Number, NAPX9-TLC-31 v3
Question
Darwin has 10 teaspoons of sugar to use for making 2 cookies.
He used 421 teaspoons of sugar in the first cookie and 441 teaspoons in the second one.
How many teaspoons of sugar did Darwin have left?
Worked Solution
|
= 10 − (421+441) |
= 10 − 843 |
= {{{correctAnswer}}} |
U2FsdGVkX1/sicVpH65qSTp768XUCLzh74doYCC/QDTHJbrPxDFr27MSwRxCHfZoyqhublxGLBwgvCQbGayAtoiyBsjUgplRBC4jFr1htBx6vUHX0Xzol8zCzy9FugN2mq2gFvBcGAdu9t/gZlSkr6MnceGcrBGQbC9Is1HoktCKv4RUhvMrcWeyoI0XCRGtzmhSORdFLpkh0KGEK18FzRO/syUYqtmXpHe9bN7I2gOIj77YbTIq6SrugfoAQHOe7YyD3dUcbUW08upenzXsF7+47Yh6ivazwUqj8jVfIaSIKXR5tjpstFUl4ga8LWjFEzwBDzNyiXzCu0JXKxIOnowmFVT4+qRHWKpFse3dZfiyomD4k0e6ZpvD7pjs50vVBGo2CFXyUzRV5DBA2Wf7s02XoM4U3+dL4qwJ6bP3zc6t78fquITmGnYdV7sTjLyiUli7TgZ2D8a1Dxyzeo9JvIC6RoCTdhgRioKz/gbLqKvCq+anTxF9GXzRDgfiflbZKyxmimgB+bYo0MNqURn1efYDQKIlYJl0ZrHfCkB695bn+er9Y6oe1I9T9Y0pNf3CXzW0ALGEHYBbrNAK+7G4ucObMLnEg7zL/F6YCOG7EKfwDJg2cQ6llAQHpqvka43moRe+1Xen1yDA8YK3cbkPVdz9HHFiYX5hAkAiJW+NqV1NMQMU30JGBUlKI2vMUy6sz4611/XOP2k64u19yK4i29YMbp7m6+s3m/0Lcu2jEm2e/S+qR0+aS0O4Yv2AxSq0qoY6fRWIqy5n6VuDdjTB2lGMnNs9QrOdufYPn6+H+qeNRND+OSDl4LI/SsK0qatk2cSj6NUmN4oHTv6rhuGCTu2xbSWYG/4DCV3Yb3aSK4DehW5UBWh2cn1rQqPNsiAxShrHl77LhyHb3itgq06ziMFx1bInAjEBFNl/wa71r8shZVE+cQ0mok8ESOH7xfTI0329bjXtdC4hacd7idw6VwBXjdRFiKJViFKQhBSqFuXDZt0wjeSufT2XvefNmyymHQ7p+2cBKqGiKMjoQMhI06syUDw+xloBxiz2Ij4J/mcirdgjJoL0AkzI/nP6b6HPq41Vr4NE75EVmXCzSEVrXKv9/fnCjW8JBu65yfF3WVTpQ06YjlHUQoaCgv+K2PlvaApGAKFbxQO9kd2VhAXM3oIfWS5HiDEMn9YqYLiFxOoLV0+QKm0T6VY8plkmDYBf/3n3rIr9SGfXqvMbI+yNtd9WrnJQ9EHMK0V/CeClJpm+mZLnVlE5AuitXuYQP0EWjZWdWOtHwWIXzRSJSyELavIl4d5l/eLmBBwEs9iwJbJ08t6SIpzwnOhDml2ZgD8ZgREKJp2cJ7iI+eNaaxKgVvnV8YN3k/UFLUZu6thd5sL+vaAWWegu5nr0h0FtRjV2FyBxYRQhjvMzTJC4jK5iwwUVWCetTeSNXRyPXfpAXbdmfF4vWZ0T/f8AR3FL6+VK/3tSLbRn8ZySCthMBr6uKP2dwbkbcoa71k78AvfWetKX6QN3JUyaEbaBrHxoT4h0mtq6J6nZDDLvys2o08dG6G7s9MP234ImGLuoI9OM06Law6B545mPobF3jBLczs95GTk51/MErA0lR3qtTMK79WSNyTuZdEJ65BEZ1Q2Ol5YzK3A0YUaV4RfG8Vm5aEWnCShNZsVvNHkw3h6h9rP9PURaG7eZ32LaPGVG7L2UnixCkBsieLAicP0eB49qUtAOgc8e6o8b84y97EAUXltVeBe30MVfb0xkQQ7zNOBwQ7kK6/hJIYdFuZo05z6qd66QXz3BuVhbzIY5QqPwmxYIE0kD+lH7bRPHdL3G6tUvGNod0pqXgQXl1ULpUhSbHO/m476Z+iDSITJoSeb8qzEqL0/9WHlE8NH2nxlyZOoREgh+rxyQTELw7l++oZC0bTPNQeTOjx8L5+KT8MRYTW5POkkLHATRAof5wQYDg2EoymI/chwtNE8Y9VqkXri5uI/ONxdcctT5rTcWNrcRbi/rcbKlWCXSudklBoJuOvlAGkDRxNJWO3F7SwBM4MYTraY+V9T/0Xpikae1E6tf3XsUiVREP64Kq2GrkRU+/OwTkuGCD6jq59z97+9KXp6Hz4uVX557jSTHcYEegdPJsLVWLXKmkPfz0NtqKOIk8x60tbk9vgboBSPWxAHBHmRk5xAHn3FiEM4DYzhTZDKkxE5UO+eL2AMNHiw8JaBXD8JonyVlylBOoXLGouo3oOF9kaSHZ+ccq8AHHybgP01XPPZ6568o1Xczc7DsLObtwzFi7ZKnEbS0ovPcjRkNe1GgXCPRUA5C2vnuVphPU3/16maduLON9sbBF9VG2IvZbqHZpqkHrUuAd/vMAfcjUaDv7x4DGB7i30/Xpz8XulXRWCqdlxvhazTOWmqZijqEtbxyIzwEcnHNFRY1kpa5H4czbFokdbhvTMmHCwO0rUD92pE1wNvTm2yiJT+THB2Qjg9OZJxjoNWAc0sPU+bvuFdGfIpJKJ8EDjSuh01W3WEr0eynlOA1Pe5x/LO0ioJT/jzWkJfbbtorkpd0RQbBSuPMPP/yElo0S+jWXKmLDKoNJnAtJnoZSTjhUQvYRVlaloy0+8h+9Mpy7rEHcfLTuR3XILlbZ+HoFlIck4K+MTThlQ7KAtF2dL7/pwDJUmuxtihHJcB3kUl9GqlyCkkXWGi7K2RdIHgYAPc7YCiaS+lJdbGL+hnnVR1DywKLmPODev3rSk/HtkRGUwdD5oL77YmYxXAO6x1u0SGS8yeLyfskUKFGoex2HJ/iu8siSE7BmFJWpr0/dZP0C8a/ra82vNJO2jHZBs0ekQZkAevxgqTlt+/uA5qOVz7BVlw/mkZPrlGzlp327+xriPV0LMhjV89mC+GYiTsGWjRhZQNPutw3CwQcv0exJcwIBE+PMLO+5tQgHjILh1tdnRFNXhoVy75j3L3DI2vgWuOO7Z3o/zx8EeGG2Lco5uFMmS4jU0KZPj4STkiiSFP89+JHwV+Ha5Er5o7OTSSBnWNS0R3DWiEbuKo8R73hn16SOYAN47G7W2Rj5rUdg96xiqZeEZiMCM26lXiUtBg1Jyaq02kqOSUuVdoKIwt7YXIkMe0l7A9ZV0lAT2YTsz452LhgPRwdm/xs+SoEjDjFxnGGGcCM7YTcj+B6GzBFS8GKFqxoysvpzI7ETfsg1dRWeVTtQsOQ2YDDDjnDcZNVNGqDCBl7p81JY6t45yMupNgHtnyHnea4AVXBY4AHDYMv9oSLIiDrfwb76XIS2pa5YKWLdPhUJrxuVYthMvbsUqNLU3kl8x3bkhMVdXf1dc7biIHbCD7fuDli+aoHEeUZFMDJWjnVc/RjJvBSa3Ytv4mY2KlBeUmRlypNNzkOluIrJXz8EQ+SOJANSy5Sg50vNFRAmy3THcVga6kngOvj4it5hy+lLCfcMS2Db7L0PZPYiJDM+H0v6PGZvN6S+zZn1JuS4GyLymH9p/MSXWtbUGNnPCTvTBRCyJ7RiTnN0htP+NYj45sM/f27U/j/FwjVKTKMLKdhzmgp0YOIV01m4u0Ej8RTvaxSphXJROgRQtlAFc6iw6i6WRhWXnzY0C+ZvR7m5y2DUgdKV262ktjhuSd1fXU3X7p9rWOHwKSq1SPw4TR0qfyUaGC4/BDTte9nHCzgLXMtLEF7MKrqGH0/9YaYNa3N9KSMBZsEPumev9yTusq1ZTsqVLeJD5IcMdVR+PHWJfjkxwyVXOvJEvaDU/WhMcWQWbgs42/S2MkmmdQNTWJrU6W4FjIwojoppPYOGAJuNVUYhuVMA59zkJ0CFxeyDp7dUhydnDF61srZrzUzN5o/JHjk4NxZ37zHXfOj0ODDy/Lris71iFC06Zen/uv2u2CumMOt0m40HUn2+MgNbOvF/uTXYwNfVIEa6Tc8FNGOC9R5/kRFvSlE+fhv4k4142XUebjVpzISFZeq3CYeNC+pICvSgl8LW+5Q7V2qrbIOYZwuTqtQ3l8fUVjUiHcPwNOkWa6KFzuXSc6XAclkArnuao7VzD+pe1ezSzk99IJ4C2fO02qLtZvaimzGUgWsYe5CcA8ATZmi93ujA8en+h1S0Sj1JR6xRjCr4W/Wyx4bNOQ49+y+42VaYFPtGi5pQSl5u1xXfq8xD7V9Az10Kfr2XqR5ELh2SK25uAxTENWL1YevTIshDVkJmX+IQSp4areK3fzNWzyz0pr+Ju5TXMGGHKAB53UhfbldBxQiNlMkQXnRTcQvWubMuC+xYP+Vx0nj9tdt++rk707+13w1VJlZ6k8nQZda63BEZzbPtUT5bFP+ZhmKJFTdpadqCXLe/izwXpdgbLf0HHgbjFyNZqZwLlZU1Pa7zA5bNX3p5DpONmNrCYRaWBB9A1/2+ojaP15OuwySbsHx0LcUpa51aVSpeLkMJHIoiWeXi0N3x7CSBz4ZOxjP+olclXpuJhOkX9wy8O38hCM35vu3DMpwT+CIQKhLm1QwMC4I5FZwmBedAiSplcGMuq9CMoMa4d7BKzOwf3ta6GZbF+6k62RI/BRrpVp0LD+sBW9NaJ/LDd2rL0zhe4ZGpvlA1mSy/BaimLdZfnaQMEYE1bly4VLlcVcxS9epMHw5hbEGMhlZjxMjPOn9vWYpJkZk4KX+2lSGtQX197Ju1ENgAfoeko8SfzGoSkBeXkm66vN9vognZ1FZihxehGDk3Fp53S9j0xlej6db4MrB8fXs4FcXgZVl+Qw5AbdVDLS+zNOQzUQcAk/KU3avx0t+hClThM31x30H7PfjDvU63a+D803gjMNJ+VFqLkOx0zupZ9wFpHo1M2CjnvbfeTRZ3QOseq0XsBPFlvW0E15b7I2qvZK01/vH51T51WjiwsFRJ+/1xXTGs/Qgpc6YClekWXt0OZfvk+H3P/cZBg2PGmr0zcaBsWQHGsb6SwNVCLB4DtWBojmaHMBzOYAPqkliERYNZOw4bL3FxT/jrVkW4+bFqVBxr8nV87PgDho7hCsfHhQ8Tg+KN2cgq7Gt/ZvNUIEu1c2YVSVa1fvTbxNTFS8nuVbwbF4VyJfOnwBxiM1TmKTynhGO9E3a0CojHrc3y/3lkwYuNqrMQxeDf6ItLt0FdaEikr0/mn8Ryo79HuKXNIfI64cTa9ILOakLuc19nM7Kh+uMnrDJ0tSz3jzyK/NMQJo2SCHQqZu8eQ6sy/m0XqS++Jx9L6EZ6iaTV4Hvav3TkshuLjlN4xJ/i6Yq/AbogB2sNcpQgQRQh0T/38JyTpB7vuA+X9nblZVHbQtrUq07Gi0D5Cd/qfc0NIOXcb/0h1tw68g9CPnW3Aib6cETcY8L99L3t9KLs3IBAk8Ypmts0tHDgbs27Qo6XDvJpILKYEAWYlSdG5wP1/7X4X7rolDMPyWQRq/mGLuzPo9S3w08K5D2L3VkME+SZEG2433p60AXfiLl9Y1fG9zrdBD5fgSF7/PUayts3IneLV7n0kngb9tp+rVQs/Auo/aiWoE/279uyG0FdqUt1JkafejLQlVwuo6kmJ/GubSLpbSq1NoCf8jgKaJ4EJkCG0rB3OwKi5taLDIUzKgLr0Sb+kjMoWTg3+Yo72kM70xFnmM1C+KcGeFrtSdjSzGCDq4cYxwnhY/cGZsadrjLgiaFusv6RmNaxyvkFsNByaGYzZdK8PvPpmzVuiZTzx6SDl9kHl+tK2hVJajhzCZSM95+ueO2tof3kis4R87iOHOGxpABTsMxlSy+AmjoQ9yJade2G0IxgV8lzeezNSVGlZUuOSp0N84PTj6W9gruiiweso/B2zH09jn10WeS8BD+8pqLGvPz1lgRQDQtSo1HkBVB6PNHgwBIWa3QPX0zy59k8Zki5PI/hR3RuFgRZdGizcMfmr+TRJwiR+cPbx5XNPWbhnDsiBkcoz7FMjS/gjiH88Mtz2NAho1+VG6VRv4Gh3PLoU4ig8oZjjUGSIN3+DeeDawuKKsXBq/8k08imzRbIJy6nc8GTPMGYAzWsX02Cf88ui0w3T0HTshLDBdzzw/hCkVohlp3tB61IoW6ZImj+vgosrLcKwOW0krUmPHvIGB5tSalusb6oCbJZ2PQWmUaqrpikAxm5edZoOk727eLIr26IS2EYl6Q58dnvJOlYTmU1wykn/UVJcUHZuDwZQZeX7Yw7LP29t6bBRQWJv9I06awhMAQqzjwrH6TrGy8eb1OBmrQIiIpCLLfWLpYFaZR/UXC0voNrCFvCiPymz5Cnl2W7NFJa4pvqfLUaoeYb5Aml4Iud2mcOkwmB/9Ph9Y1TkAYryWDmPevvv55zyzmv3EvmXF6mZ06a4IUUYEqzeihscB7+9etoG4cK6oZ164SAbRMP33pXrzSrs9KApLg2rx1pnt7GGNWErtPnCN39DDURJ3yMLqWM4yY/ibk5Cky9W1ud/JToYBsI7yEyqf8qdL40ZuAoB9BWFHvPOr50m7Y8oBJAzvkuV0Awn5cD6WIBE7uBGz2vdNK89L3j40CAzWYqNGNU1JlWP/wW3zGQ5Q0yVDHJSinLwILD1P9/SqR5eTjQTKyX3yqUMXcdEHuQyZ5Axlu4zKMecJOjj12dQ3eyvsIvdkhqxUQVYeNUQwk9fdEwuDRGIcQEQvJ0jGlLP8ibAk1aYeALhbQD3RBlGdFqdHTr4/6amO8EjryqzatFhA0puXqyNP3oVp55WWmHk8nB7bJR+n6J+4gUeqFSl86WaeKEpnXYeuNTqpPhijf/NDsN81uNcWvaA4pD0I48/j2VaNypJonQtzcWvf68x5DcQ7pJVdU0QBCp9C0nvySL117yV/5HhkuDSMWkWcuxXQbfc8U3mTKTTmw2ShaFSwMbMrh7T2sWceyG91b7J0w06l1ByECbcbSB15nKb4W5+Co5h2djTfv/+ewAHP8fpeQ/BHVKKO/kgFSKhHgL/JhS2x34pGk4R1FPxgu+cej0PLlfmACXJGZKrnfDaEA0O5fQHBp8v7mDVDfSccZyjfu5f3bVolhUmA0d4KcZKZWYAmBHfwiM4zPfVZ3EVlctnE/KEvemrtLMPDjUeYqLrsYYoWscLmKaNhPnNx6QTb8/DAkKxnoTQBida0KuRl4MEv8hdC4E9g/QaCQ2sVuzEjYlsiSGgUKwkNZHICLEu2gJJ/Qzf2jrfQHNzPno90Gxx+zxOSi2SNdwYefKm6S7VmB9Bw6ZQX3zauQ4/thysCIuqy0Mj4QzWo7Cxk771nqd4ofjxYPV1EAPEhG51jEuBLtkjMfj2Hjc6IoVi8dbz7YtBRyBq9W5R32BroGxNCN+ybPNi3U59wyeAWDuEfO6nztu1tOz5Is+fY/b/dRg7YjWJeieTDGzZ4dpq6vDONKXyFSw82GYCOkcJWnozif5vYQmYSRhG9Jn8kCAgHOt8hYoLQnGOcjQOPcdr+VJ2/eno8xJ6E9pC/bab9xWpxwNSEz2O1k5nVcQ2yWy906u3QYM2dYmc2Eq1xTJEfMW2Vab5joEyCfJuVmDhuIk9KXw+bl0bdWH6fHBKKZs4Y0FjOQRRCTvB2rZ1qGeEZ2u9Rvk4JhlUp7UqNG5+rqshhOZevgySSsR/LqZyHD3a1gZEe1FxUghCQh03exdY4fH18ozbcwr3ISzU8goJmW/TbiB0nRS2k2lGKINRBxgVi6CfQEEfXkx6yKS3loRoILTDPKKYMLhBgh7T5oWE4vqrfAwFz9JPlqUkKEOSN3SzJPCqzASpnhTcgUhtyEvgSPlmu0XSYEuwMa7tm88Gke31o5XSDZegOV9Mj+lsECk71pCMAMOxlKqe7XlAXUXv/PEiitKTmZdWnhlAWsJfpsVwjQk80UBuF3y9SQxmowW6VUgR8YGNJON/hhqhPtLKCkspBETL310/EPqN7Ot7obwXMH4qzos44RxIkSjSMHf7NcctWTH2o4DHH4KwGmXqtZngjX2eP1yYw25DA2Q9JfjhOT1Clkgp32VRWm56sHu+Ot2s5p98XUkMXtaTJf5BvJSipaefyDnXfkVsSnEbin+R6LHP/A2ND8phtkt6W/t5pMbl47+8da/TOo8LC7wabxbY8UDcHB15zEJr/hh7/fFihQ7WrNzQLeRVzFx7JS2cGBHzeoinm3T3k1lXDAXMaCH3+4/18xcLR9NSHPwUkIfxarYRkvEglncwfdKmBguseT7Rlh9vpbDnmqZ/PbVnw0OJl4Ud4+2gkGiLeAZCmX3q9f6Sg2a1kepLHet4bOajBP7kmZ7OPm+yTc/gL18Y2YK0LfNks+yvuFb+KUVaSle1MhxtrQN5GVjjvUq4OTkIWUbWn9WZwoPBllpDth2bVeXqqWiDKHF+aRuS28mvjX//ui7ujpsjhe2zPLM/mVm7asOlluW6flnj6v2mXBj8K70WSwL93SHdtXCZ1Z+Q5ds97c/UXyP45/uns2SJXOXxUL11YMUonZa035+gXEs5JMBa3mnkTmBuCkuYEq+BMRzHdrwjbWxNP2MYr4I7FnrI74fnYO1k0uc6ARwXpuSgV1bKItYCb6wY7x67ixqzfX2Z9C7IfSlEYXOOQYdIye9rC7WUH6DjMf8XlJD+S6tBqz3Lc4b8hCsMF1BX0al3y2QEcwBqxp0QflD+pOpx3SbhsdEi0jTX/MSE2qcQRyY3iRZ20dnLMLgrcMdkTzzO9VGWYtnZhEPMhZ2U+WYxXUN8Gb/vtCk5nkWG5k7wdokHxsIC6BpKZUc/v0gzXn/0+X3ktKqHkziRyhI5KrQt/1RabTAAiwSrLXAkIM3BjKPLbMIPNA3nToNQJOsL3eonSF5ANh43f1UfeXSivRtNE9m4j4MEDU0e3rvr3XkhuG2MyROi+3AY95vdiFC87z/M9ORC1MEtHsor7bg1DfiUV9IZdc1GMLKaMRUmo8EDrrSlVefUQK5antEj7cqSqfTs3VSFyUmKKdKxjroWblZexA+lsTR848bjw0MQE6BA2bTiQ6EO9a2ld7hfufDoLkTSRhHYqhf7nGJflrSrTNSKQZ5fSOis2x0nehshumhtREXkDmYtzgjwbb/p2YdDtc3K3jwUnNsbNcgVyRKq3m2j+gbUhfn+udF2ZUie7ujnF5SsDSSuO/8sS6EzqkiKKfr6Uf/uOoReqsA8r1Zt9zS99O9DzkiMQDW09HhrcrzAasQEuWCMi41CG0RMG79xQOImBqqzd5XuAsN0n9mlxATP6ybvYlIu6fsiytoeCTk+so2lu9wjXBOZHt5x5J7tYVg6nFbAf6MwLC7fIPcjME88RJ/WCiSChqB8JSoVSaw0nSYcHYmMMJQxay7P50Pxk77J6SzOOZwZ5FWr+NYO8i83HruzhIzqyOdcV/EehPyNGTNmexvRcssI0Z6MyWHhdgu12ha3lfCixsLftIEcdbzELYso5RWN0ZY60D8L7QG8c20llKMe12UI3Cg9rJ3/ajR2lkhxKpRXDnUa4NupxcEWA6bOOys/d1U0Q+XsngNOk4XIOL3cAHAh0tJP795mJQJp4nOEiWMMHs02sGSCrP27bu3lcfa8llVyt9rH5bdw4MdjKFo8ymWv67EsRU1c4JgnK3lQl9vkteGIyv9fF6P5OZMG61jgde/nOBm9m2vzU0Db/n/pdiC4Z70eRf2KO9FU/AqVAQsyqsIEvx4w+eRivW4CrN94QABDpUgRgXaRLOj2Mi+Jy/KfnO93Gn+8mGlMKZWXfUTnEMiJZ1MMzNEWHDkCPJZuvHTxea7kCcifwfRCrViunsp8OFtmiEW0WbNK55wfJeNxlbO3gCIm3fqO5NRYC3Urzhjjxc/okFv2eTN1wYaSur2pexI8CrejcV64c6KkO8D/aHEpO5thod8ZX/j7hd9+FWng67aZ7CEUrRzZrz/fnP33xPHmECKW+Y0XMDfG8gJmAdbcAcWN6S/0GpnRLgoMI+0ECNGGPDmpLokJCBig0/e5wtqRvetmjesBZE4Zt48v1gXl+LS4Ya12WMgUSLazEV2henWGoDZoAAgBnNG0g2RgCPqS4GXQswGErlnGMYm+DRtjBpvVDip2k5oukp6wbJIe25fYSeBBhrEuM7bs08REUXYvGr+pT8qzAiKTFJTYg0BAqnNvjfc8LAdswvwjO3PPK7EjvZDlAR+R+xn5jIqoGDOKFzPW3wbi07h6ApUoqJKHg6iybQDYNaLGgxmyFbD2Zq1foD9YXOgjGDQ8Hkk8WfXZPF/1k0E5KoAGKwQXajx7k8iXHAcK8YcUDru5eGS83+RncWcUmIwFKH1ph6OC/gY2ED5CZWjVOUTjSBjvht8MEIGoPGKEW6jwWvf/tx10uX4X/udEraid+ppNXNguKGIBuIkvKJYU69NB3n3ajMVxl7dIffN+vgHEn3G8XDgsB5Ogf3MYiIsjnAzi0OTAh+DAimrlYsUTxNo0cVhKXk575Kpf1e95qbpWyOOj3o+t5obvOHkCd6lFTOhZbUw3ZBInnpbBx3WBAgx6m32QlamOp0TnYc9+f5HdPUn+ReXiXj9z21SWIpjITv04fgfonzYzbAHjcpkUDJG1ZDOjDc3qXrspJ2OIk6ccKyKAPKkAuDGfh2x5pV++XlpZu7zG+nQYs6wRVMYDD0yf1I/x9MXTrEICsv3WopyFQFDZWiZlFuyBDnzXAmEFk/2Jk5/FK4sdzSGIKz+RwDSH4JAuaIPAEoxHJcxvPCxgT211JhJ0EFn3vBIdgfwm/pmvN5/GdlxYpOLqDyNLUTaBX4HdLRLK8h7gGbIMsiDLmrhGVZDO8cWRcBjlX2Xb4kXZrJKyqJh/ISMpO+4Vv23OtU6bmrf04a1cFQRjXXMoOUL/3Bqz6Fi1UsNHOIqp2EHGKthmVIanVM1PEzDMyC+v7EPzJC/to0HkHDeW8kKoVRE+VyhzEVJGR3XR3M/Gj/d45i8WtVYUuI5Nj694rBTTyInVl/t/3nSttRoIEY7UKku6b04BUIEcN1RDTr1QHZ+X+36KBN/0YNvTI9qYPzW2UX2UWE02lk1WUxg9vXbQ6Z8Ny6gcFjWvPAOCqUcxi1npg4nm+zSOAMRfOldQG9GdivKw6G029w4BPrmrO9ufr93lWb4RYVJcludUMj+DsC8kMrtwfrIqCJexfCi6dUXJVTmU55qO21DjdKG9GONhYHcJS7wL3mqVra9JsLupR1mCKWxshO61CKrb3ENuXoddlRKXhDzVWVBHWXrgscnOG82xHK1tWkhTiupTW4p7FYNVU7XI81+EFlW65N313NitMFMafDHR1eiKh9YTiwS9CXLwMr94BTxkzYb9pubJGDg8zpUvz/uhk3qkr/4m5hfXiNWO9rVj2Wzeo92UTJVCojYPCnaxGqIJ+rV0scYB2jslCppKk9PsFb1FFdQZNqOsO9z/oT93Vpxq+bQqk1Mthb2bux0PsOg9MWPp8YGPf4cVwrpw2ucKOosjU3V224SJTfgXiqO0QzbLcpZPOvJSHiBgHI5N8Rplnh57faUIbZFS+CmdP17iCRA0Eg8OhlLJACQKnPaWpj50/W0EHPp/WGoDlTJ0eNHs/m8kbVq80ZA1OB5WTjrA/kBWr/odlyg3S2/CA1KAmJh8EVgCTehg11BxDOKdrnI1jA3KDuxdb1kAvQ7YEJGdqBevlF5B1OdztQXwzqL8p57d7jyJPxqQcjz1/aVknJd8hyDIaIp+pgHpzkroLQqdIJDoR/Zt/OxUlcAXJWgj0cEEQ0e75/lmxXyEOZI71ZAXQ2ylIyaEyBn6GolHJ+iCTEoHfP2F63pfyv6g/5Obtozi1qZRtH5Tr/9ghLJqD8qfnOxMMsaU6hBMIYI3D/6Xd/XbV2UFj0FnbOXfV40Sso+YIOZZAH0wZA2UmYlfT3vTWek2iG9FOknjqpfksp3fhvqXibP5yQAcW7Oq/QjuN/uoIhHaAJTS0N+WPFak6TlxvId/lP9fp+SglKHkepWcDAf4D3xGnvtAGQO7iwWYQn0LQwQdpoTTX12S30Jg672urJ5RJTmw7nz7oeXX5mge7Kcx4FaBTzpyjZ/5XJzSBZW8roPRbSdV0ZGzIdXnCzti8thT4LGQt3itnus1hEHjKTZZ8oiLh/kTAhZuH5vTcsCgv9LRLDoI2c2VPm61hZcL1fI82gNwK7RPhl9AtktrifHfkuGBRCIp47j3nW9ty85v5MmNpitn5U6h9w6MIUV/FxP9XzuQZgVR1K3ap3TbIoYE6zw0CcW+FSwGIMCVJuJgDRcFzeLvz44yEa53dAtzO33a5p153Kbb4HTYJbbB0bBUau9qJy3L38CP368sv8tRZ22CahxwhgO4NnPHivfBOlF2/mVXyZAnYp7t0v1bU4CxouCSwGsaQFcNeqAXZIzMNaRYq5jPEG1HnaobnG9PtfODrZ9e5uV/DCLXbn/XaYWXafEKRAtm4RDLVNxokzZD9EdDG2gADVV8cZ4L76c1BNkhUnIumHorXD2s7WhTyIQhsJpaPDDirHjtBVMF5ppYkHBuudsIAiwRY29hG0oR10GjiBuGjGQ+xx23d0uIVKS38hNmaxiPPt6t1Qg9h8O2eG35ua0zr91h7wLlWNDN3ZMRwgHAmN+wtiyi81y4FJ6bJXl/H0REspZCVJ7eq2iCorWlJnRPwRYoDEAvC/KbBtU1JZTyQ/AdEMHrvUKIKDZDU1MjJxlPaeZkzQUNG5EnKXOOdWttCNp5mFujpOhjzXxE/+IcmGT33EEGPaRgFO27wNoV0FR6q/mp/YGGkpV9Tp7LXbdAe1mpfXqiktR7yzXOG29DXhdWhH/4LTve+OO3DUtR+dhY+rBnVHWNps3ooN1iM0MWBGDGrOetfjyaMpmRHsPjgK3ftEpbT44t9WZJb2mXiKlAqJXkWdmY0n/8K4Sgm7kkYlpvnfG5YdspCnVds4McNGDwS6GHT5D6MKvW/alUzgmhrQ/O56qaK9z3nFGLyYtZJQ8p8PSQDHOiqDBIXzqKo7Ktov1ACYXoiZlX5iXcj7HdhfYHgAwXWUUZmuVGoV5Z5MKgLugqpEvOyIamnRKUhuTOqj4APMkWZWvPIch2cywfeHJBF+Ayk3O/mTpRyVNZusgSFFT/1rTCk980rLQQyV+pJCtrpQjD2JkuDENw4Vdxy7hbaMdeG2xasBMl2M03nsLQpIwqaN4u9sDMXAL1/G6rRqfnDZTNWUfAU1bTq58ZYBJNNO+ThIdvqg4FmtwuFd0ZPHbnOHzFGs8f/OV1OT8qLja8mKRuatsmh0jIzyoJ6GiM0eQGadefzkADSC8gOr0THaGeoxm+6g3yFpC6o8A2q4+gYsKUlftboMhI+zLfwFQ4FCTG+lt1aTj6ZqBIrygIU43a5ByYbVsYBRYrr9PokO+OfBrUFif0M02Xmr4rqBhB2BZq4ccrH+1sRxpuGemJS7IxpDR9w2WKPl2ta0OflWxW7Me2WQaGDp1LqlDY4NY4Tv8hXT+c1o4VFVOjEZwItA2CWByrAegu5CmskZx6A/nidHZr36eheLLCwMOEiUlmxBDyroDU4oVnDCUV10pgY5C5l8jaF6Wixd9hpzAaBevWIPdU1PGX825w0kvjNt/4NCuUiubHnGTHUspZt7GMF8B22ZDQo/LmysyY9qZbWnfeR9SwCPoNaXI5Zvn4DPQcOaa9meaWYpcEMaoFeM9dUZlEql2A7oPtaE8ntky0tauPM7ImCdwwv7mtUtM+Zr6jFJ7ew+ut26wuqz2ZfoOruEWjMh9aY1nNb6VrqJ0uBE7eFh8MNMbbD3JV9D1APckjBL3zU+XTTR02THaMZ3QIyAqFxeDgNY4WVixspeuEUfEleYLXvzHEStVf6EtWoGb0fFg2oL8f3Jvqfvi/KJTJAtetabzCsFF/rv6Pltn5Vb111GktHpf19CWDSvItEe/hriDVghJzcaG78HA7kwlxqgMtUvhUlWqmSEwOhGLjbNWsIS4PWffwl2wr4X8gYCQP9Ily7eZ1+G/kah/f5Mf0Now1LCghhLOoU0OsfBvW7W64olMRVOpybiyIG7NYrACvXS0m5fv0djETlbzCp7sM7ALL1r8xpaI3mXkaif0An0TPL1dDnrwCw2Voz4Z1ABKS5Z7J5F8rN+FxYReW0LCCloecH00zeIV2ryVy4ywgIkacqSMOzpfRv0ZN7w4D2lLZ0s3rQ0Y6T1xTijkdvB4INIt/Ii7lj7oTXgH4yifTNjyndT65QF/MWzb9eFAyx0TMWJKUawriGFiQ/tyHDkFx39tDPKekUaeUtuKvKLhwwQd7yl/32qn2jrQb8FQ3/bNOcxDVuVgvCeDQkpxSB4VhsD8OhYMCVNxg2Jn1/zu/rojusj+5NqYGJ4QmAcXHwX/4SS71G65BlwNqzRewU8YcyaSzg8tSnOeWWnBa+nyT7rfs/oamV5VDzn1zTd2txQo9W7eyCw2a0Dr/29Empf7SqbvqfloXzDdJDlXgV+nyWx54QfqAaio1lWa743x1yU9sWym81fxJ03zv3ZVvhMXPSI/F0Ha8ZRrDLMLvAOE8YtnQV/YaaVyPewWswnP95pZZtKkBvzXt+1iL0jxH1kMjyvfmfyk7BMQZcpkj4t8wCdfwksByNXOPy6uQU3joV8Mu6V+zBE3La6vfc1HBCqzInuIu7aoz/gAUan79TzCZU2OTZRAn2fgVnfpQsmlL4h3F8kvZ1wBQ+l33dMbnDHvJvq4BQxskkHrhjAWcWJmhmtJ9jo1wk6bj1JHYKhQaTMPojneq3v7z+bzAhjlaa3XNqmfW5vUMK5f2pGxZ7nGQDNtvwNPpnqSD20hj1caSTcpTdJZNyA61J4Do/mUOmBylFYRFOGLYueWAwRu+ghZRv2fn/AKHzbJc0Evd8T3YGPCyh8h34WiZAkqzUEmVuBkp2P50whcXXR8ftn2H3y3U/mdPl10cQJpBQAZ8vge81+4plUuaLZ/WPsd7RhUtJoV8qBWKuBBiObTE+8yKBmZ0stma53CWnWIczJqkDTofnz/Eu1jdDfydke6HadUKdEwBd5MPCFVBCXNZve3Fb/Z/lTUAwwZOT7a/zayKXOE6pko1uqbTusq775EvnnbBcDrwIFUZHYkQNlAD+EX4hhv/M/5oHFLDkkBK3v87NN/Lyv6PJW3pH9jpo35obUxOxV0jKieDWKgHgz26x9m6BIh0hGpi3ext65/itzFtPDGLQPAnNGeFouB4aKfiFKuaCvlUqe4I/Bcm/2J0JBtf4++7CVmRtvOx0XKdgx6gF3AftvHQ8SQ+5EYU722FncjfKK3fJRmCdDEeUU6XhTIg+fGDkXskWFGqjRvweZG3+s8p/N3TyRN0aVroAo7k347E61bNcY5Op1PJEnisxoAY84UnZSiVtBwz0xHJHnB/UZp/qpbzAqSL+6VBRFpbsNEUPv5G1dfdyVxAtTq5xqBRuIpn8Vn2dmPkQPZLbzKlake9DudQnHsR35IzYjQzD+VMwHVtC+AS3YAEVqSSuLJ27oon1BQMF2bUnetLggv5KAHfF11PKp/LzSQomCX6z8z1DFAk15l/Da7wObPTL1x83n8KHWtjGMG59dP1t4083Xk4R8RzZfUy09FVNUCnlvJ+ipkuGhqIwefIv0/pwVDLwwIqXCSM0kEPa/qP6c8Lpa4Fyi5PEynH+1Cj8RNaAmvg7N7RuRZ5RcV0OVK9I8VDduUmcHXYywjftzj54Sc2L/Vevc//oR8MgJcCfV79PGTRYQVQmWimYlO21AHuHXIPE8u6MsDdjCTJ9pdMqdl2XcRf9ty+FSjMH2j7W2KsC25FVMxY3hyo76vDXbLyz34j6qFF4YOweJTMarCVAWILjH3khpjd0ObAeWhFer97hG98iw/2U4hX68luEVoQNL0eninO0Zb+Dn6y0YBNOX3TDMySUYf1xoEHKOWjufp3tZqPc97WVXtGz9xxvSE5GCzZmloli/HuH35DPSCzl2b6CEGrW/4KCWIceQyxGYUbwlmxX1QvHHhAoIyCYuU8hF35KF5icIq3+79+sjr2TdCaLCon3+yyL1i5DDmXvdBjwJBi9toeev2LVAQQHJssopmyZzoAvwdRomZbRxQ7wrvaaOvogtm13o0Yx184bozGwXInSzm5afWU+PCZINiyRnq1jdnqW7q3AXWFckM5kTDSh+F05ug0ekeOI5NZQiAJ6oXn0SeQvJCh0rBcl9FbFArnRQQBu4/Ho8RQ6TmTsYhVCXjRRk+LRte0XHUssceNNmBhw9Mjt7iWve/ubE9MoVXwc82lFMNLlHosXygEyoiL32CqWowlTVTekvCSEtkOqnvCXrgdFXHTTe/jkyGYb9+MeQ/BvG4g8W2dbUkx2pABg4fYS7YH9m96sE74w4v4iwuiGmjkLjfWwJTV1at85gnf1fb9Jm+3yB2wVS9LbxiP2e+vCEBmqk0klNqASiWFcuGTJIIw4he5syXqDpmhX6ut0wu6bYDf0yRfGE+uSVEJtn+aFweXGOhww9R9XkdgMgkY3SAS46bV+5nyWAm00vVJctUleWzA3Rp34HQuuuHP6kjDfjNyBy+KVySPVRJKKDJnUt+bqFr/ApWiCpzC0v4bnVkIIylBafWYab247V39h/Zp6IF6YgJQAFk/wnLkz45opF5bEHGvl0HPENnVmnU+mrK/LV1i/K0xT9iXsSlNnp9vMMR5KOxrBWLK+UzwZeu4bS5gVNlBXwush/NlPU9L1aQhm6PV2tsMAXe4yXc7/jOItoStfkAYxr1E1USdtAaKXw+uKmKj28924QK9uP+FuuRgbc3g2SWY8yXIq3zF7NPYnqJUZ8bDEUw1Pyx/kpaZCR1JSbiZ2vCfue16VaWMMUoU3GDjBIIQWDoMfj33ySkYMUXTbcpyMJFaBebnRAg7zJmUp7l2BOhw5FbJLkLzh6tz/h/5wU5fYTcKAoFPK5eHpD3hnIIp6dne+M4s1fF+Vf0DBhKvCdyTaO3hHHSkBrrpxVDw/9s5ogEiTj5YhKHG2Nw0sqUGjRO6qO5IEIf+655JsFnpzzlzTK/IPgSokAuhs99bLTEXRwl8jiG8A2hHsFUBQcyhcJZts3Gl+tx3yH/EKGa8qXfrCPHhV7Qppp+jcZoZGU+nPrqz/4qrjNhGSe4HcQlo6Ss/9ouozeFFhttWJbx3FovLwntZqMvvH4ItdXoqdSPEPED6Z3MFeOK9/YMoelEGqxLwMNeMxZ+CirrfiqDYUo8K9dgg5maJiKQqMIzkR9AA1f93Z9DtSi+ntRDxuyxfQ85ZVDTsm0GQHA/20Lt7QDc1/zw9iMAD2aD137WZywGvOLaSS65wH8Gi3jVmTGoaRYpj2sOBP4pUjYKLpuZwcbzIVR8hrqkJdc1E1yj6KjUEDzWXoBYL1Rv3atSIZc8TXQ2wZqPwnqv1N6OHN+uPIO/2IKhiBAxFyyKvQ+p6m4yiij1kQq6ZFtaTE7X+Y19fCT3+UN3vACC3M1fGkxZQAByYqU3OJzfVblcCN6kZk4IsEoJzPymxIBoVXNr36jJyaBRSD7IkjFFAKGPF1fAdcI6OTvySqSSnIK0WmOZCi0ARKa0e6ElgI5GyP+URmCI9itK/LveNp1lumzASiFEpOL3pmMUdq/3kW5CLQpYztSKLoPo5/V0IYobv0zAjQM+t6wIyPLnHXboL4Ed31jrhL1vxeZkn+u3/M7yGMK2RgyLOslMUR95bhU5cC1mDdODngDSFZUch8Irywm0LoXONlfuwYz4mOMvMGXluJw4DBJfVSFk0ZgNyzuluxan9S7hTFrCTe6Xt8zAKD0/AjIZIgBvyIXE9DaoJ65ASrp0ZSfyHYxYxcTdXu0ai4fIFqOBnJDLkzzjZjBHTpFJQRV7lnBeybsMyfTKPROJeFOvnUnmzCCpDo5HKG5LAfMDJHYJkp46rSVAK89StMihFQgP2L47E+ji15ENVTg+gt1uZ/Rw49gAp/DMAuC2M5SZV18WJ2kUkcCZeghjg/qiT0GQomywHZUx4tuZvsqECszs1tLgyFPsWnryrIqFU7B0VeLT1+oWz5+UtbRUqbEDq3kg88XAb0xFbdHSsZvz1cBByBlqnDFVioASse1TU2Pq1DKqOOaqkVKAJOw9KDxCOZEUgD/vAh2yI2LyeJaUWvQAfLCZP21zzFdn449LfQIJkQPr7DZFr5r+EVkQJEuv9pin3cZ82f5mQbo4WuFlfz8GvvKvZQKbWSaKjdDp5JNgXU3E0wpOBCO5kT6wreeCacwyS6tX3DwS1dJ7HKKnI0GDRu6rIRVgbhaQSdzFqR37JNAi/qi7rGeZVFgBdgpzwvYj13DVSA4U4Y1IyoZalVxMQCyPJALhUqAvIhH0L6+MxO7zBer0rbcsKqt2qAWoPoQAJFimLpVvjtuA0Un9YQfK51S+URJ9kHEKaiBV6hXD+w5ycJCw2eiQlHyJRr32ji4eZrVgBX0GOmrzFjvcl2vKtjl+ZAY3krsOUeMXa7gs1n3epCyYDQTtEffM9oWUffYIyzMDWm2dnZMBp61HcgI4tL9palvZx1ZVjNggvKWBJ/MmP+c7v683M85siByZP7HJTJ0ca9TlwocZDY7+ZUwf8fIUAhx3Ojl0/J4mq0o0Ul8OXZd80v4RvFUqjgfLmyjoV+6ssc5n78vsoq4xHc2cTh2spimsufyY9UaF3/meo+GAMBBafeCu4vyYeNvV2hi7VsAprqV65ML+UQtzqz8yMu5MHZPuncDmgjt4WizJxr3LjikknFWWufZnjDBLF12qUN9ummcCcuLRd6nEw2eSHRYfmPFWKSs2/Ut7wuZcmJH9kpKzwNyqkKaA3f58gVNiF0ZzlE7ZaPe6BEuv9kKD5B7N0Cw9FwUZmWSMrPnkzDJkN6YXDFCCdyuwnZHwrnLcuIUfjdC2d27N9W1+Yg4XsdCGIOHhsQrMTd3p+NiUWb7ppk+8qA7tfAY0DCkq2n5v4/6NfcjYD3tuxVxTtQbAbzr51iFGx3Pbj9MJk/4EsglN103ASYEJRKR/K84Jor2idxpHLgPj0JCvfvFZbuvjLuZ35T0XxOA7RYexw8RiM6CLgKOcBz5EJdr3C9BqV9Jv7/ORIvAGNFAXr31BPrRoO7TwFxhBU7CCqzVGQyrUg4xddikToh0yuRSuEkQhxvd/ii2J86auGkxqRaNDJAV6zdLwoVsjqgjzWMOYcw1HvEfshgjElYgsN87enDz3Z9aLbF8JdldkO2iMtsW87Rqh1NeCccAhXwjwhr+pzfYhzOwGzbTBKGtdYnB3d5gwnOXUpwEkDFD+OQlFosqdrk+sRyEeFyvYodhBDT9/XF4tkJfpR71HrBkHqaSOXGo8UIZpBWzjFEVSbFowuapTMlWkk1/y1ke7Vkmgk64kvWF6fmkWOyE5pWij4qc4DjB9915RvbeTgo/PuL1R8bpU72Lvs5tDvx9Lcjyh44dZXMGhAYY+Se1K+BAxe1PzwD0c39srMTaS9V4ccn1TlHY06tJdbgCw+Aumqsnzg8QJcBHrHI0VJqB3mVg90MTjoFukI3qVsKvjDhBcnNkjoCtCs8kSuimelGRK84HfpvZQZra7CrLAEQtSoSgXUyTyhEpuOJkQn8jT+EOakpDwldHGSXtaxqtdWEr2MuSTu0GbXTqM6624IBAhOntHNF80q6DOoajWlIdZdzQer4twlKV8B77eQZ/2PS491UMOM0xiwh86SD/TxcUy1+Dgj42aeKPIeYW1JQcZzo+rup0cavMJiTUrSQ/YUaRUNr55oGlFANZoINb2Cn4UvyciYetinbwGMfwgnvAJNJldKSbfvVJOwdVhJe4LLeh+2gLDpwO/CxD6tviBVgxDQe6ZVHO2P4UoM5usYCZjVF/Vq9Utw3jY2ugNCauB31QKmCilaPQ8+GrU1q6Fw/Dyz+ESUTn35oA3WFM+nmdnBJmfk3JQEdINRw4+qfJ9P57X8gKdY/CRYFlvjeQFsMPd2vDEmTY0FMMyzcqAVG5BbgdqGRcWROFe6XvHn8aI6QkfBG7DjsFEkLXNCPdoWyDrs+6spx383uspGK5008hoyNsIovPVKDfgYAS1dsHIa5ZkL3pAm3fVqqqS2QDs/SXj45MOAS1tYPQ/s6pGc7HD23VUu8RfrsTGf0imhIGPAbIb7orIgmmScCTvJaWUxeM5awDCKck7s1yGq3ZsGG2aatzdfUWgS1Z+P8HDlDo2uKyQA9QQy8MW/DhAEQgRYusy+jcmWtF94JppSZu+Z4Ad4de3cZoGLeOeUnV75VUoSnttFneoMO8wQ+2Rz0J+d11VrW3fx7T0ZpOrugrseA710EbkJQgqZLZihW6s1JzuEM7D7ob951yr2ak+7mcuopCbDmLSDFO9cQiVT57yhp8ijZ+Z7ep6pTJkz53g6Jg3sWVNTBWYs/3bbPUg6Dun/puF4OYAJo5r9KkaZ4Ux47TZWnD12XD2IDGxZnu3KOPgpBlkXgc6lazL9lq0ji7PxiGui+WKzGetqMzwDL6c4sdcejj/dCPzsELv3H4L0OsPVZBLvGf9ria8M/NvZAeRZoN0bEndN7MRwVDBfRYxyCSZBDiei64eZ9x6FsK85y3vnbZa/BjPUDjx0Ol0lz77D8B3zVnZYiNtQLzYVaEtRkd/37CdMe3L8+JBZCRn0PSpNJ4a3wjai+ehIeBtZLMMlKA06jN2fyzG7LYk1GK5iGzvRdxmp+dkQzRDLkYt5E42il7UXURGRWBzMoqhE1gQBDtRhHF+/2TNO172unB5g8Qw1l6JTUHhGlUNVdGO83bxY05WcKPHZUCJ3YUFugwfwzeuNWE6ESAAaWlYPw5Z5zfqHHxQLb6dT+Jj9W6Z0iYXJbxyrWWeutkjAefCGgL8qJHrlHaFOryd6wc9puM3K+Plw5WBcqMTJJZcmJS+IUwuctgacPwvz50AfJ+biNXpiftln1e6lUDmUoBT5Wu1TTSB111LZdfSU6ubFdP+puIr6n9RJuQSqgMc5lS/eqbXa5HDWaBCY+SMvh89exvwCIssCPjhnDv/lbvOLmI2QS+tfY1HCAv43TNOAdum9P0HpaeUiJjvcRLZPHWil0GW9Nsy+V6elMmDfWtPyqRGAXvp+WRVWt6945KHh14KmeeK1BSb9/CWscvCyBK/MTLdr7G+DCvFKnmB9IwfWwql9sDFKRx4tB2tDLykFq699y5az1N5Ud+R8/bWXoSt18DCcyGKj08OPQMAJJjL9v00aFu9oYwo5Mm3fSR773Z7PUMo4zFch4HAZG5GqzXVeZXmiTp7xz1L2WAz9ksiQlIGHaXsGrEE0yfqwUxKVbKBg8kNoGMnhPv6pPVzjxhDFrUkjMb/VENn/ECzMV+/OhzbiMRZIUf0l1MujnxCktlk1st3kXruLVqV8Wk8bZzXZxDmu0lPI25wGubtipbbHNeKc1pPF56NKCLPXTWtjDDxyEfUbs2pIkNNpMBrFBbh8hKeQzzZp+6G2wEfAPiakvoC8CUvF9mYsQ1Syk8CQ2WCrsDqqDDmO6mdiIQejXQEHonFfMg+UZN8+ZbBRDgwUTgxRw5BovW1gJG0iVh3rVVpQT86EL8uc1bAhqo2+uzzUzVxAvTlnkyIWX94iOwBQNTnZK23ia/BUXNyC/KS4AUjnvO2RH1soJgOgOIWvUDDJvlEzWqUS18Kkm8RxSWUkK7Fy7UWDGHKiqB89Dt6i7ENtS4bBwZ5Uih5zytFV2VFI+YzdRRaEpI927tRGl5ct7Waplwr3UAV7Z6CiPSv1oy8pCM+3S/v89EIlLn8t0FcM2/w30uvkqJZa+reZf/5nQdG2WLRiNKZ8uHdgm0iRBw7WjBTRVPxR9vQuxti1U07ipUWrptT5/4VppixF7IZMzgGKH/kcOSK33bUUK9LcG5dg+iHpk1HMLiiVLuV2PQuUZXVUuTmlR13sGK/gr6akoAkTo/RXJkbR0=
Variant 0
DifficultyLevel
531
Question
Darwin has 10 teaspoons of sugar to use for making 2 cookies.
He used 421 teaspoons of sugar in the first cookie and 441 teaspoons in the second one.
How many teaspoons of sugar did Darwin have left?
Worked Solution
|
= 10 − (421+441) |
= 10 − 843 |
= 141 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers