH8BCgC82r0EfeuSz6eK3faYuRLiUcaD6i0iZAupyHLfC31lmDyDRfK/U+olQYfNn3gQx6ArUXn40ItaYJmqDMMlNUc2A7OCUm7x11eXDZrWE4gJXtJC5Z0pS6uHJUv2kszGAea70C+eupUZHiPhOsE6lUwHmqo00t7PSgvJPKgsMFi2LuE0YJ4RalWt+/erUgOxBOPEnnksS4ErcfJB6h4fTrECbhgh/NeQKRXvRiNgzENr7PvpKLLH0ZJyfVLBtFZEBwXWY1oinlLtgJl/DdQOAAK22IzWF3CMHwhwimCiY5d/oSc6ci7i/5oEA3qPH9tuqgGfPcoJsOb3FCSuxaJytJevL5iyHXaA/gDI7MZcONMnlMVIgS869umYRvTXSQ3bimqQac6bFs3HuH5tv8+UqjE/vLbClAipnP5icSL+hyXwJ30Ql5G+vQ5izHYZVOB8jMzseyCQICUXa512wN31gLH6kvKg0LzdEWXzti6jcSRrwRNZPc3egOAInh/fR63fISNuj95pzEqwjtH64KYzbekAe9Me/hX5dy7jOocoq6PrHxy2F7Py5Dr9bb9jZsy7+otMz1MUBeJcOaEXLr/dqiM1/4Xd7nB6iqPvwnbqaIPGj1qDHsfXePO2pZ/sX4eziwJfoJWbQhY3kk2/PyhZmRTda9yVHt4se+B7Wv/RqpdmI3/UQzL6c1/Kf5srpcHgjQtppBPu2E6XeqG35d1Vyocz6dg3xCwhUK1gK+fvMLOuZ1Jog32lm26G+yFBdJzk1YoVJRxJWotU6k0j74TEGSkuXixNkV2m2C2wBwIpbn/1NunHgFXzlb8ryKoF33bppXFUkSyCiSRycnBbetIqnFqBsbu1EBFQ9KKNIyON4HJWG+N3qQm3OZW/ErvsW+PrIMxisxbvpNiinfHetekbYqkkuAZkOclZGR1wYOWE7UF4mh0AXBT03q+lEOiUOFRdwPoTz4JjL8U6CEpuKQEm/xHOG0k2HRjcMCLFpjD3TTYywbXuy1k87Aw0OZx+LS0gzucoh2rixIKNNkY0tthCsXX2fa85I1BU8bb+0N0hTmYN/LwdSYW/jYvJpE36BIP2tJPMdH/MAOeXXFiOgnYX+Tf7OsTyxgOok68D3Ov1qJASbQOxgLItkDyPTCW6qaLT5kh+Pp83NMFIwi+NYSywua0+g8YVQ3fCQZ6/lClnzHyzB4nR0+oo6Mi9fuKDWiKvwnDsdx42weGmbPAyouTwjtESlDd4r3e4VkMtIEgw8bJhaLhC6SELDMnJpbqIXj3m9tPtbRZQ7CeapAbHARxJFSnT4CtoS7e8mEoBX6AIJYEnBG/C5gPY+YWa2f7GMvZLe2zm9xn4QWWZSeSNQisMfSmuCvxtUtAk0hmPFBPCxY33IpBg4z28tKzWLzTvopr4dT3aSgFYeSQ0liHAEksa4kNumUtZvJNvclpdzPEHdFPeQ4At0FfofXiacgvVsNyUjsKOoh+AeVWKctHBX2LO//CAmQ5l0uKhRvysjrrvZpfXqNeLRdscf4nWqwuL1nkMMWONurntRi2Qn0iRIVrdOx7ZHbZiACQPAJYuMpbRfIPnCmZa5P5IMZNvAUDjAHZ9cibOPM1IKRU26ZNA3TcV5NOcJz1ZP5vCYYWqTij+jJgN8H59fpJX5A6t6pi9FU3bsZweOOlMHuEyd56xauySMb/Mwg86PGoiA8W4rnEg6KFkRnYcGwp5vUIawuRV/jn7CbqJ4V9fQ8ax7N8VNrISQX/sYT1YnK28xaGBg+x/tz8T0KEZ73a9SXTajnc9LvWjuecyAWrOVumLQ6vsbi6vCUjKgIDlWHSBEMQuMqx/QDTE4IQHP5dcl8v178bL/EFNYVnpEiGlqCYugBjS/lQ8nxNkWYFROosWh1gwIbvIDpuXtEQvDBRmD9IzfJuCqmDBeDG+AX+/c+res+rr/ow5Yopqyf67BcQ21iU5DA0IQERBBqjmuYa4M8kdZJOpE4++ELinCCa4wxBeQg+aS11Tbeax+60AMvssHr3KzGkKrhU+z5ZEqh0rJGbBLUx1uNMeitGlNnxgppCV91s9x7iUSVsg/iFSLg7N/gcSdFO85pTIcPu7q7+5LELuF/Wsnhw7nd5fPQ9swwdmijAwcgaLyQtXJKOGcLE6SY9Zz8bAnaN71zmZ6efx0/En4WGqiMhYkXF5Lc618jYcQxCKVwkeypeC70OJkTU3AYQhzrA/2/9VjphKKXKpOEEXcPDbdfPNMc6frQtT6vLK9Xt2Ao+xGl7kHCthXzJc494dXqr1sKbII3dpYZXQj+eOHmRuj1ZNms2EZcVcICO/SZKXvZbR5cQruLcweV7VDcufKayWH/kWFPibxf5FGsBbi/o+YLVRwg6mBAIcnQE1hXzf2TkG/pxMV1qzPG4e0eS8XPg1CClni/oMLB/picjqIbkem0Mzi+0XRxbzK9iyAV5mXF+F8fkIpRve4k0hQsTQxCldVEDNv9onAWeH2gl8OuVDxdMuiTrFEkX2XNoOaerWrLGIBtcU/RitQe/ZOjxmGHP8LVLoj67H9CncVlm1YuScAOy/Crit2ZmeF1Kxr3bwgBGAV1FtCR5D/ru/TMJqpJRL/ud/UEwSTrgUFxs+u8m55y3Yvqp8DDp6ew8pzkFq9zimTNvul812s8Tij87zfVvoTqP7znsiZxNPexwgQU6Bpv++7q6NlZoKVG79sHj4MaqLOqnyHJbH9whnfjEf7Kh9qoK/CFIeVRFY28BC3WF5m4NaA7yG07C86Wnu6hZTwKDU0KiX6MM5rpi7J6JJrEHaUMux2g6WhbmoAbPZzJIhmksSZOkYfkglV8SItldBk3Wz2kVl9U3WgsU0n9VznAwThNvGAYwfcTAvcWSl4T6G1vR7rnjUUGTOtEokD+KKdmPMo9ploNk2n15bVjlRxp2Z04rq2VWscVzEXxVfhvOffkLZaiyZWbulR2rXAdE/ebkeolxwxNUU5AQ+AWSbKUakZaHS5RGE6u6pvq2UUpMu9YZWDzbKV0JSxan/j3GhKg9dj8QVb8rrGAYQLN9tdh3Cf7sw0IXG1T2FApYgplM/nSUaj29cqOTr2w9RFA/Smb2bXdoSd5Q5uiDf4LDNL0M3L138E8Mqspyjig72mficWJNbENJGE9sgoNuTnl4mV19I/6POYvyXVzjJRwk/hq9gJbQ1y6ZvBcfcLrPD/I550AQ6prK4IWXaTQNiv20PWz2cM/EQ8CJu59ETuA4aN0tgNjcvjqCZfhmxbiBx834ms1M6ZNAQmAM18z8rMSjYOzVBbYqKDuM6yLGTtGHvVBJvKP+2eELWSFVJHm325B5Mq1HO66ahzi7h1qaOgXLlf8oQf+w6mzXvcKCNaYsQIRPPurMKRrwFW8/B4WoYxmWLCOcrERsCEwwAZwdmCIWvQvIHH3UTJu8I92tfKF62jNiG+hsOKwrn5AOH+vz8/FtccVlbCOb3tCzp/yjl7P1SjUYpP2hNEq++lM4iOjBYsRYnEQlXaaix8jZ5+8Nx46k/nax75jaMQqNINUxNwotSY5LM6Ja8W47143JJh7tFw1aMJ0LknK8mEdsOrskkefe4A5KuzeTzXtphWLPHxrBeutCgXhOh/KKOZ6E++ZCqXlte4WYsDEHNaT0r6vbSSDwjmO+YgNS6/jRaijBGicax5xKgeeFyaZzxyjyfwpU+eoz2RL3spPxfuNlkFD5Tv29PYku8DGsIG4jCGW6acv1HgMQG8GbY9S2uV8fhEpNYt7Hd/GXdDMoy+fh+cCeDVQc9/Qgn8rSMxb3dg3qtbU2yc9r2lgfgnQbZ7triQtXzniH7iJnzq7BL/NbSLTPFjeqDPmOv9iOzkxCLm4H1Vx5i2+jG7nXLqRXPqsBnoFg5mhKbiJLYbOmgqzTKTHDoW8ciXvQry0Rl6Ew92xXK8JfUWaSIS9YWHR9YTevdX3Ngqs0P4Bbf5AyCiTdTdqAUjiKc4q0KtVtzo+FKKb9qzexZ/cKWcWqnAWr1xPP+pvBkseEdJmbHmfvFttHuM+yU2zhOmr0GvdBc+0rI778L4vXWSZF8V9ULbMDlRO6qpqvYyuN3iyb5c/R1S2Bau7zjRzWV+t/80KlMq2ufuC4VLEiC1Jhm1UXXRwwA3qhejFVPfy1XO/NcMuMI7ji5G8K/6Wl0Qfm3DtmUs0L+F6YsBDxgjt3Cbqz7eDnVYmtCnCAD1u5gwBlBbIutDPqkW1wGBTWlKuocroSj/b6HHSI55qNLehPp9KReYhYSrkq2zBPUHbEJBPq9pZrWF37iFKN8aIZR6DroGlt4tOdT/HjMa3aaALhEh6nQyhHe/6j7vtR051dsNjkOES2v4o60CloG14uzeit2EA9pIEc1t8wnMV39KCmeB2iYRGJUz2CjfauzQNvYeQskaM3mvpcN8Zv+AskSequwM8n+DPm2naxw096JfjqWN783ZulzDKtfdkb13Z4wdoCLaR752MTdyPdj/ZszUXW4V1NB7pzu4E7slf7YqNUonT1lR7ACKNUXJyfgFhyhb2CsP3DX979YLbdWIeOMBvc+80yuUOKACZbqJxeaRlgpj0xVUW1wMKZX7vNHCn1nk4t73kUnelJtgnG5A9wAp4nFqF2AIgg1as55ylfA46+5RONskdbGYAhSVKJHDxBP7SxHzNtz8rcne2Nam6PzLc5fA88uAfC4B9zTrTRIeOip/V59fTOrr6u7Qy44gRHY0V51klnbb+S1v6lbL6cKsyXzP9vYEOikYY0P5LFCUmQHXDXTSbXoPc+iBPKzjOiAQxaFIa50FHkoGtMZdbjZYxUNsEEx7ugj2ZWV8dYEOe4EuvDakA7lNcLVL8bygTcm36+I22NtkaCmMHzEkSmo1Ah2jVuxJ+8itPcTMbX5ujlRsXXTjkuhWS5OhpkGhGeSu/WEAOnhpTQY/nxCfEYLkuKPqbck3jb4HdJqqIixHYOJ6xJ+F6wRSe5aJwWIJI8h6BrORvQrVrvZpFAyiSIvq9ujoxLi/9AlLdai8DvPubOb5+DkAywGgNb1ZMnaJvhQsuRGw+5CqxnrGB2sQCUu7vb2E7NLZZ0uieXAkAWsNA9a90VYJaG7H4jjhZfoaYX2sTP9a0qXQ0IpGmiWxdp6KzV92iWyLzPdgU7xI6A2SkblPY0OrHOKQu16EY8KZjSYboovz9LbBgQOmzzyioYAfJVARhTpYQ4Yi+VjnrsE4zqZOfBa0lXXllBhy2iDoqyyCJWxJNpWDxDfL0qpNXaQLSzWN/KXdCmdZUIatZn0aYl+F3h6fIEm/c6Qx8gUJ1+7ltmklt9tTGykvmFp2hmQbmohrudhHJtvliXaKCgh4BsCoqo7HRfkPlJGmIu0HRNF5GrKc0BVL1bjBOc8mY+5axAKB2yCwOjhDgVRnDhXCC0EMnLvQcVtlf2O6YtRlrTYz967BdLUet8TrSLR05PfowKWVlQaidO4MXuVe0ElAPdEaALVii9ZhFuiaFX47Cy9sL72infe9eP/lTnml2P/tsjKvBytLje0Rq6/CcK+9nU41JDUtTQ37Ufva27fQHSTj0NXbE52HCIwsW4dL+ly6BMbfqXbeOKPuKS/mPNAqFdXo7CwXNjDUXmRqqFyxNOG2xpBdS9hOmAXz/WmKjhqusvnX3955xDwQm5WlzAwkt8NU7p20o/8EQqZSIsR6bkYiNpsMr/tAozbDpdisTVHowM3sfhb3Pr9s1sX5RHw5fNDLBF0q/bYmkitJttcU9i0kQ3H0BeEaFUzDXgAvQg4fWI6WytcgJpE71o5y0Xnd0UJ9JoPhbe5fPWmIYindYGZlRTIXBSKnP3ItngJzMTT7JH+7lK1jxCXaWuNAGxod4qUeN/J5hQ2ylfzyXXsw8b3yuGYTx+GUIxZjcR7QrLBkQ3JxTN+jT1Of1Q45JPIeCPLIgmkF0k7SGTmn5o5JsC3jR7JHbrVtuEHgha4HOSivHBijaHwewpfTcJzfSbhf9a7bDjQcd5ETgwgq6UW6FejQiixSOE7vrblpQQkk3EdpDnKiRrKOnrhqKcNmekLFNnkBxqerRvydhq2fbJEaRsI5jbm7J36o1SJl2k6VpBA7DGhTuLzVH0+L3Pgzzmo+Z+bBxXBZ6pKiII3vD10vZyWvoMl8O6iYVVr8Nj4csDuF3jtVt4Zo+OIubmYVK1HQpsnqjKXgwyoFpyYzGH2ju5dTJ2Wgiq9uocgIT/x0lei9xOcBC+Ln425Od3EN+JeoFs08uqI3oAf+yC1YiNXR6rnHyIb6iEnTJnhITgVo0NVTLsOrjnaDIcqFj4OaoffrIBhabfb14QUJcpYWUbHT4KQTVFqtWAI7y2dajU3eA2qoCO3Eu4ScuuGn6zCqx4SlJ2KF24OxZHZyQT69wy4Un9hSbrcRavMEHk+UolmqGRtH9nYq6KUFCU6tadjQs92vd8Rj0/7y/ZOAVX9zNZtqlouOcVKntEhC+RHeM3x59slhv/9oXtMkTszxrbsMN9/y21WfY78EGnCCIpw1ASrZ4QDoaDZ2yaqsZAwl2o5tTmsWMD2EvBbpTNHqB7RGeQ6jjB32b6S94pPo2KqMuiKHlDi+J+GHt4H02NbR/c8EOLc/g6D62kYykKXZdOZfFS0bBwU8soWygn2r1dhZnwrkc6TdkHVFYFjYGn0+RTWoq2u3WVh5JInVZq3OJtaxMimwPSepJsDpQy9ed/yoiie4B09LkqwqxVfHmlgwZ5ZGNDLtDOPiTvrrjEKCuUri8sQrh/iPOVhUNv08k6dwdEyjo4P9vJEhnT5CUoRwmM08c7mFB1ksBnZDWf0yV3JoIy5iYRW6t0zAtsn/YlKfPwoa/rQdCZY8sGKZJWnrSnPTqYAYO7PDfN1R2GpBaHG1gY/gH5ao2fwrNdSM/u1c4NbLZ98iuQl+sCPoMpkGz0Iu3D33k0lvbAckk4xHCf3BLXI7S0Gf0vB6lRk+xN6qYptBOFECFPi6iFb0QvTfKpBBW4pCMzmAZsv8MCZRaCVhvMxsYyNp5yrGuXgbaeuA6/NoPNRD6vqbjc6O4mflGQPAUGAaBWmhdibeGwPz0sryBRDATimkcZgmH/IOkXNzI87fiwFYQBK6bhv2mIXx9BnkDpjFRu5fnnlzPQ8A86I/jOlbfPwn+q+5rbZCXltuC8CG1mG5rQfNhFnwdJpsJNoNnx1O+7wA1Iwb2kEOtuU/dZ+ORiKarWZhf2YjqJm0gAqYI/OSuTz/0vE41Sr+IXtLU3i2qJEuF93asv015O4dNh2O8++oecp6corrhsZotl7mQ0Kt2qyE1SRvslwjvPv0eg3WUz+xqom/dfiHdiUL3KzBheUwifC8wN0Qace8X8lAp9mJAJrg6mLt6O5DrC1MOyhSyF6rm2uLcUgF0dekmfNlDJcz0H/k7v957VcyXUPY0uQoV9cZUwveC3F67TZNqpzxM6LhgaXEo48DNyTN0zUS9YYALMqmMCdFMK6HHq0JOvtrwvZKPBQZEUn0bMImXR1H3IypG9RGtGfRQGe7VBPTvup2bFlabPnLNvkajbq0aK+5JimnYArz+3gdLFeMH8aYXN+euppbTqyRbfZoe/Y+WJ7kl40+lXco1pkcDSf68pmszjVZPONSxo7PKF7wBjZU4vSw9zS95WiGMpOsPG1NNm0MYXtIUVqwg3uxdplNEKbasuFGhLX8OCEQuuLsQfXDuH/+dzE/I1IENQwV0avVrBM34KosrHTtWQeLWi/24f63fOoWVg6YssBcmAujeifNlGUGMIG3H7MHCDEYDxRSfVBrPF5T1nx4DAaWJ9aYtgHkRqfcaKyTwZYv0qzUwohDsGJKgPeGFuGOphfqxiaO7QdFafxSGsX0riR34lxztkx0VUwP/TkwQ0bst3Scd3/K68ZuNRig2pv9rQcwowhM5jC4BeTsR4jGmGYDdac9XwX8+0tJke/1W7kkjXXaUh+o4wzGNrDjE1j3mrF20gdOxlO5Bvhtnr6I4rcLsqTGvO7nB2yla97dhZX22hyTRarFICe1S0mwGQTfD0PD4EiK5WuQ3fRidM128Ym0UiyrAaV7jSxKMuXnGQ4QxOSWJLMEqI6FChBi/stSW1Vv8aRdhHIf0GTCZnOwghI4puGH4SvfuQI9xAChsLzOVJkojlGLoQk544LFc8ev6Xewlat8iUJLtRePRad2M5X+FLi25WeY0FTuhtfcCzUOhihqTQ9tyQwzHOT7r3efjdZvn0cet10SZWTtOYBLq2VpIDyBP2a5qE9OXDb5XnX6bp+GAnhYLWAywRyu+VRciNroDaLLhnWTtwf7g+hqiANI0ofMwZ6Lpg95sZWzp8KelVIq7dbQ0yVCds793Acq+y+l8NFhAZ0oLwzaxM2W8AJ4IwQfdSeNB+4pyX2wvq49JBzgoTjGHkOpL6XBJKT2QnGByOXMPPSP1a4xqqE0bFV18HLTf/lRTxAN4vP6fO3jFm8qMRqf5UhchVAwaUIyM6Le1zy3Vbhq17bwf6ya1piprdjpVul+YEqBccrmDN3+s/wIqQ9GvYCZJ6Ktbn31146uwi1PRRMA0XbiFHHF/V2p4mnwEZucgmJy1lA9NGIbBcTxDtMNA6vM34NcMLdIRcA7/c3A2ROgjjx9Nh0WWhNVgpWm0fJoZs4nAQxssJNWKCULeZF86OAI/rHA/1LISM9ZbA4/Dgm3iW9MPrMuSttrTOU9LnOHs8t1g34A6VCy+NhF0sejsWnDOZ2rXIRZnNJ80N6PYkp5CHy1PG2ECsAO3cyUllpdM/vwuFBxHRVajWJvYjuvGSh2o4WFprHj/QKkkIDHTeauI4RbKfb1ZmrK+zqsZBmSGatj/zuhjyaB7b18UmWqBJ5WSpPpdFgzV/nuu3sU5BmqI+5++L0d1lU3qQiN5JCrO09wysCXG7nMbkaHABKrzjGUvo9SsuT5NPPQZ2b/ij4uebQaTqBkV10NZLeE6SX44PyFV56SngIFzcwlAFgFDVJt6E2n2jJlIUY2pNpGR2ZXAbmPSl3DPMAK/HwSp5tNMcOtmmnghR1HHWeEir0y+erMZxhDoD8DuA0yTxQh0o/NSI/AWl0ZY0nM8Ow1xthBJOaNuwZXwBUSxsQIEYfxVnXX23xvkmq5pLWf+q4jaAg2i10Qq9VgNwlenp++t2W80jV3Wfw47HMX2YBxU8wE96Zb85ygR+mXt5WSQ6Wa8jQuaHRT+XCNKw2QXUShvS1dMUJgomCGttxJg14yEyLls+YA3TaZzHNndrIA+ik6+ccYMyIPrZ7MxJ8Yc1se61+l36BKpnh31aNyZk50SdOZbfFirazQ7I6raOAuPen+PgZ7DJGru+nCD4sZcakZ4ZVjfxWx3EpANkTj2BAbLcX5CXDIiwieJxsayMnhb+10mPQiYAHoGm9RbuOCLJ5DgyOem1gBCGu4saxPqxrTzDtSPyT+VMT92be/ZMyBrG6buJ6EviV3aIO7sTbDCuk4GqBWpleroj03HPSIWGg7eNWgro4j4jY0J4aJTpZ4OvI487Gxb4rLNHRfiJ1dwMABPVErlKqnFfoXKBIseGE06JuU/wuvTeYjYYjCuSshOQqUM4njXk7QZJrobnVJztXow1WPoXTkCy5aiWZLyWnAyt9n1rYWhzi0L/AGPUGAwBaUKVlIaSU16PqNl/gSJK7Chc4RYrSSOd/Y9NZdEq8OSIuEXCaModEDOj2k+6JXVC7hBPmqnFlrWSvfODeJh2nxqB1PwW2OxaarccOxHfa4JQ9QdNntlzwez7S48eGwCxzmCKmtuXrHzPhdC4JnCY8jiVHBu8EuChuN90nLWzNtnv6oVjzlgAHAlKK0fFhTJIzuKrYZ8oWj3JOCs1txqwh5utUmXXZekHeSDo+BoWpJH2epfhpZS7Y+ML12OYOXMnA7GBqhb3g5MKSGy1qO1jqSGc/0S4t5fffZnKKoHFdE9jtK1oBeIYU35o6HTIhCGkftRmn30JU9iN5fsfZ4YozL1efo86qJxVnDMxrUn8vRUbr0WOskyDfG+NPZlz9M50lsuBYQ4IGKpvXQhTAwQN82ma4LM3hJ+g8iR3G47CJC4iuzLZvVB6Y04vV0NU8N1QyoT0KfKEwXZmAcHUOq+zNpkpmdpClNIcEvKR2NR0dT031T7h/RySzQy6RPlv9mpNfPRR5RQwouOca4RjJRRTsYVg+6WTBPKVbk6aElMR1k/P3z0pwZ
Variant 2
DifficultyLevel
610
Question
A parallelogram is drawn below.
What is the size of ∠WXY?
Worked Solution
Since diagonally opposite angles are equal:
|
|
∴ ∠WXY |
= 21(360−(2×120)) |
|
= 21×120 |
|
= 60° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A parallelogram is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX9-TLE-39-v3_2.svg 275 indent2 vpad
What is the size of $\angle$$WXY$? |
workedSolution | sm_nogap Since diagonally opposite angles are equal:
|||
|-|-|
|$\therefore$ $\angle$$WXY$|= $\dfrac{1}{2} (360 - (2 \times 120))$|
||= $\dfrac{1}{2} \times 120$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18l5dOZ3f5smaeIHDbTKrwrMqz7NxFH60GgKi7uv21ViJzrpAAzwYO3nUgVtwunNCJz3DpMffLpASW0dU9iQiAtJMy+JEIkTTx2KmSDriwMhQCcgHCAFWbhJDq5tBLTBrQZuxL/cDUzErikpxteESV4aWRALYTnloP1L+zfkRCSyjdqZtCApe4vIXYTjstgao++LyQyZ48ri4Ead4KmBZtH7MiweQWr6Lr5xxrvhYbWPtnWzdzkbmc2/5S6bzTTCTmRfZ+9DjSuUr7QWlDRzmcqGkcB9BCk90mVouFM1ao2ZMniZAajYFPGfp8QqJCvrFLsA+5u+OlT3D1BAdi9TNzyuVcvna2eomIpj2DKdowVwwrVakRG5tDKIPRA3/h3rMlDgJGLHqfjgogJ5DDrtuoS0hN5EUqtAl3FhNq6R/MdsCLNucLofPYLMS/22ljLUDgHRQHfbi1BY+D8yOGlNPhElH1SdkanYLDHCk5Nv9aCboJCsCs41mkq30u5xPmUvC9tVFQQakJXbEqFoFmkRZ/YfTgxPBqqjmwNS79hDlWqd0iGZnSm+VrmCxa2pHzspFYGgrzFwbgLzPqItTWCEheDBd5E5sKq8boljsT4NwwLBhOamIWCM1Zg+xR6XwrFn5Yq+Mhim9IRQFMKXPgbBkm+kUYBvCyRRWfWk8Q5u9QdN1SOcqxFs22qQJCbTBtHtiEQRAr2HNLExeH6AHUh6MHc+sSpBVCTyikBD6IMc25/5AOWxKUhUItyKjBzJ4DLlZ6tyw4Wabyqdu2ekZE2TjAVzjKAwqYlXA3b0KSbYhuhVYTszP2YaZ9qxt0EMuZkcRif+5pFi+H2QO5jezGpU4O5MEtmWqwOQ4U+nsxyM8JIbuL+zaMn+p5TJXAmPQNMb20ozyiGAlsc3kntbUxHZfYT0obcQvac7Pf9HP8riayKl9vhBmP2zrOU/X7Il3fuoo4YIqrdwUTbDeRDyVAnW82dtMwUORLMLBfwEYuqXC+dUEc5eIU7O59+HF3sf6F8bjCaGYfkxsTi2EXzYJrhRuVONpXN17//76/KMIzaKju4MjzeJ0Oq3NeN3u4AWWCP2zvqZfSqJOQQa25xURar9y0Uc91nR+pg0DNUMvcipgfjzJbLBG2wnBPWePAvvMX1ZM5IKMR/Wir3je5p6UV6r4Bd+IhKojcBNkjoPK1d6YV+Xtb+g07/qphctLEOZXrTBmrZO3k260/fekDsW9003YtXwfs1oh3MH42TjQzS6dRX/Vv8/ZcEsPaA7WWthnPkdIx+PHfDLdxg2utkDVCPE22ZUwQjxIG6N1RCEfJ/LpSzzRPKOMVa62o0CraDyZLZlR85gwYOllIU0DrmuGnotGOdJwEmr3oOTeHoz/8jyvMPbkztA0S7DHqolO9HSTNGcI23vLTMq0KanUCOcvyznhKicxDecOhtfO8rZvYI6zjNEpTF421fGd3ZxSDmVoxuxyvhkmALDkUQHteYYrmafb3kJS/Kple6qRRQF+lthZTrIWNnSeAJUTX2r7fPp1RcY6ubr94Skxqy4+XuHx42tgp5//sCrG0xvKcwSH1694Xq7YRLpd3Sakd8tsJH4ukcqAdd03gtKR0rgYXLqi1FKcI0+XSs5wGAXAp1jTR/cup6IpT90SgSCyIuWfBJkr4cnMUUdJHrrbVT4NCBJi+DTtozpPBxnvW279Ttv9yLVv8Xsz1Q82aCEDdgtFynMN2bjXUGAqvVSLtCHLm9e7Ok49vklDBbpV8hKhbv/Pk7p/yOlINnUiORlpxlVDDvDuChf3NyB39HVxFTGIiTiLbgeSi3MNFaU17bCZsdAmDEeF7Mh4gsl1ZDzovQm1Zppc4AMILjmcR2UYaiqpc8eGEnRdVqBhahrZ2kB1AK9birgieJdts+NAPxY5icO1Igw74hb8eD3PVWJsc0G0j8AlsG7FeV5CLOaR/odIXxspvDhaPPPBhYL4abQk9DeSqxTP8YhSM3uZDjKaw6eR8cxqbVh1EheJUK8nFMBYpMX/Y7ppIyMfpL6igCMM9G7uBJ6mymqVQEsHBLfhYPxLz08URe7woygb6WdbF4qgxCgfL7XO2nUuJ3doIiQAD/xh2upjrdPw/oDMV/jm/VbtrZm040rmDTBNXNxfJJmvpmuPZIpEjB0atQVT8VCFc6w5zZYof0vAeYC/pH5SPojRsbtpthYwkogSoPNTIRW76IOnktYQlgRD3kAWQgha1Z2jJ19/+yT2WUNHBWoD91DI9I0Eyp1hHQw/tIthmTSYH2ESYHimwEJAniyS0IceEtYNaD/Vldn6QtTLEtybqM2hoC4uG4coK9u7XjQ154KEaO3MhjutTs5hZGx/Lfoq+l9cF/ZbCP9lyPlOs8SvtO4+bLuRGq4X0vI25Qzl5oQQMMUXpJtFBufzN43i3BCxsCvQa1X64MP/mA1YXvaONZ2TkC3rsDrrcFz0GTn94ChY1KB9ZoXjPjT8+Jq/0+HkoasRmoKJb/nL5mILI+/xErjFEMy7M/tEeWEn0JdBEQF5voV4SUaY1205UF6uLUiXcb2R6533fQmmdG3natFArmmQFuMnwAecWZvNC7zhEziTxBEfDbniym0tMEZmsxogLqw2MvWBYtAYnPM53aotGEXAUBd3Ag/A2cLS5mOun89j2ZRMXXrGlGFFBFVnf9JD8U20RSW2qpti/Qvo/wHTV1y7qOcXzA+gtlLTgL4S+jjhSjm6b63CZS5cfvTOoc5UHoqAFHIRiKxEzyD1ay9hedihc1Bck8sZLlD/kYXCCgSztRWHCBPB7CpG+d9no4AJHORQkP1q4FG7udf1DcY7Na4LjAXhKPZTUFOx0qorhO1vV7ywXfSSQY6GIQR7R1JSp+JV1SrB82or734zqjfZpWENFzpRz0CTUVscnpt1A6CzeagowlumsRsVfGHU48WVAw2DdlD734ElNIofImBLWPoJra/R0JrFYCaowprhJZ0RKjEfsHvgYa5RFacqv2UOxhBd36DK0GNEN+JGB9vwoDFqhpO4hFfLTk1nGveEuwBZEkym4wVbLRdZ6ZBALORVqViFkGsjcet79CN8hg+4uEvNRkZuJqBEB85zMyOBjvMPZ7biETvgQSII2JypIDdv+Qb8+w6NBCVF17lyX9zC+YN+eyA4c5QkL3OOB6bV43aBXuIQ3JMxoSWynVHYYknnZdO0b6HveOSfVvAmeM1DlrM7GqT82W306tPSaldsm54xylgr+LCmVRgDflPVuXn2OjssdubQf7jq2GPZ9SQP3NXvLAk3OJZjKGkeVTvOuEUDMC0PSJDuJ/3zQ3PtDBLHT30et9m3FUfqS40VpxAwmHbBodsLcW2JkfuDmuWYcFCHHonoMEsMI5dvVwiNHSkMj72ULy4M7EPHU5+4m7GwoejddfE7V6N12EkfEKJp5YGWhgg1ABIdOVglhrhVoeZA6yRvaRBElDtDERR2ReEsFGPg/jJ1DN/PLpYT94YDMzpEcGcJ1hMPymh3Tw15uhX6799gDRl1snll1KCRMMJWV57mYZA0dlA7sKp6KooiZqwSRr7OqJJuTCvvpb91lHNA6o4rpzUESYB0WLoCC1WSMbaUoYyZJI8ALdjaz++LoLU4CLsEdFH6a62SWClb3z4n6A31uUax+eLySf3Y81QmqdPXViyUkatv8AVf6vMx5SMhCbCxCt67CipEfXkXGRMGi6Mdv3AQPuWoqvPAlBdclfN40Q522wiy5168c0C7w1NvBCoB9dhCC6ycxeBAJFdmenbUxeOKyBJ7QrsNDhGuQCsHZKMkiIFj/7nQddUdi3I+XSFxfxgEMq6KDE4XtopB66B+XQuyw8Z/gXv6Lm4DRjjFz0KNnb78JwoQE5PrnKjFAWZHZC1TchP2/CqWsssRKxh1hk1d6UiNQwMHE+dJSuTeEaS7xZ3oxCbMc9F2VK7CfVZ+XIiedI3DwAdDcgL+8pMsP3BvAWJeg4qbtfSdihKRd60eoxfnQ8FE/EPaQoDiL7NmdyurNBjW7XerSxdjcypAlxTDn8U7jA2exyyolcpcyFzgV/lBPWEDtqKf5iCU8bCz//DIq/GphvAM+XHuzlSad+U/kAU3YxicnbJOTUVHYHW7XFHlcmYrCItl2K+Rsmzeoxh5MRwlGeAXRBmG4C4cQXWs01WW/p9WRMMZWQvk+BwmRUuq7Xb0kIMxoLk23pLLV8Tg6CPDhpT6LaySYIkUTh4CyjR+5Qw2K73ID2fKlAvWHesbrQ0GxkheJVd5V3DkNZIGfX471u39VCQi8QwFb7kaT8FC6uWh3mHlLE4Ur64hRQZXOihOVti5WHFd11jhX+0y/qHlrG2WHx6xx9AVcEY1ZYKT6X74BZMzY1xdcNVMZHB4qyGxVcREzAB0a+jpqwn/c6RqzB/qlG4tOUocwKEZYCIfxkDZ6d1b0ATdFf0vDossiglk+C5o69fjTJjdIvaM8WBYSG0+MdaDuI43AxQtsspqpofEvEtm0a5//FoeOBItx+VwBE7DGCK/XkBJ1tbXJzhWPrReuGPG/cCxaA+tC/M5Yz2b52jHLSXPTW0CDz+RzezpoZF+OFX2jOz5Ow+75KWlJEiRqfXjNfqkQ7hOVABx8RrFCcIT8TVXWcNsiKntiYtBoLY2IOyKtw3f+kbgYyu3H98eRJrPmL5e6+emaUEEpaeapl+7tjnaCJjH6spc076S3iSxmXed/92oR3Lc4VA1BV83B6SRyo2NH/A+TnK2c1YApLHdIhH6vtLXR3bDLf3bUGpyIajg35XhdrOH+IP6naenVyMrmCQNCivQWhTggCiy5TrvqWE/SQoFrZMhoxgloqawsM6Zv72F1UNnZQxVDpbC5VAsNJxkiyJf+n46bSu93LAA73p6G/TyZFgss1XsUztNN8m5OyKtN/hIb9mD/mZpP1gL7K3pYhwTc409RZLMbs+iu3A+pZrmugs4T/U00cKjV8fwo/YfNjemn2gLK9wGpbO3LwbLLoayZYRAuv6kaFyiHQ0OEk7WrDNnriHzNketykC3jkdXJrwibzTXF+A/sNqG8aX6jFCObQuGdteu1AY9Y/tDBBi9XJxarh658x5lJLXqOJWthMv73gaK78aerhuDTnuBytXmlDWWkB6takuJFQXd6UHHCDenL/R91M2dJWJtJYbvnAuxdeDRJMNTAYyWbWibgX1Pfuq8NYVEpVhWSxJiddd53onFzOgTYd7IaV2qto1dSFbvpE/kKu9xh1gpyH4GA+9VGDO7GRY0AMqoaByGqRQm8gmgBSCCpBPAG1kN9pFSRf8LluiysrGwNyrMioGH86KyyGii26ecdIv+wfSwhejZEMXlE61GPjAXilEIxSvQzIEAtuGDEpKfzhmBMklLTFTb4wCTK2Vofok4gVjByAAwAtTHeUggW6NzZS1zBhN/8X6PCK/+RLvt/EUQA25tWZXWDC2gzMr6ZgcNmhi3knEhKlZuMFVRbeCS05rYxLzVEiAqoKDAQrU52GSAKdCNheTmawYbt7DKCi2IEqwe/KmvWfxJwpQgrlJ6uFBIo+peO2KJJI2ZRSepQ+Zaw1UGCRjxwj0+QNULdPQub9wi84zDys91s/em5MHCcB8X+oalroy4GXB4nzh5XIrxku7qKQPPEQktlbtFl8JmRdolpDb3upA+HLJ3a/N9ntSPxgDg+NwAsurxtbpmYbjI0cXJLY5XpaOuLysvaDVwPhEtnQd1o70T3jhnQyoR4COqSuZS8yz7Ecla1Mq4OT3xWay+rbK/q9pctoVEVcjiiQp2CMvv1NKDvor2T+CVGHMtHfKSy/mvaS4vookG+38QvCOl7lfD8ngqVeqU2LkibiJjcH5t6MfchkEajYWz2lBOZ2mlc2u+IQtYj86xtNd/j6URLWBtpbcowxDTJF4blYz+HI4S8hXb+u3ePbHQ2D7FqUStHl+f9vpMqB6oeJ57foF8pGU9ATyQacZJ1YwRGhfKCxdW5oGX8t534ptt0FKxyb0A29J1DWmnG2M0mEsv0UiSe5nI5Bg2k+Ea0LelPk/hNgStD5nc41P9gLedEmH8qrifi6qNcDaME3RQyk3yXXv5yxeujTTHTP21y4fgE4UQrm1aawPxVpunpXa4FgTRHXRrFztaOhhj4B4IT0ddJZKIIkpf/mOZURBKBR9GDtw9VCGxaUoItDDnsGkgzS+ICGHBbLk+JUUeXbURzex35moo/jNLV3BLbxHRUAWpj77K5u2gwPvE9gBdZWCzASNDpkWEAD03JPO/Qisn2MT4Faem/Koez+wY89CeiJ+oKaA9fvjprNG30cILziW0Q1HgtoJfYuH/h8rsyS5EHLb8yiGkbzsQV0sTKenp29rGF7gzi/tR84weZwB0Ge7UerfvCeKu49FJQTx8+Dp+yM3Q/0eEPLkzsiEaXSUyoXvx2Tr76z0j5Gz2jjYZcLjN9BDC2gZOUebJnBuE6VAvBmc6iofx8HKdhcwmhhYuKE7Xhtz30L5e2+O585JeNRb0TQdzl7qmxY4et5cIjrwokCyFvoZEz9Nl5LV5WLgkS660H36tX+6oO/LznaMuj/d5XdW3in/d7fJkxugmZ7FzoI4qgU/9yIM73bnGn4EI+a5S7sa/SD8BQMs3qi/Hd1uK7b4jwZtIT6QcoKtC2gb06piTwbiuVxQxT1qki55+a9pAO4eiHqw5ak/soQejcD3a4uU/n+XYk/nroaglWy7AGvkqPSP4/J55uzLWh5we9U/UMv1w5IhKZzla8lXSvPJK/G7HmMJXa7L2LSFsB2+aP60W6Zegy3Vg1rSqsoCleCoGtQF8LrlPXm58r7lVSxsoFGVKYfTuIL5q0zXKs5fqh0myA1KrghJPphcvPUmvqI6w3rLvAkI9m4A6Lfo4M/m/P59dexDLWJxK8x0OgiSckUMHBvoCR2REh9jMhtDm9rnW2CytMEcq+u5eEAW41Gn0WhrukKyNybKAm0XudRZfZ80hK2cuZ2t/M94WNxMbGCU04qg0cew7n8t8YSfvcHs5ypcSFZCWnB9dKLhY4Hy+KEWHfXe+peFMT0uC7mkit/9YElGMUXOzonZ4puZeJXd2Fa3+GE5HR+wDF5ixAkDUGxF6uVJ6YzwmUQK2FFjByDu8WB5x+6xhQgArNtvcvVQtvvKxNRcRkctgzTsnZm768FhWAC8+34RpakAHSV6a6MmNvfBvu0uvxGSKUKRAT8nL8xB3gNh4DSCv2E/G+Ewl04cYItZTHzsInoGJIRbM6p/SKsKeJDjEut+o2vFLbr/nP8JCj1XfDFiRzGY3pRK4hcZhP9/DfdNrK6lZj+ccxGxOrRhzV1EJ7OgdMv5Od57A8xK8EXsMfyDwSx+c7nG8ryR+uiF8l6ZBjueH8BIQf/eCIRhyVK8EK+Apln4kcvtbSBrE0cWdc4+dgOGco0dDDrfZ2gRTr0NJo+NtC99Pv9n/zaeD9Thrme7NeHMxud1RFflhSdrK9+vofw0dkA7btE+NvIiQdK+r9Ezs7h6PZWxBYw5Ia9+9m7PPyLkcdP7T0Gtt57D5Dfehq/mgL78fIgBG1AsfWswAmWCx6u6DQBYxyuk8BpCmYH1twqD4ThKfIEcd+kMU6E2UOIVNu03z2NCKe5pJ0FUQw+l3pcyZbVfDMpnQ6WPTy3Jim4OPOhAnFFavWEvK6BAdqgQDyOrhjlya+pSQqk+LZh/Hw+iY05Uwll2WFSqrQHuVBvxboPSqzzq7RnXAwq2qfP32oA3Qdca07dszkm6d61Gn41SRE7WvoraIQdYZuSGlAbMjDmR4mCiDtK5DqLiaArc2f/O/cf07QVB0T27ULWlvfYEjzYnZOVHWYnB8Yp0ZMaeR3dGlYrSbJMX7eYuJ+c+N/nt3RtpQXX48inJPGtnwqPX6ewTiW+v1KHqYH1tdAHPZz9USZoo9O9Pt1bFd8QqgQ7J2ARfQRlG80VqR/VFxis1N8wCTQAMYjlte+Gvb6wAIulWPM/B/JNjTWcbUxHAZbCnC3x26khTyjL5WwjwTC7/+iBIcJGglqy7FIXaAHa1J/uMW4Tth1vnbyHEpbNE/OkMNSmh/yvef6zqEn/0wQr0aIUVA3loGsuCh7+iStXJfUBu2i+T+siwusn6jsEnXx/3jbLEvoIbpLfkSkHZdJA1pzA7TI226ccV+JQhv0onuwjZhrUMwtgw/VifPb3+xR0e0Rak7/Xx6d+FdvbfFa3iBeOBW0GuGgITM3mqlIaCft5anOFuLKxR4DQWF7gEwU9UO3u/FuwIM6KYGObewkPiX6JE+LoA69N4l66/vZqhA05HuSuIDVYIfcoH2Q41CtHPTwuY0WnJdU9ELu6fPKa5QL8e2pdZRBCWw3W/C59UwRlaW8pysjkIkXFC/4dpQgIFLcGA1vcxYHLPqzD2KzLyUaFvkSDSznhj9a54gORpDlkrwyThqy7cIH6hHeL3SEI4nTrT8ldrUyL/dwKKnFeAteKtlmDXjzEQyQ4gvIeLQsegWDIlWexJCTPNCg+wuO4xjhRZj3exLNPwDEAHtjP/bchzr5Dum49ohAkf4xNOKnp/s/xYJFz3vqx4wlWkQeXwKXpMrSBgxi1fe4wH1DccVTLFhoJx6r3ZA4qOy3gcFlZCn62haAeTP8LHljVhE+3ahh2+m4wav2CdRTF9JjIRZG4LdRj+TizgcCp3Lt8mcbYhtGHCMQOQ+sHQY3JEPysFx+XlHmNa9roYIl4SSHLOAVc/oNDZVe26jssHTQKS4eifa5fY17kClP/kHpkCuwc/9pyWY3Hx3zZSWWElWzAbUuhQS5gm69vBn4qcYvGrhWoWcdNZa6cPDOY7dhLgawKLq2v2j2kIBPwglVTS8CBE1VL8CHjS/u/1/ckejQSQmJllpykJr/PpfbY3mAXPsDcarXMUeXQ4pYTweOGnlCA1ss0lT8BF8kxkr4Ic7kGbM/n3O7T1JzYy1RG9HayR6GrKaAw2iI4zd/wLVX17B4t0BAdiHSmoThT6mT+Q2oNdhpFq12olpRvqjqBDPuOVe+HFc9oJIAh68hMB/pvjdknjwIs4EYjFrw91J7AUwtbs0if2QpwmohuaEGDST9gfMwleWzGmqdVF9CFujw8vOYHUVQsAoHvHtMD7wn6TGqDEvmqZzqb7zPL8rSqx+iankKuN6Gv/U2yHEJlfuH+pLVKJbrqso5i1xZRY0SiQ8JVhzH8fM1peqOFYLv9Sw9REmhsdHTlfC8Jj/ybuYd3OwZ62sqHu8rh02+J/uLQsz2eUsuswCq/f6YF0bppBKHVRYY5KiPMmn4AU7cC32iWaerV0giZTN02cB9i7XjpSKssZvUeFMbaVpjXy/rLwsQAEDj3dYgSHcMWvu6FNHdk8/8nYdDh2w5XzskDGQ8K5XbUC3Lv4kpseA6s3mf1z4ovJARwd3LcCIKMRVyk9o8HoxajYawW0LC663/KxVRHj05CtbmcOwGZq1yhTQDjLz95ZCTMThrfVmelXoNrp+WucL7pFiaybMtD55eU269ZQTVdIDsOA95Gw8syuXps6J0sxqI+FY32XzHAy6kE0Raj5KOwgMlFVklI37Z1/y0ZCbDqnTbUEX5QdSkj/oi+CPXcV1PkBMSlBXW+c3vMhRUIhC/By7bCH6gXYwOymUFr+g+PaA+2Bh0UKeaNhYzL0JLYVQIUJ4qSQNqo5niNnqYUF88kfeT9qEAER7oQS++LKq0DVnKmJ2wIjjLuYOEE0RqK79zh9iFNMxB/VOJYtCqRPeldqJuKbCxbRows+aHMqy5yfO7TbpLFz5RUCbdcqIgHrm41NeiWsAgN3WHgpHgik5g59RkkgRYmyZaTRtcrGCtpSFdBWBB2b+FFPWhOfb/trcdVZN/FrzyeCzuFciV616pJh6X4LrMyQfERvF194c6OhQQPWn7CGIXDrt+X6S/WRDE65AhghRXwFSxsYa8ErzcHAEWJPuOpAe3TUZw45u6IMZ+L6RwVQt9hti+rh+sUpAZX7+I6pViCu6X3hwbQispCjlrJ6f4FZytvKSzIiQLJYt6Fvj4y39AXLuD86fdMy/7z1cFl0P80pg6n72PdmLRvDiO6wtmJ2FNc+IOUApRyiaUnELd51hmVqvs/s4s1YJ5tUSoIseuJfMXNFCNbDTzmpGgv8b0yM+cmtMn1NEWFJI7O0ujFZ2KhAdFwU9x550HI2RuPn/ENmCjbk9sN2KpT/VAa74FATGg4T35LMTelkQV3BTd60JxU5CskLlL8OXXcra6bHtmW0YY5ylnAwVLE5hy0nWu5/5NgAFIheERa7+MTBb+24ZxzCPpN4SjkYl6W6jfoPa3y3WBAm2nDaDAWGVWZCN134F45rdsi0AK9K/tpSkrQ/UXYCMxw17Hv+uYODlY9otAMZdm6ix5cheMV7ePwj0PpEYXo9qlWVFtcKwIIW7mFby9yE7Xoi4g5qPbWNtbU+jc18KniliE2zo1HHE0r4ejhWLFKzOIbDu3Pmbgv+L8iHkDFblOiXeTLPs8m6fi+qM+mwgfOpR4o2QtHRf3Asw8f8tXaocdmJAnf7n70skiNNnOx2dy3XDhwaBqzuM3v3Ks+uUrh03OLPjUXQiMNbPuIPO/OjfIc4m+wpjiiIT13IONhnQsjSsErRQ892YybcZqa3rP1G1nhQX90tVp4ageWprGlOKIqv0JnVtTw3OaCJoAAMSAy73v8cP2tG0QLxyIBYpeH6d7AxYxgTHY0Neu8/Rk3Bx03CuYGFXSewc6qU1nGN5jfEb5QJiXfnmuvz6E2r9GuM5X6RT95CHIkZIMXRCcmXXf7Fs9vqcKSjbrnNMjaIEL0RP1LPX8USWJV2cDboLzGzrENsnUDMKx0PY2XXM8Scq4uQJ2XFh9PHMyDE1AIeWWO306pzrG70fYcsZSFvmCwNbQcyth2T4R2J41yP8W6NgOPVOC4FYxFTMlEY1ljsuJ5Q9kzkt39dsK3yrOTMgLVfdAoWMTmd4gL6zV4Eyn95ZsMT6Jwp6vaspJOy2kmaIIDJ4NnvzX5LOWUYJC9tlD21iRRSvAU4vTvcztZ/H4xOp82nBcpf3aewFiPGv/wMNgENSpR8EawA6sRkTB9cflxER1/JQoSkPQa/S7KzmVlS7J4G+lwVyc02etTAKnYRL+QBNrci/+s2x0DdAdLiI8RhToBlGShxYddodXxSh/lqb9wbAXunwsHVRQro1S/U+Hmfls5P09nRQlOeZlJYPfqtfgk4eY0CtiQ/s14XWSTaD/KKlENYj9C/H0yPk7yz5LT5F0r0Mrgd0EVt1sfFWydMBFLzF+5hZOSwjK9cuQmbUO4uA2p5LfsktyvDU+KdHNEYRqJfrE3twK3Xc8Y1EINj6ZjUz7WMdYbEBWs4h1VkI0S9YLJUCpDfcn2u6cUGfPN29zBVr0/tScXvLJy7uYJTvfLw6oYmaUQtxXVPIVQ8sr4PdomMXvER/hXgU+ImNoqd2iGlBPFmbqmdQ3OIvfswXo9UWlwQ7FjAo9Cr/5vDR9BUBQgUOEEUZ7WborlucDynIu1XHhpmEXfgd45JMeRVUlXZrJYHnp7+GjBpj065JppcvCuvErXPn9EXEiptNK2CL1yXxo+73OZU+kAu3ihF4ou7DJCyKro220rH5iPlKg8noDfKiLTwN3wLVV4kxV6zCVcNhWZoUYA89PHwk6Pjhy0Dn6sQx7AqfoCOGCf5AOLfUVjzSIwLER882wwzgS1E6Cg1gusRm7FeXCrZfuSQ/ar8FfTrMKRR7OrUsJiotVYUxWaXl/eQkRSQUP+djCMqDQaTMhq/VcNLsK3kzynBeatUurHkWj7wWoZgQB/nagkxh2tIclDVdJ2TfBvwovxx2Ob52KkMM60PbVOaVLR0pahP7VPblpXmFCQdnuE1sfFEa7/N1U0ZUrfvz7pjSYKqu6RI4g3LbtqbpIsGHUq+LQAhyzEKLUpfqK2dh9CYUkCQWGq49L4Uda99dIQusVQDpvkutAsAY56Xp10VsFVLwDsfoVHktwZIOj+NYJGnzZ7lzg/NHNFVtxOds1pTDl1AoPMN+yYb7vJXW3d8KPtP8Z6mHsHvbePo/URbAd3pE1Q8NRwUXOWKC3UkSEdExjIIdXLnlS/XBj/CQ3tPyFaPcvmuhMn7YDCFFegIbYNpDwN7T6kWLK9DEF7I0bKoIT9e1tGEr7/jaeZCjU00ekYOjJpAjLudI7+06K7MeWJ8t5F3U0mAv6i5hv/XKesbxu935+Ktln6MILilcryM+JHdWjYH+d0z6LbN52K3G+9etfwt6Cm/LQbgciX57qxWxRc8LB1iPxNHQ//27Ke+qnatXvHMC7Bc2h4/jUC2Kdsq+c3RAS9c2KrJAlyMpxZrVnJyuHohEUQEb87dFGu9IzdqkTWYEJOqhzVdiJDHRuMthOe3Kmr6nW8LeptbWLDnuEmVJKU2mJee6sMYCA0VOPeNOsFu8nlEzK2EodiNoEEZFHR+NwIQTmX7332whhgQJXr7w+vYIf3pAMeyrvGVQZS7rSQMnscit8/QV2ZfnoD5qH0L8l5kgUl7sBIbyUDXvhBrYeu2iLXH8bHzqIKeEGtjNuZrTl+4+IL6TgtOUL6XC+3MoyPlqf+BFnkdcpfI14HpljUQEfJiIdR4BZPEVmswK76di3LmPUA7rBxxsiXOVbmzq9Irmak5jwU9sJrGq//Hlbj5VRVaBSJDusxpobrm1dtmLu7ktbZn55JzyRATDk8qD9xPfuQPpTJHHmhz2kPB70K9Fo5tXu1Gufbi6q//pc3wTTRwxms+NSQ3tdif5jnCoSqqiMwmFCNn61Sw7ABUaFGZ/joFqs1w4LV2IhvoLUkYZFshd8WSxtdJuqCb1QdDxzKddP94tJGj9xaP9H/EhEQdf2VlhwQZ6JHdjonS6wkdjTvTsto5+fhjvOmVEphpb0cIRm7+sMKhHirGeMGJ7/2BBDqGUuREX0NmMX2cDKsWfbCrifshYH1v97B3g384x9k4CGRf8/+RbliNkWPEdXtmy/NYBJU5Dqq4TiEMBIa8zBksjQNRwah4bq35OrXwTJM3zdbdqMVSd6rbyVB5hecPvgWq35dIIgUS4c/BYp1K8/mv+fLX+M0l4FdmjLYW309IpVW5yANfV+OnacuLw3aA3Iy4tjhk7sTFdT0O8iDMxu9uAvmQvZGuCtlqxfUeCuuOHXHRZ2g63f4PVl+9QHSMyxw/ORFTgM66ivkKEJdL+dUYO7wngVaY+uxyuFvtY52tgZ0mt4qg9/8csTNFYQdn3vopmkrBX61b+HYasM/YdRVs6zaje5onPYDfL5MlPWMErXMSzDLFFrq7hswP81FiPJu+Ph3a09q+ZebjKf7Sc2NGa8uy/2IBC1nhSEUbBeEx9dydduqEVPaeF+VoTxSdVwebiO/Q4gGVb58Xm7A1N26D7wskmBZf71CI+wAi/8xTtls+hlxWkSExGNiLubI2KuHCV+KF69MvttX1jDqG74lSipedEjhmNONnNnsFOho9FlzTxk92M0unF3xk5EBdA7Si6hB6mgXZ2sExWSCGlH+XeGtgkVfYwH7lS1vOl3VRd3ATG/SYVb7b66lVGCtUiUfey4VxMJXiZi3uF7syh/m1Tt27FJeDAtMXinAhEqa8p1n4GxBVjggJi2IaXFij+G7tiha695Bzbl+6wegwG6e9BsZ8tB4yFiju+s9mzXXdu2yEhwU38ljSghJVdSTfd/NOndvCXquYlRFIepzdsnnLBjbq1qqrcBtobKf3LPB6anyEIveLZFMpHJtx8sRTcutWKX3rGjy1x5rRzCosdRaZF7UJ6k2Bq0eK7vSbgvhlp3CPB7ZWZ/LhtD0YzexNp161ivgcquYhORPvxd/sVBykcnheQQhO8YUw1fhFYJPkOmVOjHsDymLKMNIiuc5KgCu29wFHGzqOQ0VwSQcdmW0UeedW5z6+yLxepd8u0SV4LCzoYVNECLVuLdS/xpasAbxTyyQVbLXf7zr7i5d95kTkxbBzCrYom89waLLJHkwvL0LdaWDA0o7S2aAeG+OC+iuEAOJXMOcFmS/YGaW5GQw1Qib3P8Rq3gnXaZmI7JgtSKODVbBdC4saaVFIH+9aunx7Py3vJT9lDf3RIzWCKbGNS8O5ip3fdwPPRTXLQOLAunO7uZiMoEr2NYVGJ/MqyZnWenJpXwdGrJyDqdEdPbhfLQdJRD37Nt4rqfYYSOFBapW/XPKleICitWtNDvGJbistONuU/S5oHMVDus8H4VwLoWCwvhdfg==
Variant 3
DifficultyLevel
608
Question
A parallelogram is drawn below.
What is the size of ∠MPO?
Worked Solution
Since diagonally opposite angles are equal:
|
|
∴ ∠MPO |
= 21(360−(2×40)) |
|
= 21×280 |
|
= 140° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A parallelogram is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX9-TLE-39-v3_3.svg 355 indent2 vpad
What is the size of $\angle$$MPO$? |
workedSolution | sm_nogap Since diagonally opposite angles are equal:
|||
|-|-|
|$\therefore$ $\angle$$MPO$|= $\dfrac{1}{2} (360 - (2 \times 40))$|
||= $\dfrac{1}{2} \times 280$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+1rOTd04koO1VSJpkrXjbWeXKQJpBH7jD+TBpzkgg5KtKL0MlHJ9hZ39OJEBzmsn9CW7gcGh/bSoESIIyP0p4HlAAKAXCQzUQFv6e6q8hvlpOUCT+H/xXcjo0iT9dogvKWog3Q3Lf9xgkgXYxnGqQY1L7vrASPkxlLaOO2iQHm6heWnSQxmAuXm/Vt4F5aU7kGsKp2kb/vVqtfjN7Dcgf8bDhTjg/BqS0V7F00Abo0fotOLNYmr3ICXkwMGTnMCxq+2Jbn6LrBBfQB9MfpEAfxH3tMtmkWF3Sp5M+Bm4Q3F1OnDtL2qLxib93MsJGFc2OPLqRujrFygzWYD90ER11ByeweQKW5yzs09JSkwUo/GcQGpH7liCzJGS1fQ5ACGBUACM1cZZRXwU7XqqYzZQAQzUplD6Lmd4z0sUKjhqZGOT6L59USZXlbJ23yVO+8LLoO8RG49TOWGY98yF3E4WePP30LH69vswS8oiu3yrB/wIO4EdDFOsVofw0eofPHqfJGSytWbwjlCEF1S9hvui9IhU/HD/R4RxRZoOsL7WrKPoy+ov+YrR0gVAH2Iwg6VSJclcB9MW9tr66MxJYMuLGNJLYnorHkBcwKytMwT1iLxn2qNh2/5GcT+YZIQG6ZXZSJ0B4IE2Sj8miOWHOgzCwGd+6XQUim/QeazgxXxgbp4ILJulN0YrxoxlQ8hbriXPshaXKD3YTApF5MdRxBxZGZYUI6j6lNYD5cuDXTF/fWGxxr9U89dFk055dsL5CJ5kCRXdlYuNNMyogsll+WBldYC5IoPtmPJVGmR2M3f7/BCvv/2Hp+J1H7cPA+vCNYRSn0FukDS9zxwtjax/VbxfqbejbZmfAxp8makedcuVbLoK3CmcLn3bOT9PuwWNV7ljFfSRphRVEqVkZuMIjNMqfC07MGF9vUgan+JUOurtNpu0lw3JFbQwxnBwjScgxNM6iw+AXylO5U4iEpq7+rtQ4HffmZ8MV/tVIWKBDf24A8u1w/VQ19CCllEAbBWRE+dHt9le8cHloyUeomKx3rVOp/rWjYz5+LNIDHmjpyx5TPeDTe2vTJEGkPM4+qC9jYRb4WBsL4eH6aHxke49dsgnpGl8o/zsqV+lI9E5Q8VgedBB3LaYH0sKmKhlIdPaYm5ME0Ibhb448vRVlDLpgu44nTSPzQKR05NFRx9cF2zfw+HfZ/cbS4ElIBTQ+2g8nYxrj+8aXMD0zCS/eksE50CHEENxLHUzCskO+mjg17SBDRm6GIXnGxctJ9KSBDLd3TeYP240kSg52u018SsJbzLQd3Gfal8YVK5OBm2kYlVcVYJ6GWFNEIIxaFZEOwLNWequwtWI2symKcl7OwvHRCOQ/1B3bNVZTwQzSKgMO/PkIgEJOKYk+lr1g16K2OhyJV68Vd6/e5muP7kVZHCNHsasFxCderAdQlfS5oXsHUk/LfUbRFdepf+L5ApY+NehjgDhXCPOSLpS6BQmj+6aYyQyrHbA3pu/SO5lzf5RSTiZJdbIC/45ZJvhyxO1d7YiC8UpR8MEt6PyKzMrHWlT+sRGBZzHT9FRgVmqI3f+Gafq9y0w5igBaCqp1OktgXGbuNLO14dBH26yM4s14wwE3PLLwCQaycyhGtaiQnO5Qs/gQa8kQPwKzaPigH5ENmTQtcbij81tCoO4t/9fKQDqDLRYciknGa2rwn9Vg1Ii4tP1JGYSwU1+I+F3cJRAvHVjoqZmp3RDFkR6V3kTaa1K8KkOK6kqarDgs4aQsKISKfUGZ54qA5yY2Z09OjLEo329i+hh4cZxMu14UqPHjATTvIKKRePNeADVw6+PtQr3cqQtPEVVZ7h3KxmjYBJAQpakPjQVmRbPsJgViROR7QPXV9MYEyKIfp53agGshoSHR2aMGCLKfUbItDBb6EmhWecNtBWliehss4q3wmRs4Bdb0MVA2KGJTLoUrUgJEbpiU9ru02XWXNlFEN2pZgHbIUBbUu30kV5JtteXo4Ghf8W/o6pVuk8Ywe8I3m+Q5NlvnkNvG04GL3Ox7H7nfkKziLkYmjIt2+WHGM8cErkKIwsVmyFgJcQjmp16YvW5eylv/EjkVOSykA7XcT12Hv0C4/PU2Vy7bauXfbPFd+fomrcVPkmSj5/U4THr78/RDoM8zPqC8RHNuk7uAFQjYyjQbeE+bDuVv/YF2nUcKpilfpqEwfBk77vFxgmGwGcxSCx2EXYwhfhWZbK7k99HNncwwqs+itwxzauSZ25TIDSOnjY4qMt80jLVeVLR1MhyEqVq77nnVjhGe17oj3B+Rtym44UuqJGL8czJHMUpkZJ7e+LAjOlxFPfICvQftDCL1CBYftw4JoAZFIfzzyNJciZHSud3atPW/PUgWO/3hfsMbp+Uglid0ADduAnnftKhxHCfryGnLYQRCa9SPBWuFLmVbW5u9VWg8/A0e1ENKa/vm9PFF8sv2kaESqt//BBKYMiMqK16ArORFPDRkMDeho192NLXWSAsaqmHinn+0x0T4ll0FB3BsefgIEGh5RU8O6HlpqEr96FxTXK5Yd5u/U37fgfVFcZjJhSRZAstzQkCv4ReXryHqOLGkQRRENyuoTnpj0naU/uluFNC3pP4LCd/QwiY9lVQfq5GtuARmzSeF0Jd7UurQ8l2REWIbrIbeZbRxfq2AzIU4TcqEW6utQrdXh0qEt2AuwAs7bbifZBusYqjz0akr8n+xew0wQwCLvXmD8sYI/Ad98WF7ftX6YBmpySF5xl5/GiR9wNY9KaX93gmaUWiIEzyt1YJ6L6uV+SmaSfNGFFLsvwSEYf6P9SXOQTwwYibKqss4pvOqHobQ8UYTny8vfLg+EszvWqqb8L1vgVsgIQTlJPGr6ZGezhDhVdNM7mU4ZgmkTSCN8jYYRSNL88cyyX+klUZN3wZSYHKlLIt2Fc6QM29EvKuZ5y09HByzNArqqJE3eFs2DcrVJHTj5jT6/TzK7SOgtaX0+sFXZzss7L2rGR69PvpteWbqAvs50NaSvE5cRX9Jv422APgbbmj8arNn2z40gukvV9Z0lUiptfCwD5tK03NKuwat3F7V6Wg47uW2HgX69dzTfOK8XTj39l6l0fi8nCRQB++z3+UBs9QswivDxMuBANIZdJIshiKTaAo3hGSyB0F5mBfGisCOhuQrTzpr5Til0S3pTH3KmSVLSSsDaVo/LhrhXbrPCrkioiF/tUQ8O/YCX19uCKn8pBOcidKxMl+jCEqRVKqevGSeP5l9yrDbcRQQznyPbXd8bKvJhVhZJMn7Nmhvp0SJgGysGgjqvyOoe8jOLVx09N2I4vvre0y1V3l12DJfOS05kV5XiIA23AWxO+EiemgiGGyLbx9j5bxZMJb/fl3hhYR7/sIa0lDJWB0JXNenF+5F6EJmbUMEw2SGvJ4GFkEd04bPUZf8zQ/lDqn49DyBmhpvsEvJfRz5sYveaCwuTLSisLqwaE8lC2fSWkLsXyEEZcGIhnecJATTHNl5BVCpxG7R2MFN1fp8WZBa30JvtJ6QyZwf/DDCcco/+gBZMZ2sntoOWpLJcsbAxnzfnoUhn2qBvmYfCZodBQTv6s+8GLgE365d/68oJXhZwuJN68z4CKrVV3ag630TrMzEj7HDFYzP6H9BdlDd8f4xPbtes79XgZp14cneDujFJnXPLBYJMRrBQETquill4M3yPbyZcoNfgtj2XCywv9qs/l+l/ahba+DhEx0/TIuq6YfRz95HK/RVTsykwV72Wvyvvw7b/48/uv7D5E2hb5j2MtKIcv1qMDVcjtN90Obv5Pzp78tK1FFV4Y25ej9+68OCcxedKtPqOmuVvj+ei7klO5STEb792gJmgYrKAtnI4ZiU6ZBuOk7Daf7v/qFu2ilkQMwTE/4xcdQzB1zJKOc6kyCxjHYoaCVE0etonfi43WEikwBLLLEh5ivSRs+y8zRF/ForDa9WS86QlaztVD38lgSZ2SO5kZWSEDPDlVCgWcTkJVUQaPBYLPv73+1J5UDjjJi82VFbAttoQcxQE0kRMTqAeON+MYlq5CBvpya7/xgo35Qp8Gxx1U/NXttBrRtfWdeXoi+RZ9Wj/uyrp7hZib4umwa6ofLgsD2u0B17fBr7n0gpmbyC0N4ty5HI9zk53cUODnj8/z6yQ+4u58zg8ugMut/narKNOA81yJkbXmMyZOC67K6GWda/xpWhGRc3auc3JniYK4OJ1uDpCC9tam06O4cI5e3v/5TLSCkp+rO4L4cDPeeQK/BeDYpJP5r4T9guAS7pGM8zAyIT2Cqf4OCQeBILhVl5mig18m3PUpdvScvAe92JtaOPfBp035R8uvndcvMdnAOe6IC29TQ8Ia0rXJqTwLg4duUNGYJZerkPlfjFIsODhR0vt6x6gES0bKav8cwyrueGwXIT1NTyUIizsSgBQpWfhEFwREe8f0tN+h7NSzKUv9FwkfMU7NMoaTsvFVj5V93mEjwvG1NWYJEjC07UEcW5/2u+TOJXxVeEH3FglFJGlnTj/Pvijk0TU2PLey/CV+ckhJaAX1tN8CgwgjKGdLKEIhvm7XLqKLSZWZKK3nQoOTIdeL9NMCt2tou37oNBVzgPjzrUL4G6jmJyiJL8QxY48J01UUQhU99qdDqSfWX05KffD79av0GabcxUlDj31rI6btR/GFvfoWMSn4CHgJ3XzZO0B3CHgYi8lAV7YAn06hWVHRU1hJuAih7PLTsmXlsSuC+O8SRUKKC/bnV0W01O5Y/L4wbb8D6Cy9BNod8TtrhOTYy4sa4ZNFFj+r9sGwhruyECckwH7c8DUSsBWPm5td02KNvvvo3t9/lDhPPsOgH3nhK8b5Qe5IhajxQqVLxWlbquXsFd5MiRKIJGlDdFsSaQIQPY4J+d/epz2Fh2BHQsWkCUzHKxTca9KWUYGlxtO++xMHTTD+L22H58MO4d7COcfKgqBXtQf83pfAsFCc0f2EO+yFuw8gtflT3whsqo7BfuGRfXFU19yXfZgs60hpR6L/VUGT69ULIibMrqmwTJWB/kqsacYh97QLSFoB0vkJrb6HjlXo+DGuMe1KVfN6B0+zyltdUPNKSaitTV6apx/lA48njhUQu9e6UXyKri7W28d67wbbjz5DwNr8Z/Q0mlDYKAVPS76HbshQfx+lf+dZ5D6SepZ8l4CvGyqSgy1Ogh5nJgAuOz0+E4tgWh5Z3JR8UTr6+4ogyvBFKlwJOqZSGi8iK4ceQzn/4BaD8stFNLyZ0zrYGm9ao7ZDOtP0vYmWzm6SMCrvbjUrno2oPoaRCbmGWxcZgnShipBCkh/JGC0e4/TvXSm8OCX/nfF1Jgl2KWE40POUNGO9r1P9QjahqW8wYbfD2/cA0rayQyroA2WvqHAYeFbQkTW3HwgBqtFqgkHA1pjf4aJ17XYfXDBN/wcQgMNJ8UiqqODzotY4WwGJlBLGtXe/PyhjvcEsGKSV/ch4ZJRkCI41QumLMusE/dSZfFdIH2EvFP/Cn+plCY72QNUasGK+hfgDO/T6FsICB5Wrv+pYiUf1iC5D/RpCRA9ctd6krpeA64bEDFomDAnUbc23OlERlWMTIdw+Dsi+lKxqmpIZQoEz8zrCbZ5tEcln1tloejFcvwZu7VPuAKqQWVBHqk5gpOVvq9pMQS6T3sUGUvy7WIscTTIOB6GAlAlIGoWV/44d/Fz80FLbRKKXQa4qCpLSAAId0zD/tr25sGu4Giev4xipJtTEhs++GtaNzCM9rHTiimM7foa7BSLyKCKk8iXghaxoq8HNgcXpU/r0fgB2SA15Kp9t1jIyXAru/QM2JDhxLbNOYBgedFafA83n2moj9Wmud9HVzAfulG3MoGpEg7/OxGCfsIWo6E5BXj8TBsJn559drIiufmr/aG63kgiGMRG90hC7tPgJHl2HpA8jngdNV4OGmVwsOTqNhssu4uRxb4nogjx17fRxIHWyIEFR1PCSJF5Gb/TSLyxK24PLaUIdiNm6DQo+BcDeqWXgiaQNRvhsvtOEKpPb7QJg1x/Gi0vbYeAS0LGORUkIl28E820NMIQ+eTrVkoX2hOjArN/ZpAYrjw1sRRQDRdaamGDDPE76RRu+jLjnu/aRLezyynectJYXukzEM71bitDN1SLuxNjRlVHHo1SxEfMum6plxOE/NjGY00BFCxiBi1i7mciP5uH26CyhlpNVpNmLa0B3uuLMWTplrYXkmCXeMR9xClRzp1yTt+ZL38XHtTMS7PWM9DV4Vs1kIwvW2m3WFHr0Dbu54pwD7uf16ohkUvRkEmXcWI0DfCr3ojFK9aVgEse/LbIdzfES3UQTKXtttJa5tV2aZN0Av3KvHO8bCaYh4iMliqWyOZoRhZqAUICBqZ1TiofxB3Oz6WBZrVT81SU+eB4X6JKdP5zPLNpKkWsqYRr/FUtXGIsAFWR5AKEBrrRsk2zMn92BUdonLvCqDsO+rNRqy8HPsWLeNDKfcsYjODVfwfWt5AtDWPITOzLgcT/cVLa7xIXG11VobB6+3yOb2Stc/cQpMXhbXzVbXOu10stJ75KuLBeRcaVB1tMCzaK4JDt9CbH6c5mOOC8pvR5i26LpMd3DSh6xpx2RvPfA5eN4ctZs3IJOt/qm+R3Qqd7nbTkgeoCOcOA4RBxIkY8yHGtFYVB3MaUZhoMPYbK4UzjEvGB7VE+K2H+aIidGuJtgGupm+QRAFoiIU2baS/zhqskuU2XIx/j1Vk5jz3KIkodQvBhJO5PJV51ntlZ28ANWsco6Bx9L0RdyYun41S/FH2/cvBrfjGML0OzodwJGcROyYIePJZGRr9YipMVfNsuVIiUESewLN8C8wAa5FDAyvtP+1C2EirVnaU6pw1sAqGTsFdROQQaLjEWcyrd3jURQYdBFea3nwEXScddotzEqEDf749sS6F54oiC8yYUWDPhxprnBKEIJA0FdgR1xh8+IJ6KOhopAKIr4fbvX4HgLlSOdVZ5VzoRG9LcFHxhe8It7tPBHzXScfFs9PFWuaZM1boIUCcO1DoEFgozr8j82I68/chqw5ZbEkfalhN6bLBk4ruUyR4s8j8cYfuCG3NfSuM6ehaeb+KDrCeuXR4jDiO9nA+2mPHdENO2ui+Ny+ZKRHej1Na3I+m1k7oX5/5kZJaGoPkbDLvqd74npv4Gxm2/ajBB2ShZAQJUn7HtdwbewmH3dmNpNW0nUmHGYR9DQYwM/e9rD+m41xsCSeRa/MMFIMQIEavKSbmdC0aJ9cnH1UrNzT57+yQfVeMl3Dh0Z9QQeJOf9UQ4BRFwD9oSfyUjEWTwT0Lze8us4mhVbOhV123hWYbsYqM3O2EWoU5Of+MBZyrmCi8D+FcBEmTBnSUkd7kU0PkZpeA9mum9jWnDdOwGwtxd6D0lsQKzO3UsXY1EKEQEGc9T6riy0tMA/mIcXZy3ZybuO9WghNrCtv0VCJbXvFQvb81QtyvyXLY7kUentdVZzjbXNACJ1z8l6xNvZItvkJWT4CvSeQOs+NOPmVqIEzDuxDRUXdv6Mw0wVQUpssYEVjjLvyycsVlQVfboSomBuVYK2nhBTXgUZvyuGR7KONzbXYpYKB6jmi4ikPoNOHl8VH3l0/iYSvWhh/zbSvLlWtCuQQndrqO3h+nuLqh7AMj33KTayxJIIzdQB+ZBK+MToGU+qQikPi2VI0I26pGT2Th9ZkcJ0Rn9raQmNI1jZFThQAuxDJcpK+tPBleH2nSxCiOXpa2SNUaFOGsrzp/xiP3I5rfazi8fg3CbogVgP8R4mgkPkYDulPzZmLFLqtzrMSAlgVfV0y5iLOc7y2ja998v/9DBZXP0b2XTs+xOZBx0G15RXenM65Bx9rEn5Wv54GVj+X1Wc3+tUNSZ8oycEF/NH58UX5un4fgTE0VnhWmZGwDpbsTd91tq5E67XHwNJi+2ntaG++uaMmFi86EswXkZNDarMv+lqVNC2Dtruuj9gG7or6+9vcygiKl8MYj3Q953VI+O04ds4Gkd4tvmlog6OAId6o4zZOIsnnBNinQsYBfaoWKakNWVKG0+f9ZYlOiN2mN9rIorIOUwlOfeFE6GL8StAMeQR9Fyk/OrTZbSiJKweQ0XTb2whiynucJ50jViV9KGumYUpld7ag5NnImHkOVz2GgwHZlEWpPMrmTvNhx6pTMK/KAa1v6vQWAXD/AIM/zCo4qxAb0Kk5pC0cHY4/antFRuWDnYXW9LCCXL9zj4qOb4WBInOkBXeLrQnumcZvNMqqOfTdD7pROnAncttbJ0IV+2nKGxL1nDDjTGlAFp2uMV5UtMqxZIRSWz450aMdh+Y1LvY4LY3ylWfgHhyUNTeRSGyJdVAYDJPB8KCLrgXqP0+Lxrt1vGw/pKaNMNLgUOgcbZgkgWR9S048VnrWY0ued1v/MQoMuB6e2OjimK0ZKvb/AngtfdIDuyYwG6iafA6CsH2m7WDkD4hMPHkNYNX71xAOfbhnxhTgdNtUWK2DeHrpAR1giId92HEAgJxzDMpq+oNQnXo72jXPD/gz9poZp51ecSURzhuVS7NqxJKVqESuDmGrzc5599p+exkeSME9IEpT1DQWdJUgjWKhT69UNpzc8YWOjiqBnMHThZdRlRHJD1VXf5mvqMeQfiDSB0LQDbUTOPgeKMQdHQ3Gx6SC5Z6yZfyo2w86KoVKsmU/4j7FDOr1iZHhz+2EByLq5Z2c3DeLk/bTd6jYiLSQocnokZTo0U0ARxGK/Z3p9qOn2RdWBcpKeXu2C1oEZfQZuQEV3iO7ahtQto0OS2ZDfxCVEwNT9CkRbYFgQtuL+TCGo0pH4ztWwDqZ0j5ThGuM+AkDYHC+KszEAu8M/svJnX7WVNeZCSz2zyN//l1jZyWg0FExtwmxhrYdJtX/U/MThIdOiZ77HvY4dmVpH+j99l689idO0WYP6vusvuj7k4+FL4162JJL1++mKlD91Asvs0X1HS9sEldCgqQby2NKf2TgHYu3KOg/o7thtP/kn7YC5byzhGM+ydtDpMLjnrZ0ziTRdxR0EkXFADNjkbr5UKlUeUf4xQAp6MN4JCAePtout/v1V4LhIVQyCGWTAqjo/NzLj9513Kh7NY7FKBXOiZPRFKkfQnVfV6sy5vSNorJqw+85yk/cxN4d9YEotvN/M9Ouk+Sl+XlINv18lwVwk/9u7orSYhytW+KUI4GKdDUULBAp4ugrt2CX8g+NOxEpEhbQM3NsY12lHjENkTb/ZvJ45qrAjbVnieHcHbhqbbAjCYtKvT94gegMo4CN+/7NJb8uweKGxo9biq1wG1bLrXuQUH0YGJCmhjOU+wib9bkXgIPK0zRxD+0Sy9mSzz8hhkBoVDTkxzt7T0BNWG9EwmJsPDjfch/4n8KDEFMO/jRkiVA0rJpQEcZDPMtA5SaYmlJeqCvO0icmp0iSVgHjV7vWFi2KmTZkdsjVlXiM1gc150+Tg9DaOVBiyT6Usz/4j4RQ4HWfjJkjhgSDMuob96qRDI302q4c4UWbk8tZekZamm2Jq5RIxCMlSgQOmm6YE+CWV/Dvlbuy2zI2qvCtE48HiyMctYN+2VY6lLGijfJHT5m6n/NLNgZbbbeu95MvWMPl3ygINcuyw2ZO/fAgLNla4wvVGU3Rgv2FA9RhW+pLyBmFsQZYOMkiqEP4xYOz+bhth6LPyAAn/M85zt4HXS3zRPb0hYdZKyvy2GnYh9dAtNJi7nZWyUqnmNy8DUfmj/CQMuMzGIqeXkXmjTdcx2zg3FcTGjzYTjavsYkOZsRUEqyZnAYtOq5swnoh57QgaaILEEYMY0qnROJaDmqPqgFJJ83rq6wIgCkWOEmtIv1mQh2dqU7+y9gq8WigL9wiTlT97UvWdqYQXL6zsPYfteppVZowklzPYVq2IB+R5QyrUJIcCv9RI0AWTsWNUzal01IjvToxjPfo3HlHegZ/jfFv+XFkLkPt0n1j/Xm1kTM4p0H2zGfVAOpkJx+R4rYrchDhU3cimGmSlaNcX6UkUC78ndav+j6+2JKqRpSoniSqCPKhT6nffuhDyNEkDcX2E+1YEf0WcILi6cKzeAIdJz0AybwJvTTpV1Gn856V1XPKZUY+RRRD2+FwAjMn7iscNzlvg4rTDriXmUIQ1mrfzZGTM1nsCEMoWibSoUvnebtglhbvlGLbRv6hFaYL/IaZtjclVlgLzZqGyIU+0uuBR5wp3eJHUApj4Fi/dalqsqAOaK5CLmMS5U5cDa4hCOuTI4nahTY8gISb8SxFoYga4xXIJZ7xTspzjyzCsY1rou12ycAsxavYdy0Sz/+jwRRBKR9G+71/JLrrFJ+PK8xln36Cnx7jgA568jDAzR7dC2GabwcZ7b3xjk/LGTgq4bUZiXOkNVAy0t8xEJ3SmyacHttkDsYPiunFymH6y8i0uBA0SaVXtmbWDoVV2lEJDJDNF4bo0NG8CCR2O7o1wa1iR11MOMCB3F6UGlThqAUUBJ0Ml0ypxMms5Pu+91D0KaLvoMC5wxSOSzrbKyW5J3RgooIDpaJgZrWziI1H2MSL7fBJe7HF5XB2zyuQpXNeMocHb+Ufgl3ikjv/oDPUDD9qwEp9if6uxYMIbL/HZuZ/3pPA1IfugA9Am+wwAgHZybH1fQdHL9pOzXR61dsS3PvrYPvHzqSkb/voP+Y487ugSIVvI1aSf/60JUr2ReLGb6NW2jHRaZBMyclm8H5WSKdHQl5g/pb6/wqKk/5W2I/HWvs9HTe7IrW9ltsrDivBxIxw08HdwuxvbcRv7Nc3egEP9HQLBbTZcC37xQ39/pZzTKvIoP68Q02pNmiZRp/IZZz5W2VNKwxCRwJlqUr3/h+dfFAYCB+brbjhLPT9VwgJcJekd5/2+GoISDJCFeUENtol/dlDo7Dh7T3v0jamuK55pUa5tHR1meJZAp4sZmQ5A62TZx8bWzCPhX769QBUM6h5KWmI3A2muggRDlwbrpZ0p8pU68NNFqSI2Y/thgVSrJagHqBE1P/XRLbe5USpN2yjORg7sN31xaH9O092kNG1I/2HbtJfAFVULLPt82f3GkVURshXCGd6resjEJoISPzzK9Nb6IyBDvYKOQtzqEpcj3n8xVoWfyrF4LwJQ4C9rB6HxNm8+7R2gb/EwRKmm06wQiIWwXkuDLYTlS6daHFMPKIW28GEPX/GlsP6Kvgxt13gJr3LbbbWgl6wva+BXKZF7ZFsLjACWAAjsInh8gcTBlb72qMMzuqz1PDa9r+DT5x8JlxzDQIUdPbnTZUW8pAWPYKOpNC6o6hjF3cHjRDhTGDjpjSu6cOHMAKmSLlLFu0ds0oMzeVybtCGDUu8thLup6i1APHUgbrK6VxioiJaaS/Sj18iuJwGTgCQ8HSLUVNfeNs9bdILo8W+yZJi9+fYwzEgXLBandwNoui+TmXvdxQJuOAK00zFt0ysvP4sqSosthQiunggYI/1lb4ZzHSE6RsOwfXS9/yBGZ18XS/rXdpT2FDg3C91xsjA+1y8yZTpgiC/keapDHUQWJew3xxFO73Q910IPMvmb7YrHA2Q/PLFJYKjEP/VOA9ggkMeuO9JMthk8BkSEDUm/uOArbBmriTTrATk7X4kHcBSuiAHzzQZhoxLQYntrZjxmJ6AdyQM0rqSUpB99NDlmRZvP9eIWnoXOMlO7oB9mgsYK7kF2DZN0N8CI7qY7OleaMCKhuSqLevnL/6+j6WRlWic2XEwSL52NQ7cjnhH+YfOK9fbUICUxgWXSdpypPiw5m4LbdsT21mtidO1obLmZUAb54IHA5fOmBDaCEleFNQVLNBcWN5fdqo3FrVdJKPNxS9imDqFxU5Nb3ndP16N5WYGiKW3s4zrNMfEHVrB4I3uVdtXsJksjn2QohS7su7KVWM794JJM511RYTsgaVSsWD0XZRpHhmAa4V3iI2Rf+T06a1yyAzoe4w9yydsRTgWdVzPzVhApTP15LYO66AWfk7gccJYoPxWSE0yH86LDH3VsyxjSDFxZukGwcXeZLjEKUvmgK/0rHT61s9SL0hCjC8GJ0OwMPgwx2Kl9TZFYgwjW3AkWkrjpi27EpLywLxppyNbL1UVIrUmg7D26cI/GodVy3NYa/UTRJnEKCI8MefuBuMsNPvGIhW3NvsqrB3mykJ1nLwy+v6C4uq0/7OV0JV3dElRuV9o+JdAL7QG+Esap6391zBSf3fb1GdH32rHLq1oIH4bcwm8W8Z2VSPl9ZpObcbx1owMiGmYt2MILwzTFmKXY/CMfUogaEw1TJRry+DOecSkD73/CsU/+kXqbRYp0gww0ru360p1954bm3NTfTv4Sm6tP27wHTP+CNvosJeVPip4D/8hASIucisDGlIQ+wHRpM/9DnTtDrEce4T9zGEoitH2NFrQEusN5/vfKC/LMe7Ulg18FqEG3CN3GlV9aGShNrVh4DVqfTg89CWH4XVG+zudExuozJ7PWlZinXCu/ze5elL9DWhXC3CKuquZaXQR4lssyal8y3hIYhHQR52jvkc4hNC+XASLom9y5I7FYdsUnTtrqJVN0Zs11h9D/sqxsIYqaquwlFeCXfPISanqyePAx5t17EDx1AJbB7ai+is+T1yuQJt21KCAFZX2wlwlgECqklwzJEESRYF+ek/46odkpcu5Z0PGBWDTkMXdPyI2eGUMCvr+it0a69wj/MzKQ4JD2245BsEpHE7U25XpXCJ7u3f0ES5j4Du+HX6pLPKZhBfMQ3SkOD/5NtrxBDb35n5zhbjQU4ULFVswFyZ9aZwh+bjuiCAVdIYHpcE17qVggfG0DYxFXSP6s4G/ecb+pdjMsUCMPImoJ2IrNXIsU1Flf+DtfosXqOYCzVK0dDNQzajdj8NIrbneOmEdj/k2SRRcWlNeQvFBXDtEfCotbJwI9H0Sh/7GFHQnRBd+p5faxXIAT+NzFLKQKf8E26d7AG+D89W2QMuByt1UGZrZmijFfVl4L13KAwtaRe8lJXzjsFSpfatifRy4sbbxG/5FoZZTEjJTXkb850tUD13RosAJX6fFmZayCa5xWda3aQvvlqngTBJY9Pi32wUgvxqpMtB5XeoaBa0jrIxh7AQQtTNgmQ2iHtRViXlcJfFXJ0naNkPzs8bWKvO79ib5ORdYfjJE8LSGKfbMSt3EbwNaWMwqHpIMAiwrgXe+/4A0E80+IAkWLb+TONtqo5NeJdSestJ1c5iF6NNZ/6EOKjh+Ae08LdxsR1WtRIbaDvW9cGUfFV8NubQa1GdpD5b3PU9mgnb2BoNqtxTR7D3uE+ec/nftMN98JbKs1Xkw0bApnZU094JuWlhYethlX6k+9er1jLCFWkd6g75Hu7SXTpJiWe+1SqtP+YV8kFVy/qseZz4ydl2Ey42MvFgT3MHZKh+drpa8bdN7rcGAoUullXGDDuk7+g5CF6YWloUm5oe9Ew69PLns2mRZMMo4v9LXqabbj2Nxy3kuE6Ga5PZBGV7028A//WCKCht5bSLEcQpvtRNcom9/gVbQETglB7Lxfqf+eVw8bbZ5ntxFoGiGkH+jf0IJIdtYfm/X7bAvdWBp0895GyGy4vezjFLLZtfpkQ38dovDxdXIhp3l/0moObIKflxnDHpRAs+Y2jR8lbhMbo1iXtvXzsDxTV0/nXSSZzd7dvQhdYuJ2oqvxcsIQ8N8H1YJZw28SIOHMhANbZbwCTGJgx8d8Zzehf/ODt9OwF+QoOEYbNXVufwlP0fgLxV5xKbLwoKA0cfPkiNeTKkIYkHQy3NZdfDZj8dDgmiY0YLQo3LWN7SiOBj2YJVp3nKaP5XVrx6ct1qcZg/jqh6+ZOa6AX+nq5PkvJhhqc0TW0jYgpYSV/t7CTxHoTc4E+MKpLu3u1Eiujv+4r1iZ5a2JaSMxEGtHWGfC7RaiVWTTxfLwg/A4K6guE7sbniRNnteg4Dp0ahEuRFdQP+werUg0gsPhWO/DJ7yeyFs8N0hS5OsVqm87y+QFKieob5lrmSCIrHc8rR3unp7vC5TFY1AtSM5GIlHhfKHqtPyZHbqMnJRVye+zntjcwTradnwfPzrnAco/2C9TQ8rp2V0f9CvRni+txFG4aOKjbJuVRL0Ogg+D2AQqS+CTUulcXAp59ziGh1v8OJCT4VK9qhJO3ppdMur4LMUNqx1lj8P7+LVF8+ys4TZzhsHt+XYWEWatIn9M4VeNmCg4LYu/zJiuEJT2e+qBwwf4HbbHHhOXvE0x0bVPTsyyDW9q4GZPLnCIG37bCGYSU7YssRzg4L0TQVQ==
Variant 4
DifficultyLevel
606
Question
A parallelogram is drawn below.
What is the size of ∠QRS?
Worked Solution
Since diagonally opposite angles are equal:
|
|
∴ ∠QRS |
= 21(360−(2×105)) |
|
= 21×150 |
|
= 75° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A parallelogram is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX9-TLE-39-v3_4.svg 175 indent2 vpad
What is the size of $\angle$$QRS$? |
workedSolution | sm_nogap Since diagonally opposite angles are equal:
|||
|-|-|
|$\therefore$ $\angle$$QRS$|= $\dfrac{1}{2} (360 - (2 \times 105))$|
||= $\dfrac{1}{2} \times 150$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18ijGLo3ZXAp1Mmtw5/Z1mOsm2FxNQIuV03Uz72KBH4p1couBOt4egWp/ZJz0koUR+nP2laECPeqENoDpFU4euQB1k37Xp438vd5OzkCUMLF0P8ryHIzoEIkiUQoC4Iwh6ApxjFwTaU41Y4C5gT6fD8RLEbZJGzkN2JMDdBts+yEpl8OeqO8ZLQdUUakjV0B+VCMgte/aLwh59cqSLOISoJvjPXfQmglG2moDikRWRrXUqlCK+B5Z4Pu4+997qrtkB7Lm1QzooeZ6CwUCSoewNjgYMkvrVgBR+li0xh+yJlOrR+9zUxWZSO+4+C+cUHkdgSO9dGORQ15ATl3q67puNO8yveqY79986a6wHH9SWR5iRx1vqtWkdZigQPy5tbpEyv2sBov8MbYGoo05briDy9+TK2uDDPQFa8dwDb8o7PSMcT0Ufi37VoiWFIvLt1/Xi9O9MgaqxlBHn2Pk5Rhyxp6KTFuvpzF8e0harOy8Bh7J3GmuI5vguZF/7lw0eFvHKalIWubcLrserZa98JtDnPYJD/6OfFriLlUUC2bQCPpQq/ZcBNmPlQQBy4TVUSUI+cHu80SiX1v5C4weMm9ncXU1Gh0VJnfhwLNAKvdElpSMx8lU9moLqtTHXPY1mXxabhg1E5sg9sZJzZkr9t0w0N3REPj3Y2u3Kl2E3Ayy9HkC3PSAdGBpATO0i/LG6RZcKd5nrGjKA+my2YW37jqkmKFBpVe/piUN27ILWGv9H/V7IlHpaaEZWPWXUE+fJEKHao1FaJgiqx/cxUpqo9qpJQw1bne3nvQK1DaECcQwGgE6O2LxB8k7rYVEXpZJwJgdie/qtoJ2kXGYfulN2ZjFKnkk9tBve+dZcjtFmbKrW6eDssrb1j3A75gCXxcoWkF5jqa8LVCI23l99AF2OGaw41DwbzldXY/JZBvU0FEQm95Qma7hKGjRVvillyNRrc/ql85g0RQD4Mv/yi4PEakuV6enqT6gWlxSzQ9Ez1uGNkCrgRUnlDSx0xiKdY+CqwlGGmuzBvGsRYHx9cFCa7NRA9G611W3jzm/3DAW8XVkcnsJq4Yw2+4uVlKc4z36yFgzC6DAxLqCgbk6zCcdDLfbV0ibKTkJIG2OXfj0D4wHabUI5UMazrJO67U+NAoMITKevuoEtXpv9DeiVlsl2yxqWCFRp55YWv+GcCu57Yw1OSsXI/4QZkJClI+VC3BiW5cXqvlC3Kw5xYz49EiX7YEVaW5BB2NCXEOY0Qy9R7DlJRH+4XzGn0lzzMyh94OEEUb2cjvS63p7QpcqyTtJCqYwzf6+ksD/j6HEvAk39zWpdvZxFG12WnTVohQHVlqLX55emzu0vxb6/AwDYcnUpTjJMLQpbJ10ZvWz7loh3nehQw6mS4/HmSYmrtZW+O6sp1OGPIywxuelVLSNcAx0puUt3brEW2Q3/F9SvZsIQ/16wAJAAUTpnavgjdhTeWsEtf17TBlgY1oOUbtsqH60C4G+Qfnkx4lbL0aEIIeFt6kUpKRa+T3otQ02zIzQg9jdrUVGt5WsU329ntB8+eXt/TUtxz4ABBRd2MTP0HWgD3a1eeCGRVG8UdsoTG3qIyjbl4SH95lo/3/FngIRjD9muP0WPYmydrCmJXQn+dnpNoLCh7Edp+gh7t9BT/hHCZz+0g89BdNdUAk1RAQCMKMc7S9+PoYLTsOWGaNreheiXpyuE1v1Oh8UUwApEOZXCgY0edSdv3h8z0uw4Ffyq9yF76t0IgbnmVntJ9Jzj+miHP6q4ABKx4CWhnPa3jdOXngLX1QKXCWuhCk9fextteHM6JjqrNozIUI/9Yw/PQNkos15Ab5kUMOMYLARZuPIZ5h8H4mpn3PkekgYYMv/ja7zvnyXxvipFrWX34c7GMjclFyQn1GPWtimkq9+W1XbLzGPfxr4YZ7CcaHhjkUbMw2dthENdmsC66uMsItZv8WuGxOPy+K8qY3/x8l6Fgh/HV7hv3TCBGWEwPbG3j1L7F67+qmhYuZeg56QT0a7vTXPORAPBf3CkLm1ACTYXU20Itj1c9JoZ1OQl3ZAqmA52p4zho8K856ZAEGkp5nFk3ogwcfhUXEKzaAZp3pguzF4KmlKWPEoNRL8nXmGIPJ5aS+o2PK67g6slX6R7EWQG3H+XRcSJcvGXDhS+H7+GMsJezZtc68AqA/Pd7sUUZAutOVQLeknxNwZIYS0v3vyOGpu334UGJowgh8eedJ/HkbBxssQR2LMTzYOgp+EBNx+AHIQs5etglUaaeclNgtuYypbrtxL4W+oE8B+YkQkA/IYNfETcAfYBuDj6Sm0oXgPckMgPItHfB9pvA7scXA97FW2ATRrpTo1M0l+PMnVcDvxv/Bbu2c+faL42NNK2Tzd8kE3If2FClsw3WtltqJEOIeYcWznIGjmSmggPQJGb6kSvlNX0dbNAz3p0/l0rWxTtNkA3VtfsR7V36KE5zepXcXEHjNbjpFEFwP9toSVbfEQJM8a8+1yi3IfkBllXUCGl6cVCkGhf9NZouA5p7xNbD6ECYFucqsp1N6TOpEQ2fmKLErEZfeh2PuQloX0DJQz4Wfxt4tqPyxUv2SmeL7Zs8KWSDRhKiJxifXS0bB8PXzM1CX3l0LFAOiC9kqw6iUfSxvceAj/Z6PQ/hkWAFRJsjmNglk+ZLMZh064soCbZzMya6UFJC7+BJp702cOz6kfrJoUKiR1kq24SN34vTZJOpaEVvgbfqGf1A0pcyKSHOCBunqXjAba5WH24eP/AfTbP5fTkJZf8VMmAEalCjUlEu60MnPYlR8lKcdFHecAYTNvZCFH9ngLVQfafjy/+agrqRP1ywQRqsCukrk0hqxP4+7Z04hQGFZpkYgZxIhigm6k3JHIkv+nVhduj/YrubvUkgQE0Ozqti7SMqk5Pebo/YEoOKVnK1s9ds1HY+bx/aBgFQehWJBYVUqebhzLjuVlTRPtKeSlCqLqf7/oZG764331kQLPmU4sOQfIwsu3Es/WRLCuhQSklrZfTco0CAwJL1XRu3SsD8lWSWVPWnyfgFEF0MruP68t0SCbGY7BiNvpBYuYjBr/wRjid/VK2LqGH5P+vvvjau7eLUhULZTrPZEj24WyzlMZYdQhj2i09UILgw6yx0+cTklGALZVeIQOk/2Hd7dVU87/xcsVKM0W2uZFjNHQnh0fMsmeR9NVuFV6ozAiXeCtRdEAyiI3gaKHsDWPoArnk25uWqLBxkn/9GaV00OIzfS1QEuoYbZPzwSk/JBS5mLyWweSeUNe7DVnpX7i2B/kfLZ8sWDufe7WvN2KjjvTCVanqNk2oxKmnnNjA+em7qHNsDddK2hLWWH7wjJz3Cj00Zu9TdDpbF10ZYS8EZA4lwMSXdJZuSPS9JLwhEp69CIY4xx8pZ3rz++Ysy4lNxB0WIXlOcKs3nDaeKt2M/mV1lUYa/y+H27YRu282xQZWSj+vUnSews2v6rP+4t/EQe2pcJCHaAyg6lPGdtK5VMHNTWES7SgnINlhwiGIF+9EJElsWlRYlR1TbY4pqs2X1zLwKtXxUWsHZr3FqEKL/OQPBrfJLhY1nnkoVimBHL2ypIxfmQHgIo9Iivzab6bByBvIDsQtAXRvDhFs/sMmAWKAn1mkWkfyMMo+jvR9GykQSPJ03eeq2ULFn+uAQ0O8KXX2DEHXLZMGfP7wi4xqBouM55S90zxOR6B6GjVwwHVVCpdptsPMcw0iG0RJKhlMYY1Rq7LnIDmpNNqME8Pq/gXnBymfxFI7/9Zwp9sBcsuQc1dBhxLztLewjq6K+MPf0JV/RRSPFY6+yK+zXQ1uR5pCmzC/dbS8j9rLrv8AROLmarH4cl4ZuAfDAhCIZdOWyHiAiYH8uK/WnWlf5gQQmGb+yht4aLCYh/zK5S+y2I+Bqz67RGQBOUXy+/HL0sliTb8xqXDeBH5naR/l9cvueNT+1uW3MQpQKQs4GefTOVqWBHaTWHvD9NxbBhn/e9rPq3+y86xMwMOpBarBVhIfHHlZzgk7QV/PgUKXj2XS4Ggp6frk8QQKfJch0eOs7Aaoc52vQwlS8GbJORZhS50aigSNITM8IvDORFsjFPVY10zsTcQUhTGPlbIFaUXjF2dn9Hqgv0PaU8dqeVbh+WJdeW3KBRTKrxe7uqwmUEi2wevk1cJVd0oG7CE5Ov5riZUTtX3CQLAwD0vGSx09V1uQcbqML3oWFLRBQdI/Zv1yF/rxKfXpKTBYcBOA8jO4a0ZGBqzKqVlUDsBIp80JFd0691oG/SdXqIRWh0viKqZaUbwEXa4MSIvsZ+YRc1tuqrMQa7pzLgI3jWTNtCNFEWJZz79UC2zo8zbCtFZRUlgByhkGI0eXNvWpRt+kC2KuIiEA77NNyqAc7+eUkNaPHxw7WiA10Wo1B6L/Q+HL+YEzdTvVSoFPlIpHlIr5RCflTchc+40LpINKLfG3KOFR5QuZn1eTQM2KJ9Qvze2/SYisXILYv0GxGZtmr6SOVH4Wm86WvbUZKRl6cI6HcaQMzbv5GbLBvIxPGU8HSuohRDpXeMv54X75hEv13y5/XV5MBKRY2e2nOOp6Cf3t25hNDW9HfYPrmxb77CJVSE5ha1jGeGXhpkaJlqFY7tvX8jJUIi+v8wyNO0WN34Pka5sKmJ02030m8SAo4uHZJoLXhNcjkNI3zfgvOWF8NTX3bOuRGATwk4gIiDBPj3uYsdn8xZp/4WEdYRITJUGspyDrm/aI5uxGcJPcS3x0S+gBKikZNkFaZCKG0fuux8LYLxVlawqa2I3Q5ZBezDZLs2HdmAa6+yzZdZReNmgO95e5+aFo3c0pnuY8Hg25qphUvBcxfAFn1wnWjwD+/4Z5qV8DzsTQJXGAkWTy4OHWuEFuc4d8eAfPb+HAhQlVWOMwLEJxuNVzLBq6JFrXaI+6dpnUCMkjX5flO+jHfka2Qg2a7hZkRX3et9UNAlNNK9PX3p6WAb4zNmNVgbmxsWC6Vcz6D2QV/QFHQHgNQ1MFReBbninfl4RNht2D5LJMVAdSLhDAhG5fZ3qQ1T7tkhzpKp0VhxVIUXacnTr6ALWZzTZsqRK3I60m939s5ulKg6UkalfeF9u0r4Ghk8tsbttpHeLHNiURNi/xrGH/vLHDu+oU6Stn1ZEr1CqoDhsFDmDxe3zeX4Mss5+91RpYmTMAfJT7GhrZbauw0OOi3Tx6+SGUBpQKLY1+/0FL3IwMwV3Y7OvfCAhkWmcSrAeVIAxFwd8bnHMZTOmB4v+V1nnmQ4XlQqPXkljNXGds7/rB8NSiFwbxrHNPedj8VlLlUuO8jacaCy1ZZd3ynuE0xQIPRdJaMhN7Edtw4L434e+eEv6jyr+VpXaoGaS7X6Y+mbUSNLZfhN133KcbNb9PIAWKvfzkl9xbWXifpKVTWsiI0DWTYOW+oMSRJVsh1M3lg7nMgylmoST/Jcg2cJVshFBEYJJlHEms8ERWe+g4+85rQxJuBNXqzxHQmxSd4Ig8wIGYuL2SCxo1mCUYyaSbIgfY7PyIpyZhuKNxqH8kbX1452MymNVJM/iw8bDq+Hwo/s4qrTvBY+e0aWh5G41KvC4zsfoS5KOWIY/u6F0WlYggJrKXX0i7xsZ8xB9KB1KI8RWc80jF0PQzCbxUdZoOvLBM/ww5k8uI9B3OIuu5xh7jQp/JweKYkQ2QdfjTok/U45K1ALbmhcX1NqvGSbtVYRliwXAp9slnqHKPi9Si5DQYNO7yVGlawSIDGSpTQ5W5wr5Z1i7/iOFQM8O62jbELLcak7QaoOX+TQ9e6TnrZMGVEcBexDDTPG2ZHhpUnfRdSkYvcchEzeLG127/tobsX9rLC0TKteN1Kh+AO3Xv//tOyIGhc8iqszwO1jk5CFMAkTGnv08H60jmZ2U0tzUqAhlYhUqcCtue/HIVLIWoTOPc/wHhVckjac231mf19VLqBLBwnHNmUgqyWTh4CZNYOri/xQcnA4rBph9OyMjxDCzh2oDxRN5/jqY+6sSKk+4/lcqBxt17q00KD9koWPFiLLOx1GhkCuYlt8GqNqlLiQj8JJpK1lXoP6ZhCaH1CTKAzBP5+pCNUR8x1Z+QT2oftxyU53ekE+CPxxeB7dZ29Px7eCuO5Dy/VOBZtRl/Tkb0jgWp/jAdgUkmwDvT51VuaOxZousGiwte/b7lSjTpwbUfREBhHEeUSEPlurivSwI+yin+p8NwV3a/Pi3CysPKOe4hZMtgyWjZi47IyTQ3dmqS9asjnh6is2aUxJwD52PhKrgzufZ2G+NYYJedIa9TgkOCL/uec1DaYrFvgGs/77fjP2BURJYobTAXj8UnorLlYvZRnAOympWfZrAh7XSO/dNG14uLxe9G4bFuYm/U+GuG5OgRKbghzzwwKBlyYZctflRfC2DCOXUBG5gBJyH1Vr5HTLt3TO4lk2bNMfF8jeVX+qKaFPrexDhapAXI0r8xrsYIRkG0fjlFEF5MoiHpFYsS/VxaAiVgdy/9R7BouRW31o3zkUOLibqQpzh7ZRrtGV1d6tqrhJbcTG7n/e6xuAbM+PQaF4m6uiLKavjTAvsNh8RZx+IDeeNepgqD/xHuw7sqaqIDpOpwfw89mWQMO1jCmPAUz4mOpGTii2xBaikat3mJjLiu7kkSkx9s/r52y13PpgqqzTpmYdwlKWYXnSUzGOIolmoiXVflRDec9X3xnkFt59H9aVKF3tRTHliG7KpjUyQgywxWf1mn/azoJsGiKXkveeFV2E+k2oB5d1iJe0s8AmEDgqTDBizMvwjfYAa2hgEJiAXRlGCvEFoJyew1rVFaRG6D0P/iGWKyoGkC2AOWF9glSJzgwCTV0xC5cvQ+4sUNvn5eeAKblXM6dOovT4pIyLkm7PSUgZiJJgdskJEfAj7K26GybfvZbX9/RM5ceu3ChTwCtOxc4ZmVFjQ+qfB1KO2pGUHlPxrf5BAsMZzHFsahbtxHWB++dwhcE1hH3cJG2OMUf5iS15I+whAAfAGWXNkR5lYaY5ykwdq5V86xHArCq+iQkVQRhCjo4m5QTX/x57M5qABTJTyozyZKrUWos5VqSw3jLbm2F51MmYfygkLaJhiWoLfskn7LDu2EviJghpXhoJ/SMm0EOqM6GbinRckCo8KMFw/Ta9VvubF0G8essO8fqdYzYX3lOcEqvXTnGA02MraOvdNJWbGO5eLYlmYpN5UOzIf/GYJf2VITFxSiZCqZfjLg4deI9ek/yeFVQJBHJJcMSL2Yl2t4sFWVpusB9u+sfvUyWW3LpA4UQUroLeT+5RXzPSoA+VOLsz1/3wOf84ADD9MWATBJBhXzmMVsvHffK/58d2QaMa6ZhHqYCVjfEeNtarnz1EhpP4MWX3pwvSNi0UDYTAJ0d6ZA03HsmSc2VCEw0WEFhhfzQWNYhzICGD+9ox8fxt8TEm8ZxhygavGda0hOKufljmbj+cF1nM6wxMMtLUJsul6KrUxLvMF0PNMIaGg/P5jhYNaBRyllRtCa/grSMP5a4NZEf9GP34k/0UFJBJEZPMaXUxIFQwCPNi47z8LoxRvb3hSfCvc8AeTHwWzbLzEoKcdbqMaiGw7Lo3sHitab8lTPXoBpoVsDgoyoH82xnhwvwjxi4POhfdQRRoTMMZAAVF7mkYmlbc+gxPvrI7B0Oee/W4UBQCzzPknARDa+1NBdPXINMH2zTeHfY/ziuxP+EGFNSZcs7zWjO/rnI82vbvJpoq7+lAxdi2rvjvZNnHH/MuJWcclEHVLazB8MKahnopfjhOtN3dgTQzuiZu8u923N8qKjzOV0H3s4Dnto4dowwNwcjG64viCjocXabVR3tb7q5n+0nS9cAkQMYmxXtZHPLFg+gAMxrKT1/sCETC0w7UOIOTjXv1Hec3Hv7tJAKJEbzEuWhtXB4PJA7orIFi1KfC/nFkiM9xJ+n7q1feqQqu2D/uiyPRC1o3tBj/7qvUpLiuK5vBb1zaN4aMhe8hFQCF1LrTBLWWV/wGmA+mIO9IZpMOEtJbDVk9aDi5sXr3N//iEnxuJo//pnjt0JDaOrzzGgcy1J7/lY1TA2xWuLxdMzEXiEz6DWuzg0A6qK0UKfUMds71PeYndZ9NcYik9dtST1UAk4LlTRMRRhljsaRBJ0wq+/pf1d43jSwknN2lqFiLcY0LDVDlezi74EoAKQcyGXfzmfBEmOPnsf715p+kzm+vsYZ/zvyvLyf2OvysGmNHgC0u58+w5CMbhOajkL1eWaEj0xg0Hykr7lodGb4bwX04qVvhLke8C4670x5NTaae3+a/jT9kzhpk1dRlPNwwKzR2iXnRWDt5+IsNkydmDsBj6/Vr7vnxoWdGPyWFbkGT5KQ/hvotsAW6cKYK6F1ggZdCpkl/LxOTiY5G0SN00r/Fkwh7yzmcJ76FscnsBvFyw6IJLcVSuK/Qtwz++bCUGmEH8cu0jLFdbmfzziY7TP33oOsHepBbdGYHNg25jJFIgtspmcIyd8x+to7cZ7uSoiteXlmrJQyoeOhIUtG2wMLc66dscwM3NOS+aT9uSNjfqO27/ISyjUhFSVswS1HOpHp/MheOpAI0sBDtqbklMBTtAgUbTOfOS1txbDvuGQ4Ybf10f9oMJnlvAdi8iJbmdPRn6F/rWG2HZhQU4WTKhWqU/X7+MUnmE2VGf6UXq7hONiijqeWzwK8U07utrZFUMT9aXu0bHQ6JlcGffTvsgM+s7xUMBzCGwpL30FACHLI8bhX7GcBxrQgwrBldXc21gxtggfm7JZ/rYCJpFN4WGD3kQGTz46jdEvs6aY24ClZE0mghwdINoEgoBi8jeAyYbvrgu3xdXR+UPzV33P4Zggx2HD6DwIy2iYGBlkh1bQJOLd6AmskNGrRCF11KUBBg/4UGm2fCaUpxYTOzTkrhvMgKDkfspqtqpYfMVryN2e/QXWXdiMBSVPL3UXmdJhgFtMthIXVJ9ySYFvJvzA/eXzFBv/tpsbn6lt2i7By6Svf5ntUkuO5MKF3P9FzG3JNb3TuOyKUZN2Fg4jYDScgeOYpkfphvTbU4fbbgRadzp7kCkxy6pVyZKXUMEmzZq9QGySszA3hLKjIY0Va80vS2hgpSG75kfKoDrZ+wkLRGpTVuM/mj7wZZYi4MVOQMHWf8+1voY57cLrLHS8O63IaXDauOe+/NpFcr+wOUU9kC+07bdmveeX02VC62qijDX6nqXmHy40wj5nkPOg/1eNkd+asnfplQotvnTHLHZq1r3O6xIHUrs+op+jhtSKNJQnVDkuBg501fdVgNDb3qqRHkOpN3h1G1Iu9B9I5gq86fuXcGi3acihvCbsvS2fqhLg1JDIBgNNLCcz6U3LetniOKVrTKPZt4CrN/aYX7b2S9eSl44COq5VvjyHREu67x8Rve1HdoQVZGROwNf1spG5nm876s/6I2eYY9rCHHluikmaqRtIGx9NFM3NLxYZqK4au1tOy++1zJgvm0507V/uJWNtEhY6/Sem3tSkhCxCHaxDz9F/NzWSLtwaxlHnc9KmL6essVFBoFata9cXzWZ56ih0nqPao8T07Gh1/jITnKZhSVaabkR+B5Ako0zQFyW3umEd+SyoFKrcNq4BY6BiVj+RnJXwcVG/OOkhbFbXlyn/LGSPlQa8xMbCT6RzHOA/Sq0ihCdxw64bmrqSgG5NSOmr5oB5NrvDAPmEOOLjqqmytWbHveeVSJ3K/zBi7SgwXahZ7/Gi2xqPZAcEUJERel/BYltUEL79k1whrIx8uX4LHpJ1RBwGXz5lPPfZVc7GWfF5WakvUb43UvgAHV2zUJ7xKBvaaniFRTepAxSZExggGApG9jR6oUx4O4bDfVtMfxaEnyBPvYWygBxWGy7z7VjNv42CC0ODbhxSTeCahINpbK0nRyaaScTuYVLzN1KLuII4NXvgFETZ+N7xaITdHg1Jra+hxDDDtQxxkFx9p5rtOzMTmSrq9pyngRDMY6kIkSTSg4uIzO6qUi+VOFsyQ6BuOW1X90KkoUTBybEQK6p5bC9WeyqsbT+UdghJfShpGkW9ec7+on5UEgruLUW0SYQ+PSvdmYjpdiuEsFB7+ZSMiRs4sBVT6wi/c99g1jaJwZRT4DYNfHrHmdMBJUy+EoF5ysp0BWjQljJIcZorW0n0y7Ds3akT8XfLKEDssTfQNf6n4R6sTNQc5WfhRcx+TfhTbjp+THZHe3i8dKGGD4FEIwdJMCykw1arUDpPcayMlysb+JDwzq0sWPDHQ8IuMYT/M5haTifwNffiG0CFOYnqKH8jGbtraIFtFCXLrdz/2iYr01cofZth7yHWMC1tQecYglsZajlecqVGCIuE1joa7DbruH/L72zhalXQ0YDDGtxnp7uOzy2SCHce5fWngWgPv7Zh/o+VFDW5gaBXlewqt3OI44WctYn7WlnnPKKqCVD+dhCR/erOxU87DXydLcVR7e1heT9O0b2uZBkJXkS8LtxSZP09M5bRJ+gKqcv8EWk7pZFwwKdVZZv3oaoXh4xXFdMHkh0Pt2hCOeHuCRSqnU4GzIdUawEbK6zTZnCJxE3yFJAcwq5v6mAYNUq4bU/uwpowJ/BNHFhGMcfhAKjb0gcLO2v5jJLe3G4raIkEaAhOKSHn6ZyibOh2p0+ZM5IdgQhuoYbaZ9nJIkomAgmRT7Exp9FgmuENfdt3lJ+ymw2gK6WBGe92Xn4YYr+mr/FYmxpHKJ5eaquTLLHpCUmUwXlD6K4S2Z+5mjgCtHV17vvFIaayTzPwCfclFfEeB3yVFUS/xPVYS3KbsZVYDIcnbHEhIgiB2eOWjl5pIsSY0Mkid39WGb4r2ST1AQkofAgwL3IMtrBdjDsNvKdwz67sR4OHPucav4bZ3fphw2gYWt0DcEFWdkUlFix3LzAeNUI/ZERK223jzIXPd3FCRKoLwWsgLXVxZM6pOOhvZoe22iA1kK8FFePCg57DYDdghZY9gQ8phfzvJl27hLWmG26kEFWj30q6T+uZV1xnWLzPsTczP4fP+vH7bG2ewQTB5E67ziNnTudlFrCRLEWMMuwmraYEWTG7l+Kl49kLozAPMmmiBrRjYaIzCVUIBupWzDUsvDPvVR91ZYyhhDiMZQmQVusf/4rqrZCYpQlKWujRcRoFe7UTwrIiJkfG0BvyVL4nA93viDx7L4/Qrva8roggfMxZ8eTtw6hkTyudMDasVvZsAUdnMAyv11ERerYkhQlvCnJVs8+FMV5A7CRbBnYHIP+5vFSxPMwQCQs+ixi4mj1ARfzoiWZ7YbV98HENFijb45IEUEVT2Hag2+DC70lkrPNdcpUmrCsacJdHxKYKG3yaobeOZRx1k3hJ3E1v1rIR/co1Tj1oqcEQmdMdvUWnbL9K9rqFkTEKlJE6EH0IBuo9icIyt+PdQzGDmboYbtvglsg0/LVyjSQTV0oIGc5yeF0ZOzkNKvfRwxoZmREMDRUn5BTcbv9k3H3tDH6Dq9yECu6svSUppZFsMwLdmuI3wNzrT8YuXzS/SLdCXyHTR6JTgXGBESF86+xjPmXK+M4SEvKRxpeInpu8csTHKp23qVljU9/lPjMgtFwmZ7Pe9Zjgeyd93aTCMw6ywdycrVtDmEMxYbHPzi56jSngzYGHUNhEWbXNTstFnUK/WhVU3WRxPvPi42wPH7adaFd18Ew/T2B1wYSBnI3aJ23aExXlXACSLfxBbsn2pDiOz2hpcDoKo2/8DqbhGiKdgarmL0xcvfVciXxQTfedSpLXlKD0UKNIEZP/rmGcFGVU9ePeJ7AEWGWS72mXjoV2L2pqEaPhf3EYqQS87gH9/gyquxLv16e8m587ZUwtVVPjIWn0KZNSlKqgUS+UQLFbmZVH5JZXbOqjS5KAXD3aiukbC6USL8gWC3yjhADQ+UEBxpDfaATx4dAcZ8QUVoQFkXhBeQgq6t2sTu9AsIr6Pqphp8En+QzTNQcdyT5Vs8t4E6qPzjHvYtN0VdcvG5wSRD13HqrBx/T6H2ukq+bKzomcJU+eQkcws3CRLVn74AtVQriq/LPw7qD0ybT62EsUxQ5e3lA9ikacfWS/dgGFmxkd1DAgOUe7jGv8M0eCVcIpynxaprSmzOZ53Sc2IogtI+0qKLGrPZEmUjRaV5jQn+l9M6pYfgS1gAsiX1VJ4hAu18nR4zo2+rmZTONBK2b5kjGPtBMtPyD4H9t8v5mEW6Jp+x0Pa5dJat5itQm6KV7+zaoqDqRK7Izw6U/POPjJww54XnsSkh6NGSYRu8yZzrBSQ5nvMWZRgzdLFr7ea7wBW5Wf0VrQVF3XbAn50BdlGKNF3omBZ4U+WG5YZPTdIJaoH37P8yRx1e+P5NZ5RikkxTThYVoWdjE6o+rEe4wausdGppBOyluHAMtiQ3EprL035ZPLMuA1NRkkuXToETqX7MahuxqRfdqndZW6/VN94zOELyX1/scToNSYre5V0ky8g+z+pn7GhtjGiYs11tQpt7FDFvPAu0mOu+IgZdrBUwXmJtgnypZs1IR92H5MBwpeSUjb6XRz0U3FeUHyjG5SNcbVpZSSw5oB3d8YFBxAZljhpcUCU+0kGTje6qRwYwP9hRRTRKHFBGj4lv9jpR0rB4YyljdAfQeKLSWLIepIajb7Qe748l6W6s1gsvTbegrrbXux1I8ybWZPBEY8RNVhBG2AK4QDv8d+FFn6JLXogGPmcgVTutt/GSybLKq7DitjSiAtxsT39zbrE1V+DN+pqqbZCLXF7WYrGMWVJMrU4s5LGsRy1OJkgpfZ7L86v/nAbw7y7ToLZ3BPa8u+li44j7RMc9fSquUq3mGdh2TGZYTGGa8+yS6pugjmw8tVQNHvsaW8CfF1f59lyX3X3Djv7EprnvdFTc00d3GRazWI3eWLzmj7XsV/CnoHKRVUCQ2wfeO3l0KM3f7HuG/ALpr4qhTVYkGG22yoyyrx11Jd0WBOEhDB0xvAMJ1WxiOZ921OOuh95OLOdqgFtE77NdRjmPyGPXDOmfLVdsRsuopR14KnbYC1uuvte2Yw1vzd06h8UzfkICVHhNy3vyvMmQB8qUBBrZ6CJkoqTtA2PhATsa3fRMDNAkRBjaoy9vkPpAGVbAYnJOVo/mQ0Vfaw4rqatVVZ4EDKzxWfmvtkOtOLt2Ojb4b/vBsGoT4DfwgndCARAOQhf3S7caV8K91JH276evx7W0PnVnvcKAaR189UVGZQIWDZbA6efmdYT3GPmPubwFp7jxhNHHPImHNfBOTJzLF600iOVvOw0VjKhzg7bSsAy41hxSDd8pXO9ayNG2T8khvB+U55kqc8bv1We/l/fUpA0k5zpUIWcdBFkm5MDommK2rnMkS/fUu1l8/mU93Fj1HbPxuVnpFSgL1gPxCLxIMUQnjll+rrXxlYsmrGUrp2P4QW8iBaSGOree58ZHzJF8Zf8lN7+mQdmK//x/6nFgazYzH5UPTOIJ1Wo/kixZNddONZwJ8TNDsgtzPHdBjt7zaMIC4GSLApFzOuLF8gGALaGh99I/cYWnPTV6th9Pp3ys+/+pJCxaKvT6gbVMC6qAfcplHg1M5HMGcKyfBBv82jCcbl90FnVasNJ0GMXrgbJ5MoTgT+GmaPva0x/H/TGA1nK2iNv+6rA5hFwKhqQOcy8Os09Njtp6JlnplFfgTjinMq0SSyJ4tc11qjlueNVy0yVwpfJDJcgzuweyF9KIzhtrOHDVx3l3r2RsTNtfabKrCsTsyMtfmiEdXt/H27TCSk3BQsFBuc5uLHR+lBVl/5RSP15eV8xDlrvXptN+OAHBgJCTY4ls6ELrrM8QpmIMp7fXz648FT9kF2oQTSiSAxYTyYNWgPqIWtrgz8Z6GLj8e4CA/i1ybkrv7lIilLR9Dn0g3kGhlx1M9kjwOt22UCc1cObOM6SzPyOouTc8PBZhIHr4rRvd7ovZDLZ8DrmG36F9N5Zt1hX+nDTRXXWeZb9hc4wutFbycefQAdDmoLOpKoskTDIw8okm4V+Dgz66L2rwDtv3w1Rn+s3WdaOCVGXtLDo4PiPK/2qmfzjvybS4spSEA9k93+YK1e6awW386W1L0dtZWragcIXfdi5KgFx6Hi3n/cLmmlOU3P4q5C+ZCIvbfo6qSpbQVdOkwLZiZnTICZh8P/tCMIQ1sVYHJjNBLGgXORzmKn3oPhpCPJi51Dl4S/vY8UxpajBH/pQh5xeCdcwXZPVPtNVhxzk73hjdqw=
Variant 5
DifficultyLevel
607
Question
A parallelogram is drawn below.
What is the size of ∠PQR?
Worked Solution
Since diagonally opposite angles are equal:
|
|
∴ ∠PQR |
= 21(360−(2×77)) |
|
= 21×206 |
|
= 103° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A parallelogram is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX9-TLE-39-v3_5.svg 175 indent2 vpad
What is the size of $\angle$$PQR$? |
workedSolution | sm_nogap Since diagonally opposite angles are equal:
|||
|-|-|
|$\therefore$ $\angle$$PQR$|= $\dfrac{1}{2} (360 - (2 \times 77))$|
||= $\dfrac{1}{2} \times 206$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers