Algebra, NAPX-H3-CA29 SA
U2FsdGVkX18Ok2hlJQSwCpaPNY2o/CK9yLFifJ5MRIuNBUCnw9pARVU5RU+qIT6VA2gKbuFJxPSJ4lcTh5FosV5bEzM4QNzqsTYMUwfM/QZ18oj0C/Mi6i0TtIO2vzJTDDK3NSRxWHIG1h9ueJvFngEDmU+70YqlBccJmoFMZvVlcMXfH42iIseVrzyCCadtVQ7ouqwmHNe8biVSOKWiayl5uSU+/1mVyoax54DwebRQzHFfHxdG6kv7CHeKvAIvyxqT0Z2waeEJjLZ4uQcfSM1SfvmvZoZ/hOAY2ZxlxAYIGHLQ0LUFDbdafcso0l7M0OffuhjMTRbjT3sqK+6cJ0M4/Vui2Q849JTNFjSEipyIkqwOYuxcE09/Evzc8mnwDyYUIFB7QclByPHDH2B5x5g9MmP2Hjvvjf0rRB+Z57v/ZHVZNkdcN2UykbiVUkZgL7IIyU34PjB8OxCtiIOeDCinW0E1OlXi5wqBpaUdm7bHEnmeCfs4urrFQWuKnFbO66h8vHfoY3F1sgzk+58qhcDIXVxNOW1X71LVDnAh/y9OmiYGC4tRlpUnwLXwR2iPxhEktkTukYDw8qP9URbZ14AUzbKBZD5qlIkTIAHGDlVWVpfaNWRCfv9H+S+yHzX8JWkyc8nZk/oBZfqh/DRirN8kz4uMWYnJ22+qSWMHV8hKSSSu4A8dPkwicsdI90drVnostbQo5wRIeAgeaotN3SHF3X4Bj9DwPzJfAJDiSCHZAGHLf+CtmkltOK+0lPE4fSBE55hE6pZFjTOstLkEs93ohraO00xElHcPQUii2A7iXnM8bLiJ0M9R81ui//zG2XHMQ756OMKFoZP7/95b8BLmpXfgl+G6Oy6MZRomJMcSA0oLBgeZcXRhUn6BdYImpNjjyBjlOiqcQuEinUgY0BUYUGNvjf6+knMTOcfnFmWgun0D1A7WgJfNp65AgEWToP80X3tx/grjfnb/aT68x8JzUxKpkf9x4kwNZ6t999F8qs8o9Dy9c3j0qMVONx550XQHyXP0FA6zY8WBSlVpKolKtVNwT0vVq6XAMHbZUI7FcNsgkyytuW6UdXvlGxeSyyzjw4Z0Fl5KEXu/rB/TNpEUDq963+adk+Ni2AxGJDXrL9V0S8YFDJ3p76bSJ+nAYclIFSnC3RaPScjMOjy+NCLpeVdwGB6fnOjsRsN4lym5b7TnCB1Br3KBBoEMUTnzcb+qzn9spH5wp3pzJIxINRxjP6dhIXT/EGxvK4nigBN5iZ4wQF0uotXj1QK7YlHqHXEEbWrlLsOvTDAR7hoAUzLZTO1Ff4IhKVMveO1v6vevVJ4Yhl4yUQcI4IwUvn1ThLPOeMcYBwzWJBzMh4ETd1F0iKNioDe1P/yDahyYMDdJ7ykzlDKiRpBx5cR6AsDu4IRpCCwM0XOWOUcRlTCDYTzfobgnC8LO2HusbZ31r9xD/21QFELpD5orNbCuhqVBmtSt51WgRYtkr0aumiFcVhj1ZYYCAOZJFcpnOTzwnuaNWAiHUv9XGEKgTnsFvxtFGdpwc2Lw8gEdDLTqzunN2ZaJgd7aeq6SowSYZPkpVnkd9uGjgPyodl95LW0qQcMI0BjPenVANLmgV653nmZmw73A+vzn75RCzbJ1a8PmqLhKUKnfRq9UGGemHVO5IbJ9Y/44y3iS/h3jHvYa8pNBE3vMqDrs45i/bR3zK3W89v2GAgC5z6rQ8rwfQYAm4tV+CUG+5s2HzWBky0WSwLTsTZ7YdjmtctXvQNRMdObFaJrlzl3KYlvPUMoigPJU4/EZLe4Xi4i9jI+DxRbEOfvOAffOhiXmXP60ftWQtl4pmbIhHPHXdtymLqLo43EzxFc2PWFcoHUbMCMHtcBWKrNdbbCOVN519fEAi1j8Ootr5hO3NorWbbv1LCy7J1/Hb4Yv0TucaHWBjjJhiiHRiRIHc4GX0jcPk10DznfOWPqyqaycJolGhZq1poF9UIC9DRjNASgcgI/V7kQHEg7W50XltO0tKqu0J5yeAMi305iV9ILYk+iHeLZc+EsSBddxY8VTON+RZ0kpbV/yn9BB6S+MGO/VezL0zZfj+HGa5P0KImIHPEwx2DN+PmdFATzBMSXxh+480QvMXd5OcccG48GATNsefYNdOQk+LJYm/iamn7rquNryCQP415nijihymgmSVJphfIuAFwF96MvQnlHTbRzj95Em1bFstwF+NoDyA1knWNZy0rz8VrYfLJAdAa49LYqed75O/jzIdVo6ykZV2oMXsAKltP+5DzpaIHfePVIWDMa4QPk9mwuv3CND/sRBv8U1QA0psDHGtYVTG6cqxcH+rPmhq2lgvq6kuqJebIXvAqzzPFgWnd6liPxWYstWqnCxZFUTXm2CvYZ+MEx2ovYqDXU2+NhUV9DxvWI3+/m3NfQ0PEwowBEbGQGKmNomEMtncHCjNx+rExjHkkR4dDG1WJZd8EKhUYWB+H9+nC8+9Nuik/ppzwnCbo5k6u4Wj6BfcMuYTsnAmndV9ZcFRgNK6enSWRJ3m8DmsMhIni33rVTKWPZU0y8Nqkmj3kbJcam1xTSQLDZzxF1DhNfKip9csh2gBaYnQYYXiG16fSIsBOS98IizsscsOcPRVomATUPKw0nnukJSAuO5FXCowAVYbJfrplIKYKznkw7JJpJVi0+hZVQJi1M8yGkpJRfyzh78HKNwqm0XHsqKZS9rcz9BvRaR0aT0sMwDAcLVpsFVfOTrsp/rqafsYrRw7e20LUdgygecLap7r4J6BhTHmXY21E2zSXmT/pPXQu1eqX8d/8qLfETNUhcv4nfKX2ZZMsBzeAs/EtE6VTi2DO/ZZM1uRdF++7WkjQI48R89HtNw/00914LScPrR0T306f5DTcfCVUoPUw1JapQ8C8RyzZn8Wc0IxEfqnKqEV+5NafRGiLlX71/LEGxvTFEthH81WlpCr8n7bAA+NUM9iNiJWykT0W6ZlNKOJpAKi++Gpw7KiXuT8Mh7VtR+INUcndbsBIwjcmGwLUQtbIe7bbvlUVL9F0lanWcnD1X/e26jhYVrHMzLPIzwzeR458j+VmP3CVW7EeY7WgOzoeG8cQtOwpnbZaadSTSmGM78uf5DoDEtwH81CTYJIVCq0LW4BVErxU4FOOjHwBtniwEH8t2LTQu6bClYIZphYDfhDcpiUTxIcvIPWNGO/2AJBBy2lbO+EBh/3hFV3dCOpA1iP+hPBqHUKl/CIUsVD2y50duzTmxL0cKXfo4Z5ASy+ACrKqROeVqui4mB4n3JrdRlCs4XBctTgkfH5FC2iCWjFdhVmEURah4quSwzDZGDHiB6PW1K/StEMFCQPBSn8Vd5r2S3ZmqJ1u5bBcCYN4oLyzCRogwMr7xFxHB4ZJmR1gAEev9GZW12kAuTP//P8Efayf91DZXFad0z0Ux3ttGGwHVahF9kZzmkhwkgY448GtrGssOypCE/p6u9Ggvh5r2P67YtnjF+Jscwe2m4yR7hM0DFMRAryZ67giMtJ555zbIN6UkEgXi6JbzR1mnKJRADlJy/B+wfoXryri1y8QSUE5+sW2nh3Vyal2rlZB4843OxwXxn2MJaLt8eHI82lPxzSgGkO7vS0Rrfm+0mrlkUvOLD08qL3chhRzwrXs9Bzvjx1D9OIcZFe0pzoa/hlWQT8/fG0pfVnlQNlTGk814VZfMIn/72x5GXWNjH+B61qCs9NQGKV43OxUh2coa3ygRz78zUrhMX/s2VJ1vQ/LNwIo1x8EUOelBmrsiS8gs4Kdxr8gFs+45zaf0VD+XNN6VniGjko+EW9bnKfbnT30ZkDiCz0ud67/NKGUJQMIRtzyaXgGJ4D/3eIe6iF8UocVkAeQXM/P7vAmxMNofMnfKsrZay2pu3qBZSVLEuvklVat3h1YF/TKfQ7RPcNWq01rSDtrneFZfpqlg79bxaTIWMjgH+R4KWZReYmRKXluXQCVN3Nq/Bp2pJvihizB9IaBp0yESjj52obfg5SrMSonmbQOQGEciEshVEPoPf1hRKl8yd1ICWrXGc4+KJ+yKfw3QWuOiroRoRwAByOYn9qo0NPuV8T+11cAsrIjbwDS05FwxhHk0UsFriJaS2AkBJUKFkwVVsTSiwmHAdjda9s+WDaJv+YtiJB9dsmhnsQEgXvt03+drhd97MVjO4BbwGZBOCIYO/y9iCI19yc/tE9rhm7KkMT8UBoBkRCQ7fTSbM/HD3jbqcew2F04lOfWtf+Czl704EfpwO7oii/wPWj1uGwMg5QUUU21mDWExqk9j1uiHvPhWZ5iNqM8+enUFpedw9cVeCgSgw9nN4EoqTK+QYUbWDVIuoYRTiBvIdUCKPW4CvY6HOnaVn/WOVTGi7YTeP+taC2uPNUNQHavB2t/4q0PvcREha8QQD3YyxwTiJ8fKSN08Yei9JHAka38d9/yuZpknApQ99tu21NzxZ3Z2Gi8ssIHdKYbMZUMchfICmRKlgNFb6QdxtqdzRj9WnKuhWmvctd+w27Kx4u88JDy5VlhDLrQNU1UvWYYhHx1QmJd/CjB0iHQUpcq/gbZvZmgTRKA310YR7/NFN6LOver979DXW9zkFJ9hPysCSzjEGOdqxd+0r1aCV/8vp6li5jSvT64u8/CnlhZ5CCVkvhjYGm4jKJ8PNdpSgFBQOqSpxuiP5QT9mHDVQ77GyyH9U/hnBTS23N176FrDAclz8irb6mtJphZ++TkXuTWam/zgOdow/VH+ixa35iDMKQLgz7mp/u87AdrxcuCFqycyLEtYcUfUo8jIh3O4IgHWDTRrRI938I+Z3z3VNeyzJbrSN/6Thuc/k6SOMHbiW+29o+06leKhgzgkKDw/53j7dfJDnjwD5ReaAXF1G204Mv+h4uug5aWFCw1tM9vW6S2elL0RZqOJodlY0WNdxVRw05VtgiPLREJ/wo+MQlE352bRTgdT6cEAHdrf4lWTACEf9BRdDURU2AAL2M/2VdWV2Bv2ZwZ4DPgLE+QXLVgSalC7vkvUvdGu1LnQVgCsh7GnUR05Ru6TRlvQangzlV8ABZyNrd51irI7iYFTyLQ5oHxOZKy5FdRjy9N0bZPZbni5DhRnE60BR0DpZ832ZjcfnF6c4YybiAKJoXz5kLj8Gci7E19foxU4SrcJc1kVpryCQ5YPoByo8F1jcaGpv4rfViKZNCSklwDrOdVVuHI8sq5unwLHu4T7Oi0RkYLnKp9dnlIZC78whZ3pa5pKFTV5Y+2w953zf+62LodESO6FNlbEJN/DwtJk/t/MXSGZL7byYJVc7meqaAIF8oz6upcCrzQvNjquqeKsgs7HetDiwLoWJr0NFTx2kkiAFlumb0FZgZjO1D/frbHXf3vUET5+tRjx5y78QoIxwiHgLrxlAgeZ6X/rN1lrL07x1igV1LUYVGHHtXd5+cfCt5EqGnWlblOQQGOLdvacVMlTBHeAHsbLaq57wRAV6ECSTBu7C4CMe8udf8zblTs/RMZi7z82trnAS73kHAJABf7ykNscq+GGW/SO9nSaXKd194x+bkUk/S1MgsLNHypzFsFVEh0wunq/zR8iQ3WlVfNMeg83Fpm/xmDHKiv8RLqCjoQPwVkAAYn15rTz3AjyHsydtvQk6hcZfN22OGBctOjuAfAlJ5umLEHC2lgCOvvUPNeaSZQOFZyjLH9YMr8KKSLyXxB7RWpa5p2W416spYc/uAgyoNAOmGnkUMTF2GFppp+ZIQPxDj35PqmbW5ZCl6vZ3Xo857YddNige+5VUU2BpfjwEoQFXbbsLG/Hbl+Urbg/p1LnvoaK03uf9XweFCWnZROy5YYAOcFxyRAVo1ZAep0ho5+4AlrhuM9hH9uNhuIubUQQpPlioQ5QjUQ0oVFtxtTSR99v5BIlex6rLxSo7KTudwYRtvPDy3gpxg6w/chX8wiDSkDwAyoRofCKzR29TKihffBzvz1xSRKZJt0Z1NqeF+gQqnTqQiNnPoA187yFClUr35sEFUDup/835yaRMgNW7pOt12XqUkIVlnitGIWKdt47GRnlJ1mgiLEFxMuU5wTLFgf7N2ZKMobZjr752fDDjfkjfUuWaS6AMp9WQBl6lcVxKnqQ4Klh4HCcgSTUnvV7VFRb/RSahcqN8AAJVm8sY9JM8+oc31pbbyajTw9zJxHFw/ZFN/vohTocQJEGP3OrxYROt/eKyaHhLWOXkVwHf30tueI/1y1XXplB+raHney0UWgLuMMQiRJORcO5nXnwzcnD79aC70H6JuaFXac4+I0QL7q2Hb14cUUgKlrGu2PjYIULEu98h8HMPWrMhhJzFKrQ+kIwzM7rb7C9paQqDH6honM5GCP+dU9/+tdu7I5RGfhm4NbLCRspNfnPT5MX811P79vTmMfQh929IUhXUSF5iwzXwt/R3TxOCaPcey38aKpOoQpVDjPV+jesYlsT5VMKiiXzQ8z1IiLTvuf8tKXBV+PmRu48c3KQPvJf1K/qWz25UwDDpqarzZ4shUG2j9LRrVrCInDRJlK2k+Phs3x11XqX1j48W7UHMU3VmSijGIEgDJd40hHZylzRifBzZSb9575rQllDNf5zXrEA+QlIF2ltH3erxMzVHu8l1QB2gvicWp63Nq+7MKVlPOzL1e2S6ozVkysTnVDiBrFaG0r2hcbGBhkLzqdMDjHxsaZcUZgj11Km2VmOKjJ0Vz+GND7SHPzd6sd3TO/a0jHTJevBuVrSQS2qdo83HWOjr4C/t94T9e21LqVpbKON6/MRSQpI6JPCvrqVdbBBjyF8Ak8/lxmmokYN4KJhIMmVptiWyq/p8abAPNcZE7OZrVX+Du1eS3G916eS/I1SqlQOq7igPiDgNbwDcn6+HKQsDeqw1ZPsDESNacBm5DKUZ9sNPcvxEhYqwiMmqu4d+YtyXoCynj/SK8HtNn+Z/zUK8diF0rCPpKqGi5GDsBXXKN+r7No5PqLPYrHfLCZJErv3+yAOGgcEFx9e6ZnCLOEb6A3a9NcaDJYYkKVMlVNAuseoXys33ieNS3bRSwdntdoBcrUG5e+8LyYY1fhb3Qp1JYiYR7IWeetldKFm/TzBcueyqoqByz9F5m390jDWkRUa55mLtIRTHs9R+DsqqJhOh0vqoTNofPEbsLDzc125oT0HRO7iisa9XZn+ryiDl3vTyBc5KsJwa5URnIPACq1JUVxO2YA2ed5XPfdLMX7tgNEGYNKuJNtorYMsaNP4efBe3sJVwcuas0wAG2xNGHq3wenA7EsqNGDMF6qHOipx49ZtJj+Ka4arNkWTukcUQlVuSkHZdcjjDkAja7iPtVfmBGV+YJ/bS9UWH+3dvyfP93RkKKlKPMcnihCBO1Lrkn70X+g1/iYsiNmhDhK3bHj4ufnVp+zCHvl4KKQNPuJ7e9uxu7w3aUuYfCsgwcRikHBDUSO3A04CGw+Ssf2YR/zhaNflRIxbczg/a2UzEapId6l60AzKSfv04+3xA3pjenXECtGIpss4QyBqkdcJr2tYiA+r62KDuzWC1jop91yQd9Jvk6etV+hXSDlA3U4+D1poriame4Hs4KPhXNSMeHXKVyI52c4c3adN6VpC4RBsX8nXhIPjGEl+BZseRlrclKlVTGdezbAdJTaJvJ0suHxrP0UY/EoqfEXWZSmU7tj6noyL0Xb8TP1kKZa5zQWCoPpx/gZ6jBBCx80o1bE6IZ79bKdwtK7Vk6gqr4LHFh8pgqMTvPBWhZG6+UJJufgDx830UVQtUqXzxaGJlLG5A3NamT3nZVN2gmhpgBYWNMXRpyGGMyroQJaH4Dp0EfyMUN9f0czKQdn2FiQNlpNy8FR4Fn/WjuhJgz5xlGEt0qapxMu16phAKQXgqiTq3dRoIsiiCnE4/zWpyuG3j4/sCp5GbOhQtz+M8wj00TU+mFQ4dKHaOqcS0nxt/opzJAUk8RNFE8S8ganErzz1yhkbpfiJAdbE4BA3M9Yq4jjGXlrNihEgMNZJwEwwGvrRGfAFzgaB4NQSGK5/O0LbwXgjPEy9/mwZQBZQGSYEtqucFNaawqpDJVk7FxOUVIjVIGIZWdP4JdF5/OgmkC6UFDYP5Jz/jmFcg8vh6qPXzWZ7wo3SdEQ/JFOjVVnMT3dDIec/ZzcGYYab4/HFdFsfRQ1Ei/juEnaG6lxmYwIsfEipR03Cek/i4PNoQ4RrhCJEulE535/jLs2x5fnQ8ViCo/rxQzmvPAj824fgPdlzpKSvNVOxivR4duCOsasVoqYowjAz3dyWO/0TmxM68XIVZdn1T3pRhCpd2UQQgJ/Tc42zNg1l7maYrQryPJxFGm392iE2mCtfnl8IoxpAjATnWAZO8LaYqPjYW1VT7J+gkz7Cw9R3vaj7BCX+CKfRELsGAFIxWcdUeLxkKN2kTFu/f4S2XbpsfG0BBs8NpSCAuSfUF2oRQrMI82SzDTkIQqMAJ9l5JiqEHcfbtOAfBLQtExSQ2/J8yw8WDmp9+SySNnAGNkgGxP3MCECy7qGcA97W2T/pEjnV3qmXG0vs1lFFCTQ2sbwLEYbWoeczUhxyryTJiIAwZdkyhFrNQUBhXKx+zCcCGJM8wKxv5XYRwkhIfn67xe04wsHVrk238u8ONvPNVM64JHpFf8lKvJVk6qBQMFiwV7HM7le8Lf0YeKbe9kQJYgivKUMgUroKD4IK1EqC5xVTKyZ0Xu7qwFnaAG/SsUgUIo9bVsajMGYn1LgngmAcgBVN+l5yyyNK+BTrVWS22SuMF8IU77hrXql0beIQF0X5pJ8GsxFafsiRhV3uTbfSjx1RnPnmOuxtIyreYtXDGL4bIi5rmRbnwH7K5k9WELXWpBeGJQru7Lixzmp05waT+c8nAolHaB/z1P+QFde+QWdrci4NVfBTxo8d5UE6+No29JctkokVPYHVMp+X0vg/pgSoOErYhp+FvPZT0ktkGJp/+gfPQidHZmJCcUkjHMzlv1InAfb7M38UERfCG4DgAxKto7kQMhgUiOnonZAttQsT4zP9HQwgz4sWalXI2KQSUxzHFsncnii7p2zWQUSSqYzt3Jyo7XhHYgEe0zfDwbeCkpY/k7L1G2n+T/H9K/weh3zOyBiwY897qTkvvdl/mcetPwPzjQHgK/zKErv1DKcxj0X0NzbCuzSfUJ1CkwupdlRB01KCO4wMN161MB05+rjpHNlck6TM3D+tHVdAB+uXbmNF3b8jRCw7u2LEXP9hBBAynXepP1gUuo+GMzAPKnkqWtdkdPmJKsTarXq3zKku2HNBXjPmJMlA+/doBvL1ss1UGdIW4ot73wSFdMViAKSryyfgqdBzFXKfxMVhU4LfVIioeeUqeQHtuzBBpETOxXOuPDhch38V7oWxb6J8NMufMjkn09x9crPq8OPS3mr+3WZj7rmHq7shnGALZ7f/KM9701asuDNxr/opjVS91DBqHUfRnHSTiuqT05p12deipQcDI1FoRsDfmrumZhmGPWlgbihireta59IxlOnlQ2EBJvBf6/+6dakkfEnmBWJY/Wl5BzZNKVeHTLdhTOnEPOdcVScXErFBFbJOu8benF1KysuEdx0tb3avKEHyxijvbPYVtsR1Z+kKpIiEHhY3sl+3XPXACZCCyIJY/4K75EUqmYK2qhVmgdEyVj/Ji8nim+2i3i1SgVd9e6V+4YMg/Ta5MuHha2y3AjxetUUEYxjpH+ATkhRDP9tIRuAXeFpbCeMvsvxWafobsABIFf8ETn3wrtyGU2/wECPf/FO7j62mxi1ncLIAjXRVTtsMKeC64mkrZpBkKPljjGHZP7X04tZ++5jl4O8M0kvZSkK87ro8fnTfNl156SyuWOafk3rNPt2nws2ZsozusSwbU2YwuRIiChAGi+ocg8ZthyKLdqhZV0VtURNP/w/GmE64Lya9V+IbN5Z61S1pi7BdxxhhRuTsIa1Q+lAzCFyfyjIWgCZvbis5tfe2aVmmXhXs6h+JCPGZ/FuX5kXYPCv745YeCbxJTIKhxuta8mx7zQmvJdxpcyMWIB3pRR6kvHjo7nfKToaZlNcx5iw8kR02Fyg7wGdoFPf3qdEF5QtHwXJme8j4NFR/1Rhi9tERxl6gIxAYwU/DLx5ZGlDBAlJXCcv57hTV6duu6Bnj7svLhDRuo5mBB5DjbBu37ZMFC48ZDLyCWc9CxRtvs6iO2K+8l8sgyG05THR5HT6PP/33R0eRqc4ssp1bVbQB9FxVE0Td3heKHAzI09NAzwZESAY2XGCqF1bSCdBR+JBxQjIOVLwePff2t37bguVHWT+9rJD6pc614ZxYcAF3iOKj1O1V58QWVf2ee/P5W9kk0dPi4oEzuV2WcpBjJlqc2lp0qJxc1+5J+zthpCKwNabGsQsb1GBXwLDaofDIRP9Z9YHefiEGHW7DKWRXYLaOwdjjhwYgKqr2jCMrfO07Nj50UTf0mnNP38xtcoQryfV3yTN55JazTNbuFJqT+lEGV2u2vryDGGt3IhbavZYAxqfHj8gc9M09mfzjvTJ7Vd4sRbLsnJEP5HYL0MowUPzrybZ3KEGsn1fJk3ChxLYgT1/qnuc0QMpi7kWL+SAIgdrK3C5jp1xe1J2QlyaAWzcS8Fdz9uoIn6HtGEqAnV2FiCKzmhw8SZbmychFMAUMopZ4q+5+RCXfvyom/x1JOQTboDkH4a2C/ot2Sg1b3fb/JM8r00/LZDmo9r/GOiz6EISBaeB4lmA7xnBnSB7ueFvBp8/xoJUasX+M2TlruzIfkY0YYt3klWksCHKK+24tPLP2MB21UXtV795neL48pek7IqK+dOedFO/DS0tk8NgH6ToMNsoz+peGxTYS8EUQHmDwcld4dVzPCyA5PEjkMBbIBrTTRm4KleVy4uuzzXSeQRm/vqOgH5JI+g1UkvXWcogbPj1gvPKc2bWl8JnMvoLakOcvMhYvdhrhiCMrxJAW6nmV8bLALinAEE6AmXUY8WMN2ikCXjPx3kc1NomeoGkcodWbRlARefqplenLt5iuMnVlC9VAzxZWCriuEO35Yd5ps+JWQ5kJskrWg92U/njQzoJwFDIjZZbQAMOOjniv45wc+TcRBCDaycYIYih6MNkzv1PObcs3SwP2KoD13GExxJ5r0t568YNk2ahhqKvKO9ZD/0nWg1qJK6mtd9vDM8RDu6ys/ah34JAKTKtCf9iMQBmCbxqW2luOQHMdDFefhwsjf/5gZjMd+toN73E1qAp21Kd397qagmh/XDuOhOvxwLgsuhJNR4BMMIUa7PbQBJXd78ygIsCOM3eG3ijk492z5gxnUwxlwEi1wOJTZ/BKzGUaVCuD/om1+TiayYZuJ/6X1Ora7wPdhj+b1FtYEhGPaHqH2o/Y5rrdOLC6p3uW9tCLtG/Tcbpvfm9g8OUf2kQal9NRUGeJ6jJ43h5WL9dVOiPqFYkNdfJcZmUl43QdnUq56mHsu04CJK3Xzoe1l4RW/KvsWI3SwSh6IR1p37l0ckqakKNkxF2CBlYrxGCvLxKUWZlTQbyGLN0ADfpkWodhl7J4duuAhLPOurW2TU2PHwfHhdTQMkkaiKMwGhvZ9tyL8lVkfjGRO5FMRSy0NDNN6wwIpY9snWMyHDD3WMQMDkwG/bSjsDHNp5tfsVkRjzzwCKjXTDMVqBIORlAGg5bo41v9alst08rKXBc6zHeVSHaGE9DWO2EzmfTzSZZdFFJ4UaE4xEKP11EniDD/CJPHR/+gM+vzMPqGb+DtCvyYFZ1UdaGKiXuRQ4avMA1UwqzaT9LWMeFB+Vt6UEZt8LJSlKfxsAp7nK+pbMG2Ii13NVld5fNiEXe/S8DcA2Lvhq5WqwAPx8KiW9EQuPl2g4UtlsfSKjlmKBjhYD97H0ofTv6lOw5nRfqvUk2QnYZnbkY9WB2QgEDSx+5hBTi/WTcLR4jRbH1MjUiqNG7KXcyIo+ltdEnHNF803s1wXC3ZLh4c9E/rQ+2B1Mz4KCIaMHPGq9lqCnZXCwlCpZS1WBe24iQwwCvJweVyYVONLD5lZoH6M9B4mMFDRKh2v1An2biAMvxnf7sl4dGkmCkLNdiBojKwjmQ+4vCErp0XSDqP3B5M8GDWhmnfLsuW4bn0EdK/Q5HIAk8IDp3d8kEU0+aqlSkQF1EpHjLPe+5LdO7eq+M2v35rmLAjogpZUbx1xFyJB6DKVUFF94R51qj30vz1FJmPYa1Ni2fyN8hC653gtMdsz9DAITRABIGYES0VET8/OBWA0hfQIHy5DzS0QDDhWZygmKtpLl+49dq3hFilbCYSyTEn3L5lWwQOXphg9skMgc9sODwaOL9V5G1VXK/PvomLCuEWyYsbQCqcQd7996y4uaE3R0YmXY7WMwf4r+a6ysoLui3N9Ws1PG9dWI8XOZ37RMRRq1JO4IMQih6uP0DSHhvr2yzuNRvJeEQDnMAEUu3jNJZstX22rifypfyYgYvOtYNjAxnk1uQDicLgkdyFBEI1WJeFgszOs/58sIU8wPRu0/Cz4ByI2dY+YYArFt67RXyFSZfPtR4lmATrW+vj5hYMHib3htzQe1UbWBGwA5+PEZZaifhkO2Jb8uxWgpse41lazNVD5ffhr86MRqEsjxFGRAcD2XseTiXaKRa1ukO1h1x2cuc0iGuT6/RryF1VlBp298szfYyTIMycKCalizovoTpPmJ3oygl40rPmB+XvImZOhVixAbpyUas6NwaBDGngs/apDO2WhCXCNTTfoplDYa6X2O2imCF2F2pTRBZnikaO89ySae7nTJ78g8Jy44HVjvsg1Qyq1/7LdqSAbfN3TSF2RWtBl0FeTBIQBc3OYSxg5gd/AB5DOPyVwWDS9pZoidDP3f/2gFME71aCqCQRpzRIrWPJUGImniROaBhziUFb30qQ1HjJTmwFQUWHnUSi+tJa0ejPdS/sym9z7T84q4tu7oSyf/5MzDZtkJCp35zBWHPnB4erAmZKi+l1CO+KPJF5F9hMGEWgiAey4OkI6jg1hQME1b1G/+VVLfTn9QXL3Qxxw49xjWwTOWk8znKHuwP0uZnZADKT19q2f7Rp2JTHAsAwMOW7LtkQhWSW7MZFw/LJlW44R7mx13yf0Nu9PulVYSFIsTbgpbhUKY8P7HJjxLdR2q0xVFIeUITfXOpVZJFdw5CDoDbJkT3VFsHyofSDFNmXRcWE7ETWjyMdd1K6kCoNZujGr/T6TCw2oNJG/7wbfFMu9nJTirH7FIffGM/Wr86MDnzBzrpj9y8VEje2CtiNCHma1J4hstK1Bx9PJh2LA01/91PyRtw7Ipgicb01osEJpUPFlHFmDiQUFvbSqrhQbfo0252T6tl2JYOSE72b496pF6hwpJ+SIZsamVo2gO4anfkYWOT+x5VkFeVooiPfdxWU79/SII+/QpiD8Sk3+xjGRahZRw8ZDHaMwa7IPFuQ3e304Idgwrw5mW7RCRRvVgza4WdBjQTKF8jsqbsmQmxNrTqXwBZUVUtWBQlQ5hRawZICSBe3CA1hy0wjuvrjj5pPOY5QtglOIOyUODZef/VVOVU7XXDnozNxkLBw2GHMvngrQmNre0FGRG1jF+m2Wn9ZVBagVqTBEz8owfp0GuwlmGGAq/A3N7G7WPi7I+wII8htrtuBSZReyTbS1xZJ158dGQPKWmrt4lQkOzp2OHbJipnX2qT1qiLZNqj85Ru8ERvaRHWdb5zzudwHueAVmUqPufODVDlc/7O9rDlC+DVQ1zQKH9Tt2aDldmRa6pbrrbac2r44qmUpxnuFHyg2QND637Br6/zBA8gadrgMbenkJrNDk5AafQnxhsiDs6aE7M4MQ7OOsNyNLBgGt0cprEZfEfxSUlPG1ab34RDOaJBfdMjdIuyxaZ1PyYtpfIcCQU4wgcto+siDx4OHKwUcCpKTRIz45Z7JjBnGUNfPcpxxVeGtjlNGs/9vkwptXDa9EnKeRG5Ye+p2L6zl5v2L66Y/Z4lAvPWcd00fVeDt7+kONRu9OIFb14Ki/wEaMYusSakJo/1JgZQ2SgJDvi+M21m/exBy7VfO32DLYWGGzuRvOvoDk5t/A3Lmw2HOrjiRzSA1dKsjWEJXBrLK9jZrYRtVtCd2JdxU12iWw4A12QywwplFhijhU1dqqw/ae2TCxM30M1GUwudevNDdSNvkrqcYIEFJl0cEmCRb5HiY6YzKqWUZ30I+KvMqQzrNm6I+iNSdxRWRkv/+E6njMNRnpnyRc1u0jrEy2LCTJ6U/hnlTpB3qVlTneVGwQ5ZmmMo0qJAu84HrIKILqWDACg065+YPGpIzhiphHuT2OVAN4rvBwAX7wjQfksezcQxbO4oMKVX2RRn0x7VuHkzUK4HDJhzkBsgmH9OhfzIbIlT4UoFbt7SqFWOyoSHaiKPcyLe1oo1WaJLAClfg3WKDWCjWxVvTw6Vu95kgSgJ5hOuBl+ZFagPHTsUXogoyHdFxtYwKNsi28Gkwpx8EhjvLG3dgz2LkdUGGQ2YiI6pDWIEPMGlsPpeum9ayMyLEdxUyNmqtD8m0roJUmLLPjnts+0dpjhcb1565HNEzAy0/nqcmC1XLi2UH1xOi1kB+wTQjRkssJzETuIh5080/p9vEnESq8MNx164EZTQ+kgF4SddPVDOzS8NrRulxtL20RvilqXpaX01ePj5NqedD4ldzmEaiHksAQzW8IVK3uda0ZYhiy7mrJHAHkFpp/jGNvPaRBR6EMTffvHFnmCv+xFiuScRL8opJ+n06hGjBH+zC4eiaBRSYu6XKZG9RLQLLTxul8jR2KAr1QRRxFQz/e6swrJ0qGyMURyaAZ0mQXR8yAVGjZcsyA9fSCAPjn08+lrkz6p99IKLwjAeXWTtw7VRSi7kFSeu0ek/WaQUOXAT7kh7NhKTeRKmdi7WK2T/TCz2HjyRan0jQx9E+G242k20nOTC3raYfW/1kmXZ5iI8W17GjjWx7UzI2Vr52so+7pNaVASYaxgGFGoIKLLHwLqyzrTVxip9bIjsYD6pHblTx3D5Bgv4vd8tIeoeKm6zPCJyPSQTChZc3+TB7muUIF0RwYZekK2jGAmrVJ9+AIXzpdPIwCiNDl3JERewoKGPeIRnR+Ye7pKRtgVYqxQJG0/Wplb+4QfKoUSDzPZs37xWqNb8O+/PMEeMOnCwysE43rsqvD9VJWjccMKVrKdl71CgGQDzanCwuOo4V05YLUEhqBFsVTVWK5gyNHUwE28sVcK+J3Pql/Pr3DF4KaJPcWKCc7KWA7mApAZNJwvSQ2zg1O6W6/oU616NXa8iiX0wz3BzeUv/3PPT46JmiJOj41NDkTQ0FgkXeqS+Up6/WeyLr2TXtX5S4xrLECKLd7QGT+L/sKgnHRIxP6ZDDLSn3EYq/PLM9W0P52rJBnEVo4HD5vcEnndLcnRT/TrKWO2XPFX6F42032Que8UQPP+ohz7nIhLSkbfpkL4ZxpP+IAafyFxwZBlV6e6Q4bVY9fsguloifk7WY+lAZiDabjnXb2YF1z5+HOrYOCCYZmQIelHG40SxuS0QVMjdTN0r3HztwHIyLYh+nt1LJq6GFbyr0my5cVLADJ8HYNp+1F2znlBe56CJT8DiQ+VZixQDBJ19/CD+o2GTqo32AMG54BiJNZEMLcpQk68JrMXlsNq3BYi8XA0hOWJ6Y1O3ZqBPxfFwore7WBbN/Iye9HW/Netqs4uxCMZQgoqMXt1tHox2GlernHGab8ksW4lkVQUCY5nvajoBfbQldASNTiBPeugoYDLUgKGZVjZ263IdlXT6h8TzO8Gohsh6FTE3J+ebtClwCHBAOmVolhq6vqgYwIC/SVmaGKfFjZx/x4lhQY3lFsDuwKrsTvEmiuWVO+ngdvxCeuzvH4irJoGgRSqNUJ6qeZZkPcnh9s6pCjybGepzgJB7Rp56Bo3BEajv4xBKYRR3jOrx6hO7fz9g93C/x1mv7AHuzcjytcobUti+HsVDR97wxBIEYtV7qm+YiXcQUD5p4iEfLmUsn2Bu3LT0v6K6sjhuKbJmM1QURdxe/5oI1xs3ty5s5VxyZt4Ktc00ZEUwO4evCTr5JJ+pfkMq6mbACynHNK52fmf4XRdytGIBD8A7blYUpr1qxGdLZ84zqitDbh4NS3fvxyUaYRWjqh4LMONmgyAV8SnKfvgtV73l4plZaShuJYRFveogosHg87CDAkS/iZybskIlVLv3hlFSwuYIfCKuVWbmXUR8n82G+CBJdKj7oH6XMdxSS/XMyR1nYvxVq4XkD8Vopg30Lf0yszASczpMzqQtUBPf5gxi5I5HLuBSBMYuV6noLDiYGmZqKEfaDHlk/ZcEy8yOgC8y4M3GnpdPMZp9cVnIym8eE0cGy474icBKvntbkL89z+rZO3UkP9OcavKnQv7iBVfSBYEtGJuUa2/92b0VfCWk2ZE0SbRt+VbrVQNFdoZvIvnv/CJFgdKnIZAttJzp0cROaZdPlhZu+ZTav1Pmn2RGkdJfZwQQ/gw2ewkUEvbX3+Lv1+bd11vH4i87Jytmx1dY5g59t/N7vwLkqoY9iekhedmFAi3UbnNhKP/8NYpYbG22lG43XT8woNps/kKlBGjY/qaYi+FDt78cmacj8Lfpmdep+t6h6S7SGGr3x6EkIMImXkdjoIwnWyEc/3R1RfDbgpDQJTqt7WY89z2+RVDYs=
Variant 0
DifficultyLevel
703
Question
Ember is six years younger than Keenak.
Starla is thirteen years older than twice Keenak's age.
The sum of all three ages is 63.
How old is Starla?
Worked Solution
Strategy one:
Try some educated guesses:
If Ember is 7,
Total of ages = 7 + 13 + 39 = 59
If Ember is 8,
Total of ages = 8 + 14 + 41 = 63
✓
Strategy two (using algebra):
Express the information into 3 equations,
|
|
E |
= K − 6 ... (1) |
S |
= 2K+13 … (2) |
E+K+S |
= 63 ... (3) |
Substitute (1) and (2) into (3)
|
|
K − 6+K+2K+13 |
= 63 |
4K |
= 56 |
K |
= 14 |
|
|
∴ Starla's age |
= 2×14+13 |
|
= 41 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ember is six years younger than Keenak.
Starla is thirteen years older than twice Keenak's age.
The sum of all three ages is 63.
How old is Starla? |
workedSolution | Strategy one:
Try some educated guesses:
If Ember is 7,
Total of ages = 7 + 13 + 39 = 59
If Ember is 8,
Total of ages = 8 + 14 + 41 = 63
$\checkmark$
Strategy two (using algebra):
Express the information into 3 equations,
>| | |
| ------------: | ---------- |
| $E$ | \= $K \ −\ 6 \ ... \ (1)$ |
| $S$ | \= $2K+13 \ … \ (2)$ |
| $E+K+S$ | \= 63 ... $\ (3)$ |
Substitute (1) and (2) into (3)
>| | |
| -------------: | ---------- |
| $K\ −\ 6+K+2K+13$ | \= 63 |
| $4K$ | \= 56 |
| $K$ | \= 14 |
| | |
| ------------- | ---------- |
| $\therefore$ Starla's age | \= $2×14+13$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 41 | |
U2FsdGVkX19b0Ma5DReeq+Fq5Www5INi/ICWLzycNLcqCAebXwW+AUNx2B3wmUTiwKenSfdbHYKL0gGFO1bt7vK8i0xBeVqCOmfIxaiGIMrBGckDEQjOE3yIa4XEFKMzWQYSilxay8bHUws40tX3u9OPGPOgSFmU4msC3gfVW28dcsVh71BGcCjTxKmUMTNrAbN2S1uJJq3qytPIE8VS1jpEM0YfHL0NVEk3SHWWj8HZDMx6x5brfk+pryjboVwNtGfV+8tYvNGka0sfHyD/qa+iUIgHrnWZg6u2D2+YVYiKGv4LuPxsesc0cDO92VKeL0IoT3zxC6e2qcGfrpJL22L+Dvvd+aWBKhlhxr1UQ+E06yrqFgzduCYsgf4fOt5iIImgGoCc/HE+aQ1/8JBYhbUlatbEXMZy2k7xM/6MHXaky16fz0voPnw4CA/kmVMrMtGbeBa08KiUOagznLMbBwCm9tD2na71terW1JAJRaSEr9ViEgSGsUTig/s/f5sbsm2ToVxTSMgPXP4GxRrIvKH7EF/F9pJySSXJLLp0NS37B9wpnnBnSJlAGFCkvBZULpPoBcg5Y+KskxLGPtqYjT2bEBF0AvS8FFNljXPFwuJrJmCo9l2MbZ82jo6aKeMrXwIQY9XzfTpDtjEQjNTNfBzs45nULHbEl3GVPV/I7iyjaqMmOqV66FSio0yAkE4X9zhunAqltmc121ZNo1pFfwt4ID4afd3MLrXXvuzLp36IL2yl3lyRN3xrZIPWEiDuGHNe+Z6uawPk9rIIpul2NlwqRnF2DoKhYK5GhXs3Q1Qtc+CxSguthq5XpJWcA8RTS2MLgE4OH0FqAqc23yoVzQpa/EVFrGRFKE/DwfqKyY3RRsVI3Wtv4iUbZJMh6z+mK12yxSRThgoCPJfssiivbgwr0wVQcl04NWNsh6cRe8ttRTQvGmtGMHHxVTdtSUAiEZFyHW8KPD5BhB3Wh0tuEWFYDAAiWxA8xEfpIh7UXSJgTLZuTK4DtaZ44Ij5K0n6vEsCftIwhzJHdXzL+Hom0xE6BzsvwJumJjljIK4Dx2sO/MqED57EWLyuDIy2ZXd2447E8zs1iL/ETr/zwq2eik5qJ3HkAmDgCi51y28vUcVxMhj9XjdAs0tegZ5/OPy1/BayAZuJPhjpK+lV1TqNsktpzgN8Ckely1ZcX1XfIav1zd2sK5KRm32/J+6Ltq4Pdx29hELDdxl0PrtNLCwf5ZzI+7WlRFSNrWaU+v6FryuLrmJAQ7W0b329kCLwKoqttlmdNwTBBYUDBzHPlRjId0br4yyKYIAiIMcf/WuPZof8oG8lniNPQcB149XJhwmeQUJot9a3KeHHMQCrHaTPZlXn4EPBoxl4gMR/QzxqcBKD/w+3/t3n+8tF4Zg3VjmNWuxXwn8a319m/ENhwv2Aak+cg+CGHzWXm4xoWRIxLAHWk1iOwkeh771Cv0w4SDn618eFzYSzAr65dv9ZeVBzf0+fR1mES21U9PvPsXvGMXmiNVHu80GlfbrXlHE/7bywkMvicWoaa1UAS7eawBI8R0QL8cxZtI0UasJ6s5V11BSqJNpjagV/zeFkBkW+vd3/VQQ+FuPQ8vB/PJueEmec4KHe1YyY2DrAWtN6+j/1M46PlgNrTvwRGewM0EOnLbyacz2zX/X57d6ugWH2SA9ENfc1+JpiEFtZMI43WBM0sXHPHJ96BU5oflcShJhT9yvlmT9c9QUMXDOdLZKQqJRvTdiuLdvHIhjHzWEScOcHXxNCudnVLJ/ACz/GPbVPlUVpJ/t33NTgqgynLM14L0w63/v+mmp9dNQWTCx/uhvtyj6DFAGgbLBflgJGzmx55JB83fBDJFPJJq3jn3R3whmmgkwC+tj5jMs3my1jS0cNHYRqTL4qlLzblZQhh+6MzqhRmOm07WrrrnflAQ3MpkOLJ9sR/b8u6DHZQP3LbOO9ThGqo++rmkszqgeNPz0DrnapgN/eMsqwsloqOdZPcNTjSZ10JvDgnZK+53mfHVZh6fP4MSmHJzBt2vlgvtNUD7wftJEbyWC1k9QfH4YTHs3hw9MmESVRDT/SsfbhF/fzCE134rfGrJ2aHTb1ewmcaO8UpiZzdQ31WXmfNlMHifav7/vWCCDORVyw4z/jUA7svh3/SQ86z/DLTwCPt0s8tFsGWqvE6MV/Xr/A4XTFxmxBCJnUnMcqu1M784V1cPH7OlH555Y2yJioiQ0kHTNE+u2LTV4kpjIRW8LmvB2dIQ02NIz/DjxYHKKgK37pxFxfhkz9LlFpeRqG9qhEJ4SZgTnWWq94Pf59hnA2uEDBsVV71+9+FMOGG1dxyHct3t7hTXZnQnk0qp1iV4Yug1og3wHbOyaC5VWqgsLRRXFey74MAfKI+hJLCHYjYaVjqY5KmrJNGG6CSApBuYhDmdh/n7W3ns8EAr7ADRXZZBl522pgKmpFJ3Jq9cPvO7HBcZUXuWvRBuxbZv5xbFktMLb4bI0Fc+r2D3cJruLjKusuh9gihGEikZp6+FOjIpTzSl4hVsAVeQvTXH3dHhxTfChp39ZAgfVbLJCqMSBAJuwxFX5XtYmurrU1glVpdntW5Q3tIQjdKdRiI0BgSw7X5V/INHUbDU0YOufzE4A2wCCNKxr+0f4jzSqjyFDsuPN+WtXp+9Pk3zfN9HWsRmDTjA1apzYivAvSq23m3qgo1mB3Zz50dbmZVA942rryb7fH1ggjCk10Fi8+CobzlSmZqpYkhDSJZJ05ZEsXOx7sO3fyjL+eOieV/UytYWAbSuOco8Crn29vmirqCWx4LZLgYAwVLt77pk2d/b/kzbx75YJMYJqKETOWWXCV16LlrpWtTCdzlq+vO5BZrEpPCF9z/U3xrUFtyLC4GuLc2optWZdgVO/gz8I7fB6iLnHHMA1BOntMDggTmOKgdMueoqsa4TSuNL1QW4C9lpDsniEgPGmvOD523Wpsv3sOkgWNHXSrPlo3KlwjPhMFR2U3nnr1VLfpmTkZlOjNGOgHuUNjNcDx/09tSdzsHRzEkIsnvHeNM+teKhfSjeOBVr6EObEIPJlQaeZiL6yatayDk7LUUOHtldyCgWhS9UNnAvrMt8StlVvBdKnAQeBjxo9ugSmv7M20jOwK6BrS64kNSAw50WocGfXnWPNMGnrdrNstcAit8YP5aYrLgRO6ksphl+/jNjtZAzhz766WLSlyYzmLQ1UUvlMMnCzl54jEw1RsODA3cGIgni0sT4/5CuPfPcw4al/Tb6bH0nACpSCVDJ8jFBppyV8PC/JxFdhga10MAyCjiwAQGfNjEt9Q31pk46aRluC/9ZafqFwZ9F5RvtFwkwa88PEmn8fN6QJJKmx6035X6mO2GbVWd4LMtr4g00UTT+VECmTgRkemri/75JLVsDQqpsTjEbLcCSq2A+CHml1FtRZq2b4skDFsI+heFxgXthNvBoh0WaiOBdRHFKbywJ4nwKN9zTtSODz4yH2nSkVeSBPSlLBcfJ1iy2Cl+vsFNNHu2usJr6gWCxkUX+cCQQJHzQW9j2m2ZLjRKAwNGg2lBCsbjPLVgrJbRdVtdHV85oFfLIhfIWiAyJx0riJ3wsWluNJoBhrAZWcTSb6Jrr+OuQe1FkJ7jeirp0WCsSVyJEdxZ8sCUgC1psMRH1sQC5TgyCP2CYz4FVPbOl+Huqm9i6nvd4syj0E1faf/hMo/WdP9LUkb/ZPu2fLSn+qbBQX2eiAfteYzy4ui4NWWRCVAUZZRTUGQ/RQh0ckKFu8WrVy3c74S8jU29fC53Y+/fOGWpnGa9pvTduDnYXMgLd/DkrDkjtSu06SS8Tsa9pldMFhilOhOxsmEGYRYktYJC4q0RnNfO1vJ7KDEg2hoUWYX3GRO8LndzREswHJmqT6bPvt+l3wl7K+4JC9hMiG/3JkKmA230IRQ0HZtrBp3CXJQRlcrGPhffDMot7nTi5EWs2OCtWZ1fB6plOBysnJOljzZzmDA6K4iqBjYZtPYrerVqRx8UoJSOnH/ATdXgU/tS+GbfidQrV6YRZeqRZp/okvSvcCFyQNzTinAdOEKydYN8YfrUUSlt3b1miZJbO7l6gpM4Sj6ECL/Rcns22bWJORo4/y6+BP9MvC1pwhCWhhcxDI8Y49+e6pBA6sqaMKKqrY9VDyN+QYB3pbP4S6yPnaF2nw51QV/A4iIQ7bgNLmhuFXYkFh0DOf6hu6BuJVbmQ+/y715JUAS2JLVhHMxeJ2e/ZcVHunIOrlNaMDQ8eU1xNEZVf4AfACV41pO7ee6dhxrOua+YuhOcsNxwKaR4w16RDof0ywP978t6jcEAfuUfgk1U5ZbwsVTkS/8U7V0JhN/bgdZ5ZaxDOVJE2PBz7yiGG/Qg0a6pqpzL37dso8fpnQ3s2pgvY8PfhZ2r+MjlG6OLsMX02l0OohPwMovu5KOVw5eg1bJn9KEM05QUjf5pbFA9ZENZ3E8bZrM63hHzaCPxlcBWNxBMQCRmQvqAzIeeVXfvl525qCmPUr7er6XhCyE00CfEn5r+gXeN4xcgyXooEYXYDjqKi6S/gg+yQTTd4RFph2Mj2VM1PPeSsp+MNWlUxdDvMz5buoVIe+5o6CxaYvOjk0djQsKfktC6Mt2Zt6wT+M4kKlEGYZq4Xi7b1+hhKY9+hqk8LkamXqk/ZkchIB15bSRCxZMiWJ5UgZAjJkQ3aEe8Eul+080fPDj5eDYiMeDnH5bHMr6M4XBqS9Pm+zbllRlciCYGyop7gmdFBPcVRogB0LmP4qP8W8Xb8LppDZcC+JNJBcWq3rJ6WI9UH2DXPTn7YBMAxTiuw5khF8jdL0tcPdHNv3d5lgLvVbMk0sv2D0KM+JP8usnGG3xD3lUerAm8Gn25MSsiJZyA1eAkAKuz8mbADKMInJ1f9DQ67V8Q/jw/Uu/H9nDEOCmUiyspf1rSkazFl1SjsanWgnFw5RMLOB6YW/Fy/WvvSNovMkOYQFUp60kFzBfb5BwNAlGvxd5GipSgNB2bbgPKrIcmT/xL+/olzYqr4ZqEgK8DzTW/Y9If5mRYknxH/CM8ffJGaCXbW3SmlhfNN4DTksKVb37XhiKYLXtC7YIUY5+R+dlT+57l23mvUbyxvbDAY10G6z8bl5km0XB5hl7iO4GbwG8JS0sB/k6BbOuGxuv7HuskKcJgVlPeA6HxNpuTV42OiWTCAt3F3uzwuxo6nTHlRWRP0+kmj57z7OcRzsavPqeS1WhOGjgMnIzOpVNWjrw6ER+3ehaMrsIB8hSXjg1fK2MUy12fXCjcd1EpULbXQJKNSeyBqoEwrdvvfGGMhbQ3dHRZnnPurouCyw8gYMqjOLShLMBAehq+cqeqqikCNP9Bb4QUKo12o6N8kZGvenCyFtdm1GJlacLJmkjPB788I0kdSucq+y+a3fPp4BcHkcX3tY4LsHlVRG8V1hLNMP4hzzsR7bD12u1kP1GLhlCboXXWU3eySUAOxBCFssjtaJyK+bYKqxDYWwami+7+9FIoZ7mOriEruQ5BbST3pGnSoOZefni+RjIzXAhHb4nTFw6xNUiykpJrfJOiIDMQ3x/I375ruMsdRohzgTBzERvXdZ96LvXYJhzEiVaQnorSSTPUukV39yGrPSOkoRHYAQo5fH9U5XvZytZw8+bBMCHcjXzpy7N87qkUzm1kyFlpH/oR3CXn+HP5i1Z04+12sC0seiSoNgXlRK/GJWU0KzPVHqFivWRESkQiWOflgWaWd8x3yauqZ43pwnkC1rhUC+YJpqiXHjqDpofuS0ciM3SotZATrOoVMyHBo69vCvQpInSakyFa/VchAzcUCufeay9jEuDxrwk341YyHbJDEqGT3oGeYowD6bpVmDlaSLeB/5OtKgw7WUy2tmx+tyiyPtz1JI5OtsCsJ1qEgEE2oV/3tyzMpSmNkykZst5Y+3gOF22vJfnlbcilOeGMPiydqkpTnELpMhDwYm3M38ZzQUJR5MZbarbje5gpe4SeQyVW9Rs7nHHZYHd1l/bpZlzY6lLsz8hhC9xdJ6xsg0Jxprtl96hGnzGcf216tiuR3lpE1ecxGUPDtWdTbIrJ8Y+sB+1/kH2JF3uKONC7dK8tK6L/p0oa9TM/qbx/bcANK49NWrwzI0r18XE8sTN5Pj8z8GhsFXarz8EFUVmzdrdPt4ERpm10YOn+SLEoDgSb/PotZwH0a0nz5Vdg5TRXVA7VybVtrklZO0em8C/MyEAEFHleG++hlkUBPKts44/0gMKNbG7bCXRgoTBYZHFcNswjPqj7PUDx9LoZsqTajwqutMrnTNC3sQXFwGqpO6+UJH5OzsdZH+RdU10TxffTjre6/XJPJfEkgFuEH2pLf4yp0vhFunVpzTbRMf1aAKURWK/c3FC0ox5DOyGpT8uVd4nFDascQjCOgbBnM+u+lKngiPDt/Aj3VShrlTUuhRmjP+lubjpxaBPZh2O0dytZ3utknkHCXdbvu8bzGWJeNjOIRww5sRaut6mkUQQjTGf3KV9qCCE+1oFVYBnpHcIGUkeZaJUuCoMloq6auv8LKkGWCmtohPCeLgYiyeqBUjEGn31Tn7El9xQwNTCqvorkzlb7LZ/Fz5iZJb9IBnyj9DXsGNs7fCNK9IPWkEe9ki8WRQjl1Itfj6fWhtihxSoot3wpazkC0+zeMxOBIAMN9qFXvURHnuG+z9Qmgq/uLCiyNY2a00eegK0Z+WxUKGxcCFAn6r8OzHO6oTWUvMSRsTnuTLYLJMTWQCRV5NP/DEFwMge1ogFLZlXDQScrfoY7GnK7nrmKW+OCLXJR9+oCy2KGXvnvq0iuR8eSNI4vFdHl2utOjXxdHlH9cnTkhjvHxZm2m7EN933I110qkrQc8VQ7la0uBMW9UflI5Py5XCFtbJGYtZxHxGS6TM7eyYTF8K0L9pzJ4IQ5iJeiNiHTTcGI4W2n4nPMx7FlsH5RUUPTLc/UJadVTY7RZrbQhpHz18PZ++7+3AY9InEyN9WCDN3qmAwiW3dWnbQUhQPvq1+BiQRUsxFrH62/l87n2Zc80PYwrk2IyYViJjy7PJIA4lkb02JJG5OJ4mLnGTOG5lVlUzhOPXtZ63tm4SJK9DjFQWzSvIjSpfrtIA39pMU5dJGVonbpDVA7GNIGJNrDIgglg36AfjWLaDObY3EQQn6w+rOoUSU9amzFKnab6ZCwB36eBgo3e0BX8++0Ss6ZruN8S5EeW83g3xHcYx3hseoGVZl5qmrL0RbHacDi96tc+1oGe5ywj2NoUh75h5VlFN53SKKc8oyI1oAXTa8ZkqH1k/H4PBgwBeGZH1CoXrhLlzOZreIEKdFy36pPXX0RXfDa1Fai0dJznUbxzm6Pbvnsk3MeatgeIp2NAJVUXh6Hg2YnxNv0G+ULAkyuk7BKSp21nIbaqkhNgK46zdfm1hBWOwu2+oiKoo4y3bR4I3xqZNMN9olxvx+u4gMwuRpjnWjzXM3GdkOEl/5lNa2ZXOAy40PFnwMX2n+17ffbM9AVOdXkfP1awI7ojZAKFXp7sK20/4FwztpBxEuaGNM0AOS4htw/azTUJmJ6e15YjjGPOjkyBF97c20Cp7bvbsBHi6fU+1F6y43gzVebDOv18Ws9yucatsPynUTZbvB4o5+KR5eJxKX1uagcn9Uf18U1/mei7Sunp2jSbofUWOAHL5IkeTkRlDB3bZ1/4EfFPlpzwM1rL0UbAE2T8sAs7u9aLZycTqRJGpYN1//mb2ih7vUY6SzKz7uVjzgZ8Fq4YWnoIlO/RXzlQKL6OlVZ2523Xa7iCW90lMY/eXwSZ/b62yjSqSLP6meFlwIHWOTpPIOKxbfBnefG1FFr7+dLgZZZGggfpUpFD3hBVUuDY012jbcm9etLIRw5LMDC+tLcZ1oIVAHK6bUy5MOMy3ZqtesNoe0rfwg43qu0ZF3WyEdSDspg/FJDosdZyqaXx8b5oRfj9wUpzWSNZuRxlP+Lnt6FaMN2fMJ0HrhfQBhInycfpbNrsYxtcrdPnvPpCJhHd4pdUDrqeAqKpaXkrE4bvTo7ITnIoXUcLPXEHnpq9A5xxI9b5KNPY7SSDuhkYlAMSgTOduzHBRSzCqzMTga6pzw2DgpWN60oedBvulffssX0Zog3zWqRmTknO7JR1QF/OtpDoMNnJhGFwIhYTnkpgWzN8DlRO1yG1dQvAqdoL6veW0Vc4jOiNi+wU5JxnJvE6NdOQZcr1T0cZaNDvIbKLlPczA8so9qKSzFCT6t3j2qRwZCracogK8gYjeV6U2dry2HPOmLZR2Dc0MVTIhFnWway4ouue0jvrKOdxkoBbNCEGRnkX8jcsNXUQ+lursX6+4CdRdQRUye+Tvku0iAw+dIHLkvVjmGLguAwICFYWye+1Rrco/oGKDlwbpZNzxN4Zp9yUbwWjK0LLPxYwtYgLyFDvVWc/bNp2zy6d79DBPgy2pZKWzwwRSq7fbjeAbRyQ7RVbXaXMd4c5o0OdGcTn1yS/q+RpkH88fQ4mnJCixBZGmzly77XfrBpPYCDXtMAHz7Tu2goidM3tv4dLGmssKElaAq66mp6qpIO8TKiEJGO3cjnou7Yfap1xgzQQNvKYWdXGPY4MezmpvHZHE8iJqrVQqUW7qjLm4f0WJ/QHBQf7UPFiOtxFYucF7iN11oe7yqW24m6/dgLzjgXKxhhn0MJRzaSyOhfGbUQqVeujHNuKeggEqXaepKb2rquc3xjKIJIqHjIOUmPE+twtSCvMA8SUGXZlH6yCEZaFpaD6QXTyDvcwBsCJcMzaP+UnbgmDUoQNC4E/K5Gd9yOIHTOcILtTSPjgUzEu/qtnCZWCDn7X+miRnKFIfUGbcccFkHcE/BJiVdageXYBB6fvVKR3Lg6/sAhh8oa3DGEEh7/oxXs5hXws2GK3nlQkIy10ggYumBR2jacYjedw9a0TxEk2+gBM0idsjGjpMMDCcD9HDH93po19NGGqhW5ATMuP0DdrsDu5a+POPCKcEN7rismZw8Kryr1Nrr6iwEjCkkvUcVF2WE2NhitL5quW9IgYx7EoEzjhqHWsmlR6AQMnON7wxYV9cp1S1cwf5UprfO4iA6pXmReaYC+eEVPG7EtcCUikqSeACgTHznbc2BGZwbKyl4t72iSjcYitfVyiqbnZorCwwkSQ/HAzAhPQmM6SgugXliJe7ggfCdwGC/iHMRZX9bCenhN5H0AKhGrUCUHJLpNaRppAstItQuJmVQElqngY0NpqVJojuT9lsF3JWO0LYaJOzn9qdNsQmkutdDkNi/CGrGe2DYdhu1VlAVM/FRJrBs/kcCaFVtMoxGySLkQD9/ndJcE3c1xVreGM2pyjjZpC0pZNKuLjxfrnNGW3CTX8LO51T9dGsP6MN5qd/ru91vJM1OSOzl/BPhdLbt9QgM+WDU4ted7Qf5l8neIcZqDnCPb6E+PK7EYJfdiP5l1bt/Wbc56r7OjIbGqzJXSAg9jQaoRJ5mTgWkn8PXim3Q/qAwoxBTX2JP0Gv+kgRrdsAK9+RHjlPITmOWG54I3hA4YUnCaZn9TOuY/Wq+l+ODTLbKY5iujwNt+tmc2u/lZ/wq8S6aPWiPaT9jKrQzONMoLwFMlegX1gNmigdJVsfHC/lja2CWu385ChdP6mmH5y4+WINcg3uTVKguhAgnNYWHawb3KgKwYvCdNANLpKKmu6sulwARMnEKmyXsoy9TKhCsAwTJx1bSfDoChNZUHYzRwxWFvps6ZE2jvyKkSv+UJLcBFVKdYSKdBulZj+BBJOWS4UZUI0l1nZoHswUysrh0Tzm6Cm0QI6cycMLNU2KQab7JRBBkKhdjkZolcSGSEIoWC+M61n7kbWuBpwKDcIzWHcnaVOjmSZSPThtjCgh/DvQkgxFR7h6VtxWQyoBRJ+brL6yywlJUtseiyncf7Fm1BF8RUIRAVupSrYfLXJgPSOO3YY9lSxOJpTajKfq2ClXcn8rR2x81cVksNRS+DNwuJ74JeaVLSjGFdaOI8pfmv+0d1Svn12UebRx77NM6RKfUp9GMTQKbDo19F4EBDmGqUrKc0rA77ucvk7D5oU2ldCIH3VbdKWHogrFLcNZWzwASPauaDR6ML3McRpgQbRSWw5r94LXc1P/gQX2Rva1aV0ltiF4D9E9HXn8Kk0S1XAbLdVoZbxNt+4HJ2Ej+tqU2SJvp/qy1gAGQhB+CmN92GRUDWIzPQFD0sSP/FzX/2arELvO01tn5b1npA8w1QJKe7XerBsAeQpM7Fq+Lvyevl3AEnZCXKxsf2vquDgZMy2c85uvHNO3nTgsWhCywT9yGUlksau0VPvPjsJnPNWxbCiveLmclpU4tpsDFBmuDbHAig0/6q1d2v9r/GbnOrOOFcDBFooU7u7GLUoVeRrP1I61L+YLjJoVb9yH/zmlM8xPcBXJUkB+jf4nd4DvGyTUw0xIb8FpvL7heSQIIqtHfJecgGvQwvCLbmr3hKsVR+wG3R1dkPg9aaKN6RxhyNnjBVUd9BF/E2OkrrJT5rkWUTiWMLK69+DC4Q0N4wwWkg6l2sKn/kI/TEsX0K5SuACu3WNJnFknws588ySNHf0JiIj1IVjdJkroYvqEqiYW25XS0E2toKeJ2B0gfrKJPQazPe/NTv3p/6JH7SqiQCeqYo8e3eJCg6oWMxpFlIQGRZZu4jqSsfVKxTOSBGKCfWNf3WC38tek8VNkgp9Jg8V+BLlmAe5Pd0woEJN1tgseFYWXlaOT+h9b5p+2zhvqOLhUgePnXG/MJkNwES5du+X7TLeSzM7FyjQ1ffZ3DuEfSzpNwnZq65QaaSUO0TjH6Xxp51/5Ux7YPe9+vCC3i378fdBgy75S0ET7tSrS61W95pRagWzCpXOjWx/FMARtAle0J0PT0XCKP/fW1Kt3Yy6nkodRmGvMWJevdG0eOTobvjt7B5T8/aYE+cbmPR7635sauZ63obW7b/UlUyAYrTUN6Jbprjb6w8kikDzao8Vgr3qR+ojBFqZ7oy76N6rPhg/Oj0j/ugPee2Bv2nnCgu0Nk1nXPo68eBj53ftZWJ25OUrWGCcKGNA3WZoU+IntfaCdVogAaSv29MdJT8NLN++rwMlwxlf0HODHU9pUnIJr8h4PHoifbm7ZoVuLt+x9wA2XEDFE+Hw2Nqk4fULs7I/mB0GxU8FZ5ROq8myeM3tOHVZCtqSJT0MV1y2iXTzoJQ9BohS4Q17nHH06xoiiBkcxw03cmsSfeFCwMNSnAyU+cJRYJzSjRKjTCeifTvC1PceoMcNkl5MSBbOqE/LZcDNkrvKmEZFQxWD+sYyyXsbYmLKuiMQ1PtjQwZ0R/KtkBzXtG+pNkn1heraiQgxKnhXQE5krZzIGQxsi/nscEptVaT/cxNj8FM0RVVYjcAtfILMbOGlKCokTbiEQF28DiHl6+W1tD8zQo6aKRyX7PcFZCjOozaKH95c7cx7IjJW083MgVSk4wenb7/wm23Yf/+BGQPzUIj64EqW+kTnyeNIxrFI1V3ybuAwQD4tBedepLW55xtAnYKy9dGFHbkajxP7pcoMJV59SW2b0a9RP8FlhzNMgOFHc1jSbste6Lp2LBx5CR0Gx6BsaI4Bbu1e4S32WpJ3L04KFsj0JIHtpoWgRQz2GoNB4+NJ23ygvyXTif8NSs5Elmrn6eX2Q0gvohAXFbr1iOa3NtmnDfzFTGmpVr7hliVi46VnFq1LGKRc2fssm02oGbKlqiH0oyYnP0iHceE8XBsWhVx7TGo1ld3pJDCZq63Q5/DVGiWM+Ifc8YF9Oju8rSP+/nu2TjF11ZJv3t29O3CaY8Qbsfc1TSQNMOrpDsyWgvzehnqmAPSRkZGer/iykwAm5sJ6SeSRzvOSOCuc/k/i8t5Yq2kNcHrMdXdgytp4SlB4oEMT1eSIgJroqcxqlqpERNwzM8fBcmbes4KtrUyhHpSDL8/ddA8xymlCqdltNPbeP71HMVZMXv3otymFtrhDax439fCzIRgqvDPEvPdkvIP1wHNDzJwgB0jslCfqNQ4qkup79Svi/pg0ymhGm+dKWQ+ZEK6MgCh35KMEjyw0A+f461RY3hHyjd4rNG9+Y+FdPjc0zS6fHXL4au8LJUb+AhDZcA8HTH7WcfF/gY5eOlPbe6iEMySXXHowB1q2mI8vgU1kB6+bylOV7LxUDlahrTphPfaiAfba65+NY7AbxW2a+rj9rXFJva/DPe5/zmqMWBtkQTNEaGrTHrUAIIA5jCdE9YLnCqQhTordVR/6yj6spqCIvDZuySTPfBVfXBCHSvzeyOUHLooVdPwQp1yncRedzXgMzqgjgtS8d43f56l8gw0g6q6FJrMBkFSsjYBYdy9OCQKkBN49DD9fzxelmVHaAqtyq5ukVWU96+zzUUfCw1uOW6ECF7qPFlsL9Oq+efXCV6WMokOURNLFzNnu4QCvbAaGpQGpRfqiBn6lQORbmyLX0vtPOo7CUONhK3aVllETrcD1RAQdj+v7P1448lGja5udyN6MdnH1BEhYATbmWNTU7uV55virnNEuVEXvByxJUmFXscUWBeb7w3kd63h+2cPb+ijmjUBNI2ACSQEkBPZofzjuyxWA25htNSJD066tDW2aZXNr7bE4M0Nsc7upY7rubulkzj6sYNNy1H66MvOULlH8/tSt1WH95/enaUsjY8FVoMrwSdwN8JDIUAbTcyGZ0S/idd/qFx5TmITvSr4eeGJCpHriNGHh99uok0Ls9vT7vgUFWtikPKB7MWcFSRm26R81+edafEnUpbQpViq4ae9xCXpQNaEpwqpVRUssMnWg8wbeWJke4Zu9WLH0SEok37txAea3PSbAg+Q1+YPt4VaanplNSrYg9oyj2i+XeeK0ihpSxsblQ1q4mW6jIG8LK76Bb749s1SJrts/Q0If3h77WTyiz+F9N5cERlfHbCxDdTQvdiY+PNLU+wSrQqGK2s4yJpFS5TbTm6I6W0igweAz4uscFsllhA1rnBwaWYXvO8Ob2ws9qP+1xR6iyAJywxf0KycJusyQlkcVOvBTAVP/dG6YN+alyNa/evAT6u/ARDiHB2v0KIG3/OeoESWzWWv3Ou3lt+u0QWWstldhUTZ0gzTQV509r3hGDq4g1D30JXvblAN7NSJ6HZBiRbecZ8pc3X3DopfnqdWjLbtWrE9/uFaQ7R8zZWiN5oAcwglfwra48na0V0XKWjFRZeFlcjboUTDCIQZ9Ige0DbhNxZUUY07CE1/JlpW/lpPrGKlKaQmEptWfWfnksI8fgfjkVrGcv52VnfgPTPININyDy437pKDKL+Qzc4e5RhGcFw9M0uAxXBPq5AxxQo/d3kIJrVO7rqQygJS8EEv2rBBdHXXriI+6EP6ODcG9WoN5DCFqK2pXddPzgS0oYyqbuxFrWJ8lZLiDTTFq6pnUEC1VU5FRZ5zonD6vKmBNZGlTf1vZOT3FpKtsxVEdXaiikYVFj9dUqqjNOBEb7ZKXHCG4jAJazWK3mfh6L8vh7cX8zQDWfruTWeHgQonWfQ8YuS1KGSxViZCTmaghgtf0AqpZd3jrBPd1I0J+f5Y6VmNSlIykj+EepowdMAnzoiYc9Q+6YqTbd2+31CTp9irLCDVI0ZnsXODQq6Z1z0Lh6iYXh6d88E+4CnKp5+43XbGKH0eXug5FvzczrewJnomQyE3Vssm5ukj8b43XnUiTcMddfFq7lOSoWQQfVR0/aMpgKXHvmi1WY5RjoiIBfjnQ3HDAelEmxZBqoflkUxYYphhtBsP3HvMlS9cLX0TtRFx8jJup5xAdvQETh8oqyJpzPRLSMGdcG1ZMfgYbXDMvEZAOrn0m7iXrC4gMycYw4hVquNzHHuWVM980I6q2OECk69gJfzPnpAw7ij3E5UkA7gSuO/g6xKV28HwLBaryPONfZXrkOZhW4saiONvArduDt3SjKxdM1HvLGI5TRY6XGFZXy6vOwPc8MZWtovlyx9UqtWgy0SOxWMMogrxkWxHYxHRVioQI0QO8MpfWdv3jnWGGPwavnHbGhsFv11abtL2c9FrU0K7YMpg82v+V8hzXBRIoxdyCHMiq08Ss9PXEWxA7wZDPWG13Wxe+IeoUDNS/UL3zWng2um/GIqORkML/u99apSV4H8dQv4TQEL0s2bT2UibUvnUogNuP0Ye5r4L9wy3A8SssYwmqRF2muxVp13tpkn9BYj2Xsk3bwGqsrEqL0c9M6FluRhiGju1B+wsUQnFlCbWTJFdJ0iekri/bQZp1CjA6s5RXHX9clSiMHKptowpxRY1byPdXM6jGNa4bKxyhjD0JW0uBEJ9HX6IoJ42tB7Dzj8wDaxX54uG0ZMsaqJ/Alr8bUyFWMkk2LjpH4Yth8dOEg+0OdzuvAAtGQLJc04GAK4k2WNqLa9mob6fOYFWlyyHVS7NsPVjmC+zPDlI+k9f+a9ZvqAWo1/C964IrPQSzqnvnK5xjsv6JL2KXEy1e1AhiA4ekA8sYiTYL3CVVra8MOveT751GWzXppbe/rqitEuNfWfh1gU0PdYA1Hx+bh8LPLo5MIg44u7clkNeWzPgwTFBoUe9dZ4CjgJ3SX6WEPTUlivclFGjyubPvjmpezcfapgx8Uzvomz0kejFMS4Mhs4yR3OkA1XY4cp9qEEQdSdsvJYp4lJt1PFQ+Fc5bRrjGppfhX/FRKERDFZ+jzWC/jPZe8bUG0Iv2Kz4NeynH3QNphtFMdIqLN+xsmMQqFrvJf1jujYWu1HJbEY9xF1LNNvMxtdevBRiSNDLBme+SX2VXIrWl5v7S6U1H+WDJR/I/9/IWh7jjnS6sJq4BPLpn9OUH2vSJrNoClYKwNCKmRnnOUdXZ76Jna5Kw3eFzqHiuRwfRhq1iESJKVVrGJLxrSfoUdhgrCk2agnZGVY9y0S9vAYF58Uvc7kQYBotJQKbU9d/hEP10ZfitOGkFR/Ds1OjLWsvHvLC9d9HjEixZZYtSTn6AJNJMB+e7jeWvOTHyGPHmAvFNtQOYT8mg9VbHaXCU4rg1fyvKaq/kYB5L3hPhRUuJLrc3kC0vWKFp0Ns0CHtMtKd1R0lbMF9NXbJZfhw8ITRNk87cvPEuqvyTAOYV1wG6HPPMoengE2hbyN4pCPL0uOTohF3L7sg9b41pen1MbaMbzVGAGz/7QC37mNN0GcswkjYulyOoO/pO/asTu6vicQIDPp/tUu+XPHV86u0LyKpDDiYuZSGd1PmHXQHUhrrrAIZTR2kXBQmm2OC4wbXwVo2bwF1StHpPFBL8hWUGIPCt5t6w9uEsYbMrCgfSzpbyGSnYLTXuqTq0Ed7j1UIUPXY03iHS7pKQiAffJb7r64fRyhHbMj3wWQS6ojE8c34yElhXv3g+9gut8rXHlYP0hx+8Re5OWrYgxpJcAK5sNhy1AkZz4PmNMbs6Hh6I/aWbw4xkB1QTPRNY+OEm/8EKI1nI/9euS8Fqb+W6x1LfHY8//0SpY8n0OXT3MxCrsMHXTnQcea+c2BepJ9PcNCjJWUgStYGFx4zUCkXNYR7PAmgkDn2utyBh7TQtS5FLwLyXNfP95QzrjoGrAFBqT86qvzrm+RESpNqUQutHwvepyAjIhmIVLUBZSoOqEepjius1FfLG+4YxWIlarWu8SvhOgNRNmTSTp9VvcgML9ZkwErExapDIsGVwzqHYxckVp0yssRS52CY60DWiHMJRw5I7vaqRUVffP6HYof6HtBYXQG8rQJ+JCcZXMK6lMajk9osOroZvvoXmh2y4aCBj4miqisQ+qWxOA/kb7ubtybQk6px8+YrGC90g0OlnWS2AvmllyghRTZx2v+BW4qq3GTEjPYxfwEWKUSnspNManlQIijfaX4sguHf2rsl6iNDP5JTQzDa7xECnXrbOmPxh+0Zv3d1RzKXvD3mTHcLSf46iM3o8/PeuP3F3+yq1gzGVTy8gY/7Yap8r9l4dK+7yJeQ+/AmShlJpctsTzbl/4kCvx2/Zm87pQ9Bxw9YGLiEkmNMK618kDScwCK0teZyzAxu6ZzNwEJ/czbZhKa8A72MpLUUEmGocjrg+S3vQMGb1mNLUTKQ0CZ1WlQpA3XfxXjJphlPS+DoG9exI7WnMh1EQeCNGKbU1uK4SmXBJ+DHQIWrYCiojC7d4r8AppsslO6V8moSevDiWK4QAAF18vrcYf37rV/yvwTAgEy9kUTbNFoKXuS/wDr32TgZjxM1xv5T3oVOQv0djvnEhnZDZpepKnQCMkocwcbSQkzRF3bHo6pdbw3F7gZB02utVnzjoRwZv3GU3DWqu5Bj70rvgfgl/rEr6a9WX0v4TLENXb2K8grLwJGejTYigEL/nSeFI5D3uRCK3rbM0+QKIjLlUFQ4/GG/gAVqjJbsRRfYohaGowLkDi3fV2XyNvbe6R/4e2pJJUfkuzX9Nh9QUR8emCqWiP7HoaxTSY5/Ono9Hh291WANq8WBm1cri6CrE4P9wzggtMD7v0aaoVd2qFwI+Vtv/fOyRksRu09nAzCIx0IOlWeuxC3nLPU/o4K8FfCdvkRGOQ1Y7j8udsQc6xlYwvIyNTEBvWj4aL/dg8W5RVi7O7q48IGLZGhbOSqytwAFvaVbYcDDipYlo7H3rq6bSo9ISJa0qjsT6We1TRKNDpQqudl9Sum4QXSOYMJZ0OOPY2PQkjlNV+YZPhk
Variant 1
DifficultyLevel
705
Question
Michaela is four years younger than Brian.
Cormac is ten years older than twice Brian's age.
The sum of all three ages is 86.
How old is Cormac?
Worked Solution
Strategy one:
Try some educated guesses:
If Michaela is 14,
Total of ages = 14 + 18 + 46 = 68
If Michaela is 16,
Total of ages = 16 + 20 + 50 = 86
✓
Strategy two (using algebra):
Express the information into 3 equations,
|
|
M |
= B − 4 ... (1) |
C |
= 2B+10 … (2) |
M+B+C |
= 86 ... (3) |
Substitute (1) and (2) into (3)
|
|
B − 4+B+2B+10 |
= 86 |
4B |
= 80 |
B |
= 20 |
|
|
∴ Cormac's age |
= 2×20+10 |
|
= 50 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Michaela is four years younger than Brian.
Cormac is ten years older than twice Brian's age.
The sum of all three ages is 86.
How old is Cormac? |
workedSolution | Strategy one:
Try some educated guesses:
If Michaela is 14,
Total of ages = 14 + 18 + 46 = 68
If Michaela is 16,
Total of ages = 16 + 20 + 50 = 86
$\checkmark$
Strategy two (using algebra):
Express the information into 3 equations,
>| | |
| ------------: | ---------- |
| $M$ | \= $B \ −\ 4 \ ... \ (1)$ |
| $C$ | \= $2B+10 \ … \ (2)$ |
| $M+B+C$ | \= 86 ... $\ (3)$ |
Substitute (1) and (2) into (3)
>| | |
| -------------: | ---------- |
| $B\ −\ 4+B+2B+10$ | \= 86 |
| $4B$ | \= 80 |
| $B$ | \= 20 |
| | |
| ------------- | ---------- |
| $\therefore$ Cormac's age | \= $2×20+10$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 50 | |
U2FsdGVkX18U+ONq6AGVh802N8cUoCYaloAfBEbWVTLUyVgGPtond6cASZ8qOozb84CiB4Zn0t8PY7qqCXM/cBJNnElaUVgWQ0zzrf3V2qMP0Ut0/cd+xk3eTJiAA3VYzS+1+34OE878DWGO7Lioq7GT+0OKjYdG5+F7on7JZU2cRQqmYy+l6VxaYCETvQjRnQ0olL5fRj83L0XFJwuWXDUjUXikky4Fi4LdMXD1/Zq5k3wBnkIAk3rfHHWG6L2dzvsa0mWWB04tWwOKTA2xvVqPc5UQmmiN5VOEJ8uY3R37HLYULvBlGqIrBAEthgcCuYwQMaxscIEhp72nZ0VKhj5zVSkrpE7zEqJUxaoZC52jG+ZSX5DXfWoWSH4zqD5NB0r0yLeIe/GakprgdoQJ8oXQXWeJaI/Vcx7Jb6uPNkC9djQR3ExeSehSF0/Mgx8pTAh1bKi8zZa6uutrc849TtvWsXRJPv1+lR/q2kNvXBM3BlF2nsihImIXW/OWxsPzU0AfQJEFfcBJ8bhQu5RV2ap9u9iEvMzvEaMgLWsObyajUvrE2DBU1+dmWBwH2mI6yJQiBbn6SdgMpA6GCnh5G3ilC8XgYIYIKmCQEnMLbxC99ujMWHQ07G1mRslFXjZ2f02vhAtgxCYNmtiJfnFKHgdERe/T+e0Cr3siF4T2L+IikP15tb93/KR18E3st/g6X6wN5jgWqj7cEr14sx8SNBBa4ydnnnnklpJavoDEevZPpgEx3nLzcNUJFZW/f7HwUSduihpXtNI79COzvS+gae3yBzyn1QW8v/nZ375hhfM6grolY/NMtJgEb+6jWM7FepT8GsvT09PpfViHmm9rBdObBYrwphLDAws1UDyU42uXQJJHsLNMREo/AoUGQJGP4uY7kJvHrhcxzveTppZEjByKiu1cr8XDRVPk89kwszfFWhu4WSn/zBOwelMbcuHUI6M7aU1zmdRCU911LfQLzO/Q5QoqUqnOebW/0bnp3L4WdCtAD5iYrT8n4aMGI3jNYHGC4lLgVeTg3TnPs7gRVdhmRZRoI5sFAUxI/vDu0d4V78AQ5Eaiw81yvPE0V8hge5+3/xuTcXc2OAFdxYdB9zrZ0LlDHY+9MWGO8GLeyK/IC6puMdfVOKY0G3eSvEsd4S0CnNfPD2y4KeC10oBrpw73LuUUybXGarXs6ZlUljW3ReWBB56uWusuQhWfQTqd2oCjqWzn0eUy97S+m5FUWCIvkr10HtFLJfr9Gj5+KlDurtOWQh+kPO70xpywLvjWEQD5PeFWi4wEZ+pwQjbjtMvj0VzAtTMdg6kHVpB8p7E5vzPbLQeT8AuVRvZ4MFfHns6/6XgCAndU1nTagPKYs3VRKoqA8xXzOUFUqtlZmXVw/NCPcoNCZrkQHZinEDdejWcMfZtUWSUNgujCFIGnfwQ19zoT//NeF9Li0CyDQYIjcGVbiS/em0PHLTnJqhAL6N357tt3l4EvVQ+M+pFc+z4waWWjKb3xUluMQIxTfRkXPtOyVG7wzKR3iH23gb4j5vEH/HxqcjEot4WR1rBr5bdJhh2t/foDiTCqf4J8eoOhfPEBbIKJSguJBYqmraHoURKS9nrXILZqdcJwPBSdrXM3xpnUgv9fQiGQZ00FCGV7h6Z38KqQ1IeQj2IGEghmK2zubZfT/f6u5p9bdmLfLexZ4OmzjfOj4ZKmkAitlzaE3pI5iRMrHAL+e82+FebVepKyU6QK2FIAF7ZWm7v0zIxBuAfyR6i1/pU1y/cYOClVR0ykrb5+SbDJ5AxT2L9Ju/nijq43WH1LbjRDkH6vcLhViVYA5Y9R6FRHdxsV+fiU9E1pjORNjQ1yie6aDFM7SOiIseqPJuBXI/5+WKA1DGDH7MAqsxUkVB0uoTubFbjtSv436OppnqoY/GLJzD7+dmudnISGPpiIrI0oqUZJmgqYCaaCyF9DfDjDj2fLVGnrNFf3acyBaG/UtrdCv4maY0KPzSxGDsCvivmOnNTdFKPlRNk+F6o+3sw6CRuylj/xahV8nciPa8GdekFucWYUTBMHB//b0Uf3Wwbu+KV/I45u6+7h1Vt7fXStEk1J7fso+5KqVgHYND/KBrGlgHWKa2gb/VsXjsPPLQ3k6Oz+RtvGrO18dBnvfNOmHWD2vC+f32oG49HgPYbzDUjjbs5oBChbSgFJ29xBCt95gnlCNqkgsA5pnACo0CKXO1TrJWwGM3NsMJKk5hD8X4L7WIGSWMWs3V5n1+ELR78GsXbwOkc2cLSAsuiqQ8sLzoq+8qLZa/ygVzWU6rCbTukH06HoZnE2lJXO1/d5BO+AZfhM9oNgcDVSuYiJim8M5czD5dmVDi8OMliw2bXmPzxK0Tu+T7SJSK4uCtF30ydH/D7R9E7dgeXbtRo7UCVDDhZ2+/YHjY9uUJnwLC4AQHH/yT/3M6NeRWZLNcxvn67/yaqRBM9St6Q2n9slcsEr1fzJ28h0bra58iCFEX5W47nHduu1x9EnQFx1OADgdzL3t/pPP6JmrT/F0LggJQiaikFucRHZcnAM6e9Wlrhfa76xkn9Gal+UpKMGYlPNsGGB6Iub26a5mxspm+JkHrbvHkyVZDdK/ZylGV5waa3M9YR4J4/XDQNub9UPJ70KIr44CRlhwaLAW1XcMNiA8U54uBEd6bD2hOFTkEeWJk8IlWNdFJQVqZ4eAXfTIMu/p8yRHdHhKbK+CyS4Lyin9EedzBDdx8bsOgv/Pm5XZzh8cRdZ/5xDGXCoNN4g9Fsr2qfwu1DNCMucGHKhsBDZGJVGpqybj1u4SN4nFUNISw0rP1kcA4o4meWg5JS8ZD/iHKAX/3myaltGQRwjLOOhVX2PyBvGrinNH1gOdwUUjF0+Rt5eBqAMGXsieEr0fRNZfqSzgwRgGX7UsMfjuTgg929UXXN5QoO0IuEF8OfloQKuOHoVDqMTVjUPMTJjQGYs1f/L6mxqyn9clqxVmJduPtycSQSkfSgiHqC+NijKmmCx0bttX24HhZPkByZjd43VtyTe0GeTMzidVinXeL8nncicLY6eAq7l+sG8r9gFk54gSwBHmI7WqCgy8tLkBXPeNyhBQvObocEAUgj4XfqPbwxVJpQ8qD4EkLjyt6gGQms/N9GUeKyveDI38Vzzn1HKQLHf4wm8Mr4KiD0kjiTMJ5IxjTy8vxVzJxGrw+Rxgmm7+VrfUYtvfxYR+wFUnyBty+3ZFWmEP77ZAAKaVbS8V/5RkJsalctKrFWc0S6uY5EqWvwvUCpowLALLvkbpzFjz8Dk0WB2rdM/xlmSTE+qyPD8gK54pk00q6t3DmEvJXuHTqi3LdoqrG9Eb5gDySyVNTyF50ekzIL8+J3GjNIVaUX5whLCqyTKpsvW+PPdy5zCD9QiMYRFLKl2WlUqVX3MfAa8aPjxQGZIEa+BWYaWLjenWhTFtEbjNKUuhj7JkMD/uTV3VMPju8RGdLzu56/ajkTvXwV5wpsZhwWQ9j0Idca3ote9fnFIiQRMvF2UpzEsc9wCY9NJGdCo3LNriEXaNJkz5azW0V/oU3csbqs4TJA8JtJlVceRKXW1VTIdWYT/Bs12YnNULgNHWlFo23DVfOGkZqPSMnWI4pxoLUIAuMOiJOEY7QJS6k9R2JBIQM1FQLg9Gom8Q7DgvWaI5prq8FFsoWP8sF83g2mBJkFik0CgwfYCBQzxPTkyE8DhPvhdkOnRnKTUzybs3tIkfbmiFuygSCcLKsJqY0oycYrCzmV6vP7DgBhIg6kj/9YLy6+g9oU11Bz32INm4Zeawl2qp/1pRtOvX2AzHa/sgE86I5tjQQCSOFP9O8/6elqmkusDAHFVNlxPLu2ZZr58RbCzyA/N3meeBpgbLPGTIoxBj3WQ1sFmtasTDBDFnx/UP5mjKjUMhpHvC0zJv7ZPoTDMwf7gewt+Wuyl4H3rUx0wCC3En8i0M8GZ3QMu7WcKHOxlE9xRrMu56EvGmTXmzlFw8glMzS5MgyDR1nhwI7LdxViNdsoYAq/edM0Dj2H46c+oXqQW3uQR6J0b00Nxy334gFT6+jmphFj67OzCi+kkbXvNJ9IUTW4OA8OXfNYlnUwjl9CkCHYzTTLleiERDEOpfbZWqB/jLjhiPK/FauHIP2hICdfd4cAjpQ1ohZDXbt4ZPhrJO2PEBoTBMsXLGo0+a/b3wjPv/3pgNzv2oEuMrAXqzWnMgvNTpx7be1TetRKgkk8esxsjH+eb1iPtGmnTb6RDRBreYk6k8O5Sl99LWy+t9bAYc++QRHPTAVUdSkl3DloXPKXSfq690wXa9Glj3aQhLfpQy1oBE1AMyMRG52gH34LqAYhAYguOHrZYUSeD3v5IVYFfqWoWih8CD5ro7Q8rwjq3BCzda4i3Pui0i+KpEsuZlPeqoVBVT2gnUKk+TTjwQaPpKqRcIocLG3SIZmK/759eWf7CBay5w8hrGGIj7LtraCeNJow0J+ht/x3zQP5NjLjrp19OTSxqfK3DZoOJbTAsoOlnNP+eeQ3DDIZSXYyl/swYqmYdakIYqKWC44enhJA31x/7Ud9nlZz4pg92Y8ygxJngZ3g7tWPw0/5aQUZrYA+PIKAogUW1sS2nX7KRvv2ShX0pWZ9cnHP01IBZxZr8ldeBpSe4E33LOYZxcrWwldkNbv3VAMYppzYzvdiRs5pi8xTVsW01BocphZPdWc9eZZmWZXEMiriQwF9m5QLsW5dkxJg2O1iHn6qeHvLl83h8SBZK5mg0aHfoURnOBkfZ7AyYrGQ1PrAgZRunxl8wbru6kyCIXRHaJ3lmIyH8leTW7I+fxOPF+6/4t/iSdi/NR9/hTAWcXvs9IBZyy8Zxktr9k26shV6l8kXg1DC7yLuaJUa2qkMG1sG1/v3MHJfYzG5OMR1zA459kCS2S0uWF7eoAA8xYkNYd+0wSEiw59/ArHVictTJVvXl7pKL/cbefyrFccFGDFzifr2lqVIlXYHqgvOcXELnkJ2mNy185OjMLapBzwmaZvwv9amgHjuvI71HAifWFpKzvzAy0iWs0Yq7QS27gCpI7OfaO8ll30onsW8i9a0DrjXKzpoqfuZGNw3ukeFjRPTFJOiho5iX7h8Zq2KzVCNmOYKvx2Tkep/8KjNC4m0598kon+hunYwtCzn9gKz2gtNZ7Fp/vBo60iuU2/e24xVRFup/iXWQ2zw69ds7mHfPtiWN9r3Gyh7x25Bx3e0LNz/BK2EvXD0XuzbrORUCLaSdrMkLub3JQIU6oeSaZ9hkS5E68qkrqAfGn3+wKzTuCg4QW68Q+3JD1bk1vCZNxbxma+edqzNwRyvVlVVxr180FP8L15QzGUfBS75Us4qGmCgqtcSk/f0dD0qigrNa4UOA9iXIhZpSIHnz8YJGOFGmOqoXtxUWHvxvVyYs7iPpUFkhzzCJm/e0/i2Q6UtOAsecxklk31Y80flYsDz+TzD1Ihh5es24UQi9ewMOiwqd5xzEhnmDlvKwhmXR8LtG9CQaJCj64VWRO2tHqrJqNlyhwl8Y9J+fYUkLyF2DShQRfwQdka/a0zVY64B4Q0xFuWrsR6o5Kk/+3YdVHA3dIZoHtV5fK/JW/pTQejtTzVmHaxhYuc+brjXORp2mHDijoCCpXP3mkL7B/507+RUrATDN4kkWMck/rVpQRTm7Et5SIo1CSSTjscUIMSSkplhirw6rW3YE4nRy4AkBgbLGZX/r6TuxH7O9gxPNvKd25ScSbzqiiZiz42h5roV/d1vYaHN8T6/x9no4zJl5JeRMFiJKnrQ19xUG7yQZRHnHB4reEZqRlrMuWzGCV8lmxCJz9/qwVZxGIKZnlK9kQvEQKsEFzDO4q79p2lZG8bxE/vg2ZlzH6LzkPl8RjTTqQdD/zUpfuOMqiu46Tbn5brm0KoWIQzYoS8pJHonSc2+oA/a8H/AwdK1g/xc0IoD0QVWSEfoys1RJnen3AXZrhc4QXEO9ogZEk8DKG9LDwUfo3Up///fC4Ox4QNlgExPrnuf4lwC2y6k7I+lduk5QaSVaWLM10qni4sSHNHiAX2REicqlRMyGf37ZVy0+wP8CkWvD3T6CZ+0ibTIo5i5XUO1mLrSm8jFH+YNw7kvKaY14D5v24BfFuzrLMyc/2+dYTg/pZjgAxZ2iyPj+rGdG6TmILZtuQel2u2T/T4hnzBV7+cySR4SWJGQ2sDGsVaVyQg0PqOeV9DjKuh7hfaQy90mXOFsd1ZFUWbRTE5cX6GfvAOm6kUEe1seIB0tYYkZWcIsj+Go2/E9/zzjMsHby0uytSV7g/0ybxHOKM/CRset+z/8n9UWc+/OqF6zVBXtfZYwRhXUbW4KqYo1E0uDYm9lb6UIubZoireWy2FJIIzfNQuK3Hz4nxDqICTiXP639+6Yo5WsCkD/WE7JSe6jOfkwHBS4h2+s/KmHtupOIV/l0Kwds47jcYjHDggSqAILc+lA6jHixCkyGVAkJ0zNJtTFIGuUsaF7WKv9V8uHKRouKb+8T8ZR0j2U9prh6BisS21njxUz1QftHHT8hK7QCaSrur/51fpaKNPJiXym0azhW9teMvQ1vVUDUEw1XeAcSelddVCUpGprAEzZm5ZGmHEcRjd/b85450mg2MEZ5n0t6NBDTbcxBlXBVg0ypyUYroc2z/av3NK2lvh9eAASsolA2ZVimvDTlFLfS0BH43KY/171JBo3JJyqASXVW5E4Xqaawrdv99barNI+lN3TZc5L7aN/GzEx5FzycXPSIs3NlB5u+TZoEApJme9uL4pqg91TSuxqKKvmj/3zSJsRxxEVh6Bw0nSpDMZvJnnBNqaIDZrDy41G1U0d7Lgf/XRLkPLo+y97VzZ9lEhTHwp67+w1YhsZQRylYYB6L1ZDUEVLEhtjK2ve85HpYwUBHCnW1MDfiOWuiQADoMFTLlWVEh/vdpTbWhzTIazmS7pH8ppOw32FQElQwur1hsFcAO2zO27IM0X2GKKa61G+CNRnXQLDzb9Pfnfuwvugd3asOQkzs+usicWK7VPGvIE7EbJi+r4v6LH1WT56utDhbSK1kKaZwCT6Onqp4kXfLTiE6ihvnMmk1DpgFnoOF2xY2uHY496ZUTkw8tMYtcQ2CdTuKN7bsUCwY36s6pxcxl1NnVv8BkfYwN1wzcUXu8ph+3YlTlqQVkF//+86hPzzFQd5l1fbOMeOKeA5XeDuJY8zsnvNSEPTTPGwr5sHsvljt27GgzHMXE1o4WmfKpNDihDU1YM378A+4RhPfQ6gMRCWTtFXjZLu3X9S+ndsDLsTsCAtDxDYaSNV0dI7PPr74TTgPzYEbtj+wGP++cqGOm/A2IoiP5HO0g1cXmaFfCTt3/W+KWoe1UpPbqgZBkiPdjK1vGJJTDr3KkCqclSXP4et9JnItO5fCEF0BT2ZBLfpy7NdUs5MNQ49e2N92T84eSNxGEEpZO+gtexYraJ9NXf6iYFaJNFLreVoyLLSfRXzh9ABZP9Xkq3iZfy6qS8KtJ8NtIMPJiG7tXiIL+Qi1xR5renHvD5ARV1oH0fOBCU3v69DUFQNo0DnXRUcillhmO8soIhjQ+hipNYm9sS64qx36goztMjdr+YUWgjigGm91hBMOuFW6XQ1WCKiiG51AibwMzz55cbsf/Fm1pM2Yt13EnFp4CwJk7WwNieos6L4N6kt2EV8+Wj1KPtGslnps9VJr6eFXPtEnhzwyGMxE5u1yuhCKmyiHiYhDLDcIV/B1AHy9Q1AbZ/SRX96ReQ3SsKzv9grTL9hCzBw8LdaYmNd89mWw0SayOwhVRucG3R/gGYzXTq51mJTECdqE4bcxQMDdbAj8RmL7tsjxAKDNYSZfCvxMzIBmDuoLsuQlqor5p5uIQl3RhCGHMJB9+1Q3pjQEO0AOToEISMbz9LPogGYAHMO/AiUAYlR4UTAoX4wWcfl63DYQUw60PuKzbmXvkumyfEE55sFv09Y+wY5En+rvGZQkIcsRomM4VmXfkob5gRSKDVwxf4fHdOVBoRxBqrjOrWzn9hG9Vmvu7OPTm52pFcNhIH26IL7xiE0mqOd49ve+Z3dRphth6ARmrNOUn1eL7VE12lqdTwk37ussQr1U7ZigSOBkQ0n/1rAc97MRNXCmUvZkTfkSw2kHKvCt15UDbu5WdUtaPG0MDwFX6R7sgkUA7IfQKZihHFZZorS9DXu2pu0TIZ4evtebWjtD1mhMIeiWs714ia1OkY3gATEF9GtRJLqPCaQ4wCeLaYrb5k+TMPr6FVqxsUSznof6XMXy/D4a+CbPsneA6o1G2RcGlKeXSlRhQweZY1fZqiRPfwZVPriHVUavGcrmaKLou2r/p3Ck697nU5kxv4kCAo/i8qSVPYR78e0gR8Uyh8iCj+4+eDCpmcckYWg18Zp6hpzkdXfyQB1dr2Rm8h1iUMjkz9uwdKZi5/QpRhwXWk7KA6jMMd/Rc9m7DlZ7xwEOq20BGFYiY6rlXyOLUt/KEoLDSySAPUnNn5XAvpxXnnmUn/MG7we6h97wy3HJiocV4Hh0mCNJzqPwazRmYBJdbzzA6onYsTIThG/8eYwmxnDtEXqQKYZJjwU8NPpl2KGz1q4RMmFm9s8kvlKoiTaEIuGPRrtbSMq/Jth5BqQqQ6o8OVwtGu6yuRdQsr3QHb132qV9DTYzuFUmIY8Kuf1pL1Qfk2C6WZo0FIF6r8ZNz7RlKT2DHI3L53wvgEGBejWb5p+MIwqPwEjDQCtSRy/cURGyB7p1We47LzEZaVqfeU4elSDT8EgQeA79x1zsnVjeg+p/zTE+atVifYWlgbP3w9dRs6xU45+c0h9TdxcwKxFMIMINM3MzL+0U1958YpYkLIhPYCB28eANwuqLnqiJMX33VIkr4Jpn4KWuT5aj0gZ9e8fQR487yJQjyjEOXyzCUNWx3OQsJ5eHMSu4A9Y/PdJkyQ7EUkThyARG2PAZxHce36lHi1S5ZNEIA8nbM11kpJgxWWl2OLOofrrPRgDpKMlr8KjGSQqRlsNfRyaQykxi0nzrdO6vWKUNaCTq22dG7VQ6v2jVWWN3z5pDVP//jRcLV86mBTAwxGHaYiM/xnLfEylemCrllLh6UW9rmTvAqfinra/IyxZfNGsA78DW/PZNvE0BLoYnI+bgF2uHsFzdH5Yx6/KsrGIKuZyA/t5d9yeam0axRWJlpcwZqL2m+hVPid8jI+7qKS+V4c4W7YaqXUGmnCS/ErmiiQBNlW0V4ToDUlW2sYj8m59shc089Ack03hgQL3s9c21RaPK2ZBcyweQFaske2fwWlciZJsLBzkGCChDWzvIBaqgkGqAWBIaF606YC2dZKZ05ygKREQQvF/zGFB4vy+/JG+IcJ8GmOkyuBUPyYBuWpmAIcPzXgkWf5sRQnLiQVdRO+x3JkQc3uIDf2O86ytVdhBLng/dDhor/ueOPIb0ceIa5GEdrxYk+PDSMenAkmBCEWkigO25HAqcrAh6zrmiQKYhwYIT0zoum8L7wFQJRXWHXgL6wXt5ykaQojpmCs2gMVfbxJP/EvWp0HLo+xR6OxKDeZ6hKvG75L8iDF14wsW4NNcvSSNl5YC47xrYfmBl15gJs0DaYWFctz9tOpo5nOCYwJ9DthuW8435/Mh4nxZeMtWnEJHpyQUBNyTwzNEW9CmfhwGexZxNUzb3EGtkdIxv3N0k2kcPlNAtpDn/i9LBxAJtbog1EGbG/9AmhDTfbJNTnrbvIacDeMwOqQTBl/h7ILXC67//skFLg4Z7yQe+nzDcS9meN4jeMk6VROlXCE1z9RgQW/NjxjcGBaL7fJjZMrvTUPGm2sIyr5CBhuB4vO0bXAEfPqzhX3WfndbaDxqI8UjNrH4j0zzQwwTh9v0LB6/RR0vfi5p3VhxIepmAdgtTyreE5jF6tP6EW6LBAlW0yduNLKtUGXBOofQLPfimReyLKSVgHaUB2nJ1AFOWB3pEfvumzEUb1tS5XZAWyznhAdKWj1fevtwSXvWmOVykPLYXi+IXReWU77CRpEajn+0cPFL4+1PrpJ8Z56JIVPp3XbD84xXkn80MEmNyDV/Mbaf7yLjspFhiSFRAuty9tBx3GhULPndLCnCfB5UEal0L+j8+Q+pZh5sWBlyYj+PypBqQXo7PzSawcq1nc0VVBL3VG+WrTGNd8766Jw727LO6nT3SWqe0lAobWlmeCSMisxPnfduJaRAUvnRe7vVyuPeCN1lA1Pb9LXCtLFbNCuH7mGSLdZyxTY80ITMpSSUw0o8uL8WzSMgt9xyJdxaR4tKkoAwNmDdmFo9zqtIQWwSfiBNte0n3ECAgZ83lRC7DM8PJBlk4+ntStZGlIr5V25VvBaPHErflilk0GrS5W49NAzbH8ruWppWoRm+B3q6HCEiYY+xpYE5mH/QXSZ8J6B8RkHL0qUtJt///BOBwrbf1hu3dYpOw/0748MJ1nggwy/eiPsXoJG0llmkJu2l2XEJa9G6khLq4as5+/CdU74E8XGQ5R12pG3bfmKI61e9XYchqLrxGXct6wvKzVe6VvBidqVa7cN26jFULJ5ocNm9xpQmt1vpLfhFP8HirkpnSNiXa7pJ6d5GwrpWhlJx/3ktmXeXvi+l7PSPLeUXwhJPnLJ5H43wyYRBiQwOmXm5sDX9nFkEmCmckn457yrPvkosfuaJe11hXWelsGO5+YlatrQ75KRxP0HZQVnH1py2m0Dw5Ay5XVW7AZdYYhzP89Zjt+NUtHbNlbX3C9N05IJwBvUtdAecofKdXesSqmUmY0sLedFEhcJOwVmT6K82azP4xWWWMhowoRR2pCj2Wfd3enSxoxF+4WKz6v3NDpgE+R/0hq8Ix6NjGacN/Rcxb+yzLzXEfhewz/kk3hvX9MlaMpFaY5AGvMghpdqVgNwoid/XuKxGJzs5WGhxngfH48jzenDt4MxXEjWOClYEMHTNm+JSQN2MJsmV4t7Wx6BtXzLQV0hRGPXWCGfzWcRNd36TpPiq035pGkMwdBNerdm/VmmRyYbMISV138oRxGqkGeml+sU8yK/e71e1MxcWwAMidEl48RLYHvq0WNXYmAVbTtiH/jkRuKSfoaUF1yB1ekuCsgJIcJ4Kq9TNy1GbjYhOP3hhPE3ORA04x2NTNtXW4wqWfNwlVC2o2DE76gBas9xkLuN+pKifIK2heqpahNlpO5xL1TYbOb6jMZCfltfG8m3w7EZPbGfwJ+WM0ZBriPDddr71nqfEEPf94XntilE3nNDAlxN3DbyFXIAfIrVmL8j56JWxDDXETv3iwKJAoozMnTz5oUlui25M5f+efHYX0PuusjNaGftwGE9nSXiFYNC55lQOX1Cvkh4NNElnafyf9Rc+NOZ57hyNtHjm06npm1+dMpP1Ay+TYH81bKBVAwyNPPbJlW4ZQIYh40kEyPzkrGW+/+I+StmSwJ0KdmdXfxrmcHmdd48Ottd/UunLYR+/QHeYU06jrOsY4/vyiYVp5I/Q4VXfiaES+jDIxrwpmpmdeX0bDESgQ24VqxVibC4/pBo/JVGRYpIRIL2gEPlTIHccnc+oAv0EiqO9kN0+g/wQU8yALkNysCYNEiCd1CN+X2Kja8u4x+gWC+BOfDyINKNj2/jzSwfwDVgPdj1p7PkagwJOGAhEqBiXazExefNyp8Ze1rqYtimzwGPfyooTgiJDx3eBIC+wOpXnWFN+a76fEPgNCGfQKGIgqCy9cokeFdngbk0MxcRbMw1ZxLW0tRpyVEJdVhSU6uwYMjU/RVbhqtnLa643Oq9fxW5n+rTkD7Ja1HhepWtXUU+zUpmvyoRHeq4xUIpAqcsYKdJOlnNwFAPcy1CLQfV0JR+57tubVxSUiEKBEVD+tZYiLVHozWFofQAmyaOEt9cZKxhRs4SbN3s/m14SoOzQJVQTV6kcr6SyOIMUQLC0oi5WnIUcLpt+STv2vsL67/7aLMcNHqxdZiuzJAPwNEu0vLBXAVXG6PoRKRLiYFbyRtrE0cjWEqp2DY9GrC5ZPhd4XZKlfr/P31anhafSiPnMNYYNoUZUQd5WNtQaAH9yV2vmpMfPxn4W/dbaTkMDFI39xxqEy3WXY9Ylb/KQVIDGWFVkXvCe1v9298vNm1r3dgmk85h3GhOc2bc3lpHZYkLsnSfU1stwW+A3H26O8Gp8Pg8M53SMhP7MCqoIvMuhg/OxYP0ciKFpU6HR7H6MrsQZ8S0WTSoJ8y18vA4HmHuWER6VnXiz3KaVZflpAm0Dl2NmohRPxm6rq3MfHRMN6MrAuhG1cLRcSb264UH94M/w5i28lbZ3wWeX5+nTCruYLSfXm5sVgbabS9kkLtdb/4n5YEa5c6rFDnCzXgNHwshbuutU5VzKxPTZdOIae6A4lP+eGNk5Erd7bGzgvVBRuq3Sy/fZSHjaoQHWP1E1DCjsdRM1x9AqUrMvQCiNE5eir0YrwRO5slTe/6Hrw/DucLKMAveOBOa0PP5cp4zFhGvCzeyHwDCX6af2PPWQoWB73FBrKLobnMyfpLT3R4ztQt8VypqU1Pn6gyCwXCckKuz/Jt2f3qyD+aQA7dS5Qv4y8PQUMCTQS2x3Cs3Ysx4KqX3cMFAkl7Bg+R6pWCEZ+r3XsSCeYm9os3qjqj4zu4WhLNgIqzwV5bOt8F3c8+6+QlXar64dHXdW0mnjHgr/3dG+UNcEBdGB8y9bkrYyjPj2GNSIt3tF+0dNB1QF6H3zd260BjRdnYE8xD90f0CoqHECWIpWWS7J6bzKHFHSzHoL8JP0673aI1yo638KqG8+WdNApAmHzupfA6tOdIkc1ibh3UQqoDBOOxZAxo7IeAZZCxKfIUOar5nHhOGHeiZFfbV3VW3SXGQwMpGd/vzrnftLHWYJCqMY2jTOOeGab7XhpTVIdxeVQgqCe8CPj+57voemF6iCu1sD11ghv0kk7QfDDop3R0NoRPQN3+hoP2tsnacHaBgs1pUhcHvhGyiSfDfkXZchadiK2QRCHRUme8gJxBpa9giERZ7x2pI9S4ueaAyPJr6vEGUSFF/2UBF29UKOGVu0ltjbX6V8I2BWezRR3EBSYr+ImAnUIt7Ji/MH8rMTAk4fr3sWknUyWTGogDYhFZWQ+BKrPKvY82W7so9ULSpEB6xb4mBEegdxxQtlyJV2JWIAFWgL/9BYwWy/fbCnZ/Hu0vpApYAlDLne908/Ibh/8nncoqRATfXglk1Q4aQAZZN8Wz+ld1B/7iIP4nL9uvIKXnXvve3VZ6fR3jRxZVbUheoEtkl8W7/t0wL/wnkMOf+ORaHVBx0Buuy31ptrP9F6g7eC+6hzFTmY2pBlksf3v/cTKiUnuBDajz2wtwdQPZvMNMRaof57mexC6y/0G1y1/sSe0mD/o/GMwgHWgBQukpt6OYbYBew5QmWwhHdAOGgS0+8qjsdxz/tJkaaeUEi3EISZBEF+IWkIkAAyOsQrFH//r2W+sqFixBl3gHlhwCnTjs4pDDeyGygwElN6vOPLrMv10JgMZRBR9hDZG8tJvLXIhQIUx4bKOfXxYOzmW0h2M8o4JRQtMTh6o2bIB9vzI896jpx/Rsst5GolL9/aEMzxEfOSXdJ1pSvhtbm3RfZhXePauuPYqaI5hjY+N2eOSw/kIQpT08Ig6G88M87hPqrwDpZvBuNHKF0ZIqaik/59NLPWH95VzLheHpzd+LWakIc/xXENCwD97jcLPfs2T2Vhm8F0cPqlO9oCTz4cuF5vhbXpb4tpCIfLhx9p1x4zNgV8fzSYamJEIQzctRle+qUz9NPvcbIN4mLzwlIIkdKBlvfoFwtXpziiPEyeR2djy/CtwUDKjzRhv6gzpofqXKieGX+c7wnPm2o695ze3iuxRyTpCJqCRhXtHLzzbZDw36j19WtrXHW3ZJFLzLyxl/dyB7UiNqM0GLU7wxwynf61XJDM7snI0en0cQqeA6HLHDQrhbvbKz6vmAghsGqincssfwebLLeyLGN6YLeE5y1GxmqKEDTyDNov/MtJJ3RtcmKE1UXIn0TwVbv+3osmz7TcgjBR3mDFn1HPpe5B7/LRXPBZhT5tVHUd7afmbuXAOrWOaG64DYzubkC+ke22oz95quhjBYpJIlzslTGkq8TmbREuemG2rvde7TN8YU7K6HBeHT80YEofn0za3l5me+VTQFPNI8hgGXf054ymDQ5xO++DJUT2ft6wOc6wUHxaBzm3QTS3RzerDHtWiRLmlTKIgFKm4RygwFDrbE0SHljdXVJSoFpk6nTeMNDVUvplTXIFFSuhPwxwqJFXOAuBVaYGiQ1L0d6svwcTPUkLQv75PTbPLc6Vn4Ib+0ETsN4kcoaC5n42lfSVPWUGtaVkxhRxs8xNeTZ0UDQVClS/IICEnwWMWZkgUm143X3wflfaQQVQtwMYEPWBujmw+AMeB+xo0aT6kdglNNdJ/kG23v5jo1omE1UjjsNxpr7GmHLxzdKYUDHhbtHpyhm4lsSDEgmST/GSzx/LB/4X2XDZ2jBhYjwUFdeBy7hWYzH8o7s2pnraNHCg9tRijcuCMbvcbGEGOWxtP6sz2DxxDAc+fxIzQFi3cM5+50zVaoZIxSDxOGAG1tVA3Ta5lpzRtwL77grcxkklwvZIii7tirJtRLbhUZyK8F3UxFlB9WFOvU1J01+fljMuiE3+haMv847VOn4L6vj8gKZG5rmd6CtbY/aIxP69216Yqdfj5hIZN+e7JCru/XhSlDr/cAOlrVahTyZyq8pv4ocXKq2Yd7XXwFY/1A2R5jjn7E9bnQ4FB55EYve7RPgZZNCyvemIiN2G35+FqZ33tr+CCHu5bIykmvWVMwwL8sNjcJ3BgVSLEZk/QP2gUScYsOgEPVCRs1LvAcJ1jt+dZdKBU1UJYBD8Ue0TRg82PidiR7SwPg/x2B/FYJJRkwdpw8BUXd1CvZIKTTIgzc6qyFwiCZmsM2I59uFwP2Kn/tuFklV3ODjZKm+thN47r1t+KNI7pAH/kaBKvbbu7i6C1O8o+46i1HiSpB6Pj8WZoK3p2Psuqc9Gm9A/vzMKzbtg0CsHxvnnMV1w8JvwFVaXZz/9IP0G1o42laajKRyAYObHHSyUxBLw6fDUnofLi8ApdrwmEeesfoFCkeDajU8p1Vc5Go/AN7lZk6Dh2e3TaSVQenXz31Zq2XxVO0TSrkUrhBeQtP2nKer7nJkg5V6X1zD8DdhXUihnFzyLMPDrBFWyxdShpNjYJKaCa9CrUO3D5w1/8BqdooyFfBvIblIeMUyz+4qToOjSQuFJ/SWIj4lRnanBMllijACedHU2AG3vKavx8KM3QvfC5W0PbR8OrHsKJmE0xBpxf6S0hTp0c4zGM19f+5PuoRTj7ZvT6JK/EREgGChVGNM27LPnTH/oYM6YZolPQJ158o/IUPN3QprXZWhKEXGNnJbO53bVSpm6+21hDW7SioXnbdWT7N76DmA4qO0PpgHDIJBxfpjxfTqzQYVAam4bMEJq15Mpd7Wj/xkDpqoeC66V6PFtIvkqbytEBiLY8334m9rKn9HU8SVKQ7g4R8L5S1WBqkhXQX/3V/dZ9M+Z1tubkCz1jx91QR/wYO6WmGZhIq7u3vsubziqBfXvBnSOBJplV+0izWGLYGErOBEOeNU131CAQ6iRCJ2Tp31npWTIg0y/rEJd4xWxlh6TTgt/qbhlbK9p0hOfhK8W/IK2MQA7fcnDfSNz31PEyLphEAfyuyZB/qsp7kPZM/BnihI5VKLTouIJKBSISFSx2vjt3ARYgRygO7adel1ztaUfI8Y1rxHqZn+T+S6E8YobB0BWjtzkWdXhAAL3RDjR/gR8nPAvJgzaeOGcIcJuPKu2I/NotlTgwOVdHXLkWYXQ59KDRzki+AiHwllhqVwMrVuHZmRsy4EAuzEJj0Q8aTBZa3nerrtJgbMBq6WbPXk/igcaXHl5yOuB5Ich0DVP/Dx+Qfcj9Se5foAU=
Variant 2
DifficultyLevel
720
Question
Abbie is five years younger than Bert.
Ernie is twenty years younger than three times Bert's age.
The sum of all three ages is 50.
How old is Ernie?
Worked Solution
Strategy one:
Try some educated guesses:
If Abbie is 5,
Total of ages = 5 + 10 + 10 = 25
If Abbie is 10,
Total of ages = 10 + 15 + 25 = 50
✓
Strategy two (using algebra):
Express the information into 3 equations,
|
|
A |
= B − 5 ... (1) |
E |
= 3B − 20 … (2) |
A+B+E |
= 50 ... (3) |
Substitute (1) and (2) into (3)
|
|
B − 5+B+3B − 20 |
= 50 |
5B |
= 75 |
B |
= 15 |
|
|
∴ Ernie's age |
= 3×15 − 20 |
|
= 25 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Abbie is five years younger than Bert.
Ernie is twenty years younger than three times Bert's age.
The sum of all three ages is 50.
How old is Ernie? |
workedSolution | Strategy one:
Try some educated guesses:
If Abbie is 5,
Total of ages = 5 + 10 + 10 = 25
If Abbie is 10,
Total of ages = 10 + 15 + 25 = 50
$\checkmark$
Strategy two (using algebra):
Express the information into 3 equations,
>| | |
| ------------: | ---------- |
| $A$ | \= $B \ −\ 5 \ ... \ (1)$ |
| $E$ | \= $3B\ \ − \ 20 \ … \ (2)$ |
| $A+B+E$ | \= 50 ... $\ (3)$ |
Substitute (1) and (2) into (3)
>| | |
| -------------: | ---------- |
| $B\ −\ 5+B+3B \ − \ 20$ | \= 50 |
| $5B$ | \= 75 |
| $B$ | \= 15 |
| | |
| ------------- | ---------- |
| $\therefore$ Ernie's age | \= $3×15 \ − \ 20$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 25 | |
U2FsdGVkX1/24k145LKj6zxfkcmU6kASL4YVWiAgZ9Aue8QpVHAD/VmB3WnbHc8OpJ+97ux9f1XXNuKAMNxFCWasjyn/Um5iBKAMJG8ZAwP7gYFJSErwd/v9QWKxMg+s4k/VKsh6bYmR9f3bY7UphlnexzMP3co2/htvGldtf6d6zDgPQHK1dWDkEjPr6rnt38oIqlD3PjLdaWIGQ35lT20yPg/sPdkiiKnosYrbMRlXe0sxYWj34K04whU67N/17zbHr/JuyOmlKK0HLNbeFbW6WXAqUmGchmay07Jkbk+NIc1XbQEufy+zbwPfS8a+Fa+3IOrERqiWdSHe3jk88bexGr0oAMloHnV282n9QphvBTxixV6NIsA4/3bAG87REd1IEssrM+X0G6MJo+Z0IOF9+dXTp076UPZgkhlxoi5k6CJc12LhOn/3niHon09N8BQDPZ6Omq1C6UkYKkAIMl1sUIYmalg8D7J3/SerUULLU2Ec7EHu5fHdqkeTpTpyVuTNo2lsCe20CwEhQN11zcy3EMxa9P9bobo/Q+6xa2B7zUBrLY9UoiJDJatASpbBm3kua7HD7n/qNgg4c9xP9+O70rVISmfE1Di31+vNKMUllGPrgALigO5RkBdzG9Oaas07COvcmWYeQ5gUK4xiV7hSOMw4rc49mjem+9Uz8ApK+vf02M94OiFgh/u20aIqLpNBsBpaTmCQu5zD/AuU1rF3BesR35K304BGsXbNMJw1gsF8FvQQJ3gOzXS9wI7gGmUdedKY4u6BRAq3F1Jgj9cS4Q7d+NXUX4NJ+xQG+MfA7LcfWzpyLVV82ceba7dY7rjKJn6nsOKo/lri/s9KyfuOdb9kRwjb2CQ3Vk/YkPOMxP7+7CIDRuVOit2V299p9PKF7Ee6eKSiWnfqxCo5tWBOGOe1xgZRWDDjQ6GNvDze+mHplfcBUXG5CYUjUSvNBLNCo2OxvxH56vJAixc4PWY12w9rz3QRzspvaw/8gxfGvJIm8IDKx7KbJtolbHmuRGyKYe5jpsixbR79Xf4xF6fWZhAKRVyUc84cLzciMTQ751/q2f0H6R8b8Df2ySJx/pTnv9qrZVcjwg5T2s0cW4Lv8HpM0Vxbs44DyM9NA/wG8UsARi+fGEygEY4Itpuu4U5wppyOkbT55d06IBL2DWZyT9n8LQkbJdKu1NWNXjY/dv8rkiYmQ3XcMX1PtuTF5HeNvl8kBB2tgKXbxh0Dj12Qcv+EKgC+RsjPq2MUuwa0C8Fe9gDAc9pba6nw1w/XkyEnHc+l3WdQAgSMSHqsstg45s5XxBPhkxe+4dRgTK8K6vNPvOA0E0F9jEQF2jB3H6srFXmFN/rfUBfknHnxlsZpohZoyMe961fiKszpJMIY1sj4jZgQFjIilD2+cKAo7f+M84IG4SCFYB4zxog4bwGw/PpZTKq0BBjptbiwLU1XvEKJPDmajuosKvG3hBNiJM7Vz+rv4VjUYZoclRplWiD9++emOa24gg2TSJNz4JWnd+KRzeN9W8hk5iZPhYn2gQl44efSk5YUagwUwJQRmnVEsQG9+LuxwR2J9VhJ7hc74vInl2wBlZx53m5sgKXTRFXhwpc134yba7NImymg2Eo5IQ9ssBdY7FkY/HzcdBd470jShe5ocIJQTlvUkQfbGbj8gwGn1L6KZYwo4stdfpSRcIY/AKaUQr1KylFKKqkV9pwvkAtC9i9/KJbr/mKYayhqHvrCPMkXqg4PG+vQvKbUrcdAkVqUrjgb47KTj1UYCnPT5M/FnFkzIFKPSxQBpNzzMQoEXIqvEq88L+RqxVKIM58B67NkTeYXHryRwgS3E9pTLS8dDH7Fv4hYjv2TMYaPCe+EJqlTRivLgFqvRe57xhSVwduwWkZI7ccOSQDV1FTm6tuQqz1EHElBKnTMv1Yui9tR4MzEPaIoX8jHdjnPh6fU6c/gPfnfz3f/1xhWYWfDr3iXwQ36Gvibx1hP//0GJWOe7HFXRxXu2uOjI9hlNXs5cPmMOy2SN6nk3mJG9KkCXf7T8T4eBYc4SEsXhcRuZCgyb0j2IEB/rlChWv/W1kzxUBGIOK5NMS8dkXoxczAwO0hcOfdT0g6o1w9Kln3mn1H0n15jRMLkyg+LLFgd82n4TGduXHWmCAMNalgGCqVGaG2CzuR1kuFDsdj2yFej0TvNl1bC6LvzI9kE1/Cq5NafRWJRCQnovtYYvCWRsFYyLWB96+hpd7fF3MiIMJK9kX5g6HavtqqWAfqjzJhYzDJa3grpfHk3+K8j8vKXhUjne/QtKbdbnnmqO3e59llzd8SsjedFWTRKkPrWDoxTbCWxtEM1S2P7udtmbfi+nSru+kKTXj08FGZHlrBLET8VHnxjMo6M5aO0y3+yLE0UPGqblUNKUuHKmK6SI9VFNl2NW6j9WvdetCJB0QKSa1v7pe41WcQf6eNGQI0lxBYw5GJRzJ+dWfw3YT96sVDC4P0KQfUdvvy8CANvYBBGF+8OVE4spdKzkfEhd52RKeTIBxE+7iAGsuGUEFdsf6tbCesa6aY4W5tqE/P3SbLxcviXPUH3xhuvO0ju01OcmB7Fv/Gg9NjaGFSPtawby/Jgs2sfoGPAkSrau9qzKIC9x+pzDfX/hIvsnf4Z8aETXZGeQbGsZT2Gf8mNC0qNkW4s/QnNay7S7QKiFTX06Z/2pBJ7is3lRRl+cZh+2Fw95GIalA19geLwwSkf8nomqDGnFY1Ttccgc99jx/lHqVv9tzKhZ430pAD3f1jOMhZcWz1Ahu/l8N7Ze6L64yI1++wkgiJH//WcBWb9EPC8RwpQmEvbyI2XaqJT95/8jCKxhpiDFvaQE+TnlWk115iLtLULMVLMkuJB2z1LXoLyHv4boBhvtBUTlDHhsFUEA5NraJArNEC0VuwUkwuNB5i6v2b8yIszNJimUxVk+m3CYOcsQtPyfvROJ0DAD3g5H8dkyFcCH3qYf1Tbey6ahXVTAgQ+EExC948SezYLMt8JEXcy+0l2rg+sIvJdD8wPI2JQRsT36IwEpuOUP/M6Oh7PBHzDmYIOW15Y7IQ3evaKyICVuaN8mOJRFX3pjgrIENZWSVZpUOFbXmnGx7sbxikG1ke7+DXZS+6uqP1IZ5WyxN3erSGssl70ZHWMlQQhrmw5MmSPpJSjmM/moeda4+GOkOcKXTLv9mDQ9OhIfdaMkqEUAF+lhTUk1XuzAQBrg0CtM0gSQfhakTEYPTG8pG4dlvowc+d9IvNXZfEu57Fmh8hI5d79P5CzVAcbLKGCXeJeSrfI65EqsPjkI+db8FEXYUaOYXzc+WIf+tw+AfZcJBLZy+JpjKRO6y/X5UwzTICL8Mb5AzW97wS8yVZv1vXgVV5B2P9kitueHl7OBs5KBsrkOyljSgl+m4R/Qg2pRsNC3rHGdo8SVv3U/4QAC3AC4Fj00/IOH09T3bQI2TAIMmz3sfIMbZn3xsAjEX5lrYXouWArIvD4p0VHrkboFTQG92LZ7iu5QzOR4/ITJXNu0NWKMun63yroROLoSXSM/+i+He/1odQyMU8qs/Ijc2sf/c9/WQ/lNF9LU76a57kWmfEKMIfakLOm3q2d29t9e9KQEOf8SoAfFkIOXoXHnugemSwemrnfau82txQT6shW/fH5TuxE4g8ClAcrMdZcKO0xLDbBJQMwv/k6QTu84zFtwwAOjZuMwosFocJf+l5+9vTvRrXZRXbrKtWJD2TBGFuot0wX5gqdq7JIJZzSClIE9EyrYp9Udw/ji7GSnkNZCGU45cHhGeSC65HuxV5Vs2BQ/jUJt2GhXqxXMH4il24D+I5uUBsg/sUM2UawEH6IYM9gOv9mHeG41y+NuFjfdKgeONzRW+4Fw4t1K44NSOjmykmPAgQ8TJOPKhk4EzVKaVc7haV+ml1oWrvIc2B7SrovJ5+UmdqZnzKYQPy8tqntfZn5h2uHlNE+tbCDtwLQuN7l75KWyTJhXTnTUCHeRWy9rcBHdFusR9UuaCs/+CuX2Zh3guy3xaJABtIDDN2gLqpIkwMzODD6l+SuPWrz6C+URkTUTjL+KN/GoYtcIK7/bs/BACurBDp2UDoSPZ/xFKc+FtpjLI6jkelV69NcG+JdN/Jq72O9+a0y6J8/43dJYXUztPsuZdwuDjDAejfQl47peXiCHV89LOh+94OgjEtt0HOMsxSCglt5BN7k1MiPfNh91B/JgbPr5LmtXWa4OmXhQ53JJTow61/yopmJjEen9BAo92Gac4SV5Gj4ceELCrg0leUQGLaur7FkKd0S+5hvX1RcC+G1HXFTl7IdWG0pnvEF41Q9+Q2IpOnpIv7wtRqx3JdpqQnOdAlKgXqyU8O51GRwJ3rlH7lU3VRtVg3R4IJZA+ASSFaDmE/Nl+5rxR75AV2SsTZcUFyBn/JqSD68PPpdjsfy2M8LSajchcuU4B0uOTxS5Gc/q/R/DMwXlCuemdn3hYGG2rxaReueBy15B3Vm1feQMEKSCtCe9JBQExlKKViJ+l8MqMhxcbEbF3lgsoLQprenSlhz4C/DA0AwzRqvea5Z6xrIY6Gk7ctNqLsiWE0Og0IEOdNWQe8A/KsXRzUOhFYgAbT4H0EuWQVOWHX9neLJe5ce49cJ4tnSyYUGHKlf8ZeH6wX3FWAPvbju5qWrDNLrzlS30ypm1TknqfvixwP60QP5MtgCltDe9nIE8szSQulr/nh1cOQu2AYFVaxDvfvZ74VdG+EKDriyUZGDpDGRymRsquMjL/v+wLXn7xXDgTH9Ja7P5KtbslqM4kf4OpQ5ySsk+1rB94C2AOKDshHUeGbM9eXk+hV+EzgbBAmLMzcbngrdoDo3kxG6g7m1fCSLsmhC+2P2HNhA4kCshE4rX0E2N7MgFWYKTkCDHRoU1tAQ2buf/C01gZqG8TJQf/hZwn2bWbYcIRiAY/zG+qyxT1Q1i/eJaIhK6OqA+xbFuPmK087Cv/JyrYtvbYlHhddhiaUtuinmSiL/uSnZbgxQSJAYLpl1TLSHZ9MyHdesev4O2FzDwlgxLx4XByAoSbehTyJw3IrhPN353npfKhnqXT4IPsYtvuGbBEGmVnJToQ5CtTfPruLoKdfJ2zJcWK3TpuKnP+CVULeiOfa4GdIX/uMqC7YznQYRWKfeL94dsmq0exnrBNH9NWsUldWs+ZdU/0/WQ+FTOXhv6o8HmhI2AT1hN70xFiPzE0kEsHAxw4LmXl10fVbWvdAWf9jTIAXIb3aA0y/cxEA3Ysf1fkM5evvWtmqC7RF39k9YdRia25wwXwoCmGE7fWW+4Jv9i2EYGU1GPdBUesjcBQ4xIpwEucJYvK18wtBgiGK2VySh0AY142hiKYkE8aXx94cPqFjwHZprE1EXaqd3gyNgcdcjvyWImfcbdmi6VAED/ZR2rx+ge+OXenq6kgNuqfe7ClylDauheJHqPJLZbLkXGzAwhtzTYbxFVJG43eZj37JmCCffXVGYqfU6fYA5meqmQhnOGN/CJq1gM+SoBs72cbod4puwSC2qlp3LtB6fLyRXof4Wma5nH0oAd6BGcAYAZIgMKdhAom8ipgb6iKYCj3vE849t2zijlowYk9As/r+RF+D3Y4bqqmQI2hWnPfr85rVWrEnCjFcJLnNyc6WRlUlxK3sZBmsvkSYxsH/vAwIzHy71t6ISXQ40fu6ZpYU3QauBatyewiWhRu4O7fvfATDnfDs8hNXeKdV5GIDga+G21YJYroDT8EInPWvf+jKc1wpg8qb+6gvesgUFQ89r867tReFFPActhr0mIIDb282wiT5FicwOuVmngkv5jZyqn3M0pmic5z/yF/HAdh8FoZyRJph4QgiUhV4vkC6GogSMVz80mOegEyHwhlPaqShPrGhIDVuB0uCUOZvCREZu8H5Fh72RllNvRjzDWhts93BnuR/cyUZr6/B6coELmxSBkY7HdPefWe7275+EHJjxSyfOmk5OPWPjNJMD4N7qOqToDKHuyzrb+7hQC63jHxVxrHM3ErOCQbPnDAgN95RegUIhZ6/3spIu/HgKU8GcyBkcAwZ1qd6VCr9Io9q0YxBTaY00kB7Y+mk32em2T83u43K+wm016GuRylrYEUKBXA7G7OkkZE2US67RybXzkU16q+UfRxH1jO0qCDoKTQGTlIBbCShucxDqhpS+JNMzVrinyLmydnM5vYlNxN7kMRGEVb6nfkDqrx9ZR6UWJJ5EPaacXp4WEYTlayAzuWdCjxAxy1lPmUmKagoCe0LrTXbNid0jVbk+s0XfDF2T0Fc0ekw6TNHOLI8mYZ4947seKEsP7Wk1BD0iBRpPXVgtFVIBFwB6RladlSyXlDZNL4ZnVQ+XjJr1STMsusDE1SbPskzAjHdCtp6nlQotM81jz830cVWHMF2TVG0A1FjdnmlHf740UWrXXd7LvtDtRIpznNyUF/jgXfUIbD/V80cJpZjEzrUwiqiPfhMX+dwG12hVUupYcwUw1MiyyLfLgb3JplfTZ77f/e1BVv5+d1xhbbOCcU9HeOaHsAjhXmI02HcV/5BZ6WffeOmPPe0y/HwahT3m4IBF1yNND20LR7bBePhG+ENBMDo6wvOd9txqvOtLMXO3sEWpMd6F+xFTfilOsjr/FveHJtAZGFSXdLj4eRpxweHXQ/ybyuiD0x0kFYvsi2IzJPoV57kAQ6aAeUSsU20IjROtPvkN98JvZjC7YxlNpFsPpgeapWzV3F9Ply4QN3yct9SsgwlzZA+C1PR55mHc17Zujx6eRaDjk5+hlT9HxjufwbgcBJ7KZ/oZqsygCvDsLu0gxRavXbIwJZw8pXhdGXy2XfLqJbeEhrdXpAoXbO+Xr9F8cUmhGcwkaoP02/sakRmP5gk+TfQrG2nzYayT8fCR6d+Gc+7VkiC2NOMYhC7aHnIc33WfuogC5I+FRjW+ekhbcJVggNSsG8G2RhU4kP1vBhygVYMz/SJKSy5bmrpH6p7eLQ3Jw8yOi5hTc7SpOi7+dsycVfEWTR8eVWgQN3/tJ9pYI+TVeQYG/JADySlo1Ho5F5P3xnHnm/V9WNQ+5WwE1tCRFlPVpSzfSIRLItR7QIIcUTgKuY7jdevtuW0Vr7LyQ8P89tLFPXC3LX6wPqiP9OPzxO1ysXAVFrnsEUdd3aFftrrLiEQZ4fofmD21cLlHGpPj6YaBa7a2msAyTMPuw2WPIzwBM1PyBBxjKgHzqSikwMQKKJ5nrac01JtBs4u6QfWH7EctgVfPFE/ViqH+eOwz8d7QDH5Aml6ePtQtrAvXWjKjA5c2QI6vSJ5rpWp2z+Faj6qrdSt2F4oXeA+sqi6xGV2pao8JX/UMmdaq+fyp7cNPWkwvwnGb56XKarFdsuBvsWxCbxfB8JomfUI2E5zuwolX0986WHYpFsYVlZS3gnqPLtXX/bAGSBXhAsQf/XraJbQzV9C1FskAJA8VNmlVn2aEIQRxwpOQ9hgLNkWCZl+AEoHsubh9H0XbaL6r9jB0D5/1S0BYHl54orTyP3ZMuHjqGU8BHVsrfINRGm8pMAt0HRBbECX4w8MYBFm5GsR1vLhPE2Fdc5fMTo4pTU7gh3b776iEiyLQEVlc0o5Vmr3JiLrNsAjiWYrdFyVBpsABo/ut2A8XwKvD731ZmX1mbwRdA6G8L5duqmb9guYoecStAHLq9lXdceGG5crfaEVk7EYDu+8EjCjGmtmM1mdO+f/6rU11A8NfIKmN5bNqcOZM3Y6pFR64Ea3UpLHj/G+aUCEj3bz+BgWwg6OlE0Zjxa2TRSd8srckdpV89m62oGvX4DBU7lozEGt8bzg8q6uuedDysSajnNSZah5/6cdwrgXBZ7YuBK0DD2RbNx9q6lfNZ+6qEfK0S3LD4qRm7QVqEjbgbXwL+vGWw6Q5sTGvV52PfVDab3aSPkU6hgOJxUREULlZJYkL4SCa6EuipA7jFlpQ5hTdJdCdgNaI70P/gDcw0Boj9YTRYbE8UyPvMsySyW+2O7j4nzxji75ak5DX4w4Uz9C5hHTvjg9mLRO2wlyAYv5PYF7Ee/2zk185kJur2g43WxTWgmN2m/SmzcNKef9o5M8LmzErul/A/JsIxONrMB60iNsnImG+SrCvfE4VXnXMTyJo/3wFC/4CFQF7B6y0yJYeFgGjg4ZJTdBogntTf0e9N6kiVJoyXD0LvhyWVHr4ofsjGFIlhkm9g7T4Anbr9W7olr1mqQdmfdUtjdRjVizBm6v6dR1NGR0mfmkxgchS31LOZ+2oXij9Cb+7421kBFOkrikZGkcrzgbRjPR22TajSneIrwH4tBNwVGgplgsafpMk1CLz4xHevCOMw698EmXyWBoD+DbAQkJg/fKQdvOWyqSgEjuSr4N8YLlucP52Rd/DiFgPlEQQXUULnQYOlpkc78fDweDLYQJsJZAQeGH3/xCBC8nvE6KWXX+sMjTSUfvUre8DNpi6Wo+fb3xI/ThuFkxfh0aqsFV65LxzYe+Eg0oz1RXpbIyST+5CFqwUbjd7pjZujG1NBbi5htsJ69bKtUxRWeWQuPjJ5h2YZr1HH2yE6tEzHUXZkJFrXv9yuJYp/vg9KuCmwCT1QLArNpx/JjaHMF6kpGPbdoxodKeqDl+pV/lSiWWW+TgXonv4a0c45avd44wz+m6PyE/iSdZHd3z9WWBV4TEQnQJq+4nDsCml5JWt+0sMLsbT1C4v69Oidjt08SVx8K/z6gXikTD48cq34wLDEL7zRGhKYiqwrUPMhBQIs2DdutYlO9LBqtEbVAs0S0qDvYqiS9Dd3iIPY7IEJE/lTFmb1iYbbKXJVWKpaBdC9MJsu4G95SSszLoMobW5YW46QY/49T+HozsPTSeU3jyygeRVweAkZMsdDQHKAO3Rb7yPNMCN+85xKhTcQmvea8GpEvq4n3pDSWl3OpTbQ7BZmoTUk+ZaLaux8VH2IwhDh6mLTQkdRDdcxCsISs+znq8gDwdLChDcdUSfSsSjjPbT02tWDSCuoFhFC0OV9BX433V98biEpqr5fYt/qakNeZA//prueBmO3wdndBiuW3VzFhRCIICAT5XzAmY437CBGn7AAU9LEyixGe98PtU/6epMOZBNPO5Z1SPOLHecQQCYlbtlFp71KchF6JfQLuEdFGa+3JrVsRFoERo6CLJyrdlIzOvjG9T9HfYKv9BcZtlr3DMmlO7l/QggFpN2QhM+4RYKcTN5rhOVRZSS/WvN7yjUvy7sBviviNZA8aV5nQsf8n8dOqTNui5UocGgP78FGdZFbDEMy5TPB4/wcRJhOYzHj5XVWquTxqTihSwZBigDoi6D8W42k5TQm/WeBwia8v8HL4c3bxGQDfQPFZPgseQUKgzHoq9/dZ6psgScK8a/E1ZwsYwnZ9AaHpnrDhS4KJwzbBNBuHVcbmbV26oQyQO1OZ+RJ5JJ10fTaXBD4hGPMF4nJQt15z9ljNbUaVPAUPmhMxhWZDYmOPHF7QlB+1RPy57aLqs4D/MMgUql5+Yj8tC0EPvp7rp3bXy4MmUPBwdzi5QxMDy7SLzakIHN/bUvJnWo3hThDkQfJWsMO5N/CLDRzfaJ/KL5vT6EWEro9QcK+00AjE3WnTQNrf/mJWsRvxo37q8Ve+In5iUeHeCIZC7khUS6pVYUSSUi+4e3fZtEFKo/FsaAUk+mETEEe9AjB7oEp8w6k1OxkfZlbwVgvUpHfQyofmSjNcOg2ygKqGT3f7OcOHDuq11Abemo+qt16Au7NR7TMJHNpupqCUex4w2YCsiObxO0e/bdAhN5q/tf9F4VKo/KpRXILIia7mTRunvVlUDnzvlJeIG+a0pAl3/2lqYQWYoRqYLSZJXLPNhLUrgvvg3b7RgPNsdwgAr5rvyrEdmW9f5qPy9U8n1l4ZrqAB2vCXEqFytI1a54oz0q3Bs+6pW9iU47cvv2PqhoQp8NjQ/qs92E4wJOvkfMjTZTMrFlz6QERi7+pKhlcrcB/a/QgiGuzgqSAi3IYg55I+hj0OXrlZA0Qqpd4SYqZ1fpB1/p9COg/uAeE1VHCv1Amn+Ppax+erFsepAG1yauJ9sZ2AAuvu/5TJS4tQFMNIbvHlcEzgJlMpKXQoQjmbPOa9OVU7aWSyXn5f4daqMp5po4jhNWwBCzH7rfZdyLI6rf5w8JaAMQXtmRT5yyBAQG9vLzGyoHkXRsL2lsw3R9Zd8wUeH5wd0yvJAqrAfM84TrNRmx7pM1yWjYAv2LYf1BFzp7uiXt418mazF5pyfxHy0821QbhG+el+iHLhYFjpK61GaO2eFVLqZ9FycWD0y/ac1ON73ryRRzHxAAZFl7A7xyEF25F+q0jqdb2aXaWxeEbSwHcAimpgjlAKL3oFMTEA5YeufbjJmuzoCxF6yzmvsWAniHWXhO8qiyo8t9ETf9NkAutq09lbxFfYN/iEa/iK/ki1oeUOWwYkScEaAppDKoQiwf+YJ2CndIa6XjmpCWWiu5odLof7+x0kqxCz9sf7xBtHw35X2R6K+UV1IDIXUANnuKEL4nqws7VosWQFmgEeB7S6hDE78IGY9C95PSBsMdAB1IegHJHn/y/0w4A2yGduUevz1O9ctLYkzJ3BVAN6ImmPFxyybYg3pEiX16VFWqAPSAYt0wY+yxENoO3jq0PqoMKfBKVCBmalld7vt7yTD62cBkiw7jc/aUri5sx2FWVEaTlSPuA4AFoxVP1S0NCK/NlCRgE9OeUrSNRI7BL6B/rcJwR4Y4djCbbOFXBOVHGQviH12nHV5daOHpDQoZ6lkZy2rkkio6Aig5RY11ks/D+L85EJYwsB6Z3muJiKuS5DuDq884gz2C+hyBtYReK5OlBXKQo4XluW69sYtSvAyTfeg+WcFKPIUuI/gi3Vj+OYRRez6ARWbz+F6may/701uMy9x9VacyKnzqNLIIbJheUM7FLmRjH21W4AR0vdmubIDHArPFHmEeI19oe9/4n0Iqq2wKhuTVbA1SgqHZijZYGDcXL4xvkVGveP5f9yVkH1HZybG+DnkEBlvtHNVu2b3ILMxCcGFoU9xiXti8G+h2P97LS4OHc+vECqWE1JVt9dXymE4Xz058Bkm8NF/MnDxdlqCjRGEgZLx4QHQLiT3FFN4OM7p0eLEZVmkNYA2823peIm7NeuPy5IJdIO+vlNUhQjaq70tioJ4CSBlXhrMXDJkvWNGARQuyDxUL/sCIpPZ83chN+IbG33p0+AbRnbDFZWVPR1r1kJu/hjjLUL+2d3MbFmUnsCtvp+clvi/EYotGhBxBVy327CcC0yZDDnMBqSKyuC3LW6hbVOpu23Nppxi21YD9C6flpFnBjVM82m73mUQDkANTtml7mx5A3gzHfPLKmhe+x9NTw0LisG4hQrz53zia1MhIKLO8LhqKrgiX4Q983m7AxxSDo8xFd9LbJrIt6sksSv9P9I5uCRk2EGHZtCRLeuSiGVxDvu6fj4leLW9al+5am4f2572hWIYTJ0KDQjYsjbcbkXH1+Bgj+WqQtbfg0XDYon2vsW8LxfxnF4Ime/1706vIPQ1iZK+JBz1XUFmtwfeP0M6ptt8GvCZ49O8A5OWWUvMQYA0OabzQZQQmE8e+tSXbO7W+fWty5JSH6r6bZsEzyEaAg6r+9+FI04AL9AJPLhM1fgh9B3QKE5g0Xqp3WDS/e9PbrK6b6mS7+gZ2A8grauKqA7gxEXxVF4jqMkJ315kJJC4JM0mso4o19BWEh2BtxJetoBfbIW2SdXZP2kO/AoaiD+xgwe04wVzEMQOwOXk98AZdI+knyHCRqvhDNzeewqZyJTAobmAxiJpymRfVtMfaVtMEEr2SfdQa4TuvjKfc1oIkhNr0B+mOCx1wcNJlVgV+OaeSzEa/+nKLepgTCl/TLahtF0vXtueFnzPJEPrn5mw6P+rg2aTUIfN2OMpzgQbNI5dGcRImDLvGLj1h7U/r19/njjsjo18/NX/Z4CcXMh4jI12xkwsNZom1OGuIIogEmtq3aO2to0uqaYgF1npQA8M3N1+58gnxLPKA2zkcMULTG1RPNzQHlNf/D6lX+Vu4olDNeYUOob/dVeq6IG0kWzTaEDWpASfNpNNHaadlzvf4udymVqWTJx8W19D7o5C5/mdtsp1V0NiUJpRIVzsPLVFFxWXAdpTsbEP/NrptUXzYr4qbaQ3Q1BelJT8A30mb5iGTgBPk30udwvs5vT1KomuBkc00RiEPEsZ0CrUMjfbzL8s9JyeXy7AGl/i37tEh+lzynVerglvZ9xjq67yzpGwS4MYl64vNls37x8IsYawyG6ecMyXnheqZ8uVTIcXX4YEsE+5esku3fhWV08KEGPnnW5IZZqjWH4VP7ZJFXuoSe0aJRxFkGn2B9bqHRV/qZccTyr4c2+6i1TYyuYESzc5lHFB9Bv22pBQH/cdlchMabqI+iQvHqVgz53+RmrxU4WJuPL+6JK+c9xTdVgZM4rOuHVf74fOQ0/TUvFFNWIGJnV3oLIZtUGy7BvnFdfwwwr1C6fU9eWP9ZxDihWtVdBCKZPAM5xrGidF8cNcvFrZXS6T7Net4ELeAAPEs4TWibC8Aa8w64PEZIGzzFpVfpCCtH5yw84Ok/sDn1HkMC8b+BAFYQ49cihVDCXcHAt6VwTQxAywki/1CS3jjXWPOHyMUOB+cVyjq/6SuUvVr9fjH1SoRKGbGNqOKvQ9Mn0UIMVKLFWHlgzHABEJOWV37kC1aMiWLHRSmKtmbJ/A0NfH4eRKx+4mKy28kAdMtCVqERiDxeVHCE/DTVU8ROdNMqvGmmUvI6P8WOiARPy+1gScotcPrnS6+svEJv10Q1dD3W8hQbs3Ul79mo/sd7/cQznZFWnWwMdqGu1JOCNVNjEEt71ZXElavLSCEwDaIwzJrZy2EVrHKUiH5EE3aIhK1n4Zb2RlwRRncMOWS+ECkX9AjGRP3tIGBQhkjpnwCw1CW4iOulyiU55wC8Ikz6zRsJyHjv6AjeyIXujk8sjZowBLhPeISALAfWCzePIHPbrXQRjL2uZmtCp6U7nVKsGrLn0dvwqZGWTO/bjSkBCvRVUVbZZedzUviUMwRo1uxXhdTbUC3QnnnRKczsBBFDjOr6G7EDSjW+dbAWKCJu8pvuYZETk85qK5H6rPO/a90rFK62U2b/8NcWU1NOXxBVmDD0r1b2qamrkyPg/u+upVmxMQbXiq4XXlAxlRI/4yf+Hom0vE00PdPgK7/pBxsDL6UxitR7CJxO43AT+gMwBVptRIpVFQNG88NjHZ2fO3T7DDQoz3uPAJDYrYLUtUn/zekdDlgd3iBS3fYqp8BYk5JS/OeTFIfx+Hy9bWAMbgtwdoqMedKXF1LoiOecZ4uQfAAU0hf9Wp+XqD0rg3eodqnR872duC0JL8OQQKT+taExkonYDPdlWo5g/+sZlgW/Q+4RbujUuzd9HXpjO6lbrDEBefjhEozIj9BdICWTDMcpkwAAqS3lfElA95VHwK4mWXTSSDAtBZ2tkeoqLQ/mTK4mBbPylAeGNOp4n6prPfbDb6jlEeBJYsaGNN/cDculBrQ4VNjSeeG9jMdrb7J2zctXdGry1HFLTbuUjLdhtBywpYm+TcCSanhRYrNqGubKyPAaur7dmTp6vxSDrOi1ZLEtWgAzPU3myObH0lCDnAjTSruZWX9U1Fs4Zg3JtXhG/7YYjGklUU8GzHBJgr3NQGheJcRWDibvJyKC5gJEy8kqSKAXEP3YKD0p+QXoVMfsnK7e+nHLW0yMHc1oOD2so5UYBTM1uhpH73VwkUZ41pjtE6zhRUMvoCeNqQCLAUbAyJXt/Y62gtcaQe6BBhgDmMb7FykucG/CONn6C/w+DhAnlV3PdyaOseY8EoI0HsKr9ZRUgUV5DMhedBMBYWYXUZ6zB6WyIhU7YG4hIUvRjSnvVs+gxW2GlUOFOdMPnvKwu7A4jNrrF5Pz0njGcqYhACGi3+Wp6jjK+p5ylQChyq6Np8xHhFbdFzl0tI9fBXtbZPJb4lTeD+ZFcMBaVqbG4VROa1d+KkbsaVBqrXO5DQfxvUdKxbyNBbvqJF+FwKrY8FtkIlkE7NXYytnVM/i+WzbuOuqUD0NT/Td0+omKIyRUdxOQxZBNxc27maNuj48uzAsa7ie6+oZK7Jwy8itg08UmnZ+R9rfT+mrLxClhNoVv0n0pH06Vp9HhGfdP7SZ1TsTNG/OpXEHa4F7R38l3hNKTVrcECJL7hYi/Lx1+UiZktFNyHySp4276w6N65/XDS0jBBwtfmLrwPbhFND7aU8Y0VGXDuSYnPGjSF3XGYWok/tJtvK0UC5OPAuoWiz2D5Fwqqjr1d6zMSz9wDS0YRt9+HEFTWZOq+a9Dc2WqmOdxfOONo2Gr2KfzCjqBZN+/azo2vXfMV8SJbqXUEJBjR/7XPStFJJLTxwVMt8kYnnYYA9BKiqQlbs326gmZ2ZD+DDrMoMt4SiN+6Yy+fOlrL+E0g0cx/aN47GuV8Hujozs9kfxhsDMzbJ2M33fG70fnFQbO1uAYh56Jtft0bc8jl2FmfcBG01O4jx32iOpTtdwb9IhVgeD12FL3w2SDhd9nDJL4sv8EZQLQNXHW+Wrl5s2uefZAFFN1TzW3HRUMX/iNKFxdAcWTlToC8reTnNaKnKnXsGpVPvjb0kxqZYvrCWmnrHjUM7ONQAlREa4l+2kE9Ihg8jMpAQ85RdFo6TiC42p7dJfVYtlwqgmFpfs1TqDpOrd60aSmaSgSUYHXMX8nNSw4HqXHMvVezPsxT+ByC4TCwpd3Xux3wQC/R0MKLAVrov60vC4p0U3e5XmLwwKlu7k6X9xuTLy8v+wFbWOW7DTXcowJJNcYeWg0SIGs0/fkooQl/LYKjYtBtCNC1jZNuYEmTjh6+9J7+XMuhLhbjkLmBTDN7kTx2Mxw++bTRTj8uKlRRxcQ2b2Wy566fKWsOYUKF1XqGnQHWLFTe9KiH6JJHI+SVXoKjScVCa2A4ukRX5VS/1hCfrHlDvY9Ovv1e7Tm+Mx3EsEgscdTW7Lhh1w+af2bXs6H3ULuO3GDD56XmIk3cJ4eEwzEjV8njfrmS4grEsBZI2pK5hh2blcho3kuMRRbGJx3JPKHu3Rz07RzhpVp4V38A1x6LIzS4kRxnNbkr2CFK/h+gDoPQ3PPW3Y7TLya5BlXusy0Q+swYXT9djvDxuwhELZzighyIx3g58heBN1Senm0PIWNXFRnDFdyvmJWimGhwlMyzA8773QSVhXCs4uK9QVRzvbu2ioQgCgW24et5EQO7EYufoBz+AEdqBBdyKN20tiI7fBj2bvv+eL0nWDW6CQExDw69FBMcH7pcf78pvJU80ZoSTLPVlwUuWx/b1u7o/pZXfrzCTAbG2rqKFajuonxl6AiPNUDOZ4isgacS6URGVxDBsW9Rr1GkB2LsHWuiviYwe6sMFzEUtxXVG47v0bbwnCreHiVEqGcC4eNs9H9pqp1gpa4tIzDY4ybaz2bOZz0TTx2bJWFl+GjxldYQlNGIrY2tV/fJmQVak0dNaF50UubdK2nL2WVg9STjzeISeVNr+oMkw/1vYHaiC+ViJbP6/WWNe0gq/aCQTZkaDJDny1luX9ycCjQ8SCbbX0d5f5mglYW57CHiGMKooNNRrT4fBvjW6CXhfa8cJ2xiR7r1sQkcYpIeyoxvZNmTmwk1iSNX4fA0sXkrJHPmxiYsOxaGSd9mfoj5TbYRiqqKwOWE7M5fvxosu8IXsmgbl7Msu7XruCPMA9i7Goo5dJG8tHFgCt+Djny68f5Jz15K135daEupM4sCX8Sw+ccVGxY+JzbN7s9wgI33wCDqY6kqx1H5iyWKGRrVRNLoOk9Yl1YfaBSHg2YJKE7qOcwtwVKJRGzP/Ce4HqjCja2SGnoSRChx14JpL5NnSv3GTdZVzhlvlyclfsgaj/fR8GE4E42KH9dlKZo6bc8FhMZ+sAKjwnetElqdp/VI4WHidzw0CueQNyBFO6jEgXrXqXk2w+N1yn3irAanZgyyF56IWGQXNxp+BnbvzG83ah0z8hqm3l/q2AGJjf1LPGeJGtv1JyD6qlgVoZ0nrHpOg99LUpBgFhd/d/bywxo8272U9xdorj74cVodca5yCIWLlyCdJ9QZEk3W5DojWdyJ3jD+0uwX0IB1Xpi44tzK0kLPieLt2GY3UD69r7L+Rumxd1O7r8DFDgwvgvC6JE+AYmgnGMW/sLCkT5L+PQp807uLMGCGaDBErVI44kf+SSceUcm2PGYFJQBArxqo8P3MQuZF27S0DLqgM1QHZ+xJpAdHYSbggHKiUV+0g6qob1x/8pNo8W7Qf6kuO5pDNqyQr5M7s=
Variant 3
DifficultyLevel
709
Question
Grace is ten years older than Kelly.
Caroline is four years younger than three times Kelly's age.
The sum of all three ages is 76.
How old is Caroline?
Worked Solution
Strategy one:
Try some educated guesses:
If Grace is 20,
Total of ages = 20 + 10 + 26 = 56
If Grace is 24,
Total of ages = 24 + 14 + 38 = 76
✓
Strategy two (using algebra):
Express the information into 3 equations,
|
|
G |
= K+10 ... (1) |
C |
= 3K − 4 … (2) |
G+K+C |
= 76 ... (3) |
Substitute (1) and (2) into (3)
|
|
K+10+K+3K − 4 |
= 76 |
5K |
= 70 |
K |
= 14 |
|
|
∴ Caroline's age |
= 3×14 − 4 |
|
= 38 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Grace is ten years older than Kelly.
Caroline is four years younger than three times Kelly's age.
The sum of all three ages is 76.
How old is Caroline? |
workedSolution | Strategy one:
Try some educated guesses:
If Grace is 20,
Total of ages = 20 + 10 + 26 = 56
If Grace is 24,
Total of ages = 24 + 14 + 38 = 76
$\checkmark$
Strategy two (using algebra):
Express the information into 3 equations,
>| | |
| ------------: | ---------- |
| $G$ | \= $K + 10 \ ... \ (1)$ |
| $C$ | \= $3K \ −\ 4 \ … \ (2)$ |
| $G+K+C$ | \= 76 ... $\ (3)$ |
Substitute (1) and (2) into (3)
>| | |
| -------------: | ---------- |
| $K + 10+K+3K \ − \ 4$ | \= 76 |
| $5K$ | \= 70 |
| $K$ | \= 14 |
| | |
| ------------- | ---------- |
| $\therefore$ Caroline's age | \= $3×14 \ −\ 4$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 38 | |
U2FsdGVkX1/Lrqt9n6L+dmVm0Tqqk7oT+QtzvDDbtNWujXit82uElEnB1C3FGJvohRhZDL6b7fIXy6rUNBOAAZvO9Z+5Gfm4U2pYgVxa/5v5EZW5vJ7WAUKvmF9DfTBEjbtKHqHzRY1Em1Rp9J+IVQHKVEHtG+wz8dUr4OIsR/ftP2RyuDoSMBxz4v2sN5lWJ5oPLEMW+nANof2IzTweNz6VdcAJDXrkhR3J3963jfuZ/zs5f0K0q+Wrf1QM8dWEF0PPDEGgZxxj9BK35Ib8qNm1vCBeJXoI6oC16InWEli1ORi028DzLur7CoaE6vMT5Lw14FpjDvwkKAnhVMTv7dNz8pdfdfbMdEZVHyfXAgJEjijLa9KHpXiOy6vIn2YD+NBDGTKPstFfgy+D8HlPFIIr42Un14MoTy0IVWKpMemmLEyfa/meO885k++MKGBUV7SwCIW2llaITsS5g/0QZaJytyrEr35eDda8k/aXBwcZQLm5ajmBxsLf2FKBouUhQBjzgp/TdVFCVGNNPjUvUhuOqtC+u9jr1E4N7cPSB52QyF9s0KXZ/XGpw1XmSLE5CyectCcatXuDm1JmvsJxrAPs1J5USTEwUNkzUbFxfnVvXyig2uU1Ly5hpP0S/HaFdGazRD+tSRtzExnnJbR1KlJhGAWY31ptyBuABlcwDF1lCyFXGyGGr8IqlsaVZjobvzCIKTe16Vjygy+YKzQEgvYFULAGCt9IhEtaCMIKY1A7B626yNKgKYVSF1cApqpl8be37n9LT/KRdaYzGp/JANdb6JCAJ6DUkCccECAJX0HCo++sAlZ5H4vaR2zXdjNwNcE2tDWf7jQQ28nNOH+iHrpFeSSdZLhabqbjLZNpUQMdK3noBNhPY+z2SHxHyDK8ZlqpE8n0o1ScNDe3sefMmKAdnpkGxafE+5jlSNEEMZ0o3fFNEMUiVU9MC0ohufQAz99IKQGJYHSaPpFSNGagXlVytS8uWfaTXGnhJ4rarIAS0zIxaSPXJDSy1ktWTvTUPZkbmQcIjUbYt7lad+KBF/X5xXy/Xwv7FG9Sg4bRL4nnlPyqC020jpJ+L79D1vgO6uxxeKzZzknwdTJV5QmYe8otRm0tPPKbAOnydPQODdlzIb0vHXXecYqPqKHLHimYAiMPpe/A4rvdg0muhYJ0lFBYVqNGgdZe6f1bjyTwp5vCYl8hYJoK31gxnHU0XJWorBy7tf6J0Ows+kV9XVG4Gih2rEUk4EWMhaPYB9V1KB+wr0I9F/bTFYx9OfzSDRDFBzVekC4ZCoLDy8CJi+OIfzJcmj50r/aWuXii+nskOe0noQN3r5XM+tj8xcTM8lfLTgzgXu5942a5X/NFUHms8pcp7lOmVTt2+94CthLINReuxR5mSeiJj2Z7gBv+qjQnrb4/t+uhPtqDqv2ki/QgrX7HV3TRlOdL/M5JaS52BcSCWrsJM5kXRf0WX+mSi+VoyZAJik5X7i3GciCi5KLwQIV3kVjqsbFiLTEFUknl2fJt0GPgF6Z5LkF36IpEVgWGtgbhxe31nPZvLMEX/6Ijt0OxQE+EgHbNWQjqnE0Tp9sbC+FkOOlPVRNnXZGWnBgsQjbegt/LGes59L43N7fF7WdwGlBIyOL/P3T3ah1CrpcAowNdlWnJlk2WJ68NLg5p7Vc1b2mIpRmp8itjQZzquHDbYBlWF76Y6cNL8kr0xGa1b2JkwwG8iaG3YZ4b6ApB7G4MwYgR7uPQDR3CpKn+CsiECE8JyOlDIjuc0kD4WWUeczVmfjazujLTYzBNdsby4StVCo4bqf1mPdbMkg1o3JdWCnc0wMwAkLE9OHqt8HjydNzxXiE8eE0mwmADPbTIxe0gEDih1RIy1zPVEUy1EIFUKVMWdIKB3UjoSoo/scXIvIDU0OcXTBYraiLuhDGVB6Ytb16wMVysjmL+6ej5VIEVohEhRlu6XKl8LtZrgHiDWBDlK0QLJVhKtGtXA5p7SdQr5IRZ4aHrVta8z9xjoJSumvWb6hzeeEr8oMMDimlrUnh9BtiU5bIdw7cZAJCiRQhDMWx+OAG5F5zdkZhy8EKCairVr402Fa7d/KQyJIp6j+9sSzL9OzbSEU/v6cIgoYKLhCMLGWYehmTv6+pOjcpg4mX77/EkLGOkuSqI1QKkudj4Hz8n/CMYY2Y6BZIgbD3RHK56MdOWeON+bp89vKz+Vv+7t42XHqeK4PvK7lnjRWrBrWl6VaN9Z8vEsGXC03mJF2GL08rAtOS58d2eBfoskH/6hwlxRnoQWTPAoyj+gaa6uryW7NU5N9XQ687HciN/RTxS8fGuRjueM5RDm0mLchb4W8dIU7fRl0QXnBnbur879TilvBREuX1UPGn0oTDHpaXjwGxLV0ZtnTB07oGZWujXxgHD3tdvefMDEtlAac3ja0nZ2zfdEHp3lJWsDIveMNmR424aioei/adOUoBwUD/TlDBWdK9NSrL3INViq/KSBJ+kzVXDTe39Amt6P3zRVHxK2fOyJPI4viQLfVhrS0DULYC1wcqhXKrIXrdSucRkw7aqmcOIyuX6E0FnP1lgL6KL4na7VOJYQB4qsUNZS4biYhPLA5onsz3v+chOWRK1b1H/5sxVUV3w+y+lXq74vcPPUDhEQLsDRY2DmkW9Ptb4u8K84MVcuZCWSono434drmKawhObsvU4cvIV8h1iS49HUxAE89z5OqHEMYu+9pLtaman7WEeXIQI7AWkWJ9+zNkh4odcLO/SqzIN6Sns5GnxNTVWvgA/lYeP6V96S8fNeKw8Fzi/ILQ2M5ADk7c7C3tPkuXAP/zx/5+G1cigMoZ+YZitQJXN0eHBavlh+okjP4nseymsWpScDBJwpx+FmT8VTosmUNNZOR8XNSZRteU610X5lR5J67ITeLQRfhmPLYvMcVBjGmChU77EcL+2nzf53H/PCyWmc0nZddZDR3/EpKf5xhacsWygKBiTTTaKo1FItiMhGAtJPljZOvi45853O223QNKpf+PsSi7I0svxKRS+8ClqasKLzblbVz0/5NJ2P+4ZhXt7xMK3XU74SqISrp/J36C89HMs3WThEshteYZJVeF5Jo0QBSjmJ1cU/sgbX0KPggjFX21bZOHeXlQ54/WMHD0wMxO5RDGnasaQfSlvXI0GOVDSCasyA5I9RovFV+/UUPiWzKXYeakD5ldpBD/K9lMk953Z5Ux1o66xAZeRgTGj111J/TTFfYwdcgt52P23f83t3IKKrupPmPtdgfTRticsJmI7acXdGT+PNsOwWDbP7I1wz8UNELlRvD48jEm4zpHay8Cl6K+hBHmceGO5uaFv65jWV0Ms82NoVKICHbe8ZD5ueZTgjlanRZIeNFCT8HI4wuC5NXm1b82Cd4HJzeC7r1ZbuMGimZ/M9wSnD8xKSJXZYsGJfaj4QEq2HSOdFZL6WWOu8+BNnzK4Pb2T9ebr/q8/Zis6lbrIOJWZevMwSFEYF2a4qQ2dWwz8jDJApd/C7BbcyhdmSvSEKH+uxDXsDuDToXihKGocPDvDDw0jmoTfNaOnMN6XNIBVgk6Dl87DV6bxdLjNaBLPot7FweXQAv4BOGbNuDeWvcKqu4lva8Y4lBsfmDf37YXlTwBerzKs6Z5gNT2iw036SgCp7xcA/Co227Gv/M8Xao+86W5Vvdd4iLwK5YMei26Tp1ydSTwPO1GoJVM8vlbcc10/5o4PLb2+xazu+XuqLzh5fUpgkkA/tsFd9ds9KkNFWvN8AUJcjWH65ckRaMYY7HkCmjQAlrPdZ9pxG6IsGQZ0jrybrE7XgOR3zrnrAGTN1zWrxVd+El2G6kg01hMDKPCmmEbuwTRZ3mt1nwV1qgm9UvOvq7WhPXjQaWHwDNHYcM02M6dquBfHQBvHarvb7tCsWtVp5H/C5H1caFVPI2zOrkeHGb3HfSyWKp7zO2yy9GpJ/59Lbq25BNMBwNGhhIrfxo+SqdmOXNrq4GbIqDVhTgzrNjM5OhWnblSRYnk9e1MOn9lbGNJWPd+mcZFQzSCWU2+C5i3vvxZNlXvUXzGsz5ctg4hFzMGgFXW3PkMkSAysuQCBfFl4xbWZ9AbZOZNP4ImybQuxjy/wKgXN/vBiNPcdBDRBZKUCadLZTA6PukbfugYn5UvTx/vSBaJ8Y/GIJLhnGuY10bWzw4GF7X4OAOx0T4iSyVWqKaEA/Ap5U8wHiTVNlhcfrsCuYNSANPd6FUbRW+BxN/6voKw5m33FmD6HxMscqMuPadvZi9S4j5libul24yLWJg9+GWQm8nOCdl+gWpDE5AcRKhexr8or5R6pdEj1wgPDg/Gc1TeAtvgoGs70nTUkLXE3lcumed+Toz2KdhfROoefte2FM/Xo9lvz4Ct0wimVSW6udpEXJzMGN+8EBm0m3eOlAG/oTMbbOdQg2SOpuIzgsLaQTandoDu0zlT+jAfyGX9SbuWQgIj9nDHo8NWdGSEHplDK6lAQcsrmwmlgIEY4sXC6yFhB5TMfSKB9ZWA6EgQ710x8xV4l6EHVjpKpC0LXoY//pDKFVDI7P7xbZttglthh2lDG096D4mKJ+LiLfClO7bhdFzZnTgoU95SIJoorgYgUzAQWw+NZDESLwZPoT44iQj6fSVOyU2DbVCuN36PBl4UiVORcPphzbmsa0jdgDBgGUYtOBFS1CU9ffbz0FjGR/qhlFAUbEY/Q/B1OedFhDp7ZrDimUAD51wJ4PjsZWoxBRmdlizYza15YSwmdkiSCN8keziGS7UyDZpOctOeREjJUC/8YiN/3Z//klgnSIbAvNR0n3ziedmNEMcenCOwy6US5kyCGJPhDUKGzBPQZSlxWkloIlGrMmNADsuZUWtnJDP/KP3Y3jMd4sU/08YdUi/szmr5g1ffPFaJ1OZ4uSRjg8x9dhwpZMfRzQQBZvXEr5Huo9o6N9/eEmV79q6zWLzTcgE1dGjhD0BttNu/C25A2/r+DQRDopJdVh48LUzSlwTykJhtYyUm+urE7IAC5ko4x+nLnFthEHXl6ALL+aX3rz67Gyi7U0iRgB7a3TcrKKtGKgUUPQP56pU9J6yHB7w1ZWBGViPZHmAvak4pBjdY7921oUhQwFM9gtH+vGiyfWuD5sOVYirR6CMxr5ZTQ7kgfWFHANooNH+cWVto+WIVwesNbH7ce/HVh0WSCOPYE/40rJ2thDP9AMPMLZSVQBLE0Jy5AEjL/LLMQOFfRjsYPWJVARfwnGHfkDopz8KLAaTnZK/ImZ3imyYvkTdrOUVykZRp92KWZ2xXt4ADniyZVetrtfR/M5lazNqG/MfiywJrCj43/o4rLFTqlmRiKHP8kXOixWBkxkgtBPQTRf1YEzVD93J7TsOWOoa7Iem8468GcBIInbndSzC4vpbNbZx+1w2FDU1Q5O7wx7ZcuBdrL+sUx/vXZqXK9UyFpj+JdlBA4zsIGGdbu57UesN/77KGLgFsiPJY7/h+fbb8hS2a+hi5QWr4IBhHAdChUvF4XtTMnPivm9gnBCVmJZs3f/F/CNtDKt9xjAlgWXrridOHh92fEnCBhpAR3EMN+CI2koZ0coOzwjgr+dqohelMvi1wFN1mcDusN/x4KElZ0T3UM/spdqQ0iYUin1qXoyVEgy+9YlKd+FbEtttH6vlOTBeLdNTBqxBErAL/nMClZa6CO4KcUOwqZ3IautkdngrRXJ5Ne9EEVFZhu3d7gJOlJRrLIseH3pF6bqX2vedHmyKigPtWZ2k79kjuTjGUUcAASu/z4RK5uHKrg8ipWGwbzauEcJjc8p3EnNLD5TlloxlKR0C7HigqvzK1rpHuSGxl3xwvGdYnyxqhoPNnclxrX/PZ3T7PqAwJTHw/yAp3ut8y95W5G+l11W612R6fADaquxbnH6MUA209nsSfSCkdBYT+gCowPkJu77vApV8MN2kV1UIFKvb7KK3FGy/9uYDqi3J/dQekuRGA4P9Gj/p4/Q9FOCWZ5oKPFWpi+jJrh8e2KknptCmMWWeVAIJ3bDDPjtoPg5e2OIBvBz5lxMjfgzZj7bjFB/904ZM8q2jcG8GjhYx9ZPzdnOrtnzickuQ5zaVt6GpOHQoZ/WTb+76qMHk3BBABNig8z/KdM+jPxwPze/br4En9xvzPAVWaYEoqMP9URScPtSNneM5Y9Sd98uIX9mH+G3ZUBqfkrUr0cf34fdd1/eEtUJV1kTeI6/TJnnHTArPvTgyHwLq+Yfl7A1LbrC6OJMpej9/A/dRAJLHF6OK0pmToSY1s32Nr37OVmRX199Ip/88D3ryPKyk0ZAqr+ciWFJ+492rGgYuVdnV59IKbBVoFaK01Z93CDwiWzD2z0G3y96MOjzcTPUibHiOiirtfI4Cl835Pi281s0zTBwMA5LKcGAdiq4VJ0zf8OxrrPueYpWUfGrKngn6xIOxjzw/OBTxtF4F5YWEYBUDzrVImXaueVjYkE9Rj9KoJ1KmZmcDMYyPyiQLOB5YrzM/QR8nlIXhYu3otIZEu+eH9ulKCmp2/9KjmdlQSn1e1/kDk/aOlJTI0A9qucPtDqQrVu0TplqemyLJRdmoSppsFWRyGb6qsyOCL6bgW10bSE3lNHFlJT33SyM1jBMEUDMvuHQ1pOaKZuMB1eiV1uliagtHpFNdR1KUuHo/HxfanGoWio8WqRNmB0Vys+PfoRWzCxgZs/B+av+/y/8Klz9dhgK/+KwFqG0yDwD57cOBKYc18dRsqPDRPcL4NQ3N7HbjV+OyXye7qVTH+TqOmUL726E5xXnFvNum5d076v0w4lhXVd0RDUdYeRiSnyUTj84oIcq5w1IK9kBG0Z+CoQPXpZS4g3OV5eju5g9TRZdZ/LkJR+Lazk/Cq4PgV6yOnkXYhMw3GNCn7ol3xDnrJdth859QFBVxnTf+HyzLG77gYcS+nBUCIlk4NACI8xRjvBPI9PWwVsz/icxTu3YAar7nGqrzMbNwgfK/S73S6DYyC0fJfQQn3eISnxriuDJm4Q5mHo3ciRP90ZXeWzPgNoI1Whv1kKfxzvYlzzyPqAwVfatkSYUUnAashxUQbHLLgLDMHV7oLiOn/JZKbDSbCfkRYAXRwwh3UUiW7BdU5ixAarjRTYu9b7VolJrd0Nae37TpEiaE6alPcKOdTQt8o1aLs3LtjMVoPZYksycI4D8tvQ56y5ku9JgUXCzvlRmJne0hpcmn0KPgZA+1T83578FOoAJiemEvWUAk+NXhlf+Zh3k7jRW59MspAT96RK+GISXU6d0Fpgvbo5gPPoxrr1lYAZ+TMoNzsY8aYtU4A/PCduJPZU8+jS+aIb9J1WYj34hN/ZHhK8d2O8MsmVN5SMsxnkeLYfAzbW0ioA867a5AX2hp8xCVTRQ4NC3M9om126vrG106TEpUlKo6q82sCal06TBlstEWmjSYWv3x+siVvQNizxU84Yw0oPCMh6leR6Hd0W5l3FlcmoiMKNPVE1m4QBlj7FwxnvDj4uvpWpl6Dw4j4Ulvdmr1Bvd7JRi4i7qiyWUhQ1KgUjdqa4u9JmI+/KCYbbVq+BqYrBDF6ST2AaQNhMg4FDt37WosjB0qr+z8Quh2nyI16n3t9rJ8Vxav+mk93fMq9qtq56i33nsAzeQMT1OJzzMGiGJq34LekBWynskMzKCJvj005Pz66YWvufQBFKiVazcq1asg0WyR6JsCGa3mduBZSY2vgWYiIpkzdLV1Vh8cyNdvCqYmGdggoytCJzbIRHjIwZ6s2uLCAJhbiEpksFNSmh+yR3SLuNnod00SNypNSNP72HwALNJLK4QE+EdeD0+wjDdCezk94WTbVQq0ECebRsLLriLNVpEjBlysiSiF+87COU17gwLpZRlgIXzOhdDCzqY9qpcTa/i/GtVp4WCjYJ5Td09kmLI/lIxHaWAj18DHXxiuzlXUZgcO/27P+hUmUbPrpeDJG1SUXzDN3dnSx8hLq+x2lGJj7lGx8Z+ARiXtEow8W9vb/6tj5N0QM82+W9zRCFTx0zyyYq/c3P+w4tDMbalhGAQJIJTTeoFZgxubTTvkD4WkpEOtdQgsvgRbvVA33Z35JUiGCzlGdla0iaG9B+oU35EKejnsBV9j8qCUXzk8c9ICl71QwOGh7ox2tYp5XWjGAIaWgTYYupNDVkFSKV/em8nn6fNKwS5mYFhb8sJ9UGeDHNEmp2sU74GGnSZirDQ+gYs7c1+C/fd5wFP3x/2lNKId3Mq3njRMoNZVTO5GbxKObbSa0eFliJGhcPW4htDsm9yV68PRcNgbtl87bLej8fIeSBy56V3je+z1eunGpzf3eUnfN37nEbYbeUvQz2v6cumLs7Z6p5Dslk1oIo/pPaVzRVXa0X2ehd9HtAbvNB7zDvcBGnu8OnKdb0Hl3EKmMS+8rOcGnXJX+hTwZUmuIuTy8X4BEjTcWnW5ByEJ8ApA/XJRNNFFntpHKTS9WcKBdaHkdCLHLG0XO/RCpJXQcjB7CRIdT+LAyg/V2vv+LCl9MTUgBx+8axRgNE5CZGmtJGRRpsVNYSKqSPfxttcYOOjOq0M4hzSwI8EvxyaHsqBJfwwFdTE5pTMHDUkwh6+zxSIPyUgnC0KkW1FJdiPnAwRgshoBBwDTTwy3TtrHi3H8JURoAgq7+nF1ImT4PrRZwRjq7czMR7KCm1oGd21qvUaNS+GbWjKVDwSQ324CjwwWM/Ev7PpRMhrmyKLDK7LtcKHPAkZtHZoZknspFUSTlPMBRedUQTfsfJjtA2Ok4jzH2te7F34cT0QvnLkRc9d/CHIZsKFef7F/awGZhgcJKnYiIi9kEEqztOns0GifchyTa68uOKxH9QvSWIk7kgNq2jCtWxGq3Sqn0+qafTIyvl5vxhsjJQWWhhlAr/sl5VGU3JGcesev5+8ovd/a1rLfzkqMuU+/L8fEX19HRYFNE/HBaoHzRzJTHhMTNIKL3myiPKuHTFng1YbWTtcWKoZkbkFfeL6Wk8SARRDpRuhUsBk2P3Z7uSpgEq3drgxb1ARjZeaDry2CMHEM3IF9JOuHe15pfKXuevQsjmSZdvmA171dB9UTjWy851eth8gBGUEWCGp00+5GVWaHyh+Qy7aXw7f5Sl3QLHh3rITdYYDj7tHLx+tWg//F4Z6GJxep29QG5zE80Jha6Mcl3arNgfLdjQdMCqIoBESTh5JExL2MQaayzZ9TPUkR7KbWCKMShfd7bXUYWVg792E/R4WSlgbyGI2v3PIEmwK1M5YB1ZoQHduakm1B6qzdjL+hjcT8+sAZnpongNLvoQwR21va5c08WLetHd0fb8WIvUPxM5C7pjHP2ks7Wjr4EX51U9qUthOCiemkwXpI7GgUlzERUjDRLwkmr136k1vhgzVxBGmYywOt/5fT7QQ3j7IVsbnuBTt3B8r6yV48mWvlaGMn9r2mS9y2SnFrp56aBz4K2NKqdVlnMot0eb+PM5VneIEUus8OgYjDqf0191Jqr65tmykJ2v+5/m4bLJMgXLw764Nb7uSgHgRiOk66c/X6MD1t/KAw6zgK521dqgrUGublcqnVBIhfEbyU0UJSA/DoQ+DHZYkOtaOgzdnF5KyizlXSI4cjEiJj2BK6QAqDdxz31ndwjRN0sbz5XZdV7rbkzwi0y8I0q/40weAmJ1Cd8ucpqfOCgOOEKWl8w7mChcrtFfi/0ktX0W8rNPeg7oAkyQp/l7RL2Q7WF9LQ6Td4qUvAfy2uW17cbwPkMT9nU+m10E7g/zTNd2R20VISMwsQqQfjgC7zMqfMblHp9sUPookFHNEmfFXMXDWyC+9TQs+VMFsiSpu/GZs3z0SQVVAoC91bZhKFO/TXBqyQ6v3/HfsueJKofrI6Yh4TxsuTUWcUZKGSl3DjBnbe7rtf5pg8B24VATSRml0+BqjNAv5ERf5dCMolxlR4rJx0XxvQ/fmUs7e1g0oqa9pdmKkmkQCw1+jZy15yq174l6vdaLjCLQYRxe4Dh1h02e78PnftF9qBWbY3lSPme8SBQ89rb6jikNZV7btVGPL1p4+wTNB+GC/lTjcB6bNlkSyP39YYxsEnfp78kagd5u2QnOeNvEzCAwP86IgEHXopb9bTNnzIzzboYYsDjhkV1zfx/lbMmGSFKl5UCjP1PDduivE1Q2qjcGd6KLrM+NwUyWAHXzVvhKXyLFPJ+jwqillq2pz0fpvoDjaW4kE0/zDBaGQlo7eUjpJ5pGBKk376Okc0R+ZpUEBUPzoSHUC054yguaGoDgBigWPo+XACIXrAaCROXuiTWytKyrnSEH7VUw1FalB+3jPsBA4T1vdAuXMHGE0AzhwdyHywYza4+pnjJC/BZZGM7hfSziovBpD8EHlIwan+6Cto8xPLNrSx+Ga2zUFvIky2KKdf07atAemDqNtuASTHAmWxDG+AtxvoYW4BT9ckjdDxeNrV4uHPo+8BCCInmSVPltWM+c+KL6J2tEm1zgj3uIGw+poE99aG6f5Eh+9S4lZShHGQHa87L2ryAdGaUmvZ9im9ewwwuVlRcfm33lztffasigBmCfQC9uC/7Q+d3OMXJe4tbijKZBFo8onMfNWnX+AfrTlkq6fuYDdFyUhpLthwR7J9lw0UfnMeXyrP3j0wrMmc7zHc4pCQyiJlPNI6LvVSwZyxLBD250JaKqtqzrkBLfGAxHk/pRWY95+b/2zZB7JttWVnxUCQNDCDUYvxG6P7lZMUzkvXZvWDhAKhuchm24bdA26SeiH3QTfETxMNOOuOY31LSzfDdrbMoz6ebpmxASBs87s5zgZAUX2Nfd6Qwc67YUoR3kajdwUtBHpAbt1rz6QsXXfvLfImb5kzG26i7oXVpw2r7BNyaEK9ke/zfKkIhLGTrvqqdQnOsKQW9+TGG8ff4/wQ1rCsjSTcz97dxVTaa1x5lIXRvJ1kWH9jHp2dVnd00CaLhI2DYmAb/XnjCQcxHqXn0CRzxSkjSTeA0dYNLSHOSkGrpZkRLQxa4Qdi/EEXbKQSu7U3xXt8q2G0l0j6UEH89mqhP6/K49rKlKp7kn6BIh6duXnG6sv6HF2D160ltNjwR+ejIAGmeX4AnUpCwkKtiqU4y2zSb7rAecOhY+ey4WB/zXR7Xt2g3WOcMf9+LvOMdxhbNbaZE9Lbe8XZW2xnelEfulPr11n0qgw6B6kyHm63koJL7b31muzWgGgDF+eNFwNUaf8Y1v+/wAjxbMJ564e/JfWoVzYSV9gMz/3jXwRK+fWJfOaH9hA+XXiyMetrTHuc0cp497ohSyhXInvexBBPWkua5d+MGZXmVsUw/vv7fqC6sDQSJwlAjiES859GThrt6KimcZ1klIishOyhs7IiOcJwlZlL1V1HiM/o5cMF9vKnjc7uWQUaRc7ns63xsOroC0K+hJASYZKUXC0qGP62teZfHBJojqk9trxwLeTLDN84nk1Oly6VkF6WcnGZrJKDTxrcGdvMvoazyV5XjRCM4bfDz263OIYqccbCV3DCnL+8RpgNkV0s7XyY0peK/a9aJVYRai7VR1vkqR5SJ5i4MMuWmUgUETJQvtml66Q9DyIqgRX/Deg15K3JK9m11mDAM5yFlFqqeGdY8UDYXvZNd1U5Djg3rimiD7cICFRIQmgt3+ANVx4gI/gJyFwQJes+Acf1z4Qokg8/5OjojUWMPtPaKSixEVbnInu7e6chOsxZ3wUzt9NxWhyT3PgfzkJPfYrWgeO/37hIrfRSvTaTt4ASiRjrgIa4MAeCzaeuqKsmknlj2Vkakvasmlr76CEeH6ERH+fKadkb8qrkwR6QaO8eW/8giseuNOI9eok9aApEJYh+aait3pb5FuE/gS+KbYF+z9PVp1Sl99kifrlwIyHkt0PnCxWALW2zJWPj79c6DoOETGwXHb+N60IhfPH2muqooS654ohyltpKUl3GvWj04GFUa93Z/U3XI5jAVetsYQRsYxxzvhUm2oVI0M6QRI2ChnHcz9FASob8r0QV1A7ZQPWnknBRI1zKKvuZFOiEpSQaXZ42cvfDJ5+5mG/ZWa+sjFBsV+8SaKcRJU9h2oB1PZOKwnMPFybcGBjKjjB3Mz+cvzKelagFTys8x80QhCltRo3z+7OJ8VugoXEUDleoeR3HdUL9ki4yHhGWEAWgGvUW9AsjBl2vJzCJ+vvKAH5kzcYWIX8OkeRA/DeqhYMhnO9y5H7JVr40YQ1HCcwjUd/uZSPiIqFcw6rrPVwS+K/J3Ry6c+LDLnO4Qd5/J5v2eptRAzZqcTSnLqOkqIjUk/It0uW3bkvj0EFnQi84zcZXj1my4exQb50bjQtPFMFAzW1IUeWHRhsxOq+vKoyNiP/SlP+IPQxSKT2Rx4XMIpzV/QMZM0fEulUVKg6p/VlX4+OFRNI3KIUEoYa02jsshxfdck/0NOvKlDhm/ZL5B4K/vLjuaVDpe6jsfX29pMKidf5TZ4bRxS7ZwkRwHnqqifEqJjIYieWcmJeZga6UXgIpCbMNiv7NFqleYwXtGb4VMILOAai9z54nzoX2Dm1Uye1WNZWUThjLrcpXqRZA3pn+feaZX33NV4XHZOxEXA2ds+Omfqbz/wDhszY+0w39ihexarnbltkdiPuITatFhZKwmFPv2rfNyJ8Yp0ZTPw4HksEdNcRSXYNXj2kCfe9083sR/v8Mt9lsMjV/q/O4FSawMQcm3RgnlvZkarXBlgJ73TM/D3rNxhVZ0EO5wyLquxd+EVkuFS7RT2ls4jkaml8Lc/5DIKtpEJI2ejYOcrpk+G8YaeYp4+AppNh1ha4SBFNJuaRZv6jCAE8L2dKKhMxsThvjozRrEQxu2xLvXeWdLelcvYpikGRkaXJpC1AmGdC+FbDkqcqRiGh6TQvQiAdVi/sl3rWJsxCTkxa1zEyguw95RwSHZulg0cFp0GHjoN2unaXB5Z0f44+eQtaiyTVKAdPdW9KJ9+qSFopTcIFs8q78qgwTPBolSRkFA14uEBVi3MY69HLmhRnYc/kG3l2ptJo5yAsDmUbX8VJswg8LqpIgLWLpEAkQ4Y/IoWn4rQB600YwYZDd2gZ6aWWveLZLf67tbF22OEKcSPEUrOT7LRFZjIACfwkgkP39jkRKKLg2qIubq44yMNAk/oHVEzU1JhfUbkU3gBop1ObppyR5oAy8/g5Qx8MSanPhSrPYoykHRbBP9G5mA9o2Sf8qc1xr/x7+1tEQR4rOLlg5KUdFp11iZg0wmJsNvJIAKNkub7fiPkMndTemVcPr6m1VNlGq0ZhqvUzFmqssK9UH8P2NC+j1BtApVYf/XJA4d7BCFdLHQl59++bn+nzRnFh1xqlWSfv8b3OBWQ0SvJfsqyJkLBqZvy9Gb+7UCWB1MDcxQZ/h2hMwS2NfpZ6dXRoS8/f/ziCdg2KGVnhRXJgbczmid3Mesv3ZJ5NpJZ62ZAblHYDlGSIfvQ0dDbfSVpSZml0oa7rX4J5E+bzX2eUaZRylyq8iqf9YId48rKaMU3lyXl7EVSLF894VSfksHcurCjyUcdzbVArP8hje1IjuS5u3Ffh9nT5Q9w8414+7+O/1Pn5dzZRx4D2KehCBYSfoT2yF71iW+Bzz4ZUrnCltJlgvVWM6C43hmsXcjhREHsqqEr7Cd8EvPtxrAsqnHenQmbPwIN7a/bVRx8cWm70ghUbMOT4WlLnErnvFSV+F4DUbKOT/wQer2uRnBDe4WOKeNJkDADWz0ZBdEJGG33Vo0=
Variant 4
DifficultyLevel
709
Question
Byron is twelve years older than Tennyson.
Eyre is one year younger than twice Tennyson's age.
The sum of all three ages is 23.
How old is Eyre?
Worked Solution
Strategy one:
Try some educated guesses:
If Byron is 14,
Total of ages = 14 + 2 + 3 = 19
If Byron is 15,
Total of ages = 15 + 3 + 5 = 23
✓
Strategy two (using algebra):
Express the information into 3 equations,
|
|
B |
= T + 12 ... (1) |
E |
= 2T − 1 ... (2) |
B+T+E |
= 23 ... (3) |
Substitute (1) and (2) into (3)
|
|
T+12+T+2T − 1 |
= 23 |
4T |
= 12 |
T |
= 3 |
|
|
∴ Eyre's age |
= 2 × 3 − 1 |
|
= 5 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Byron is twelve years older than Tennyson.
Eyre is one year younger than twice Tennyson's age.
The sum of all three ages is 23.
How old is Eyre? |
workedSolution | Strategy one:
Try some educated guesses:
If Byron is 14,
Total of ages = 14 + 2 + 3 = 19
If Byron is 15,
Total of ages = 15 + 3 + 5 = 23
$\checkmark$
Strategy two (using algebra):
Express the information into 3 equations,
>| | |
| ------------: | ---------- |
| $B$ | = $T$ + 12 ... (1) |
| $E$ | = $2T\ −$ 1 ... (2) |
| $B + T + E$ | = 23 ... (3) |
Substitute (1) and (2) into (3)
>| | |
| -------------: | ---------- |
| $T + 12 + T + 2T\ −\ 1$ | = 23 |
| $4T$ | = 12 |
| $T$ | = 3 |
| | |
| ------------- | ---------- |
| $\therefore$ Eyre's age | \= 2 $\times$ 3 $-$ 1 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 5 | |
U2FsdGVkX1+8Qb3AfblfwatcFsirkDxd0JNWEWzY2U6o888kcO+89zXajgm9qrrWdBbKlp7iGi5EWP+aYoPog9Y/B1FeA29DPQ5GlZRc1QmO22UbRpE+EXvFk8iAhdeWqRB5mNb4AOaiKtwSCJ2rMX1j2A8aGBhRsvoyzKjN5yIRN2FZo0mcJkD7Nb6U+Zt+BPRvNPidSQNBYXcvfrqD87qUKbOh768YPPkRcqe+55aSqX0dUl1jKTkd0KaeysJV4rT+IR9kbDHIN1/jsqS6RlZJ6bv6jZamNiTE1WJKYHYTKzD1IY/1MCAC1EiX5U6zZONrLHOD/TqLZCH6D3dBi3Adj13ndLQRylXqmSArBD7ktI0hkHEobvs7rcFojLk0jDrTerlD46nv8zrqevR4bPt+pDDYd4slU2qkd6MGMJ1NsVAV5hfpw28Auh5yjJItBjmUqmN9EXE1ZUjX7e8pikNkmsI/dUCsWQznZoL5h9vnJ/7BBYZC1Rz/biGMrVK78lJqWoLePeFlAyZDSMs7HxXo4aJPqxK9fQQg6NHwS4MfynUkImoLmAR9MxJv2KkXu22y9dV2AKZr2U7WpWzqefsmXpu5dO0TgwyNIdrNXqNAIo/tt/u1rAQwBO201cLXVnwHj5l198rIQD0p4uRWfk81h33sntcwBxPLTGCQlHLF7zzd85IjaHSZhhidIYlsn+/6LaPTBBMpAL3YE6/ChKaCzmsQbSh94R59EoSDJozywiw3cZM/Ajv/+4vBK8/+YC1WH+gujw36e5KjbhH7g3KPkEedQocUY5hDneulRLR/5HZEqql1s/QAl9NnL4jOhh1fP/Kn9Ab1zo+ff9EHMAFFRhcfgKh1bCcn9Rb06XEGOzZzsUhlvYX/wA+lA6JqzbGF3EBtTvYxHMJODVDW3ZIsPH+IeaLW4C896KhNjrb+CgMDh/V0vs5T8O9qkDpN6dqeJ0zMzpeDBq33IURvBoCdq/lKym17N28hbexo+u6ez7x69TlR4U48nDVc3x7CJzf6NgpwwUWSX85OFhuR0qJ86IqUHUrD8t+CiZT1B3hp5k0fOljSloWcZZAhrPvorXPTJIgsOnpWYwYSYWo4Tc/VRQcVv/2scg6EC/SbHe3l7mqGEmomE8Vya9OKowKyRkfG9HGTp0/BxnjuBoD7/IlIXfKi5Hg98vQIQ1uYA2JRzcwBjD6kw0LUFKog7qtD/JVARxoJwx6MC8AjuY9uafOEkK0VNmQRpHkbvJCeiLNSAXIVN/JBGugQBKr3rzCyGhIrdTVeguQIlvv2JzhOhr3AxPcxoNLcZMVtSPiXlgBh7In8AQtpdWjHm6WRGNlyaSDj8CqBNfr3HiD9ufVIF6voVAZzMxdApGdIKmgGCfnOxsit0vQMCtuOQ9Kkd8g3eKIic2vcclmDdJQ9TDvmTzTkPFbavwAvQpCcA7C9Ex/t3ExaUdvG3v74laFjSA8cW7soi9qI5VT5rdp+UbXepfFgnj+g22SbhpSYtx70/xPHb1D9gEDeuPtsEv+8REVYfsEY8TU4aD6gKdQ3nHlxrsCcZOkU/5zF8BQ2SzVn0ifkpytJuBP3ljwe7o/0ENCoaVNLh1OmYijLwLJmn1JKYkG4Y/xFrXPrhyrQNyhp0esnW0BU+hx0MOKwLSELk5SQ5uidW9+Lh/q7LjuhJK3Rq9cdV0FXTv7Kcu/R3m1yjnq3swsJTu52ssGkoVvju/Xp23bOxmnz2rzYimrz3sGN8iYav46y6E+b158rTN3LvQ7vn09dLpZUyoBsXx2s/kqACW09U+RJGlxoUWURY9O7xRn3a1UYvGnCM/lriPz6Mhy4UGZ0zceil6KQg72HdXSkx0mTIoiBuDnGRx8Lr+nzX3nQs+bF4CL1g05+gtRbGjF3edGXYmsf1iSqdt7E+fePYLDm2itNehLHpPvfqo9iZKxgwKQSzU7Nwa4UBgLx0TZkEfOjYY+3M3gUHFoVQcwHlnojLSgjr4mEvLyc6OY104K/lCRaPEbJJDE+8FPDgDcBagZLGTwcjSTENi1rqU4SnGhK6KVwIgPrW+H6TFnzqoTNjx9Kz7uKpcYEBXcqRwO5poyLlNc2n60Th6afsA5j6nHwCHLTCEfykFE1VH/PFHQalSBC6VwOavQwMm9C8sj9FFk6SuJnctE0nm6eylESg7bYcHENNhlaTNQQ4T6H3R4W7LihZ/4FM4NP7kgRTUVNvYuQ28DYPXClJ4t+wFrz2nYmt/o8iwY6rhp09t3rt8jdiY7QYfk5VEZItEV/YsL7X+jLno+0KWHKy8HvxFOGY4VZirYv1tIfdoIlkLv/+Wa8KFFN0cC2MeuivCUDsYW8ST49GQYloHztFUHBr8Di7VVhPgvH5W2CT0th7SYxEUtNHX3BXHJBt0Fk/PoHqfcOmmdz5rQdvaLVlJMNsp76gVvJTqGpkerkR8ZJjDNBCaWdvvB/uOE+isTlF/4I2iHyJIAFn2B8XBmLp4RHqg0+LLCqJSsHX2mVRp24wn9Ob0PA4sth9t84T04NE96bg87S3QLmG+uFIYwR/iJUAUXTkl3Yh4AIIUPD2kCHHm1BKoqOtrailM4lUD2gdiTyn46MCjJCa/zMgtqGh30CS01amAlkUedRNIA3gE75kvHcsV4mFaYFeOkOtlsA2M75qNwm8Kji9Kv+2n7pK7Y7oNhFLfT0q9fZY/lGe3oUTIwUtctkrsjuMzOojYO8Bj+4G7dS5to4mDzs3gz/U1wVrOGB1zdnroRtTOyMrRRkST7fr9D0voZEminmzuQsYMIs4mCvL1dPu8G6/GlZ6U9eKPDV6fqoVNx8koZC56EUUbPM16hplLblxKxocooXpV7KHOF4phFIuLxIjOwChEI0sJnTLkWq4eYWBu5kbE35Gw736s5LfNRUnuBwHmyoCMQOILWtp+/fUkK/T3vvGEzxvPobCy3K1IpvZsDmVL1J2t2771fvsbd3EoypPaskbfYEN0t6Wv4mRD9v5nHoGHY4YE0Js1zJOQDZmSDRgvf3kExzYtic9djiyiNXy04fY7YaE3hebw6UL1xpxDJhMoLoqlyY3Babv+M8z0rJizxOUPnvDNk7XIlnUAv8KhDJmgrvsBbjkdIpZA5scC7G7h/lx3aEe4Vf/W4bhDWU/l78D9XtRtmKqBoWJCxZJfZmGtoswIdGBTPRbM4GQUvcvbLGz0iWtax/EKsr26IN4CaWWuqvQ/5iWvlUly9Ddbcmwsra3zFq1bv1lW/JGhMkepUYSqSue7wEi/RlcynTEM6uPBpwDcdCWw+F092C+3rV+vwaRPxN4MD7W9mglx3Z7QFAeoIXX0f5KvxwFDrmgHjVfZif+C0+RFMIraXMZlpqpezMzWy2KjKX8oTg1CxiHKbGdikKQYLeVBNeZdE6QZ0hm3Sc9eMdXi+OOEMaf/eCrNmjs7u0X57CbLNl04R7eeiDUV2bri0g/wNfN+2yVRAxUnBSmIznmuIhc6BNFFKAoU3F4fNzZoR+yX/w3H1eVgpT0+r+eSGniOKwFDjcnXMRAGVUk73K5wGWKSBvMO7mbDeZpeRpU0UWpa1P5k73ijJe/qYr1g+z02jh3IGQRknPmC8+ZNq2wnj4DYKe53Z5loenoat5GgvpajB5Rld1g0nb3fpRj4ClkkUopQyzWoSJks6Nu3q4iM8WYnAMrwhJvz+P6QV4oIfbX0ruEk42s/hdDDcXeiGP5qcEesv4MVCPZ11ixOP8u6WFWOoqQwNUqzZ1D6wgGkDD5Ta0SttY7xbcqSM7DxAJDtgpl6CwRjO91c2iWnTx4+Afl6SyaS5mCU6Mm39xU9IWN4dccc2Kiog3j+RVxyI8hARg4xA1FW9KkFvswW23LRdHMZYASsJOieUOO2xO00AHd2V5ZcV6Jx6CT7/lHx0ms6z0gSr1lBqnnbgXZnJ9O0QhO81V4eym/FFbfXVY5My0fb7We2eg9D0negCLkFWAY9MVtiEt2+YF9deKURKGxrFa9eQx/JyPUzWC8psxmDljZ9iCsPSum67Os56RfAYQuSBtDuaWa0NPXYdlqsW/ymkdClcLCkPJaM4hPKKTHPlzBGBaqEcJl07LjKmvKM0OpZF6dq2d5ASRDbf7r3c3SviudWg72B+SvIOMbkt4NRWnQ6wKSK27PsksxYPBgYemrJxAvKd87Xf68/1iI7pdTlZ3g8beG7Lb9HsY19+MNzIw2v5qhYzhI9xfTKva1fLBxgxuL/0W+oto6ilmqafscLwQgoevOmJx5sZM3jouOszlcWluunM/5Hsl7U2tSWzguBPzvlTj0bRFIKNBCeLh/JuwXgCf9+9U6KEkTOfK7TgUdL777inUn8YfwxABo41JAOFSI5ne1Cs4SlhCEcuSvX3JLcyJeYVEGgSuH2MG4bvLknnevXs+Hqrb12ARTyVldYZbzFR+O5e2HdYAx5DJt/tMvFQWZXr7+F2dNy6D9Rg/oVziM2pAtT6iKUO6zzSOt0/4D7z+yGo1BBB7RqHteWd1824negcKS+8idcF9fPLN51zBvrMcWMoLzoHrvIth6V1JW25wl7vsdLSWgxcMc5+MlHuVk/vvPBYl4/mBlwgHMLd8w7UxwAawpc8jl8uqAWvpbh5qHZMWfzKSK+UiRmfs5d2uFJQcoLhURO43QOz8wZ+YA3celb0sBJIxAvlFx9oa/4W+Rlamd6OwECZp/Qt+PIdoSly1jgMr67EZPZ3cfhm1kQo7ciMWsVRycwpI2+ZjD2By6XR7irmpMSriqNwn1axDvXugjTSkKZsTBov4AVg/i5o6qcnddeO90XRwq7fpq/njpPVxqaj00Hgqg9fYHm6W1G/Ut/vJSJa4y70wnOvotRfo+8GIXyWOjSxxGutqHzi1TcPHPAZxBYCI6/lTUctlJPLg39YR4EpraqOlkzfFYcC2oX97QKXJy9M2zIr0j042a3E2In9iIv21bQ9tXOixmhQPNphrxRN0FKafAYx5uWYw2mBJ+E2aA/wUzgK2E3n+7X26rRIrEycyG4itUh8zN0vvM4ndtGWvCLtr6O2p5G/8TEwdtusizSZuwq4+maToj7YSugUb5iyBNSdScoqoOe4jqLMCOZfMzhKoGEcAg76RfLWcWpSzJZOnD7MlNHnEeCu1bbwTlgTq2qWde3r4M19dXti1CKlmo8CtgcoqeUFtlIemTpi2rmII/NF4jZZtgXqJaFgJtfIVoZuTYraUxMEzqAVBirZ1OUZWxDbcPQhqnVc/VkJz7ul2WZkP2nzeJbBThtd6RdR5Md5IK6K5xfUQW5snogV+hp4vrVhTBbA9c3YZckRFmXUEpo0OUWYAhB3L6BkUHO/i+cc9gSpnBmgQa4BBrbc0k0/cXDWOhjrbpOBNv0EC3dJ5oihVT13Q4/scN6pFEv+XvJB1MfOpRn30O+tkoKnFxENHUmPpyAmN5vXIgxd5Oh5YgPDvhtL3lePtQG5eVuVloQZwohYcMYsuf9q/acesmbIeVQXFvT7hBMXlYk6Xwe2ckwOcKxFcK/Abjx7imTrfOdJbO6u8zarHJ3z5qLeNCU4Z1ms1oPDMOjLR+WmC83CI2U2Vt+aetdWL6dp+rDXRZMm3xVEYkSMKbIF5cu7LoJFksGv6yevwhvB9lg9TovA46YflLwE51395xdGgJB589v/bnmXPiC5MSwAJwioxAAXY97ticRoNpWYVFn31Dz2M5nX2DxN38Fz3+niYdqJ8fNl5Pj5K1W3AjTRqc97/VQBiqTKJJyaI3SrJGSP0aWQn3Jd4mRpIpIIJJtB3o65gMMG6GL4KKxtR+eR6Wn0za9/I8yBe2bjzaGX8Lm7ypK4ql5UtqXcpcx+kXgYKSVR2hgkYv6OjOhFHd+Ekbqfl4STMFJePpy9EngGRwMP603rQ6XJNjpu30/3n3gAOfMm86I6ymnwuW+3sVSe39Uo+qoMm6caIAbgA6nZc9gB3nv0j70J93Ctti7nyk2MztwYR5JtO/ew78Wga2j69bUhUQvE+dkA9o7rLNDiQYySbvuMn3n/1LkeAqOUzo1AcUpjRgdVRQz0P//tm9WQigL2TXT9s5wDkTgayodtj/BCU1yAq2aM+ozW+3ZjdX/BkB57s9/INK9P5X00taNbCMo3paPIoh8yey2nUcxSZ7HGgxTuecZqgYTVoEBTN91vcyf6SLyNPUbUHNj/v8+gJa1bLftyIxbrZ29SQGa4RGciD/C93QPEe4T1tXTfsNXyHGF7LFFskhzmhywF/appFXaJJ9HDQV23LbTejNLcCg95ftAy7z+iK2OrhG7colasc+vswGqgPpN/I0K5H+/WRX41oLMQg2b+nbCH/U2wC0BG/fyDGgZoXi8iKjGC3JOGYS6oHmMCxFoABXzBN5NNRHrR392K7DI8YIhusSftWsJCTE4RtNVdOVK1xNMiClVb/8RaIObThYpmMhoQnz6CqkTREJLJsJkiYeBFhQVbuuJ4ruFJs7pVrXQQ/jc8yb/hFwDUjS57ZbyrLmH5qWusbs6+bLDAJavcnw2LIpIAWLF5lp8kY5mafHp4mgWvjq73hcOtUDW1LTElmUgkW/j7YS+QD/3pL7XBLH/EWQrTFOCsJflyAvBNdv4v9fIpreKXykC9+4KhOI4GyWiHAzJPM4US2zjU0KrMO1MYxu5FcA1Yj+ZNuy9nsb6Y52uv4IPmZrxIpEpgIcpSQmS0uXyXMqFGSrNTOcOQwt3wMWrZZXNKTlb8EqP2YWvdxOhNLfJyEo8tn+AW3AzBlBBc1/XqbMIiqlYL5R7Y30tGpIMc4UFQejligC8j76GKOWNJ0DFReo6B4h7Y4xfCArWRX7VdXCduLZ0qzW/iVwL7IZKzrcOEwJyIUyF9XeaIWszkZnwJoTPs0IPQBDYZ3NXqr+9TghmAdYQq119VG048zgkY0GRGfxPMPJKY2bKHIiDocdmX3DJXgWmwUkIfO8u/WIncyCqgfWAd4QeQsxykwSFObinPv+1suj1QPfTwfBJMRB9cQN2aTmzbs1OUR1P0MZct6uxMEKGnvUAiXOXW9Ee7HFIoKoPekhmYrgVI5xSWhOZP/3zWz3IRJncgRLJ7u9sQSS2DQQbk7cqNm6pFVE7P1ZZuojn9Sg3cg0qR+e7BIynqnHh4tij9YWD7b1rUHXuBfNzqcUj52Kb6ZlBp9/CG1dNeHtDmLfEv5gL1gy7+Jz/Y1vuQUxjGDnLzGSWSqsKa+Wl1ay4bYYZuXZQGvTrM/Cwzkrb/YkhpPgm/Ghui+Xbe9ykq7+cHHvkpNXZ2ZVjNOLHVCFUVN3YVpPwddV2DIQz8AHth7U4RhFe/2GEF0Zqoipg/pcTVol/H+Wsm+t58rWm2KIo9rkVVAV4UVBQFMyvfbnIza1L8Tzl23bLQDiOKplzJa3aDEMVg0IREV6ad8YO4v1K4GPf0P7BOyZUK0cM6YuM7oH6nMpW31clHNVHRna32X7eixXqzgVr+FSl/UjUeFLg5jiU/JRj0rL/nxsEvaoYZnYY8FC4FZCMvp1bZPOIputCeMbzf+LUcn0CitRbhW4GewgIG2bSh/K19ctRacmsUs/1BoUY95aA7oipc+uHNS7o9/oWrkGBwooi/MoviiwSEzJgJrgf5f7v4EGLfaR4tI0/HmM8CYmqIfxYcq+geRQoWFXreds9tgfccJ2NQ6lLcbsp8554Ndeck1Ml2V85ulNv4T9THBAUMTfwXGr0V7Ba+wsnLpjD1O2PoUXIeafrHOuqX3c6vO9wwUVNqFdiDo/lus2iKHM7/6SstMOfWYxabIWaj6dELKRbyFlvmQ2FDiL35waT2yXX0k8y3mLHiSKmkJ8aKGLf3ucF2j83TbrF4olIn5VKjUVpihidt2VUeT2QilNuHmQUi+6ySO+a6tMcCKHW1yohv1odUIhDKCfW9WLv5h2hDX8cBbHhpoEBmCGtD8//Q9PAwatj8nbHVxJjkjKZWn+HNjKX3yDE0xiGUUAMG0KBWKcaI2+NgfBugXQbynbjj/jHp4n016bkiRV54Qx0rK27RmzNGxX6UhI8VA73NGOZTvz8ZUmblgZ4XcYrgTmLm5f4+uKcoH61YOpGD8XILIT4QHcN6WRPTsqsHEfGWVn5t4w5NAJJQAJmX4xOasAtOpigdeNApgc1ImriHAdjS87SpHpiX8V8u3Lay2UzggMu/dZxSrqVbHw0VeTboLl3A9zPtSM8JWDy8POwyqLGC9WDCIuhBFvxiyWSFXQCLsq14mtqGQpPbaJXr1naOublRuKQa1h31Z6lrDWD5RzSVIAskNbU1IIBQUMSZTgAZ5rT2dG/ttgdsXIRkHulrcULt3ixYPj+WkIDYLP1l9metAQpMb2slob04+/NRlr3uiBhmNpqSH8CzTcgROBfmlmmddxAI639zF1yYdvV17cOQTQodCI381BuYF7fMzU3FCfP6ttLntE8EcSNVMwhBTwdhKG+QEiiuxPOiVe1PSgZWVwqnhavfH8OpvRxTIdZykpCYft7CeNuTHsNh4BHi1MpwO03p0qGxtvHwV44pUNUS6S5HxXuhZ69MYldbbac6PcHb0kEZgnigPVpy7WmImXSW/60sVR4P4IJRb3v1stR7Oxa7AV1sUQDF/L75cUdYaYDizL7dk4rzpmtBPLZaLT2udPFKY6A2EXCFf+0U35Q9w6UxaPu1k45ne8gwjCKH1RFURMtBBqWXs6oqb1Kf/liDCROdGay6aRZNoCr60xRgu/aQ3+qGJp6cjuZIrj5FnLTFa2LrZyR3hgCKRh2dT8MGv1NEzv+IOjHewI/ASr0Hg8c43qXzfhdt64B9VhyaxM/KaHCIY9k9cDRSzHXYWuH3Z3cfWIM684sATvFuSezvV1KUp8FGKSofA82gv6dMU3DE67elXbAajljQUmcyFbbXWK/HCmLdYtNXfsOHrwrEDzwh2jtgbzaSTfWXxKmIuR7ALBqK6qStUyaN4gIpNw2ju3M0u7Z8bh3+VW6fUpE2lz2xOCRGMS5HALzIkSm2d6g2uE5zRXKAGup8HJ9CRUBZoxh1efWsl7jBKTKszYkdhT+xjVPP+DXlYVO6cSfOODC634Z+NenPVAw6OSoIZfSPfSFRx18Kep/SdQZ3+14QHPgG6gEbqrOJ5lqpaoHiJnLMPgt5aPidbpEY12al53ZY42qcWr2A3GXHUOBgUVresXrKIReCxAG92wissYPAn7iZ7kmXH3sRcRAakXlu4nlibD60W7KaSIy67jbo797w44JyOGhqLw9rF9qqNfzFnFU/2+2M6ISNGbDZ7Ra8/NecZIOziYDs27HkoYOQzDRKm7gLTbQmXqCSKHGa5x4Fsh3d1mB8WHjHGR3NfwV4Z30feEz/qZhit21ASod+/Y+0YqmwP+Cg6bAFDVMicPUIjPhfSBpRJz32gqnMyvgVcrGp7mSxXxwZySpyxkbcsP0uVKP1fBX/s9Gx+VFzwhs/b+WgKzCujYdhSar9d0rcYvbqb3cZuRj+5TbNUzqF/ucRSBd1DwFraSyQ5tsdhWiSSDQop4jAH65OI7ht9t6YhR4i2HTgVWg1vp44F+3MAoObQnsRNtI53rrv/9dyffgTwqnCSW6QsLuxwryIeraj9d6c5CaEkrrpRSWpmajVnyNye2fMHYudAhwJbIN5EkcUvYQmbfC4xxpvkIBFY7i5gQYq6vHmv+YaHeQXP/O8WdNdzObPMtAGgFKTyhfPEYS80wlCkbIFsYEW3Cevao295ZSDKBg/dZhMxTvw/jCIyY6nsMGRbUYeeycrYL74YkX3y3cMO6JJLOcpfrMzdkP+WtNQmM+Tslb3shrgaqNTw2584hihNQRajRNRSKx+qY6xtcvxecpOAXptCYSaXFt8JuHnJ620HJmG7UwpqSVZKS5IvcCOT4uUvp8VO3wk4LY4X1cI90usGnkX5wcUq/R5f/cc3F1gYv9M5qhn1WaWAlt/DFs/1/QTQpOGSI2aQLIurEefIUnpeO5HjsLv8ihLEaGHfrf7eVBzDOP61lj5TMmaHggwrBntv/+xb+8EanHPVCQxGr86Z969qr78pANF1EWV+13ESLyUKw8zBkLCn7+lsexR8ii8CvA5kyMcpPQiahx/xEsQs0EAmrOBHka59rWBGOtrabrSzseXIPe/rPMKswYxWndei5IL5t92DrtAtsl8D5RIFIqIbShXZ6tKi2WnUfH0aiwiSSi9eyMI4tmsSX7pWTrhxPW4qNNhYaIdGfQ6FJhqV8UMS/ymVhsizmwCjz3GhBrMr2MxflOXnkzNyQD919bh6FyYmldIhfj+stJOMoKMkGjbF1NHP0m+TVQxSH0rdEiXXq1j0vQWdA//We2BNsmcde3J6eFHr2HDETztQH8a2ACrEZOeoofPID0BwFjY3TW1MemcCECRwcK1aOD4L0UhhEjsTs94y7CE3Rxc9tq2A1BgIJOh4pWiNX6+P5coG1fb8lhShQBZRCW4YllteKWUWof1+GQP5/AymObZrj1AvgjZd1R5ys24Z5oGh3LwhPyEVHuYAOKqPpVzVT93ibYT5LgHjWIpKUQsEoZ3zPhw04sTybOH7ZzvPjS4BlrvFjMcI5+pY2a6bWsHTVwZJGA9uMjW+Gje+4wpWSV8ju53QinKWrlA3oOHprBvcHYExhKRvoJQcntu3au0SjIFqe96Ixq15DnYEuVdov8m4IMI+GeNAojM6KUfI4Aa+lAfooyLkQDfeYg7/Px8ZzVBrB6yOiXiAvoutIITGnXJwm8FfgEMRHOdn7PRhqlXvFcXFyPoxkvditDD8Lh5bXqVZELhyCa0rdqj7gwhnoGeGP1HRtVxo/cmBe/3RqQqhSP5ufKSk/V9rr7OwDrCdXI76qO8qqUDsbqfj7NneuF2D57FfVfQf3GBIyAvcsQOqI/mm3rATJbWWjhkNWBPsBt9+gG1jRn/VpokxC58HDQ6boQO6bopBlLQdfg2NnRadRfEjYZBaJLUEMBXxDCS0EnR+B8qn/J17O1pY+fihWfKJ+eFq4THGGz3niZST8aueIPFaF3HFaAFKSqe9Rxtnr8RHlzl6oT1KD/pEwtkhCuPgkGPm0vfLBnpb+Nb1vajQtJR5Raau+VPyEs/2ai+IWnokoeMW24htRQ0quVfWPk1s64AezWaNN3xUpqvRIm16G6cPL4nCqmFIcuNsg6Es1s49KgnjzGfivi+8BV0gi5pFxSDZ1XFGZP+vUqeerdXoWQ17b5vx6SOXfGfZqmOF/qE1FML8RvmHazlCi49UXgv45+wzwKD93bFAAszeZ3Z0qK0pWJV18BWIS470qO6CQmlK07b3pmHOd3ZYJSfVuKie9Kbxdm5onGaOOn/ZIoJ57ddmWNyVgRZmPRiRbrQh9fq6SZhvRi2KtcJ3VQzUUhFG642YPFz2OnU86IJ4ahi8jpnYW5HSpwVOlzofQoYVyLLGyYh3t7jcXrFuxbxi1nizaauBsq6GtO9mMr7/rR3805yxMRhxWQlbQzia4IEAQjuUDhenK4aoQh6ULvbfSXXk/wjLRdT4g21KrFolnsQh8wNramQc2YsbdzdJGpkFzBCudsJ5FkNQ03yceHitvUGahgnFiBnWKv7jtRcHOiWa1yvRqOYQAJAQYrLnLlpriBeHQBTIhqOa8aeYIG7BB2lzIiv+xt2Pb94MyWtHICJLL1Va7rkZPH0nEmml3Jt2uNzXsjPvMj17Yq0G3M92EhBA9wGkxtUdLcKYyURHbP6c1B6BBpHmvIx4EXYbmVUm33gM6LJiq35bJ3dbN6wIGojlxvR9OD0AYp/EAqNnWU3zP2GM+By67TGS9wt2KnNwdSYMty1YZUy5ym9EwEygYaKMpswYtMqiiL+hngq03oP3C4DqWFoVsXk5h34iNn+2pwEpgzlopfJxZVc5dWHZh+uSp4ePczezq1lYh73pOVcYVA+oPQbXKJVgMT3ZH1wiDrcfQSDeBXBVwDrxn7BKBfogO2d1H44CAn7wIG/FFWQgqvUdUdhEFuYGHPG83ZrwICiKSiEGrIAaDcKGcDTvoZ0Na5GmdYHaTo5FE8/Rnrv2CUqNThqGs/usgcQ0klmYvzqq0qS/FfNlHYLqZ+UAfpwCl0wHze0iCTcKIAQPpfYL+at3GCJMQf9TaZskcYbt+Nv9YcH7fDX4gK2TRqJZe6yeb034d/L8duI7YN4rAnwVEFHISlKkuyFgdlSR0FfcQ6JmacJbHzZ5UaYXFiKVmkEMh31Vz3/pxZdcTfyIMJBnW5cjXE0oFTztmjUgRrMD1yIRV/2my/Tv1JOxsge2/EppLS7dhQ0EO939Tgtx+8qdSSE+drQ2a51ruAm8/Rn/GKLnVzyIpCPBvwk3/BkF3xzpr6ud3BUGGO3t7RQ7E7xtNSakVUrsPlZ/rMmtzDQ4ngZLcUt4RtApNETb+shweTateNa6EYnTY2nNmrhyKivy267N9eBFTlb560aroEIxt4n7BLTxzylc6198kkXFS8FhFdeAoTENC4TO6OVl+l7d4U3rrGZ6prTtekqwwECLZkgvzpayFzls+a3l6Wylr3kYnGsBIO6d2nVfJk0jgK8QfCWVmnsiQ0z5zPDEfXITAr0Uc9t5Ui/BZNWf/VwGG3tLWjEncIl4VdJ+BMlv6ufIQIvdVChnXEAc1NeUheJbKKVwIoHwtoVGEOtRUYcgmllKRC5QBchiJaXe3iP4e1xt4lhQEHwuN8oqCzCQY4BT0o8uQKi9jVbsFCG/XXk+K4pS7ralyIkWzcOb2UN+ZZ8Z+nqw0oPEwYuGNX0ly5E33jPP++u5AJsbD+yxdd9++fGoM5etdWlgYdbf1neZS7iPeail/HYLaz+Qu5l93ZehMPm1hx+cmVMES03rO5n5e33vT7S/Fa1lLWYoysTIKBlYjfINQQcsj9w82+4hmEL7NLIImTNBGWA+0ICdWCfTyDoVbzfuxJHzO8v/JHBvpSGTNCB39d/TXgHbkow6nIqKrHY2F5AJb6qFnNMRtsM2w+mivSGkq3w++MEsauR+foSWqWq0Ze1CLa18VmWPwBmyGHTVRnOnDqI3BGl95XtaXA7HPWmTYUF7mENGJnadGfZ6DSOrZv1nDxUkZx9vzgMzkcDbZFU3cNByYetBv9xYjdo0OV8zj93Gk/AVzNRDG+Amon9f3F98wp/x0hzdNjHnNXB69HmsUp3Baobu2VkJ3S4jeXpvylwoVMUEgRy0eZkU1U2tCW/fKmlD8uvMqSM7F9c8vabdG74Rby6+ZuTjrglH1hJLZztRrUaBIVLZq4YREaB6ubqba6HH98DS46FaJ2Ol90QiLkAgz+1gJ2f0kIGpxB131NqzpeNHgAEyjuKCYnDK0Bc8Q6DkFjVQ1WfTi+kSvJwq9mPX0solk0XK5cGCDxzM3j5Hez9Xux1kVudkU18V/amkxgd+/4/zsmbCz+YFaxbakslDsGdL8gCKoyxhRAyQ6gEDHJmYxiCx/evIoOc4MckbnhaiPebTawCc6q8T/Rr7t2sHC6qmlJupIh2kERBAjfmRnjTigShH2sHYK4G0WGDnhdHQlf4Tqkbl6r3mYWSOOs1nmkkSUDXGCiWk9p6mKLxVTMEOjfBeDaLp4fXR6dI7WCOYwcH0RyZ98jbnC1FCIvFXO2bm8ZupYKV8+Z3onITvb4MX+G71ZzJrAFBBEBcdyUQGZYze2Segz4VzpyIJJHyIqwXl7P6Wnr2DmfmYJ/KXNDI5/SZNyH5me6ItYDCAsSLnMjJprdqjfjqKzULuCCkrwD0VZVB09oFDbPJ0rmNkavwxfKtznJj6dBXcYBmEl2vMXOX6863fxvMk4GMYRfH9NEFzaVBZdYH5BuTZn7prNtonG/iTs8Dg+dOmTtwhd4nBnpnChbMtxU9c9UjKG+vTiD7oHenxonVVKMTklCJKhw4MlhqmRuk8zVwG2S8E4gbpCesDcO8Xn/puKBrK3///Mf9qfxgDL6Cjb6AnBpVdINATG1c/haBKReh7P8c3cMY719XmHayYs9km1wOXXVHNobT6Denvqvpuo33QWCveY5ff04NzCk5YCiRcQy+8FdqFB+xfdtw32bGQACeG6hrYuHttT3dWMhpQoTKEeVofk49j5gjlS9QlsYqgcPf2Z6675T0i3V8NYPNPU31uyOG+txeb+0cGg4mmLF3zPa1MpRTnzHI+LKHbgjpE3/Vu1cHgm40jFREu0NAf2BgwwuHBdiKaoWcEr363ioSR+yLt3uXBVbo5IR331MBW/fU+TvCts6PfBKRbwEArUrbUBYNJPZ4eJAOaXp0qcLn8cZJ53SUIX6MvWnz+o7KhpxwQg8mbdwqGf7fv7u8SEKQ+z5IP3/C047EmqBdRMvzJodqVlaHtdoGIRjfq5CukYnGGz450k0egrmpeCry9pHiE8XVnNvmdEEAbDT8uv8yDt+emTzRCJTB2w2WHN37HYRy/p2lC/1JHMaa+O1uriwb9snEj+Hun53j/kzvnyfl1nVWIVale/ArTr0etvWq+Ar+ddJDGU0+7AWxWyp10RlAW1HRMsoC3AdXdRq2K4jHvDgCZzCRhaZBm9ZK1+BrgBkmH03hyEbBx+h0P/hm/PQuVLgh4u4bexrHnzMAItBRLkaMm4RXKk7i3NJcbXGoyA06QfD8vRITR4R+SPNjI3JlILVQKH754lKURHxm+qJKwMuiENRX1XLYI01SW1XjHUybKgc781YpCaHvb05rg/X1SBN+MW2E+MfqkJCmbg8/Zp1x4QVLfAP+e0ila7MU+sNeGivD6hqiWdmHkapQNoF7BoY3ZOHEAvbRnkY4l5AmeDa1iR1AzJGNzMpHJTeRXTS5PPsn0e79GZBrCn5kyyRPLe6P+rJq9O20PkyKofRZDTbNRefZGd7bBlhKCbysn8xG4MXGm/86qyCupFObl1xPMy9o+HIeNKwHK++z97zs6MWwz2zn0TGEKjx6Iav07GgdT00b882FiOt1SkynmxfPRZHKN27FG1Ud27TcQgEQlWAkkoS09Kh/bO1mbuHTSQxiD2V39ldNRCI40M1Yb/7QB6t8MRy8CyHmvA6Jz4O77YifKKYuxlz6zNa5OSHwNPs6OFhSeqIT+dzIJp6Ca2+uIKnumTOSkBp9elHzjd2wQB5SfHqCZHDmb+tox9jCO/PtGWPapY+yvP7A7sjuEkAONVighxoGBLhDu99GRYaJBSoE8B/SnIAM9ZYCdzJVAFJF/KiI2MJh4GDXMqb1zrze7N5tG73rM1HdtUBK7E98jLpXBkPlI4g+69V7RYrLyWOwEudx+BA1yIf1lLbUeDMPcIgWwZTNKas30ooirZDbqOmXUQ/+RUfTZNwnIVn8ewYED8GEZL1hxAWFfGvksOIxC5l5HYDmbdZgtaK65HhetVbnW+L4OToMH0ma2tx5wWDvvmy/pnWRhVHIXFHcJIu+np0iYaBWvIF4YnGubuQq/vgBffPjXigezsX+/UlzDRw1OKxhCMmPiozMJuuDpSfOwhv9/iS72CWqmE+QQolKBb9GaP9ExlH6RMsJLNujOKqDZHaqi7/Zr9JSdTqko2fTErGJM0fzGRU1WxciDP09A6Wy0CGfupE/344RDKdjxw2ARKM0RCMZUfz/AzGw5t9ppcjxW1Pe8n+w4nSB+q78iiQIMy9Mtrc/1NJK/vXpC3aEqr8bW+Hqe3olA4Zk0m3xjFzmxcE3RgRR26VPeQtHR49E6uDoJxx6FjVCWbUUA5Xe+kkIU9kvuoCAYX0g5dng/iG0UosTmllLI202AFdxJCc6DoP3f5icG8ccGiYWKHvomggMRT85eH1I7dTLMEsMq5WFranvkqGCmBJoG8IbczMMCRNq8ibt+CN2qigciWTn+
Variant 5
DifficultyLevel
725
Question
Harry is ten years younger than half Voldermort's age.
Dumbledore is three years younger than twice Voldermort's age.
The sum of all three ages is 162.
How old is Dumbledore?
Worked Solution
Strategy one:
Try some educated guesses:
If Voldermort is 40,
Total of ages = 40 + 10 + 77 = 127
If Voldermort is 50,
Total of ages = 50 + 15 + 97 = 162
✓
Strategy two (using algebra):
Express the information into 3 equations,
|
|
H |
= O.5V − 10 ... (1) |
D |
= 2V− 3 … (2) |
H+V+D |
= 162 ... (3) |
Substitute (1) and (2) into (3)
|
|
0.5V − 10+V+2V − 3 |
= 162 |
3.5V |
= 175 |
V |
= 50 |
|
|
∴ Dumbledore's age |
= 2×50 − 3 |
|
= 97 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Harry is ten years younger than half Voldermort's age.
Dumbledore is three years younger than twice Voldermort's age.
The sum of all three ages is 162.
How old is Dumbledore? |
workedSolution | Strategy one:
Try some educated guesses:
If Voldermort is 40,
Total of ages = 40 + 10 + 77 = 127
If Voldermort is 50,
Total of ages = 50 + 15 + 97 = 162
$\checkmark$
Strategy two (using algebra):
Express the information into 3 equations,
>| | |
| ------------: | ---------- |
| $H$ | = $O.5V\ −\ 10$ ... (1) |
| $D$ | \= $2V − \ 3 \ … \ (2)$ |
| $H+V+D$ | \= 162 ... $\ (3)$ |
Substitute (1) and (2) into (3)
>| | |
| -------------: | ---------- |
| $0.5V\ − \ 10+V+2V \ −\ 3$ | \= 162 |
| $3.5V$ | \= 175 |
| $V$ | \= 50 |
| | |
| ------------- | ---------- |
| $\therefore$ Dumbledore's age | \= $2×50\ −\ 3$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 97 | |