Number, NAPX-H4-CA08
U2FsdGVkX1+2mmZpNVSiZouxUaO40RPKx0mmcCjeXSSlwgXwyhEbGQy/TqGO8ElM/sW/2Pq0xmldNc73uRoka0JoxU2FlJHljJNlouVhqX3jSpvce894pSinSIS1cXQHqKkY/lKfjaPA6eJ7OAwtHgDAq9oaxsKm0nH6FoLzxLmgLel7PUOHhxI0MzhreQCxk3G6aNrLK2Rvn/7MlJQkyd0rep1PxJpZHJY+Xy6js4M45PSV1205DZArT5b5U+0t9tZQKdLjBRttPUkrjRJJ6UtPEoZwv0RmW/jaFQYEbYDyvrpE4u7USDJafvrxyNE4875CTaCnt3hKl24VLxmtbpH/MU4idvtP9xRc4NgGESBGyW8UMT+6CAU7AnEc33u8JgIeTiadeLHro+2aT1AxHtEWrToEnTVETuxlIjdjwr5zBw9d4yff+dPqkQ2MLDV46gDNF2CxTGJzZpCY60tFBwBPQSJRYs2unOj0IF2kwZ+0W9wrLgwL3VQPRBGc2au8pYJqM0p3BPNiyy8JXKhH6GsY3BehmT8BsPIGuBxpFROYBR9z6GhCnhwacW2c9lBUJbLnSFnsjiRJHUMJNO3vraIWgKGd8Tjg9r0u+whT/hjl5Vu5pOH6dgLS2Yxdsqp/jRKhO1j2NinxsA0uGKOjWsTncA8FIMnuBooUbBYySo93UG+k1xiTMFVJDiwRsWKXwf/yZOAN5s+1bTCccMg55LKkXQCOkN7QSZxNNpbeeK5CYIJaOqTEvnWL1MC9VHdh2vyf7G7QKGmILhQiEBTXnKeeTcOVczGrpbuakM5H145wojBXOBKY/gKr158YPcaXCmliVPe9zfDevGUlUQazdilnr91m04NE0sFj1IXeiO4gtDnmEe47Hy+W2dXaxBMuDiIwnlBiRSiWA6NNQD9BiAn/Wr2+/US4+edcOqRFAkMbAPofDcT/F/vlIZLXVW81hFjBh9lxO2DR3/vv+lWcwXKzFYAztHJEQeQGV7B6N2D0qO0inRXviKpJ/1U7+rttKC49CH7m5Ztlwwyfsv+vBu7/jZY2taz3Z4+goeHGupO88TQcN2qRfQg7X4/dKCeG5AlOaIEpGNsGCE2LeKiqDGo/WG78FbtucwrywWH699br8Hr4aD0QXMR/RhtCi/Ojo6Fw5khH73sl4wUvKmUbau7xgTfLnyZZnzxpt0XP4vdQfGek2L44x31rq9ToUPGM56KbgztdYQB3lDdOa2I2M5D9zXxSuVuM4vr2LWxBYpfmah7Rr5T0eH7ooK3/YUk52X/ZUDBTREQNodwpWeqQYpWaDuMBJcEG27JkPq9y5ZNacNpUktB3fdEUJ9mKSEbBwVIYupVJnLum3Ct4ErczHHnyRpBTXJ9LhL+d4s/Sbeu1lLOn6wauW046mT0PiSepNoyIfuVbEZ2GWSMJcvaVlSn5Jxad7PKO0/yLpPL/57AOHc5mDh8Sti03kEnYlvskOCPRzC9mp1DY3hMea9QT2IlYAHSRnZUJ01KgnqQsxMwHCXsVUoQA4ipT7uSF9AeCAUxfiycBjcdlgzqYYAZxJeN1iduqB/jHYoWeG4IG3rWqkotWPKT/yDSD13f2XwzLkLAY9QC8qV9TBfmqXLHISnzPCn/kAAEpHFQVHA8q4AVAagFCmmKE0SjfoKqqIi8o1ZPn9gYZWNDoIRGQ+Yw1EgAsiSy/XJjBftlHbKfb8/5zBbX3yREgyolgjzDPcF9jtZLB18vCRF7TMoCTRsaE7ZNNhQ2OPSIheCHzKvaTE/RlQlZHeBq1hyN1/HxuDL3qGWgRSNLa18MRfcEkj/q8D/AZezSI1fM6rblAzL3phybc96MGsrVcki7jwDUE+xn5aKBMzfNzaNI88ISBVmIIKw5relFAbbCHxliTijvokjps8KyBR1uw6LvDWW54P2rTqmoTQzgH3yCG7bTvl6k2DMPIQ2vuOIQPiBg6/soRSs1Ki39M6WxeMn5hQMTCkVDV+UK19ybaIjAbB5wHjyAn8olQNcT8VIO8LqGVmR8zQUuUdzB+hdmj7lzZ5JFyZa/23h7QWOe8pcGFKDLA+p2oTcxpsyvdXau3FFTmKgvRy2P0tueJVhtJUh4sJLgf7HHzQA9OLJIfzJgLSvunuGYT4+VDcio0dGJXBHOJwWy1VaBv2Esika3YIA6Exv+H8UZp+6Y7wSlGKl/D94FKX4QyK5PGFTUQEF8S8o7Y6D2be2BcBvrzxjwN0o17Waaw87wvMcmbBBpzK6Wt3gQPxskFx5bSepPW5yhYTXXiDmza8eGl923eZDVG8/ERE2yYGRnk43CMcHb3rppKMmF6EpFmsrLxlpiwWTPweTe4fpopFduHdxdu8nE9imBRWfzqlJ1DKvx8zEt6ek9FY6iwOcHu2xg16aZ8JRh2TpXvoN20SOSLFWpl7KFq1FSMRFDPjMCxreX53NUApkStuLIKgapHPjixxz+An8kSALj7z2IEQiSY1x174L663uOp8dTIVV0i0JUWcvPs9oLtpvVos/L/rcZW3YA/FtaVXYYhortQ3iYsTxxbtkgAeLnyL4jiPxdz0eQQvocwLpscxFT18jKaKPzTvXpWQdJiL0MtmbR4gnJjErO76gnb3YBgqiQRtjYvuN6qs5Ow9xf+jyYMs5swqaj0h4a3yGyCbZwQbk1oC5STRGrStK85GaQtttK2sEB9/Zh4hhXpDIQogGgE2PkCQnEwbDad90nC4fvrN7v/q6AMjCXwMrqtruHmH1idkRDiAxRVpEmY3LHR0OctBRZsAuQEJ958qqbmvu94rg+hzVKyi5YFimP4umjW5nTuYJFemFJrSDnwYJ6DFl+WlvoFO27lvQaVLoOI/g92Qio5Rg+VCLnYONfrC0Az0HG1eHc5V+8JIsMVP1XJHEfPKT8RKlMAKZp71FcCLnYOspm/FZFzN5YFI/w7SYyKUvnIOSCgnHEJrrSjTCFZ3PwbJXc9mzN59z4GGS5aVJWdu9ML9Tx5aSUE0tkxOq9ZwC/b8hoJNRH47rRoqqLLLADOzBIuYDns237YSr68lEBD9x79ZHEWpz0j/jvtfBHpp7lyQsA3eoN560vxJpMD+xgD2YXf2kRB5rrIi7jOpKUcrWfwD8UNBGlxnGVcTtpm1gwXiovak1+2PzSRmRBzaMuctF8N/AaWBAjVkTI5yNd73rXTb/CfPg1uGxEVVDCHWE7bq0XDG9s8cslZm+Q3ROALpizjRb1LsLHoWchjVqY35Bhc0iD+vsesUUtg0TX++l3IhWLdDDWwTAu57yERL+PVZYdlD0zhmuT24ck5q/dIC04HFGpA+g2IDeo3hIsb0BVGLLH6hMI8/CuzFCJ/gosrvj6Bj8yRkUvWrSW9Hu7S33shb3ERc91HtxtbHws7bJQ61mQKkJ5CEsP/00+aBLe+YRTC6LuOwPP8M7K6O6HTme7mgxHVvjxkuo1kmjEcWKPZw+QJGFuHMluhsf3q0R/SKNoj02a8+5BuyMYkbO8sNR1HgQCsjqjH1X1ki/Q8hk//RXnwtNXvBtABPiN6M4L82OK5gLnUrOZ8ZMU9Z5wMWryvOGptuDleS3CHHV/lBIVYFrB+WwIcL4dg/xtqa+Wm2L9BZ+6g/GYVEQiIQiqWviImbQJCTsOYIZdribb33QIo+S1oNeBasptNJn4H0mAQhJQdOWY5bwsPxuMU59diXor5r3Et1B5KwfVc5A+Bgr3WkOSzG8Ux6DvP933gO/Wp7WrdtBri3miZEBJFLQAJMhsPwIlsu6fQUH1Z47T0wqONQNhXGpiY3gpOderR7JA5ycXV5sEQyJ2SwnwMxtf3/JxKSd1CSvi3kqCl/uUDX56JgHW5sHeJODBOhEH1kbtEmqhCwu40bDxJdN7opJwjhziBZ481UaPcb35VVvJcBmBBUmgc11G6ZzaQZsCPNcUWzCmnQSaGjPaXkTZYhSM6rCMxaEbe9D0SKcnekyWkSiAOgkSbPoloG0Bm8SIJFojnYO5boJbTdzSDqwpqof92LOld0+N01dqXOe25dJxTwOah45rTAAEIPI2Y7x3I4LvF3ckwPi/myLdm2C4604lI8iAMgAR6CTsa9x0I+eYEgXg3T01TLbgkDDQedBAW16SAi90DysBNsxR9ZsLXSTX8rTJTiYPv3myUC6F84n7INYMvR55L5/31p9m9JnUf4trC0bwJu+ezno5CCz9uqKcWyZPQqUnF2+kI2x6L6K/eMYuMUNVT/B+qOuZYNu5ifzngdmWbcZgmDF9xdoYJXZ3TGnh/IHGFFS1aOrrXD2p9xNTljnopCV/Cm8MsYJKhll6FPEE9Yih1UM1jJdHwyBvQSFYyfbNLE8zajU+npbaqLDgqmvE/JkHD3O+3O61cERVvVagbsOERVZyqwIvEK3g/XtJO5ci3c3woOV15ggCTVahkDpij3lgH3EPNvLgOgLXXhTITyswgnwDnFVkAfB+nNarcHM0xoiaZG5ljuYvdvfQpcVsdkRCk4qI4FqrWtyJl9cGYZsf48ro/hDLEsfTGIohzEmxitIS7De24Sjh5VBlgTLyoQzd3wv2BP7U6sCEh8ZlcHYkXNw/3lWqPZXbAoC/p0dNCcz7tLmxGRd0BXfi1/+Tws1MpXI6pzjgmmw24RSVQmhvtLvyErnlh+/7gBD1/u5yIgBh5OIAqaK9lLaX95fWhNbV3NgS8rX4MGdX89NG0v5OIKN18rSiNhUaNr5g73UIhQEQ/Jo5O/bE2IOK5zq02jYaRe2UZ4D3yg2GFVqdGx7I2X7t8f3FPcmHJz1VL70wBlxoIauvHdxIU0pBZd6IgH7DbCD/Ky4G1j9juCHb/B5RFg6AkEE9fXf+2YBBQFWZLMhqxPUjxbBmHkRo0kWlnMVR2BVgphRq/CNU1TxmcIcRkXEm0Y38Dv6yt10gwL63StZQqc5gcNNuPwEDciTZh0gcvjxsYuEp6sLqrzrNBtuTR0BzqzG5i9vF63xXo9ekt75XfDTCHV0F5Ydid/gBPgumcK6ZbSFVWnLkwrwLp1/qXXKNs2YlijnhV8rB+O0LvfvsgJUOAwLL3Zu1Mw2zOe+xHs7Dpm/pQkMEym79UwMAx2O03vELDGFauH7HRZ72vKI63k83JF7jqq+VDMB7nVj+VGqUD9KtBcXUBNovCFJJiLm80AAj5MmTdsDrxVjVG/VVtIz/Zq+sf5vsK4VSzk+S0+LxGDuA/nJNr7VCPpqyaKsVBy38Ues/a1clRJE1tXXoQRLDHTt0tX6R5zYyZVpYjhSn/Ma53k1Cj5F/Hmp0RNhQN7dbwrsJBnODp2FFA1lkQ62Htzmx/s1tgxzMjMY0cf0H1I41BM/Nk3kZnpFvKeTQdGDpQXyhhyS97Gtv4uSJUKu40s4fRwTqslSq0k5rYSMfeIQJXCyrpFOvvxqWs+2QAbvYebBw0v69VhoEukBBtaTnfFpsjWF9iLPMGd+YnPlhXOEcuXsRXqrlKxJzzux/uLJEzPU6lO1yuYaTjdvhbrlp19a7zK+RB/P/KvO3qSbQOuieydhQLlSvKw4gBg7L1VyT8Pc6lZ9wL3rvistNmeoIXZXH7zqaY3pqUgovNcKIO0k7/V9Yvx9+f1kROaMKF5eCbj4yovSiyjJPGUeU6steuJpB9A4qg0lNzv7rl4Hq6FtoK/uJ4EmO/FvKr35KjCdgbhqrKbsLjiVhFYWZXHTqya9YiLx/4GNxcOFBBUkaLiejWyXzV5LAu8hFXib1N208hOymilI+SIWoB4i3IiQAHoyTQY4+kHDRP0wdGgBeVTPyRZloJoXdTXiNEyMv7pgIFIL62QXuPIR3eLIzc5wK180w4zDme3rC95RVZRbYUp+T/iV35WVK5RKqem4SYbwxNQ+QiAF0sr6h4/xyyHKGA2PXJsB0JyAANYCTVi0twj0Da2dvaqMTwgBHfjt4Mq3STtLiMUELIeHAUluySJkcAqGFa9NWbXtwGp8hoAbSWiQV8Jrca5Gb5ArPqYJjJUDrsiM2zudioBoMnRd1baBKNWa16KUNp3pJutoB0RqqXNZE/9gyn4W916wWcwwFwlNBFA+PuR0TyXRTtAJdwAlRQmR1Dwubi+oxbFsRFTW2/c1asVVI1arbhHWkcIMDAjTCwMEmkmwuXI5Jpp7mzfsDYEhEZhORULmNvxxo7LE/IwQ2c99sRGfpa4yIcuWe1oTtltwzzhaXrdLUBhGj23Tx/zLktRjgFQQkY2fwbllCzZ/Bzu9I3bSR3ze31kUF2dCJRoq2Ca8utceqvp6K0ED0vI1FqeZpaVGXs4x55x+gjpgBUVFeBSLsFvaaSDiXrdWjMEp2uFULp98aHq8vyyf3Tg/HxUN+r/dwUg59Oew1EGGGDhPNWGYCt6XoFitqhU1FBWAFq0WLjuzh5dm8uqs9Plwq5rO0y3btSlbKgP0MTbO+O1ybEZZ00Hz+MqNsJNlKzDpeVqGGt52T5uVuubDRta4l+pki4N3dqv4r/LIN9iZK0eEVIpWH3VkwhpifJKom7XMYTx12z4AeDEVbTfmQboAaW1NgW/knYSATvpVeUMSIKqJh+XL38iq9bamQNOerSanl7e/0phYlog0kEnLQaNMJgVk0w4mJlpXVWaNDPhQSYDusdS+HfKnmmtOxWr9BktYQiFQfU9vBo2V+9aYgobLX+KR76uU5ga5aleyIpJG5yWMI5HQSoAyYZYEMbDVTI9KWvj2ik9EkpYzjVT4fSqolvPKfCSuvftGv0DwS191GVZhCPKwWNmn6RGxIiYU1pnMyXRp9oK8sVOlRtYrEiI3VR/O1o6JW2fYxcYH9/SWIWPRjpPhoZ5beVf2ZRMH27Dgqn02sdFIGBwRgI8Uf4ey+pXvvKBh5+mEVn9oa0o0M8V6zUAWglXz9RJwkHW0PWm+JJp8cSOLG8kdkmnnqUYc+mLNrzrM1Mfbyar7HFWEyjHEwb9Rxlj4e2n2cX7aTxHeT2C4sP5Dx70L1kLdpMyj4FDKUnI/huWkUAEFx4Lpza2aj0ACSArxcl0eQ4/A4cuZL9vlWhlNtnKnj07r3atTtmVEjzL92jESK29IIFTYGOTeZMLxmvrrfBF4LVaXnJzDi8ClqBEyKDcoGEHToSOHFGrsTu8sP0Bl4Rso3PzLUBxL/8IZcb8US2/c/EOrtLKdkmfkAe88uaCgQaQ63PYNIwmRbalMrmutcU3ZrtQ+TCRaFtbNaGlVYBCb2Vt/q7JXegF3rW5bwPMT9U9wIL8i8IIcXIBQId9RWxisFwQTfdmBxEeqoABqN5MgyPVclLSWi9Q1rxB7SodEeGzR6z4g113fVMhkm9vscQfVOksuN3x2JjP5tL0SzhhnaWpUT5yA+PfTfmU3h2F0141Aeu2DRdeJkemg3+yeWjsku6/3ACNm/NTOZljfx6bvrppPaHFNpWlf+OryFgIssUqM4JX/8RY9r8H0KQ2GpfFwx7BVZ/oHM5WRnAP4kkzfq49e5FiyhetYP4r5RcVHYhltWfxMoP0P+LIS06cYjBUVHPFOMVtkjqLeHhe6TZXWNlpXlvwCTu/gv1uqe9udNA4X5Ehoe1GquCrDBBTn2JBgYpDGUQUo8ov+h0KJ1sRphVOFcb+qbzvngR7jsFVc2NpkRhTwRxAh0laOtIV/A91VCDTJEJ59Fn/7qZOY3Bv7oiDWUiofhB9Haeg9lesz/szHnutZ9uGEUglekcvQ9V06Xmg8k1NkEojECzZrOO5c6JObGQ6lyXesXngipdd0XVlwONhnmz2ljHfAw1qWE2VEPFXAPT7QNb4n79ZXGTnjxWZQ9bo4DWmVAPR8LMBp/tZSvNlzFTEsauLbjE3e083RcYa+WkyjCFwMFblNhxX4kGtg8jmmcOFY9+YJ9b6Gd5gyczXdSRQznGeE0Nivfb6bYj7UVjb27vsd6J6RkQKgfPcsaxPwL/E7StjrabGvk2ISRVWWBW2vNB2nlH6gTwgC5Cw038nqQWhaR6H8zpn+3iirnp3rPCt0rL+JXkL1Uqmb3iq3HMEL/BjqXJlSKhClKrZvqCIf7HYGzH72FVTlylnSrWr5t2XLVNZsa2loGRucLwnuxcfEn3t6lceGcBqF+oaxcYk1YDs2FpqY0vC7ATMzUULG2ed19yw2ZCIbsrM4Y8SZ62s085nepdbXKiYJjFA79EMhzlbTG/tq3oI0ddbS0o9BwpeVUJbvHRdkYynIFNU389FJ9SjCTuq8X3pcfXWYChpdFxaSo64JPKMOmCpaI0r8pNwEDv6jz5FVBXpd3txDeaHlBztdfLplyrVmxS6LVhK/L+mXsFR8DNkhUM5jAC40mK03ZE64v5SqIpnn3WsRP7nh5Ny70QNxXJky4F7h4Wed7CXOG/6m86UUi7wH0uwcHKSEONn32+VSUTO898PWj+/3mNS7iRxrEiHDOGcExnNQXqyA3RENDnN+RxlW1kjTsNZm2kq7Zz2cdaxJ3G6TFXRIMkljqhJUOZn/atfFpMtSUK44vM2g==
Variant 0
DifficultyLevel
542
Question
One billion is one thousand million.
Which of the following is 300 billion?
Worked Solution
|
|
300 billion |
= 300 × 1000 × 1 000 000 |
|
= 300 000 000 000 |
|
= 3.0 × 1011 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | One billion is one thousand million.
Which of the following is 300 billion?
|
workedSolution | sm_nogap Using the description:
| | |
| --------------------- | -------------- |
| 300 billion | \= 300 × 1000 × 1 000 000 |
|| \= 300 000 000 000|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 3.0 × 1014 |
✓ | 3.0 × 1011 |
x | 3.0 × 108 |
x | 3.0 × 107 |
U2FsdGVkX19DlnbAWX5WAFVE1xW0B1AIE5Wn7lpHfCKy+N4zW1+TeJQr6NguOVMA3x1FbwRRQoMykIGDVwZhLVc+zXWZbGbD4Ksz1ARlBIXif7NsHjN84aOWOqACw52uH44zcxgLeCaa2SB0MdZAqSRnviH8g21jWt8QtUkWSw/YmxyM/leRM5w5RdAZKGwfdYjfS8gH6VnTHrB01IdQTrYteALT/Blw43xaM9DFIeVqGhTAP7/APzT6lrdjTOJh6zBzv0sOmL+TXJYjtJWdrNRsiaI2COMr76SOIIZOsrUB6fDsi8afuP46Eq2afccnp2ubQPKuxxTQl4TcCpIa1BcFh6tg96abLiq6faW9Nl+zE3ZfjvmHhG8A2YJYEyePS4VO43eDgbE7O09JNPI1Dd9ojh+8++RnefrqG3fi31wSfaeddK1frwH7SGzZQmBZLCda9GnSM6lFbNwv+wz5aBxmR/UXDR9OKpKT2IscUlxfrh7iQXTpIj47eYiLTlpxsxlzOKCD/36fjNMV8hnVE8eWSdVRLsNsAq4+ohGiDgMAiEzEbbakwxmSxYviq6/hXS6ztRerdhjUUw+OzNrq3swdNAq7sm5hO2Q0InotmRM6WcNEN7gMjGiUKDuosQ885t1I9x94+Yw/t0nLOExzZz3UWBq+sbO9teLtHPouO0QOtCPx/g36nniaRU7oKU1lWtl/iEPWF96fNoVxSJCGPR+9W+7AV+SlSHXYYB5A6UxMbLRFOSbPUrKUZtiA12ZYUBBZTGcv9QFEyn8FmDGZKYGf9fkhBSNPLJfklWMfY/912UNUe06ubRB4W6kv8yu7cT5RyuVSoUSSxwCv3TaDqmVXi/sogSDzxqkQa0plpSzqemKuazW06q3G5meult8E0PyeGM1XqBlmQhvRQ9ElNtrCYh5M5/r924yLSyeSjP8zA1nBSyxlJvPXqGl8C5ZfxDqBDzdcCeoltCWnLWoV2XxpZcjC+Ng8UAu8vqRaEgYM0MYW5KTjLGxZMdhmqZtN3CqbjE57MUjmys7/i4oHdAfGJ5iIIA+3hcO//dfhrDjtDMzqd4FEmdJZQLcM6X0MpWZ6qo2uXdV0vGSKG3JhzBAiz3QvR5GVN97z7Hbb/Q0W1h8qMOhsnQq2aYL677XfOV9T2eKEaSCAYTULO2vPXVTElUgbSAFamsj5n91/xwU4BZb5kUHaUtiUZkUWhwmbcy89CNa8IOaoJ/E0OHHXnqU/EXsGl6O9EzqZK/R/GvG7SVMSyIc7eqQIM4tPsxwHaiV7HPJSJLyKj4IalcWs9XR+Zv2sg5/35YpeovrP/b180zvsDetDfCEXEjZxs+AhhxRbPBdV8xIhFOeAu3DrQ2k9S+auJyMfqbrX2jApQYw0CwMrEibIR6oe+8ZSWch2lKHmhEzFb3+UNM4uRl34jKJkLk+QtIsQ9TT84SueIW7MKuo3Ur4GNNko63LEFcE+4ZJg2JHmWfNarBe5pzMyf8PIHcWrJUGEX/Ug1GoIDaTnaxd5a4Bq4M1dctZfT1Whrr1RESvD0jXtGutFAa4BelINhHdoLoIZRcOwkhIPNzqtkyq0s/lhh/Bf2l6n8j80crhKo3A4wnfRuogZsw0JN8wc6bYwFEPQpjlVEYSCOFef1O1zwCPxWP6c7AQeE5IEWJDgwWHmBOoYtuU53zyuD7sPcRCAHRCcATWbKuqjSTUfbYCdta82TkrYxyE1aiWOpFAsa2Epw/zinDoqDk6RgX98aXitqr5U8jxk46mUoBZkD6Cc1S/KkIz3hQ5zIt3I3X0O9cb3FDUOBBSJgVtuYT++/GhrCttfKqqywKogGhX0hsHW882hjIScw2PnIP4/bFUSXE8V4XO+iub0NBv5Nz+zOKCJXoJ58ixUAoW0D8KFh1jX4/cXraR7sK+C7etfNYB0mfEIRPfzM90YSfXd92ywXBgCVKmAqUXfOeIssBU6SrPFQ6hdW/CljqzHKJGXh/yDrzvGaATm9nfIRkAoHUpkMGX6cZJDD/4egLWX9kQZIGIB86qaaAKi/yQWdKDKWzsY9DwfSCg1GEQMobhOQaoyLZqfKwxnm5kG04ZfvCIqDt6vXnvDk/FkyRf+Z/PEeHOi/vpw5CjJ0qWwCF0iWM2LJk1gSKhvIQUspzwKymmBWz87y33r77IN4Gi3o62yqOH1c3KQnBR0jj++KHd8j/iRQJ7EpdRx0D2FjizqDgQXTGYT+VX3cTtv+J+vkPfhZKR7Sb6Iu91W+EUoxtG9tHYd7LIMSgwTLAs7xsCzmmmuBQ8Q08iBKgqNkpzMzmFjqEUjSO3Su1RPJnZtt6HkFExZBxyfl2o/MI3Ud9647qa2bb8n0mHxv96XnnDZSG1kCPjzl43I2k1hfX4jnU3eqYiZgTvZOdPK2n03t1TGXYsAivFgsYElG/aV93QaWQqSKGQffaQoTflky74pstl/txCbzLuxcnUq+FCdDpJ6ifJzso4PqqvFm1QfVaHEIcZmp/tx7bv6/t043kACcsWSJjmPzOP+OxZDBDwnimjOZk1+sZAHUjw7oT4OQ6MCua8cRCziR2YA7fMm1BwWZoPnYwUtPzxeXypAwD9AT2cphNH1ilCUb0S1QLgE7AcBvJTYSZrLwsTQWBqngpv6LlZ/o1jdCMSj+QZdv0JzTRJ6HvvGhiJFidczXnDn3Ee4Cn7TTQk2SNGcWXaptM6P1qjKCDhrWmZGvlC3yBS8fOCw1YnQkmtGfq/r/nUAC60/gJ2wqeyNhO/RDm4d5tz95JweDoQ7ipjgIrgkcP6Te9PXlQL1G130hT7BEroVlrtsICjggY2wvCC3uo0g1HTq7Fx9pySW4ux58rp6bl8qBWVHoUO686ejCGeCxVtTUzKeFMjQzwi6znudyz7ENV7F0lLQuxUMpPRaXy8BDbdwtuTsYEqNg3DT9r2wDg6V/90DpwOA+XLBnPbuXPpDJ0hpOnjXV97skyMWlfAoPjQXDwjdf2DIV7F/+Mn/LNWED7yA0zNH6AQDshJx8oPT/ZlVOwXTPpwv3dLIwFEP75sqwsXY+n5CkiTCn8fFrPu4pyjuXdexsZdHJaWVLaUjryu2Hb5sD0RJs0hMzuHoonAxcXa/+8yCwAKTyzeaqOg0x2hcYp0BzgKQ5BzNkcsJySYzv6SQVAv4O9vQ5pMC9wx7s7M7vdyn+gkA4iNwOOgGvCg7rE/liKINyem8bVOdJeZsH8favjA9Fv9Ws14po2JJ1oEYp9bgTOzWe7lwmhMvLJEr+KjPs56710uv3UJu/rQ/Z+j2gCGYHm/BEBQHDdOHy1qKloPbdNdxPTSxwIPMH32oh2BhTQtCfmmLATgw+iEQ0HgTMzRd1fH8ZuxHA4a4dh83ETvQOi0aBHKqwAfhBjcdxa5Kb3qlvShBFH2GLiENLJJt/uPzmctb9r0SWz4HS4KVLpf6jWXGcgctOTkSR1Rk4saAlAvHg81vEuYj+KlC2vS0JlIFUEhsWat71Hl6gVcUFJl3HyLEE0bqZ0mGXhwJ20ipLqDRl4oXJQ0hpqJfs0BoIxAa4GWYst5NC261E60IMykjk1zjyyO6hFRbIe6s71rx7fM8Wuhw8Iiwn2RB/S/B4BsTztl+oKiXnd3xjtInmmCQlk5rLXovcIlFq+i9343bkgzoHd9f+dBq721RYC/0YNeqLAkqlUWHCkQ6+LEMtJD6+jet6a87Ng+hpkep+3u3pAuW5y2/pIrSh6XLs/i0gbECmFvTy1GVV8gIfrHZbM2dDCfS0yjjaKbQqvTm1dq4E31WI8uxZ0IC53CeNoSNi92wPR8hLYR9Jwoo1ZxT4COO04Vj0cJ9zaXiuILx9C7tiMm4+/K/C52411zW/uUuSpw0yT3Oq75qeVAVtuGHqYSl2AQ+OuUiGlSxGagMC6Km3tR2ovebkI9V3rFdxcy/Fb39xpT4zVX5Y7LK+ieJmOl8KdL1tDw8UjGWaaCEVdLbgLLVaJoByrXAgpzQQ2HQ247CplBr7g3463JoKFzCvIqQWTJsQu+c7YKp1nGd1XF9b3a5QwrNVc3be71BZQZQUTR+ydrmmNw2GxAtBMO7Gpw0kmXFgnwrUbjzjV6YV/i94TMpnC3H9Jgfv77SpnGVKPqMARXqKh1WLDkJq4zYmy0E3MvfAmDgxapNsIHQQHZ3cw9p4j6s2YV63WV/Y+K91b0V0XGe/rbrFHyER6DkuxbkK1+bIJ/yAh/W5JG9CdOGWLL94AtfaS1LKeMYkzKJd4ZNLUXn7F2Oo5TQri1Hw0P4Jb4MqzGVaYHwDzWbz+Z7ehM/mGUkg+15zVudOHpXOZCmJjsW7VsX+0dyWDWXnztEAwPFnly95sw5aoFbmHBXxJkCXhSydvZaQmFj1Vc8RWnXGs8l8IJtF0RpB1ox7WtIAfy5ITqHe8UNf7ZPVoD+5uhIjoP4Ha/Yb3ChV0zcuNM5yK8Ktz9UMvgpAOeWhQUPYROjO5ncyUdY1Ucz+U0aXy288BoMU4XY/JX1jdyKPxe2/qcmAohTlfoAJeR57k72x0RsctADstoD9dN9OPFAvImNok9OaIupl2TeeTphR5CYcVnjeXpp/YLcC6ZwKIsSSdv2ZMB/S9negu9IELZdhQAAy2xNojx+WBpYNMbQGUYBjt9jvcJQFDCrAIVYkEJGbT98K111nolgx43eCsFJ++3Ls7nTPFv+WJoBtL9n7dlTk2o8F0WmHJikJgY2+5DZblJxq89ddl3oK4BAl6JeSb3N51oT9AF+Rr2SPpRP38NeEh/r4MQEkWxYH09zJAnYyrdbPNO/KNK0lHWVxdjJRuRjXqAyNNgkk2Nb71o27iUkiw0I0Pn/m/vZLFDA5tWkf+5+e3GNS2TkRG7ISOgICLhAk1OO0OMTGg+41No0HOvZtEyeZzWvXJlH3B+IkaGkLE2DPOb8qhDaFB6Nh6jnGuYOMAbs1cVsHhTFvgRuW31Z+LRJOKr1hpwDqvYWi+fVbiyQWHzkQrEwvPyzSP59ZCu9XOhGkPXu60/dV2gCwvwEJXdwn8ESMkCmZCysNZx5+3WtuxXlSXScQg8W5Qhf+m9Hx/Plu0A9BmROFua/eJzRM44k0x27GMCfT+o4x6lSfZnPjlEO66StxxTW6tN++Ut+9YtiWc8kAZG7FOLq7dxUpvJGKKNcjTRJKw+GBuYK2szXjQWiMvdfAGPR9rRvsyxtBqt8HAGKqffQuNezpI7hoIORZQy4dc4xew2t3G/kiVh0Cp6vFAR+HGKEODkIqGFwVzezVhh6B8W0OTyYdPom4dpBT6h4L1uAs5eEKeB62ipTcZl9AI38ID5yG6t8iG4z0cZDQkqLCZt2uH+KYnf8WSjxdPXhLt5HmVuYFQSrbeFCk21dydUjPfwDt/eaYp0R4BENvUw4zRUSxNm78G3wzw3NIRcaN+genW+tZKfb8VeQDb4FI7poDqDnq7m22w9zYdixeo1s7nibqnp4PcExc3T4gQRdHzbbaLYgMbbi4GGtO9qRfQVmqXQCHpnqjO7Oyc9N4QVoxoz080jsfuLa8bOvggtbIRx/0XCkNm2Wczd3VGPjKhlaGZmUQjfIaPdMUsbNjO6Yh7J9ZBNIuv3qsZf+ABwdJar7aqcj/3ZAOMJ2G6yOZ7Z2a6bdVH7+2IutWMQhYIG7jxFHRo9fn7AMcMNNTs1EA8gBeeSVOOGmjS+oGPgkvX2zzGgx/VysYK0LAcedWnFtXJAG65e60TL1LZ+a6JeKWyxP0mjVJdSys+GaaaN0ofKyqXgQYsgaZ0DmJaWsPvcz3+5aIHN9htUKvn5obCzut+YQojNzYwG7cfO6aGmMSBg5ewnVEhJiRWqO1U9zmiqzdxP435dkBHEiTVELU9YW+3vU38AJveFc+RphdcvxUUsYXsEuY2kmzcpO8Ao4gQUmEg+etiDe9hvJzE7ZDnAQPoQRmh/6giJmPVYIK6dEi5TqHobOLj+OUJuGbVLgbLn1HezUIpdLRI+PD0qeXQGs/TQWNasLvdCA1S8AfN2wxCM2z5GmU2FJIyLIvnalusqItJEwWcNWBfaJGYwcgox7R5K918PPUmKLya7DBqmV98j5BHc2TABMW7mewZLL25tScheuLKT274G4TvB/Ro8rsxFqrHSSSRQKyAeyr+YAdzJQ6eLue6HOvZ2le+iNTBOozWP9xJnzWfEK+xpPNEpiXRp9IJF0neyxvVCsf/d/q6P09gxyezSV4cbpnJYpCRdb6MamHbwmWZo60elsR1iqBbtMu+d2zCThMtpHq4fNdUEOaW1ndvdzZfHJMlkPKrwEBNK0nkR3xWq6dpsbKUj6/v3xioTH4CJ1WZP/Bf7+34jUwUHkOaoZcdygG8CzxUVkxrr+BuSPyLkVWTSYmFRUvpRS9kK+AoJiRmlPHNGi3Fk3umfqU0uJEYK4zVFum2JKF18UqGueruT4nBCVYw2LDaI9jmS39GqCGJslyH6XpTInuFzPv/UfEIbGwK9yjlI4JiieLF/kQm3pSTiduZk6aLW9MxwYrc25yI5rqNNZgfPLjODpzg35M62f6rAF1oMxUxkGpqSqOySF2yXqIJdDAOx6YMLiX4/023WWy3jLPrfO6suU38OGlHd1AFeQshiIfVqPi6333XZczFAeIpSQwGCWtCSD9MIdsFz8dNcuUG1s9dPQyUX+a2sfLPkCdnzuQxHO61K0ZwabzS6bKuFgJKJeBgp6B54V5EGcRMOblVAClgK+/bn/LRpWuQPdIYf8bCttWL3xhbRvEXiBVa5SSvcKFoYu9m28MfSznlp3HmDaA4EUzYRvgiTvFZCqaiJ9ae7Tbj29SUC33miioOIEhHTAjtY9jW3tusslIc6tX62E5I63LQNtVeHfVPBq6ZDbpWN3O3+QeRSnGCzBQ4STvPYVsKHhpAMa1mLpMIp2B9AYF4t68RLwUY5Z5nFBzyzNjXB0cs4TZ/vl/dQJWNXpCykrxr8cy85oOzenN1tXtivW+1cgFEJdKLvG+dZclWo7jiIxdO2i5a4+APPo7xyNA4yQtzV7pxxCJAQesN0ajPcEfGt7NHCO4j7vE7hKU6/5V7sGs9ASoKOX3r3cU8NGOj1AUSf+LxqY7BSBFwOBOh0wK/92stSF1E+ine+AaWf3bZvTRFbVSxpt+PdnEn/TLLKlan/wycBVu0Nj+UsO9/xuFHNuBsqnd44wyxGMZ+lwtdebEU95am2t20f8Pgbkjxa811rYFRUvEKG5dfQpLWs2S3ukknSaEKFjJD6eYYb8BiUECkCMgIuLC9a8z6vCOKN9DGUy5wZsyyt/WVNxyGspYpq1p+C6QX8XjA7u3ulwq9l2oP5+36+e2SXOa4qUXO8cEOdsL7hFjBtHkO7fLCotyUHbHb9bbVpDTXr2XNc4+YFF0b7YXjR63FmWi2TSSEZW/0VBIHaOBramJ3o892gDg1l58sz9w4bMV5TQ8tuPNsDj11yP8Q8J5M6cVTAt/qRK/L48H24zmgoK1N+IV30OxJYIY2IwJcO8htpGKll+AtkqlZsrEeycN/p6sPw0d/2isvlm4TuzQfx9WomoKhtnP1InkTBrhBbjNTfpn7qpmOiw7M4D9APtDIy1k6lxC8C+9/aiIkIgmCn/p66GImdZg2rApOO7lGWd+VI8wRfZDg07PYAribF53EOXZPuu0sRyWGJzHbOpK+t+bQ8T92n1U2xlv/GX0ZjizvihXXn0RTZxOOHtE4kHzWIv8EaLHGFY0yFsjcM4JDMxgGttAFgGbOTUWfXZCpVt/KgLCTR+erbWXBGuUGRXorv2/4Ix1UNoitdOzBivMYOlGlvA5FedJPGsm+p5pCnIbkhTROp+FwIvmn1riaoahHxRJXM8+TNxrB+cn94G5X87vjEpbfjBHEIGF0FYNk2GCy3+8p/ef6a1ePgsMLR6V7898SRDOJYwAeAlixkvrNBDV9k2nq2IJ7gJXPkKI7Ui5bF1IaLbU4DpIofdMf4R1cj+F+TKzd9RFhNTjr2JWQUkto4OChoYsCelcmO7umdASO1dYj+GI06HCuhKm+tZfAd0dajCQoGgmqnAMnfKVmI/R9rLR5h8yBw8PzTMAFyToMT/6+C/BcGDC0lDl3wFGv8yZpV8KZElNxL0dU27hFKMDq1cxqBWf0tEOILE3nIbnYKOJWMI1ZtD+LW+QBQ+ppdKDpuAs1+H0ExfC7/6IggJidSqszqfwbm6AkBh9U5BfBWNJnJ54Je0zW6elpej4yFzOpFV7SNPzoutxXoByprivpVMEICQU7nfRZylaC7CDcX+Fvmukoh+Byppx+NjTb5Sq0hF7q0A53+vKaO8nZrrvrEyfE2UljT9Kn3/54btbPSBG+jjprm0K3PBdZ/h1I5vpZ/HhOSWCQUGSDsqbjAV93yA4zd4ckm3O2Kr40vjIUAq/MScDi3TfYGAqHnehgMZ2qwfQKmHbyFjUYxRgXM4kCr8PmiSV5jrac29mGOBI7aKcno/n324Cz+X8CxjqH51tsQF6pYoM1T3UN86TgU5mYv2oTjivokgyPUJP83fi3mQ0yH+e2qVaaDW3UHY5S91QhBiIwCLssNoI2w=
Variant 1
DifficultyLevel
544
Question
One billion is one thousand million.
Which of the following is 24 billion?
Worked Solution
|
|
24 billion |
= 24 × 1000 × 1 000 000 |
|
= 24 000 000 000 |
|
= 2.4 × 1010 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | One billion is one thousand million.
Which of the following is 24 billion?
|
workedSolution | sm_nogap Using the description:
| | |
| --------------------- | -------------- |
| 24 billion | \= 24 × 1000 × 1 000 000 |
|| \= 24 000 000 000|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | 2.4 × 1010 |
x | 2.4 × 1011 |
x | 24 × 1010 |
x | 24 × 1011 |
U2FsdGVkX1+VOHajggqbPOavjVqvqQ/aU+3nPDB7JmUk5d3WkXTfwM/icCjbIKhtFr2iFZsfy/bkSsUvDdSzuX3siePRJFNsNA069VxIUlGqtXDYlkBN0+8+BXUCN/XvmINONwTz3E02AnwiHzjoQkV58q/0r7exM+JzeELY4Gait3kuoSEULwwWluxbBgAK1nO8MjKMUlzxMbjYwEwRYAL6loxPM6f1+QIcsPw/GJAQpMthfT6Gb6yDS5q/s5W7ijK8dwalM8z6/vDLwWelrDhxWAT38FkuSfXWi1bmRBuXX87pOM//HcXXb4NUjMbgD31YNDjES667nTW1YO/zzFOT4pczHLr2+FigEmty2SI/tpjnpVdmVrTqwcE4pWNGG1SxAyEAqq23tnMjbU9ymTA3P5rl17afNha5QrsUaUvP6d0GkvzYPhe+HUk2yHHPR71M4SIkEwIAUMybQ9E5WvsXbFa6RYSoMyy2UYJJIQMprGvv4bjtQ+q0ECkbxBSB/gmtHS0QgOCJMU1qixNGZCek08yfx0w+AaVmaVc5NqXdwFr3KnrmNoA1Ttbt0rfg+veKcXxcxco3wxsbc+xVXYiAHN20HS1NtZYh65ZoCCELvIYQnR0ZAw9KEiSO8rYlibCqxZNyzL5wGvTl6SCxIZ3XTLZyVGcYi9o1q/gw0Eb6h7xqj11dSmL/UMZAkPNmvU0ZIYfOAnGNkOr3CXgyYzeyX41pUQOYFOK+dqCEMqBAwOMwEFBc2DVp1f/NUWBhqQZTR+LQcaIcuBcJGRQmVAYokIoPPV/863tCL3N7w/JteYp1s1lP1ExjWR9jaB8hav8NwoMBba1Ogfvh1YVCyHzJJI59ICbht+9DWT8UHzOztiWRhq6ftUcXBPiE7gCn/e4pIuTo5VUVzGDjN0K/j0yznUqGnc+BfsszizGR7+R+paKqJ9QxqGxfnAlTuGlUICGSa23cFjU2LpzT26MbrT5pUQc85RtKVqhkgxvhPzsgMohm/2EM3fFq+KOaPqp6Vyc36Elqdc7mX6TP/UT1iHJmIRoZaGWTRGvfhWkWiOuQMG7GmyJngrwAShjT+cfRP7am/0BiMjfmicdNFtftBrYN2W/pU+m42lS5M6AD8gyIQF8rVOxdft/lostMR94PFybBqcO1UqTdN6b6y9zERZcBrbz+mHOKIRrhjhbHEsrOydmdAEoA9siRSO4mNmx1yIb7DZnPpmFEh28m8rjb1GbFNVSELWBFNORfJA7z6nI34pk2WLsb3nf5TQC0WfRldSroGFmzu5xx/yJLauzveBkRjTRjXRRe593SAAMi77qLhh51f8o2eSHN/kQ+AIuqJtlXSN3Z3o4TrPVGgABmFV3Qmj7u2GOtrMh6p4PRnNdzMixnSpZh+LFMcORRMxDsNO7xFEOx7+/yFWQzXCKYQATMiqdxkxa4KTcOD3MykECdsnVOZCIqod64ihoHyTMM/YUPfvMw1hFFbwgbmDme1RWnIQbKKdme8hmS/y+j8SDEbyBptDVOdsQ4v3EZON05A5aA+U7Ctfk5ed4USA4NPBRNpfvY9GSeQW6Izw39gnRFLRFWlx9pT0vSkAIT2jMl+GGYV6nlx7yMTnZ6KWH+aTxmQpcLO/WzEG+MwKJe9RL1ssgqPEUJP0yBuj6v74neTmSAcQ4hI5kVE5NW53s07RLHOE87reh//PAOJTRElYTRrCjmhQDvMXFyebrahT7WvxMZxtJVHjVMYgitsHevhbKVIemSsYyscpX/3kJSS5L9Qs+Nlm/2I9sCQIPZqMkAKaWrVjR+dVLagBYoMSJ463wst24cdk6CIAuSSSh2EjkApAQDkLClRAKE8vuHKj95XJ4Zc7+YB7ZWR8kuvG+9XV4t7MT93XiM9MY+l0N+UOedypCmA7FmuiQ1d3cjvhJDgY0X/ibCPTx9GmkJTKbieQSdHsKUmFg6LflCJPKFlhWpXq8KJ+FczXg0VeUGu9b0peRYAwuKzb9b8dPVEHGiziLPmETtBddwjDes1dMIeoSa+P8adQlT147jjNVm1W6dtsq+AZgDrZ8+Tuh3jLLnFhCU4Pa2EYHbhzUYXv+bYlBn11IY5xqoxXnowvzo9ehIKkDLUTNJBhVMHShNgJdA6Cy4lBLOyvL7GUwU3dDnS5Q4u2J5xzGUoKQfsh6E9qXq5yaBvLSOtVK0XAGfsjbgV9GkhYJgkgoI4kd9gaTZnodizit3O4CmElmX01fs589qnYV++TcTGlvcoI3KFS+FlKFDBqE2bq8Js8je3YMl0fgDhUdX8TonQY5dqd11rI9stPgVQUJ9+epD3x4PFz5cJeYBbatDgGRQNkSpc0tV6UPr/vUPlSCM2feFx366e6+/eH7x208ojXBjTZGR4WXOvPkNjWn3GoiNaevdxq9h0oIPNw77F9MTQi/S+pmvyFGb2WNsaHPr8s+H9Pqf7yJPcIEll8pKWWIGmrIWI3ouuPyhCpvrbjAsfM3x2OwpBOlgbSAEBrYEQflsNUE0Aldq+FuYO8D4GGD2tuwiGh/0LhCJ13MjOWWbiEJNbF63anyVe/C/Qf8LEzSWl2uaxNm/z2C8acHIYVArsIPsL9NFlysXBy1nZGoIvMv+r1ROrm3vjUVCVQs/d4xoljLeQoR0NRUDb1DldPVM2BLLtIGD9DqtSRrzXIuOqpT1rwORZcgN7uiYSLQSrNQGmvUpyVO8MOwd+HRukyTX89+jcTrLDa7Y8FYyQKKey7HYmd0kAJTiv0yuiF351mkwLqjRiCIP8xScd7H9c4YGukEGzoqFn7t/hgcReGdf5Dpd2qrogg/aQSnakAyKF5w0JkyJELjS/T20Omc/SfudUvqwzIP3OtIg9zC1zodND6ywjzFxE47D2Jdjk3MoOEyUoOWo1PZTYZIMzEMXYY29I2OEuPYXVTKMQ3bBuZ4XejXfTSxwAyzy8+wVfCUZt15hZC3tHgfcX8dRFmxDKDEU+YvXfYcwfJej2nNols0TkFX+68ARf+wCL9y7LAAWp2z/xZQYMxyWZ5TcSWxwM9m+Xz9TtHHFluQDqBBCMwnMsJWh9e9GU05CRjJ3/2T2oyW0YVJuKKSnd+HcHJ1wA2etso2SXcyruVvMDKXaBuSKr2k93JKBawex9FHztpHppPZIDCCfbG5epS2jsbXAo7YZUTqLJ3pxM9WG7xgK/eZ4H5g6XcO0oWJmCyG2+sJwgTHfbUfMX+gdzO1tPSbS7hr96mx4MLZzMSMMSHpbxQMULAgxfsaTVJoknG3/mQf1vHngz8wQkPK8+hvxAkS6IAHg4uNGNslwgh7566o6JCNROAAdVrzKDlQkddZkCDGthI/GI+0BRp1D0fotiKT8i6UJvW9ry1GXC1mJOn7cuaiVo7byzf5EHjdMp4W49ZjA8MnRnZECHqvURBLIhZAUU/qQQDjSpXZIjVnOBx5Wd9H3P0xXTvK+cMFz8c2EwHoxC/NsocAbcKSDw6urI0ypYoskO8sf/u3eYwqxn+VuMOwt+DcKr2ECgMMUxk5Th0u/otLUSbF1Ag7S6YjDzaoBf4+m3ZqM+lkJbAmT54OYOU4XVr5Et+VJ2Vhxo7zlm3NUQyLS3TzmifP7p7TVEKmFALjgQ7xnyhtEyAnxigKFGEWTeTApPS4MNU4G2YaNGS4O/XsM1hCFOgwv8eoMqTunQ5JPB3zn8Qq7LhlVOaSSqCMupKIbK8Tk2B3cD5Z8/H+CkqDJDZnF7gOJi+LwZiCeFisU1EbssGaJUXzGU3AGQu24rSDoXaMkuLuX99ub2CluCLaVb1HD5daz8vgXGN+apIbshItJkUdN6JBTKp0PZjsepQGHuOhOC1DKAI2wsXuZnY7+nCaJsrw3e+Pd2UUGsUhSoTaBKdwa81ZI1QO+Yq4VPGp0xw3/JFBvZ26TrpQOIyBKD56bTorXHaI9wL5uqYLtnmCoTNrqVQRNYzKomNRbBMmnTWD61+AJ4/jV212QXoko3dkw+20SpNfKMx8yblgG3NjjEIeBC+sxFVBgTDvFsTF4wqBEmHOtu3QAq0hAkzmVVjUnBufeRdZonnX1xFAecIQ3ZMzRqoXNEqU6kqLbMhKmfSlqHaDcK6Jszrrg1kP4Lc9aLZHZZvuedP4kLQv0Zu9ieS91T3TYlTVNJLk4XOM0qDl6LmG+FN8CAGqsxPeC1oqmkgs56fBONpv/oD2r0lESpe3onUMF4RqMY4qEbz/WYf7N9J/iUyM47XlsIQQYDULVkGXazTG47I1OGezYwb/AbaGpE6UTfZc3b4p3dyim5DZFom2RoJs6cFY4r0y3BRryjZ48YhdXhduP+91btEZ/lu//pqYRtU1d3o9qLUmjGfFj9u5lzNlLuo1dklJZrslGbkX2giYKw8CHC0cToGxDksNpHq/GXLVeUs54WS4Jwdvyhd8w1jcJAqcuPm2QIKpo17pPw6rt66i9hpZNZmuZlKynfj08LRH53hdd40AoQsA9WX1fJ0hY3YBcSMfINDmpQBMNswPa1iSqx8AUl+1G2DLo8aEkKw7OtJJ3f/hILflO9W1JQXjkirxlb3JpuzMM7I5NRBhZzLcpaf8y64ZQRA/HaTWavXTqtORELQQ5f65l67GNWJ6uxZ2UgPEXNwaVX6zPQwxo2XumfRcavpIqrLSlXceSuNy9xbahe4SANrsisAxSG2wTf6F3z4QqBN7rcrqUXigFRLDeLp14tcz93WcObBl15/qTqa3X8UfW2YHHokocZo+kwccX0TX1nuF3gEYeiiSAz8nE5PZEpR15hHMtXiKwKCxkPrIhVI0Dqxui/HwWctE61FF2vRpUxcDzi1yx2Pl3kjtS1Oj/93jGUb+8i6P89vzoi+jx/nm9jI/XX4XYxy+FOkwGe4kdsguBSKOFUemndWMbHtvyMUNZN959lewCh4gnPRS8fqe5msGhTRfEEFmP6VSHSp7XH6cnPZKS6LKhX8i1L2Ho+jOuqPrFvF2y0nzKGEk1sHK6FhWIipMv5m983zNsuosyCKsDEU56/lKRmI3OFUZlAKbldY2CVTSf7+poRW1H/SZI/FBM2DIosM9kSzePFI8cyocJ7IS5nKdIihKeUIBCred0o0bgbmfDqePeJjtPr1g0AmxKyOTb/RrxUATQzJvsQXojsWEU5oX/WczNbSTIhtt4Oo1dEfYv1/K6aJHy2RYXWfL1IoHlL/ROTCGcPrVMGZ6p+Q5XA6CvReARDFaHnDgPCWbHbQcAqtS/mTvmLW8T2FFl/YUgcnVoV1R23F5uzhgNHVps4XOX4sMr89DF8UW+HvvhIE4Bir7jV5KEuvfFD8vZh1SrGygRb/smTUpCpRzzhBIykSqZWwhxJ5eDt3xkziE+QSvWyx9AxD+CQth9tOm2ZRfii3wIgIf2KZt1qe4MmCmBgeDQer8Jqp62vfH4UOXLecLIvRH3Bk2LmIGJnWBm4FHAmESxm0BZN/rdU/ijXm3GWTMhTR7wWTe7JKfG4pnoW4YUAftbrhT7hgGBsxi/AjkLm32pHPnPFUZZxumEq1ivUZGAMhqvrp+Vkge7QZqT27lch0B8OFmTOTj690b2pbMMObUqNnC/FRfgAXFzmp6szSaC32EXlKHlF1pDxWZSi2ygxx9hl1bK6bA42BQJaufzRMuvEfSCInTc23xd14S4Tfx2Kau6CNGPXpmPwjgvkHI9/Cbi5LH519lqwDvE6E48dF06h94tpywB6eJTrKcE6uL3eaEUttTw7zA3ckAsjhZjuLzWG59yi90v4Ld9bXd78niPWidxOqLUQRidxbDEWc9Px+zIW5few0nnIZYiB2YXSR02bIiMGtb2yUdC6bLLOm8QiHnQKhozkll5y6ByYL9g8w73tJUSgxHjizQC87A4p75ZeJZrYHgOejJ8QmpN61uR6kg9Z+yTuF24Fgd/WtTMIy4iOzWQ+QY9meOAyxmTl11som/Nr3t0px2vVZdxdlOBu2HH3vFWJbIc7D3AbdHvsuSgfGKheYzsNiJFp1CZjxpwdBSrm6uYgnBLjwETLSp6sM3LePUaaxLYJK8C4Q/14quiX/A5KBMqB6uxuSba/HjHtLbq7jEEZGCEpMfQSn2/nVWZw5e/GuCuihi1O8SVcHbujohx9tUMUhRL6CssVdp2qTgthQtI/0E3CXWhd13CldtQDtzj6H/jac2x3eOQxLdECmPtKwYBzWg1rI4+RzCcZVFheUawQTrtOMITAgRhf5zPajOmW3cBSyDg1eJPTJDEHRa9kFTg95QPzH6p5Omb8rihQAArTwC14IfR3yoiFZCq/eckjXLNyhM6cGQUzC7YQP23YWfXNjJ1W4qlGBcvw+h3m+OcxKD27MHGjglB2z2zkbGw2klUmWCQPuuP8HiU+FgQeiiAfkeQiQkgcZ4hqpLwDpkUuY8SJFyWAzKi6JnZbXhRsg0v3DhqQs/fO+/S+sAS4paGW1YXUJATbJ8upz3e8MakMuHZD+GusvWtjd0HLGw3UYpQQohp5TLBcDBZQYbxDZGrrMePpPTD5NEyLalYfNrfoFa27boFRWNMBiahi5gc8s9jpkTz91KujnZU8gXinASiZ9/lSMXJki6NjMxQmj69pP4tyN5zvohfVWnU+qOF7XGSWWyVgyWLcQAlXMEyxiWzDyjvcCfFGlnzbWU6EwrvxwK5LX5+JhCteuECxupU+R+Bond+/ijNLsBh8girqOlNGVyGwOwedcod3PvSAXP/a8J7r4oXwRprv/ZPcwk/Ik7PCio4V/3GlYAKiEYxJb2uHlp7B3EfBLkxgiegQR2mxjoy4OgKhvzT04TDWcDY7m/Ms7qgFhk7TXU6o3CaJ/YXR1ekVlkEfH538qsRKWb3ONMJIhjvTjeTy1JkPmit0jlpkpqceDVPyGIMREd+lYVaWfmhMB13w59tuFFrv00w7Yx+OGf+NMoRGMCC5+qTuCnSRkkrq7RLaHFEajuiouWkYE/ioTaeak0DuUoSem9aO6/y/1THT1QdQ5djV5qjiVhRJLd/McgeWD9DWhLUm81EDcjwagJpmrLqNxWtdIbri4cDkrciRIPs/QU9xsMm2QGbgiXv1wRPADQSPk+5dDDBGOKrl2YnVUX5cHcUT7QJfQ1j1tXiGHmEPmK9FDyLZM7R98+OoIyBmeooQA7oKN3sHUotkUtevKWoB2C29J00xwx9D2aGQqA3nmulk3/ty3tfuvBwuc+EeNQsbd/KKrBuB6jMgFLWqCI6MizPNn1mpscYhmk28h2hMfo+pLH0ttfryAlKTRrn3utssdLSG/Ld2fYmRbCc7ngprQYEdij8780RVAieBOujWQyLIYbY9sa87Vp/8dkizsToU9g8frWo1EuX00lCDPqeSlOwZWUbV4jWhrllF3yHRKrkeF4azTyf7BwMJ73iYF15V1oo22jJgbB7+KGSP6yHVYDKrI4q/YjZKKViS29hwZu/5SJw3vbSeZygl/H7XV3uLYQ2GreUECTg/TSXa4Hfm9yDOI9SQrMANdkqpXijqVWQZ2iXOYmh3ViEGVYw2Qd2IuXCWnZCA0mJbfpo2uDFouNRXmfNUirbNyIhUhW8CdsOz7/fDka32BqLWo7hJOg/uw1jbJCnNLhaNgH7Du1IcmA6Hq+rB/pOVrwZzem6ayD/IIWmoXj+sCWDv58iYIAqrRit+RcKq2vMGGSSOAZKl2TojUnSHE0O15S1C8pQeU6kiZ8AMPuKdDOltI3AqNF4l57VLNsRU2FqXommKsWN+aHMH6acD9COvxQ6oXE5mxPMGaK9N6A9ibnZ+1JihNuyZzrMsq+SOEO+/LGvLKmzHJB7f3jo+ThsiEdDVja24O0rqhdhpG+t1jCw0YVfF9ynl/BWYTpcagqmT/Ph13I4q9MdjX5ImITMA3rdqVGNHB/lPAXlXEKxt7+hyCozJ12nns/aN3DZxj+m4COLGUKJbnr5lT/MIDzdUwt2jC+3KAJ8qAl3C+y1jLYR4Z2947apLLbHJ9K6Z6AOdx61iLa1323FQ7zY7dTd658c/5INdf+KE+EhkZ4v6Rje5m9hGyZh7omc/4azhWqD1Ti674bixazDaaLx1dDDbIPYUhvvimR8xe4OB3aXmDwd1Tz512BJVBmMKFt2AlVqd02TJj6ITRaXVhsACmMogy91imLqPZX5tMQidACGnr7Jc6F/tGahCFtmRGnJw5neonsbZFNQfciScL2XmsmMzfPlzMzS0ANJ7xPGuuzXcAyo4TURJOdO2kSoymEGlxJLzVCN+T+Tjk8lKZ74XOBQUXTdIFSg1lQb8NysSOs+6CACHrAOov+IGXN/fyhuJ4eMKWij1BGusvPsi7fBW8y77Khx+tF8oNJCiU+VHO0A7Fve31e+eADd72OIJcECY+FKDPnJ6E2C10h4TWWxTGSbRkjSsvIECCVOilrWYYr+QfrSHDJ9Nurv13OBc7eJgcOdiDA5UaNXcUF1TSuWmPb8tkx6h0gntEg//pdd0L/KUoEZGAATBoRBqT+Q0soyFZF1OenOE714ZsS/PU3vkKqmyQfLTT/g0RVV+NQ7wwmCb0GD1G/8MibwO3IqAoV2AZFUG3+Q3vUG1XHS0Dfrj1FlfdFm
Variant 2
DifficultyLevel
540
Question
One billion is one thousand million.
Which of the following is 900 billion?
Worked Solution
|
|
900 billion |
= 900 × 1000 × 1 000 000 |
|
= 900 000 000 000 |
|
= 9.0 × 1011 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | One billion is one thousand million.
Which of the following is 900 billion?
|
workedSolution | sm_nogap Using the description:
| | |
| --------------------- | -------------- |
| 900 billion | \= 900 × 1000 × 1 000 000 |
|| \= 900 000 000 000|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 9.0 × 1014 |
x | 9.0 × 1012 |
✓ | 9.0 × 1011 |
x | 9.0 × 1010 |
U2FsdGVkX1+uvfxCQxoDYFISOCGYD+BdW3jAhJJwlQ+gXmK01P9Y1EzILEOQtQ1sVR2a8PvaEcJ0KMVQG0qF6les6dxGK7XStGPKfqklR6v7YSfCOmKbuNoDZI8QxEg9Z/SuUWKqo5qNETI+ZVrY8w37/c+omuhqwiqkfaQtuMeU0pkQriIXQOT/4Ov6NqmOJZKFEeeC4d7tZHAooYk5DWg1cSy0RiMKTGyjcbJ+TPDQAopuqzzDZV8UbGIjeQnvysnXwTHjwJYi2LXQpw0oeztOLRBZ7HmbfhmMyjHbf22PUuL1DIk9M8TTSaVA4LNA94Chdwm6LAkvaCBbmZspblV5SutaSiWCo0fDU9WZBR8EcqPiY/nvLnVi9GY6GWYx4kpySgR87a5tIHfp0ivIZpmgVe57Wf8xdsiwqvahsMP1OzQ8cvfM/cd9O9m5bhn9PFgYKZPcg9bOGt/s9qlzXRLhHQ7nyXci1mmcvrPQKOyBBviHCgWZUMSl9+AUqHhOQX2o0JHwxBJwcYogMmusONO0HUxvBa+EbnB228WwIANE/zzi2zjMnVeWWmfU2uQO6ZSYK+ULFtZws31p5VPtjlCrGq24Eg6d3mLlZBg3XPdGZPID2HDq4Vw0URpI1ae3E9/n4UFatXGGt8efwYQkrQct9xo4oMh+f5hVMgezTdS2vA2QiPDpK5LkW4C0jpM8OQrHpQD33+FlKyNEB31n4SJQupbjH9046DvRTbOL52vIb4wSYfQguev7P3e1cvi5LYIevSW3399FaTwqFOPSwbJ43mAqORdUCEjT7LYwS3W6XRcuBBOyGcmF2G3gPOIhcB8RUzjbblklD8kBu2ZyxBBz/q3eNsJBZMj/6kttLb9WaHDnzNAQDI1fun3TUxKbW08Pfr0itMXmMiky0+yzxW2ntcMBukK20guxT1yoLWZI9DQ2OzoKu+LD90SWl4uV3PivtVYqN4NitLHJRPrt/N6AWSqEfa1IBsxOhDsPiwMAtygZ37CmBjbToYfE8A5GXnAqb9BanE7x5PAQC1MO8WOKupVXreqh+Gxf9hcxKbmIMhCVWWMaEuvWIwrK2U0CpiB1JpOC8lUPx3k1H30ULmOv+o7m709Jp5TTB0ZPyYdKP2milKzNosJWBO2Ws7SOYfwwXzISVXvJlJ3AfSeOUVi9s+EfUIG+ZfIek/2ahOzaxHqtUXcWlXOkTvClk08NOyb2KV2eNKwHKfjyV3zp0y260lu8qxF9LBMGNW4dW8LUGq1M6Pze8TLYdn8sJ1/X26IYFW7JYDiS5Tcwc1MblnniXBNtb6ARbD9isJ2igw4UFKR1vVRD8cnJ3yBv4iSEUqrmdu6PcsxDv6xxOE29IGmYbK9DweHgrVb1LmZNqwVnYXH9vTp9coudSOkaGN28onp0pfKfwpD1ylxyAVJx5SGI1MRe8VjQiVd0MsYy06i67poPlLpZbaHpfywyueJsm0IFTiLT+h4wxnnF+if0YQiK5H8Fi5Kfr0QHahFRSkTpkWNv1/M91x2ZfdipDOlgiLYhSjc6kB9+AoQd6C/CPQxatkJASRVp170RPcUmRymN5BdVniruCsiu41b3r59WUDnKGGUdB9qDUyoMZIOBCBm57eWlboE9SmcG9NqqW4oN2aRSkRQCWHMyTuNS/J9bCht9TuUoKMc2wPtiLtrXoyGT3DA0uhiuTyHg02eB0P5UXIKuwzSjxc+Uu1OqbXlGpuchW9Spd/PWm7TGEhgcQuqo8FBMzT3puha5GwUzJ7tDQV4nsWFLSDS8vpTVxg0CUeYYu3HLz84Jf7zPzH18Pz+ChPLQPdW7Fcw9NjfaBx/R+LJu8XlVPOuy2IzjrwyIXul7sDkpsxQPwiZdymGKG06j/8YGVOJ7y4BHb1X3CEr/EewXFEflR1U8S3lKVd5e9J5Zf2+yESRTOfA2qr4Nnf8U76Th3KwFsQYun7SEMl/eUyzQnUAzYRqSfjc5owCmDCsxvakh2e6P0rvcISUj61dYqrHjdwah92Xmr+k8mbzSXOYjOhgVSGfaqBj5ASx8nP27pHw12/2wV+E7xeQZtZ3KLZpeim1PsRgAuOmdzfSkBme/OXzr0rsxHDjlddtCl1YwAO1NJHiP0d5Yp8aaJP+xrhBDBOoxMtEvmRc7F8L843iZgB7PIX9FRrM7BeVJFsnwtPo1dw+E2dms8uu0g2sydL4hIUAIInQXBF3HEYm5hOPebOx1tfnhqOwClPrt1p7V+im1PcK3XFZyQhjM75UeBqL1JDy+wqvCmGet2kkf16rUadBuQ9F3RbrJlYBSdEvvER7tC6EX+JLC7Wwke4xr7RP6FyNC0UcNjSuZQKKOCy1VTGAMQxgwq8uR8WtheeDTj+ea/N1AqpZZEPNgqDNGD7Cy/Ks9YCzkgwW6zoIoJwSBWVxNXK/cdj3DS4DbnyRAc8R/N4Wo4QZbjC0x6I01UxUjs1Oh9XZdpQvUusIi6oP72ntVIbjJEMx9mc1Q9dqDMXCDVBNuxflT5aS2QTjc9boYwWGKLEi3NFOhaA90m3hghqd/H0Cpk9/LHVg5YYC7oY87/uAm8wYsOHQC37YdtUyh1yxBMWG+nyMJmGDJoxYFpN7sZi3dXc6ks1VfyV5u+LC+Ccvzj78jqehaEP2e99Dm1+9ZgyzKyEI9uBCdJuHEsh+8Xd/MvcDtL23SNGkjvROSfdKpQNVRqmM6Fc+eAHWMTnV4S29/j314qfmklE7XyhjnTw+d1EDNyV2vmgb0LfZyEum/tkMSbxuKaqnTvxEJHzDu4PFo6ycobKNE3No5kmkY/66JWZkIetR0dkWTzVB7aK7j8J9zGXGCgwc2IP6EmQcsifqiqbva6e/5VieqkVK0DOX3mLP8ZeylLDKzFY+sium5C1mn3sldf7wY2onTk3vWTgnKQFSM7Ue6FDaDSr0ixxGRFJ7PAlT8Od0rtF8TIRLhP4wRorRD7ib+qmGlTvwDI2Plbc+tR0L+Va8Yb4Ase2oqomXkHgRevQRU/yLywt/q32d97jq28uhQI+TNrBOAex4xqE5Et/Jo46TJcbWnhQC6T9nXXvmMVJ6bVrmJ0Dp6AJfU32h3WXuGAiuFq84r60CpfsaCp37lbT2adkiBzDPlXLmkzCNlSm6X1pxeJfG78i0QKXcHiQ0trlTlCFj5IFyx1l9LKKMma4+QEvgPUt8PuOPJG5yMqUnreWqSMg0BqgSALsv3BBbJd064Ysxoc1/j84HcCaOUpOlw9KL+uB5BBEdu+I/UnXHoCaUd9zf3Vw9V7ZyHMLyRyGxDSLmPNDBA1ktXAqqcniBW3UDLB+3MLvLYPpBm6bl3Iakfa8f3ip4dD/hA+U6LEZhn9cw7waRgx2740jsIaMcRizzjyaNe4GK0cU5En2V2pa38OpT0SmpSjOopfTSBLC5LsjpTFXdK97SGRAX+LBxIsdeQ56K1fcpOeer2ckTNg0ZLl7AY180yV6kbhag1Xn9dKEMHeDT3xvxmnarfHrsWnsfXWF4MVO1RZkSbXrMuzyQ3axTFH07HJdPa5QI+p4WsqUtN+N8AOM7bFf3eeZPMvT4vm7DMre7F1zDHllJDDrnj0ikPjqjzOFfApZsfBaXxelToyWHP0fE4TfC/xPsxLAqrhdgtzhDBqiMF9iOB7ntbNJe2HR7phaJYeX2YzJnUKzxUKN26+3mZUdR+zNII0LDJ/qCXpTsmi7mRmSSKCTwRzVLZrty0jViW/QR/UBHkg1NCMFYx39b3tP6kmve7hB6yS5K4EfUP2qNasBBgUsFAWh6HQIG6Md2wflLtGqXLXd7uXWqCUeW/XCcFO+oVPE37NjzoB803S5J9sslzNfVQSHztFmHaxeeDDSsQUuvZ6m3DYIDBwy+YyCMdce9tMHSVSp3UfQzofh0BZa2Ys/B/rAlbONTS67W9zdEmGWfhU1odhrMLq581K0lCdy7wJyKuvbDCdhtZv6QzrwWck0CbKI179LWHFh+q0JtRqmrW4PjM9VXSYmyXKNLvcb5OVzmnj5rBkjwvyD5bu9uqfsc0d7Ji2cC8vajofFFDni4iEewq2PF5JyJkaUIKEYGf/p69Vz4ddtryWVfBZSsGhtrwl26ip5J/fY5avFosMppCA96GZPJVm5MX+tdWDJVTySAe0SckzuiGR3Tt/kUbAluwVCKIxU52lTrdzhkwPsJHXoFxNjvqBdOhxSikzm38do8GRHMUN4lUW9C2nji7/gmJYu5/5GiTO1gtYxXJaT92nSK5OwRlCygQbmyPJ7fGD7t3/nToYCHGEpWrAGG0ryPN/51bvTp9BbGLk0/nYjJDIHeWY5kHUhgUVfASus7N083nm33POAsNRxNtIN7kG/Buj0LCXvrsyqMNsomG8tTHkW2/qqEtvL7HfHQlpDMqA7njgbWB1Cz8NfQyFtados79IlaFbrySfYK4myP1sn7672EiCtXjTR0P3qcYXNT2xStP/LlhayckzsTfBorFbzc1QtmkuRsbeijvwoUANoe2xIBma2brRFo4MeL9rUZFkHrriAa19ZWGEBvzA+BqL7p6x8uAeIDydaCYqto1VC8WqYyhGdSeTbfCFDl1vvM4/V9VYd0AwkyMmc07KQrcTTuOiXhaynJbEMN7PItZoQfbhAclM7jEiidH7klQ2Wg//v9cZDbwMu3mV83qQ2V8P6PtM2Jp+XGa1Xuht0TFx61Iolht3bfyENXZa4stKHslQ0N4rJO1AoLQE00oyQk7qYMmGaaGcMnam/GdIlsn50l/43B8uRVWIPr+YbU9tXkMDTXsiPMhWViwAz5HrUaebcRJ88NLEWO3vuwbvhVWbhl41pTDUS7/jqR8Nr4yIQoOORZWODp2pyqZZHp4ntcSivrhU9F8ucLzvwIVBoboUWwTjQZ9yQbBIQAan0nMfoT3FBsDkObOY81aX5hMze8K5sfymmhV0g3mfO49MkEfzOflsIojjR3IlQ/d7QyE+AFKj+l5287Hj5EToQvyFjYBFGaQPkDzsBJWfLInP/xwgLGslckYlMpsHmmJavm6jSEtqWOJY9hKxYMGuATgOBZccGW173toiXdIAL4aDj5rhhICcMNqqiUev6gYtRrB+/iOLQm58wKxVx93UtKaKW/KTaUnOKP9sc33w804HD2zOdOrg5K0ZgC29GzBhfkA6ROInaZzFq/r0j51juqtpO76GN6rrAnwh7A7rGE1oEgbsak+zbU053DHgnDzb0uAcILOoUTXuHdr+kEffgyJn+gpsDbWWqFY9qiSwkl2qYro6B1slZccVqI5yCLJ/VuE8/0GNB1w9ss1n1ndnqxC9azLyqiGaITb4XalyZEG2WQhM8gnrMfcQukjuOSJ3cAWu9MGsxoxBGtlqD1rvoDrURuGKWJ6E0dsUr0ltm7vXF8YzDvKbkbgWQhvkBnBXJlj3hD3tpwVGIF0KZ1m0HdSMd5i2Bj2ewl3dh57Oct3LVu5GJAlLln7fWgUBPtZhIPyby+dR9PQFclvTnbHAlv9w8UHrkqxNW3fob4YMfpZ3Y8GY/IYwLFh5SVkMhItUa0yHaYYbq1YZp1WpefbRwHQRU6VC73Vra/HuLi8HZkljH8yT6jC//uo9ybQnGh7V428BljSP8FatIV3NJYAnug57GDZdAFJyL+PHtv5Jhu41knOrlkuuKJUKbl3PXtr0GcwKzVF14PKii4st36xevIC0sSfKrsDmJakqL6UIekrbZ+WTdJit2FSdRK9/YONHRR5WX5iSTh9FcW3S3IlRsApcmp+40IZARtgeCyGaf0d5I0BEQxJJfVYVcVkvbTW//QrFCQgXs0l/AxTh6NrQw6UlWXCONbhuvpR5V4i4XeObAbz6QHIowTNP7CnfydvhhQUk+nUYNeIMzLkdYOtPLmfXoMCme2U+aBZKOZ/TgbCMEtJkJnodX20YjmQ1sMm3cNES0TK7NAAld4V2cnoZfF3n6OU00kUrn2E6k5rIxJ90ELYdH98hRKmwIEXs4WtpilO1kkp75Mi9TF+zjzRrlej+H1JQ6YeaafAHV73aLOCd59glW5NeDxBFSFNS+aUJ1+XEJw0JBGcQTvwl9mL+n+SpbPqD+OAV/SsINKt1WFpPNC6qPELBXxnCetJbJpLRLEzp98du/F5gkdPd5/mmPprF6ERoZme8tZcH6Fas9dzdQTVOKSGQO1x5Lto64+FEs5xh+yI4cztj6o38HGuiIkutzfTOuzQKM6oSSdWWU0Ig8LUqh3w9AsAhynAwtaxFjNtJfeUTM/fzA2fV9SQt5ls5V4zUBlBQg4I+vavKWOLLPd0LGLEMqJqRvswNmTqh2H7cLkQ3e1fuqZDwuMyN3XdRTmhoFT3ljdzqAbCK0erC64dJxlOiAK8M7ecgCriG2Em7Oz2db0/jXd3Z+Rvn7B1HXi5x/PeAN1cC3rmZugUNXGU+wa0AYEpiV9yt56MxrVXoBVx3DdMbl6pJ2XWDp+KrKPAswPFsVVO4bcgMRIsMMhTMJiIkyOowMSDA0oCSywcLX5KenGLQbgHQV0qJ6LwfkQdM4tQ7HpZ/M3TVztt38QgcRB6ASqQLLZXosm4wUw3nOSAWL/CXXIzv1BaTfH7INAaYxgC8CZH2imPIzsOuDjVSQ1cDMPdgud2CvYGZ48m40qlCHjqVr9s28KjP9ZxRdnNXqCzuwdlCy+JGjk3s279hzpW754oIg1t4taSESQwBrm9q4LxxU4PZi2Xs6N+dxni9hFLVttCRVfHwlfmv90r3637Ix+r0icohmz+faQixMXXuE7t+txDZX4YIVFyt6diMM0YRIUdfSyQ3lDlpVXZjZQVtcqrmne9f8inoH3dFd+kfOUUoBklR5bsVZbHpg6OuW+/ipELsjnUFuf3DW55TQzTcxsA1R2m8V67MmApfXgkU8cECiAh6DDuRB9NSpo/SlIp/+L0mpVH/Y1+3EZ5Hk1Rw6P+dmBySV3GbJc5rJ+HxUrzotaDU12drsIjW57PlhYvK3GGywY2uW9jk7eLuZd3sMx/qVjitG1dbWTRGy95OJ4192KvmRlLHdnuHHmhPNGJEVkv7YV3jAdnQB97tMrtfktiojDYR2cK9XvxaX98OQPToDeGTSw+68UaYAKqpvN+LNd/e3SyeAI4FRXyULJC6ftT39FIZ5Lj8zTHuNYgGHTVBLYxpvE1AzpizwV9vxsvSvnQLvFTwZV/YdUwN1xFbu3vSinoAVKuWZuOFfPFpjf45T4uJO5u+13Yct0gpRTXm9L0DwKvZyMyg9Yd2H/87KVgD4Sz4E21Dk+G84zQnqmEs0ICjcYktPj1RVw18Ykpt5FBBXV+t0qOwiIAG2to0prqv8RP76GCeP4TrRjfHYlPsuEmtuZRJZSqu4Nl9NZBfoD0fQVBb41/NtZXMbY9K9ofr4TLbLI2GQag5DPvF4nGwm/FilpIC8Zx8pKCDM8VlvJrENwZTdMK42XInVf+8nuEdfbpTvkfYyMvJSolCdxsIEES9Qqhi0k9rLQVhhvbI7yJ8GrRLE0Ec0Ul3Hh29LFmHcpDfx/IbzQaKBgfkzjgehT8fjftevEVSDZ3GT/SntIu0UGkBZyqlkzMOo910rrPHAvPdPaWzjfSedIpqXcb1Gi2epi24n6zFuKE8v4MKdcsaXcr3HRah6VoGkWm2/GXJ0/9uWykJmJK6393Okg4xxmV2t7U+kFm34QllcQu51nWekVUt5DlrXQXnpUtT6ag6bHTXT0zv4gtN7uPz737Ot9o+tzsDgbN7R50PAl2fGTV5SBvzGgf1V4OXJ2HSz6RQ9EZYbXguu4HcwYFOd21aAd3SdIyYYsgX/KXdiuutbdQoEiMPFyvx4AqdqWxNTkeWgtWLRyOX2GW3sZa7DmQP9tlsHSvNHYBj5IzYFaAV4Qci9kXkB0nl7SYp2IZnOpYSImIjE1Oa8P1uencxIM68Y8LYJO1jE099FxFh1xrgXf2Nk6IHRTzfZeCcNKdksh/XQuI8x7LYO+A5UzMWedrh7ykXiPEmm6TkDXRnDockNITen9CuPkb7rke2xv1payNAMFEHo2fZgmyPtumkNZLtgGIHGyAaRSBJVUdsF4u6FWUfJ8TEz6fggY7ukd7oYAcuSPzTmOQxHH1MC7KLlaxEkec+3EKXQ3o0y7UdipBI5e7b8bkApVObECsZmLiX/gO2hpEA5pObU2Mc8aXhFPWaz80cFE/vlae5SaEOgpNtmqUa89XHpcUQFH6a7huvHyLn+tZcMyhw0DIQUFplwXeMyY9wA3ROaxNXUPeo+ye2m0FMGLSi7D3LlSzhhQ99115quzTfzETW5vO7Ym3pDbnAqJfOnlMdabXBW4Ha0nypYBaAI4coPjEuJwtw2icEqNFEgtfoI/Xe5MPtKaL2s7XgM7UJqg4MnuSOunmSgcaM7HEFvpMece+Kw73jzjkrs96WC8u5GzFi88mBuQFR8bmLri4tlXCPuPVAtCKkzAPmprnVo+eiP+D/u7rORjgILrtbttx/Sg2hOdSLdW2qyGjXFNMU8eVNSk5yPnkGzLJshnXrOmueSjTcC3I7dYgAaOVXTppYjxEI08=
Variant 3
DifficultyLevel
541
Question
One billion is one thousand million.
Which of the following is 50 billion?
Worked Solution
|
|
50 billion |
= 50 × 1000 × 1 000 000 |
|
= 50 000 000 000 |
|
= 5.0 × 1010 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | One billion is one thousand million.
Which of the following is 50 billion?
|
workedSolution | sm_nogap Using the description:
| | |
| --------------------- | -------------- |
| 50 billion | \= 50 × 1000 × 1 000 000 |
|| \= 50 000 000 000|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 50 × 1010 |
x | 5.0 × 1012 |
x | 5.0 × 1011 |
✓ | 5.0 × 1010 |
U2FsdGVkX1/NSNMjH9GuVk7UXFLduSirGdek37sCwmHFKhpZjdzjSE6hxnCr0Zl5DDQGOwYcQ/P+DEgEBUncFPrP2ELK8VsMjciCDTTAKDnywMyCjWWupeQgAxX9x82KvpSXcqepYSMFGlo1H8SieKdnrtwJLvM1Z0Jq5dxo3vh6CWdYmYhG7l5gIbKK19c7zvzmF5Xk46Awjc2i7J+wEJfFEPmMmz5mNY29HYJm9qasgqMtQ6m75ClT2XCnNqWzWwgS4j3gXOCxIjWVEJVeBIggEUVH/J2cewCKpPHuLoFnz7G8I0jwinMOlLl1rGRBVlxR+AFFApOq62QEDqsrlGjn+fIs42JhRkPgesdnrsHiVaU7sZ3YSF86oEShKKcZYJr8XvG30tnXWOoJeeKPdvILyEY8QNtQnwX/d6NFEj3quHIDaTnADPSBv85Q7/c0aY8Iod8h0uahlfpWzPdWLz39U1AfXrEJ5MpRhJghs4ORJxW8D6m17eiJj4RL+FWNYRAU6JwYr68tZwZx8O4+8I88dPrT6lfpbcQ8NypJeMyIgUV/bPmYxYUXu6akby2ou0orQYMKeFqM/Fn2FiyVdhsxEP3evbOxjbYhYjTG7+def7FuXUyHQl1f8uDiwAmCwq6zDEHcVqgtXxg8lZix84YGgxmqA+oU9pH7J5qYinLdWPPDD/tTdp7Vk6ffWK1K+4K/GJtyYcPsG8jnxLPoC3I9X2UbWhlGiNMdWLrVIow7N8tesE3jGmMCogS6oXbNtUDO2eNRHjqV6XcitjbsZjkhtRNaclLiJniK1cfuaH7klqLjfM9vXRn9S1uhSJuJz2rSgSaOH2N1mVabfxTEoAT6TXcHMETBUoExHu+L0gRRv4g7Q5WGddc4DMFqv4ClOtxWU40zou7NHzwBUK7audUvJZQG5axPm6Y986UW83BnNtKYt36bz5Abd8+UtZk2OWry7KBYEQe65saCgWTxmFFqvCX//r2pQLYySAQqvJ31VpzXCWh9JsVoO2LsbbSff75VejDRLJjNKCJKwwgDVS8mcnGvJfbWgtg8m3lS8EXV4+ldwgu9KOEW2jIk34UQpxi61ObnefU+JlzeSdYidSo/Vf4DmT8Y1qXyWMlduMm1hy/Uv7zbLoI5fFjYrO0gcY/y8EmftXFgrUfJwxUr5lyU1HUVI7smHIG3fcBpkRMKLi5YNjRI9gDmguwaldI8NUt5yalC8kQ6AEfY13gVnVpS+yyfATDgw2lET9snxSeecZdXGcdQ2HcT2YSAaO38qagGZMeWvfeyII3OAMgFXGtQ9SYbkn4EuxzApBm8Ny1WDWYfv7klaAEDRiMYl44bc2EO/oKHIUcPbA3z2ZpScW+u9jpwQKwHRf0ighJ7xQ3F35xc0IWgd2mh1opXLFQstYKjPMIhI/7fvhy4E2C6z0wOOR6uazbVITJ8oG6s6nWqgfFbOvb5H6fGZR8iuc3n2PJIbBlOQ2awRGH/H0z/bNxXmDlfDL5iYOKyG1ceB5h2g97MtLzioCeMSPlBhUC9K9wnoCNZNzwwgtrxIjBIS0aiNy8A+PSy3k6wxgidm6FJV006bFyf0YWB5hoHUuZvcbQF7mIwsS+KsiYhg04pUKHM5ibuI4vCJQ/pRMXi03S9dey+D/Ek1VgyCvsBOzKaiwf/ydJRqTVkXi04dCRsGKdv5hCzVabblwGmFTKvGTp7zAcqZh2aDMBVAwsDHgXUvQFd/+i9BdpvNVIoZvskQloHPISla7wLgg5sZYrfjXDst0+iW1FuUcvxl7o4zpvWHKZ13V0p2K+kKybHB0BbiNCXZw3tjJPa4qBWYLp8Z30/PEHUVVX5kdzATActMmQH7mrrAtI0vJvFDd9Bg96OYtC34nuftjmfZN9DH3f+0CX2TK6hxWqPyCKOJU9A/7KxzJvo+P0iQG/ykRsp0/hKM8zEGvEKO46QuwJSaZoAknM4UhlUgsNeuBF0gSRsae6dCsjTjQSpPrlppEpU6gq9dRCgXFhywQQJvSi1T3dQErgwqMdLlFgX9F/2X5kr9uM7tnCeZkQOqxxrBx4BNJsu1FzJ5XRClpt6hit0yllLBrniKb1zUzt3+uz7Jm0gwjPZQSCtb1/owUljiBhbeKvGvpdUiDNLZYyQioZrXwthMgIkrMQ9uhNZ6nWiU6KXDR6+R2AfZ6EVx/UcwQHE4KZqUgR5T5QfSrUnYcmZBtOWizitlQvRwGRRH+P7eUjlDx/g8oSqP/Rb0a7y2YGYIr7wH9FKhAZXk22oGZ/gXspcCi0FMsTF9fA79AvcnkEISS8EJsPP7jpxMtz6dbVAWaSeLCToqX7sBASMjfPpfinOtcO8qGp/mVhO/Y60nI4m1uRlmeKSCyH+IaxxLHjgX9wKiCnzfWlW+9X3ZeF9YeM8YUa/NX0/ZFaGBrHnY2UgVlM6/Ij4JBDax38WevC35sTyxB5dGLwpM++tB+iAgmntJ+Ih7yPggbKfQ8IFjW0M+phmLqlksHUC+lHgVlGTSeeSCYyW2ySt2WGHg4JNn6sAmGJS4ZB8tw9SS5x6q/wAzfVxCGvSRFmP8MNrIvBjHrt586KFysjw1EsamAyXB768LscWkfjBKmdnHikI+qni2P1d7kgYQqNm20CkrfeHQCPSdGnW1GcytaakvVfmUZ4zWiGLY/5XToi78kyqixLQUcbfBP8FJBzm5irgzcg6+65zsYUutDIxd4DHBE4fW7j25XCk6eNH+eHf7jBodGMjmhH9GfKAPAGLIAmuso5r7oHf7PA7PGonICbtKXX0DyVpFyhdro7J2wDrRN7pK/lfUiF2rJD1y7g3RdzB1IP/eL3q4cO7l3PV18186xrYNMr8ed0kCnZFAQFsSHhD3Y6Qm9q+zIgz00MeV0nBrUAo6tIQt19vBz2dLwod5IuF4f20LNJwlE+/9WDFBmjbEvX1XPIdKadbR+8sJAfbYxpqL0FvRx719z6LL2Gz36B0b1ITTPmnsRpHI8VwIuBq27jfVxJYYYXqRctCd9in3w5XeTXtR5f0/MtxHL7uHmB3+T7JlQRGgNwarRsv97YNoNzRrL/Pi42ztQIuJGG3wtEQajadZgW3FwwPXgNC9LuD/X3gOyvgxUUVIkfc5L4wAJ5jLp0qXCJtYyrUxvyQa/s2WW/aJ11QsnoKAn5zSGrAwNHgZoodgYqiH/MK9bAiLfSOo+dUmewLLfYVfXDZPqcazrnCXj2cUKz3/BtmkV4rsHwLnBuJfSzzYNr251QIghl2VlEKZ2KbXG9ipMrS/VZIeRbLSj24K/yuQIIAjJBMoTGni8OoZIbez6m4HXnHdZpnRuA0mJOuH/aHSPU4X1bk9OaHLp56jUIIjqiJ/gTh1VBv6S9YAYcF6UBvKlt2WoSzepAlDhTxmFsziQW9fLw4msIsZnJZlDPIhgqkwTXVoZ1SvPzb0xwtHfcNO1zu4+ef8HzxZfMZyiKL4cW+YO6bXvaXNMGcAp1vTnLesSku42bzb9lKVzSg5rUip1rmLPZa2Ru1jPi1DaDshnrf8BOW0qsPCLfH2gsrfLMR2i/mmU5yBBWbHd+Ix17Ww0UXwI9sAIwD9m/BL4zbNwtFLeZdOoGU3dukVPLuqxmbANuTza+J9BVgQOg0toCMDGUPVH3LSKEXTBYwqxaazwHw+/UvI6I0/VchzOCaoFrQGkyt/BXaeqAs/UVE4jPosDGIiJA7wSSD2eJD24gkva2zQYc9ynksYkZSpnthq11MOgEEAur1dFWPKfj6EV6iUSR0RpkkCn4d+oUAURzWDMDmpASBVgCRK2f9Xrt8Dj8PAPIXRFa1A562mkfQEyWhMj+D1VgTISrsd22Jmg3A6KJyI3/1N/DgIQiBUG1lEX9nOFMZJzGlH6YkVvGBJg7BflJB+9RbufUJFhZXKu2wtb7ZBTSiqev54jIm7Y7ZlS2pTZwscgZI9ExvvRDz6gDcMYywrpBR9EXZbYhki7zfmjQcBCJ/v4Xs/eAFf/5NtulWyX/8Y+met/iPzwgwq9+4H629z7L3d/P/BPMcD5QGzbQnrvmF5yQC8/1z2n40DXz/LDq94ew0zxGXxkhbOUGNy3v7vutYQ65RLzBZpNkfaMRUZcRw0dTSKdUinfE2p0wuRCz7KRml5x9B9zjO71FMWebSHqLsAb6SseBSvJWPljdCDcgwy9uFwNBTrIDQIuMnrYw5mcvkUpXkrRIQeLSeLkkYTyz79XUBM51tdXRL5Ds5/1SotBmjXHDZdFBs2xnLKkQPZC1yRYHuMFeF48gkm4zjDbYByfjRYEvzwSf2bumN1ub0phxlmjFzXSIYXnfR2RsdwfKK768IOomKbjpWR89+nqLhOT/pZQcFFZInFdN4ofm1PqHm3Me1OOGt8+briWm/CiYb4KU6Xj5FKGjEzVQMS+si8Z/sCKJczM0rhhNNwqImN7Ik5e+iYc2SZwnYNvGkQgiEMA8mTw+piea9n7EuHfilvnsuiJ2y/Qde5R39VKoUKKG8Qhi2Wz8b1lYlwBMJ4zwQzt2Y3t32Daeq9S8wj0l2AJji1TqRzv5dgHrmAf6DNQgDh1v5elsH26qzmaBdYBpw0Xk5x2tfdWPSLFQ/LaU1cMnAngHxm0iC9snStAZdGKugOcqxo8TWg6BR7sjDzV4qfByXYQ0IbQuAxVoRHOkzdDRuYkQaxgFiPyHaRymFNWbMEvt8bPNfh/olrO9TCIh3/8jw5684FAWqv4IHyVvSK9CKP/1J3pHvw0Pvln8ftLNBrpzN+b0BMtExS5F7mwXoD1GGKLNm3NxlfbfyuFvw3knReRTEGDGkwEI7v67JNME4JMYUa/iKIC0W7mYHPVXCnBTlELEnDpAy4ICO5l+YTWJP89wH3UT2i2p6duTNj3GBuRU0KH7LBMNORukkTvAHuCdZ7hqo6avRK1FxV4HVqtq0UiEAYQTlHUX7/ZSmq4LkslsWDPBnlB3kT61jmObzJKkzfhu5/9tNrrX5n7c6uL7ErqT6zDNKYssg/xyN6gx104Z9kyJ54XxIs5lgfOFlqDFJdXeSPAf0kg4kdVccxalEedjt+apNICHYhyeIdJiTgp0t6Erf/YnPJuaBWVeq/SIFCmSVjTZyoHiO8HHMiCTsL2qx0DromcRq+RRBZiGKfE2VK12ElSd854Cl+XDDWzLoGLERiDBteWGvYBsehoLLVOcRndvLlG9rR1H3S+8f/DaeM55Jpvsa/zohH8tQgmBxDzDltdlz+/JSApdrT3T1rffP9P9VtEBBkqIY/270dY4HtCGRV8dHzj5qckUsUxwLpqbAY/LJGWzM4TPTOvfQR4Y+dJTaHQrBfn0z161R8dkA/EuvT9ZxmUPY109PKaJx46O5jcT7U4XAN09t9wDTDcOUg3Odhi49T8bvJOU57dMXXCZ6mKDfCl+3FYXnk/zoIlZzUAfWi1SRgodqR9qTDN9r7PMSEYRZmda2SwdUbvOKN/OF8Xk0Pf2sdyJTpZtngKUo/WPEDUE4olWfvY8aysECwHjNnt1CSu/kW98itklb+HSlhyTM3Kz2kU7hPCT5i/s1pXRi1HeMbgRYv5VJLa++aQYkWFCpOOdn+cl6C0Mbl8DoEVncyTaccpIt9Md9aDwuUZDBu0Hlw2YsTOskusN0JLu0C8ST0Ir1+Q/fN7d8GH4hLrQTKHQHqwp5v4VaKPk3ect8iOGu6OCf2KWM+EE5zwD+k4ZXrNn13jESKOFrRejFtZqUcXxx4I2qee9/V7e1hfUuCqsCflr/wSVo0qPCSfYpj+t12T6o8LOIvJ5NWjsXH2c2fS2Z7/tk1u9PFXWlUIxq7XGwgtUJXvMEsrKhjTyh8vuhM/5miPBbUb1TBJojZpUJCQOam+BEr7Mhk3LLi4hhFArufcRwe8wh8kS7i5t0zxmfibhKw2ZWhjmHsRw0XhQsPR/N6/ezHRdcbfXYce/PeUm9+h0es8WMD1KHbqfHCsenCuhIAVqnNSWf0Y5bW7xg3cdAwbWu3We0gEvmMYfGgLLVHOLNsgAGTXvrTFXTbX1YcQ+W8jCv1XElVSISCigqhQZH/JieJN1y5VjqnU6GgC6y9HxSqzp9aHBR5JCfyLYwyBnMEOfB82pUG8Dv6dVG+nQvERcY+11/SzE3vYanCq4bADSlQSXx3whBIAFL9ZsD/jepmdVmBHBJ1p715yTPWFQDdLsIlFb8XcK8qr/EaxrWpbAICDsqXp0JzeMeafpykH8pkcEh4VsWX9aN95NjaXolXLyzYBT1F18Kmz0SqsfiXcSTwYDeCw8KABennHfhoCrim1VWrQ5n/QnhHIahVpEszQ7IwQP6vkMWdnoriBO8H1WqpYieEppzV0JF02Kq2D+Nwq9VZaTdd7/pflQENFZp8q0GOcw89AdYWA0Ug5OAEhS2DIre+hSMYyC/pOAsyPa5/kMsCfMvh8uUOXBXtwhr8p+jjPkr3mSJRCv71zuMdMk+K59VrHIbVkrwoHNhLp8ggNoPi8fSqz4rrHgzqC8mR1Ej6NQaobDxo/uBHv63JHnK3uv6CC7H1szwWKvTXATR5d3slaKeO4/k0np7M/iQdlfv2kxggShDWENFeigqyWM5w6F61WAGDyoGOrq23OlbcQga/bZe7vBN9HsvIKhpXjvEpEsTQiHw2mmJ+lfaN0VVxNRYvDobA1c26/n5sEvfXwdfNg1X5maMNHg9u3rIUbUoNZ/LF4IqnB3riGAeDpU5S0xTDQW4vykixeot/lnHbbum/qZIkK/XY7xAePjVftXPjhGUN5APCHJSXDzEjxqXIRpMdphcpVksCH06Rq8omxy9kf2X540+HfUb2yNOQkJgNLLd9JFOgD56Ayut93waOiPbtn2CHJUwI6iFTtbsmlo/gXrY4bu+oiIdhq5luehGigSt/PDpzCk70xsCDarEAFRQAHcju+EPD/eD5YqmFIzDvzrygAUqRfUZbyIWvP5F4qGlmVJpzBmGFPh8xYAxNVdxscMcPi+ti3FStUjcJc0bfeWC3OYjTNtfVHXdxFa1+uerzH+AOjX5pVA0sXr5Oj7gfRP3C/X7jeYxLXGsHymUstxD6nWIm/vMWRJa3ZDX7qSzJJHab1lC6f9bQ8KB4dehjppOimUoOPAGYXjjBdijnVomKbKlEBwgz4T2WMcMZtNbMemb+gfOnHYRoozu5lQTAilkDK480m8jezaqx0SfAE9rEmQtSotqkMRFWJaYwRbXWJgfonRhe4ZRI3oij92qkcyxgch1q5KeTmaZYGfwMAhzQKDInbqEH0ROxLxLx60+YkjyiZ7nLmRRD9MX6wq/Zyy1vwxntOWccHt6pNmgYreJZ0LaBmNn5YZ2SHb8I/4QZi9trdul5e8Fvif2lqseL9cDBC0U3JxQBWw6UYuMgQ+XuBmLRdqubSA0R26LFVutK3t0rmpXURvqC3QBhCZ7JjUsxhTk/6hdQm2UxwTGMzljPquJxCeIjmIZtpzylw3cDaWmIhivfo7v066C7exSCuydOqHMRvLv7075aNq5fILrnXU+hbBX89IbUfRVkt/2/hltWUZLMhIEm3aIKOKZ91J/ToS5/BREYAwh741hl8oV1s30fOl+IzMAixanY3IkaHo33qBqVaVEqm2pDWmzvoH1nRjkz1BBeVZm0O5iFMGiAh8ZWIhvngQwFA7CFy+te6BtHIvvYw2xFAeEnX1POoKG4b1EWZwnZw4ky9jH9OoPjpzThXx1P4dk4CeR3lWitVjSprTYh/ZrU+N6ERoce3miflFjcEP/gcQ2A7OwdMi/qkwOHmjxdCU/51BqEEKUa3l3GVrySb4HTFBSBB464BH4b+hnmPWi9Iz1+UYHmGeBCm9GQFGcjvT/xi0fLafBVLjT5A9XJ2eXaxdce+QyNUuCDDdRzz5yA53MvmlJFtBwBabocWN5Ge8lgzB+rNznQ0avMjYOo4zEy1pbboOMURNhU+4c/HphIktJiL9kUZdywTokRQtpY6hfE2ZmbmOL/gceBrhZLpEY1SHQgCJvFY+Fu6z6Exd6s3Xz12UfF6za+vemh1PSnLKEkLMbSpeQ7eX0v6oXHnLmly+tbwfvPlpYCWKkh9HP8XSeiD1TE98Yp03VBwFZMI64GAWqOk4y6FBmWhxR8JmuT3DmkWumWIlyTxdGTEmBPA5DJqUPjGrB5diA7NcWSEPhq0CB7osWWv6RszqnF6vyDtoc+P9wtCIHjsGLr/knZSPW7tuP4jaPTok5O1l6oqP2nbSXBmoRMXbpwiDByN+WjyBo0sQWwQ8BhD6hMPtzOm5Obds2ynctBeqk6u6/LH/3xPt7eVSo87wIB/i5Qi+xARIjZHFL4/RScBz7LRbBlkSqQnDD6Vvr9EygWbsFQ4FElI0kM0AJBmUQ5iJE+b5a7D5TyxjQiStGJqtUBCsXbBTSsr28Ly9/R2V5pYPMStb7PG0GaBAIg5wqezwQUNCI/zeKQx2XADCzgamWv2Hr6khLha65zZUVV2kNxJmRmIKlOU36RxUGACcCiMnxy5lUfUvJYuE6qEHqVFvA8IQG8xC2chK3Bg==
Variant 4
DifficultyLevel
544
Question
One billion is one thousand million.
Which of the following is 565 billion?
Worked Solution
|
|
565 billion |
= 565 × 1000 × 1 000 000 |
|
= 565 000 000 000 |
|
= 5.65 × 1011 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | One billion is one thousand million.
Which of the following is 565 billion?
|
workedSolution | sm_nogap Using the description:
| | |
| --------------------- | -------------- |
| 565 billion | \= 565 × 1000 × 1 000 000 |
|| \= 565 000 000 000|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 5.65 × 109 |
x | 5.65 × 1010 |
✓ | 5.65 × 1011 |
x | 5.65 × 1012 |
U2FsdGVkX1+O39qIDPnw0W52oaIqmOMbIcALbmQ3yjHgcSmzDLkRZvhwpQyxdnsWk0gXhLRQbEuzIcEwa+bjBfKFcKi35egNpQ2wI17G2cbxBtbEBSHC+ku+9jgqXfv6V4acYAk+XMuI7402FeI6/CN33vFpiFrkCi+k2fUoEtdcbRXf1MzvUOlaS16MFcVYbplrLq8nj0cvsHFpfjAKmhMPQXYjDouYOdUDfbNCSpWQ485UPUNEITPr/7hgEf80Iis3rekq7/f9/uSVzDjJKBoWkYxggI6oW9Wclyipxpy0PMqZpivKNbI30mczjA7I8ZT61SS1tEJq0sSgy//SMGIxVXRnwsLz2pbzgogNwJpNvfOw45rSHf4mRY5pcUCDGo8YBnrFM9M+WLR1fSVHGNfxSy45n3LIHxPF6VMLwFHSL6svdIfJRtzNiKe7nuw+eFSrxhtRgYgqehgrjIBhKEQNEg1/Z69KQK+vFEF//B0PXk4ED4brojQFKHm+QZZDVa0l23DUDiFlsyC8zZoP642P1ES1RptKUtmNH+5jBN57w9GP0JAERZ58XalN3aN8CT93Ts6HYfppnMMO3+9IMrmMONWyYRWqddVcyDf5yBsuAtDF31+D26cqaIxhbNM12p+Rg58H5mUJVUWDNrCIeGYAjHVp1yfRi2t59mwwIUCaLEk0VkXCIRxceg0kSovf/wnIv6e5ha9Dso8JBXkCOfPDM5lQ8y0KC3YRvlRDel6XZ1DdmDWcN5Orv4XmMA6O9iez7owNsNZCVN+zz5BDLt3QJ5wJAvM/PvaHmuHRwaX6NqlUYCRFRT5d7GDZgF2orh8Neg4cOFu2RH83hPGh/LsO0SX5Fve5xfFfJ2wcD8wTIwbVZ1kbOngz+jYlHJ8PMrvR2c9h7W4zXudm+LI+YGLJ2P4BmyRoJteIIw7FYcwLp0scQSXXGBgG1GwS+avEaaPBjNCJOSwvTVn0crWtSpQOfhp50iYusuBw5MUkYl1UtkhTZtFm8FR6qbwAo4c0NssDSmo+tl22Tk9+FMJkcwTj2t9v7/VgL5YwgJNgrHp6PvfE0b0sfHAz5lJbdQscnH39YAm0NmBAJK4WcNadIQGj09yZLKJO+hZ8PayQKmMPnDG/J4ZT/Qluxxi4/zZU3KTWE2UcGxcBAPBx0P7OEyK5gqYtlafp+4ed0Qmgngblz+CWnNW87NNc2xwQKZ6dry1S0Bz6Sifl81NZAFKJHnzoP1NsaThPQPFfmLLwKkRm9kdVKQXBRPeNnrJWm6CT3J0UFMACsIz6rE4jpAYhNUY31D4ZgnbpgQN/kl1WhsVbnPJxHGTrhMkHImqdw65cyvgbNaYRnXHN/niLB1d2ywINXFHmua6KjgdtOWEQqc4LGa2jhbItvaX1U17BPcccqJgubUCAi3ZAOF7ryhqwNeWdyPu3D5bEJgVqCD265hduPHb+fgXOa+rNKHWB4m+9MdCsk0SSXIQ2ZoFiSPhvicUyOgOV2wWs7VkeoIHoPnhIPeAXJ5CEKlgG8qXO6wg2tZ6fxMkc9AK8iscQ0mp8E5SW54V6vsjsqYu5kKNylxXSMF1YNUx0zOt7dUTUBQ3wvULApNmBt2NwdP61feUB3b9szJ8ZZGJqu6pX2E1PzxJl/k3WHI4xbnS+LYx35o5T9ZpvbPHf+3+1FC4yUiSiJqKNPp6AGDTXQ3I73OCPdv6B9kQqD9stjAJHbs6RZeaL+dDq9dhazfynKixYKKIxtHGfsaUtWREt/2QI+2RS4kG24C/8gV5CMrGCiffDfMldymg6eaUQhggyLf5JOkKRiH3WJXeh3//0uLTVSLHBW1JYr4gWy61KBhr5WwM1CNvIPlSfp1tDRCme4Bov/GXUrp3upkGEPCiH9ZwzHr+RbFZTW2BE+Pqwshce0Sk2epeSKBvYN2Tt91sBGAj9xO44Nq3sDKrMLl2oT53BDQ1IKitD3gwkJ2BPKmERw2kXCjNbn3ajf7uPJbPmVsE1X8Z7oz+/6Qj3LSnpVrQWi6JH/OA3hu28hoIpAhLver+xUarvvy7F2+lKdIzh8hzjxvhYYHjH5uZ7WI6AhrAVNsO0vIbYlYfO/RZKxJo4imDYzZodDkBNVngErTpHIV8wijAeFLCVRsXPIvpfA9IUXeor9ti9FbhxBRUCQLER10j1eJvKggLaL2wq5iPYgon6y25ctnXxH/zRk68RLWkHdMQfjD8XmVVeAg5xDMXOHooHVaTgNy5RdG6GpDhfRcG0rMYI0QQmWtF6nxif8oJUBGi8CF7bZjSafxzmeiWoSKWOsa/Cy0uMTS1EtSPeM7o+80PO0yLZop8Cs301/swqq/2I/hm7C2DS6DjOFQxhlfQqNl3G03RbjL+tKlCTu/Yn8o26/bMnVA1rm/vFxSw13eH6wfcz4v8Yp1BZXgwm2JN+krY+4rpcc6b9I/RGTZPMpr0fjvzkrF7iO7+srZNUj6eqekONDMDfea7HFtsvTN3jQxZR9zdTFzxhP2fa7vBhLVFW5VoPW7SBC+Kabs9hYcA//i8NaE7KWzFOVV+f4B6vBKYBYGNEXkwGXd5P8cUKCSyVVxs8HFoTjFDXsa+387x7oL0j8YrtwNqI6+iyCM02eAY4ODGx1lvJnr48VaqeoahH5r8Ac9neyBE339jTRFLPm/d19yUrJqPmj2364DAlDMT61X8Sn1kKtyL29qjxx9P+iqtc4KzvMfoHfWCJTwcRPR/yeuipRdLDObhyDlUkiUkhAEuzNB8+c8mm+89yTTuc/EOt6b3lZbl7pIbNOxPZIJtixwZrLrKl4yEluBR1Q+4m1D3cSKqn3Udi2HFqIbgJEp4Tw/WNxEJ6OvI9UA93pJEa9UATYlA6m8CqPQa17ufLyYAyEAyun6aafICKv8Qu96h282n1wQmxbbgYKoR0KpuiGhfNUrPZ79ihQsaBYBN6+Li7MsVCIr/pnYGGaQAbqF4V1ljBwftkG8wgkbSCIb59prWApIC4PUUptkdHuo+qKXnft3hoWkwinHAmuAxjzYOevhN4Shg2SDZX44VUwmJkOWPQdxUL87OTOMdAGheUXqsSh6p3quoxHm2tXg2E4R1rbOJ4Phevuq3+97QR4OLFPpL+4CK5HpHSqjdvn4shQyqnXd9cZsxjvmtdWJs+Ji1OOqbM8VXIN+Hw1n4s/HZnoGtr9kft3NneniB6ldD5H//gxNVTtEkQgQFqzv5Qn5EylqgV/yOW8xrXuFkWWj9jLhEPCFRbNukQsRCjCQ2h0XfLq/yGTMjipHeRNHBccvTSjBYpy+EpK7nEq5JOKK3+ZlyQPIna1P0zXksPf5VizNBHqvRq1E0ChHzrQG+blXPp4J1CCiHAzyH0MEarZvOCaBt3+L/BmW5T+IdMAZpHkB/SPtKOxzfyCTYxjpZDJslXi9n9eeS3Oc/z8XJp4GjKOrUa6sbQpRsKWiRlSHWKmqbEpOaWYIqiQi+rcBqniPXcElN5uuaYOCMHsQYeHh2DDHewPJwqyHUw0TwZ8fpWaSvdPoihAnbDkez6biU8kagbXSJ8duN4ri5985M/EeRYWTB5AHcopblqWKRlbSAA6XAHGE0Dn8AeU+k1p9+XaL+UhCI3Fn4BACnsgV/teIqGX5PPcrfOkwX2gkYClnbLZfnGLixjlAALDxuJtRA1EzAV/dekEOwW9c8JmBmav4askazvXhQL9PaovZ/q1fzma338oj2AL15YI/7PQfwgPt84Ll4vVmjznfdDTy/Cw/OwK0esLIskP4Wp9eb1XMkNvcZxhwdfmDTJx5qrmiJy0/XYcAfM1ypfsPT5LTbiAHWNhKiuAXrzCTXLsYap2gs3G2PveZWtp6FwfiYOP/8ftmEyEARFSIHBz+Gfom6ZL9buWGQAzBtg9NT17EKBzcv/pXvYA59XWPZLxWhCb7T3o2+dc6VkAd2Sag/0rJ5LggnrA0Y/0fw0cLXAp+TTi831J6AHO7xBvkYwWvaKC1HydbgXAYFoL/zHY+UxuAjuRtEFzFs0wd+MvCQTWbm3qGSyZWIRO+MM2WVYfDExGSET65uGZCT9RQqRkZF4E6+k2q+qaC4zZIfQT4cF2A00li/hmR8JvPdIAzeYWlMv38crw4VJPggwJRn6Sieyc6kbH8RAMANoc+VA82eDVBO542tBALKhx9ClCVga928O0JnuvWe7rPIVF3f6SG71rohZ7/MTZR45g6kCZx017luWG5ZTS2q4TgmhbSmMFOGA20+1v9fD36btiViHU2MHRfvEhhCXAjSFTuw8sk8NywaaZLPvrxE/1ncm8wf/FP8H+jGUVwAPi3CTnMy1vUjIf9Hr/uWyS4xqaUwtvpeHo3iuxr/a+TyRJ9zWLf2pM6FKMrZHk+kwQQV+62UDv5yeJxEgjUcqH6I3NATj9WmE1NXTVcFWT/8CJpYpXDngaMHKRXl2zQHTshjT8cFkFeU61MYMrJ0HgmO61n2V1Du38VKVexXvoUfZORbS1cAjpAyiSTvKcK/BEYrHZQcgPvpt1Vg+vpMllf89IdhD1VYU+TJUZTKkenLIYnZ9DSImf0pn5tQzv1L8cf4ElPV3/Nxo+5xNYThLsE1uccZhFDE5INWqGMn8pYRoAQf4xMWeKh/qqToUD7vpFYg4b+DpAj0TyQlAkt+tLP9klcIYsoxsa226K49f58536cGntpRAUMbdyug1rBh+gIWn2Cp3fg83N4DPERWurzpo2Iuwdrsfm+7nYm+D5XOzvTD17pnsT99DD+pwxx17tdYO0xq2s1Sa5qfRo6ZzL/iD8VPq7xVXOVYLAQRDs+Vm85Xgzsp70gpkMLUmCRCWNIwpx2L+MgnGjFCMrwDJRmKZu4Jw9bOE2e7JlJQRszr8YJFbyxnlDYfdpTtG7ezDewd7zKmtMze0i1Fji3yhl1+ax2Nm+7xlmJzRlkIQIyxGfTNp7WvavjpF7uWtjzw7gLoGsuKbim2iraaLJGcPFrO5l3DahdcJo6ppwf2YFecIV9nxfjuG5Qp1R7GM2hVNhsKUEsJaecZQpxfIe5JA/z1X3fTb2UhQBc/hMU64N58JjPtjEufmn5xYpSQC3MkVCyLemMGLRcFqhj9huJIGM3uAhVQ3tF55LtjQG9rfZkcUoNQZ2ZIfLeXS9sOPct40cwMKRaVZkadc3vNfGI8vcUAu//Q26TGMaXFmbH0wL/788BRoUFqzHdyuzLzonfKf1ARWs094hcspEUDN8rY14kqvkkUOrkxd4eaHJ9yPJ3vnhQH6CQW0BvcNqd6Dxi7crYMo8dy5e+AjCE21XvNqcJvxJb7r6Ju9qHtlDavJUo/y11VW+1K3WvK0tKmUJlRu97IJ9j9omot0Mm1Bx98H9gtbpqLPHN2nasbe6AjhN9xRwufCNCnGlnafeTrIJzXYW3xDu7B1lzoc0TPy89Ftt40X2K2SwM+E7H/zj/Cd6X3Hbqvl9ysjEnKyoiLf2j8xAQ1x5QO6dpP6jdxseNfOhWkuKrWbYowNHBU3bdbOXkabDfE7fnT5AoYfDmuiCVPk9qFBxlDHt2DWhuKwB6uGsYOdhnHh4fZHqynUrvWRNB8N8SBlEl0KO0ujjfOQaRCWwI7MFubPWnXXETIwLMiSoGaFDvQP4j/ZbDzNGQQanCykjuYOcwpAsjuOIBAq6CHEPwGeqi99mmOIuLZuhFNEbgLKU5deIFUCPv+sZaUWWVNYGM07nIWKtfKvHd51SWYdY+ml8JZCyQ8hqPmwHCgWv5kSs9btqmbvrH6Ccw29LztgQuHMDCwePWbvE9cOh0obyeqO0eq2BdPHeG2KMNoAuoouGj9o8DfitR2fGW3e0PXhoeJnhPp7MYA8hpg869dIUx44dTyshD+oHrTXi5TCUZYW7acW0NaeiZ1nN1pNHnK2rT+M+rsJOSsoiOBRGDdllT6tdocw1rAhlv4hzTECrfPpj+5j9A97voZH5iFrkcj6pva/qs4GT+eCEfLOVwaaVDrfVy0+aMJuroyTvRdMgjbQoIVNafGzcseLDKMW1JcJCvt8TY5uy02Qomr45f2xymFr7zSBthtE+RGljXVceN98Vh8XfxlaQagJCPPcic+hScut2Xo8B4m8y+Q1zsRYIbrzDPOMB5D+wk4OcYKeB9Mozm9DslMwB+3vLcMVKIKbseffZyvAOHePZyGiigk91zJZyXrNEj+8qrTE7t+VXUBeK6CG/769lZvA9sT3ysE89Q7Jwsc82ZPSxBOcjYsxQNC4MZtCnJJmAzT9HWXxQKM5b/nFTPe1GMBL3MY9+fqhaaum9z3HVhc5UPEO9PCB3a75t3j185T1KVbqlSre/MR1IDQNQiGX40FbRsq9R9GRHE6WtKl4oBXTriqHRDjQKRAOOs5HwPa+MXbSgpxQ+2vjNBtHByUMHNpnCVQK/x4jBkWI7JwYMeEFyZMEWEa2990YN0E7BRT6/vuQ6FskVustqQd3lT7yXGkfRGWowtNMbN22Kjpeh9fmhVCQp9/PyLeCXKVC+hcpqURyk2fkIXgHMFPah+f5VUsCLWdxdngKynJ35gaF0Kkgo0EiGtgnD7do2wh+TVjasK0EJiLZeWt556ErQH6v67I1cqKTHZg6YFQ1Wh0AtiI4oTkAbHa52+MLspHLCIvmrLjsbxkfRd16dp+ihO5gYTzz6KThNJYgSOxACnSPTZ6LUMz39D9B/GnSEHmA8LMczOuvdFBlvQIp99OyYNh5qyH562onQm5ADomGeB4tWrJ+eZUWuFD3CZ9rBzDfYhRoNHhAUBqR8nOldnNmBY6J8pGi/WRa98u8eJvIAOUTX5vLmNX5oa5GRnuJHPfFtkTTkUgRmsB/QBRJbHRFwCP2KqFFaU0EDDbvqn8Qv1jPlckPu7jZBxePr20tqecyUcNwZW70+/qDKbEx2m2n+lYe87pXqh0raFtFbAeEcJKXb3iiyUn9dYoRyAhsaZ/UW78D2x2Cg3I5s1LyRPTH0Y7xlfpJgY1CL7Z+X6ynWDeJL/EDJKcGqjZ7TeTTDQ2EoxGsfptw3PFXj1WsTu7kKN9xbVoUs8rRUI2Onhluhvl1B3rrR2ec8KNBa76M0GjaYlhVgj9J9JC3dvlbj/fZ7A6lOLqrleF1R19O687rfjvq/htA/xnRD+M8K+CiVwIy11aH93+w3pAWw4JYkF2CtJT0SbM0BspBbIp5gLzaLifuic5r/aVFewKC83eanjJyqW+NAaEuI51uCvwJicNghmSpR0fKPuK84Rtu/g8w81/VR2g0ca6ruOKyEEyWrW6EVSDfaliSABo1ZRRtUVsA7yT5Ht+tHNmckTsYQR2XIa/s91SQQaAsXF9trKiIvYng4thrVpiMgY76l7uf5OSlHC1qVYj1u+NvFsNqPoLo7O78FeRmld47E3gZyFHBwTgDOpO4p4k3lEI+PnHBugROoafBL3nLD7nIjar1hJXVo8iqNbjv12kVcocWcD+nGCCTdjQmRwSqsx0/KA7G3WhjRm2f4zW9rY+FBC3W8q7Nl2e9Nqh6tTDZnAtrakviu/Gy8jIQUK0y8YBp0IJHidUCwCJ9EEID0SqBgjvaGHIUJvX8CikQ5sLoElVCu6F4YLxgKfbCxr0SqT2c39pn4D5EGktsxrD6jmBcjdlzSSGrHxucoQN7aqZeSsenxgHPZ4isW0/b6oiakBjuhsSZ81KlXBGcemvISRPUTpUq+q+yH+h04kGdDFCA2cMYuEIsXKIvkXstqO6FjUiuTxWrHT9+Xz7z/KAjTnjaKRlDimGo95vDJo66xIKL+lJSHZVvgY16SLAmoOiaHTxzQV/m20kxjFbvjfjNUN0WBI5zkFkwswhLjmyYsqtxtCq44EohdIkSy4llgGqPQzwSbb9WUwFEw1RDAzhnzYm4Nq5Mm8Wx5rpIsheaUy61iQ9rMNi8lQm9qXNeHZuUPqdAK0IhLQ5t79xKUiH6r6JWix7IOXwjsUa4at89yws2bWpF60DzfdVhqTHxCQ3qwFvGd7WmnICsajGFnbMq+bL+EcwpYRev4BgJqmQ+si5qXizNSQXYQTBKMGjIFUPlH/CJOm1rE1KV6LjS+Rb5GxS1u7IzpqZDmo7JWGqU2+Z77N4fU2V2saZe5mwiFBqRyDynA8q+qIHIsXugD2ZWMfIVF2MVNvHnnqQev69EBoTCGPoV5EKgsvaraN3N6HFrMxYMh68IexRWN8P/7yUwE4bzWeQ/wv4Ru8gMgrwYwDXDthtSLD/RbfxuqBqFn2fg350iP0vb5H/MBzFs4ZgvBPaUcSRFzPzSQCrDdzNirbbgBXY4tAN2cF2fZDvGLf/t+sPxoOUdV9T11E9hpS/Dljssdgvym39yO6NVt78pm69T9WiBKtLVNte/viW68j4ThFc6gyovCHdMjR3M2LZntL3DWnduUkiXIsfRZUJhiSpSVhKhQBIjYXeI7of39HKdzPg7Enl2mK2nHU/LaTC6CUMwf8SBp14pJ+4FkvqFEyDCZA==
Variant 5
DifficultyLevel
546
Question
One billion is one thousand million.
Which of the following is 4.5 billion?
Worked Solution
|
|
4.5 billion |
= 4.5 × 1000 × 1 000 000 |
|
= 4 500 000 000 |
|
= 4.5 × 109 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | One billion is one thousand million.
Which of the following is 4.5 billion?
|
workedSolution | sm_nogap Using the description:
| | |
| --------------------- | -------------- |
| 4.5 billion | \= 4.5 × 1000 × 1 000 000 |
|| \= 4 500 000 000|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | 4.5 × 109 |
x | 4.5 × 1010 |
x | 4.5 × 1011 |
x | 4.5 × 1012 |