Number, NAPX-G4-NC26
U2FsdGVkX1/ng1ESQ145NtN2TGcIghU1+Vm5COrai7PJ43o3UsWrD2Ws1FjDq3HqoQjxorpbVPsXGk6VMcV0+z8fpuHrJuMrI4Wjql5f5ktVanL10cg8aiGcu8yqcqDXbz7QkxjjFdNgVDsk6rA8U4tgyes/SaD0BVuM8TLLXrQfZYL9gVdJEOB0+Ktw0C9qoF6MI6Pp9kWMBBicoXE5RWzlsJUNU+MNYb1amdB/kt1qS3ZOrcoGg8APPttl8uTVHOAUmRewEW6o4v9qLOq3mwlJXdO9bBt27VszGg696tkjpWYmhWNERa4W09vZ+IV22IDZdWaQnk0C5grgX7idrzpuvCWz4LPamNookGfiv2IaDEpb0eNpgHfYkocp8LhMxkGwstca2RcwArW1yp95vn3WXfA2blPWOlgvmxTHeLaG18ZVaXlOdT9yiocuVsOZATOrFKb5c1hpZqTAQEe2C35aJSGSRDoHO+emrh/rdsp7O0yrcfodjfEBO+G4qcECOZd7nhwWQHKGeOLopiE1XilC01JDVWrhKIXYVeJ2M7iT7PZ9vj6SP0E+fucQMjlwX9xE/ygO9idAwTJ7jJPvCVuCqPpg39QsNkj2oy0Q3cCuWiqzZ+zYDEpG7816I7w3zPO+zNpeo/I4ofwRTx4238oD9EHF7Ms3VGvSRwls3goA18G7BiTx25x5JGuidfw/uZ3nusf4mxbfq5r09SA9na5kS+5AXzhd+Eo1ZOr4md7j3j7Sybe3a2Dre/QzqxUqJ2JEZFzASwBvBb1NRek8kyepY92HpnCLa+LyIppmx0CrteNBYCskaNZJy11pcO80V8d9gkbnQDsqZ5snaJdnessoJbbFg1L2qTZQ1SNCKDM6ZJLEvOKEKY+CJl0fIRLTVanuL0wnqicl0jzKwRU8TYCnVNZaLNbVJ2qJ6YO3jqhq4xyEwo7+34WZeIC+VHrWraCrqS+DkyxCr+Ec5iAL59B4rt9S7IycNsMOxhnDry0ZICJSnOJmhI25IIAhoptci0joO1xpY458CS1Gn9Fv9sopc62Az0uMaygEC3EiQoyEL4nHaviKbAdayswpzg34Q865LjZgKHkrNS593JoDLumHnIKAgESi3c3oksIuAurk9s0Mu7SfPs2KwvPu6nI54ISvxpXU0UQxbz7WD4Zk2AX6YoDD9eHz/iIIdGpZlhOTUkpy+NdaPBKEF48ismOw3fMwm0HaY/kHH9HIIrAEr6oquKQnwACLgLc8WNg0ufUk521fvc2BWm6u/LYCcb/D9YfJF1bw/7W29cSMmASBjykKr2Qr2oN2+8Cz3p/3NLG6fax5hMv2uKq74g+xqJgqk6fWMpfPgnB7QVyr498ZoB1foLcZRnQluKU8ckJMBIXVppa5wn3wlBXkKVWNR3IuBkqfqbZlOFymAw1/9Q0nS05ZcIg8Lkj433PGApbBxgEV9qmuO1bzzHE3YJPPaxb4oZH/oVlA1ia7DtWqgnkAUZXdSLmylrMGDFj5+4hxX/QYXjzAPMse1BhPMS3Gx3c7ecmcIb//CwK9LWw66nsnOIDDd6upm1uBsJQI8+FPK3FO42B36/xf53LDagEBxgX7Ga1+WtyXiSmk8QDFmBmHwlsprsnZN/VK4k3kqkPaUMV82JxuJDHXoTbFnZ5gDjmWFRzmH6/oXVfOGTdlmYiVN9lQmTrVjnrCLPDYOlW6YdWQ5ngShTQfl/n6CGMYXhwXQNCAfVKthtJgZIOrWLjxuR7ndOj9jI3OYZso0w2QVFnYXuksfSFzAUADaWXtzCo8acbC/x6Se4zR/9jq4rO3VuvzQfFpnWXYMtWnShiVzP5kUueJwU55bcertmPPo9mYQgSiLvXPU7j6sub0f4GJS6cGi/wTWc+UZuSUAyDt7nHJL0RpIbxvkEYv8iIaXBJHqzWjZ2S/fNz3QVP24jPbHELRYl12kkG28CtAufyWF0orAapLzQlTGK28Yl21hdBiQk6rbZIFP/1F1M/LjVHuRKU5d4MRubEoZQX1xOybNXI03xbuMYnm5evFU0LhmnPqTwLe62aRjBdZItam5Sxc7FpZHFFXiI4cqvfuWfVpjSp4pXcFLlBO4qrrzqIWUzjFo+MD9yazds0qP9wZ5x8yeGgYPRN4hYbArMeCm6aC6j3wCNfGDnwCmQDMRRPPU9MQLscR2tCrDd91dpSfkOHCvjEauV8BP8/mhsjWru6zUFu+e70ere21bkDpNcH/osY/4fSBJIALM/3C7tU1FEqCHBwbWauvimmyxlfgxP9HSgsle+CAouI0OQswNzOIM4gCvCwWHrAIYsG7X0Jam/JLwELZ3waz2wscZll6oJtQ3vZbDWty8qqEIlUNQzXLcb6oLwxFhbfZRKSc0AoqpJiwEH0hVy3ykpf8D1IsYCE2pmNldUWGLg6DDKgJ+SSIUN7eWkMJXErV2T8ovz3MC26fGmT3as1anaJ1XPyOWuZ7YDX9/s2Fw59nL4lQ3OgMJqbKs1wn6AN5e+Dh5iVJXFv5vIGA8WVD3UcTpyTiZlowp0x1KXg8G2KB0flse91ClAkErPWr1bEXUiWyHAyl1FTrzJLRvd02zN5C44Uagi7CnkeKxjtL7LuPrrQLTrF1JkqEuJtWXSSZyAaOk70h3uraMpCCGujA9cctdlmqgfD0nYrybl0VlwrDG6RqKVGw3KFG9lWhhdy49335f5TeHsrODfOfEMhOtRCJQTKfkQh0MLPaoPtI46AjaFKp6zC5gmZ7gCiMI/lFHIjaVp8euPk20caYhQXL0Ru5lnILA2di+eHz3txJpRnhNO4gsf4EbKb3iBLRHDhxJJ9Cg8Io18WEDiS57wfXQTxa6ezqNiv9j+vlzmvMk1r3MNkdqTF6ieYLbzD/ZU5nJBBRiv1REy/cs7yvh8V/wJHL6fnx4dqmJ+OD1vEiWnJnRwKeSCDNzYwKCabvHIA667rkKwy7Re2A2gPvQqprzet3nX+j0uP2fEWsuV72Rpdxy9A+D6cRc9I3BwgO4ClzV8CnhF5/HVRwzpN5rO9s7MPJiDaUt24aLRBp3aNxwM6IObKcQlksRXMwTE0F0NB5ed40gaq5JqcUwQQ3js3ojEfeASxgAVeugw6NDkH5XOuez2I+A8zBt+3xlXJa1YO/83Wk3kMY90DUtb/PujlsQnoIx6FNliZhnlvSXlqDU1Y8dAL+LlW4yZUmsDts0ttQZkRAB8YPaSwUYmhgEp/4OuangAk/CXw2v8c0zh3fghSiIaZlH9PmoFL2ys8l0sqTwyXnRGrbYBEO5Nxb/ekCQGFsDMJo1HN4BI00C8a7gvuINZgzJv2dQ7HCanUTvsZH2sHfizbvPrhLtxffXkfGgPyFrazg6JVkSekG0x50dECVM+Auvinvl0VazbkZ9PcZB5obdxrZU4lwaNQdxj7FaFZ1u6nhiZm59NNWnjYqMrSyY+d+XkqMfCMg/qu+g5Nv+r6Hd7wIiXChCgCBZfEyknFZlqIcI0cFy0OihXjyZVLODqMiJqRZhg3X4JjltN9onAB1aPPSuB3j73eumH8N2VBt9PhnI80FgdZ0Qp0fSojzKn7/DjF1xIJmCx4vC13U4qpeIjX9baNwCkqi+WTJwe4DEm7aoKVF3XqZERzWfWb7vYcBzU7BvN7UtaMNyNwD9kAwtiMETyKVgZBuujhKMTz9Q0FT8cVD+levIL187B5ui88focutS0isUSwvcyVcOi+oq+yFliz2ljtVJoXsmb9VWbh40F86xJIEYkP+clrEJ2yPuB1E+opTFfIc8qCX48a3utuOALwGKiX3eGfVFz+gkCN+Z7veXuspjl3U9zTfGI0VriYV1J9pT+oG2PUtz8rSy+T5vBjE5XxZNRCPFUwrbl+Rf+GxR1mFIkr9KetCt2FqCA/wiiAxGxiQOdZJya+dAKvwWag8Fsc17JBt45YkqE6TfORpRIX3y3+KkYPUiQm9DtXdK4Q5jVGuYIXHI7NbIFUXEKs8Oo6DM3tcfuV2dP3yvZbILIkb7R+3SVYfaUbvPTlH+ErmjGX6oSQkdsTkKGFacchlyXpLvCqhRhNWUC9LvCKgZtg57UdabgLTG2NNP3T8twVi2wMxQz9RLf1qP+XzkXgbzpmQRV1kUY9Ao0uTOFj2/ikeuaX3iZdmeIxFGGKyqc5MVGaXzrVWuvHWEe4clcjwy1DlnfHBC+Rchj//4x4qbUvI24xBGGAwn/LRvcH7IcbCvpeaZXK1cUce3vXonxJ1ncNnTOYwXiwyCIJ2tKFyGdhGikr77MmbOVkDtpAeysaoLcAx6Wh2Xp0SuOJ90Ki6FM1qUr5+xpxAg0soFQxiTS3rZx4f8YvZG2Z3qXOu6BUB1PUcIWo+tIlJedlIxBP9RjIxRq8bNiiGtQj1ialU8nwheVnba+vtknLbscUxFShA6k0dIsWRME7j5wDwAap1f9hAlfSOSM+xjrX/nd7K/RQxPZ+Sa+jR2h5gY9XLU0LpHBwCbFK+ULndPAc2Jn4MU5ZMrx5dZI0WLnjI2AG5sb0jHdKzvzc/AsTi2Iw+5nvcmuJXBymZPQPOHhRfw32moVcvWj9vWygpT6ZLjY92MPiCRrIxuGm6R/dzR/5O30e1FH++PTxRNsaITze58vfZuqL7cv/Cs9q60yvh6RSE5nBKFHZaB1BufstxNoz8Y1UEyKGgo/+lLB33/YYm8kZ1eVG7aSsxdCkHaqOUt5kW/ftVbML3gXDL52FkqyWDQQwWgIsMk1f+Oiw/CVVsn8+9qOT1cwSsgBCYaU+IOsmQjisaWQa41yXJH2o+mpYUR/gyAcKIDL1CSuPZS3Lh0k3n8dpaJp6sC/12F5Ruuv2ANGxTCGwNw/QgTs6LdWYBz0QVBFbdFH0X8KNEqS0Tyj/LtNxQCy7NG+A/NxwXVwGvTkx0+jcSVaWG2sPdC8x2IBp5mejSfcdNzp6BdjPhhmJp4hZp/L0QDviKgwrU31RnrC9K+rmO2qfR7ItpsqlZdpYL3NRpi2XSAegCqsIpqOdYzUMZfZPowL75LW9RalxwU7S8/MgtJ6tDE1vbmCMlc9eN2FpUKOoOVhSDMy6RjWPBcljIIGtAewrz6qzbN8mahhEqLczBip5pc4mWTEgU7iz8VYLxNuvcAa8yqSwwsw7p7XmoWYSnaDxio5tHs/B1L0hjxIrKCiYwpiCRyjtGYAY1NN7DQNTDDoIUBSX2C/d0KvNW6wQt7NbeDYEnQ+nhrSWMd/4QaWkDvus/mLCjm4IZzAH7hKq3DAz26T+l521Ob4sdr0/c/WO9xx3EriNqWKBkk8Ypt0ZiaBgt5bnYCO3ydnkzvRkOXprRDN86h+E9vDdCSdoLvxTpezDZ+uNTLTQU6P5KUvVr1ZxmLrJncyUTr4NUGL199KEnBr7SgSkIIhrt6S4SH65OqaE4CaZgSmB/VHNES+dNptLyQJYLeMOaJRy1/1KCH3NPVDA2pLX/4iYl1DXrsN/tbG655DfkjXaOY6D/c8Rd/WTrYyNX8MOkZ7JjBXNdIS67DvGAGh+MIhAWLwvMO2gagZVtrhm/7fw9mokNh5ImAiVXxvcrsM3vFoLaqCUEZByXr/MKoVWKoqvfFfsrHSZRnCvv4MyzMaZdHyRIGNejdpC5OnNgJZHjewI0Vk5P88H/fSSdFpyvYFWKjLkd+GB7t0ffqf/teYAW+PPw1I+pgsutcTZs+DKvoTKXs7Jmgmw5QxL7VdpzTMSPFDGfUFPgDZMUv03Iul4ai4m4Ap6O8/t1JbSVAqIqdET4lP13Vpu6fYfrFLacAP+6U6pb7+JyDtn6dys9mnrEm5Tp2ZG+62cwvQb+g2M3coAb3+iwsAmAm8uZgPT/BzGWTVCXosaqKFhy/Gzze/YjJR1xQ8jRRUEfiM24tVtp8iV0vfp6kOjFQ+Of1cw9PL64PJnAfYU5YAZCaTwzzqK3a0L181UcIBfZGS0cRGDtJIIrJYvXOsZCpg8BBygWtnfUKK4aq8P1zYXEveupnIU1zfaCbhWFy3sW4cJ7zC8x3JmqNMX1Op+okDRPnHc0BQ1D/X8hr3ouiyo8O2NlEPzJ/77kWmHgyXZxTohqI1An9Fr9w1mynQRh9MDCANh4id8zYVfT6vqzQI0DEdN5wJxvttt3cXo39QEV4m4Yvck8UR2tgleKrtJd3ahokRF90mM2lrI6405qDp4HZOe4/95QtApTzj07zIKqaIol9NLAopxc8J2/ytS4W42zriOaOX+npMRT0ObjliFrVhnifhG9LJFFlP/J2v/R1P8uPlj0ZzSJyDJfhuGbxxl56M7742DXCyYkW5vnKvaK3M6HiUu0mCGeOR1/pAdQXkNrEdSbOcbXayfP4nIBDALyvQg62hT0QtROrEv49hP/kv4OKY0etcz9oHZGixihY99PiIjzRReVBxy+o7MtfnabCfBl2Ti+bGMAGbEARnanjuhhXI1wNmvL7tGobqauXuAOxBy/xXHHW5byBQZBDXlDHYllZMa/sZmH/DTgn0uryuJQQsfcORFvRe8anCQaqMnbaVqzRoqKjokd5gddk06pRP72MtOxpfZz09O7UrPiiVlPvAOJ5HBZ66/NsfBsAMhanISqKiV9AYGrIT9jMj4qtUcTLCNMOv14OPwChhoZ9L9EoJn6LLJ55rpGh/hxrfQnJeyxnO2uJ6Z7smUyDjMdFf2pGhAzcY9K1uNeWo4tXW5INcO14FJ/Oy5Zv8S9C1MjwJk4nDcz+2bAzGoVKzgtK/XSi/p2AkO4UpdNIe4Q6V6hWLKwPYJNhBHsDM1ybIXjSMcc+2F031ajohXFMH6IR27cxj4b83n4iPAERxcRWDFfN517hjWzCigZNGeAKA2IaQYYaNvR5fdYaaBCbitBsyOH7BK6YuD/gSNM7TSgH8l7mQ9HoYu+4X3ahwGV5b57oyaEfzvCPm7Ozu+5j1JqQSuv34hsaPBDMyz1jthx/bK0uPmeexmNcAoM+HLmMEqxcEwcm2ySwd1oJVxOuIqolnsyangcElHbrFYXOumUd7l+e9jytLJ2JoOdvag/ew+L+XTqsX2w5p4NcE0WFs+KNNdfuc1ZTBvUZl5z+2o+WTj4HPW6UqZR/cLjeXHJzf2bwlywiXNrxd1P3OZAVGfTRdl22jPWTW3UNomTMHw9KDq/NxJXW2vfJZqaXsTDZDKsnsh17xHHoWhXXeUmn/WXHS4DYw3mKITDHc5g+02+3EiHkyTrnxlOR6FDxyAACoeW8DRvLI0c7AyWnU2r+mIYThBEXwMReNb2hijBdUj2TSxx1xoofnWk/mY99LmtEltI+/p6sbov4+RYHHDd4flyZht786g+XCFjQ9eViGWMz41JPVUcf/Si4HSrrG2t088tJhQTPj5rP6ER2NUGtGUjir/qVK8KnFKqeZX0QAyo7YryCmbz19C+O/DjMyr4mtGmtsEuDPmXrqx1PLuzTgK7SvVJ3qr0AgduQnttfCu0wZM5SZhE10aFr6qUq5ZcXaENeX1fFW611VRSFI8UPv5Yd55dqjyXfltxvUCGPo6ITb+cbgIPOVnsMN5T0iH0O3kpMVBgE+r5IwqSespThK55ucDKOZzFUlOcoJb+VQiJZG8ctr2JLFQAMK4FNXFFN/B0XRigiEKXTv+lDanBWrKiKgqvgLDlG94pVaCkSOs5iEMDKrTZBD3a67XT7eVYPCAhJm0c3nCm/HadRKH3YWYY9H3fn4W75QlIqeUyn7q/Hjx4lKR2YT7jCRZBtT5pJFQAoxnBDbA92xO8YUT3tynFzED+bAWcMafmx+cA+rOBbLXbGqAV9WgoRHb8ksQ6MoOEt7L0LBwRyhyKK4PR42tAzvv7faXhif+y8ZkYGUDn1tQCThbJWt1ry5tR9Axd6eUXGyiwaKFW7BdRS52D2AtCdEeImCatEKjHpay7Ge1j9a5jMXsa/L4C81OMuETQF3d08Wy4mxFPPtvZG+6VMJqxZn83SDkFTj3MtY+vi0M6ZCnWABs1KU+uv2hf1amEyH39cCBOZYA0BLPlwIlCzLQ8s01RA7EqR0RNi5r3SLZGE2q83fMzJsFlODpc9fe58vS2nauhhuWGfS/x4I3SqZ0NqGrwJl88qhVmcMf+JnPTegb8NYXviF12Eoncvm2oDH8M4EJW+Ir1xn+JSF1j44jMjRDJALlDCo/1dsfoWx10e6P6OlGe1rOiLjX2ACjMFthzTzu3opo7+uzKnMTv3XeUZrbyQPTZomqpVwugOIfBIRax1TXCAtx2RWWoH/N9Llc90OxidVsemqGbaIcQ5wQ21jit19v/GfOFD/da2Sj1v/jYjUpSfKRfgYFcy5liUb0ULhpfK2ljkMMuUJ3YioaPu9EDeU2M+nR2Y4Le8YpBmsTqPrZymwTK0bW3ygS3tBvPJrLBgv/wWBDpid9+OHbl/4oF0OOcFamebfm+A9wRdasi/AT7pWubfvBBciVA+66L7Eksf/2ZCGIPM+xgELYqNm9ALBaq5vtLwqGdastqApHwFmNMDlDvFLo2/kNX/d7Z6CDn3j+tnFqTeLmEa/GbVInjyK8j2dEFkF2fDYJ/UQsbFmLCE+8sfKj3wh0mFAEsrpNcb2rVDXTrvsup0fjMLTT322VO3Lbz+n6SdaHwy4B36yK+WPKJ/dnokxafEuPy33d0JhWsB4RV1++WLhaxiKs4dkI6zbHYx8XNWbwz81goUOB7QfcHqr/m2OXuxGTtnhKGtxhT8uNjJAy+2iyNrhfXY4Am0+kQt+/FVxMs+9+cui1HIf6HptJmfMGB46dG7p9esnpN5FXs6BWQ3x8yWjdwgi102FzNqdTgxnj8VHODOFYyznZ2VviwuGw40B8On2FtT/TsYO9ywp1W3ULMraXRckDsw224Dsx3QBR1YNaLXQbgnx/X7W7Fq4CmZKkUw8Aw9dh8QjeLCH7U1RHl0IVthOeQCYP6m2+jQrB+D/YI+PLsJY7zfftX75gn91yK3MAexrFhcIfdS8Yx3fHXit12L0WuQAmya3fRVO1IL5e96zxY2/eexTzOLpp2QvDQh39slIqRQAEvOVwMtI/hY3LPWpwmFiGuBGNAtHXDJ7kuWnp9qHZEqQiO9WP+rQsojgG83NuLTGL/Gk/TdOxB5aEv5kEZtGD+EivJUfwMfyN54Pf12Fxsrafwx6Q7QoL0WlJ3AdMlJWr9Wal8yjoEHw9T2lKsK3QeEDa3ecD0IwmCixa9aknksB5309YuD52/UCXFNzX8bozJugoZPTMjRbmUbjXXZbHp1/n+EXPNytWrazeKa68i974v53DB4en971/d982tnzf9X97ePylct22jiDdhZOmNufta/k7C/GawJxbk1iC4MmX/K15EDPfB3CeeI7cQGbpq1t46ON9cESCAZJXnv3o32BucNz244yfxE4NAD0cnF9/j/0Rbmd3RRFEpYrLt/zRBJXCSby+k5chwgHIoa9uHPuvPZ8w5N/OYmyQ6Q6HVDxVbL6Wi1NJbTApZfAbUaVoCHfFJcR3mvPqUK95rJtI7iyRmEoBtoVmS2ojESUf445IDmvEW1o8GmhOBzWRW7JfzL81qFfLyopaSP6l/zoyTsiGRYaDCukO/ouMfLVvVZQZX9kpyjKjz9c8/lwefwFo6wfFWTYZodJsP6D7nPHLNVLKpPen1kBcOlyf8sEL5axCXJQwpb2mve9jaEWxAA5dv5bmB/BJqN6tqTkLlNGkEH1gruifcym1jCgYjzLAihcrTMV4C1IGaY3FCvZD3SJAhFWIJg9rNDHRpTZIlHnnFhuyyGI5PdHLRiR8bf5kGVtD7iWbikkHYRvlsA0Nb7RgVPbMNpaNdNUgknqzHdpbXN2BEhMwRelii76Pi/Ax5Yep91dQpXOwJOfEk55tlLNF1oHAAjFgrlJS5RCbvpfAU+jNU5VuRGwu/lIQ48ICLdS5XYJdE/xJaTWMlGGKlUB8wtEOyau3xdGW7IVYXc9D6H58wdrYL24C9uBrbNmAnwPNm5TFcn7qJ8YTlt8iTkYlTE76pQjvVPF6pEqbuUiCZ0alSolr2+efOP5LoadF58TmNKqnSX5gEvGCf+qbdk16Ut21WFe6/6y+IS9jHIKKz+lsNlRgGi3LSAhAXXL78iMBuF3JkL3adIw0j0g2TDrRqPv2QPNHih1GnAWKXMAuwcD//2VF/qodQYlVbYthQN+kAyhOs8yTcdC4+/HawPb70aWcCZsVk06rwWGQFdWoY152OV+/uv47ZKAx9HPLD0i48GrsDFFEUEeoGyYQMzm8m1fryqSkDf4yclW8aw755qsuSwPz39FMh30007nW+aEZvsn7Y79Lg1smT5k92hFtFSYXjf25/e2NNaC/fvecZBEIiKUkLfP22sDIaZZE7LEuOawEnXh2ex0B0XDb3FpJte04CEjZ9X1DOyjusQBRm6ua8975+upCGidKEazAH/o1GKYOnRdXnXEnRbTslONBA3D3jrSFV0pk8vQDMnvNjxznnDEeVhozV+zqi8pjbE19AhSlBgTMZaPy5jLqV+93dxVi113YBBas4eRPAj2EfSkGGDUpwZ0j2lWLPEWUy7tOsEDgBL8hXSEvKoqF8ef27GL1dJNiUhJ/Pn0P+1B9qLxa3RAZft1E2cJ0Fqyt7eBFZpl0pGqhB85axsq1EiCV7Hht3jfpiOytJeHS6uEC7pKk7Al9Kv2Tr84IcrmnKcUdq+hnO79OzVnXGSdMfsMVmgZpkzonS8H/MwXDYP1HrmPDjhBFt0i9MkIIrLGsdc0+D5HUqe9BtgnbbpwR8VVYn6cCxXzBkgs7vkbs8cUTR4lHFf+13Gggq55075UxuOLJL/UvlNSEiYKrI8gdarUpURQAkBycM6Zk3x2kec5zvnvoaLcvwFIrUJjkSLosYrHHHcjVospFsss3Rnf3Uh+lCdXXAFMDLpZeOOMwzK+YorvVlDGqbmnJtTEaDMey6pszbDSkXV7ERUVHB6lgLX9TAPc00BKTsHtRagjR1+cmrwnjfklOFclddhWRKhAw/8Z4Lzrh5EN2Du5XHpxyuBCGPy2S3PUBPtFVcYi6RsAeTO6t7PGsqVfTNBnrP7HLPBIULF2i2afRjdZmAhhokBxvpz4IX2M7k0iaszw+rdiAmqRkxqJS0rn5Dd3G01Zhfkjl3Ed8U53NBat35uJG5GxExfK4dZz+VTGRE+IUmJpwjB5V00f8BVZb2p1+Lx7LLfgGKNHioHRdXTl8bBOGh0Fdl8clWWS1ZSt6xkkBzoRp24gdUwJtjPEFLtAthV6p1TyKC8KY/BZ4VwYHFAHJkFLrCiElDw+IkZnDwVgMnD9duGuKZuBQfAT8iTYwh62Jacfjb0yPl3sfuCbGwt/eQhWK5nKs3xokEx50BUrrrpOSSDMEmjH7mxSJf+6Vv9CZA3ZhCDtRyEA5g8Wu1w30T6AchjoxErtqE82jEzSDsDzad0OFhce7nImvI0oM52sHiA4DzRnswqNO+cSjlGYVeFwLGAhKbrnlQmKSxU9YgpNpNxGDOoy0B0CGOg50gVBylqRPEJ9DSOOLqJkec+cm26NXByIWKgxnpJQigmYLkN2qAv73eFpbf5sDyh9IVRu4AdKntxf00YuXal1yTQD7bJ4txLtVJIfh1vVnQT/guyhBgjv9s3PmsA7dpp2jbCamuyXe+GEumGHxa2XgimD2z7ZmvhfHbmIWsiVGuhbj8lwA4DBmXO6A7bgvSksrUWwia46HC/8RzRJBLlz1VaNIx4y+D842Wz+KPBk1m4vSitSkIc6KhVz8p5edsulNuWEjATmZJTtfuUHRjfrQwMCRKoY9cCuYdaHlI8roB46Dujri4gKesyN0s2t0ET204YWKzlQ9RzGW1qtCuJit9LEKgS/1mKWAlHqor8r/JPfHCgMO25CWfY5vniYRAE80IxR32md15IGi2o3N9J5sgx/Tmx0lQ0dmMbX/f1YvbJUFnuMB4muj1mP5yFmFZD+umC2SZskDc+FB3umfdxLkFLileRcrx0EMvOwxKrlgKlcg/CZFMoC7MxxntWFEnmQRYsARTKYJRd83D34xLLM3127evA6DybsJXjPUwn0d+DNngvthaDT8qYgMZ2YM0dxbUDvrAZui9K53U8LqmdJhNCN2ts+RWMW1Q9oA6fd4P2ky6BhwPqxBKPKB+RbqdNFnxL+a0v1NBzNdwDR39888UUeadAAPOLIXOb5ltvBLlMnjd9woeVOGhM03XUFWlPcaQArJzdIMAe3mPpYYfdaL11cajJ36TsEbuFONsTNKxWIeqs8XsNdNmuQxnJvb/xB6jFOjImRgj4l8th08gsKX4vzcCkSFjCRzVqaqfUoW7FyPrMNn3Fpe7ahG3ZynXlEplkoccpdC2OiA4hhgGPNaA04aiPOc4vjo7VBz9a/miAEQHwBDj36/D+QtEQ/XlLA7U0YuXuvpGOI15SBKYImCFdQ+wEt4rnKU8auYPDA06VA/VWpr03UB81QTGyioSJYYo6S4WIKfTj0b/DLemxM4A4d+cjb53/RCrkjuVqHtKNbh7eB+IWXcCEvvd1qW6QBHmFO9PRIO30eXePhuU3Ag8kYC7N65NNbKSqqjGs6BFdL1P6TYmPL4Y/1IHqtuHQfEMUVdFSPSzyCR3bnpKRuwsxWaLbe+GR+ZrXKlxB2RVvT97d/1XkAgmV4BCBJXXRMbYz7OKwEoYzFG9SHiqzO/BJwssv8XLKShYXOqOcHAw6AhqLPz8HK3VBvnMVJwZUT8Un9qweKprOFhdSA6aFTClwk4uCBBse4OfzWL2GKC7FOX1gS5kYivO576oC9Z0ci4YFnHHxet3pqXlHWjVAzLXoMVmrYjGLD9aVf8c0KypIVqLT+INrPAkQq4pnQvyY5b3fItxM2HbwjJJN5VM4I3v/10va01GCh65aHCjYmxDyco0+wZdn0pyU4rb/Q+u+ILgFRGAt+bZ4Gsc9lh5WPLv5HLIAoYS2ds2GnT5wTBXxfrsD2TJVOskHoZfWDmUF461wzaXfxK5PbUfhmsdx2vPLo01i6VuN23g3+/lP0qp7xGB6B0ohOLFfdTWTx6wSlacDoY2aW0B9M+RvVRQ2Wh96Wh1815I++fDg8HOF4u70D2LyhUrqykfROl0k1ze2P5FXpaQeV8h85wA5t7BfhrDYEC1s9hs86psXkBQeGPynLf4Yi6KsG8rYs3JgL35GA49LVfrxGq2wnjhYnvnlgHEdZ3JQnYiqYzrGima3QtI+x54P/SiNoUo3HtJrMXtX8Po/j6t2jtsn+xaXSEFuuXIXGnWohTAQjZ7p3dJWgJP9f6Fk3LAZzsi8cOxCmjnvrYHK8o+Byc3FkCwXztDWwMTh6FpwTU8RALTQAAFHJVywpLSr+TNc/ba4deu+VFFclyonoHgwWX3wSnU74JhSMm51Gvb+HQoAJlsxaQ9wloXoL9+X8i/38PuH183lgbdWHBoBB5rr7WjlY82VNyjuxaImfWVXQ8lLsfwCOilfK6LIBOwvMsJ7PcVbBeue3RPxuz1eiJWbrLyW+fJfL+ilwrSATqhcUk0ob0gRIATHVOQ6p52QK3IGwFKJak45NatGDhOIfWJPVhK5iVdh9lMgDBnzhbLQ38K04UWLCwxqAq7JsKbxHSn4vZZKUG1G3U6EL6P9TI8GaZ41tjbKAIcR0n6ChBqD2xdmOC+Lviy/e5FnmUDWjE/f3gABJQ3K0IuS2ZN5G53p4HdKiCVjLwKpXuxhcf6p/rnN+4XTnRYRX0I9N78nX9PhVhuheUnYTa/hNVLusxF8qWFRhirM5shz3SvbylbA1EPGjz9d1XWsPkvN4ovDStthJqMOZOrxAgaz1Yzf2E8kSj2pVBfDgoIGYj6zGW6mInRSRhH3feozZU7ezvY4YVgVBiuZL637EQElqg9UwYlmJYLF8qyUe0/TKiUMxdHmmtyOMQPdxdpNjWwHSB9MbN1w/YfQUxTOASDb4TbV7TwweCnKkho5gZy/4jXBxw9cr76DkrT1rJiyhg64INLGNhrLDOcICHhzG0wA0nFKkc+T5r3tp3Hy2t60xZuq0yXnOQ6SC2335/otG9e5pr+NW+3c68y0jmsTefB1XFN6PiBjM2EVenX29uTgjyrouEFdNag2jiNvzVExAQlEGumi+P4gFo96FtAXU7g+qTXnJDYDSmadNO4Eq5XSZpVQzXtPI9324WyoSZdvfL41SchVnYYkSYWR3FFXYnw+CJ/ZYPfOajCMCmMBhMptykGGQZKDrxgpU8W3grfzbYz5dcBvU9/Vx24sr3nxz0us6CNJOxZdNqDrRzWLKavoGHwfmg9XDL/W2qKZJfJ7lSmR5V0IfUnR3t5+44WTdn35WDlPx6TKDq7vT7Nz967GcToRQGMoUk4X8suzIaLlSw3TCOe9lUboLGC/bChPEr+7DjfmytOlUEdSWEdkwWxQrHPSAX6j+x/GqX48tJURzgM4LUaEJgA9tqcNu5Zy8Kw7oofCdRKV10jJbH5ZW9xd9yMzNnCLDv160lk6hsdjSqlLP8L5SP+7TWRty7IG6atr1WNc3Hi3n/ChCrT0KU2nZK1LwkHi0fPV+Jgq6O4EIRfeFdPsqNw2zkUCo/+qPsVW+PLb5GQBWXEOHMGhoaZsDTnfOJ5xHXTuvtB+y36hjsBLo+XHnVfssYJOg4ljDVxWKv5WyadIiCvTTyqwkmjFRX0JZwao+BebXyx7ELu3FuVhIsh6GsMw1tQmKXzvcd7rqHFs9EMURh9bYFRI+wAbd/iOswvxRdArWp/yqXsN3YwMmRJ427PUMLy1wbuodm5HFB8UQXJKDZPLWIyFR+Jxe4RSszlLh3Zk4l7us3ekasJ1Qoy6R/Zf8nQSicAFLyK7qtGJQZTartSOuGbMr8F/KQ8kEDAEZIVJFGCqdx2p4s/ZvEY5Uz2XlZyq1cLFuy8P8Gr3ZZmJvmLnHyE0Th944cpAvk78NkoWzPi9bWy8IVPyLhApkWSEZYka8QKI3IH3WrXgcBaMQr0vb8l+ytrdiu+JJtlBwhFHWawmz+WbRwuijOzwdLjKlYIrvKJAHRwJTqW7kkFr2J46gPoEzeIzz3aRfhsvXhx6FJQoClZ0SNkKq956DccX/fUhhFjM/P0RIxGUSaqe5C8oPf/3oIcrXIvIyagFOWe9AhGKw1v57CV2BdAlAxLuaWoeMwawnAy6AD4kwpiLGuv9lmNZcwo9J/wPnfBE1HCLm/uxx4uVDQwuO95nwngx4Amh0CqzuhDYP9XdufdpaII8kFj2kmJJWMLFybyefwCaTRS4qQJxK0+2Ah+YPcXl06xNnvXahssOD7T5ZlxpexM9qTL6HL5Tk/mrOuVbeJZEAnq+0DLFYA0wuBWK/1HyWF7X5orQclsFJxhjrDwQDeRne71z/Fl9In0+6siBrIW7HSesgb7GnExSoleBqpanXFiFi0Af8bh2IUl2VAyNXeD6dW044hrfsNA6daPmKVKiFQNnCgASZ9rehxV+H6GTSlsYDZBCSCstIAncGmn2DONOzf7G3WnvXbmfBKgRfskLVtl2eIu56gxHR6Fj4hqkCOQW/qKXu/QRrgnjHwl8mAhmuK5foqV/2LJLorgQ0ZQUZb3HhFN2kG7Pio91YAnGTLJJv+xa522X6EXVEqwSpSYEMBivDn9wcPOVn9MjvE1Ibksho76+xKanX2/Gb/mDP2KlGmOTxcPcUmPQGJtZqQeMHUSErFs+muwviJdUP59TNbN8c/nALE9L5RiVHHA92iKXtJgmFWAewqDs/n/Cg8dO+1jtXyBjRVK4oX1an158jQ0wcgqKbynjWo/+8fBTnmwTfdFNggHcmxD4xVyHcM0s8my5JhjBX29X/l2mHzCw4KhGHUaysp6wtE674iUS9gQn+M+3+Hqckaq2DwAoUFcDZzIJyTrrmiqvijCakWr76Tks902mMZXydHy0Wy6yRK0KVd41mEX1qft+62avVQiUZMIX0EEOxioLWDQFLRKGk4pTKDehsPH9ey6Sua8VLnfumT7ANxYfYEwPyZtr8W+a1N8t6v0BPnngdw6LKrKQ58oC4cCRagikC98gKFSk4jTrhNrVAEvjLIZ9YHud2Zo2OZCajdMDNp5IaJlyQivl77JvUdQtQXeMemAVmuXwZDUuxD3HbfVBXnU/Xxy9iX06bEtzAdCuC6ouOIRvtcGhYhufJNAJTpT/4hzvLzl8RlcrC9aWI/TZGqGyZ0Gj3qBwXYrwfdn1NCwFHV9j4YHE1nXvw28ee7/J3Jmk4IXkiFmSGXHE1yG6hvrMemW8LH6Ype3OuTiPk+VG6br3oXDjBhBN/qACuUe82tFz2KTiYEIuRq3KDjh/LowBLM+uKuWsnxDFcmHqxeJYos1IDrHoE+/3HBa/H38cBN6I0wxvyQkcuAenmsyraJ3qWw13tTUSmHwKKrF0pp1BeCyw0QbpgDsa7VdTEa+BL85zjYv30MAb+9FTJ2F0hSiAOvupc4Ssf3Co9+faVNzLQmdRR1UUz68gkII35feYYb7ym7b3TQDizK9O4He/W3jpljS3fD+3GsnUQ/fLcNVv1e6oieXROonwrYDMxkzVI/gq3AKKlVzeQBjJ0rHnMlEujGa4W7NnLpMGRGRTkkPIU2cdFuYA7Z5G8gBIYzCUo/IeTQz0htntMg4txMFsI92w/yOXfWclLbHeBSkuDBzLwglcys/zybdUGwdPig0lBnL81E/KHVYykaBjH67ee1Ec7prmfkAnc4avOWpIYezQ5aqk7tw671NJBmgogp2+vERK5yswKSQQYHiTmLAM4k3pY1SW1t6DLsXa+AIDrt8Hm9nhjitMRpq0d5aZCEuEULB0H8vyEpDwI4qLzU7d55mvYf7Z6IDm5pIncZzxukS8IbG5RUzE4pZhhNE/Aso0wOgoYdl9Wb9odzeJRWRN0l+5q8f78VVJ8k3PntNKquRlaJgOEP22JVsHfuw++hkl0bzmL2YQ8Jw+T+AmwfgVuI9e9ZWlk/gT+z0F9YtjF2A7Y3UZfUGDnRwT+eBDk2qICcZFTyqg8+BgDOm0AfGRiuwPSqsXIVIYJJDO5kzjlWnA1y0vtyBgB4yaBndkmJskeaKNdkeXE6DZsxLVRfvRqzipvHPat2sHVJt1KPe5dVL0kACHzUsmoQt73L4aGg2d6LI4vm2kIgNNVOQ0SCS5JFdLeFgacMKymvw4kWcZT/ncJqtfqW8PLl9DlO7h95IWG+sgmDRSaF9wXoMvVLGjuscmmdjrdtNpXE5l1aVTjYZ8ApcOUYAUe+AGG10ZvUoVkZrq1LosMmLwnCSiKexegE6HrVw7lEyHGqnGGKIdkDdLr0tjD3rV8CQEuHDoO7besU4m9XydtwuS/+8A0nPL/z0Q9mDVPdh2XKPMtGMn3Z6gMQoabsjt75EnNjxFMDG81Y/RlIu18wowMWD/SMIHVvaR5b9/hCvg/O5uup1LlXAl6dzlG+fLQfDgcftGME4ypptRQIJ1PiwZ3R8Qosoiv6J2nEvF4GKhK6GYtUUfDNE1F9QdksFsgLlBLE/9v1k+c0u2N3aNcg7v4oE+l3TAW11MUuDQVG8aINf9aCpf61InA1xKX6iJCT8rzn1nxCkFngoidBGvMhExCRxgOwczufAEygT5QK98DicvP0eGltStZuQ7tPwLEIf1Ba/hB4H4p80m7PuQ3IPc3s/SBpZ1Y5/aMScnrkHnK3xLA+rp85KGJDKJM9NozrTWLBND/GBW+K/19fSfc8AvSyOg2ceO2HaslHgtLXl7RMo35GiI9aY9o6i9XzNnsDakzbwEU1Lm6EdVYfzZhllh5Hl528zSKgU/8SyCzb16sMLqTw4/6AwyWyxveJZs1A0zLiuO29vvNrNLdwUIa6xMkkSGVK02AjqkPRNLOzuqyLyrGxJuY4DarXUuRjZ5GxRNmd98aYC1qJJkP6/3ACzw8RZ/6/kYNxkn9hzirAmC9Ad72drERRM3ULb8jMuguCYAKVHDoOwkTG34DaLploeua8Dczt78mpn4wLqN655CQidkE4zmHwgwYMfAeMhhke2nfsrPW0RILfnaj1VUDNf90vlkdorSBiVzB0CGp9hPCCW1+cdtqVBAIDmjYLI1hCG1V1CTH0VOyKSzTy/wCAOogLwpcmBOs14x+UuVq3LvjVoLsPi38yzPfEFUsK/XCiGO7pUBVIiE3MWEhQF5vTIfOKOb89oxyYc8UQFKzZYOLqg02KJsc7OJSc+eIG8RbFYTYZQSviPYxo9eWrfA9dnlUCU0jUM59NziRrAz0K5ApRMHp/VMgRt9w1X3fCCP4JYOHStSb4kHVuGR5PoNsllimzuvshXX0S9ADajLKmCItGBbuN0C40IMQpk6k7OW0wLfbQDtICzHf+jdRb2w7sVFzsJ9DqKEWUrPZxMOoPX3g4yeZVjgHOqraCxIT7RW11EmbE4gB8Yda/Kg2GEzRd2FD0HIB1T7Hgrmfslvw0mB9X8A6H/GYYicNPVUciR5MYHXYOzIOnjasNvDBB3h68oNuFtJVwbQZ9F8fALiOjQ01lc6FwsYqGPMKllcbq+kWQBccfy9LUPIsDdY962p94M9Zrv1iCl2OT6dRnhtUnfQt7Esr37Mh+0RVbtFfsiFFu7cukebUhnhwXOrgNxC9tREmVSDT/OKug5MQrGslvfpEcYNDT8SiHKwPF7q6i8uVwvnbNO5HEw21Q9n3ZpsqvwFJdhAYllj7MLefPF8Oninz55CYjoYuFNe0z2ijdoBcQ/sglnRhZUTXv746HKs/wfG4tY417Wbrs=
Variant 0
DifficultyLevel
684
Question
The table below shows all the people at Vamp's birthday party.
|
Male |
Female |
Adult |
35 |
15 |
Child |
30 |
20 |
What fraction of the children at the party are female?
Worked Solution
|
|
Fraction |
= total childrenfemale children |
|
|
|
= (30+20)20 |
|
|
|
= 5020 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below shows all the people at Vamp's birthday party.
>>| | Male | Female |
|:-:|:-:|:-:|
| Adult| 35| 15 |
| Child| 30| 20|
What fraction of the children at the party are female? |
workedSolution |
| | |
| --------------------- | -------------- |
| Fraction | \= $\dfrac{\text{female children}}{\text{total children}}$ |
| | |
| | \= $\dfrac{20}{(30 + 20)}$ |
| | |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | |
x | |
x | 10020 |
x | 10035 |
U2FsdGVkX18g4Btkaj/CRasiRLRtJvH/CqAqeOS5vGq0y3f9GMy386GbXvzhQkomErho73a5ZoJtJ2i4kt98/uJjeSInNS24nls9y6Xo8PbL7Av5+5XdTjkpKzhsiJdX5DjKDdSzvJQA0rWEo7F9Z24eRkT08mUmjY1RrJGsEZyMWNGSJC/5D57l6zABDEFhdr5nKBQVfCN5k9elk/etpLrtbaiOpewTpNAht4MuUAGBkhYl7Nmbxw6EpMeD1fp1bZE/B9+9EQzI9gfslQQVSWdvlxk0L213Sw+W3Xv4wEURrIegx7WZIMkNs6h3xjq/fnlyLkLiDy/5RdNMOStJf+NvzctO3CS6M2nJwgjXBlRNGzSf14FPX3ZKhAqTwtLM/GX5DPKG8cppqWevk9m9+SldGtpadfIlwsYKFe2cyQDR2iP7MKyrHsewJq201vlHTPISrs6titohd4bC5vanUNW4GrMHu4bJz3gYH4jyPdf70BsFTJKB8M2CJsJzELrbOjg9s+XOKKciPhuWUx8483wvAOCCQTuw7+tGyOcTP9cKpQK8giTCD+JB0aKRUSMlTpComAKnMg/fb6l4YKZBNfWoutoY+JRKXHGQrhqXmq9QawRCzMfuTD2slT7TabRrJ4zmHgeGq2AVRRn7DnU8qmG9TQY2w/gSrkNc/q4Ka7EQrhW6DR88vNoyniLAIOlV6Qscpp1nG+djSeMjlP1uN/t0Z4tWeGz4AX15i5ydTmWGcP0Mk1b+QNnSURFzl3JZXvZaUEcgZzAj6M70arSVzJx6k2xhJ4RMkWkmR2YMLFrZsHhcemq0IoD0sHtZAsofTaylJ1bVHSbndyshYiSi6uP08NIRR/fbXbq2nSrOiRniCSLbkqREiR3nvZVli6Nsz2kbevL72uK1tkvmjSUTTZRsSmuTdo6P+SyEA9NrNEgF7P4pGipKaK0aY96MznQKNx6h60emIWgZtbQ9CrhBQEQoAklsKjZ+/agW5pUTfzOhvA+3KM/aeeWDH5K1c/L5WuQh3r66u5D01HUf4wCne83drtWWTxX4yENvLU+kHwmz3/QHDrM2NyU0r6UpmwnFbNx1vqDzk6On4eLJ8w0NWdTS/YB6T0Nf00itYBbTH/rkLEH0cN9INKnbsNk3aMDFmktaGb/C5FbVlUnmLn64+plB5/eVmIa9nVMMLP9LgUXDJAXZNPY97j0d5qNfLcRU1yQha/SI0XFBM/pGHvjjiIGhio98aTb9eo7w/J3xv3+sVUk9Z5J8IPHFUzCIOgkpR4M35jrYvf4V8Q+vrCcReuWRpHJiVWCxeE7+cVpZSmNMLXKlWELUS/4G0ciqOSqlDsQZeTZTju2VQBWS0PFyGw7k9939rW0IYRlDjTWoubKxF3Qo9ovGneusu3bc4S4FxrVz0nWzj6PQtHN+NIYITWN1854t7/w65war4ccLWjoriUsUNmvWjOPAmk246gkLvmmeZiLOi4Ox10BSDsob007xYcurDLvoEjkF2E6MlwULnTApAVsLc0fDkuQ65Jdz55duAq/cgtT5I0V/rDKa6eCFV85gcd30fw+zGYNEPjT8BJojIYfAXKm48xGLKe9azK6rx30miJsS/EfqxDP0H9piD2KZIAnOfa1QLriEAhsBqB/GiygUBS2yAIuY4ZgdI8abibDrYXCRGp8qRYC/Danx+TVl+Ykd5a4u+FDhdtFsY3SQoB9gy3kkgr6VHeNqfxVKOTOo3vIBh8Mlz7Nhi237FQgYCxkSLFjONB/FxOddMwbDL/0h/68lHaMXeEEH3nUhlUMqjAM/IJ2Vvi3DNXtVWSXpTwKM3W5HU6wXEJ5ccWRWyzatq4M+dYpffB/O9WOCzEh8wZkYGYv21dZ10sPtYoYgXZAO3UAZwJ442UBOaKzvSugNECiXSuffwLoJTF5IaGi59RyzdKdJ4E7RIiCnxue+Hx1UWQs41BmAPkDZl93s5oGlIu0bwF786rDxbYVb+bPtou9IdZ03N7vq2UQtVDuFQrXNxhKMXSj9Z8M4WgxtOoKb9FvaLq0VFmq/8RP6uu1ERBlpjKFkPPJ1WgTmsitBSbtTSZTc/8+545xEclOfeH1URjt5RSHLxUWFRx6halmWOU76TPn/rKejaz54dQD7WY0rPrMtU8S4arYdNIa9YQ0ogt6B8vUnHxnxT7URg997EHYIDf3T7/nCf1cU2ZtiEMkJwPDqO2qoc/qWSUIK45ZV4tvCjfDgDJM6XovC9/FE2M/36mliQvbB6V2kXtb64Q2kmaYKBIK8s1Bd0/3rK8RWS7bTpiB8KC3FPP3gBj3dZuYlPWOmCQnajtR7Iw1ZttmPAjttzxAtz9HowlLsLMJ6KyrcmSN2ezAJzETiwLqEgoF7dnbfV6DZFrA4YBex84Omyq9WEXantE5zV9Jst4lusHe2NB1kBwhlMwNQPPkPZBrtQOl3OfruEt92iamOmH87pFgUsCD040FGU5jXncMJeaH8SD18Pil2WETdSfI5nEGTzxO775Xb2FookewOEAQyE35sXDhAPlJE0ntrqlLwhXiDLCe+p141RsR5khsjSJh5V0bZ5MAxsXYn9cdMFkIY0Y/G50td8i1EKdUdYrbxXMovhcqP9WhypX0EziIuJeEecMoJOlvxRFAltViRUwAfnAt0BavdsW1msFyVL7gZsmHcgOq0QMPVm+PzMv0LbHSUz5EFzsCQiKhI5xh223lvURrXkioSJUDhmmTx28AccoK/zhGXSNOWqlaJftqenUjO8ld3TBc6oZbrFAJ0dd2OssYHCyFx28kIAdMRyK7bwL7dAf161Gj2pcCipmlea7zo2SonD+AtEEF+QmohxjbagHS7GbpozgZutmgusNcbFLF2oYboLCUDDZelrK9RFRX/x3MIJOTfCUiYF6UpyOqH+tRc0NgzXrSA65lKNjf67ITCXxSn3dJfq+RgfGc99kXZaHpGgTl4zaVWqVmljQ7+q9ZLWdcbaOykV7+tkiK4uBxkPp+97wPnksjwXMtM83ZJLK1+jDSz3a8hF/sYyAdhmZODkdBULNqr7Rv3M6K3hCMyUJQOJtHqMB/Jejc1nNktWUIT4CoPrMeUxc3l/3dde019bMCa4kIwea7RtW6V4aAfLpVGJTccuP6OX6vZaOJksHJWSRJz5s+tiKiGYK3cOZEG6jjqMmptXUKqtoWh0rAHW5vsK81WcYYQpL09Q1MUkWVjoEOeKc93vJ4nrt6fOGNzKxu3KsAJNhKqTJzeRRtRIBI0y5YmkfxwrHCRlV8OS+Tgnv+eU0M2jEi6RZ1RvDozKO+eIYT3Hr/ZHkix2dtb/0W+8y/JDi45hnrDcoMpsGWnj3+ExWF0kyq9WuOyklB6smw7SJWG4EzPGia4NHnox1e7fdtEd3EI/u/vsNGIge5/Ed+vdQ9aa7cfcdIvDAhZZ4QAuO1zlOceJNfvErgPgLlgetLwL2moxQrSx4qhYfy175lJxcTmP9mhZzHLA0vwD7BXbRh76r8BXsl1J1SbKAtOd9T7qglZOvmmLezLs/4566AmYi1CAjHdsm5xEhQ1NJC625pIkKWyW2+mk3+1vbl+OfoWe7ZgY9My77g6clOjucZbtTiTXborz+LNYcDLdwlj2lvZEAVgLrrboZ412MumkK0SvSZS7F+eyOHyAYLYUa4AlopDxXvcdMBGNNzDePKKNJ4LyTQCaWGkmzsV36WX57MYDXg2+QtQZ0JLqZFp3PMPtIyaPRbTzKLk/CuylpaGLJ0zbBdbdpIYJr1POZNKHZgZc7RhKDNomH02FTwuov1w/wyy7B0/XdqqjEpI+y9cLXOkY7C9CexAlyuDr6B3+0hulcuphDryt4ctn2afYnON/rJiWW2ZdKASTVO1xDnJvVDdGygJJX0Ve00odHWVbA9EUqZEj7QlYUzldY3CHvJGqcWuEEd1GYrXub9NZQ5WdrZGAxqva2kXo9nxCIe1Ngf/vNFQdLp2y+ykpyGvLzKOYOUq1o8pMWI2mjdKKk/Bq8f/AWtqLbGw3PyNJjdmG6qtlvP4mI/PWKLVypreDiMEwUQad9u/9Op5Q4YvHtIGQRh23uNZ6ipVFa67p0QvtZFidR6a+vJSUiyKNOm25SehuMe36vEBX/bv8n9+Ppjt+ZBcf7MCB16auq2ydxWpXhdweCZHSNwT80HBegGFHbUEZ8af/MVcKuOvztSh3mplIST5wA9AA8u4zTFbunNd92Jp9DoqilVz776sn2fBkiFXcyNjVNjJyvvz62L1HFZsHIbl0aTYLJ3FxSsTI0FDbfAcTHNy/+bowov4eJbwqW+H6i2hYZr1FCRjb1WA24j6yHVm/usiu4mN97H0Z8gbKEBhN0n1/aag7l3OV4KHgR7BW8I6XSKt9IkE3Sitr/wK0t8MO7OiR+JlBlARwgCqvhRKdiUF4yDT6rXNWNYi/9gsffKLwFS7JBd+nU3YfEOlXMSk4oP8/OZpP/EkoDMR9n7dnvk3ZYEe4GFKLtMpAFqfQnYL/CcrxJnoTMFRof9Dr/EZri+5fn3d5cFDX84q4N1DNcBZfWVNZxT4PCGaT04vA/rjTYVu0d+eVjofpVwqlf/kaPLI1swiwLE5BTh//VJDP5xDRCyAbLQlQJPoDM4bScl2+pVDMprpkVzL4tAFj4odGBiQUSU9LaPfa9Gy9VHzz1WXlvsQpVFSuKcjwKGVanNrZwxlyUWMOZjJRd9x8ufCsopNcHBe+d1+s+GEEdFHLZQ1OTZC14eUn6sVVLiuaId5ZnukoPNst4QdIjEZj2TcKSoWqucExRYRFwAbwfi6jxgd/QnuJsNI68QDn25ev3MeXnzy1feDIctuYHkK9Kfzh6o6GW093DaCtSEdxgjGnMBUnqfWVDki6FejSuDsrbulox8NXoIPFDhY3Idjb4CGgWZEmDGUmX+tv/9SpWwP0sjpvHFP6SaNvOkeGhO3udVEdDuD8lg97AXqOge9boIXURXLvanDitmpWzJTvVoOEPYMpzKDiaWV27mwOoyfnAeFWhU3Ojmc5Sj7qVKeYq93jq2CKgxvuKNEWYCjUMYn8XQk3dOCpZ3nH08gAlAEzo+th+6OaWiW/+e3mgIoM2awaX7sSmfN7knodHNIjQKgtY+48awnGeagSFJTDn9j+r7A7qKnW2cCf2p2JEkrXgKKpOGurWakvohIFTp1VqOXdZrI59L/DT7Q6r+HBIYN6VRj0MQo30narcAA3vgJrCNdUM/r90bfHRamgdvpWjkNvtZpM4Cvzdfwym8bEihBUB0Kq2xakIEjV4kxA6gqSAs6zPsOTSbAAneHA8Uz/NIxmSguzv79jL2dqsF8I+Uy+U2zR0kw8awJNAGysOhwTdjD+lMITBaczv5L/FmRCtdSqcqK6g1zvGS3+PC0tL/4d/XIYV2Cnbz/uRhaGwed7olTplANEr2M/10xqYFUWn7jmNj+ba2yD0f+JTqlIDIuuNfjhZn5zFwBS6uZzjfTVNxDiTl1ygEhWrxBPLVEt6A8UtUrK74HpJ+CocTtZv5XpQtEUUkK2aI1AgxwVfTvp3e3N2kkUb08590YScWKW5nhQKinBeA7Wj6rjDKzleXu6wuCvFMtvSeLLY3CDfxz5ejH1x0U2ryWwgZhxn0VrmR0aD9my2XPhGUytyeMxlpPSg4mHD9tiGL04VIeW85xT/9B3zhuv4DxGSp6OrOc+wpFMCVqXOlHevNO1q9bqMiAVZ3loJrE3I+StxNf8CgKRhMWmHc7NqCS7fflF5WcdppI95kXdozyNaWGkZ/jReY9XdCtivzxRPySBvzrTqtSltOSDCk5KNgBMkEa6mDyqSyO+9zvKGtPE9d9ZypELBMJshgn8nmp0rq/rc4ZVMwlg2IjUW50mash/Pe9j8jgKTZx9snRxpEvS3dxHVTJbXD6srzAU96e7jrhTQyAmOQhDfNG8u+90XSGMTQO6ejtbNxgsv0Hig0HQx7rKHYw9rDExMWRnhQLfyRaH3z6Yd9Y+XOsj0XVhbORZPz+izUA5YLdSNOwtaFhmym+4XyfstgMMVQo2kpmBzpNAcL3xC1khyyXToNm7/ZAJ0Ls2rm+DtbBQqQu/9sjRv0XRGGez2CKDbcanakvqD+4cKvrB3oCT21ZQHO7uEb9KYsLdsoLsGCMi2EtsxoGm49ALHXj67qfaS6s/l2QpqWan5IMrrfRh1g+xzxbt1qHZ3vX81yjXlu69acwc2ZOAa2NAb9aEoV6Jox+9O3n94953mx4UDQMCSECjTiqLzTUKILAUyuKXHIkJep4C7W1xZQy8EEQJ5EnxOzAs3vh3wKbi14oiwL0oOA1mpKTtaL8Q/2RX46Ut5s7oqcK0TfVplyDzIGbAxmv9v25ptd5UlmClEX/wEvIc5S6XgvEDmwor7nGu8yIhyyAd/RfAOlTSajlSgjpP+7zzGoNE+aZIAqj+6odT0dv+3GsaPwDzvx2z6xExZ5oOZOya0gpX7JH40VOOldBHEtqGFbmOz8UNxvh5OZn+fN6mf0jkMNp15mbM/vTqiiajJRm7QjR5Yzi5yMChAT5xk2kyC55E6Fvo/OAg22rJqfPwCqTDAUX6toIfdjBbQsmgc9gpw7bKHZWC69crjSfIpSlG65IL4eFaYyqKHx41UUa+THI0zfebEcB/LQtMFz8I4LFMZi1x+zcjYZytCARFJaVe2MrukmXW2EqGyBrGkAY4qTb0LNqLPpb4w+Ayt2eFLP3zSH0kgt75uAdJEh2T4O8P3kaNs+rth0QvFfswVHFjOZX4eWwPKswo/C5TJCfrPdT926NugPzrlQ11GcPlVt67sliaPTChjcwQqUoCCEQMUDNoFM1UnbiaMxuc6lSr+QDfGQCCWpwcoa92ui4xjmUNIs0M41v3gbFUSUXzSp8H02qQfvqcA9zdMOMkFJsWrATGCxNKWQleqKy9Atu8FRAK4Ecs509mM6GMT5WZ55B/G9fab2bytoD5g6J73/SklzMSibj7ByEo8KQZFpSSzWtyj8FyLqyuwsMxhNGjCEhExvPK8k7fjcWrQWit4Hom9k5d9qbEeylIM4/T7vdcZxkMAAIH0uhrsSsvfWJ4+qap3qiXLZyn1vqiXGDyoDu3VBvLTFRvBW2x2AgVsqOePd1rV+pGaKf9K3WZb94MH3UAJDCESw/j0urrtIOoxCV0RikrFC5GqHilAWO3y3IajxvHuAldPZfcb4nrHMehR764KxR5QWYj9KdwHtETPFMIGtIMRC7DFCwW4syBKU5Y4mJpx6QcmZBX58iNjaK+pNDiFf3DtIt8Uq0NPMa3Juszmil+1xm82JWTP6tWRWu6JmRq1imSVstfC00mDnX0Wj33DIreQBJ8qw8oGwUwB4lFr03Ril3YAhywYhNXIiNZqINmiZBpg8zWS29acx0BYUVp5ioH0wnCOuHtMl8kimedM4OyeoRWNhvQwfdMf6TMA6Jpd8oEWA7mk5XOMVjgAQlcPbQbaUhFS7KiL7FclpPlJSC4xFAx/47eDsRipPxCmhkbuY4+DloLnoB1cx/foCbFYyKekvB0XfrZpch3POsQh/ITsJrLKmzWnEX3KMmsVHACj93T4H9rG+Xr6j1HKNHb1HttwwRDlQHR5XMUUf99ZrgVeOoidx542wa273w5ieV/ta99sU3IZdl6jQaomILILNVu35divrOc99UllgabmCzWiWKeylk0jqBvVtTYgYHGIDKc04YfrLFATbsa0c/LRSt2fbNDuEw+8TuM6mpWwjjtSdDrS9Y6iwCurB+xMKL5qG0HEn6E0W24gfTKlXvdjFvB2tD13opmr7wJxGRbqNGuHFyUdXlDZ+OCyfSYYiRkfqiiMIX996fvizYK2XeZCFsfAAFJMugsm0F/AaihTer7SzctAdKLJDNc+eiENJEswz1HVKjCRb3nUx+AmzyqbSKdb41yZyr0f859zi/Y1WbcV2Ap+mRxgk1I+s96IW76Jteeeue6JZqMfR08ASynzG5/TZPcbJe91w6ticHTpNi74tgFEM3ir2Ne8rEIk99mndVz64WvJIEFKjK7QM7UyKT3HkHeU6gp928VbOmgHTMBDiN2pqC2Vq1kyO6/TWQfuYqbkFiaSi0Cj7fzRredTCocZ3vW+c3AWgcCr1CcFJUxln94mh82EzozWLXkfhEalRPyjkXYFy3gEWrkEAn+jcPwM07hvlkCRMm/6J1zs5alVopRKN4LPjRc/oxxgc4YG6xAZWWo40FZbX5FTOgkC2mz+vofjbwuqkgmCOIgWe0iVFi6E8j3J/72ln1VT6uyMZx+ZTf96VXMsB0ICZWF2drbAAi8ugHZmzOGfsA1t3UW55rVHSxr2N0KlDggn9LxcxSPK44qq37mze7UGYuCejUS3IvxCUEH9///olZwohOvDzjyZzuXLuaGMcmkr5xOsNzVzFzDWcY0mWk6AfO7Ds50/H6bAAkp6zyvPyuqKS04HJ8x7OrLvt0UUc/BwM+sOJ5LbGsslMFGEDnlkxM1msGVB6MkmM0E8V9DwPM9VB6MMpIuEmUctulfLW5Sa2A3dHWb4yT2qgGyBP6EbTuyPtB/flFwTaWfgAMey/GqKb+UNocDcgDAL46diiS2IOZczADmaS07XL+wbL5+HKjBgjW19A5adPkoCJa6k8PGm7UtIDTb0AAuUQ1IlkBiOiP7a9gTYlvjDsnQsNVdVczE4ZL2sLshx6dcJbcesPDMxYSS34ZxNZH9iBJegNFvZWL7F1+bP19T8HC6xAX5DqJRItQkfDliIkAfTA+t3haVC6OWYKtTnYlR+XWsI1nLLBJR1Mccjt4DJlzfsGVWTM2D6phVp9K0nOiUme/2OZxJb7ykZBslYbd0tvKpMNkY+9IwS/mvz5aQ65mKN92GgKRGX8j3ZK4K6znKs+JMue4BX9z1mac3zBlEeMHwcz8wu+0Dy1txhthPwmb7pm70thV5Fa5fXnare8VMjjjPUbuNSNkmHJgO2LuX77XcYAnJVG+s3bHP1BffHCTWASChtFJpX8M8XQ9xgEZEF6esQB9vf8nRHdlyzLB5Wk6JwG4XO2oM5YIk0i4yqCVfcrw3cQvw9s2C0NDRYnCaObQ3C2ZSHMZIc382fNns2vjGO+DprKLP2EOItwMzxKVzZRK4bq1eDLAh9tR6mVsdvUSh4j1dvAgjAqNdvLi3GO2FVLxeY8/+r0DXS4BdF+BD0oSSZ4xG+X1eSSuaX4akGyXsKxnLo+B/SMKIbdzi9GVVY5dPsXgsyffwl+Tqzk4zi2SSfacCNhuQm+t2fI/B+QXQJkU+BIuQU9dMl1CIsZkE7q8010CmwG+YtUIxp2U82p/wfOOlbXI6kFCGTBQ1Rvy+oNXyX3SY24VyUqAZEirWu50Bn4FwkCyYw1APOtD9hGusbktI6iSQR1aPkEl8wycKNUV2yNsRtngmPO+UzMji9eat2nFNf5fBa0YKeP8VQH3tVdE9ihAYhAQY3dZ5CAfx1J0J3bU9gI3hDYLBnUs37Y3TrnQwTSrg/snHdodZ+U0MH4WSjoYaYPjWbeeuuMgKtPgXfRZeXHPxMiU/puCmixmB4eyJ4/mL0sldKx452VgJS/JUOy52rq1XTjyWOvax5f8E/XKMwNzaX+d4RbS9gq0P2FZCac4jG6vhIglbpILWxCn9aYAP21Nw7UdeDk1fQiizi2t37HU3E0B3Q8TtsaJokrPVhOkVgmgLjBxpfMFzFz1sVIUsRtv9m9YBOowBMFrMrHtfWcky3MBiWb9BH8d9l2Qw/Ogno8miw8kXWTzsQKEgRTqTXT/8s6kVBrccjoqxmLh7TBleRiAxqWHIjh0+MB6LhRF/QXjTCRIicCjRvALWMjNdGN31PLS/l6LSt1E8ThzktHJt5nKwn7cKCkbL6TP+i2sKggPhet2D5oyr45Gfj34pGspue5/yn3BV8iaZc8RpBb39A4bMiiIaDi8yfBebe+ziELgCdzVVBiCIwJKpgX3EXrO9IGbVyrzvNnJydciYstoU49fK5AQLppp2EMNwJLCPsjCfIwS26rSU5IN11rPd5Jep3H3ofU95nJeWRkyvFcWmLs2EY6i5YEY8UEcXH9sbJoM2xPvq5WMegX26TrJrXuyb7CvFN9POjwT5rbU9PUHMAqMJbTlkKDNOP9FypF/7JbZS4odYt85Yh75kVzvwMneZIvvSmiuaMO1RtugfVWm5mja6vkBUCxDWSJnlZ5ufyHrPuzc/r/QAkPEP7s2/GR1I/gOxd7/m8jsZ+I8LtTBHR2spCx8suSPIFBm+sDXutBe6aQr8gDKg0Y2m22yUWZ9xoJNuvt8p9Si1FrkWK41Gs8UXUNvpE+bdNp3rYhEVh0acj46ejGoAZbjWH72NjwZ3Ztp8cntciTsC69tayRHZTxKFvV0zZyXTBTJWEHACJo4cB5J+B+1FfxvD9ytSjtad4kZsb3ViK4I5hhCBPwCJFQUISfkoOleoXfEIzpMeHbHnna9oGTkhb0l5P13rgIN0A08jdoY+IC4lljEa/cXcc45Rnp+yWK5EOoaNOi9c2e0wrENkjIoMyOQ2O918wDw1pDVKFUOegPR8CmT29up9EImKbjKkIlP+Xuj0wPvlhhq08NX0i89KjWZBM5fUL6aVMXs2wxMBkgcmkaP+OViZno9d5vQtxLDj8LhzG+3hM6M0Z5ViBU9XmiZVHycZp+t3QIiMIO73bYnjS0yx+IrBWPEDblrVTDrQlCCRs9QKf1xuZ6cAyqwEs6mk/FohPoo4wvWq+N6kH1f+XxRN4ZXmQkbsu8FY/q93fUgqPvAa0jdxqd5PaUNQIMNPUGxI/JOmhC9V2NZH/VhSdfVsdQbCNj+m2zH0uY5bTY9col/I6h3vx4WSMAYg0Po8C0Dp9fVu+KohJBMu4565TOr108px4bFi7h1+pymh2wNfm6GPVzpMxQj0TwVNhxzha46LLkvtLVPOGlG2GsIdLekmQgnWGymvOoOk8Wilpw87t6a4cz6PoAcGVuVFS6SwHyU9el3df3PLc1O4sL4w9VzJXHGFGJjLoTPo19v5s9SAY4jf8EmWidYx2vKHnwjwuLQvztT4HUBDh7OMzPvqNtvzcHr0DuH4sZK4Flv56CdSPTi/VH1DGGqBee7Efk0nMTmo0m7W1opwSfwFttVxeP40oYnBSXIcLaXzpuyUFZ2z5f/rpvp65pE0km8L/etu/DEmp5poosGtQNgJskL8hypbRnDt+qM7XVKMom/kdAvQXtD4M0nosWoJzQRzMP7LXWa24w8G4qM0AxOj5PP8GTAh+8aLLweq34nl7WL21OlbJafpdXZlC0ufrTSVd9iZm1xC08SGXjZEn5U4sCr0xB213keSYcQpio6POml6Kbb4TznHWyOSvZkwI5RfYSoCuUH7dUydkuzVkH6f75SDTGHLOk/FV9SDJMe/BqnVQHxw1703uTPy22/wyL9W5bG7paJoZZI+Y778wuA832shr86ECkxGBDyfLxlq8ohVuP66zepRVgiMWVSM1Xnjp2Yu7LT/JLye+iSlv42Ek74h0KbyOE9K2421GlXULdcAkfS2IHOMJqIp9VptOjQ3KmhA7mSQJ7pWoTOUxQ6c4VmbEhF6Q0rnaDLFUpFMr0uLchkJHB8au9G2mu2q2jjZvnkpbzvr+R5+ijRqaQRaBrEv8/DYO064/vI1N6fnLuWSCkFM/+ESmGfPSwh4f9TWi1kULNUbO16Gl8LcpFu+9dhR0yi8nL4PP1igoT7pGrKajibuendlkN3WcRVynPwhuajGFhmgZAIU+NPR1vSgBc846gmyLX3Bqzq7cH/cxxsqeMiyHJv+P4PM+NmDahsNuLck5Idk/zTeUywn1+07RL/mslydSgmC6pV92ALAxmLXFSWo4yMp185QcRO/2+PwSU2Ci/kFbB0Eu71gsLaZs5Sn9tqnO7ZQIyt+fDozoqIlETcJhaXq4XozDNXo+IAesPqLS3NUt63AhwiauhvI3CBetcZn3/OqvgGOG1ZesafqMXMFaxkaY5bY7y9xMPGmOtyuKdj4w1UFWHklyHndz8gtdWsozqBALdUHJVXh/2mJCeeP6KOPiwGNLvChbl47DSFjBKKKto1bg2vcszVdBkE4XgXjAvvfeklWq+NJwca3kJD67L5k/DUhCzb5Nvay+79hJXOAZBMPDFkei4Byv1MqtkuD/q90rfaQYXhSUVu9P3n1V60yowIauBu7OG6IOUcuVQU/31o9+652HpfgNandrcJZteDsgJiZBQpKpTpbsnLtJnSaYSWnjEGa7rAPHEIcs4nrVipPw87iDJAQfce/rzjzwPW8Omzog5CckRw3Xezwiqgw+fyGjZAjUnKL9P+BCfSHY1n5ZwI04wGldC68mhkYLvigcH5/r2QlMOq2ueQmpzkG6Q/D+1h5cfnWPktqdCfahhhb+KD3zVcCYx8ZIBh7tTwqMOlBkRS+2nV3VtfBegMLBbyNzzJVuG9aLdaTa2cwc8FmpdlaURXTWhrxmPFRe9R5HWj9t+5e+nYW1uK535hWam54FCO0X6/qJR4E8c0HZjAo3ILsLDy3vHxqdbaLn2N0kYwzwVyVowxt0IcoNSMtOTtxI6kZNlnprNSeQsukrcVT/ye8eCTdUStzrBt9lyU9mfi55l7HLbhZk3c8jWAQ9LYpfKGP7DPVemX8ZZ9UUbgTft0v/DiKOc40/VnhpH6lO83VeChkMkrNAbz+3DGTTWSS2InIKoASrHgBX5tsJgcj/pxyKueCdUt2V4xaiaT4RuRSLAcP+XoIweIwCcepBEC30F+jGWzd8Ji+kmVevoxIrvrAN8PE7tuIpwjYzyp/2NrNKbve+4RMS0bXnwcGubpXwiBAWBdPiAfCTgLZiQQAZ11MhSKmgUJqrUGxEhDpeXZQGR4+mTKSmBix7BdwZcfWFMBIu4mmTYTWdE+cUNBkm3a2tFZmaxrytCYJgsX6SzBhjHBhbLx4qH7v4Gj8AFSUeWEKgctzOf712ra7VwmwOoJl8PAgFw9tUtKiA0DN6gUYNg3xQ9m/g6A024aKEo2xKMutMVEYETqWKrmFuozLqwFpcF/S2d0M5sdVJ7l1P/v05kVOVLsmsWqYQiYfEzhB6OCUc/y9SvB7dnrCichMgpwXU6JObtuV7J2ZrKhdyXx+RteZ8IPuCTKfb779SYZKDRs8Xj+evQOvHM+Ev53VGDKfZ/MAdxh6BPrLeJu1A/1sC/j04nW1Zc/ddGtplbKOyALNXsFKX9XeSWVi7zs8WdNeqfRmP2+kBn1v9q7PBBvrYEfal89i+es1zUXKe9f57eyfDQTzfMOtofdJ/nbVTjOcDc60/sq1c1KTEqcpurtsZL7jrzDtRRpQlt3+w4ZuCo7P+djL5h23/wUNUx5NWcXWWxBsQu909MATzxqMBqiXEvAp9fHADYu9k/EHl+hFWgh2OFa6jsI7Z4GS+VgnL9XwUUPSl3pOcAfPobRCpXpYISRU0RwYBNCm634fTmUBGrBfFhEt0e7Fkv3mHWf2sg+x4c9WY/bhitrL+37WmWnpxENHbxTUNp6D9J/fheEs0WhRK+K7mFn4F4BLeaI/vuuusuq+AdWeU2FLnvNxMAljHNLVofDnQjhs8Dm35IJowA0jBVFkhg8DW6zBWoAh0irOAGwkgmYGw09hBTA3Iy3/iU/pCnAJVJAnYVd0dEbqhat2YA/8FCA69LYKHAckL8/wdkHRXrXiijqzS2mbWdqVzap6qN4yhIVPZTXV19XAAmG49FEM1ek0cVKpwOSm6n4t/IGbEVkAp4zA4hyYpaYaj7ZDFtjJ+6cFx9klHWCrXsw0BraPi/ZtxuFvA0qodlIk1i0xKnTNFOI7DyZ+avjDuegEJ/yI2bfmsiPNa6OdOre1hrA3/k+ZvjJ/vX4uORKEz6sym81UPLgqRvJmWoZWX4L5t80pjafleoTL3Z3Gsb7SoLSr9xHNLjobEUbcoEjWuF7JQV9mMN2GZo2Pc2R6ilm5sIVqxVT9cLkyrvAXxAWeyVOTYV7okBPnfwljvdT9vspqqReHELs4oRvmPuUy1gtPc/2QM1O847oyHvjmdeHcj1L8iWDSqtpTis5ZSwaJBJTRc+U3gjdzFWcOe5NN/O0nQ6hrDCN3NZgVL5q/vcHj9jb2H4jX08jP4LeJ2sMD+oQUAiwiwINZL0rcgs2NHoOxAxOoh+wBjVVp/gkhQbQnpGJ3Ke9xouKMCuym0RTwyI1c0qu08tCFa5UEXElF6Sh9NeRjb7ZMS0RCKZeGb23CEvfwuzQq+/0Olz4dCRxgL9rvH6TiD6e43NplZaBofkowjOHRiujfpyd3+NkfRt0MLJVzyRNadQ59rIgqoTj5xoJRk5lhOmbvNmI+7uJb2Vost4LKwZWVUAIm4cT02IgfGMZ6i+9CvzVhfC+uJ+CWvdsBF1R8LH4JNi+t5QnCWCnV5q2gR/y1mEMaSW5N9VQE4iVzSbmRNynWhFMA1VQa4tYdrlb+9ldvY9pWGXwAUC+C+18sEK6LaErPbeRL7pKtzR+10eTyk8E2qnOLrQWhEodhpTOC/O1voJR/KPibNtlk9V0UIPbWnbd86FQx0iK25Cj3cXxefC9agNWOTkgu+9ewnMbFKAj5cRjihNOBcDiAM7sxROw6IOegZQ+uvEStoywYEJPnQVAqKy75IMGgmDTEVTfKtxegSTVDHS0P5j/3q5aQctFujqVIi15wFU1vU8l4Ku2ZpX1zPo7KJV7NWR5xefRXlfVByEOjX8clPVeYrp1MCSQbnf+rJt8iu86pSdgGLXNCcifFRIOFvfw/gUZfKTeES3A0kLmRz77OMhMlxJOngda42XbIpgtr80llo/uKsHGvm5w45b/x7gj2PRsdlUJQT/VpGfvzHGA50Ue4HRGsdKQl4vEGCj3FXfZd82N71xAt4KNjrUFo/8gBSZBrYr3ch+7TYxKuJ4uwrNrA22g+hOx/iSN3JnRCIo6WRBAdCmf/2nsdwOdXsntQmbGOq5Wlam3Ke91pN1Zxg9f9kuaF2q42tQkfPPgWi2p2damHhtJKvPhsRhAOliLSmqZZanoD3kU+gQ99263F90mf5Mzp+GYimJuYge6OsY4Z36iUT/LTc9MieEQvbEzPy4ZPS9292ge1RAtgmFMUDvzGLz2BX0pm/mUpUdjptZT8J1zCtc5dA2QUBNnu3qe6awzM8aMbLKQ9DUzsNHSAy45n4XcNmIEQYSug387FhE/8QCAj2Db10xy5DNQgbOPnUcDud4myi9hP7qVMgpHEq3oyLAE0ymY5Oum140jflBKXXRzyFb8Z45IRrrzcuaP850VhqirvhPoYo109o5f6zecl5NNDdxwlJVcjNVPiN81N8LTfy8Q6ZTkd+sK32RSk6RS6NHkV2jOItmFLeqW860J3HUHHa5Nqd7VYmfF54R88IJpPwwNbIJFgoU+MCr6uS0wexhRCRM7mgINa1JBrUbgqJJpSzeLde9+QWma4z92qA7qP6x90LIg8rQxWNDIsGKJmDmvOeolnty8zYcGn500tU8xKaRUZOAkbbCN9/Jdvsji2eR+GYUYrdt11YHdArS9s9le01EQaDdaYyNLWoiEVAEQ7aETfLiPFFUsMArRBPDfLXIf+1FbglsmzkvDhWRLNuf4DUqQNy4StEHcp8PjBdM2wkxIg8kk/BAQbaEkURXurKQMR+GOZiugP0dXH/HYD5fgkOT2pqHAowcXGyKsnWMiq839Y9g/+EFsngmlaTWzu2J3XKNeYiodOp4xv+uecQZl7HDygao+XSi8/bgabGcK2O4aKpe/oJ11AT/pfcULAtw2btApCzuaz9G3ZhiedL7VehElKXoOHONqxbzgwbmVkKivG7pKEWOQGTyj1L8srgyc/XiqQllmDF9yJsSPiGjHhvexuhU7rhDNu6xQ40j1k2OQygRggZsxdLoOY4Q9D5dnQ3S35G0lYPupOmP5wn2Wqa1SdtmBgl1ewOedENdL8tp37Tx9216G74wVJjlKwCaUlbWIhjvRpoUT9qL3F5k3od5PKOSjssLO3wVon9yjmx1PjoidMu3SdC4yg6JwgcH4YoqOCkQ7R5HPIoDJPVHj8jWpYh2TOzo201aN5oJw7L1mhZ/uG8SYKt4cYEaMXAQ3eS09aHoXghaXWqTjY1+t+zoBzALn7/xssQqJfg12jC0ecj+UUoI6lEW1u8INIFzaFSrWY0hYrYXLT2Ejy0m7iZO8+5sjTpoL5TPYWl36F0pyTXijMIUCIPdg7zDOBQHA1dKPgFKBpR0J86may3PcN9PAFH5O229M2A8lrzDUVGNu34KUeXeEePoD3K8hgPtfgrg96vWJom45M2vzu4FO0bODQVw8pJkTwe9qMEt0rXiBiWBXTpj6PVfma0n5fFSTh8re8/m/Hh9KjXX/HSJPQuok3xjsBcvryYG5a0YWvvZO82iEYmwEJZo/kYnnjFHDzmK8iNIz3ctYNs3OeYHWdO5cFQHcj3bNZtG8CvyTRHVHCiwMQzzmY/nz6aOtR6TD7pi28Q6KtZi7YPr3JNknqO8PZI3CMrAmFS5gs/z0Kwny7Wwch3L9P8d4WEbXSByfdz2OGvcg2eEMxOOdkat15p97fnSyNeGpDpo1E3wPTFqNqCgUpRt41RIaHBfzFg03IErWlhB2lOljJySkJOn3af1KlJRlrpcyQUHBUgObbS4IsFAa8IDlbI/J5R+U1n/2D61JCZ9A0aGafnTrRKPBg/mA444xvpwJzG1RhjdBzMp+NEPk69YLD4Jqqq39l1Xi5dQYr33iqNndSfw6HKchonMSgIRogOdOeF3feWP9OFxN7VS8GNO+Q8OcpwddYd9ybrpAVzJkGW0mobvgDi4gtiAqA1iVZzOjnYG02x+SromtP84/Dh8gq02NwJrkalu3o907eISWpk6OLxnKcU2U5f1C0gzM2h1AkYojNTV9HVgJsFynzLS2x9eXIH7Gi9Kz9jKntaGDNM9jLS2iu3P+iIs1lAYtYsnJzNBCX6t7JMGS+vyWEGTyYC1tiifmBlSATqpsPUVI3LD+vdZYmUFmLz4aOrPtfkjkr+o8Cugp4GtElr5e5vjzEkvmB8m0zTUSHVTQVTDBJzXeaZQNMCmmUSRklAIxkL77KhKjR+lZdWSzdGlv+FbI7Gy494vCWWMF9RxLwGseH+U4xw1XUa198bsd2lHbukB/aaIF+ukg3c0QfImHeWfxxncYltz7fscYGbfdZk9qCGce26m3FXZA282pWMalMdIXZkN0WJLGXMOaFoHx1dIYaiBPaN8G3x3rFxKWwx7vB3Ug9MpKX9EHynX7wYqJH79QBXB9jn7Kpi/0ZAuvcWvf37Cje/+biN/gbOnLTnKud/QyBRhJlA7LU2SvZYDk/yVDAaqi5MmVpk9XLm0AQxEuml38pPz8VSfb2P/hXlB175gfXmSMbkOy7k4Hm6+4+9TrjzHBucueYb373LF5kMvNxevNk4z4WjSY9utx4RroMPaFq1wj+j34xMheI1KP9LG8MtdHjyUov1cd/6odCtv9OkaChE7qqarYr90obqwj2Ayj+jJ3BdOm92grEEGsP418qMLy65O+5Tzz8IG2YFtPBVwF4xaCNDNSOxQxsFxUhmgtkKBMIREba9JU79A9YT51Gdx7hCePuypCzMnB5fsSNvpDjpnkshqZu7pweFCQH7vUP7I/RE+Gtrcf1zHMa71nFtKxaTXqCqN/HtAK5ZzJjqn/cwwho0TsIC71wm4r0Lc1mp1e67ZQgI3BdwGb9vFhqi9tJz+mPArvd6GOeblrSfdbIU63NC8yBP8zys+tcbQUW9G0VIxg5awv1N+tehHMo3fqgmDhYEmtSvef/tcHd1tFAg9mL47h+xJigytlCjlts8bFjCunqYSdDerky4LXdglmRsX2jz2j7aqafirqnupx5bli9qndWKnqGR9t/pbokM45rQi6/7orGpixiMmVwTc6YNRxJ/QiCnFaFXPWbipIruuUzWGNEAm2h0lMpngimP0I3gFYLfc3MKPWQYOzayWYY5M9llkytB3cwfTHXxOEfZBd3Ff+CYRgFT4ZdGJJG0STbj7eq3wA+0B5cvsNUC2gcilSlkzthxfLmiamI+UvaUbKpM7u301Yx2Sc+B6oDMImKtZtCurozMM0Aw2vdBrgziUyqB3RC2npHeNiaByBNJSGUlcXjutLnWw1dyRe1PmTzqYIRbId57tf0ffA7o5OpHJxeM4fVJy5GJma6bfLK5XsRtgiUArkw4fJvLFrxlCCum49XKjCsUEUc9VlDcIsgTpVHucbSnemQ5zWpwjywt4burU1WnEZ+ceVLLsuT5qCr+ibDQDZqzB5Vn7+JA1AFK/rKtFMjWADJug+K68Rs/XfVYaB44Xofd8vb1c7/LJyBvvyeMGpjRygafE7IFtz8VW/o9bLZntnAcK1y8D0L/NhO1KAd8XGksyVCSZxKbtQOZTHqe/fMi8g0Uqgye34mrcWb48TldFKzrUONjMyAny6GIffoBEN4OL/aJ7XP72DP1kQl9nV1XRvznEz2A+tS/bXMJtkAxusJWfrud+jI6ASZh6Z6jtwI0Ydqio8S0yWfQTNUgY4Q6rwL/03gco583VyISU3ifqUXHBybzzgDkIXkcifIQurco3skHCTFAMPZXt+YplL59tQU7Pf73tSFSfq6/TzJ3WJdt3WEkYBAL8jNNTZjKQfhfA0KI6bNVe8tp0jaYxktSrn/eMA0UfV4msKTcAwNmrxox240r4P72DcU6RphRY=
Variant 1
DifficultyLevel
680
Question
The table below shows all the members in a tennis club.
|
Male |
Female |
Left-handed |
15 |
10 |
Right-handed |
45 |
30 |
What fraction of the left-handed players in the club are female?
Worked Solution
|
|
Fraction |
= total left-handersfemale left-handers |
|
|
|
= (15+10)10 |
|
|
|
= 2510 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below shows all the members in a tennis club.
>>| | Male | Female |
|:-:|:-:|:-:|
| Left-handed| 15| 10 |
| Right-handed| 45| 30|
What fraction of the left-handed players in the club are female? |
workedSolution |
| | |
| --------------------- | -------------- |
| Fraction | \= $\dfrac{\text{female left-handers}}{\text{total left-handers}}$ |
| | |
| | \= $\dfrac{10}{(15 + 10)}$ |
| | |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 10010 |
x | |
x | |
✓ | |
x | |
U2FsdGVkX19GH0rLBgjSpgRz4pTEn015f30D6tJH83BNasIKIzoameQ9l9Re+dJutCvNItuiEtvv2a72zgjOzFT2GphWQbKUIA8E//+bBW6a3Htf7fweu6qOTKXP42KjvO+5+/c89qkkawMdg30xOijy4hx91RXEca85EbTNsjdAp5WslCScMlumB+9V2iJ1GAns5F1mZScE/QgmO5DhUSKpj7bkU8Bj0homLfSZ7wd0AU398uiyYwV2RjI1UNAUTxzcYD47gWSUiLU3l71Ub/+LFWa30PPUghuEKAvrWJ+4xuHDpuJ5bPQT0N7BoQXrP0VWpqaHsiXpw5JM1izxQFBImrYooHRE9s9kXJXQ/nR0pCnLa6lg6AhYdAm2+Q3N5heb/kzIm839kgzlR1rVoUD97E75lpbEc7J4tVdUp+Szmcvu7BYV9h3bWbsR6dmtu0kNIkZkcDgwRxV7U8Lg/DGZK7pt2R39nA6ZdwrprKNoFwCCvXhbBAQ0GKTfpgAeED/u8pkx2juSGQVZvduIRZF2NM7OWejpDVZdJSdmGTZH4WUWBNHykeQ09m/2CMtiBexisRU/+LnFQT+ylZznapkRk7W8MVlCLx+fFhZpholPry5iDew0wUJRIohUGl2yUcTbm5AKmXGOv9EJLep9xXDAwllXsWP97AdKNoZd+7BOtYxkvilA5mv6R/mab5h8wCFj1EAfWNbE4ZoeyjgPPmLXCWD6QG4pfVJ8tEZNvGnG/dY2ZILji92wHxjaICally5MOrGeMdskefsCHgnvP/79CBBsk4jyDbV7Y7Vm6lTw7qhRVJ0b18ClcDf1eBl/fx2HN7TbXvYpHqYQlhhLq0Re0XE+Uan+z+VVM69+FxqYqEeJxSogWr+wEaxJh74Kaiore3lYUQYJCz2pAOEVEm9uuKYl7wacA9ClgRkkxTIiwL2x4P02LxtWihC+MwXIxgcJUZpuurDWRjNMZJk0WlkbnodAXnVXmJ3Sm8k1QRPOX1EXMrF77c50+SX8v5BWPVjVslx9UfyrMH0cxF9clBQdri4chUja1/pnNw/FZ7jjSWRX/7eVUvMsl+H83Aig7gyqpAj+kFiPvxgBOLBXIDSdsF1eNGynxBk68Ys2lseBmpG4ii16Wc9Gg0+YpboqSlfJz+Ny3CIxFXme9n8txAAmzlzkVlb+Y6hLwHz3aLp01nbDkLV/ouYx+XrvENmGHSFjslC7/E0wvJs2eFYnhl8Zk4Nr+jtJPF9hCfSaZMU/et8wLWlzY2OXx3T7dSCpxol6gcypXpthfrXLFwjYz2OTzALKzirpR28TgEjE0mzLZOELFxkOjCW0LK+LL6Zw0XH5Gr0hzmMRDatcF+NKosVkR9PK+yevI3/FXou309GX0pp9SuLvFcADEe6USxxtHlemku+7oI5Z+IqxunboyyFQIrT5pqCxEpNLyfo5F4T1clj03CPtQ4fogEU1N0meIeFyRwtObZwxBKMKLNegPaDl9koCW+23aidIihhw40Oj6bPiUbz7nN2f/+dn45NAv0ySovDRMMt60HfYUGOkAt5KefZAr0P60fW1M+Mq8XLuqsSOvRYgVyrIWVv/cpzxpSfvv2CGnCXavaHtD2mMNdtUuOkwmLF5kxs+pyAeHQUVC9nvo2KuP5ueDZJth+AKkDOzWC9xsdDK0tC4F9SKy1upApYnSrfFQbSxjok1fdeeDzYY5ik8w0KD9ErigqNneJQFZsuJRxxrmtJ3rMciBwanhpZ9o3GI8RUaM+XjoMiuA/uQgNMzgFtlSJ8KvKPzkRv0aVTik4DLAyfFiYY7zQrZU/SyKXIdMkHcnNb7P5Kh/+tUAD3XQmOonbnsnhBS+am5K/L1k+myEhZjnssFGcO7wSR5Iv4xcmwQVQaBa2I6T2WIAoBV1V3o5SqRXjv3pMXxar7KyTexKNIMJjEuAK5SZlf/AwUGTCKM3dLvw6twD4U6MAOFaCpKfWskvADKta1aPzIm9qpSehFpedBkFb+ChHgSGfM2/nH0fNa66fKmNthJQEEQlMOiKte+f3wEioVVNKRX2LblWoR3dORzIK+ynDPr/dcnwLbtsG9gvU6o5eFTeD/bkqEFEITqEQ3apNS/FR9rPAf0hELR5oPp/Z3HjNIOAvbpbRiJ1TT7OkEgGbsz31leqfZrc3KzG+hFrY9Mw5OSodLnXa+FfAwN4FGvxlDYpFSeLMKcn+LfiAucrXC3VaDX7z01v/XYxrglwJklnIRf1ygCfQReetet1lC3wx/91WhXrKt6YyEkT/ALqQECqUkvcGBoHnysuHgSobY+O6HiLKRdt4KQ9A9ZoFIAHGnDolJSo5NECF3WrgbHSMdeKuLjMqF2XqPuHz/yPMayCzz6DPk6QUZLXCJB+k7NEsBMKSJ/541j2YxhTyonvevZ9NmcwySJaLz4rMhbusHeLDExa/piKmhQFmUZKVeV4fQK6czOR/u5gMw+DvrkcSpCX9mJ92KnmBF5DhnOVeVLtAkTKDlqUKz9xDKmoH4jp5FUcj3SZSo9Bi4VrCiyPryD3ZDM7ab79DBaDyZeKKE5guw8VYAEW9u1ec1g6SoZAX0Z/4fQWWT1Z26ow9JOyoWTiYwiQma5NtrMp0NUgnP2SHuJSf//pYPcs7RhRXH+bVKxehSYLZgaXJzDuZQoX9XP8jKRsgEObifI6OnfrhTXneI2OkWGEeq412ciyBV3Q7xjfZaG7gouUTxpCylTP1pVo+NYkf6s8J2A0SS0+VYz7Uw34J2RiGRw3n/vkWIYWd9pzVNLaLPrTSKJXolVYqmIjEHI5ablMNtxWbokJYb30U8sV22VHOL1Y3jdMmBhW2RY76SFeTcAX0y272MrvXRB/r/rdiLmwsteqC+DO888IwZ4PZsaEIfwAjyzwdJzjPPvxR7t9BDp+opPX17C7C+Ko24RbLSsMoCLgtaI0cSi7BYSLxaR0jlb+lbmwjRyKC8nKfzbsRjxmNob8RmSy867r6MgRpUbvA2OaIrLiOP8ec3ZiEkzRZjgSBldvCC0gUUMv08FiJpeddl4amD+GiPdrynQxDaMZlDtztgHRbmdcoleljh+sa0EVSsAxUrwjujKsGE4r+k+f1IqsdnDq/EIX9082cQPJcxvejylUy/WgvpJ6PSDjlHmmtdXzVV1tBeG+mEMRHMitA0yQeFhNiDgFASe0aDdqzb+vhNTSh8foL7/vYeemIEwQG2UHFIyaIPlHp07b04hmlvspLG+IVi1fF8Y2g6vRjyRJv2vDGsmUh9w70wGABowosi934r2GtxfweyBwN92R2aZoI5f/UUVoSf/fIha5/G4aqNkHNwmZoHYARbuPNfSPy/0KSZIVuMqN2+lK/NQKsyfU8vraK7DlZzDjnW+WDQ1x6QHnARgUFNrpmw0B0xiL1YNrFkqY7Y7T7WLxHpGzQgbtLl/JOM8Q7ItW3wqAKHKrfZZXuiQaJ0uiUMXBQv68tK19PkSfW8t9CPbYYOie7cS1CxY6LYq5FbcVuMf10ZFHqsQfbwRuYjN8hKrE847+YogaEJ32IERZRGJIhRWkh8P/BZSlAbULm4PkpKvKNz0MFTzQAwWMWQNTqmk9n72piwFCKbupG8CUZ/h8sqlEX3FZ6g/lwA0WjkVBgexYHGjQI9p46U1LO3Qhc5rl4NADQJEOaaFUW1ZiQwWUX6s+IPy5Iqm/zjt9cn6q9qezzn7js8Al53EhKNU0bjDVTHKGRez8nE77a1zKrGSIfQf+tT2AIs5Z4xRKYII7/PzemMn959JdnWAcXrh3SsQWV7ZyX41wrb9IU726J14gT/5CLn5wTNy7cO0CT7uW4og5hMOOPSsulsYR7eKix7yzEisXgexUP5BAQhHtHJuyZngH7WJ/QbWT7uiMCRRe8erBNe0uaBP6Z5SDP5+GhwF6kqunM/Pyf2OFcqbOvZ+S4ZOhfS4joxmKD90Y5xX84WURqfgugy1wF4/Qn7Mn1MVvhsbOsyaALNA8lpoY8icYbyGNndR2KU0EAiTHF3HnlFevR8Wt8gbizupFS8tF1n2jjNUahjM0y4WtNoRQsHJC9x8xxr+xwjMnUUepujXZYfTXs8oaGmclotU/FNHBxBFrXmrsYY8sGnJq/vJ53tj1dHAZM5hcY47Bs8c8673ssHppKvlwHLM34lt/gRaxseR9bPTRpR/qdf+4hooRpxmk7LiMXOXxLu10wJfcLmoPiRwIehX43Ps/YavkCK0uxgLcyNQRBzOXsiLvbNZt43dhbD5bXkvWMr+2uvRg6ZiqDvEDq3oqMReAnvppT8iRT/92SsgbSpfyYkVmOy3MPVsPVX3ZA7MDgl8NG9ZwEUmJ4JrHm13FdXtNj1o8v2ivp8z2eDr+WGctOwO46BhYrsI5l+dXgNZ5A5hFO2vTpZM3D8geFln753OJ13cFYgzYhV+3rJeXrwfyPOC6tDqnFZfMXio4wpSYxGY+CLHVPE6cj9mHWl+iQT/H2ENQBmn/nBHjS7KqrTSN/CvJK50LfoI3bthuSHDYDdMBkGmQpzJBGEPGOOzxlI75wXKTKJ1igkDDK28i9mn7Z4XEk8IgQZ6aKXUX7Ypxscunkw91z2CoRnHYL1KfVvKaQa4FmKKFBPx9dGg1m1ku40/TqztR30DwrmWe/rHNzkOdjqY8/Nix7p5govStGGEfLsFaKctzgWrZKU/pjT3pTybmn7IKZBfe59dfsGH1wTlVR7OVudvCxhZqxExZo0bjXuu0HvEyxC5l/fDn9UlXiZrzXv2qMwHqRMeHU4/QLM1iCl4+W7bYmRjWOGfDKU/6OMPl28Vq//OgzlBHT0Gkh2w2H41ijtdSKOtaT13ybH5NnrtLLXf5JAw356mbm0IR5tlOvMyjT9xSq0ihUMok24FxkZYL/pPDzqbKtlLUT2vJibLV76wLUoTJp+alaNH77MQhFlTlmdtLlqPGD1BBc95lL3w6fEDM81pvReMdis9RcumNWWzkneMZDfOtyxuGGt7pYNU7kWKm2c7KxlK/izGwpuBh3hAkz4GPczdCLiBlbn2Izf781suyjDHQvknDETbvoZLGrIWM6IjBTj6RxzaID7mv9wORfBckzRmWiSNHZZE5ybxGRJSnn3+jGy1tHL2MriXUcW/po3OB3/f4zSw0A5CLGfsz8i1mvCR8nFSnoGcbgRyPa8Ibmjl4nMWfeQ+pdnxJL2g7iVz5fD05gasSe2V5t+VReh9q1smFTQ+eScVkePzmSlp8wrf/aRPUulohFdENPkMkBfQQ+8R80CgjqyI3RS1Xjw5WZMleJcxNbhb/w1xOhQurUHcQQB9RCkIJI5lueh1Il6irv57N8N0Haq0JqoD7Xc2KRLl+foTwDYGQn02Toyd3Mg6Xb1JUvsp9IUq6ikdGfHf68rv1fsNgL8Ies9x7QwJTADJ3oXPC0X8OuyP+WN0DFfdXESbBXl1sX+Nlj5gwuvLf0PCJpbTnXnqQfVS3t2Jz+ILxW84910iN5vOtpdczbvDnBUYaV3UVAP83KX3b1NHqDRI7I8JU1UrlgjAStgcaPjRBLlU+wQat+rs5uveygmiIHvPdiP26nrbjP4IaOVxRR6HMgcq0nM/oFHUobH+E7rxW/kJfq+zQjebzUdieyAx7xJNd8S8SHuNgXcx0kEBpvoCVcxVUPvniUnDIfb07w5IB5Bs9f+h4B+h8qKxvetfY+7vw8JjTWZNWQuuDuFndoxKI0MIF3y8Z2jFSzHTARb/IBKSPMUkAvbguAdAbBMeRMZcR6GGz8g0BkwSeuc3A447pRwKjRDBeSofefr7IdTPcwq/CavE41LS+UZPfNx9/cMapvQCjatRhr93ISKM+xb16RvRWkb6BLknhy7bInU9P7NxqgJZANs8fmttatFum/5sScUnm1FEQUGXaJ8Voi+qmRTDxxQ7G2Z5aun8xN48xeVLOAmnw8CsGlqy1BFZIpe2OusByJJ2voA/i7XHxAEo4l+58yzcXSH4/SCEdNv1j6r3splpMcK6hz7CTAleD+8mQ7F/s5mj7npOvq/jthfwRmIxg6OBWE5f/yabmapMce/J0/zGOLjCf6Eb0JZde/SEexf8qDU0si7uxV1AM5T9HYXfJF7GLak2/oUByBOruIrvOYHGjkDTHonr2Byf5NgJJOmIiXFxXweHDKoBMn80fA7GScGrNaB/DC/iMWCXUtVgiS+Kz1bPt2/PnbDLNiB3ZY0jI/VOXJW5Y9xxwyWTgyHqSEuy1aAXBp42aBHALXOJIevkQ1KdFFd4w7NMNmLzJmqUSE/uNy7rxBGVDauoxzOObvkJ7/W1+YCd8gNjUEf3xMEhz7SbTmv8n6mcr7uFUxGZ5YREIVoRsCKPV08f4s66EQlzEPPVIh9yrIrombetr2tQSlJpNbewJ5uTEpyTf27OKQmhBvV3OeSk0HcrMSvUOXQ93dpFeaxq3sSyz7gflZDC4ZSbpkeJxoICLuCrucJ0IBiY1JT+kkuIB7Esbl5QqRthW2xrdAXmu+yxJlBkC9T67gYOTUvUCn+FK0itYlmj3abxplBOD3cI56E3sq3TaTSxn+BbkH5X0RZ2gKGcnoyPYvIDrJJQM0ZowhXGI/FlL6MyKY4nbKkQHzFiYdNoQp5lXkATSQAE8HlbO4YEgVgDj7OGqYZBTOGvv+5NLGjkA4lsE0DyA3p+C3D/BwvwjgfCEYLMT3vLLJ5fysi6+grV1gGSP+3VgY+Mij984lDDaijYsBJw4zO7HTm1gLbdgBPusxk6lnh9b+84iwDPk/a/XOXsO+uNVojH9PISNhUJlX6RYt6lU7YrgKlFANLQTDPZHVTpQisV+ZNPcOwOPDPjTSKY/CMQeOeVEzUKAfNU192m8ym7Z4833twhaTKTiWX7CThCQRdyzzgH/rg0e56ldrkWyAtjILIlNujwyOalYuJ9qUab619OOsQ/W62yg5Hk1eSwScd+W9Ec51CfG1tMdSb/SChZRKae1ChjNK2IkV1pFRZu3gKrb/OlcmPSdqHcZ/godochZgdf/E6HO/k59QwBKiNCAUclChZD9osrYGZhuxpIHIFf009LW/JWKzPPrS4dvdh5dK+66q+qkxqdHt1+hPAC4LqTe97E7p5RMYfXvgy4gXMUqgYqaLitm9qHdjGiFwCWaKfFYrVTpmhvHDvuFT5XCW9cDYVVnrgYhCXz73tj/ZYcHgixFvT+Swfd/UsCscDLdFdpP0JPUaU32VDDiFuVoS90t5XPCJeR4AuztpgV/l0nWlbj9Y0qoSi1J+WXJRiev6XdUL40i8NOKHmnZjYdoKYXdJN5jOMZlF02TyvYBZJfEDEk4xiytST1ZR5qsUnlMEYGWoyLeyKfryW2OGp4VBcto+cgZk8JSiTFac4/ULnpRWqUTucjLtpCFAtj4jj1XqeE0q+HkQTz3XNjF5sMCvnd6uUVzMOeG3POA5nE3pGtgQ4LuFtdej1DcQyTwoGrMSZX6zG7tGN2QFgQDtiD8OU656FqgQbEy7k/QQnvGrQxpkV4DTI+QCfVImUiflgGMymlGvfHfyVL3fpSDlv0uPbI8NkknhFHA5u4y6RazcghK7exYMaruhKYeeWwvYg8rhK/Y2DO+iZfdd+uBdxQzqHBYZTMimVIoDxF3Ye3/pqAO7ZfwSf8iLwe1dA+Up+uUouj7MXKZzs87SKbBmmggBSmUKUq5pvewBhiEguovf8oe5UChsHBeust7mD22nuyBnRjgWC/XYbzCtNN8h+WhVtvo0rOdOEdJZjjhzixcEHS3YgyPsGLnlSU0TAA+o080NajEKkOgzbWWHbC6aqtEbucFDoMGJhd4k3XTJ68Fyey9X2j+3LeNdkizWGFQhhdPJbwzAZPYzOK5d1cZV8RMfHNUc+lIkdzmKJap6UsczJGIJxE20mpdwGz5Y0SOgwN9UtWCXfxw4fEway7ktu2R1l/MKXCiA7NwfOE+WyjukscflNecmdq9pIHvbpEs0Ml5tOEf+rDo3Y5dFE3eqyI16Hm4EuQFt0R9ePHWiMalC8oFQz2E9VWyN9DhD2E2i9fAEUS5yIDpQwEo83Fex8O8MxSJoNVe/Ffy4DwZ1ilXtmXbL2iHudC+XzfoZizkYkqSIAcNsZKeG9/0mHNEYYLCcNJT49y6/6Vc6hRBCU2vactALrkPjJkTyssArMydMXHQxjDgi0Fj3BMAnBKofvZKbGegCad5q0mUjWCQOI26XWDSLeGKlDCeC1+XkXkvNCn1/BbvZSY8otwXBHbrU7MO6K0jM2OGhXZ/S04vpuXXE63fP3m+wD+pbfVgpvXHKrxDbzHG0tLxgGSxtOV3w9byYlhPuuEzQjeKJWY411twCFiWRIFLCJa6bI99IX4px7klYc8FKQUd/V0YUI0Z8+hhA+ki2MDtZBuHAaUlGl9aYC8UrKFawCHJhjN9mtG5SLCQ1iz+jrpztUN+BAmEoaqFhjklkoXh8TwuLF3qQtPmHGZy+pNjYTWMyyqfdc4RmuFAvo0rsNx1Y1jDcQA7KzMqVnjFx7etjteG6b6BlbJs2G5gHSbLNMi7KB+m+1ObTak9IF/xB3VY8BSjsjHbX/NOPb0ouItpS7XbRDzM1yXswg+/KlrH3wFtiO97GuKIvWgquGhWbCkE7U/Tgr46gVbuR3gMNObDShpgM7yjTUVDf94V3QmoIV/HgAAHm4j9vzxkfGnOO4WpNE5ud9JvKnj+Of4aL1g1+fmMSRWQ+E7b6oIHC6R4aoY8uMvCkUsh17aG9VTj9Hg1/yRlFIcpspunKaXaO97p+LakNTOaAxkC946k9+qD8s3t9IrpgbrJPC4nkOJOEY4WrKTR/3EQVUOIiuHNe7LYOExIJIJ2MkksmN+aVTTNh5lOGuEAj8fIbxxwN7wnfBXPkUsxr2VKkI8X38idsoRbG9dUJhBCaGLJQWV+PZweNL7C7kcaqH6KTUnqYZmZfhLHehBMnl5tdeEMadAYUDyDp9P9JJSzXXpVS03DkR721Q+UNR+cGlcr5775Vi3edE0iGTD26G5sEsoSzk4Bbwnnc73WR0QOuHGjSadLFZQoWLiAA74zwvd09a43+/BCcD/GV9B3aXr+LlG+0WEqWf8atMXiWLm4h1McEhbAVkiZnq/mYT3hHWtz58D746XKstYuMUQnjm5hQPOM55be1Wy5qCUsEO3TzkDgQDWLvDHdcHogws7sDdDlpYuCgN02+N7C2QGK1giwSOTOrUhJWWV0jJc2SJHHpZtbYrKRuYuSTOkjEYf5tRuufkcbUOFNmfsC4v24zlwZlupBV31wh6S5prgw6HP/TvYjNYco0TByCRQAHZUvCpaD7SiBxYNakE8OIOgzfpcww/SjeVknJJYPj+saHRD6+Ojy+x09TGFQUSjYQB5ccuZh3c+vD2jDaJrJewBXi/4ve/W/WC19KfdywuKWDs36R3BEJ0Ei90PdiIedbij0jGbSUjK0X6WtkZWfZMMyZkicSmmB/Tc3vttR3tY/AfWEIepSlkE1sJIr5vZajL3kaNzUKfCA023eyivvR7vtCVteONpvXc5wFhP0UOzQioo2XWDi0G4uCCm3NvoyrdFJBiUqAbncXFlH+mJErXO5KEKpf6DhA0XXdfId8rUnScyaIXiYzkNj3dcYzeMpY985wC9B5qbnaaOzcDrxddeoH6xPgfpuQMrEtkKx4BNosIN2LPBT0HA+NA7PJYDtUYNoBGqmdI4YXUVeeC3FnZseXzyBWipEuqDFWP+bowpnZLH/B+kcIhrrMCa/Hgh4zLhgI2MUAo3gHDhUtoBzmz5BXN6ChKLGem6oYmY1OWqoUuONJpMXQsHml6bHIpnnD0X/yMvunnsKOTf6c71hwJnPnrG8KezsDMnQUsPl1WaF4fs7Q3V2wRKEH0ZKIz3HTe2UAfTfD7hcY19RjQGWRyJQGneV4KgylVugySaEy8XJQNWjbuTxX1SSfp3N4T5d51bdTakMrNmG9zSJM/CQPvMFX0l4DrfHdatUaTMxHmfYYzbl0rOhroQfV54zhsQ01decVorl4IStQGyDZ2OnWJaIhreWQ4lW/5LQcKRgqeS7dCMBbtouTwSLG/yyTrwdOk1ckGXwKNOlIdcJM2+1KZ1WRUqcqQzCMni5Mi+5Shej/AfAyJFT5+saaTIPeqQ7bNadR730LCMk7zVk7ZxvENQafgJhqUjrchfroN7cQkOtw2R2kXdW/MPV0QjweaFumR2xUtpjJV+M+18j0QXhaoL2Ftzm9fYUxmgjD5WkWw6Ik0/4rPKvVS1QZfn8bXUu9y5M62cy5d3Np3t74u9nwuUawQm6MZ6ahYcTdzZKZ57NQpesobw87vQnNCQuf7UgPDvVLNksoGCB6RAx6pbV4OedAwlQJcBAVrWPkWdcRbgIIfW0U6O85gCygAO/rnj7hc8NPfaIquerYINlgIhY5Mv6y4EMAr9nZpH3zWoENzp0mwdrXVPpP71ip9xxePV+QVbt1p7SeTlkCNdVnOpfZz0gOCvdErHbEzRndpJB32CN5Ko5esVXRbEzk5NysredcVNGafAm6scpfyi+nokioVmBMI5CbubeKUo1HgQBixkel2/6I7t+qdj+xD6truh0Bjpbd/h/QGJUsw85zGd/u7mail9Eanf0nypKGaSHEk2z14IahfIKuFrfFdESFm3CCKEJ9GBZUHz0VMAcoHvCVxFX/XZ0pPmrY3F6cczd5pSEUorpEERk4h6up2LsnfJM4vwBbufHnBnU2xGFUGiLc9yXM8INys5GYjU4vkr0ttq5CyaDE9aKEKiEqMR7KWBovhqEhwLqIkbkK6RwTdBUYGaUPzWqG+ZiJtppCxyF7shyJ544lTgBIuNjp8np9i0SlM5q75Kbe2qKtT0ZWfOMLbJycl67t3NqrLZoxcERlTi5/5hceZM2kgDjCXNrVMLJaEzxHBdeUbMAfOJFyl6wag/TfeIv4PRClcoCEixwsYuVm3dIHl7PUGKxl9XmySLqqZ4nbBy6tDa7nGh2dlEFKH1GrFbDL6pWn0gdyTVIVQZdoEx1uAkodjkwjmpE3NjQogbGYSUlegN8ZQHqrklj6DWwJQfEW9f9iPaBVbkU8VJS4h65DjFWtPgOOK/aM3mSEhvi1S0MkTpBRg7xHkmouoYacjkllsnjosQRb3DhfPgH4iz/FgSqLy/A82b2lpchT4+/Bobvoh5U0xzh+4v1GcFln7ur7eDiDqNl5uFgCByQMpLLeSSWDAy/bMGGbZJmJSTTXYxUQEdWfv+mhu+BToK0pD6PuCADuLdvOWHUkpAcooyB8ZZg31i6uhGJSCiJI+M05CHfj2p8wYl1x+5AsNjXoQVeyCxJwPyPt1vrmaLukSDL9FuWu3YXL65kT8inpv4h+oyUv47lpf1gwJkNwk/cpsgMmE2hT7F6jM426yrrqg7aWboKOdJtz84Cr/7zlhjImjyVGARU44yhYn4bDdzxwiTIOX4orHDwFZ1AZWS5mV49m3kbgiJiTsgPS3vT0S13fSYhjiteJM99un0uqWt11Pj0i7WLNCZEn3beQJvZeKAXBQr2WbLGSgoCKT4A49bdzzmo4xtdhN3/8dZ7bntktC7qiz0YZzqzamkEToJ90KTyMJwTjVPLk656Ry5WxIqxAnzsEgh1txCAARckF/DjqwgL3MXHvHBbiAQPMkHP8VOmA0F+eq065xwEm2PLySwUYLoFKAG840YEukM9a9solXRZrfo65na0nckU4rJ7P+x4HfvyZ6CqEvlRlA2MGmG3x9eDK5kF3djqriIX26ZHFQri305t3Gctc2qPvRcbK8slkDbK7y1XRPrz2VyvBMKaxvSC7dTrT0wAZuKk1/+TKepRRj/TsdiVjcpLxtl4ynzgTxWT6qqOaLnmER6it6QcE2nt0LKa8Fjz4M7FURE1g8tb8ZhRC2NzT7x7fWFUBUq5GmPIddwdRawNWFHMy2KWYiIJ9fM9g1uRFVmaRoKKIClEcDYE1Qbu28boRtSYcWkwnsXuUEHTTTggJPf31bcUxbOigVr7LO7+6Wn4n8GTAhazR4mAvCblqwYOcCg9VmscQZy1G4+gRkTJZC0TmUhICHeoHypoahCx81PruBF665B7/FD7Nswg8ssghhSDQ4JpxAWuXr+gMiHagEQMczjcMJV8VjR47MMFOihD3ykCFOtFuNJRQ5fcMXmt9HizoUPlj6F7NxY0WQEUuVwflUYyl8rtbSfq1giP4TdqA+Jm6elCyxqG61plntDwniIg/neqINYnCANsFXp4mXK3cqijGBL4DVWwlsbbYgKVNcXDjwdNutJeQ+OLlaGh/tKtWUkoNY94ax+DEL1Qpo7qPw49rIn5f68cT/g0Vzhd/3nXmj/mBHGsuuGVDSLNZpD/d60TOgaEeDUm1kN1Rt5qn5Jb2IIzflfmneUOZZ2kaZ6R6fXpOs5pfpp7+0KC1TNvPYHics446tl3trS0nGJn23sEevCXZ3Rl6uE80+e8rVyVcHUvyMpJNyFxTSO2iY+DWjZvJIf9+v+nU9RtXo/DcljcYLbrcwHSdtag7kB4yiJXuhPlMWV3bRlMg6c05ANX6FCXB49CwhgFyZIKCGDsGUTYZxahr/PzAXt8LLjzM+a6Ryo2yM/AS4/kzVGEf8dR+yb2w8r8rdA/xIgu+J7j9URaM5geTaz3hEPEgm1iDO4DbW5hRrRZXgvq7xHDmV/Fex2V9gtH5naTgDA9sFENI7+DEvDKnLO3R08u6BhFOTwNZ+5NW1kCnZpaR4SUYfwfOtcFkVsJKfHP2p7qp6ddV14/vjMeeS4wOcLaRuNvaLcCzPGPXj8JVUE+WVZvRje4W0bUCJ+MgdmnS3AbFf54XXOy00miiZP7AJHKQm5XRgo80du56yTpEoRb5jp4n89ugl+zNm/HoXe20om8A4h1Un8bn3mhVskjwR0r1pKy67+wj7vYl3g8gLV6u50blbS3+BBfPhxtjXepROBE9MSr9h1x8OSFHh3yNEuu4XQWugwlRpqq7QKZVccam2QyQGCEgUgNs9kW3mL1v/6h/9grb4q+PKx0wl/TmVh31WZ9xGnq4bwdVlr0eZ49lrf93wESNYZKOq2wIdwwCXeMPEGYU69gC8DLfhG3uFkqFd1f55kuQYxUe0zbFuQYHm0badx5z6Tns/nkh1uxtilsj5rpbPs5hbtL2aIryZ5V1i2PIUy6ZPK2AMHIhCO3ItRre6VSJTlXz8OdxCUg0irWdAxEOmp0kAoSwfVAY8bzHw4wETuOS3pQbP1ZzntSekSkYV723HjVkt8l/wFHFZAYVcUjf88ZjqWUCydqdbSa/Yv0ZtbFT9vZ0U2UoMJ2ssFXNkquLVXeZ23gBJVYc4g0qxZPlZq2irXqDztC59dZvYgWRF5RVxyo0x0LQR5XX2nuVeAQtXiYtXUjRBenDBu335TNVb2UCFEbrpQscI0fN0ca9xjFKOea8XjgnRW2QdyH6zWULg8oXLMjCwZseiKrDXqfPg2Rbd+8w0URqx31unZbVkhT0olaoq8Dcjphsm+GHDV7RbmQQ8puyTO3E5uMx34uhcxbMPnDyya1p7D+eZasEn+cRGsi+z//ez6IyItAEHLiHsufc1aqxQ+wTHl1MaeUwS6GZVLv+UUdreFJOfAP3TU+bBqvTKKbXVNAImJY1QO+L96uTwj8FfHrTLa9gSdhGVP0P6l+Of1X+021qFqVPtUEyc0X+MkPJNniQyXvLLaFSMdhJG3MP9zCwTWVdV61gF+/qx/Poadu0y8fsLuvYoVGQn1qI7UyFbuYmRgqVLjjJxbum25qNBoBcPEadECPaTvVDXR5WIcsbAIIXfymppgkEWI0cHvH4yJ0R+ZZ+v21eBx6S0RPa5VurbSvkAoEXjrJEDAAUZhUg2lKW9vd0vQ669K/eBxoPmSGMgc4XywbFZIVrEtERaeOlaWKs57+Pn1Nww3EFh3t63TyyTiMmB7+UaJRzaOrGBa199nwdkZkhBPoeH4dwTtz0j6lzIazteJhn8NVnj4h0sCRbw5JkMbXVsl1wLpcfm9/tjRtyspYBWojkC5pvUCXB0F6Kt5qbfDkD+E93iL4aUvaUPf1fMg2erVRyqo/ZN2oSNGI5YZs/LjzN/5+9F4rZhtsobsREAdWo7lcnXkhdkQA1b28diONLBSUpOK3I0Q9yrLH4z2hd7d5nmUhcrdUmKvGelxZD2n+ER3/scYqioppw92hwkNaVk83OG26h1IQzWYwqc+/jbtgv4zK+Vy7xAyTTLjriR/LshOuT9Au8XWRQuID9DNx2pSxbyM0Zl/QI+RPj740LFLSfz3Z0LIgBIh2fSZ8FMaQEjvwmMM1UJqoGrpCypJQvZ94J+HJA/EG8GZSftifseMRH4sqUn7ju+YWGeGaRnRoKyVgLuUd5xKfTf1R/cEjNiv6goG3VsOyxNDtkgdYQXDGp9vAsvQ2dfQDcX9THIcHTgrpahbYfX56TsdX5kQfo8UZ6K/UEg0f728S6arvj/mmuxDD1hqyhmwU1aVZkUdazI/VTpDTXkbIZSirwrOMO6rY7tUn090+i/UBYc4POXAu+qBGxu3SOdles4oTHUrFy/62ubmcURIbDLMbR+W1Q4FbL9kAkvBLxdCh5GBL4p14+ii1EOGl287F8Ww5DzkVGdXz2qFIZN2T16fymtRSo8Pxu4OplSCkg2U6FWq9kKRbMzwGOVin5x3BZOGEAEo7fC4pNwSwzvjgimsFiUbcZj3xxE/fO2VnT+Bb6VCW7wO4TE70BQqMBS8zYvEIan8ZR8ikgbS3EnAtjBQ13A30uLkldDyUXYFskDDqH4WkjVVKb/DWLpLcahnNgYa04t6b99h5YgFLPlM6a8jpYpO/PsydovYnTpL+klgeeSnvBb//AN4Fy3TviiDw4KRsavZNuY8P2F/cUYsnlcu3f+DdIX4zQcbX+AHUwy7rqbID+3cb9EOkqICD9mj0dQzp/ReSeLPV2lem9J0W+wT9OOKdq4k6GTLxtF2P9cH4e3OiY7scDQs48xpt7qYmBzBQmFtQm0gpGWM9sDjcSaEHkggq1UpgMr/l2txCqx6uiiw8/UH2KFqV49iUHPAP6R1m36KLqc1PQZnne6VWP6TwcLYQOv9yOB+9b5xhxaljEfGdMSk1uUcWE+J4++6PCZ+jL1oEl+b72/7f+pHCIFvrp1n1NsgI+UGwK30HYJY9jMk7E34WgHswF95E/9qlhaMoYp2T4CbpycxoZM8lDFAgwn/Vg3bE4Qa7Y5jPS48q4WBSqDl5KCkvvXFeEvw2j3F6eEz6/pxrK3Apdmbjbldzw9i0bawLh/twPJ1nelGWHp5U9hdNOfE2KOrdMdEIwNvyc0JHvzDf3jYsEkDPl3F48Dq9S5fRROzHOK4SFQyxU9geMvSJ8AUlp8IjcZBM/hR4PA+ehdWXuxClB264M/lgc43Vh1/41FcUMDY4mYPGbPZ6zelxMiIB+qLcMSw2igFb6U71F9xHtqmeA7tHQcOCmkV7TbPsAf/gChROVq3jVRg6Clnk63lQmW5pcVmZZs67XXDMJej/4gmXOivpwTVw0h75OyVoquUxKDrJ7Bq/mHQF7eeIJ3L2J8deb9dKFyvkm3Lg8RiV/kjnfopy0D1qqnkUMl2rZBxomlDkFmSiVZPyAsNOUI/6lexu5+cnw2s7bllrLhlA6chbWfVTOQH/irlbxdNDMqI5DrDviS0Y5B8gMRLotI3w4a52wvK6xMKR0a27vS5Ziz7J31kWAvv5kacCseLo2kBurXRlJ1JIE6ViKF0v6zkRs1D0O1Edn2WuaZa1wyiXzP7M/5q7UknAo0BoPd7zES7W2KGB6vEM0rvIIS/1+ill9EPxQDLK4qbjmWFThoLPcR1HJXydfR8Rp+aB/OdoEDSbRbDDiSLOij/t8xPIyWxflsdOucf7QqtPYlQlMW4Jdn8XQiWAQucW4fZRjh2gSnG895XHf1OQSl64jS/w2/wdGhCuft/DXAm+XkG0/P1ZiDC6ddL2YX99cSsnoR7q8+LhepoH7rku9gIxbBTM4fv5D60gvVf7aB115ykkEfJ4qTr0L8BW+Ghz6gKrmfN+qnTkAC8Vrpjd7IRXNxXf8cFIuOG/rds0AGjL/lDwbv0lEOnyMLVAXAvHBlILj2k/40cQtyPZ4Wn7f3CtQ2aX8khDmpG0IrgvbVRSOMlmEc8SLdJ2+JX6mDFbLByKOXGY3Pp/0QevU6WDG3pJ6UVGHwjfkuQyXlVRo9PSERzmBNNqfGk2s2hXH3Jf4LelaRsZD6AhfwEvHOylQ4lju9marGiGkKoAGih1WRNi3o7k3BJczq16S0cXSehvFBxTZKHQddrz0I2KDYzfh6DWlc/xPzAdJrCxBLgSTSOzJ2ZkmcQcRiCzwr7GplGtCDOhWryjuEmOxwUOmaEU4h9bkpxuEPaOBJI7SJSiIJry2T+RmU+pOTri+hV5bcxlU3t6AYLLZ/tvxCWtVwTBlKc4M56pi+/IeaRooig/FXVTdUdOBd+Sq+gWi+5ueX0BxWk+YOPp0RD/WowfHdEfiOxdL2VrNziJgxiBLcYIRZXlFCCOdgrcU0gfNco6gxeTfLswLgoNZETtJIvLr4Z7U1XJo0Y8xayxlelxM7xzUaEfjBQ+1A50S6RLMt4T2YuBej8z8Uml6MgyTRA7b3dqTEehMp8gglf+BdyjUUnlcH1uCjT3HK4vbXUU2KOKVumILGHdD/oszCG3uklhDdBmLoFYjwnInX0wkae32n+toG8cXSionEZziSuEdGaeyijB5Lvy9Gy6vXTqKN69E5vBBNfRxITdZFiaa9ufcUbDW1jDecqFcom+Pn2zdLHvbaquyLs+oFSD3AdUpURhAilRn/Q+8WAZIdi2kF/mEHe8c+CgdZjwuNM/jZFW0fss6e+WnRVtzmfGXOiDKHb/USGy0JFQqXS0Xex/FWzjLV5iqxSjFVrLyFrooCMYqA9DU1DqNrLiyL66bujTLARNpNNON5akvBlzIindEHYPTiagLGSa5TXjrKqjlrvZM7KIcOuqn47EyHqOkyD9B4cJo7tKv6hH/P9FufpbtLqcLl3nz/JFF62k0qL0n6NHfjCcAxwmF9tO9unctI5Mkgr+NzTLV7NPxpo0lYeNhuPCoxdMkE5QlLEIDxakNurI6T9NsUFXCB++BPIp7KQJb3u2HfoUrh5AYED1AGJneelMDfnH08XFQhYBVidfYX3YjmB2HjsOtRZo7lfbSlS01PmsKldO3EB+AFwZM+3PyT/Qy49sp+gLy/T4CAwjb4Kg/bfxpjoqDnw3pdPCnHzvtWvcAFw/uMxVn44xRU+swtEpK9tRI99HYv4nQ3vkji0LcKqSnNOC80/u5EKUyjsvzQ8J/YJw3scCvW5uXcXtZwcGFD2T/tKojuCszWZCAOc3YDNBQj2PzqnFl4C0zQggKOlYu/hXxoqs3d3ORP2i2oVkFTZTxLZzF1UeJFdxqImbKnpTnlZTQ3Tn56QMx9Jl4JoegP6jc/eR1ovJ+hHCw6rC9NZnLqTyG4qFoK29D036YY9CrNNKjckl5aGJz+ai/uRfaFzNcaUKNoz4LqqKbF8x/4tb3Na7eqpCi4n7Fh8anO2C9a10ca+LnP6jWKHaMHxL/oj/GFF1n7Bybp55k6j9QUpLbj7WbJBU46fZLvZuD3TPdCQ6ciGhXdkSxH4eeKgZJVuxawnjDO+4m5azYnneUGZqMzFEQSrEbvcjAGhqYsQBSwOwU28MHSmEISsKs1cjF/MSQzmRG2sL7pD/QK8EJKT00Uc7k0yBKZ3rUCcVBi3bePFJD5HNhIrbW3Hn8bDYg0z9jCgQKK/1Ckg+a+fS9fmAxcIjMRPLFBhI8BWmvvfdynCmuUco6+UX/bvgF39ieSmt+0iDiQB6WcLnGbY2BkCsZtHKMksoj5qAmld6HHjQpoCBgVXrGFya1jOjmJzi3/Am6JUXu+8p+zLfBqQ01q4Ru16WkSIcB555cdHTJ6PxeBRWFw53sWNAZpAI3oBMUZpZ3GHL+hS5ICnUPCZud9u9fS/JialhOXjTMwxxRmSTj+LUakiteumQXNqXKQTerRa18RhnDQdbWz/w2jAsdRBcbOEluUCp2s6uofFTfPG7Qgq+f0qHVhbH9tlXXsYMhMR690s6rkCeKwbltQ+PjkeRKFpDuNoCl98ZjPFpRZ+f97qao7yuYSZfiKKdS4O+iSlcczr+ipTEUmr9nz2j09CQOQOk1kn0JKAoBTYoYhLn2P8GMXyI64eDAasvdggo+C3iKrKXKt+L9EvETArvNvkU85CU7j4SHl23Oa8tQog6criPTP2+SuYfsd+VMVCBoKcKip2sT8KO4qOvILUzNMVIY7HcvvB64DLsIU+WQAz56xukGOX0JRhi2kpPnQqFrJokpdZ764VDfCa1sWTrZ7RGhqaeX0sH6FU8OcDQkgaUESL68unOIOQGyUJjc+Wk+Kuz1buzq4u6P0ET7X+CvV+4MCxV19jywrGTwXq+5JUKUzUpU7mwetArGWhi4Hu716GX61JYGekZhjxFUu9kilEHVmGuzogC9OR85J7PqOscUj9LDOwffJqfpL3LI8v2BpJeGhpQCQAjqMGLqFZKYeGpmvtzSb4eUkq28MTl6HWXbgstmZDVC7xqPfsdgn2ij6jG13+qDJsbW4g4fHBJ6e0gI6I90joqc7VkiGkPixfpjOYtNFKkCEFYC7ls0eoFvCjrbgfNOvgvKv90BDZj9IKxA==
Variant 2
DifficultyLevel
682
Question
The table below shows all the members in a junior AFL club.
|
Male |
Female |
Right-footed |
45 |
30 |
Left-footed |
20 |
5 |
What fraction of the right-footed players in the club are female?
Worked Solution
|
|
Fraction |
= total right-footersfemale right-footers |
|
|
|
= (45+30)30 |
|
|
|
= 7530 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below shows all the members in a junior AFL club.
>>| | Male | Female |
|:-:|:-:|:-:|
| Right-footed| 45| 30 |
| Left-footed| 20| 5|
What fraction of the right-footed players in the club are female? |
workedSolution |
| | |
| --------------------- | -------------- |
| Fraction | \= $\dfrac{\text{female right-footers}}{\text{total right-footers}}$ |
| | |
| | \= $\dfrac{30}{(45 + 30)}$ |
| | |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | |
x | 10030 |
x | |
x | |
x | |
U2FsdGVkX1/lBNCPhgtNascMkiDdXDvbHzbBCe6gFq4FnSn/BMHRKONMrQXiM/2h+OrplE6Ceh5Byr8Ik03ceh5j/o2NP6P8AljVmB0FgrJe8lDQ+VnKkQ1zFxKPgDkxPUsFqw6g3BvWv2c7bxGGwtnR+47/QPH1mu81066pL9nIWYvqLA07vN8i7rEp9mIBb3g5X/xC8d8QMgQIYiyJetpySarirD5XLMyNshDyPNa03D2/xJn0qUZnYR4dfg/F8Qi0NV6kH98R95Umsli2zGjRvXtzi5p79/w27nP9kmV12oV6N1P3wt5+t5No5ujNqCmlBpf339gLgVUO0RMPNxrMq5bnCpDi54uDvUhn8u+uSTUArUsVYtROZs1wQ3U2+6u5faIMd2oens0ty/V7CHUS4jwn5eB8Ti7TgWBiibNHYD8HeoSbWk6xCq/II2PndUuTZzqI3pPers5r2PGH3UJAhBBzDcdD1SVdPDMTB9urEeLrYGIAPze73LXK73fEgs9/ss91IvxxdOFmBRsa9Yifr8b1cLKQW3yG36Ra7D7B637VpS6MgvMp65rB1j/8TgBsBiirrluZ4sMlfjSrybJuTumaHuzEK7hWW4BiRNDYqYjVqYbvOfjbZi3SVQ99USEf9WgMBohOOPU1em9f6ijdmI/zTKlfLqBb1ggMO/5FmJdHo7/2VnP1LGIohXyHNaueV++2tdf0s2N0zs3IJLFZVzULqAkllipCYVY/L1VuXLQM5cHqgVYZWAuBmnPIa+oAwVSeMKHvAVTCvOQi+NpstZ8RUqsl9X6JE7FIQDGgp9lYqQ9iqtOkPqhAtPtutmbEW3ExsLfZ3BqZPZGqxklI2OU94q+CmwHrqzlFjAxdXt5ski3Ql84/J0K+bYqexTfP5BMMdcvUohjeZFD9dUp5Q6vI27wnB7Qr++tbMskVE+cznB/lX1iNb2xZiG63IrTRMNOapowL8Fwd11Imqc5C4ON7LscYEcQf0G9yPWHy+tkhkkOsZWCVnqRYg8ODEIhwl9ARZ1HX6+OjjatHksS+qXj6lqucJaOUwgKqZWEaF2vv/3+KmkktGghSFMGcsr6LkZVCIzlhirDH1y7Vl0OnKC2FXAXOAtxWSi7rx5oL+5zfZaJb0gqhH/GAPtMOboB5fWBLZj1l92YSu0H6MhbOhxP+aQfTSgLThmTMjEr6sQHi0By3p4uIAIdN2A1jGUuNgU3bAhr09pU871MZIBBeHI9NRKSXs9hmujkDqXS8SzDgqLSQTihDuDRj34GpwrfJe/nGPG9uDjfqv2sHzt2LjJC1a96+79t6GxQdLLrxvrP2dNiigTX4CnJYkkjN072wrHmvVoEDVvKuXUDqbkfo9M/FahTxIQ+WDU+fz7eENf2m11c9zZsBs9KHz2Vcn2ePvjZu8LR87abRHx3LioBpNIvgxWQ7q3Tmh6Y4UYLPVgDOZI9NeC+tkUcY1nRyU5k+AqyL/TrtCVromHnQthF06/+YWLEcDrwQFigxkGyFG3o3+An00t39wPjWJE/eV6tZnNmERRmcZN3ZNOSRQl/tXVBtxk99nCbpUxr/0Hn7MGix8w4h3TG8o3RgOevCX+8xtbSfr0rhoPUgotsp7i0TMtk7pnV5pNeJz+wyxHQN0P5LkwPtRes2R5UDaG//f752XYskjtq7q4+VxJ93CJ8qkSQOp96SFfCyn7tM52bvMnbpMFPXZN9HWxoEI3viI8C4ZOVmlWtFvVPB9s1lzffoP3cmQo3/9QfElg+RCwXG+b1q2sG7mkVINj/eZO2lGvcvpnhA0DGwZ1zpYETw7/OzeS+0aWx1ZrWxsk0CjCZbh9/i0JKrxHaBfafg5HceUitQbBQdYQZDnyNxNFMhHLDmcKAVsqFg5a8odrKqkUSCILCD8DA7XEqjTN4Xl9b+qeMete8G+4CTMmg9a6Al0Yzk8F+ul8hiaNr7d4l5T78iZ3wZa+vy2v6F+rPXTEgNHwTSrrSwFC5/XL1S6y1Zg+YErrB99uav281t8+D2iJLeyQw3GFzigS9i2VYc8n/IVUFWj8GTJ4og1kO9AUOkcl8L9QZpLnT/Th3JKF906A1DkWvDzLAYg7QXmvKvzBXCh6XgZXUG3CY+PSTG3W8LuNOqTY/2sHc+N+5cg5W6k59qjIPS4OzSiUVrCNHQt7nj4PtSLEJfOBAVI24KUqX9pr01DSpOUw0Cf7u/bCWlg6ZzWOn81D3oi/ZJLKJMGDSgAeNjEo+dU7mkrYjpKFDiMiTHlpxDDSkKpW2S81gzDB0Nu6VFR0gXiiu32wuv3UgT/tHBuxf9xh/vmayWUKMCHhpPbtYJo8u/8JlXidgWnr+FjDQxhHw/hrEW3c9RsoDEWxvLQY6NcYx/+08wTRbS3eS0q5ASjr5AfXV5q+jBoBNDdd2yXiL7AS/OZeN9ghCzE7tcmaEWZ0GmDyIzBP6vrrOcwre4OA1MxzRySh2+6Vot4mf3DHyCZobCsAFVqIV4f9FXj5H55P8rgvtzaPqqxkle2x/sX0k5Oiixsfpwr20P7NDefAE81swR5ukHtIhCIrnDUr0/aYLMa4KqSqBhJf0CWbKoi4eQkM4gvQsV9/tsgahqhTQH7SXYq+x22XNdas+hepOYHQYm8lW4DJ8yYWQMGUFyBcxHcjxiKFgnqjcB3Iw9J4gCzJcpuY63/SWcE9zBxZFkSnclDtDsst1Jw/jZzeod8snl85MuvkVvvKHYeiZt3Ljkobn1+iIstu5Zi9gjRD1VTFmapz/DK6HauNhpJkkcHQIQvaW88bZeAtqZl3O3PRc7rbpypNzupaD07R/Sjf3TuiojIVFRdx6FL2jF/IBjEjUmOiIR9a1tJM0+9CHXSAy6XNC5Duu0uXHEKobBX2IRu/8nTMxpQ9CglUrSOBMN6g5A0pb5mvixZUQmeWCP80IBYHfdQux2MseU5u0i/dJFuAJ61itrT+pI0L5UaNc56fnCekxdMu62kQnfsHvmumJUuCIzDG5tfRdjiyDV1Lj/1/1mclCj8ixoktfwnno+Ry8QtT2yvMlGi96JqwbgSDoLyadxGPbG1ncB0FUkvS7COj93q1eCtWyXQioF2Gi//3TjyK3HiDy0ZS3VTgo5m5IYvhDGzePwvCK9h8G8bvTRbP6AkFX4EehwNCogeKOsCdukUfN42Gas24t7LSGcnuo11ZneWvb9NwL12Kc5BZl7LjsPZUeNkBeIhoY82Hcn9AViBv4q+cG3YgdaxkpNidLOi7jrdv688AlFouQgzkuj/9WyiqjIrsWNsHL0R+DIiRx0ZIaji5aOVQxBvND55wjv3ndrBXstbAwH2hmWzhcOcuJy7Y9kQDULRZUdMMF6H5644Pb1XaD78Pe/D2jtiyZCo34HQHIwjIkxOh9tD/GgjHt3r4gmzeHdX2kc2fd9KtIcpU/Xf6K+Gp3n+1Goo0/6tE4108zQeAwM3kTeA3dNUzuQ0kUNOvI56I7rBzsYMCLTPToNtvL6HkFwcnURhpkrHvZ3u7iXYC3FrRp8tb574p+CzW9v8FPfkqdeDVgBqOKax3ypRCBj4ial0ia6o//sI4n0UcJjbS+xshgCy9VRA2At6WyT6iYQfTTObhqyDMSyhuhuCSgiU6xM+2WC/ZMfGmbv7jgDUPXAnZ5oHZd6m5PB2FAoJq/hA16P8iVZomqqtRZAb+I9MkI3gN51NqW+20vcAnHSUuXj5YYsXgRfJts9dBm4ptz7TVE8U9fS58s6XWKMpxxafUukYmkQigxM1FI+4CgOZc4wU4ti8f6qxwGhv0YBoS5Lc6NDnNbkpPeltdDq2eIS0h43eOxjmSxY65OCaACwF626rzRJFrEe9aXAb1R7lBGiYDhKGsIVf8/WAIRCIJiLJcMwUChKxhNOM6g856yboDtqS3iUNuvMsyHJb86u0u4jdpnFYvuLAhuccqtdRHbs7YCpqc9JhIEXC1kbhyhNDQx8xm01YgTRYsrO9Eht51bZnGfCVBhAYotBxCIZvQk6VB9ihmP0Qt8df4lPm1IfhiSeHqOQ1gdh19+k/j8lHxyHEX6PwgOkaGKMvdP5KXWLVGP8+VWG+FJ691j5xrBoHmH7Nooyi1ZloLm17s/XAVeL7tYE+rgoR3whNgwD2EjGzKuK9IjO8yHUumWjTkrj1a2J08yVKTtYxAb+c0yL18WMdwIOZXVb9SW576ZKSGUuIwxjtWZTZX3YgQm2sE/PrAPQLAUCdnYRRTbEmxAHQpbKyNmf/r2R7pQrFLnG0mjfrfPk8HbWLczat3+fralygtQW2bHXRa5or97icLzyLHSo4V3a/+ehRkHJ6JjilBhM6jPJzkbdlHmKVCeuO7ZyeUHV8DxRQ8FjVTm+lYEGHe8l2P0lbLD+bYMgj0am/w3nIKhVAwDKLvogwP6Nndec8qKN1x29vqyQfbWu5mg1RhpF9iyQqHcrW1htLjEOFIApkqVwRCTiiBoXcfaO+FrNmGBk8aGUcPUj/qvPAHyw9sLtLW7T8l63OKdAElSqCvg98Y+vkTRviaPktLObfazfOCEIf1EZORV0RkArZz9YsUQs83cRzPILnTqmLH0s3uGE+utQAm3Cca4ymr02DrA9EP4sk2DJntX2OyVBGfBWN4ihEsSnY/HCUVqAo92IVno+9fQzEIKsXszJoxNCpS0HU+MhqcT29jPWcgFFXb67NU0FkSpMipYO143LX7FFotbyCXQyakh/6KHF/zgsuICILwu4mduelhjleKJBkFjkAVUnmsGtNzi1tki6wGeBwChZ22URKfSd8ij+/fYLd/0ouoQD9yBPKlZlM6WEc0V/5hCN0NJxz2K5IDVdoI77XfQz7SGZkrq+kGdHUjHlVhkC3u3w++efYVtkXLF4YTJzCwvZ4jPmRIq2pWf20srBKFYaJEuObS5k1wxNNsB8tlPW2CKfJdwxs9eFB84V3fqkzf4LThLcMIgMvdGK10XFAa2ndZL//Mvvs796zZ9Xb24Vmcj04nnvM3XW38P2YKY20ijFLWFNwHaBYqlukIHPOLdqIK3fvSXv0wfgUnQC3eYwDlqZOv8MynDqW49a3VWnM7HUPZmZ4Gazu+jMHZkUU4PZ+tvLsX1E94JNTSyjh/BhLhZHzXtSZakfTqoGcm11FVEcDT/OQGjfcdvsM4V12p13AlP4EaDvLRmfADrYg69E7PVLpywQRy3H6Zeszpq4jP2EClu5QFSfxki3gsyTO2mw7z/TGmRLomjvVZ90V6BlRu+OLk0UFffrxiLisPr783O2WNKHn9eTAjE/YeNdBa6SdLoBOwLAT5VihGCpTWYir/1UrJmvNlK3WLjmzK7njdu65+/IAR1U58eGLvEXz4joVKwLRDfRJGIL3AxIQE8Kaj0cNdtFTVc668nHQ1W2+lp5QwSb+vB569FhtQhOFckrzyenEjjqYBEGfuV8+feuIqd4QkqmxZyuuV+FEHkU8f2pEa+pa8Ba9kj67SqqdZlEJZwIU4a6xGML6z1v4d+k4KF7GCFBrRSZ6IE9FDlEeJuUbw1RKfbT05zNmXGONjtas4sBSzf9J0fYYxB64XLV4NKjyWm71LjUskw2obpOYtD9OVbeKnrrhYM39LEwanzSWwVh2RuCwl8x31GYa1GuGcCJxU3zGocD/SFT6d50BA6YwOgGga3eDUwJjpG5gh+bKqmA591+5kloZG3pdpkGzU19e7xa9TXz2zCumom74Qunp3U9NyiRn6QtJRS0383zYI+SV6CpszUJbrmeY/d2jLQyz6JNTNaQ6hX72nimMmOZUDmvX9IWlIMNzEnDLcuxEMC5Cu2hiEQSBjhXq6GdSrBLzDH1b6fICgVZzrSSmlVHf6oi97efoyHGZMWhbQljXTPru7nFKZtHDrAFPgSipg9zZWgpspgjThcZoRziG9FcecqM20lkYecD1qgq+uGm1Y7voTVZpdg9c5h8W6zAgnV7E5WsVC4DIOIXEeY8YKm+TiUAQRcsmLNvLqGsXNUX/Ih8NxSA3aC/iyPIhqi4hp8Mm8iL6vqMnO2O+4lzzMdgo6eTDs1NwpwqmTfG/Jdj1UYDdib4+IZS+0F7uJW47lpNPTdSlG+Lzzan+DyXyyI4lxJHqIpQQmVTluXKGc33ZyeJ9DBndRy6nkAXnxPr0tC+Z4sAubdyt8xB8YKT8mEZVuUz0CdDmifPFR7L0ITI+cegsfqiN7TEpB1pXs9PRoRMX/VsFb85EihWXspLPNbUUPmY68dhBhK59dlM5IKXYU2cbaTHEjlr1yyYX1y9CNstXSw4hkvf15Y08K0AUcDQIcvlDsjOyPdm/h8oQQxtgSis2QDtxa0kUguZDN2gF51ykWrxSaK5GbPh3iY2baVikRYgvcXc/2Khv3fBBTb8cq90cBPj1lzQ2nfh1sGqXvf3YhgNNynsNh3A3B70NEYbnMDxb78sOqCaJLYCbsFusvmHVixXyagJu7s7i4S7QK3an+f/Ygcus4t5z69HT+pCeqgpZs8RBiKhH830Ok16LIGjSvE9gGhuJKFElER72UIvWuXqJC0uel1uJGh2aIfWHa55VJYrAier5S49s7OHMgSZZ+fnrfU0MeOnlz4azCAVzsnvNnpxOhJhgC3diRwxP+ac5+inmzDhWkuRcGZycxp06TotO/MfjuRk0w4+r+h2IP4afCfN/RhhP/cQgL+zpAEfTK/9XQQO/Tky+tDKhKYrai6MsuFIDsQjIGmGEWVU9WODtaQ4x/26Yokw6rI3dqhGY9c51GgGEgYUJPmg05qKO4xP25dNxI5Dv7OhZ4pBYBO6FzT41ZKx8FXTC3f4QWhRMNSVobxuuSx5J2RR7yMfEnfZ1iq0wSTwT9b1lclMSbDQZKrOmX2ZRMlruc7tsg7rNjDcisQF5AKR4Pv/Ffzb08uT4zHaBXGI56YhgACxLI1ad+6LnGdWutbAnxEXg3KGz4KfoFjqhrLMT1sBWIu0IYzRkNYNgH3AqJ12ObEPb135m8hJ29JSY3OiLO4f8NYvFE/rKdWTFBIUe0hugKvy9Pjq97mKlrrTUmuW6mjX12cPRcgYd7GjDRS55/0SzlM9jorPicPWE+DK/xnxh7OeI8/IB7YiYRY7cvrRM9xAUXdnimIwpLc3fUpx/FTMFDoJiFnS0Kbzpe8XU9+QyNrYRhBeTFOkQL+ZzS+EuspKj5e5lR5Ak+6a7MagPRXKQISCaYyNrMLJnbdf5uO+H5u/QwrgdY40rlybI0rJL54O444vxTn1UK7C8oICbSSfVqmlSB0sXk2T85QFgokGFEQAw5QFThscgTHEgMPjK7YTAKUgv5FacsdBzu0mIuQXPT6QNrj6S68PcXCceZPrN+6R/GrnU0RrMReKQmK13vTwzxnQqqMKtcDmbQZsuCz3BanVSiEbefAaFyezSoEkORL2EEgg8yCxX4iWMbg1S97OXC7mrnPPLc2mKRzQ4kDOs4QGXat9FZG2KEPt0FxhSCREQawwFvsnD8R2ZZW9vfkTyu/16G4wmTjKZGE3xEVGldl7Ocxx2MLXFX0JuHVopZr/amWi1r56+iXd7hdCgeMK3VjuqociCbOen6IZ84QYkY9EgvNc1DEFweK99zPcspFdWSvJ+0NrJnm+W1Qn1vHZk/dfqKBOVd/UYTTRcR/GoPz7IKdBoL/L0FP3x012sq00JIxuA1BskvwY3uLYUY7cEKHLHeAWJoNaKD+6M7ZFp50kpaPU/8kxXY4g1YpAhQzI7Lxfu42jq5G9LE1ZgV/kpxLDXJJIvWO4rbXX9zDvHTgq8VGPByUpZtJqu9vmzcBIgXkN2A89fpE/kqTTMCLpx/cvQTcMzwYvu2b+tzs6h0lLXhnX4AWhxc8BXF3NeHlLyvwevobj2LGt/yoUHMukkOgSQqPLDJpXJTNOfh4Z7zQRAI0uo1c8KsUvbYMhanwpYzoT7y5SGSZudl1+iWAnpZWVni+uXTh76JuauoxNOXkEFtH2pF5TJW7XnSQVA9D9iUOqPSGuXGFaY7aQhphE8Sfw9PLgyP8kJwPjh/YJlm2/5M3qiTWGTduJTfmCCMFwMb5pCrAp8m7353b0sAgOSGNn11B/PwaHYn6bU0Z6ZWEBS2Q0PP7g7acEu85nNAcYH6h0GA9/GkThRzwHqHKiW0j3EkawO0PFwfz25R6i7wfO45uW+jpMAZ9/XrtQV5YymaevF+3wIyOwv8CZLsWyKrgNGpyDuttsSgvD3jnbtYP0v8gwzdiJS2+zEV4wwr9aauuWtrcO7AEZFCvNq/rMJGDmmmgYU387aWVSagZJjXpVmw4wPEhyJHorvybTqV0exPzsG9b2+w33mQo7SbgLX7fXhv0A6S1jUHk1fuGihTA4a88BWWvCPFyECM8Cca3jTIdSifzODUgUhj0KS9SJJT/4gR6bTrl1xoMeyRf23h0A7B7/UqGnq17rEvGHBtSlN+cLMlpZVzhdyxFgCjmb41wjJ142AKE0wOayRL2fv+Crobdg87FxbZflBf1eAMFZDf+ATkCwePV6IWBDZmDzQAHEfPlnqXGhTME+n4+v2xUa38XPa+oZUF+wNyr6UuXYUf0veAFyv3mhzGMpPK5IKngwOXUSqTFlMu9eGpoehq5DasNK0J1tfXit0F1pV7VNZxp9NOvApfGBBCwX3ao6XgKZsoNaVGvieQHhb3ZZnWsHvcKcv7g/PBi5gDAsMNF+sdIjmMCgNEUgE7GQIqBw+IdETazU6fITkJWKKKXPP+6Dsxz1LSVE7uwG7ieAgT9CqaPlzWsZ1eUmB9SECiwLhYXU32h6O4ReYXP4bg0PGaLBt3/mhhyvckUXDk7HTLkbWfqeUqSh+8bBfBhqQtikSZ1ZN8jzc9RszJwMoP+wIikQ2H/7JDok4S9mZZVxO4er3MIW0YUcCnVBTghA0v0FO7xt4k4KFQCmeKRINVtKcDUZf/E+Ql4EgPz4D/d2DWk7sNtqz98K6qU+/Pd2n+pT4nHXLny9iRJXbnHGeU6S9cDJAu9xHKkjuPdsJPjYGQjwjms8T732t+CH/LLFVe4egDawHso6TkdMWxJEm7R1FRBQo7cNH9vKSadL5Z+2ir19iOfQbhkqOGuyX7oetkWnA0BzbP9/CssBe4Mv+XbrepnprmsbnyDlQq6IndSj3NWBGrRsK/sBWedZBG5xCWLR9pJBMh2sg3VHOQOzH7+wGBl4mXFC0WGAv9t8jNt6tKBQLWWPOp6X+NttlF+LxJtcy24yE3tqtLyhbIM85qhitsUihnEV+VIMZ3tcxV5jvjev7SFtQM9SbtmfslHAhjkJKtP5mpxcLyFq/NsSzC81SsCZOROFCgO4OiEXvTYb433k1FjjhbC4S1mLkTvgFrUVr8WLJ+gYj/9NJ6Iu+U4RH/4LR9VB8f49oh3uevfbfExqdgljkIF2ezqKfhx9OLRsPWdHQTRhhdkyR9LpUwJfwvYdpCc2kdr13Vv9wENgjN+V5vSmHsNp1bqHjnff7/1bdlVQaRUguilNGrVhMkZXQi9zTTOi76MUmUN8/AvcE9SaKdmqISPpFauEGK0oPb9T1XfOlYACr19SR+qIGOIZWZDPTyhDKCaNPjMc00m6kFZZNGG9ROKHu5xQl/LujrKm+0Mqe6tsxJqz9S4iman4ZvkNNVu9CxuxUBarwrrBzpW6OlMWCgtyE0rucR81BEJngrjtZ60T1ck+AmjHIxCNuz6t5yD3z6/rH61GXAQGOrNo0/FoAJ5fM3dy1apA6hAxUZi0yMvlGBMmCIR9tKYnFnaDQw7C0yI/OtFsVGG6her+tT+9VbcqainPvFg/jCk2QYXHxirtdPJh7ZjJsi8H7CHJCjQDRp4hF1Upcc7yNJ+SF/JAI9AI9TJQudfSt71gFRCg4J2BUSAylwDoHz5BLVXXlPqgdOAFR68amM0lKu5vB6AjsF4/a4ZttVX1CW2J4zOL9KVn9V7BhiHnkYQtXyVUtzngTUjAulsIraKEVnlpumY3zGMOwk8JZkugmPHWTdtRAhP8R+KoiaefXn+a6hNN7/e9a7FD1pjGvSro4I9tZyjm62XaDHCGtCfhdxFXbUhsG8VPUBTeIHG2Scu8MRmMVqRFfcPUey0NwMyUClbm/1qQZ5/shgsigaPYlUhAiGE1LxniFFyBlXIGbbwPsyArDea9KrTJxGfb4sr+BES8Yr5mmaFUN2KH4HaxEEr/JOT5Y43tswVnRowxy8PRQg02yEotf1R7KlpA9vr1SoAVO4y0s/2fPALWIvs89DpIv+Dh0eavD9hd3oV4JOLjXIiZINFEBy4gsK5yGI59iw6jUeAHieY5D63R4kbElH1CXn5l9fH2AvPsttgrgbPooB0CjRtZ1LlJjErOThxwpob5GxmltS70f80frCGCk5glqAifgkG02ft3gY+kNTo6raaQewz6Kh0TlaxGKj7nExteZAzmXXA5qJpK0xsqzjDo/E6ttm4VlA3MxZR+u8RQ50nDJv8QhhQxL2R9Wy9gOSB166uu5l87gDf5kDxnBi6lqY090UmqH1zJZ9QHxcQSMlOsp7yCxgWsthINQ2ckOBfooyEQFPBn3ZPphw54snBryNToZWJyBnlT/eIsV5MeuwbYKP1I+9r3/HhbphaePbb/EEmpvMj7t+122LfBeXTnTGtRxiz+9MmepIw0sGlUsVe7JC9fYU2YPtiesONvAM7jinVh/uP1SjoUN39IMwKcD8eHS5aXviOj/mGdwJfT0T1sHR+cKWtNEt7Pg4+ALDT77iWZ3Wal28+fI1zPGrRB1HTCP9wV28qqZFqCMSTI/b6qR8QYo1V5gD5u1w37Kj0QAFQqPeA9PD5OnpPXbDJWk9B8PP9YD9LZPtvNIUoV5JHlD89/5gA61NsL5FM0XGrZrQKW+nRwO1ud+oznTr0mR0IrpNKfweaAptJ5gycXmUM8k1BZ5SxxjW6tYqtwSJTxD7EwOL4GKH8wB8n0iM1wuRYA+wSNxf2WbZeZXu6nlxXCIDum240EazVI58b6nGnatJCeOyyZvdfRyiFk1loRPfoginE8n68BmkLfpJH7AVRnopbMR6C9bZe0sQU0imKJn5zrE5sJ3kuTN3frKNwSwVGfXGetqUeopr99RF1Y7J9fJh5z4+tprEB/IeM54h48vu0k/rrcgaEPtHvGauBpQwUFUI0UwH8MShTnaglaw60VgypnCpt9B/wXhOYOqW/iOkfdVa1k4o8T5aFornLEamKtof9f617Sc303uMU3apm0GYAMFmtvly9c8pss83ON780ZwDGDB57GKkQkv5IMs+O9X1Sry/buBnjujD7S8/2b/1bs6WchYWKG74s9JyTzvIczpNbjHSiVS1RihSuwFNW9C38tGb2wrD0AoINr5jLGSX4OlM5jsCVKNPCN64Gm29aTtqTY7x+MXERL0PWtB/2IKiHAuQQj3Soizhpbp99ufvXMdqXvyec8gEyPW3Ou9byuWlllbNj2KEJW4hst3BL97XNh2fLYZVWsyJE3Hp7aRn7ye9cYFfq1DAQe0t6QKibxdbq7ALYWhxDlU4nnlMb3f/3aEHMwGqN4b5Rdnip06zmdY/jqzfttaXrtcHW7/aYW4KycNwslJ5fBqk/zp+TlJDS3gjgznlnC+nB4SkznvgV/0k7R8Lroi7+1/BmwsNKo97La+VbZv3dD20eOujJ7/+mJ568cw8synQcijLPLrUE3vh8SjgBhIuMTqJ7Mlny9+mh3laxfVM6vqDaXduGBcQWIFHmwwlv0rig3cTn91dF5WOFhos49rYXSU1kSE4voHg9Ezq9GxfsSp1v8ZwGIAevQM2nkW3UGA3bi8QjBUa4xGwIVUzhDA9T6baKpkykajVMC3A3h7QLMlS3GSW67P9WyQz7Uih8U7aHObglk9EKVlyEfXz8LInJnBqT+/HbyptFQmnT0lxYWAELbgNyObwQavUORWBsHmS01fDif7NLJzU/qCht1eekgsHRXWEaeods6FVKqfHZAU57FQE+YGnQG9RYIxwgX1BeLoyUmUqfviecQ7DF3xYmcRDVy734EEspTscAoIFWJZoyo0iD9oZZL/uVB8DQ1uzGhRnspiWPnMl29oyVEsBT7CxIFgbwC45Y9TkYIlq6zw0P3WncYczYHH6Ly9BRsJrfR5PbQRlscca2MM1HKCUqMxuOCPSZAj/et82YNPjcYlScXBaf/lYLM3fPUuQ2kqw4CxD/kyNmNHAEpPdDbJWJRRul9/8OED2YZPVcCuP8cQFC4RXgFn8ZX9F7TBy3HNb0HbXrtzDpkhDbnnG263knVlJJ6oLddVY7Nlb7c8k59G8cHPYZJ9dzRNr9b4IGLkz5lqNqvlxdEQ2OTGCRM2tFlOKyx0ozqX9vS0YlNAznpD+fId6D5Tg8LTLxjlgRrBrXeToiP7UCkWhj7ivyhdi6kPE79suhPjiCf/Ggsfu4nVuYIM+GmglR2DbDUwF1zWolWjwLxBqXCZHjGNuHiwLs676HVGlhAqLAVJC9lv0cpqk8D4T3rEx2ZOTs2yF3OF1oevPQ9bPFcgaxW7SuW/vc+z8nZA1T1/eNppm9TD2s93oFNp/RszkzDsZ8oLAmkHD81GwU0Z/qR6974ugw3DJI2/mNrwH5www3Pd+h/8A2/4c4/EkG9kLr6DjcGoJ9uVuUvmCW1hOCCuuGJ4EDAz+IHBhusnfgji644G+Imf74TIPK74wKVZz2dYtRfiDNAiGJWD13z6wVhgiWNF8358TOIOCBhWQZdNlp8Ngz7IFLuAlWquMqZjmJmTecim/X2p7b69XKeNTXxubHap2sJzbyxxbJcJ3OahE9NStlZlFS3tSaBpdG1bCKyCPgbbKAHTI9ZuvPlogvP9gSuImOF4wuX/r4QhAtwAfnFeQK6poshW6eh9W1Dcg53tgcFq1tPqC+VObiw5eU1SA+ZgUv7Xrv4kZ9XzO+cqQyjGZPMEI84WEOyydwuc2VwFug2tBZjkJan5niCnUZ9IPr4K2LW+DHUbHBnJbbiu/lB0OSa6t/20AvWjIkPdXV/4XjudIgr1KqiFqwNMHkwrTTfwx1AmhmmJk8wB+BqKgVZ1yJx2eEQmbkkAkq1Mz6kN18a9/xg5I+tJTG28jEKm5WPgY8komLA620fEYDp8cYf78s0gpqivLDTMFj6Ubr7nQ8DbhNTA6HuTC0ewEEgNgarGNE0pJD7jJKtTqY6YTtJ89jiHoT/yBJAjXJIT1bPyfbkqBls9KoZ3ZQNZaIYzkmymOP21xQIhFq4lsJkAm+pTe12cuB8cblkdPkvKSwuftuwE6EwdVN10EmTBQUTIE7ZMD08EZiBB3wgulch1BfwC2LmY8Q2em/3Axu/sq3bmOw2ej8neQXUFCbhe4xGbM86PfmARjJ8IXuzkNhqMZUNVd5fTtBBCt5WTNhUkt5yCjlf/2aF8MLcbWLzKRWo6SMIZv1rgPx2kgj+x9fyNpOp/6tJ/Hdce6WGV7E0c3DfJUGLO5wQf5UuvBV9pExqqHGN+9/ruDolWoIkpWlvRIDKSx00ci2n1I1s2qRVNMrCFWJ0AVvQ9mQXyUbeMLxmhU+J3JwOsmRLojD4phUFayiR96pPMOBnCw1D6woUazYDOCkdXoPO4XmgUe/dl+cd5VlUGKZNgZ9cF9FaJxEmBTEf1co2d1mFkSFHXkUQ9fO5wFVL49jxyyYh6MK8spuoq0Fp/btpn+lha1qZHAYHNbx83Fc+WaxBARgOqOB95mUWw9SN2EDQ4m+LPaTONIfJwIWJ2auwCB2frATElms/nX2yX+DspFXK4BiEGvhh7Jvy281P5o1zeaeWkZc8lUO2qJ8QPh4LlJZrRrcoKP7AXilfEgAdlpeLe33ec+Vg9Mu2RI9zSqqWHi+k1Qg4gPtZZZuyT6iehoMlRxhrVuJeJMrOZY8VVkmTAeYD1NnUedREB9uX3K+PjauqKJ3FjAmr46fR5oCQ/EODmLoKO6hzIt85XdTILpSDdx7jcUSM7XH9MB2N93zOR0IqqCugDjNPYYEtkqZoBpZL9Auf6d63dCSIDy7yPtDuYUWntbfa8gzwCNSIXU8deqoAQ5HC6L3y3VQzE/dtKoymI6eBRdCPZ/irqtikbxVb/DeZCM/L+SrwW2TMQdMkcL7p+m9JO98aZnyUxos9d4g+Q5VLV/zMq4CX9+Ml8GB0xxXp+o8xU1/XGk3Kf2DJOB+KtmjIotYkv4Fu29RntkBD29zCSLGFB0dqcqXAG9mtf+rJ1UZIvlcjwj1BYPi/RJsGDtn7Tm2LzvpsFJakOYbEglnflfvEhsuprv639iWHNYu5FP70R3dxcLZus69SVIVKMRGxl7TmuxrVzt9yI8bm5Rjo2O5rnoTeBRyTxw+mQf2REVakwWuf1ooIE4fERMbP2AD9uRVJ1YvFBRWR7YTdpr4nIsAc6U6REEOrDW9YCKBNTVPT9vIpYVnt67EbE19TW4qAn0sqQHgW5xJLkde5gbrK3pDwNouuUg8mKFYFEqx2LIblHx7wrk1C+CwQLpHdPv3b52Q60XRO8JrygieOrtF6QSZLdzvsbtocRQhd/e8nEWWaF3XEkOn2byfmL5Y71xMBy7Lm0PPbAeBYa1+TanIynyVaHYD8HxiKx+UNV/qmpkHC047Z0E/Ug6Ueb3kJXs3lm3SPJSVAJI+PNDOEiLej2r6DQN32VCHwXl0et4nvsOXvSG66CdAtUkHmZCkS5ebw/NadQbZeI1g/tIESb5OrSOoYbY7ONJRoB2AK4tvcCuCsy1RtDOzHYGt2nhgGmMUqHK2floKTzeh7+EsehrtqeWNhtmA3K+h2tT9SnWr6JZemlKOTTnoy3yAh4BBOgKzEqPsaKhl7cUxdVL/W9hn6YiBVRwsUU5L49JXcdeZC5ZFNBDYrINmVbgTQS7PuLDpewOljbFsOtcWQGlOfgCHPFbE2TllCv0RAaeFYmILBEsu7Xj2z3b0CfQfU69oog+5kYLttlwENgwn8480BXrsHBYWt1DG9C2nkecUF9rmyezB2HxlyqmGp8gbqtqniDoWccN4FvhloDPvwehxmvkMiDK7sToS/fblQuQIjZDHRIXcImuGf/y76Yo2uyCSCSqJ54J7S0uQM8Daj1O/xg5Xi7dDbCt+lqJbpXQo0O0xSJqT+zbJhpWFSY1AwQGzVMblQt4i0ykpYVuMmSUUKjGYT4Ytre6nV6OiyGE1+OMntAXalZCZ+lLQVZQLXWYiTEAaAMtgEMXPaWSuVZVz6o9WgxauAVCUtfr1tpGvXe26bS1h5uvDeMV1nTp4Fs9e0TmFhuUAvxmV1Q9YEGKT6nqh+6dHkf5OyXI+nHjCF3FR4oLWN+YELL1z7ub5T5ui3jNU3aFe5E1GrBcwy/R/3iRbb14SC/j3hlhW/9fKmgyY5g2L+Ksjzpq8ILqYgYErs0aVwolToIKqHKoLllUN/uc1wwB0nnuYad0bSB5iKBSL86acQRVfjXa6Vasjg85RA+BgfWrgAr1YMTJbbstGAUGr6vXqKj5nUf5v3qstxcSMGpkpltU2MFAjTWQrVkbrNe+RlPTMQPvncmZECml9CJ4U39m28d5NmR4XwMVC15yeUbmfZ+A8gdTqaT57fm5hACvbC7mA/xnJGxjrEtP3R3ds26oZst+N+uwdypB/4+xI19teZJwT8eG3JDfjSJN/pFXU+nsCeSASyoysVBOGEbgiyr7C5XYfKyVX8QY6qRYrvaUzd5NG3Upb8aLsPZvm/Pq3pofWcQmtc4BwC+3Rrftw4dKb20zSaMmtlc90NPfOahCLVcfP75zQ/M4AOt8m8V9RaDWJkyGD9Kd4mf8XyDoVKNFhDXsJx41OLKmpACT5IiCKnzfhf2sgAqrcn0j6LRNL4f2zI5revCTj2FNxxaAOhXoTZ/nesogW+s6NtUdjm51Lf4UYB8OACxeSdw+sxiyjytm4MmcGjk1QtrC3A2ll7vUmm6iI+6zKWiwOsKgqZitD06CfVqahc8bV/yr3EBC+aSM0LDJzmpcMN9jp0LY27RSW9JhTtGk7QTGjTRpYTbEC7QsScPrpgfDVrbvJutc0Hdkpia3K6ITiOIlKdFskEfplNy6V1vQijnm5w8ERH2TsfHROgEN6ntIuHCrgdkq2MKaYgqLAhdAezXxP+SdF33uFHngfyeLe2vNjnHFMEq0jfkP4JIGJx05WLIJnD04z0Y1ih1464i2PZ+EgFwSfjWJYA71UVdDrF7DTAxCWo3XhxIjsIQPZMuCx7OHP12VXjQw5st+mEhwv0Ixyx3LRGnftT2BUiZm62GykXfpSU329HAMhBrAW2cm1+H5X7R0GXp0+t2MAzYnF54PIleved04VzMI84OtAxyMOhkwckhua0gb3EWJpGkhNCdQTWQtRgI5Ew4JUo7qCcSdtEct4yQk38IZ9uupuTjIvzAJhucDBcJnSHhHGluIlYDHeix9+7kCGGCpGjAAQycoVXYwMUXUYr+bPelVOaFFqx35noJCX18qm4bgjaNEjFziKFFwCq1PMYEDVY7+Zy3fvGrQO3Do+AVqUvPI/yxSdPJkjKhooswXBj+MnhsJzcSyHzWhG040YpPN/sgMSC9Iz5U4mCwB8zwa/977XnjdZlsPXAb/iRUv7hM0/tgcaopURMBdHXY5hAADZlqMkc8Cnl9EkgkGC4zpfAjAOvLe9E0P6ExmoECCLyFco86eKu7+Cn9roPt40zOcT92ACpEMinfuJgsEQZqn++xGV3yEC5pg+r7uhs/cbk+/ImLXMe7i1VnlmquEZSR+bBWfg1DQgi0AbpATWGSR54Zvq3XdnEICJyIEiBg2NCEWZ0zpRSbRPtxU/RP32uR/hgK0F/bsXx9MGRw2unL74+oZ7F2K39WCYTNV7ADFNa8hU7i8RAzlm7x0DMsxVBImz1dx/oAFOv9hxm6x4mXNB2hpdzpX2eaxJpK733Sz+ts1JkNch9BuNz2fWVESMXRhx5B3SJpxI3WEiUtIWKk8aQYiXfHpFlIz6dntmyEDfp4H8lAGWgF5y5GdDtYJIsrq/XVn7ItZPNudwDTil1Sm1NfnDQT+55/xyP2GrcvoKHfCUtPPkYHn53pgSkfvqXkBVM/JgRM0i+kBZ8WzTMBYnCVIkYG+fBB4u8t5SrSHynz91QDEB37eOoSdQn9cztQTW55S2TDC/Zsb6YwSzlkv+ZRV0TSIm1/HRPqLIw2zoIGe9auMKHafVsB8y7oKtwhnmUOY+8aciOo0TMkUGqwr4IK5tSa3ep49uZgJSG+Wi9zLTIj6bhjYfl5ovQQsBdrzcGoWo5DYVXMp9Q/VvHlNGrOJz/C5YfsXbVmrwonSIg79iU4WquVbQoVIEntybOmbkK9SHvz2aGuWy7GxvK/pwGzGIW3nb3Bn0qdw2wKHWTUosodySYikTRmdGSHcIDGmaaTHs1yTCzEAkKavQCOkLWU9NjrnP+0tAUZ9sNY+TpWzSdqsuSsszEtVq/S6v8fyoPCc9uAL1Ml0zdXzFj2+tD25PCqWtRYv+or03boqLC69p+h0vdT2UxYhuXaK9XkRFyCQFj+iBJArZipQcD7Zik5Ggydp4NM47voZde0Ssm++0Rz6kZCa77Oq90gcBclO45MaGiqAwzlgxnXS2asXUxaY1nbkOkEeOn1i8cMkIEDBPFSncPMMbtptryuA+wusoRemdM3sk5LbvEf5iRewkishysx9M3ifxY8JHfNAklQBHCCRY8S+HeihC6C380CBp6wj9XG4W4Woyg/FpbFPDvi02LDTY2F0bUgVqLiagIKvw+fl2eAcGWKvR1rBSrVsiBYmu8PKbVR7scp63//KtWbSBRFjd3ed4ppNWIpYJLarmdIWLHMVF1CSNqr7OGEggShy5X3qwsNivt2APOmtNW3H5CdXpx+lrIJClUHSBQGf8JhnIsjps4r51bsmWt9AFWGWLDgOVnYyyeg0+s6I7783ijxs1W0yV9HiW67HiK38cUycgefdDG5keO7IxKE7Zb700/b5CIRa9ROpvdHm9RSi7VRp13MppF0bgMgUPbYBCwozMdLQJsLwDu+4wJUga4TeS9Zb6dIZXf1aRUsQ7jrUjSFCow/DB0+rsKRICd9XjETC8eCAsnqzvmFjSM/9LDSQ8Ta6sfgR6ollAgZYNQtGQS+T+56OvJwTc/ag2W4hSk0RhtFn6u1LYFJPM50NI53RQ82lBuXgZR94HTpZP1DvhSYYPZ5Xyoh9uWtF9LJuS473ULhE0dAMjZ1gec4D8KhDKKp0B1jzOgKCCW52ppBmgnmPheiCfMT7/t9fDbM+XO9KHNEMt1twUvEBa2Oxdju6fRR1FDJPLYa1L57Y5e1+tbSAVLDbFpOjKaGa6sYpPMTDlfIMGDXH6/3VmwclLQ69pe3Z4tnyec8nXwDmzty4AqUQG1ri1gR82isLr0fSUVSHlf4PgNNmNAcbKWGmAq9QiYWmXOKQ1dGZuNq3656BF2ItadL45iqRZrOeaGjVPzcotyO2gEBTGD103ye52n8kWLQSJZPJIDBx/cgIPD3bEtVOvTdn5jtycA4D+ACYRdGBEvrynfl7kQhoxITdjCCH0NtDcDJ/osjw/PL0Jji+BYcjSg6lKCVFuFQsuWkDl3rc18ITTCnwb1RdWBuW3y0bGjnRdZqWLGVCZVQax8yr0IrKQ0/NGp+C/Zu9GKOLS7ds3Soh9/yG4qw4JDQJj2iThxU4skRh9jQU4f3y5sqFDZXqdgo2884NeJPnR+d5/LMziTBgUfPjEOV4hR5Xetv0HDNjVpck03XpCAo1R2zTjrpTpSwg2LpN8TIBXT96m3FOAPBx6/zHPABmIhppYNCMeYPlXPKwKZz/y4zWGP888uq9u/NWvHfgxcLKb7aBOiIsuPtCKyjLVGfKtV9ang4DZwabRlWUynE7xPLOWejerNyNiZeTk/uNOyDgbSq+wBic5bgYKbenWLuxOfi5PFqB/J3KQeP4Qj9vG2CDphgF13bxt9rw2Nd4/CWjoM2BjBsFUGIzMLbmxbKkifaCRaaYrf0YIduG9NyQGIiHUl2XMKdxO9XmzTlospZeiLMuS7EyXaeepXuWtFyqLxmQlzzgiiTVmMZAfn8lyYPmqSmUL0G0oRnCEtPfMZgawrNkobBDOMxTbmojNh6AWQLxuWct4qFLrbfIsUvszHJx9VvMqF8EiR5T57Br1hTt2XlbBq3LDcmzqkpRn86TxFFN7eesRF1icIFF37Dm11Lh9S5NU6+9cc25v1jYawv08scP1NfQU6s7blz1TkmOaei7c1g/NaEibHu/M=
Variant 3
DifficultyLevel
678
Question
The table below shows all the people watching the movie "Minions: The Rise of Gru" in Cinemas 1 and 2 at 2:30 pm at the local movie complex.
|
Cinema 1 |
Cinema 2 |
Adult |
80 |
120 |
Child |
90 |
100 |
What fraction of the adults were in Cinema 2?
Worked Solution
|
|
Fraction |
= total adultsadults in Cinema 2 |
|
|
|
= (80+120)120 |
|
|
|
= 200120 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below shows all the people watching the movie "Minions: The Rise of Gru" in Cinemas 1 and 2 at 2:30 pm at the local movie complex.
>>| | Cinema 1| Cinema 2|
|:-:|:-:|:-:|
| Adult| 80| 120 |
| Child| 90| 100 |
What fraction of the adults were in Cinema 2? |
workedSolution |
| | |
| --------------------- | -------------- |
| Fraction | \= $\dfrac{\text{adults in Cinema 2}}{\text{total adults}}$ |
| | |
| | \= $\dfrac{120}{(80 + 120)}$ |
| | |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 190100 |
x | 190120 |
✓ | 200120 |
x | 39080 |
x | 390120 |
U2FsdGVkX1/n8WDGX6cZEoF5jbWvaLD3SI5LPIdzm2auVS4uhBFHaOjgz5Ule4fMOygPqNvHATYYur/YFjnPdZxnn8Mdajcd8D1Tp94Ey2XO90tKRavU3SK0F3fnDJG8QE82Cv1vT0bw/TRiv0QQ4LAVy94kt8RfN3kzy6KbMCc2yZR1wgxERW+Bbe00hWNKULJ0YEDnV4b237ltI5nCcISTtOM0buJRvVw30kOobbEGnCMlnA1Z8p1g2NcExxKLohXw2JSpwufVRbN4Un1Hey1ZHcqKgoO62D1VcaLHfg1dDf+4RRhgK0bK1b4mnidGTYYD43U5KbxAq/cBZYh+gyGBIofxtznto1ZgudpVtnpj4PmRo6Xhfd+0Yj2mjJk+Rs+5P6+3i/4U8VwHq32OMC47wqVGJrCW4Hc/fzgUUrqorYhLt15MQZ1hSAWt3wMbgZjUTctrugRg4DklDc4CrFVUPxOTuP7g/BZMvnbQ/5CoCFDucTl3MzQillYRra59MuSqT9IsotC2Q+yj1DMItvrFJcfqtKtv+v8NdjYEyp0aByTPaWljiJObiwYf1/AkpxdwTJGezmDJPXDH/F3XhtyrOgCH+AQJPK+4KzrN8r8+bM6ix1/9xAVVjHo1vj5iNDxN5OeFMghVYXf/lvP5dYqJeVrCfaGqgWV+g+eKiRDsrZpJ4V5h3wugO+Paw/W3BDWp3mWgGEmrUKXe/NyZ84BnNWXIViCCf1xt3D/S9EAV2buPakUUJ48yQPmzU1cRuSv8d2aYnhcE8gGTxCmTFgqkOGaqUJ2vV++eeZ29RVpvlZDaXvVAt9Qc9UgOQvKsu+Zgllbhvom802WNa+nlCD9WuRba199KqtRIbZtOac1VtA5KvD2tZY+8bKg3dXwWWZ0gZb/Fqc2/Lk+M9t28RkyPtD1ckjB8S+zH44e6OPCXGtw1SSZWwm+KdKh+zderwx6T8sGkgeXMYEXCNlg/a//QpoLJwQ++3BAi/3BEPBpz2OFCXiu8VYixRzmJXTSxJbzuj6ROCkEsqdf11zNxdEGhzvVlnLKgY0Em0pRwj2TlQ/XH80WWKKn1hk1h1CocrrFb2vNyQL16dC+7QwFWAoYHshnlS++P3L+59e2sQdKoLpCusU6tefOIsKV8O2SJqIEtT9Yg44ESzv5ThAouMx61YHlM/ApKUJoIQc2GF8GlUbVjB7zOQyF0nYbSWoyrOJMhjYhssGE01+fvt+Stv0nny9jmSZ6Qu7qPR7LP9lQSuFGGiArT1+hsutbta0UHS1dQKGxXC1Q+KFznpplgXfH7KL3Y0EDpdM914BgA/gTQmF4Yl6sCZfP5dxMGtNMtVFwW/yWOqLGg7YECSH7WHvmwzWOV2k5AKi+9JxlxKUHwfso1HosFEql1r3o586Es29rOCL39cqNEi6sVngCKtzocAfWvxG1dxQ1HmFLckmpl988Q6kIAFhuDyatCQa2/W4jRabMFR6iRUvEsmYQ91OGV6Ez06BxWzdw43FgjTLtXKC2sm1hQy3A+359GeGKRUqUAs07kspls8Jc4cGh1rRqyVquR2fJ7lKSxfU72OogqzDmMMISFfSsutgPcqy5y4c31Y8ZtTifTcdTw1RyX8z2cfAN2oYwOCzNbfDMTSQchP+TEcj/4tG1Fq+To/Z3WX0noAxhpU2PRS8s821aH49NH31urpVVHoW1TK3mfCiF2IBYqWbZcy5qdWPqr2/BS5LoYMrxXs9ChgkKpq6okhxVtkR26fMhRn+ApoFASLkgin30FJ2VCDAu4HSb+Q+ZWKfJJgwk8SsnRN0iedvQzz4BPJQaaBAdKK7Odf0GWRrJVQlYOESh9Aov1eeHYkCmt1HTsjG4dSrLCX2zxuQ26CNB8AHw4jx1tUbA1rn3d7QHX73NOZnAHwc39SjS1TFmnJ9lRotcAPMj+XtoGvK2kWbycvWIwYFhge8yjBIDUSxfFpF5jQVF3q4e0jKWwyLeBmNc2x7+fxvGSGXS5mznviCql2zmTF8JK0/OL83H01KhyuX/ATUnSJn4i2pFN9/HyYsRI3nsChhuw5XMcOLrW1/Uav2i9HYQyzHkGPnNvNpM/U3mI+ifvo7zQkUuqj7Z2nytm7qRT+rgwNKmAInmpqpUvEm1E3//GbJ3ssHWvmhjV2w7Ct9O9+slA894uoH6ZyfpQddKquW+gCIWGKutejpOo4MbXP/zVQYdD/Udg4f7Ewo4Y65qtkscVwmWwH05lFFQ+pvA2yoqNmD6FfvQ5z5p9PuNoHID0QS/DJFyvMh45GuITO/8cwf7JjcRSHyKljqov9J4KmV8GtBggL60Tes6HuV0kbIIqR+LZB2NsyolMzLkjXwhzBXP70NTiIS3PIQaMtRIvR225wuvXUWUix6Nar+IrRpIy29NGzGEG1vCOAQav9lSEZySvaBj3ZhpttCpHuui/l0EW++oO2Rap5/lpwzXGGjdU9K8BaQxrFyC/9UOU363O+/oJLX8yNuGu76MI6BwGWSqJKVEU3J4PfPVOp0ks3w4Vu0fu3VLj8kW0ilxemuTs0dhUE8CO7HRh5gb4lKP/bBeISY55Eh4xDBVkhdQQbb/AkSscLcvd5J+HhBs8K+8/nOkTsYH6k2jqFTkH0sBPUXCOGvbuUZ3159CZMgf8PHN9l7W4y0qRotBNZSEwEj3ko6s/vVoCMjssLQk64LzsqCbRS5sTHi00HVRrgbI/M5DXVz+IznZpddlMRo6i3c0h9D3mRByp24NLQV0qy81ZyrlxF6meCJzoLy18YIh0GDC1MSrKE44sUYwSfsBpDnGF+/9UYhLyexeeINawq86k7GUOG4akiSgtw/k/+Ahsq6F7rZM3HGx/ufk7TvijtRp3cI/mgz3cOIfr0ICKUjgLKkYmEJOmilV2WIBn9oMJHkkhR+1OtPFtKq4mSkqZ7QvjSDtBQLhc/FppJwoxTQCYG5UtX+YEltuA1R1w5fGjHjpXEjHSrcBR4Iq5WpnG7jmTTc1L4Hdy69wtBu2n06fum7CJVCrcftNAmKqNRz585dcHdoejcJktzOx7QU/h5cgWreh1RX4H982wnumlWxhVc8esvjlY5kLdGltnDxgd3v7yRvRLAHD2qzkKT8zXtvpq5Srr2C9BqRrp/okiLGWxUWiLOlY2BEe3udLfGHvPlrFWatd5JUC5LBpwdPaL6Zt2O+uCLXHk1Nw5rAVqJh8CELZkodp9ktC3SXQMelRFatPCfkE3R3wSxgX7YP95GfcwfY9pQxeAqi+8Yu9DAxnU/01VhhBTyJNbPfgc6Kx0edmj+mbAU+jZXNiJHXePoKmLQBsi6NBuP/B9VMx0Ly4qFMysmxgU/2szto2RwR/zYvOe1/rB7Txx+93GyOD067cUggkuHcJyl8JxuN5w6e+eMDT3POuGex7ujg+t5gCQzNJS/h+S0L0//28O59sGmZX6bgTTuuNWIjmRn51+IJkzYDQNoFUCL4tvr02V6ZBlqrYGDL5+tyHZtOZVL2YeM/o+BYzYsOJinXi1a7jKnX08CSgLPri7Pn+KZt5JnELsNsJO2wEbQw53S6a4q5ZtBUa7stGg4AqO60SItyY8+vfiBEVqTpw30xrIsDrEHcyxv9MXVpkmJ0uD+F+MW5UeQyyhUbbYjjtsVuMO3G91TZm8Jylw2DgTI3kbWBSA44qnXCtDyJ023hDGbIaXV8S0tbtFkXAJrFca7olYG6rMBxEzoGPKB5wWZ5ejipHeRiKHzTWA1CICUpCUQmXZpao2+iqmoeOlabtsYjYJCLnwv+xt9mhD+TXMqx2m0UL+erLd5r4cUqUmqUUlI9IfyoxVsAlf2pDR5Yq440dH0aoL9geB9WLao+BkZ8r299bliP/9pUVgqt2E89UVklDSDwWKSCJD8vwYgXz/4wCf+WAQ4G0b6YK/mQm+G6pkZc3AFhoUnRDiSOuIrKpJXUEFZ4TDTZi4q90CUQMsQXW7kSk1yGt2GaEvRgKWRyA/mvuWnHY/oW7FGaqxfvviXg5PKorzRcgOiLX8hTDXt3HYCKfs0V7AlPWj9yGVnJzuUwWCo6Kqr3fw85K6QaUqfssSsHnU2s1vbwNqFru1lxLoXVZq/b6eZdExiq4hiE00jCRJ4Pz/VUbdPs0BvkzooU86aEoAWarCv4LLII0uLsqXUBUhFE6/c0fTT79kt837ywXzdscS5xqFQhL9HazQjQPaG9n6FPltRXUAMTA54hn922AaLco979FoGewfjk9WqrH8WZhc32jEG4+6DILwerV4AryA2fPjGogWK6P1FStR5oNrWKwTwvo4ybO5o1rszpw7H9kgkPphjQCWsQhWMi+PyKkoIyF9PJW4gHegTObVAidbgALqlTABINXee/ylwjHwNZ0wl87B8vxk1hQIrqq/Uaiykyw4s50O7/upuKd1hAN91JFWQ4aLkudbvaPAINWDmJFQ1nnE6Nif/k+zOAxmQfPjhNiGnSsPnD8SkYqJcf7Vn88MH+Ayc3vPBU7Eb6QkThBvIVqEWSMVfvjYXdsASnjSrhdAr0LqoxIf9wAJ6VeQtdtEi87kGfKD3zdydwA/3+61APZeZ8QDx7enC9j9pV7aUpsIb7rdsiYcrZbE2YQgrqv297/GnejvZuSlw6x/bgntUIU1NhjMAD1Gl+ZqbfBbXRj8dRbH4OpOfBjIpO2vLQJWgnqIDzkxjmcZB2dGaJGHadBZguWP5zQoFcPCBsYt5b/fQEX7fd8wOs9JhfX2cMMs4KXqOWfJjtKvIalQ4mA5vx2G9n5wilkmylnsEeatHl1/3OS+WzSqArTBvtlEITjiaBihJLBCbAMwYh3ykTSo+ttIkuCzHdOcIKZyf/Iw8SlNbohGXpKjyThX1q5oj68EAPBxxwxt5Vrw9M3LO0dPyBUSZ2+G8aBcblZEtIcHTqr7yAceLk/ysJmNDZyYDbH6QZKkU2up+Eh9h9tkCcnayhrO2p34IQbzO3ZCOcUQNcBZSS5KaWxC2mjHjuMR5bsA+4k46hTO3dKC+MRqLfHDvOtb+D4Em/Zlg2S/N8JZX33HJpe8tcF4sADlNmDgq/eh8WTkeWeYzkbYtkP1k29gSt7eTTu3G3gjl4pxRoIqJQ3gpZCEkn2JGdVDZwx2mYUrNSLHH++3aW1URbbLxOhMB5n+wpnfv+r8+Ql1PlJ4RzVyiyDAz96RQiPxviZhIf5NsfxgesFlSZHhzLbl9ysVkdD/8kZ5tN2jVX6TUySBsWKXUd+o+bAHVZV0t2xPN7UVLmQnkzA2YzfI9OlGhBl/R75Oj8LPAvfPr1PS10ekjCk9YTtu0GGLcJV4+qucnzHysmpLbF1DxWIVcAzYc820ZfaRfYSLTX0gIhDZrkpcldDnYtu+iajw6OlqWsKfy9dA2ZB1r6bC9RQLs22UH5WibCltoEID5O8+8ToJARzsVM4CrhZ9Zi07JWzmB0Qzgg/AHgRNjLM07eJnkqiwrCADsS648GhOuHEzEDJMWMEy4cVv+aI2G/0Ec4JurCha+aAhflD5KtiO9rPKeZBxm10u05AD+flTJMwa0re1YDjnnNxZPdSyPSCgGSU4tMMV3FBziKPdlgThVkkUeJgq1ec9ZKxHLHiZJd9ySd13HmumxmPbR027YU9/wn0Td/6EW7rtwvgNFMoblNGjijS0vObU9ElsXIGe5F2iePC8EeWwkUGotb0wHZW4pKCvnOBiVEi4kNIwIWQ1vYi2WApcLjP2cdgKxkTPY/lydKzTrNH549+4dUEAfc9QNtXXb3mZg90NXyb1ruYWfHdmrjymeQj76CRyuGvh5fZczhlb8c7tr6+/FxFPiJ16gMZB9bHBuPhyAhjMUqWYCPCsDTpG5jjlVZ9WF+BodFjfwtrdy5QZ+ydXcMMyWhBGU0+Mf6L9ANrHJ4HgrOuNYA40CcHME+Imkm78QI587NEWjxY+/x7doaEAjudIfzuPNtvXeKC5zVLXN4czzshu7MnFAYunc4ioo8mieKFSRHe13zq2nRf+JaKNInVq5VSshVUrfvXoS6U3cTuEO6PefdcmK+0rLtFWE0ygjfqaT17G4rm+asu0pTT/UtGNRfmlkoTgIokw5Ctvueprpi49tAcUXxlFQisa4URxP0ABfFFasdHrtjbjppop4KrZHq94KKrge921T/LVma1957L9+nBt8pdfeOMlRnJ5W8GHK7AEErU5agHVIrL1YA6eF8u+k14iXU/1v84Nzu3g2Xov7lO5g0KwrCkDaG+JjgogpxC9bpyxG9gjF6zATfj7W8Emri3HzfD6HMXPxqy0C6Q5S5BBidrqe80WteIID2brQ47OyiZECcqQJmHGv4FsAtjIHXJLBgiAuZ7HrY/mSdhvAX+Aiu6SwU1zvgYJbbpU7AI+p50u4+7g7y4mTveFN+xvJSwL4GMvtcbrkNXbW/IHKkGbW0qUhI8jeoeNVpShFZgEGPAStmDWuS6RGVtnXXabxsPb/5iVbIMoEPj6djE0a9BLwA+zHfwhAxnIUfCPCjpieLFgLPjWl9sTembG76KKp23K5jphtvRIZ35l7DWmuDQezew+/l+JnWJXvUIRlug69d22qL086wLs5dMOI0pUdUiLb4YwBDV3zMHzors4D0AsWgbRyO487IjENNgYIAhP5i7aWn/qdziXLmaGzrcr+JzMq8S/JKfM7Zn/QBqTgkpMhMy3wKVJSMr/0wRzz837tOqnyCEp/6ntuzS2BMggOh1nmPU5YCxhbQjKHMglDPNVRchCnKkR7F6B8V9BLEyAvrcd8dIE6AnoMUcDv7kwtyC8C6WlHtnjcCfepn0u+UcyOj7b6UTC/ndPJCZUL0XzCdJHNeyAmmxahPNCzIfpO3+4sE9GeCE3/WeIVNuSuTizO7qs3fbZRgS+IEmHzo2PNyTEnKomWL7fEWS2xNgOPsfO1fexEwBwm8lUmd05pu9RQwXIRgVjoRvC+CvYkUSa869vKhSxQA4OYqZPqJ2wd+uoYqXVGCdHgfdh18HVYLpacWHhjT011iWRsMaYKuhkDiT064L/8VoJ6rxQS//gs2oqLjcLZULo0gEOWmj6iXWM8UlQoNFr1dNuEIshAKxJxh0RBctquvBfvWtmWKmkU96kx2+Ahzq1y9YdbYJkT5upmfKPYBcCUkkhBuAd1oDL4cRYzJmMNvcRz2uK3p7Gt3E3Scuq1fW+H/KXAiwIHPRmfQNy6q6/GgaaulT80M+Lh0PXJ+AHlA/Cc1/VI0HR4kuwwIgA/p8NFd2xuhOkzyVSrQjZlC7etrKs3FK1W+GlRXl60jds5VItQml2wb9bJRjfG5Wk5zCwaUFHwreUSyrGbIEqU85d63TTgLjLQ1RQOlt/zpPg2TkiSUq5f1hwgeIv2vVTNlZUnd4gS4yUVd1wwtmBVHyZTFQ9ec/QGxpoQYA1iNCW+F18NOCkrScgKluQSZ3rH7EhQwe9zs35qJPkhSVSZyyOu0FpSv3jEOHzF30nkklZIOnZ+6/1On8DaeciVjxYNytZbnkhhPCoLgg4JX+dkU/q7yV7Ud7gnmBBsp/YmAFV4ybfHoD+iXv7sWZkIcQzNIiUMJuilGEi5iQWZ5bpIi2cajtUYGg2zAs8QyPQXY65rlMbHFdHvgRreQvVRu1FIuXat3L0T+rL0p/AipdrOStSoMmcn8nOrYscOJX0bxuCp6CxKCT4agM/EXN8T17eJmU4fY1O73T60l85bWOc3wgFK4aWnJJla6Ji0DcH2000vrNkm/VsT9lxx+fHXlVsoxrWcT09asf/KlQUg45UTSBxfI/UN76Wgt0knO0tDnvXKyi+CnL/JUKJUhJKLhTWNGtb2eFsEBojG5Rglfx8bb9uHJccyEBqpIfGGVtcuNGdJV3obSbuGf96duQvIjVT2No8s3HokGQn3raGz/79WBLCAWhZH5XsvbfRuwLU8aPvbvlVB/R0XbMPVMLN4KrC/lBIU6l80J7THqgGi8FEmPuh4rWlCpi7SfjRVFhvzvEouL5ED+YiS2Bbw9rctJRTJcL+39v7p3go0vvMYK2PvMEOpZtp15M16b/uzr3O72BYxrGd2wElph6DSg0Y/YvsVf/UQu8a06f6qO5JUTYBNHk7nn7K4jf/CpK6V1c84Zn4mdLgzkaq8spMF1V6H+bpIY/rIpxhFPjePYBnYh/SsdgUK6OWJvZuTJjY6qIlSTPtMpvJvdsEotun2uoOTEdccVSdKrVKe4F7myzPbJGJL69IBO5Dn3li4XUlSsRUnqDjtQpmEfLHMHcv2GdDsX0gHun/P5yMZ5MLBfBEpxHDd1rfQ3DRfRwQlj613pt4YlQUtKUqGDOrkQjuW4S0x2d2SAq3Wpny991b2uzTJZHB3sCBu+dgmFH+eSzuc+GQ0RKvIZax5TE1xydzxcipgR0ZEuyCu63ujwR+94Bp6r6jR8pc9Fk4xhOqA+CC9m2p4IYS3/ckC7LdE0EdqEkGewlQ48RaQn4rUCuNBiNMSBAbcLl8/FTN2jn5E5k4Tk0E5URyPPKOKiqh9UmijyDQnTXVyR3C0JMaQPwx3IXgbXRMGl7ZFLDC5cQ8m67Sp9Uj0Zz+Gdjf0F+m7mW5qOtf8BG6zbmfPOpOKW7IMBnXtAFOiRUC6UMA+tjntXz7hy/3wNyJvl0z5Yi7wITe+b6U9xGnL8rYimB+vKrq61MrzlR0rAJ3LQScfWuBuTIyV/dJ6CyVtS3oTYByi1xXjM6h2oA1NyK7wYalIr4ARQzwQLDco8v0QUpXsKAK7ZwYu/D1fMbf5yaDa3oNNvHVrClR7UvKX+YpH3McWGOw4rtx8zlZgCiDIu7J83xYhnWfeqUVmJlSmCiOaJ7aHROON1pTluEOr2wbrBI9dqHdLpOxSWZ08uI8qntVJZWraBelgHkcmtFDV70vNNJkmoL9lKUyF2ZFIkmwwh2b8CNOJIjgqFFo5oFH13n6Nf19Kf/LrPi8iG+P3RpFeCvYZxjrQYNE/bfcMcH1XRjHs6KkMGsjs9IWV9dHSq5FTeYRsCVlmOU4lhqW2+URNClvd+MWaEwlNeZqzwAR63YJ1+6bF9EQzMJ7MjRL3nWtU6JW2JV6DBOLgVOBvweRLaZag1e9Cei1fQtHakIPzAjk7BEusOzI1oJmbIjbybDPRNll1No3Bsw4TP7qukf9iMBD9I1CpxQ2nXR/Fj8+tTLxcJlTZEs5KtJ2PRBP4ENVCEfjsE9QwYu8Zulhu+tptHFEHq9dYDU7UBwCuFxRQAQaL8jruW4oyksq9WnLAqie6iAizxM/ncBBqdCqikGaFq9AUB4bWyzSEx2+8lNANPxFFNunTObFGxCYpEHMCz9pQoFsp0j79wyRNy3s5ntSFRinrf+BQwtQ3wq2ksqlmnNZyS6ii5EfvXxFfIhwr5/A1CpyDlPh+eC1jXccD4PxrMfhTO/NmtQKUV8qd2iGRMj/bkAW35Mqi4E/Js4FyUKnQqKppqvRogG9UU6WgzFhe4u8n5e84GC1Pr94z1mqNWQT1GsAtXxLX6lfMvAMMjbqSpufYmnEAUDs0zLVPhcCS3jp5YS1UNmzH0ziAXG1k0amSj5j/ZtqB9IbsWvmpK5selie6BFh3qMeY9y8pLmKJFvNDC+RSe6FkVVXS60fpYKihkN3/j8pHWyChz+i5k5PkF/UQG3fqUvO6XjObaHn+VIzvDwFJHJRb04ZKhK4nqQscfB5PR6TVtkm0CsT14JTWjutf2Q64HIzMMR1KPZ5B3lyvPPXbXuqkQnYQifDfL7JUX+LgpngM4ZqpZFjW5W1xcNPpXF86GsPy2uYTFHzqZ+FzEwdL78NylnnrMjGNMdAAGA5CGR1Nh8oPr9Oq/ZkVwlWCzECWdoaNBCQmopJRvlJv8aBTNsKsB6gPA2INZFgPoCxRb24bbOB9mj9pJVJF3mClfAT2aa474myH/YOMPT2kcdh4kOEAV2czTnvLI/kVW0bvc5D+pPVYVezLk4VA9FS5opQpKGP2wcr2uRwLIhPhC2pM8p8dpyFEy3tpS0WnTpQCjTKCb1GkjnZP1gYmXBOb+QEXkgqz7qhkYIPIFLrb5EgzA7fKDPsELBbBAaxeqCvZGkpYom2kM8e0EaubjIYWkoZSC9yIw+OGNO9Mcl4ciYB4qsM0o0jwr+BZzTvIOADBQ+zk68g6bc2i9VYcKNae5xmQKskWworKr/pjFYrNDRTxVoOgFdGWrEeXmtCPlogn/tI1tjv5QbCefWcEM/Q0uWOcxjxDPkitCwVRVeYN8uhjbHdPoLHmkuIrH2LUr80U9XzC87iAF7F1BpFITdfm0c0nGL3rwSBrCZVfb3yYqrS2Iuay9h/3gqvDXxfR3ZkW6zaeKu1Rv3OITTJ+LsT52eys5DR5vsDCVLbhdlDBZSENGWHdzvz79gSAeTM7aUB9gqkETZ55ON4Ce5KQK1CsXKCtGfvlpN8k5nQclkjlbbW+MplVAWQ0lM+ETJjeUCjFUaPPs/N1LVK73DCx1b+8Gf6yYixQJGn2tard0ERVxK9ZzArNw4cDp5UbK9mDBysdnQVixaXImS9qJu1OUmW3w9q1HarjdRJNFk0ej7olFR7sYqV+2VxOtbVRsWooesfiR3IsCARDDKT1OELmt3Kl05OmXUwyRSZloPpEBOUwLt556HFon0CSQPO9qFcZa+5megSM88aK+mxM+AvXez0g3DRS6dUBceS/F/+RWuOG5cfUg5GDmlwX1sDpMrCFdntInhe4n5ukmPETERg3cNP03A/agsts6N5sz4G++IojzZMFxKzKuOe/ciun2SJ4ivkwvcsbwtKgLT25A+gDFbN1RYaIqaqkPaL/uDEdRo+AUWNC2LIh/FVznuPqMAFiozLL8SMwoXF6W2K4q6KiUZ52EOqBQD/ZtxAm1OAhCAz02r+9EImb0d8fMJFZindz9zj7DsbVdxWBbYl1fFRusLQoNT7rBn+cxuH82djqFef3wO5N4F3QTZaW8pK7a64o9w/ZU6MK8BkeFtcG3y6HcY4qes7r1Xyx8ioDR5Bamf4a5aZkxVQdJQ4kSVaWx185QMFoz4Un20SxhrpZ7O45/zsQb93Q2nwa7BrUpBFpqqmD+ieJISm1O0wRuXa/3QNTiO9rcn2wxnEj2H89iqKvDhlIS9O/2baF2utsVxhuc+4LKpPNNcic0RyyCWJm49onIpnhLaOMo0zIxLBwVtJ4OwDO+URlZ5zws1RViKA86GIawho4vb3lzX8jLUeLoFY3GVgM+YdI9tTB1J/iKSM+pPR1hEON+TZbtBurxwhUsT3BO1SiVYvmN8P7TWDwa/O2i3kzEJoH4SLjLy1I5ITVP98qGyerOzWVddUonKQ4Me48JE0JYyVZ2RUyEKq0FClqzR6mFkBQZEvEo2nQs0tZ4efCHAwjkeUset/YBSWlj0t0FRJdkDhwynz2OLT8Gk01ZHJCVijDiMVaduES6LXE2llL6yxZ9UhvAi+HsdZQ4OifQusoyWlu4sYipL+YSxQLofTkUQzXUDpWYLM9WlY23jj0+ds08goJRhu4P+zvSXtk2gCJzzUWgqkgSTdVFY3LDygOAV8XQesVrpGc2Eqg5OmUfd2n4LX41Gmtp2j6vNmYk0Jq94Z1qGJ7fKRFW2Btwgej/5EbhNZymUBNOFAEIzBC+z+4aBGvym2ufOFrMPAKjv6yx5/0vGQlAxfnjRlHerWgCyVnZOSjxRD6Z0eovraN8WIl4t4Pff+8Cr/k5emCOnD2FH+y8tHv3dOCdYo4WigGTAZO5PtnmZLEM6yqAI8ZiEXQlAMnNhMr9d7oYEx3oyRvVhUP9tCV9Te5zoOhMVg0IxZ477e9SnUOUxJF65jOBy1UcF5NSyjTN7yTZYuLPFpiFur8OomNPVZu75KZqorj0oawmmu8xccusYVTzqYyqPzQicFq2RWCy0JmDNKQgIwOHgB/BZRpEAZzh7h9TrgG1y3XZq3Yh/NgTmPac0+XTBoYGPfrfS/93BJy10MEzywZrVbqaJJw9GBPYihwGYS0VuLzJOkxIis6f+scHwbQbZ/iDAAeVQ3nccPKecYIFlKwKWceVWaKRVK68eFLtQf2qU46Dkywj5PXh0Gg8jPFHFxRGFrGxvIOk9xup5oa7yXjPLnxrMeoOZhD7GLErr0+gO1Prc26CwvuQG8MVBG8u3eHsIJ23hXmVOacgpGSJiv/1YLnGaXf2XXfh0hVE9q8lVMTGBAh+HF2XIwoO3mylEzmDMOQZNhDuzjSV45etgF2y4xXovFiRPR3t2/jaR1lu6VtugKuVr89JODxxiCzXfc8oDMLJdVDKZHi/uyXR5bNZwbleYJuXjy/Sy1sCOGsrpr6D5mKbfaKVDJhMgJJlipGpZspTJZ0CckazMmX0LTqnhZDh5YfmR8kxJ9ZZ211eKXFezfaBx3YGzZqaEJEeuurUw7+bYKeMNJylrgwZ1Flyl82Ntt3VwoQolq/YMA/m/rPLzitidKknvQszhrb9OhBbz+kh9TVsiznFKjbLv79wlF0RfNZdFJRX0/CQtVOph7mIEaPR0jnNNqR0XBbpPaD+jQjz4VNQm/9nkc7ZA/lh3BAKAJq1ZX05SGSP+ZwIjk+Xq8O3ERHahc1gKTcFZ5VrNlCIMdF498gSoJC8pFBRMDvF0wMhFI2vju7JjLdPCUANKEJSEyWRFmUE+2Pg0baIuVXsgRZUfhlM97pLFZRYG++piuO/emI2GyZ60edfByWJ4aqlj4xT6vnOEAsuYaRjmkjqZIbRRHy5dtTvYKMzbht7ticKe+2+qQy1kZxn+3yK8Hzph3jft036rLFf8De+hCct81ZhhgejQmPPqet9zy5hr6l00fJgF9/y0SY3y8WIe+M1kIsVhV7b7wGQGK+m4GsGlqFK84T0ba9BCKe3kpNG7aDXr24fPEzrn8wTMgm4Y+3TvVfLJQdTvFATIrwkB66Dy4Ct/0esJnl9CCn1S6PqFZSfdbmmzXplxmvf64zc1cy/2Ou6bU2CX/8BD1ed7D+slRWcc78tum95E8Syu3D6jjaQ/HL+6ACgObJkWMWdA2GlDJNh/e7Opp+jSXVoiH0FV4bRTzzr/68Q5w+BJNmouzkBsWWKMmlyLEEacrkdM4OYxNc3NoaMzL7Gkfk9UFO16duktqEXraBRA7Aa5ktdLZ7lI1KPQIoPqxwDOu79F7ri6kGnzGXk7aBSk0M/9ftyvggKwEX9yVm8hwVWY0sawCpsIBVBl7o8+DOtXk8/jj7FgJTiwhkHjWxBMd4ugE3aSU9bluP6zUYUE4C/IaE2Mwuv+bRQC1bniMNRlNEnmjui1uIjspQVvipWp6RQLzP4VvC0Q54zaLW3nN+GXhgK4hB76gzrwXdw3L6h+oIzqlrHyxCr/ZUZBqQtkNWGZ31Z6hx7KP3CWKi1yRVCOHEmFiRBUQFIHPXzn42pPc8q5KamF+EuwWisjpM+vPWwk+5EldSUft/RE6RYI9XXQAwpHMCrv0koFBApp//uVyVMMw0K473Gc3ZOEFezt9dHQR55rbC0PCtN4XjuuvrOUvnZB2EHxv0W/qZt/+miDN5KQx7yvQ6MQBREa2LBP8J1ENogjPFvtUjNo083d50s3gABXGM4Bk3l0ZLdvuXKYL+xiNDkPgDUgKm8zVA8aoEfom71c3F9vm69hJ1ggq04FxSZxK1/a+0GuMZthLoaARjhluvnCL3QT0g/+QEpL7FFch8iAkMpXIcMhTC2CojrluOTWtn+x4JVy3EHTrJeHSHmlXvZCLOH9yQGor7swa0+aKvfwzfXEuJ2X5iTovFJQ5d6ypyuoF+ctRVD3NhZM871kcXDnQzhJLGNZKhVCQONshQjYO3PSYJfcnkrCpKUvbnFNh41g7WVzpqi41K2o2Y/Y1c3iTCmJDm76vtSfQPCLiAskU0d2vkVVc1RpGknd8ITvck0w/IQPPtzYNZsGT63n+UuRZFVG67tjQxqxe+pj0v+G9isBf8GCbs+o9j8n3/2rCGbOiwPncL8TCP6CSczXzH0/cgzWv1/W5v23UsHfRGv3ABJNcwPReVIXRYZPAP86oNLuV0vrYrUlyLBcEHnXrbY9VS5M/j9gUS8aBlib02YQEKH/KLUxvAvswwA1rosFXHbP+yqYvY6xGYaFNd65ruU0lc6+DRbtL2SDKX4dvZF83OZ3m8b/7nLb01CLv6eIaIjtMiLW9Raq2E48TVHrCuGYgKoT9VH92mqt+N5ENlM7IlcMSXqa+9DZO/5Rxfo4LNQiz9l63rR+htDi+4vgEnsVz2/AzPfgk8iJqnbqNy7hS5WpCzcqeLCAYlh/rRnz/GxaaJ01SZcEss/b7T62h/otOMl+cvFGJl+OvFzItmkoF+epyuYurZMVQKGmhh9Q18XzkD/TNBlTjqqZGFlj3XKv9EzJWHeI0neycPEZh3fwQRJGt45AB8ccOZ0Fybn+hFhhQ5IF0bVRMZVM6Xf755Exs9LA3ZDq+UTJkB+iZUENr3QCjZcX6iSOCMVlQe04iw+EZ0XQrtMNIYWagRefrCFBbq6qejReC+mwgpLzlZZmHew9l4jt6vHvF3us/ZhlJKjC75FKeunyIa+8OA2BRgMdY06JokfFtGCswkLxXKd/teFRct3a7CEoK7ubN7sRx+tYa/RRiscEqkBCK0HcJ/9F84+CiS3QilGTZam2Jb7jWcQoenaOtPs52X4VAWLXc0xxv6V/Admkwg1F28z4VeSqzEjNMb9ZWzDzK0Q3xV30tGFq6FGeEuq1kpSmphNdmXyBvjIdAVA8LpkkfxIR1EJnLWrhMmVnfaTQXoNRuFhDtS9646hSk/IlhS6gGjWZSXbo5cEE475FMfZ5rUyOfnxtJUJx/PNoWxcmi9nFLuO3n7iWjlxHHF8yw87XnjPASc/Q1uNLN2gxqlsoH4xCLfHpzjaH4Jpuovmnae431D22QWdobb9MgegXt2M+TZ384mcJQNC2TZCgRkwXRzq5O/m7MhCm5neXojxtDyl8n0jejRtuPXBkfyPUPjH9Ko9jmxChfE6I7J90ZpYJXJxTJe9eR5SxOtARKyHdx5+U/HXky0cftMQoRnyF4hEP14r70N7GZaL3qe2d8KVCSz6v4fE7BK/tb3NNpVrEBBVyS0lj2j0MMrymvtUOt8MbqLVlymTOXluzFh+WcC1Xi8h7AsPgjZ7waHkQ9wlI8YYQIX9/LUzGGsvMMEWYh+q8Td7Mxa+6h2DGYmBt/kZ9zllii8R9E1zuCq6vWKyi83XWrP+YATkokraFk3Iw8uW00GyCnc9HwUQBQdA9XZTuHcHuHJ9/MheYiU9dbbQY5dmEvTaErmOjzq01IHpRR9OQBzwTDhHWFyR2kspTmfwTmRcPWIWiQ7NZKM7pV/tUl6ryL6Ue09thWBOKQ1O9FeBQUxW7jgXV2rUwoDzxYW6RpA1RuWdCFLPWE3fa2HQfHqQsLHUxapicakq1KZ+SpFkbWdH9aJUj4/OH7XY7Sln6DtTsp7H8reu2lMfRT8NIQjX7VB5VFwpkFdN/lwjHIk51r0ug+LJxAOh48Y5ArnbXbVq1PUIMhqk3YYKjiJu3znnZVjOu113juiIJDbAC6UAxfetBNNPAdisb0fFSjX0Okk7Y+zWDxw1kpXIm5DBzoH+i9yPa0XoErByrNjG/7zMUAXjsDyRgUV0uM1dk7nppRq4hqwK5Q0+bAzvmuK05E5ykMIsgEx+bjWRpo8TWX2FlW5LTaROQGQ8eqhdOAdFix8uVb5/ROXIGOWBvARSc3otl2xHXpz4dBOtacLe5huMmpxZYVej68+rStLHIQvt+Y6+dncAKHY2lBBxju2vlreZIzgMwBKTfgv6EZ9ANn51hTvUVhpAvDdTyEGr16S5rkJR/UOjNPu3YW5rC9t4/7urwigZ8yZN3MnxiatOMHhsgR1+vY6sYnjtuRJlwaLgU+o6T76PLT6QHmBktgmbf5zM2FxykkbtHJbhPIxtP4BQXv8QCoGahEeZarJ5KabntUEfHFhsatapVXiH3iimX0O1PdHu1PN898SPzH6XA8fhiOKccRy81mEoDrzRSJMDjya1d+89ec/d40EUv+6Q1Rt4ExKuxS+iXeOQ7s3Fp42Z/QPLt/lQlG+bF+8DEoqicAKllBEQ5UHPPn+sVD+wDYzQdh5WF7XoeaMEyy8cVMbjqnel7eDxe39EEIcmUHLciflo9o2cmb/MkRj1pTVa+BZloRHYylhjmfJa/vV7keMtrQaQsZGH/0MzD1EZIu8abvaXnWbQUf1YgwK3lr4V6RrflSjtCBjFn+VuswfrB+jsffx0mxubaQEUS0NbIwao26V4ViODr0ajXwUJOLD1vY4Y8I/IH5r3xD5RDdPkO+2qOOUPtebqGxvcImVJ3pbCdH5Wv1v1KNvy03JYg4govmorcKUV0/q6mmP3HxN1IG6PpVxldM6zb7w8JVzP0pTStl/g7+yAG0zA01pBhmA/6PloiZZt0aPGOB4JGuOyHrcNnIJasa0rrKF91Ek+hiklevEFatyTftRQoOIyw0JO4g7N7tl8Dn3Kv8GnyR3tNdO9H5nTY0lZrOWK9rR74O9cwU+FG1aRKxs2DTqa9YdPMk8tJJyjceokt8wRTRHqpRg7gS7XATH9l+2795lgS4aTWctpbgJFL3bahV+PZh5Xe7irKdjkMfhLBrd9diBwgfdeMw5jixdXrddg4MWdB70DmUY7cmg+QlVqqQ/KGT8XcLWKhELNZfriyfGunMwG3w0bW1dB5AANENLK/TUleUF1RugIL/0ELis588TvHcuJ3f+Nfupd3+ZElTrzIm5H4ovxbbiA9f/3fRBmQVntQodFvb11OiQUo55Zlk6idNg3U/WV8AUO8FLWiiWDEouPEtZJqq3F0+AmwvYBkYs57IJbon8ub1cQT34vdQWVJU79sqIItV6y1UyR+pHKaTlecXlhwb1O0egwyJYd1Wp2Vej7cWv/20/5ZPzA2DjHRdTN0XNabzYuEgNzyJefqy9SxB9MSlfdifpguRnhIWyD8KjGo79zUg6rnyjaQJOJkjCyzo+XljFpm+hE+5hItar42PzLFL6TS31nknExR/vmU2oZXc79z/O1OjnwiHLX90fWgVTPGptm091kfAzgLiXsTWfjzmgdJ5+2xr+m9lxcrddfS4NirN3TizQ28FvyNKxSyGDbRxAT+Mh1IyT3k6tp+G3ECOuDOyiwWUZ6WYcPzPxhiqVkmqBl2LLrsUc3vQvQjFZ/s0X+RrDjnCYjLeOg0lZjO122NCRKWHA49QiMDPRqaG9liFqW1hWeqOjVZr6VTpTJ76D7qhC1o0RFMjgE8Jvtm01/zgG7gbvHyoGuc0FHjk+keRx6QJoPLDiMGILcUm69oeozDZYVV7fmeQJRbohLat/7jtrKPlVkUAAWl2PaAmYor3ZqchZt9HOx55jcxC0T7BNRVXzsswkW18cUK+C8bzVnHWFh3YSQiTRmdBuMGC9nVE4Pqw7sZASXS6sGO80rHf0lTFmeY2QTSSezQCjLrnCoH8KxVdSJ8YddNb7ceoBRC8meEuw2+W+6eRS2IoQiD3kGAIPKO76OkeiGkQHVe2IMBnGwkqAE/9x/CtWilT9eLvgwg/mwkCRM7HfwxpysnCFNJiM0Suu7INF9ReVlRdykOkJQcssgdnyIfXiKPkdJKsTU9raKvITk0boWD7MWdoQMWHu9h19yyDhH+pMVlSfHI+Nxn+nZ/0K9mgGz5+ycEQoiT/79DOYo0se/o8RByqM4bwAZa47aX9o6Y8EnKmLBxEJzfRDARZ0ozl3SZ8gl4pqaK8J0hgifBji18/U/gtU0HSHpmOgv2pSwu64gfDCgCyJIEvo+gTveh4JEufWfVXRoBL0gz0JyLkcIvs9bySKeI3M/7du5+yv/xzgeYZtCUSpzrOwfXMDlp6QBsqjgG80RjlQ9FcHPDvHaCKMSfhNNH4kqVSEakCRWBlHQciUpNcWdq+jEBFh7YRo+ZwSnzdzy9dYSCSDZtWe9Kf5PTev3qJmFESUVFsguK8yfDF1PopWq/UkfaEM//Qm1hxr4WpIu7kjRZ+72jFxuQMKMA0OAdAwuNk/zNQqDymx+BH6O3Y5rryrcm3j3I5FLB10yo/xtHZu/sUqzcWZEECshdW/R94Gk6RgxGGWaY4cVyGyGhGbRPP3vkh2FA1MEN5DsrLZOJJTX2c0dZQQobyt+BiA8eqLwFaN4yitq5yp0qXHdFpgHP7ZEVB23LV42Ozsr/lL+q1HPcw3FniqPqtwWlr/qzj00BVlUYn+98FRSA13P79BvWINq61PVWMJ2bPMWNOdyP8lz8mx+bGbhFmun2/rOq0loTQLiY9M9PTOiJmJYvstKhLCmav+A41CstXgcQk0Pv64Y3C9pgxWHZ15+dY5VUUSF3mwZOwt/CAqba5jkT5uM8digFvEKXTaZbit+3YmBxP/aUb2g6mzfPMCrgj4K7BsQ28VaDDwsj3yFOIJB8y4RPp85nzaPCX7OFm7kozIiPN1qFiWzK2744bCLrK4gNJquTUluNO1rnD7KCxcYNgOEDbYOy3SNrTNz8fCafaNB83tsTSwssvMcaF/fs5og37buKdNZq+3wYy9F3hb9gD9TxtxBG5ga6a8sUtNOgHu5L6lkSD+uCLDW/hJkmMYSSDvDjfqGsJ+HAhgSjQPQcbvG+gUcdFA+5jYR6UWV0dJ5H0iVeU69kAtKW+f4L2MGwM/WnwXxQyIykyBEBeKkcjL3K9YyMmbLXAdwdSw1qCia5lS16cbln0dGZdKzkad+rJbL6+kr2QgnnB7PuQBb8v66NAw+sAjtWggry0SIo4cIuXxJwivhdI16au5ESvetUquWq8bYYwpGiJpPndF2ktMOPZDtpAN8sL6a209NdIMZPP3dy/iWMEIUVr1/YyKhh5mNEVz0JJKY35O2qqHC6i/KkWwbboNUmuNak6tlHPAvehE4yvHzRIwvFfFu2cacDeDL3Qcxx2qlcnv4hHTlfHmzmeewDIWHV4GNvnkmEjmasI69ZpiP1B4l1e7Egg3u/jDpKYIJQMqk0iQXd9Guvq/Xk71Jays29NlLALRhysaAP5dGQuPOPThNkcMwZFdhIoI+2L+im7H0h0Ww3fbJA+dtBhkDYme1ZrpRWbVjVZJtd5NHrHMYtY1JCuqVZUgDhtrqcBQf8/VJmkuW2SL5Tolux5kE+IMZW5Ahrl1HvSn4hmOO5rLbHDWJsQGgifwIopeNhFNMVuuOmtInTjKAEsrrfI7eIco/oLRiDDYGCWkPtnWOkuALm2NJ9tqC4ywOoeBaHxi4/Hm2debrcFhLM7gNXVNmPeMmXzpxSvdNTzPYGW696OkNM2D+3YAgAIeWzAmYEUEGrA1z1aWtjTCdnGus9yC2tk+u2tfRVL7SnYYEWzy9VRyJLukqyqMcy9j6mlJZuEZC6yei4lFjG1fSVNM1vrAAdwFbbayKniJNdYF8hw09lF4ENqtJuiF11DJSX90fFeIyavIwrFj2osqVisZiEhhaO5c6MZHx9p6dO02X4tboJPi51LsSFYU/+dS3cWBXHXLZRYZCZdR0/Dpfi6F9jn82ODjlftEKg5KKES8FhaxzDHd2odyRsW2FUKnz8sNpw9RKQaWDSB2WNWu+pEcw9wmquJlXmCv6oYcn2I0ZPammIAFThsxqXhoqesVNHcdO8i6Y1kxlHQNi1r2hPyxa3ZrGLM5LHh9faJIELYXPK0xgB9d61xo7ZDzVN2a3hOvSXb+j+OQfyEMX9Q+9AEgygrXPttUhYSh5VQjgVVPiC6oWcmfrrr3eI+/mS4mZvOLvS8pQYE1qPGrRpYqGwNgWLjaV2cqdOR8lE/DwCAy81gy8MATs0yQeFkTtE=
Variant 4
DifficultyLevel
688
Question
Two Year 9 classes, 9A and 9B, attended a Careers Expo. Each student was given an orange or a purple wrist band.
The table below summarises this information.
|
Orange Wrist Band |
Purple Wrist Band |
Students in 9A |
9 |
21 |
Students in 9B |
16 |
12 |
What fraction of the total number of students were given orange wrist bands?
Worked Solution
|
|
Fraction |
= total studentstotal orange wrist bands |
|
|
|
= (9+16+21+12)9+16 |
|
|
|
= 5825 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two Year 9 classes, 9A and 9B, attended a Careers Expo. Each student was given an orange or a purple wrist band.
The table below summarises this information.
>> | | Orange Wrist Band |Purple Wrist Band|
|:-:|:-:|:-:|
| Students in 9A| 9| 21 |
| Students in 9B| 16| 12 |
What fraction of the total number of students were given orange wrist bands? |
workedSolution |
| | |
| --------------------- | -------------- |
| Fraction | \= $\dfrac{\text{total orange wrist bands}}{\text{total students}}$ |
| | |
| | \= $\dfrac{9+16}{(9+16+21+12)}$ |
| | |
|| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers