Algebra, NAP_700031
U2FsdGVkX19NGCxxx5f9aj/ot9ay0Aj4VxPRhYcLLdmMsz6CGb4sE0Fh2t4Mr3Yb8q3rDGNI6keMc99qRwVzKA4i3NyvnvGtBpo6WZ1wPMWUP8R5dNv18FbJRx09U/AO0oIybdhlxKGZmcNzSZ5VQLCNII/+iCnxi0T2rj6tA4LBZRrZ7pl6my5oZZ2NuuQPveU+UBw+849qI3Z8EyrOsfHt2mJJY9fy7jJbrJT3JNPMA7GKjZd9BMsIHg8y+LU4BMZxW62/DjLPv+1PeItBtntWdBh7IcRmMz/70v4DKvraVsuhWRRi8jBgsdXLSRSWl9cHFR3bFHoa/243d3A0CMc5NtmE+kmkZ8tci4VaCJ0hx5Kx1IgDWb1j0s9dkQ1EPvfdRiWkldVv2fkO9CZh/hxaYxton9xkJxO/Qhf43t3oJKyaSi90CVsPx2ioeQYqlzKvgCeWRDncEW82JcBh6Ii0rrEoRwR3sLf6GY/p8f6ryLnvk+u+IfgSPAe7frnEEVTkopYfx9vsFXolIMQQb3kmppXCxOfW0v5NJGLTZi4ZUBIkTaMj1l4KUmbmWv+2x+gto7JYV7M8e8AaOUa6BPYvkBYj4/qRobmGkR4SPpCXkk41r9qQ2U1ZaIeL5GMFlYTNqWqrGf/Tuv6hR1+KQcrIgXaclqP+cezkpAEt+XzgGCW6fkAGm4zoF8RCUKWyJzwwkLKbpocFT9jNdW3uuBJ0qsTGMvF6ZgTGAeFKj4cVdz4IGrUqpkW3OHWg76aTyBGsYbgSYrv6jeVeHOGtFLBz92YzVcL3cHNY9HN47p5DniDYd5kTcyIPr13MQw7mpD3/v+xus7dk5G04cOHRupEVQ0gHKfX6+ZhppqWxkigcD/SnTeQXsZj19fabDjXbPfReTKWIFnor796DIDJhFCdBNHHaN88xb5bgrySW2KDlOMvQKr0sBWvPuoklrQVHFA7zNVtBQnIan9WKaC1R/1rXzKjLYW5h1HAImyPD1WT0In12cdP2YBTLPehrhEMV+M09QoJtkrnVdNj0niK6Mak2r+aUrOZxNz3yNjI0zYtwGreN0pejKRQY+S2dT9dUcebFJDfNsd/Lru4pGdnT0L7e4yYT1dkGeY8GjN9OCvFSpVtLrzC2vE0k5C/32vI6zvs2Ax+g+Wh9QEjSvV7ZP16wvpRMEQZ9wRC9LjIDf8mp2i8CHx3nj4zYkEJI/dDg48Pd0goyosuaWffSLDG6811sShdbRrFXdy1/IkHQ+84mWBDXFa3YmljfYLBnI3HAJusp8ULFzgGPKiUdhyJuwxkWVbrp3ouIWdcTBEpGFfOd99c83eDrncjr+N0S4YeYJ0kmDsoN0gGeMvT1JWP4a3UHBhLZZBiGV+9OjWYtjy5FruQqJr7pO8Es2gy0aNT0s1CBmohBno8+PzdGwSN7HRqkIQFuACIID6o5R5wmVqvzihsEnNgJik9wXlFZSf67lNRfslkSz+IdQaoKNDQeyr4HVefWSNQgPP9iR40wwgZYbglZ/mf6qo55EeQl/iMbJTTPbHbowQMO4SgBxc73YZ/RbHqk1jzwNHqgehG9PxKQ5v3DUm4zEddHGppgpjaNXI/+wcC5euYe+GVqKfuBFFQ9vTZP856c/sQc97liMqLPoI4ZMbhpCSi1NNBjguypI8EuLqPlJeiBAhVv+oxSDICAZ22/2kxovMY4RgNnYNTq+kHXB5qTAVkfeP754kNSzlz5a7+bk/K7HlIqXqpk9MXn2eErbUBBVPgcaQlWHYO1cCIUR/FmGiZJ3XOEFfvakF0YerOz1osYPdl8tp6UyPZjzAd8zvNSsTRP7jR5/nCqKsKF0K3AkXnQg65qQu6YN1YLP4x+Voq9XlrJRfa5ZU459fClaVwvBfV/GOf7eWk4uJqaSftc7AJqEnhb+kVCQMwDp70XYWerm0fNmRtL1EuHFTX/vwa8DRwCXw5FqyGqLPpesdVARwPdpMBA3gKKC3/WT/2r9VRA/Wlo7tSryDPL9z9Ku66M8WiUjmAC3GXkyzP2HW4DFHIFLmrQWSIkr7y7SKD9qFb4BQT7k6AqN09+bmZbs6RtxJnT25lQ6ELEbyDx4BuRL8Kak0hxIp3gBLhurkOze/WU21qLdlh4uAAFd1glHdi3YOYBixaGKS2i5Avg/TNcHGhVZh7zFXYrFImdjNm/+vv/WUQWYhJEuwxNCfEhhEKcZETwvmOWuIfPMcyPV//1+d43VbTW+pRwRC4b4OGCTH4Nm/0FVz9NPf2OyF0B5ZVEoDe44QDEk0r2DfHF1QhfSsQl0Zr5jDL0qRkFdVnI7uTcQPJmNw88OoePUV51KGdfDSnKkcD5GGurjF0KK/+DLBMG+xMInSp6e+kxrJqeNnO4p8Hebp6Sbg5mHH5TThkBtQjQWuCCaGauq/Wtoi0TGhH98OzP8+r46LX6N1+0qyypG9+nOpfWd5HYU5FkQURfguMaKGyqRcFm+L9GC9RSIji1r8qm/JF3190hq6ItPzM1PpfOB3mpmylOVN+bavLQC5CGmzLmcVRUjmdOGIbwcg5c96AxnBY4euTpHfNQSUYBPhROAmzfWEJDs2ugQqOYgEO3YDFUfp+K8eoEpsziJh/E/VKfEUeILlOaS7Tn8kjAMAH1Nm3qc1hy209mc1aiWq8O7h2p+EiujBovr/SNnvn2kgcf0BTMHe0Uf/FPosvlMxzaCvjR4QJJQFx4OkGRS1cXVYqkS1eHli+SMuLnUUePvDkNvMYlzQ6XQzaYo6ckNh30a6GUO6T8tdppyeXzjOad4q4YcFSApguCTivVpmpQ3Bttn1IZoQxalCtKrsuPC+zUtj0XHfRPWXoN2Di9gMVuy0Jj6AKtaXdf7fy/6rcbTBFB+pSVUkP02AG/TKqU27rfltSOTlWbjkorrFMLCk48BxwGN6RZJh3/HKXkiVqH4YibvP0+VCW+BoEYgGVzZt3yNF0m1pBdl3jo3lWM9H2y9m/ajAWunBRvOZX961a1tFihR37XIwIvqlZn7BQgRbQCxgmxi/jkW8OwxaOUWYMBjVcvHS4I2gjBj5DsbRTsDd8ylwoCy/foecN7JbRbCBpU0r8svDYBsPzABZd1SzZwMD2AdsZJ+CX5WkdX5+vP5bxvke69/QIq/6y87MtON+eTU4eW1eqqt3y6Ex2YDVePlgR4ds/HOhIrFp0LYFgZCwHVlaoCyjoF+FlkRHCcVKLixTsRQ59b4rehQUqO3mWkaxkAl8UL9P2Xv6nLapeGsmPGOn8673pEnMy6dVUF6h2En8Kykk5ogj5teDDOyVeMGA5/QCB0sDBG+PvCYtQ3DsC9A7dTnDTAppsWHQ6ce55VWnrdsuKiiBwskzEsC2xKuMg4Q85tZRQyywgz5QG0Y8ktNPlzIvMdafJzu7LSVAVcSMaTz7WcF0MpoGpb/4epf3kX8oo0bjDWOHIl4ibM7Rcx7c2ALeiDNoib8pp6OSe0W9tJe5P9jiAf4jjmoqHouiqf1lkJFGudWJtmCTNQanuWMIxdJLftnBy0YWK0Uzar9k356fhxi/S9nNh7iJCVDXMQUM/gXdre/OJuRq5xkHcOVda/iI5ZOvcrHlGpXUSxdxjc3Jr8X+5YZ9FONHAlQ9jTNhHDXDdhXPf3+YNzQtgdGFRWpJz+cciLV0iAvHeuRbuZ6E/3d/T9smDVTMsM3+FB2o9yGwHyIR3aXkPdFe5ZlD0OCTarzIBV3yFl/8ViaIrxZa0fU0wuj0q8yJeORK0scVRINuyw7HBo7sxE9ZiUtdnBC/DRo0Oyy6ywKdVOt8Okhl0vGs1gcvUFqkCHAGrdKrmqsqsxnRmfOxFcUq95hFwvVhOUTiKpvuG8IVftwjzPHZx0FeZosl7vqeI+tnjoR/Ly4H4ZPNrEbFYtt1iqFUvOkSnwt0++dBR15dMix5633m7JT1gklABR3x9xwJgobIOc6s6tV9DarVor3vTX8Dd7huAZxCKqV4WLYAD1czZow66hiWlFztnjgdHgPbSV9EgAhqDezK+QfkXR2UD9jPY9h0pZ6xNMauCf0H8Z4LplOaKvlu/jIPuyVjUX1fbt9LzQwQ6CxmWwiZ9lJQd9RYivqWYNQt53VvcLRC0sI+8SJZAFpqnn/U3tamYmLSW2Ax/9D4t8S+p8XbiaHbqv8J4hBy7d/bYSDRSuDG5Z39PeZoL6aka0SOMpbEeb63dtZRrZIjXDuzaNtOV15CahlR854J1vJ8IdfEl+zcjegEwoIUCp4Rs/nhYodYnt+6GV0e8fWPZ0ZgxZ91h1LSm4Iev+zomKK/Erh09lVG5z4w853TOqCOxzi0V5dckHfYscYsOMNBLvBwbP67N8ez43mdAGtx9cXmJF0oTAj+k5pQlmDV1lD9MHQG0BabXqPmWS7lkZ0XK1sNVlgfghAeKwM2FvOMHq5HSvafaury23dk54pqEXdeQnjaexYyTuQ9e+zD3xh0pbHtZCuBvKdRNAZJvmmlI/VF8VKvYfpFDURy6y6JuLAgQNMr4OLrgzMdu7oCzXyqlbM91xKGlX72eHxUi1sRX7oUgtNpAunIe6njTlGyAiSiL/rL8a2INb23gyQKHxxDSHHJsB/FhfOCljL8V3hcAlA6X4VzmIV/Bt/4JvO+JC35ro2Q/FPak5UoiNMW2obtCw5qesbzKTgeM6t4ixL3cQ2pN6QCY6dI5d8iqHzF76MA68c0awbdt8kMIdH4/TntjJEqdYaXO9IeN723GQuecQ3zpHV6RXMqeC8dOQEeG7mnV6fcWf/VfCCoB9Ok/MnUr+6T1xvW7Tk3aJLYq+/ef+OGo5Meo5u6K8w/D+si6sg50opdRZvvoNwytN18AR4OA0ncMJ1TWP3kiXIqMIyhf+uDcwpk4AtSZiqjEh5HmmU/XQeaCXIfBMGletHftOJupcBTjoDfA6bAynaq39IgRq6nuSbK/yXKDSZ7/YwRnaEVXxPm75IZ1UDb2eukedT/xYlfPlC5zv+so4JrDpmj9ky3MBqL7NuvlZTuZRYbpoP59c0ONUQQBADAZeGMKIUPaM3HvqfAsgWvKFkH20SvZjrfD5FT3ogDBDcMtn3rwEIkx3WckoTKp2tGvk5tFWQXKs5gh140RXM1sfdXm8x1r1bqOK3IOqDNHjYwbDAoFjFL5zEHdaL7GAwFTfk26vUwlSmQj1V1/26ccp8UlUy0yCBxoIZpikF3/Pr3Hobhbx/cvT9yjL3hS9Qc74Zn6rfGDqZe77Wj8mqyP+ddwnAQDcu4mCNxe4ZD6NUQd3JEm08VjZIUhVuh5Rbm6uJs+IvfE5qSySilrKFeoTyzoVAf7xeMzB3YfvF2i34HZXoobm+uPnRIlTtEzmkelNx6+fOyuSSLp23wE3U/W5S6MEwdCYCForRzTKBV1kVJjygFr1yxvHynnq3cTarw2NGTn+UI78mt8XkhSteTL0bbeGKSXfkyELupnKjkjfSv8A+7/s/a/57W7nD7yT/ONe3jS4Yl1YJEIKa0j575SKo0bmTWcY9REExryEPs1nRFnNx9LteFMeKq22FZOWTs7rFkoaBbzFLAQdaXoerxP5BgTEYvr49JYzDTgHqtam9B8FnuLbLjm4AoAcPWccW+mjEkldkbtWfBDOlp1l2vop2OHTUzrUQEEOJVWYDdnFPuodJojg592FryPsGY05G341DbJV4YyK2mwzsX8A6IVK6zvXmwJkipgO1omQmI2EDuoVMis+5fDzh2ZX1WTVpVowQV4ot9Djwz/2iCPIf7c06tEz6P48B/hkpOWV1yz/CQlskH+ula9sJzXCLGQH15Q4bGyl3nxg+ZLd7ql+WdvRweBSeWxIH54/sQPIkv0n+yXh7ViHXL6gv/yOsyfA2ISDRocjK6oYN+Ue9RcPOQWl0XMXrcwWMTAaNu0j0Mp+DthB5abNVPBUy90Al4gdLKDWxwtQDp0mD5mf6XjxKFOxT7ONpsP+HRq5MB+/9jzPFkThNebwxrO5kIhEmm18F2mihpiHw9WpuToFB3Ycd7KTeQvGkbveIv377tyz0vT7rTSGlg9BpYczT2FCVw1tIkrLwD/bpKtY9keVfd1ctPJwNEXy9tBmxxlwASxtBsIEsPHXoFUHINNloJAhkqPtXQJ/m20GXKj2dZ5HDZ+1ifNUgCCnmrxa/S1Ihk5btCVT1IlKwB5fZOZgVJ/89SVsvMbvDI6eK1NfKCrEJwpde6BRw0h/Pwpa8gLO3UnNiWGxqArRYxe6AVmZdId+npKpWusuZtw4NmAemNchwcIZq0KrXULPPZ/4Iny6TqEBPdyrW7wsGOEzykxnNFEk1k9wWD54HAgPAQ3sadzTN2T7DBo6kq0EByjzjQUQYyFpQKXiHosMg95K7PaU+35dSYi+cPd4kr1hFPdyGWShBQQpBLlYHKhcA4CsFwtxUuXMb1A/e+nv5y2ZRmIhDMOCTE5SCvmC+3syJ7trAYhPWrmO35G2NkI+KXvoi+2IbXTElUmeM7A4RgFs+A0iD0xrNJiMpVi/p+7JJx8dVrhTmRHYsonzyPq4CCyKKIlhX84mLiXtdIUHMjMMijlx1B5yvDagGVMQkRXntr8wArAbjxzTBAz6AeIpA1OYQTvY5Ahk2tT5nkCGL460oDHarIxPMdGWln4irThKwxstn6VoX6ca0WkdHBbPrcMSDU7x96gQJ7LoK580e1MoAL+xIs2CsmjM6Xg348jwkU55bhYr/TXPBvPAgV3kr+Wv+8MrtofCR3WWLu1Jkmu6SmJuqBFxG6Ybt5vbCbIgwpdmidcZWySKWZRxnz+Wz4I2QXHNRSSiNqKi994HjqBtYqSrIrkrF5tDiRFBpsA46t3bHG3KOpjQexOMSs1M6BlmRKHWKfChSWKhppr7GYIorn5fKT355rG6vNsoGksnDaKHweFtI4YMyzsTAkq8UOWnJsXsEQ6Y8m1ZoAEeddkpD/ve++Isl2V6g1lNlO1dIrnE73C5lwvc+u3C6q92ItQfLiQdbTy/eBcFuYTDAf62Zo+pgblajY3arJm3haCcbiap0H2B9oDLDxtjV4lVxN2vS+42kkTl0260mqdolbeFri1Yf15f6E3VbhoHroTniruZuAHoGOIX27lvRJ7gtdi4OlskIzuNdcXJdGUrlSIP6zL63UptE+8ge9DPCMd0FBp6IlXAF9nqyw9t1MhkbxR4qUfxQa4uqZ0iv86ngsMk9UNa/THrJqlh2lyEYVLs5FcpCKJ6OCoM9/8YdPK4XfA/PQEc/6T1EdWp+Qw/WR/SpX9vSn8bwlqpTy4X3QL7BJsDRfy3NErPtlX6xplWXHmX+GxN10sardwLRQCW7P6/zrgSnO79gSW5BHLvmomCeFsd+pmfcgwWDNCappRACnWHq+xdfqvjwOVCY6R2m38IsGYiBA1mzbd8K5lcntL/AS4EHZpJIR9PZEzOnb1OCOHVd07kw9E00Bt1yE9yfm6XCTtSN/RLttgqrU2tVt9j5fdJWfsFCfaZjDeuA7QejI3JAo1tPwiv43HmROh1U0odQioQhR/5PxkVHseCM2VO7ahv0UKqyFV+a3rn6DybGKhGmehX9hwwSVOvvzh1gheDPiZFwgcFj5c6Mxbo4SqrpOi7ZtrlgIdLwPP1TazQThN9zxAO3KSIJs8rV+7fMAWrBFA+SBSztaUzOprQw4bc2iHX4QBfdTVz2ua3+V1fLtxWr2j5otxj3DEDHvWyJ85nIVqYTzd+fYQGKPxktdLsR5b662GT7d4eLegGrKW0RiejRYmhiYrAYzaykING+sr5LhSb4d042I53YZAfw4PmlugoTw1zrosE9c8rHl9qPPEbeXL6OZ2b3tI3n/Jnr7U+1jGoSlEdR8yz422jG/u0cGw2oo7+phFAqYzI4Gb+XOT/IsDCm/9HtEgnDk9lWO96/5X3LcBrm408kF0XPip/SxLjVOnmc69fa8Mqw/Njlf0ZX5BoC6Dr2zh6lrR1DzSxyqUkNuoGewdxaObZVefUzi2ZeFvIIzHNNV0/GCekhsEAEruFdJDvQX6sWT3ENFpD1P7TDM9pTaOe9J1FqFN86nClTjskPHgczlE9GEJVCeDrhqTAmMkVLbtjPTdV15ihk0R11FUz5Wlr9lCdPki+QL95uQKNj1iDQ1u+SDDbBScx0c1sQgy5glwqqUqOJaTdR8PNeGF7nMYkL7aWE3R1/dkMCFfkW1DHbwMQPlCZGzOitEXNoL+aw7uBrCXOax2ZcKAg4syHlHW2hqXOvd7dn8S+Myp8+Z1kOSWibtkIuL25yAt/HLmSFDxsofeXfRdTQom/0bmyvOLG4YuGVYqOqXjA9qcy7TAusqPLwQ9ylUKhoMQNqhTVL9EDVa1oj0sMuiu5HkK99/onfhYfcVeqkTQk6sBCf7Ex/s54AotSVslukyIBRhkDMRnfJRT4Wgz296v3QmfXH3oPi8IcTKarvPQIY5NmDT9B3C0lplMyLgjYtyUZ237LU7CN20viNqbcjMDOe8fvfIZKyinCEcbyWf3N7XKhfNXhRSdGXVvNY6k1GgwXOvPpeKvgvRg961r8IqFyE6l+JZzhCDHesA/hXh+uxw3Owv68pUBDE+/2vsNp6S7Wzh+Q6WCBIA7xs6I0DJu50kOkA5LSMiGvVkSer04yvQcErQdPoiv2+up+feg3W1ymctZ3e29v45G3TgBRv2i40yIKTQf4ZKHW5B/g7SMECGOST/pjnUzvOwqFtU5nDyHKPxu+3imA2MNTru4fJPlUphHk10twm8mylRxwnsJufPt4NVtA1W8qOUEZbX5uo8J9uyrPYiauATETaUwyU1HhTy3Q1mqzGdi6/UUGTDjEn4viVAR1Lae0UdGdC0VJtcG9dl6lQFhuRL5xYbIsrmKh0YGTqtSvRy39I0UnJ9w4cS0VVyv2rnOAoQ9oQ05OTaaxhRyCZ1SFwP1QAYTM7nP/b2gG+FYvW46SkBMlirqwrmCmGvByHMj5Y56+BXohL0pbrIFhN2mum5TvEAWWeiL+9i5hkbaA8o00dHOqJ1VNWEyxIRhzvjjkcOPm+jD6SHT2MHBTm+yPVgUZ3gr2+cyyb13KboCC6SGQ/vjGwu9gmpd26Hj6S/bu7KkjS0+Eob3T4fp1khU/64crSH2HM4j8LT5j/DRsjRUWjIkSZpSM47fiznN0pzNVQ0zkMcM062XQwNGnq1kynNTcqVcApg0yAoWPk4QBpcFNHV77dHTCYrNv9HYN/msgABcyge5HnZPsmfpejZAuwVpXG7ulU8VWEIyaJkVEHNALlbK79tL7dSHrhGD46LFsQkdDBrtDm9TrKibfP2N9iY+5eBvQLive5aDFi6CDoU/0TlZymmMyHPx4dIGkNbPHge4f4LlnTP9B3EFIZoxwpEfM8uBsoZMXhrTYuto3ol0tMb4s6JGs3fOAqKx9rilaF2LRPJpeM//K79YBXWpje0Ko3flr3LTPGsAlOSL4RCk1MXR+84gMtqkdCXdkNIgFuPHh8azOrUeS24Jt7VRTGlaMj6sMY+Gxvmu+W2bgqS9F6ZWmJZsHj3sXYp3mJnPnbk/0B4atuFuUqbqS0OhrnLg25Ygc4UONg8ZFgt7zhuFpzmA=
Variant 0
DifficultyLevel
525
Question
If the average of 5, 12, 19 and p is 12, then 5 + 12 + 19 + p = ?
Worked Solution
If the average of 5, 12, 19 and p is 12, then
|
|
45+12+19+p |
= 12 |
5 + 12 + 19 + p |
= 12 × 4 |
∴ 5 + 12 + 19 + p = 48
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 5, 12, 19 and $\large p$ is 12, then 5 + 12 + 19 + $\large p$ = ? |
workedSolution | If the average of 5, 12, 19 and $\large p$ is 12, then
>>|||
|-|-|
|$\dfrac{5 + 12 + 19 +\large p }{4}$|= 12|
|5 + 12 + 19 + $\large p$|= 12 $\times$ 4|
>>$\therefore$ 5 + 12 + 19 + $\large p$ = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+gcVVsKRhwuOcuwNkQIHSRRlccixlFDpYVIBWZx9PhS8yp2nZKlhbLxoJA9TpI/vNaHRucO/MKAAEctWiVAvyKuJ41DJ+LP5uS7edQDHpQd559voGt5azRaa/HxGxGiKezJaH4UX5gpRGPzcM0iLcx81jswUEULVOYSpVy7PmYMFI2qDYi/0e52qWcfoBsWaeic0KSdbRNJ7n/xN8KgmYWTqcmR1fuHmVnT9UEc/L+x8Te6KcMNaDK0NuM6l+c4C5c6UoBEovGY1a923U/ruYAEiqfC9twC2eC8La5bLdp/BRUWuH+u4WkKrO/ivqnUxqVH7fK4x31A0OdzdA9v8Bq1hFiGK3EWrRFee9tgRoYCpACNU+lOYnLT6MXaLuf6fgpN8JQCXyGOQNEpPZnRjt879TKMqsfUQm7BBRhtzKdJWykuVMREOfhXftDp0q2ORseIMAGqimYTPmo9PsexkyhNkN3++gPN5Fha8Ig+K/RDkiSfZP04Fsr/2Qqk1T21g9H/F4F6hpvhDd9mWJWbMqudjvsViSEP0+tAyQmEaOcaG6klubbbWJZR8zVYnFTTfeLJT24qTvbyvTQVgfM7GZwj1gSr3WvxaKB3Z2tZ/Nbw2vwhztaAzQHdK1a57JMQqkTl1T0bq/ZCmD2Z7B8k7t3qYD+OJB5MoVQDlLvRSaIRtYSolfQoLeA7hpf8gPKZahmGzuSSOGzl3m/EAhq/gsit7erMJHm6F8pSq3y0TxvZcef2ODUuT/LI5g8y9bVhyoU3zHqCielI8FyitY8spVTnvVQcd2IR0pBaLTeccSPR+ZAtFRdUXUwY6YSHL2Ujl0lT1+CeZdiX9wQZ0NULx+2fXhfKWEwWa8dlvMck0X0lBM9GRAXYjIjZC77Jsncn2VODW5lu2zfE/MKkZUPytxkJl2FEJlSxAqFC1utyFN+cmH1whNdOeUdIdO2biWDOvlokJ4tSVR9KHs4IR8B/nG9LRWC1ceLtFn4HxZQARRmJ/HhCnYNCXDfl6uqNux8qbsUQTIEPncUY08A+2SgXeuQFrGytlQ5KN351/HGb/e7e6MsTtZpddFmxSgrXY/kk/BoAn+xjkasMIkYhJNkVVjeen9yAsWmQBp4qezBkLiS213mp25cRCxxmJ9K9Pgdfo4G2EkTlTlzRUcQ0vQseGfFe3CXewR63CxOpOss5ucqUaTbEODoSALQq7aAo4Y25b6vagxYyWhKPhusPih22MTpGdES2L2l6kMMnpsyksdtaNHS468EmsE455EcqO1RAVm2EODDTlVnPnJ8eCkF8lqTeahb2TTivnmtKH8XGN+wChze5t/r/EiiukFE33C0M0Ql2QXpjaFry5ofoAfNzMRbiWSlGXYMk7eBNBko6xjNuXJiB2xDoNG0GRWrblWUu7HH5SyVxnSfWrJT5WHNEsLEpurUmA2SyyvkiNahBEst7QN/k4EnURSi6qoL8rN55FhN42lbzraufcWM7n/eXr5xZ/Z4bwfxkFLJhfboJbI7EFsAeGzVVpmgTp5ctt7bu6u69M4N2Iin1DTSvhi6EES0i0hSEqLyeUO82gHyUZRCDdR7eWk9KEc2uEtBssasevgAoOs53/UwFY9y+iF6vn1+attkTI6nontBU7KfW9CyrE3otgK8iEN0o7w76PdZIMSLdN1q0qJbtV2iUURPYmoXY0PoyEiKS4qgu2NH8KkDS/HR7YdxC9E8fTDgck8BNHOqerHDj5FQO0583jXgsMQfYh2vXr+NDurAAs5gupioEa3UF0WXB7bDUtL8b9VcyTXqRLMdH5JkQcXdwrndcXtkI9wN642cXsE4UPnF8N8l8cUq05rn9JbyIYQnscFKzkW5wR62OtYAG1lB/vlTTO4V/9LXZQYsDyJ8e0fj4Ir4MWrkfvZmVFNUHG9SSX2jjwlJOgrq4mCf73PJYdh7hAG7ngKNWcu8YpcdbyWdW3FeQf6vHNO8tO1oXYfu4ExpFoYIhEM8dKGGyn7ESoxeKx2/J3rfJBeUlCboYHEjUptTddTx4uPasVKgfd5lpbWRdW26KhtCXgeSQgFQFBZof2C1Nmn3t+Ek8l8zja3RokrpY6x7yL79rd7NedoWFSpKUIAmQlFcNjjr/Vj1a4HyAQcSYbzpOft3QSSDUVaPIdJV9QpzOrPoBbgbFzc7+TSzM22yT1xdqb1K23/axZgE1Kl/BMHu7pPjGHysovagVrkno7qhCO/jkJ4tenT1u4Pph/rURX4Ytlly/ZDE+HKs3/tGqRs+e1ll6SRdD5GPwv41T5iRrUFtkTGdsz0ytiazYSUcSMpuQXETb4Ybg8+OG2gpo+GVCvEBbRsrtoNv7g90MFLUCcC40Lm1sgxfj8xVUy3uTO95ryCO/p3YrYYfjQg0W5fN5OD0ehU0wdbu1IsyUmaAIPEfnxu9RrZVCCkNe2pX4FJhRW0eUhaEBoPuELkbXO9ePwnnsHJPnryxzvmfdnXTPiY5oERZ+VnurFJb+uyx4iHCGpraqysOvMVoudHoAkx4iw9/lPwV7TuWUuOdF2sDBC3K4r60ZU9KaobjohIgtWnoBbGrlzH4n/jQNSYX3/nmqAOiU3q6ADpmKc2cqjB93d4cy8C9V0e7dkJbbc32XcShH5tU6FVcabXk9rxXEx138xmIHioAW/zwjiXaga5JpTO3v9wbahe15W0pk1yxdY2hlWID8L8mohV9GxHIRl7Ez1MXc4spu17rDHZyg8To8trWKmmaRt9rUm8cHkz7uUZ5dNKEyl7jZ9dKlqe3JHA/3msyAytrUnrNwgHpY1XO5NorYOS/LjSR5kO9vCgjkjCeBvTFgUXOHKk7NgH/yZoJxdK5GsM9/YDGrCC7aw4X86+IFtkAk4hKpsMyG0YnkpS/IEu3FB/IHtgE1qrzfdHPVPQKZLLbLwYlyhkFDIUCmYsxKEnDMHF4rqYx2yGN0cuomwMU054PT5cQsPKPikSx8F2xT+H3k7IVLc+Ei3G6dhKQRyt4Sj+0+uRTr8zqGgoBlFC1EkRcEGqUq2Ha1qWXXCHGyVnzlXsBLwF2M5Vgz8QNz4Prn8oTYpddMQrqtORsDpchIe4X3VShdZcSimv5DBAInVs6t5adZM2ULPF5QuR0jIVCWvlJmU7aO7d0s4CGPCNP5j1t+whuf4/10CVBIz9IJhNOrKgUdBlMXCVdnNHDfd8yY21Wm4c1WMIyHmPV6c5+vdnV6BV837MygHHjdY/nik7h1Rs0BiYKV5zg5tE1MmQsXI8gHan6V9tNjsYh8naEJBYA7dP+N/nCVBODrobhgdSwHKWZUyU+R4ERrrUgHYnfCPi+Q6Hp6B+5VRvs9i4PPOKTvOQe6bCuNUw2u6kt0CSdD1MhsBVYLa5NNFuACeO0Lw9ItyQZUj5GAFQ9dU1t832TfkKSz3NJKS12yvXpujpjWx/SmwOA2UYVkVshOUFDu0qs+SiyI9PJvpqX25i55fruC3q2MVxDqod0dt8Zmp14AeenBDubL75+n6NQZhXJGoSSQqBQIgfpSPYBHH5pRqUdDVffSMuofPoJfYhwLRFgWjvW5OeRUzU8tMH03OOKIWC6SqXK/WC+JbvatmydY8l0c6/CzJ9qonw4GZZ+3O20qJA74jxAle/1ODP60xG2f/eTcFxn0BK10uX7k2gBBTANfwAC03J+8/DnoQj6Q/b+RrTiCP6hZr5y2Tdl7u/ZtVPpWaxZM026drItj0gU8mEJnE6Ysqzm9QHwsHqoo1cRn6l9Be2N2JxwQJbqvoSaa8btYt0mXFcFFmKSunq5aCIP9ieDXh0TzEL2oAiURSqcH2uinvVnEqZiye4wIs8S22obrRE2OLF2dafE0cC+g807AtMzmyiAhBPEdOXzHAmArwTRqR/Mg8v9RI2/OLGp+TvOR9cVxW6qjp3QE6vIQekm6ZXhyq1g9zYKQ6gX2BW9jS+/0gPeIfbs+vDCrs0+U0cxFaYP9mXyxUoqNCx8kmz4Z/76c2eajdBMxo1R0AShedkX+LR2CQHlbU/2qZK8D/AwYGgd/FcJ/3h5am6bH7GtlAN9fDXwrqa7gWOYEew6Pl3mopAaMBlFWiBWRY6jNb29ES/2FP9I+M1txNpUyMlY7a6pnyxgxIFSWIbPw04awCYKtxtY7nhLJGf3kFPi5aJ25AEw/YJNVLj5+MXm5z49JZ1AVgzdp1SCTMBhqTsFUnimWeURwN/2cs+1rH4s2cmZqZlaZ+qoTq9WIpnkN+Q1aOEF5rgl1JUGT25DxtbTSGbrRRKkcClcauXkZWsBIbv9ISt+dqI5Sw4PR8AtbRNfZLgqATf9wSj23qDeDq0xWLcMbphu6GHG8567vT+EoY8wKGs0ZYCX4afIFCLi7qKXVEcnR7ctVFg0p0jo6DPnSRjMmn4yygh4B8Bhb12CXZj1ZbcZbE+Hp8ScGvbCS86NXLHWHZh80iRveo3VhUgRxlUQbCzrl3q1CyijRoCuQ+YKKeTVlxqSQYE0CEzMbwQW5uLwNFQX68Ql6FBkOZvr1+Yhjf35txRtEonDA4htlv4Z+4EZQwdSd5okbDpHhQbSW6gyxdLls4cezOBy7MCXHctiRKrEpRVS9OArCH2ooRXaP0Hg97o0QPIOFOFCWGVyBMWZ22NiQGb+rC539hQV4slpM/L/K7rSJf4Xtie0sBe+hAAqii81zAPfHeZopeIFjaDT45IdQvXEnkKCOt/hSOmvwepcqUFhMjqhwvPphhyrNdLGJmYhAZidPCQNzCHNsTOlrecOW+pHI0nqT8qiDALzcsiKEvvXdBUJvkYa+4MZqjmLe92jgPJcqswtn9rh3DDXMtRVWyMEKfs0suN++S5CJmHJijjfb5wGtozgrkZgFZj/eUzmD0EQ4B2USh0jqHQZM/z9P1iWyY+7Mnw//9VUYHZ+wnlVIIg1dF3fNHirWlzgoYwMyQFwa15FDBQ6vJuZ5gK7TZLJSwBMIYGB28JSmATYilcOp/NyXKlH6wmLDJGGM1PPpr5zshAvSVv7pzDP1/U38JcPNcz4DMSSOd4GOdRKv9IE13A40eWOwxme/2P73Wgz+hYW4SqqlEjJkWxfehjcb5u/gssYIBkq1s9my+YRluIpF+ovi36XFklQH0f80/iSnTjNM8Sco1/55dxvGf8ohd2v3G06e5/tvZyrIc8VWv4Bng2Tyzwrx/dfXkK3GQhQQm1PpysCdlMxlPcrEay56pyXF1SbNk/hEMPtDy/hahCeuIfbCESTU6mNdh0m6bWOWTWiOgafSkzknPy6qBtRd35xh52CGA/JSIi3VA9LU2M9pDTk8axbB1wfkcy21jUGu6aN0Ced3AYsVUfliaDGizB5VHsPYytZtwcy6G8jmSGfrF3LAiYiUR64SrKLMPUFR6cyidzGygAtlr9ztUgU8Aqj+8CvxYXACiAXy328SreNJlSzwNRUdt75H8qyYWCE1ZJ56dU5eFcr0R4/w45jSEmKGyk2f4NIYI9Rd8dFQTk0Ed5zekwwhnQZG7nLoae7EO/qQH75N93xivuIgnHgOTGTu5/uzXe4ixcffW/GFuzmxS2hoaznVZXNqjai9fkjqWIqbjzwtEEJSVgkJ53S2ZkxVCAjI+1ImoQ+7Q3VQT401db4pmz4G6p6t1s49dXCZnZMjpC6s5j79YwTNf9ZtrcdrW5d5SwjTkrGObx+wXwc646xUUm8ByBm4Y8QjoSTpuue/s+tUwxQ8CH2Jkk/gj4DKgzlj/jLW42TjuNzVNKZXCq8d3b27P9cEdhuifAG3IyHw9KceCyCRcdiWXbkAjU9E3NJwVcNDrp99KQDx3rbIAL+K09tN3xngK6M4MBtFW7v4jFtfas9TGgm1VtJiWPPc1MAdyy/17/3uMXjyrlPO/6Zb35ZhE3WHB6UfQ6XE9Wzy0/6BORpxaMk6zJB3+8KHv4oeY5iJhTJ6hCR0+CctQNfQGwJa4xiHh2hxinV/gBbO1Ss0z161K6rDnSzGE+Y7ykkecrI6b3nogGsXIScqizMTPZgpRdGEv+LVimJ3GHUcdrunoognONktNAZZlVQEH5J5gJ8+PvaQoxxPsonNIZmOxBZ680+R0f0tqHRnhUojNE8WUpwIb5GDy2NQPrStvJ/XwpagMk6Rt36VwqHdsW0+aCGgSRXoXv0z4uNo2V3PqNLIZArRfw4EdbYSc08OHbKHHfsl+RRr4Wb7MzHFCXcKmFhhdVChand02tblGGO1iHmMCf1dnpQ99TXProfx++cAgjefQDhymhYQfDVErH6NegJDrCqwcVPrHBQ0CWTJphO/yMly6fbdPXuoi7fodGofCngEy5gWEQU0BQb+Kbg6piQEAUykXDe0lUNeRdEI74cvNVLMvhrhR6wzu6DsufagH87il+LypSohKFbEoY6b8Wwq9KH/HdSyYt0WLU+J7raLy6DoE3xpEg02n4OmYUTuSmQKmU0pPbBMOFn2N/z+qpsr4bL2+zwvwssKYPVyGeAN6MC1/R/motkiq4wuhkQbXGUj7V0YvcEJa8+gQWqMq+5tXkxbIgzq4f2tCrr71rEN5p5+dZo6mzlygSrOJITuKByi+JaOXSIAH0L3QvXT58JKYdcixvXPmEQISTd6YEszeXU7Uig+prR4eD3/eq+DY8dqsi3H/Cq6CekMYAuM0GOwrGkRZdZW0xTor8PmXHMn99liyQmilKcMu1L/lcZS61XljfzE6wcm1xWezpKwSdcGXVnJYemPykRafrTK/wHhUc+fUn73CatAtIR5uO9a/MI+EObgxYodjxG6U3uSqgdiFDunYyTHRt+OWvzYqs6Jq2F53ZOwO7ORM9F6b1Txx/ChzUnKCPNHP4+BN1nzp71TwupQtLqgQhSYgjFSlMg9skb+NH+0HEHHMsI3Dy0K1y6vnC/xj9scMnxYe9ZNBcOJvMsFQM8S1cexk5YKpTFWPjdWXlRe0TQCGSaxF1YrxQPrlsl5KX9zpfFioQfHnauM3ObKEqc1Ur04DIek2ZlIEXLxoXWc/tyay6fIkfG1DMod/LgJ+PidfPbFf4exiGL6QPyJPt3RiogDK9kyxK9NGqyfJgKl54iHCDcJwpDibDZkvaB4av0n8WaevmmWZFTROv8RWTe9dhtysTcgS+BIdlm461T45C3+Pa+Hdf2pAN1ni13XNvITiXjD14IztHGc8YUk0h3HoS6Be82yh5Zn6DwsuJBbYWOZvp027+oLA/aBV84KMY0XA1Q6eIB8u/UKCqO2fKXR9a8A7FGnEsB/XcF+LYVflO1JLumq3mnBez+qNr1IP3s/L/s1Z0u+jfnA82mAP5VPI52X4Nnzw5HamBQPkzpmzPadirh7mBAlmHaL8TSRsMZvcsQ7hy02NiIcwsi33X6YbGRiXEINPKfYCssysPVhXJlqjWgO24u/GNixiCOYzT1ITHGfjGo6tFake/DDQFI86ZQEwKUq0fF+7i9MygxbtjNsadc0Wxob1+i+8d1daTOFzPACUjPU/nUp3ucWrpi6pdzIxMI9ysukkS/BqRrN8vv09aFtv06MgfOr9tQgzcr7VJeODU+vyo1i9E3jT7fgYcYmQ/tP0BtYKxYia1rgTZrDfWCFLYjTrpnZ22ACz9tGYCvbVgSs205Bxc0oUQzMqJn3Io0XtTO8mHXOQbcTS0sgJKrj4L06U3x8HzZTybTswLC2WLpc0uoH5zWU4rLOWpJ4EhXcwR5IiljOsc3AqboJ1lMr+HxNZJuOalqgz2OU6UMWEL46VavysQ+dvB+mFifT9JKKfAvamQQr831wO8enrUz4mHmOA1+9RRF8fuAFMridk1jAX6jK+kG+WoarhgMAvXZkCJ7wb3cNt9NoqoxjhgCjODGeXWMs04OQplwgBbxmxi4/Ix2cCGgPoGV6AHOCHR5VYYIFv0OjNOajArj/AuHFNXxAZ6a+eLORb2Fog6sTmBJxM8mNlyxbSTSt/2+80NfA1i7gaWygDmEgfXcZ7XTe6W7p5J/0nz2GTGHGxi9Af4MPgPohc2LlQ2ngFLrhQSjGI7G010/cnWIyEVWOV4N3JtyOLI26ROGLK7pqYuAjtdCzhSLMUqooWo+6CtpQzkodmdmFVL4EUzeyDNLgTPrT6TtLLrNwkCK5v0uAhFjBMWmJW1om3ZkyeLapPVnsOsVk+9TimdalTnKo2+4Zjo4lx5JMCfjRwuPPs7OrOk1Bw6txQxP1jvb6ZYRsnRwbqvA/IvXHU75uU4aBP+xKKkFLvcORlWUgOWS7JEUb5ZKG4eENeuNd0tmCm2o+HYjrLo1lejmh1/l6TtGGusT7KzUwNGk0MlbfmBosu3B/3YctzV9Pv3ghTv6XJnLSdeLOExiNKwN91x51YrlOYYTiHmSGE4dN7YC2rXDWI8m7EOWUjkWrvuFP3RKc/ZXce5ar0hu0hKGIKeFrnP45jVat/c16qSLYBTBjb3kaG9xNZmVyzkzdzcdhNOEPIVjc5lNmNWjKoVADXQMGPEa/uCEh3r58hqy4JKe8O60Cs8VosZmpvf3twHNFsb9DqJFrjNlYK/6X2++5cvDWS8P6gYwh8Job9AaeCdfWg9c5yxRVUtvmWQcYo8/pstMypXzlz6mTGtA5QNUraGF9pHYJuWXC8m/WDTV2JBfW5aCFg7pN0+c/bz1bP6jFLUlk43DvFCu+CorzQdZIxTIECN16BsgEYKcPjkbBRCnPCARmlXEJCSNkCZOZeHBoXxgUaZYNWZZq6KLHxdc8tQCpJ0ZAApl1S4Sp9ASMDYRWD07SWiH7vxtBM3f254iLkhGvNEG7NodJPNA9wJTCRkxXnxSYPKTaXVwRoXAjtsPaInzwFCMsGmDxNsRCKvMxxtmLux/osTyUy2+0dn3XNegCQR8XJxCeqD+pqxg/QNKtwuKt6Jwg8/0p2VqiEHSIn9juBegPrq7ANsYjC78pE1mTG8lWA7T81GyNz/sgIBNLFMToAoKoEY54NgX8oVKp32d7hxZBEAMOnyDzHvvCtsyqOOWFJwhgxvryl5B63yg4fkBkilNIgtsDlPuDnfTbhUCalDjjMFekRdYpt4TT1H19aKESkZsI0pYCMofBEOnkP5AhUmcj6+hChpa5RMOA0DdQ/O1Ow3oqgsVZU4hr+7jn4sWXsj8F9ezW/FpqdYWoBKmd0ihm4Tj9/vJ4kseZhKRNhn0MicYjy5j+lN2KHtlrYY/E7+HepG+zFGSI4XlXcgpKuUxMwfmGLBJM0zqjEKzK05USthi/aG+Irxrobuqqi3A3jt1wZt1o6HAxRDWGyAVbD4kbDDvus0SPRh1CGsBEeNmIMcwKty6VREuvsmIQkeoMAHEfxmDtz59TNbCVK2Kv6gL3sXMavBWCioIKMMQ949cgXbRyiwARJMaV+Lqmh8EMhDTskoXOqILEUHT1jbRlRXVoIDMBRJvxrUTCGCR4MoTHanf6F1kAor9+F9vTvIzWnpbRRzXhh9Dvd0GpNCHzP4DfLI4IU1yAbmy6DRQBnYWWVXzxT+6qsMBHw==
Variant 1
DifficultyLevel
527
Question
If the average of 9, 17, 21 and a is 18, then 9 + 17 + 21 + a = ?
Worked Solution
If the average of 9, 17, 21 and a is 18, then
|
|
49+17+21+a |
= 18 |
9 + 17 + 21 + a |
= 18 × 4 |
∴ 9 + 17 + 21 + a = 72
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 9, 17, 21 and $\large a$ is 18, then 9 + 17 + 21 + $\large a$ = ? |
workedSolution | If the average of 9, 17, 21 and $\large a$ is 18, then
>>|||
|-|-|
|$\dfrac{9 + 17 + 21 + \large a}{4}$|= 18|
|9 + 17 + 21 + $\large a$|= 18 $\times$ 4|
>>$\therefore$ 9 + 17 + 21 + $\large a$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+vULTxH91JbwOY1+UT1gKktWtn9BScxu6fYIPfYlB2MtP/MpHHzSi8jsgjCxOVivqxjHqzoCbizL/PJbxk6EKiDawPcPPHObTw/+3nROTeBVE899CwjRhlHwg7OTiigZ/iExEEtSYx5kCoqdRIBQIs6L1RqGF2bXGo2Gk5typsAe4xh4gmT2+t0t9Ldc8tuugPoNUy+wgAUtf3NEbtAEKjlzgMKgFCzP34GvwVkk2AiElCIFbmIOikIzB0tDK3u2D6WC8Xq8Tff9BqEqthy21RkiLm3tR0RhM4+BAA+UeGwfm4BxSFtwWcH9Evlz0OJCEtjjYz+KkcQtO6Fwt83fb57FkbmAZ/o5+WvV5g6jEQqsgNZe+cbeiIPdKPOQbsQixXTTc2SPuVWbEkoxgQgsrNgQY3RVpi8eQqXI2qup/64t7umm51OD/Etd5FKnH5LBIL/+I/yV9K0hUJIz8TDYWh5k1bATK8lpPq6s1N5Nuz8hslV+XPTuGyrS6+OkwnxeSE2oXBklQiEgzEL4NnXS8DpP7TFZMr0MGChE6BEV+5oZCb9J2WYptz7+o+PoS1FN1uI5p9o8bYM78pNtDp7B0F2e3wfPn65NwRWYus3sZjQ60CRXM2RXUyVWXHFl4gYyRMiTzvwYeAooWGjjpCbCLKYRHFcJcK8OrUUvVeGEDu0HauzM2dK9IOAncvOW6FHK5XRRRXyeRHUa2+V4fu5qiVdyvBaafHUaiq2anHQqEhW10GoaN/ITkhQQB98fhLHnf6z9lCdemk1RV0a3wgc0IYX7V6JJlXIALLh1uDHx0++/bnj2VdbOiVwiB8SINhmWqZmxNs0i6JeSVo8ZDKvegWKF/mfEA1jzx6m/vB0pYxn8vvnUK2YXjTKAajQSlW1ZllkwBl2BSJtjtJRdjPcBaeeMfPzPbA5R3WjvOkH1Db769qgi/OwErkbUdXTzGcyP/SuuWpKyKj6LcGwpAz5OSS1sloMTIMg3H3xgf/fIVoZxguvgqIX9Obq7nh7InglKh60pBIqxgyB6Nse0gPHmhn719SG42HS8YViePSu5FvZ/VU3seap/Vyza5iCS7CBdP8kff0IDk/K7rw4sNNq0j1dDNCg8nfL7KjpYPwY2WO3pVJgOYHSShWR9cT8CmLbwt9GNkgfMDU2owplsTtbiEdiXZ3OeVqr3ftt8QA1WF87XYaKuEyB9s+vA6IOuPghsm2Z3gZWhyMICc/oRejTP7G04mAHkN5MuRIPEt9x5P0FHE6Urfu9GJwJihqBcu5jEz3BOzdcPFDwJGCHEm1Vn/AvlWuGX+U/ez2n+Pm91TNiNi7BNLqKXiCw1zG/aSLfIZweDlX4cPmaYnP4cHBPDKJJpgQ8eiDpoqwtaom2d/Rri/pOAg38HwKnvC5GLYWjEc1kjgY/xSn/gVVxvzxSrCJAeZxlUaWp4vRXAYeF6dSmq3ov6kXDvr+rQ0HsQmHdGn6l1jAHXQqPGgWa2SO99I9U7gFfEFxnZe+BhTlnElGgxw+Q+7JcxJbBDggOL2jEMEFuoXmNxDJTHrgxVmM98PYhWItKTj8oc3lk36npsIwZ9yAM0VncWvDU1fnxVY/7CktoEuZWU0FpraFtaGnOrgE2eKmBtlXx+I8R6rDWM2E1tWinmSVGrlsdT3OFBlqEi8lDjgOUHeTKXYEhmynXq9wJFJ8Xcj/1tahOtsxXChOt5+tmAE9WRVerCJS76470lFQubeUfMto3ngEZWj9ZOHBzxuUZu1TfWh9ONvTVCA6p0+aZizqPyT2sENThBPYfs6mFIYzCusullAYE9YkASlZ3Na0hImPcdQNM8G23Rd5Z7SKneR27Urs4daC8nHm0Qyjjd1m1zoylaxp+A1o+EraAqjXjVbI4eUuBk2wUvXTfnExgqJlf8OmqCUvxw9FSav6guWR9U7E3jgxRqQiToqK08xyvVYnCT8Bl3m0VsRP83iGPnt0fo2QCh02womjF5sz3mxTl2gfLjQMlT2XkUfiuqBWVZYR/Epf24HOht5OiE6+EQjdHExNUqBkkRdydfC4ihQYKFSTo/AxeE7jbr1GjmjFyNMNFzE2OA0QKMZW85YnKmcLgQ0aisR6LZXPuc9fHyTVylx2rUrS2OzJJDPc/U5HVEojVMU3YYbLWJ5trf+6IP8HVb2/YOx5ZvLcwvfFqxQbA+qpmHHcdlT9XBVuByX2qDoOEfJFpiPLtfRb1MQtvGzH3pmD1BgKwdmbcpvCd0OAf2HJ/C6LScgQktNnvLBxBJjqAyX5SGHQrTyFOpiPyeAe27wM5XjT0yhmdr/np5Y5mkztz1qS9KDxqhhPXRBbHePFEOL3zogkRWFJsIk0EQLwF+5n8SjbwRUtc9TWbgn3hadG+zuFHYdRh0PPciVrEGO6iEhO5Ixxh7MtDr3LT4x1AFxHIY4jsugVNkOI0q53mbIIEl9odT3pd0LSOa0gp0scXSgo88+2SrRF0ZLQ1Lnw/35hyyp0r/xoK1T7jsZPPMPF0M4DI/viI92Xuj4wQzdw/YbOLbOyb7IPgQLZeE8F2GCFbV5EXSFs7wotZ6ZBzX9FXqnM4fFNnMWllnyKkw2VmYLdeB6c+457eoSX/cDCeavhuv+JzgbUp4kM4nplfdShV/8hw+QkRrVo6CRM6W7p54UhvXpO7pB9ySIESiYe7RXjv7DYqMVOdYicQAY/1hPqbA0JoynvfI6S4C2aQhXGZGgoogvwS6KVaixlAoxPsBPQqhae49Jpg0YbePSg7Wm+ld++q3ls1mb/I5wR72flfTqL/bwOMvqJ9XObOwERFPZCunSQ3IysB0U9OZatdygjQUa8yLx4WYJgr4gEgFXzYeuXEmhoOfMDmGVW/mlOO5qe6/iIcxfI4pzPPyDCJ9322JiQC6oO/jN6FauwixdR23lYT5ORaTRiy1QSBY+qvf5iBdwPbOglCreVqh/F+Ut758ADyWDgMJaGiyl8kJCLTfVFzPQw2Bt4jXhG4PEub3GG3JzrTlr8vS1ZPN5RVLofHTXP/UeVRZKL1Q+IplT4cFhTGHFzsGhcgGBvqLdGdOUly5jFI8ZXgkxx9gkYohRELvMaVjU6iQgSV3xWGzjBUTr4xfJiBaIziNGENWmSTQokGxtPCcFp36B0SS9u46S8ayX1Fa28RfWZhNyT6Oz0GONjNuZBGnvz7I3XKsQPtdQAaFz4TROf5dtfpdku9SxC4YyWO4Az8saJVXJsvf3n1T/JnjQY1uYgzjFSacXHUV9qjUcVdFTqpWywnvyRuGeZoUQQWxf8/eMkNUeGNX/ir0rcaLNVfWbNG1tpebvp7BWzmHDRXvWjxthM7WatkNdDAD4pLQuGQGFDZA4jHWVxWopfZw0EWAmShkrl0FpfuX4FqqeWRLw7CNml/0xk8kt4yEBmFq/0ad7yYEC0goBxqqW8VDN+bitxi79EfTTy0w6AV8bsXSpJeLI7fMTahqKegYmupdK8pjF1wnzbOLn1HRe0CHj64mKeOduTXLiGSEnztzbMyBfd/ZnTRRz8g1fBY1oxyKlNieVIL3YsnaL0e0IJr6Vo1GLIUnkfOogrF8Ypwf6zREpmiR3VKbtn8tm8tTqGpnT9M4jdKEpDfpnURWgJl+70K/W9MeePZX4Lzx4crGSm9fosrO46jv4F9pZmNr2TG0jygjgCuFrf/kX9SP5PhdXWAnyJoFlNhXBXZdSs8cFBHsgzQQZVGJIU2w2BtN+0MT7GSMKKe/g6GSjq7azv6nZvnHnSnahzkl2plBChlxa5Kv9lkjsYeB31zDqreunpgD/dfCDeb6nGZ4415oOxIW8bqcDItImbPlNjPojX+f9CTByy+QSjq5CkdANNjNqd7KFIcjHZiCw6sTGrbjSQM/IbCch6wK/RysfKrEqilVh9xB/LB0dhm9cMQWrSlb3ADMOMD+uzYUyxBnBL6sJC3LahUnO+pkVGF3XaumlyE1gzF7fnAk45ypf062jz52oV6yqkm0UWUevv+3bwTln1EC3FDVmjyo4EQPbcctE6CaRqbN08QAW/mwQGUgaKEWsAWua5XE0ZtIY66rL4i+EIkmxUWbV88Vl3mMFYg1mOTRr2vDyvaD151zPtfmjbw1BiBA6cSAu+9sGVIVNq7PzZ8E1TO7y6FkLFpVKYoKzTTB8hf8EWHdUhMAPD5LpLFs3x31yqS49X+F2ifelWGTbnKzV0yC5/eG/MAb6Puv36cZySteHdKl5I+Esosu9ATDrWMQQ/1DyK47SOR9n5IdmyEGj1M/FJJRfvC18Phtm4/Z8xvNL9FJK3qUklfQpOpMc1wkHFA5Tsq9yjTzSp+1835fTur5NXiXCws5fBugM9fRSJV1H34t8w0SSfiI5ttgypBzuYC0z/7wI6PtukBTPRtUH6N1x1RHjccSx5FGX6mKGZu3LyoYEp+52vXd1bQAIL2+npWC8swMKXMZU8pUpOVAx6/EylSQUTAlZrnUybdWeTl5GhTlbLle5DW2I4+GDLzdZqjOyzNlEUwF+ZkgSp506Kfh0bfYVfArDDnvDi+FBAaPwlFRu00UqrcPs8rDsn4wLNmji0c4lst9mXTSPBQTYA4lc3JDCh23NUWrkwIKA3+JMAwvlDHb1/+wtya69anliNtAkCa88ehJxz8te129sPJQpXtk0T50Bobi1YxE5tRACdpB6Cba7zqHr6yjvHhMOnqj5dJdan2kliOXfmLlGD7Tvp9xLqdA3oyjKYKvXaAHNNeQ5QnWoxhx/cDLtiPi72VRNCJmMy7GjXJzmKej3HDeNIKXNJ8Pu+VmXdeuP8xLZwWMCsSvdH3ZmxsRejzTSojb/LpIBTY2J2q9YEagjy/a5h7xGowfsskpoCzRj2gfb6dXckIB3wZaGPADSsW+RNvX2JxdJOHKMqAZIsmhFVfwxo1s9nBY/zF5qXTSbIlAHT8a5q2qqi5+WHhfIZ2dO68o0D6flPude+QgPPJ8QUPkIyHyNE5euUbrh0dv5q1dyOUgeNuHwYSy2U5Hxe3c2SWqwHqwJpmGlJU3qTNaEjKSEaE5f2Lcww+Vc8vSIWvaauf31a4MrP+bLh9cA7RmpFpkVCvIw1Z5YIyKGNhJNygXnH1jywl9VPBeLqy1/lS8ON/ZsezalH1bU93Kcd7ckJ5kFtoDnOGCPJcfKr1j4aPGTXAaOgg5VWtIJBGW22dlvlYo1km7uGviow5rV/VAUQr0M/J7Z5EtWqVTjTJ5r3GTLWOeyA4okkAGccvxfqojV4A3tMkyITyzGl5rpK7xigO0Q4YwWhvoEUfUgVQGIoLVbMU42KWqAtYrx2MESrXJ5enKgHtO1mGa6y2Bd4glWwf5md0DEcI+/PyX75wFpZrk+2ZquIvzkD/pNjRO1BvDLBKAgzCl7kpvEXcdEOhlYoWLRRi41If8F45Qsmm7IGSDceuRK9/Xf9x+Lbctdu9ROrhEmOP5NBfsAeM5kqB7iR3FJbOy6lpV1/067+XOMMQPjVEj+IVhU9AOvb0SaY0mzQktRrQ9jDlWen6UTwbSsIHQZaTbFueE5MmD/9l4EjLtL8284eUJc1QEd/Bf1oryB9b54R15kvWsafq4e0+3B+ylNGujuAhEBRZBioQpssPIheLnVdv9ShNa0kJonp4qzN8syVjAELMB+9XUBPwxaZgcBVjY6zfNHWqag+dS/+N1HN6wi621ibO1NHs27Lz67OAXyLrQK2UGC5SA4QOBwzPJHTUpGZZzRKBw804lA6YsQffHUtQdTNwGqBn+FF024Zmhmx5cfuY1NckalNScfT6BXUwwrFFsfdaTmwZyLB8ZLIlltc4a9W/0a3ACGeGMHoyX1F0R48e4G/sstd4Af1XtehWR5wnZyw3wGeBA6z9mXV7BY1Kaur6UgtpU4W0q0eeKaxeU723rdQCJhAVxwkhIDD+Gvp12g6RGj159nX0wphytb3FBJANrDn+BHbCFfVpCinpScuoiT/kHK/YRSYUvaMIcxY/+hHefBL4zYPtziX1p2gPQU2gTB019GhBboHoXIdnrI9sxFnp5DGCCOH2/yz57aQLQcdQGXX5IM/NvP429qZoN7uLMC8ypIWzdxEMxEc3UNR+Bgj8WOYyRT+5WnS6J464QV1XGBJscBsRV1lbqutrXfpqAN0TK8QEgcdMQJPCVy+y0O42gefdXZBl/9KBN+yuzVCodAbPvV9PRhLji6Wp4X1EeYnlOSwIfnikE89KGCo0M2Cm/gb8/LkhDE9qpkA8VthKBE+xDU3EqdarGIBkSR91HZpghV4ulqa9VI4n3p1xSRQIPIw76v2dGdlVd6HIVswETLbKqqWJkSlTKED3Rmq4j56ZtFSQoY9ulOFv8QGQv2RHbpyfe9F/hvNrpSQwdURDUwUPHsi8rHMXcw4s2iqi2UI6BJRQBbvv2QIXDCEsf6PJWhE8o+dU1UIoANYkBTtp74bIqekssMuMgWyuFA8mmdcPWramCHqABya7QLYdv3Ipi4ztPkipzxOxo5021qHO1ASBLQr1ohNBbgL1WRaTO1p+VhFYOkEJ9O8lnMfr+7FPpgdz85xeei5HzhULw0UOIOasaFzluv5PfIH33IVwaboKlD3XuA61vfoydsMBKBIYekPw7T4+RabJXC0/d1aPZ8rBHAFj+faBSKU7M8BTiyYQ1HibYYwcTb7ybpzRtj0BxPQljBILx9pvF1Q4t1PNPVRIa1a0gDD2H5zN2C5cslyFs/ASYrIK006kHQXW9NGyRuFWT8XbY/MUTe7agsDT1PrPVWZKFGcHx/yH9xZjHuNjIw/QB41QE2MN3D8CFsAOZmgZRyuDnKi8rx5V/6AGm6E85JeOSxcLIV/ZngeE60w++3XS+7DfZJ31VfgJrZnReaSfnQHDu4CTGjJd/1vhJCDzxhD8m/AgyQQI+XBfq7zT+F58u+PZvyAMmDg23lqOecvEh531k0/KYkbmi9mChpPI7FwrXJu3YFFmA5GtDPdPLX9PFTetooJydrR9IDzJ+P4MRN+/vFu4haIkG0aZhZKAK9CuUnQgWAk0lm06QPTskBm9k6wyp9p3gjiGjN9feVtcBR9ZfUQWYA06R3y/ZSduXDMvIh1O8DudO0L5ocRXLsm2SWWUGg0CZg9Z7rdXIR/ifdZMKdZaIF0RgwE79ugjsUHamJliY5kYYJfarE50x7eop1plihNfn5+0+2XvRyBqWLh1jkqfV1HvjmlUj0LdaHs4vzCQwY7O5V3Dl9lqYXZKMOTkSi0g/Itc1VtewCrBI24Nj+1vICPv4QsHof07sGNrZVoxIFyl4n5sXxSLatiUlEDV3gVAfwDShjGdkJ00HlJqp79YY5GOQXrKTqPPq961XLd8yiUGceU18CPOh6BrBqtUvX7UiWwemKrBFPo3C3bMovzBfMqplAWoWsCuyjvp7FDkrdvWJQatBwdt4vmGoD9/5q032vFKpT7oKBNQmTGqYLDN9S37sq/1WeZxByLgZfzOQrcL3OlSV0K6yRMQr4p87lxKbixnso/NY9FK0Mpfb72bzLye4K0lAu710EJPC6r1rsNCUkEu3XDoZE8p1F8yystlQ+Oq9ywN8skUCRfyTehH9dQIwMt/RNIz7pMxgOsXK4zrq8Q+liIuwCj8OPRp2L7pcTfLK4+n5O6ysSiJXnTpCP43IrJkqYWNXhZ62f7DU1lzm2RwKvoQhuI4wxEBnu6wMuVXmGd7sXB30tJ1y8mefeH0ia2pX9ImfXvy7r/msDtMvTXmm3g1ClRR4mV6yZpj0FV3M9GKR0yOZArvEzMvsmoJFJY67NNeSgDGWMJGF5fqO3nAkgGXl4NjSF3XNzVyCOrE7S3igjam+XOCNCtsYfSsGmkcyc3EOb8yob2AMjmLjYxu0XwlpICm4AkxFdlLZnlbz3DZWw8nnN8Y7XFd9GFZglFAuBQ8s9Yuxdo6i0rMsO0IrNbnKJyOlZsm5LwqK9VEXQ8AMUdsRZYT9fJVpUOYA/zb49TN5TnVDUffEfXU3y1NsDoDQixKp+lhXApPs+3bGLb17Oli469YZrtq21p3csaa7iJ8CJKl9UiEEqTOzoPgQA6yOdJpFZAiRj4Kct1OYAWMX6Wzf/0LmC0fG3GRvaEr9RtUSGxLMWB3dhh/3eJtS7ooUVHjVjdPQIWps8yjocxaeiEWxKj0lIDfOQlQtkQ6PKM76pl8/XHa9vQsdXp72Mj4JrHuV7cprqphgc/DlsQSlYUAEs8n3WgfFvBii8Q67qfBh4v6kzr8AJOUv6G2djNV6JB1vzRUjoNHjJErkUrPSp+BultLm+MWF9KrZjyT74THWATklLfPfZk/E/lz2jFCHtGA+kW9/Z9abp4fEKBHWLZE6qDiDCfMQfsvZvbsvuIGH7M9XTjErNO0RNPbFJ/ZkqmSqLWpWOHJDzVRGbnRSeCYbCew05IrgyWtW4cwAsiB6/ATSSjSNubh8GsZVI00pMIwWHRuSDH67H6k+6mv1uwC1fGgmV7b1HpbH/7qAObShQxtwwZUGsMhy7rK8R4NRMNfqNmW8+qiltSWjyj8GmOfgz6Ylq1O3pMFR1/tdLJPjI13h6JEITKJZ3BApHCrkgfNhp29B4+/h5DwouzUyd0mldJy1A4PaLhAdRdKqQ2CfZ2DjteBjbyk/MUE9GXp8mi6+JaPGYFIvLUtEJ7pBe2xRrlcVGOZjDni5gQtzN5+DqM9mEfYQekB2spL3SBwa43E6/8bH4Cf0JP3nTY+L9bqhgIJ0X/IUloC1/tsHUcTfDIS0Wn9RT70zCwPImx/1u6O+KjeOBiHH++WKRpxj95ZH1Q5c3JVfwuE6oKJtmuRm5Ko26C20kcUy1S/NPVF26+A/Ovc5dZcjF53l3TOc61sRstwMELXGf6low09lJO621EH+3KOwLCLADlHJrKksa87DCmgDGUUOQPslj3iRW1qpuu2hVsMJ6dpQGr3TITuH1FCMMzTVQuhOGZpl5jtjNId64bxXMcbtJRbeG1XOdEoc9dM768n+AgAb9cH6JUs3XmkfWFCqe9DIyEinudUMdsZHNOVMptrScETqMWRMu8iQMnImyBCTVSXkdlDYvsX+U0SeXIi9ANQRG6V11sdILVPZZSegQd54f2vY3PFK3LqmuHBWC6mqKGbBIuJ5mUElFKXT6jnoMA6y2338HdT1cVi1hYHVJFsECM8pz74z7SeQT1yVLrR2MMWOvrp7xCxCbChyE3g/4K0rKEZt+hn4Gj9wqOdr1Cr3bliS6gDHcOF0dUxIF8PUWHkXKsYPc4mg0PAFXAxlfygSB2P+3tlK5vVT8WFMgXMKj7MXIpAsto5+od5XPZy/Y3N+VhqMtEZ0Nh22Ll6FSC1Ga1UvivOUtaEoYkS28XAMwbEom+ItDBXzgDI9AbcgUCN6a240COxZDLyk9LiRdZHm94q8EMIf4wZM+yYaayh9oXZXC3nOQ95BhcnpfQ4wNO9IVcJbcf5XvGLx3EJPprdKUjdNlCrHyiw603CeU/KJo0sE4uCvBHNSCzaXhPmiL+FCMCW1AvqwOmC3y6m0fIvirZK4SUMRbBcp10K9vuiOMlrtn+zj5vg5+yv7fi4/CsqENcXjfq3YpE7uGN6nVCZ5z6jESLw9woBk7liNVQBZNIfqcyrQY3joX2p2gRv0/JHry6FZTroDjrR54JKn3ma9I0e3VC65Cqz6FlvW/RwpHZrRPuQNn5JOjgDAT80kcet75LbVjhUx65gXeICH1Du9s811TeCr8WvNRlbqxtDjGUcdxwU+Dc3bgky0rFkOfEWMtrpjVVQFCAMTTKJu+RYZfsltFsLj+4FlClFpaPHEi0VQKVHTTSp4zX9Ar4vb6myxNWxByhLg+JSFkoK81CNo56XsRi
Variant 2
DifficultyLevel
529
Question
If the average of 7, 15, 17 and q is 14, then 7 + 15 + 17 + q = ?
Worked Solution
If the average of 7, 15, 17 and q is 14, then
|
|
47+15+17+q |
= 14 |
7 + 15 + 17 + q |
= 14 × 4 |
∴ 7 + 15 + 17 + q = 56
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 7, 15, 17 and $\large q$ is 14, then 7 + 15 + 17 + $\large q$ = ? |
workedSolution | If the average of 7, 15, 17 and $\large q$ is 14, then
>>|||
|-|-|
|$\dfrac{7 + 15 + 17 +\large q }{4}$|= 14|
|7 + 15 + 17 + $\large q$|= 14 $\times$ 4|
>>$\therefore$ 7 + 15 + 17 + $\large q$ = {{{correctAnswer}}} |
correctAnswer | |
Answers