Algebra, NAPX-H4-NC08, NAPX-H3-NC15
U2FsdGVkX1+r1SW/ZPlJrAhODEyQgCeISI757JUlDqucQLuqGiP/+h91+7HQ7KcpTtgB4TazfO4o0IxOcCKoOfZD3hpgw9yKnG/jRtbnpRMcBNzuNqGbFrD/KF/70Aa17lZ7Do0XoSEBp7OyLmWfmwmTp68ciQsP2Pu/7XSLT1GiNWcxfvGUcemxlsy/kltZxWiiZpBOsIC/AHS8siul5IyEfh21gGqw6kKCHvNL0dgkLOqyBSn3KKbthaNbm1aBY1JSh3whkbSK4Uti/dM1rQJvnKeXjGh8wOljA2QMfmoAu+gFSq2zDUy7JAFDgrTdYpkLNG9K5Ly3RpTPjqcuoEQLHrKeGseGCrVHy38EwIG0eePF2xLdGkvA+fh2CHgOJyiQTEc/vT4L9AVgyo635b1d+Ty+LLidXMMkNREoNouXO7fZkSWefsBIEiR1+ZwXr5r/Db7kcMIDP6X9qy4OkJYU9eA/AiM4rYbu4ZX8SnIVuD4dFFeysqJZc364qgmZpxmJ/D6psw9qOe5waydR5z8NMTx+H/bv20Ev7GG4H54ttHxIj19R5pa2VUdxe61NnypZ67XJbLKZGIZ1X6Zc71zKbZ2be7tJINsRLz3a+4WDZVHBDEEC+xt4tOWNXjdck+IF6ohjavFqtrr81Efi0M9CF3Ly3Om2+eJm8iVnPrq0XsVrXKiS+QXd2V9cXP41kefgkY6nn1aAqNMQBQvQ0KXiit6IcsfFOIPtkemmGJC8/WAj53SO7+v3yScHFwXE1ou9WUp+in//f01b1xWe0hwQt5ji6IT/RKJ65M4lxQO3gfvF8A/Po0V7kXTTmUv9zlWukbYgt+8qv5v7AMgVli4Bgqze2Assas0WKg2y7fzh7iOnsq2K4q0Wr3eBEqJ8+ackXrMWcKIPUKp+1YYOnke4yzhBEvWEbyW/vWXmgUWsh/CEgOsn+vA5Xq2xxjPxjrdZPY5BAh0R+buoDeNTZw2w+BSIaUTkmoA0jO2+cYD/Ic1KhtYbf4PUY/KmyRrcri/Si2Yc87HvLkh97OwHol6CoXPbC6s4JOPv2vUttQkKapeESkRrs39Uo/6//zhym7YS5cvwdC3D0cACRQb/JCWhVrVokdlb4OE97Do6Ih7zXj3cjQbqY11PS7sfUxA19/eRd4QvbhsvwYyIEv/NbGdo742klEAnlJYoBxEK36X3kNa2+iEFfRPaElqLlmCT4SVvowQcoGrWRlPp5djwcLWuqaLb8M+sx+9m7P9tMh+wkvWLBZdBBueyay+9en4r9mZ8LOWWUnQErpYp/aE3shcwD/gmp+oT5rHzh8Zcr4btVRuD0Iu6eYnWikQAe6KeTzTj9RMZVSpcewaJn+OMryJndEFx/V8QAsQPsgQ8PvU/58p2sHLZXGukmK4m9AxYCXe5CGUT+rat8z0fSJUgfN3F/+Y24d+78MQWuVidptzh/X9EA5lbljRn8A5fxPldsRIUzIVIcuwvnPSKGN0aEJCvrMAotpPEFZGlgrY7yAR3RJyRxEniB4iQIdmhFJtsdRMeO8rEkCWEPYcU/a4qGlcEJHRamOcOCh94yXGO8ZeFgG3vJs3yAJ0UPlpECoe8t7VX6/K70E+Jf0hwkts93a+fzP4nE1K4UxRYoMdFsWL1DxvnXcYXmm9koBswrS+9K42WoyYu9lQnjhAjg48O0NR8zhTcgdSSFClXj0aX8+HBfWJoFv2EZEmknFDJG2EEIDEdDmYnVJlNRsl4fED8PTHbl4jPCaWeDPPIDnBetWn2wXRNhltvrOo0YlGdyDKxmHDfHs5noaYHoGwTe8SFKXJ6Xyhs2VeuGMup9EDB5ZSVy76NOp3/gtkGUs/QWAxwlnxYdQ4GWqn6/oXSV3pB9RDEw96UdfqoTWafpiM0kHbF9wCgioO3nKMND4kBIxlX6tTs8G+G4+bxZLldm2Y2vfW5iTB+a762Pbp27Ynd4D2XI+5HmL9M+sW9g4YTgRVr7+UFg3CYTnMshYLl9j5vq2wGpGfB39s6wrZ8TXAxAcpMRslKAdNyI1n2rFkOt0+e51unhKGTcPpUm6ucDg5bOzEDgZaO94DRYs2nkZWG6QEIyICQlHizvrQQCjfSvHi/WAh6PWECd+X2ZhHzOhCk/7ZclKOufWLwSxqTaeiedwBodcMLNpef1PEupDZZIx5XUqjvzTe1K3veE6reBc/0cmw1fWtIpBjbe3jQfH+0g2zCzOOS2Hr6kdIMqDeWz5LtWnAoErwuugipbW1dgkCUvUjdjHeX+KRvtMx90HXYj6djC1CEuFKjhkZjr9uZKNlNWWtWC/pLuk6RRcIQ5moJ7QeoEkXnZ3GQvHK7o7Yk+O+9AqgXEPWrBTr1cu0XAfMmCAMDlwas1f8u6lNTw1ITYCRByXIa6qvQgQc9ZL3GNF9ccaky1+PlumUS8AUtbcEnXZFHH1/kvfWrnfYxrMmHQXywaQCPmjaxBbH7jPRMRjgQcGk11v13NKubZOuWX5q/Zh5T2H3E508FmoKoM/f6afpwSqLHPjNdzWdyNM82LoguYJqvyi4Wlq8dxZgB0xw/b41sGbHpwLJlxZQhjfK1+XEMaJpfEdguhPmS8PQN9L1Dd3fnyz92SV4I6bq0sIg9gYSCGnvJW7sAVdzn+r+stRjYgOOyKxDq8wuHIlctevykX1vGHc7cBgHxaX0Sbf6jYtHJGRK9mMl6iZwztTxSRPx0cWLDoxy1mKdFreAfL7Uavpg6KUKVS/5cQTZaKAPvidVB8/bNcY5M0jP+hq0AH+4Pej3b4QcF7F+5Cl7ErPVNsPyYL9IKPVODdUM/jXI95cHVQuisxz0h8qKO9VNGIVyXmuE/g7DMczco+t4J8lz5te8u265psnBcgaUeuLe0rx7R6tWnpO11J5lSmL3FkZWrRyW+6HvwpullVGJlUSgM40wnpB10m3jiuZ5lZmND4c+mxSYPJpS4SH7MTW37BEZa18qe2eCM941gkyl2bjJiGWcmBWSoyrT0qBgAIGFsUmryoiMEEO3KP2JdqtTmI/VXPOZUuzMW2JW3Zutm51Ncxk/hWkxSQk/b1B1DBqukb0wSgBc4FzmmueqSTkLAB9AFUTWb1YreHuWq2YOpiWL6aMU79b+wtcG+Fbtska2TpKqYlAja1dv1Fp2nzeuW87OJ4Wgl295qD4eFc05UH3ipKJqEsUwfs2Z/hHPC9HyK6rWwXmEvA7moouC3WC5b1rMThi+++fbmbxldnI4V2pM6ielKfmPVnBrvWQsgXLrTgpLeddptERA0QAF42UVy/xakXfWWQQaj8O0Yoa7lLvpYevBJ1ggauPIsvZ9Y0/6/06xHb99kQdmMjO6JWEe+JRZzbIIs6BUPTME6N4RRh0FgUNjZQFQN2OaPvL4xXYUhcYf0N0nmtRPNtRqKB4soh8NawtvdnFqYcPFqKp1ckprvlQtfQQYU/iITnocpR6/uNGLokeg57/kVBZowH/9UTjsCLIAgP6DyTutc4hZ4zoVt5g+yqmyWiuiqQf9PHIhxlkvIAIV7Pq6ZYirlcSA6RotgQNZTGqM/mhOKQrCltuVTMYaxOf7YYK214eIVpDmSgD6P8scHXWtVPGFahX6fHy3gXi6wDrs/02kFzQlkWOXu29UXg94GJch9y/yhVHz0/PYvKQR+qn8ixHLtQCUdG6WvkDItRU+DwNZydlX0/AWgpFB3BhiAw3oslYENNX7jHgiWO9FFgK9msiGB5d0t5Ie+hXBQziLTu/FiUSiwT17SRbkQg5zoGsjCgEgLEalmij10mdGSmtvJ7FGMY4JOHpgq8BRTmGVHGxmuUhD0OJArcho/NkBhzEcmTtf7fC2U57PaS4YLKxZhPnhnizWsiiKJgqOqFmdwCwVxpb9g/eViBIUysEFrvntaLT7C3CYYDCE7E2efnFPsGYmpSZcxp4W0Rnr5hxk7J2/4FP1j/F6q/rPV9LHOSdAX6i+Dz8nEhRGVxqA/Dpl7dAAj6h0AwiBbFCDosSrPbOe2pZaOUg5tCsCUEF4CZ23BoDmcb1UYUJYuUh3sSXikH6zUWZCNLom/2U0lVJxk1sp7bRrQTVD4J2w1O4/E3jtqgF5tDSdDjGjoZj+a+6aJB8TTWRXvz7tGCE7LDQ/c2riNBn4f+BKxaFmP5zVjWJl29vQfIfOBTq+Fnyxv3ewjn33NuUMf5mw1gSyeFdRICuyR9xoJQha75ePb22Nd59I+BnOs0MYPaWpz2rCizxyWj4E7LCOgWIY57o3cSf2YCSobpuJwyBcoNtDfRkKdu69gUqC47NEeFVpDO3mxZA3Y5LU6vCrG4NRSvS+em6jeW5wQ1xPG2vu5B6XGkKgWiuEX/Mw7eQn0KnnoG57Yz79y5Z6IHnW4oXl2KZpcm4KELBgMGhEtr7RlGfwPAOYOJ8A7cRJkRqPpIX/VD9UwDJH7MpL7c2h+7VKaFLo/XLGnMqDdZr4XCx0/jdRY9NfEoc9g3DDtpf+KZqwnnKYVb1L68+ERu+gNhswqTxIFEKCjZ+00f4ABkNYzDlvcJ3qol4xraHtugwkvn40d7roe8wlnrqDozZ2mRqWcWwmjDWxyKc+KiROxwLNDN9gwfBMBSIb0o3DRb/3dr7cP5/H7mQK9nwR4nTRCsw24DBbTIfYHdFJpCHq5CAPa/WRobR9Tij4U6hBitYPyqW9Lei1eOWE+ziPSOE/I8B1PODPAVUgytjEJqr/jKJ9Sl79xvVhGygOu8SUAeGpYNs/beaNmRGpY/2TPACPJdXt3rS3rel3pVYxnfpf/gV5KGJQiMEOlRGVd5rp2DOo7axmVvmpxpodUsOA3Zv3nezQ+gYyVrSJPe6SodIUlUvtxQjMl9q06IXFwJSvxQppRcpI1DMtd19xhZrZ97lGqrIgHnb8RyP5TQxqMvvbpx83Z00QEbSZH432wgrFRqBKhi/HuldWNV9HJp+XyzB+GB5VsNjVKTMuxEtQvKudvWukZIYNoHqGxx5A0sICnLu1i1PtNNjx5j6oepJlDKX9ACgrRinM6CV7shwG02isBdjdp+dUytf2VVzmpqiDgfqElmHbD+Jp/+MzdG6oQUwbtBCC+nXGPGNctyVl2hBqGmKWHwSje9vPe0BK/ij/TAlr33xaaOSiv94DF1xoiJi3FM8INmcShYyQmo4QoHrETxfbEpTyjMyIDnzYMjGy6mIPjE2FRF+FwLwszH+WentuUG0CvFAK4OrqUCnW1c8GuNeiB0H42pcf/gKNRpvq6mhXW5LuADXfKkm/ybENCLiaZyhqDpE2VYr8KnAgPmEvnJ0j5lX6XyxeysT846WvOUbZJTlOZ3eGNRlkCOTDCYJM78UwGc+Nhmgy5UrWaKES88V9j7iChwhG7YD/X5P0dgdVknmShU/SvK/ZQ2HLOqFGMONmZ/IxdHfIhXP1bslyFuFI/W/dW5leZ5WgXs2nPw336CR3SBgzn0XaTFL6g6in5ZyH2Ul5FV7n6giNIilVb+AbHYSE4R5fQQhZC4K9s0LRGGm2tXagjiWLQs88JuQihQYHzLb823f0zwyfKbv4GLtnA0nW1ytnaQnU52dOKjBqPaanlyVv2fSo26GlluVfyn5t/BKWP+lOR6aFQnduHLzcrxwn8ShatjACIUZqEq+AfHLT947RlFnuUldvYns534+RlPtqLktTXR1ufnMKH+c0ROaAXnlFW+CiM3b2LmFErfHzNIu5nNfoHotA0dK4kdWvkvoMZxb3VS7SLwcOeDjryfPuKu0mlYbTauDAxsw7F0nUk6BrPogNLk3c0GXPmTTaPodSGsr7407gV/ihR5RLZ8ZD1W6uq8KPQgJ5jXM2gJfg0kiKCvaPxYDpUxUCz7iRAWXMtKHhHElUzO1cPDDi1VD+eZxP3dnnMU6eSqUOm4V82ch7nnBJBOulpFUzZdmLgoU6eTgXbDw7epDsKoGau3nPqSh+m77Aj9QaNgALR3h3v1hAgZLvDwa9MhJdwwEFe065uHtkYO9lldabEA2k2zNLuQrtnjbDcKzc3e9Wr1RTOvqOqfoTceTpeY9pkSIVVVgwcirW5v318cIaRY7zNy6bvffZxtC4N/7J/rHCwTdWL4UxVQJi3mGcB3K679A2eXvu4e7+eyIgK8qDd/ctoldRmcnWFnk4uynMRIJGMQ9Xy4bOg6gYFtTEz6SZeltM8QGE6tIhxtlx+gcb1yATb4chlTEWJz5IqMQdOKE3BFk/ChlkYaPogVvUVgVEyc4X+wvDwbCi9Ei+5Ziolerw7SptIvJjj/yC2+IzQKoI4mTQziZpBoKFDHBhrQQNWyic+HIoW9hioWSwCTqYC0cC/qdg+6NqJTNc2y3v0Geag1VTRsCfiLKZlJg+k4Ce1nF0MJt7vVZJk0kEpur5cfqeX3fN1seIw6s8WZYhECl/bvBTSV+3rLmL6sizUNyBB2WEsh6A7HdpPhqMem/vtKttmiDFibkSHEd1dYKztjrKtjrP9WDIhu+V/V/Xto9lG4bKVeob7pzd6zQkA3Fna1BbYBm0A5zxiaw3crJ47aqdmCjXlymBUHXhbjYnKBScgclGLwYbKerwqGGeuRjAMIi8F+bQD3OpzdlJBB2yijGYIUMPJw+rmDogeuZQBvSvHdjxXHKQWUreaMTJ1V+YvsLEvBdqBrPibcBWnAan250yYRgV6UM4vd7yUs3Sw7Ede8DAZaf8U7PYcgHOAbCHJLutm0p2gu4GJkwYbSBxH49/HB7JkoxgMyXMLAtTw5HVwQEEDUEhMiUsTBQeT1AZVkuv1wG+QQ/h4yhoBK7tlGyll8GK+YlA4cNYwLn4HFrrrN2BL1gjJwbsoXguXhs11EEJVDGT177hIjkUya3FHkehD5hfuzcaFScZzvh4tDjsMw3CV+Y1AZTZBjMWGtsQEp2GUphakMs8xOtnM+1KxrXij/4fkkdVso2OyjAktNljDtlrK0bHEJUWhLGvyVFD4oB5o7jaXFIhNgB6fKqhNhqYwfJuccOoMBifLUnuSQGmehy0NUlNeV0RUk78z8uYoZikvXpPOrO185RmIrWQBpUnOsruLjb6v9KO20HA5SlvK31EhzuyJyKfiw9P8/XEU8a1Oy6eigVXhaV/+Od0svrp1ioNrBOyb2quNJ8JhQvpoJc8Z4y5uuHMMBMEl+cbmWUuZGijWO5hiylkt0rbmkXabUR1wHHuQtKVJfwRaQBYEuM5u3hY7Z1Nkcp9kjZe4H0Qzme3B5m5r0XKeIbCRuJ9rh4aCU+QdyLlOVMw9D9RdM1nF9a7LIvf6/yeIaHnbze80gb1PHrdIqC406qpJWj8tv7mfLIEbThkyHfto3mnICGZjG0JFhYIQBkwcNA5GQbOYrA9oM7aolNwzJyYjqTLbTAtN2HDer9x6ENBOpSoJmdzLuAg7WRBuEZFvaODeQNWkzZyBO8S4vjpkeN24QsMurkvC83qB59ekJ5wwn/cBdQPylELNJK2NDmlzMcGow4li+3ReJXGEBsd2gdpfSgn1+hIzuFa2VlkdjwSouQTVILCZdZfuXl/6JFIhIpB2s+RPm9Bhh9dv34gSVXUqudWjS6RnGm/l3ztnO2d2XLVrF0jZ/RCfLUglkn834NOhY01dolzI3zlVl9wvJBmx9UBCqPbqqaprpWQtWx1H8Bw9iHbaufWEHdu4MYuUDtlD9tMCKEaJofe+2jp2tr5EfE3h2J/8PCgFNkjpOtNT6RQZ07Q30YZpVODsJKy5bGU4c62Xy4ajfxGDYNz3giK0SGgE7BrcQ7bOijLvdLG1nz/o48Dg5nmKm3h5l4/WYRofgKhZWFZ2bcAP0QhNuS1QAfGjt+T7mGtN1/MNQxM80NqbRlSsC8a7wMaCC/zYJaiYwknYxhi4Q205LGHbVpGZ81kAd/ytLdABUCsFI79sprxih4UdtjEDKeVFXMwOYF6oz7040eY1iUkTeSuv6Bnp77VVMoIrJe5Hv65qMcwj6sCJvVzlNS7Soju/DAwT/3xfzxkxRqW5YxHbXO6aHwKzi03YpGFs5Fr9sQJCpoErczA2DGTwA2SehffZPC/Lnw2Ri+DwZsHgVed84LCN6c/NwnsCALJLCTNC0NxgJKvlA63XuT6w/cY6J0s29UQtmxJEY8ML99fulaK8uik42cT7trtDBBGm2o238YbRyadT3dD6ayFH4ipvKYa6dzua+dbTea4G+xyesHRE/TlSqENK4Q5/YV94ymwPHn7ahqCIX//p6TP0AJCoZM72LNw9rsH8+z6M+xPlPromo7LrVGybtDHa8HPNFor6btHJ45XBu23+f18cBf8pkwjO+W14McTZTnwpzbnfinLZLh7/Pk2OYDTNUu2aTO/C0cEsEN/fFPzHAxtPeoDqEi++GVyLMXdC9PZVZXq1ukNlf8eBdO+SO6JmcRE7ILewYNWq2zJ6xvuSVpw5SHh/RiUmnLQwZN1O9S3RyvX0l+p3jOW5++tmlL3uX04UXCMHUhcBDS/2oFUseHA2mS5IvGy054Hv/K+a4Ehll8kAK4Tt5+DOQ7hbTQVlnwH++n1970R6WWDvCT/qYpsXl9LhuL9jnGSKWMI5HI2+tFR6v2iTGfNjFaByl7KjByl8GmTdX25VAU9Ov7g1atOb0pdRBE8YEyiSR3YyREqwzrq27iGmtjKaBc/j7uYzKW3WaYRfpi6SpMuCITM7LdEgxRLNADHnrt3vnplSM3BbwFLVLHEojJTRaMISHD6hhYamm+MWQWgDcMZ65tKLtyBJfDraqFILRS+/R5/sIWGYx4wnMECJK6FMXMi/LuWLXb/R5/FhD1HY22jaJM5WZpTXgiO2jQMt17ffzaReEhOXiSS60wu1LkUapfXRJR0u
Variant 0
DifficultyLevel
578
Question
Worked Solution
Strategy 1
Test each option:
If
= 4,
|
|
8 × 4 |
= 8 × 3 + 4 + 4 |
32 |
= 32 ✓ |
Strategy 2 (more advanced)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 = 8
 $\times$  = ( $\times$ 3 ) +  + 
What is the value of ?
|
workedSolution | Strategy 1
Test each option:
If  = 4,
| | |
| ---------------------: | -------------- |
| 8 $\times$ 4 | \= 8 $\times$ 3 + 4 + 4 |
| 32 | \= 32  $\checkmark$ |
Strategy 2 (more advanced)
8 $\times$  = 8 $\times$ 3 +  + 
6 x  = 24
$\therefore$
 = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+rlEuGQTfFx7VJwAMXwGqM9cPL64P3lxc4LKYkAK9v8XsRirUVy5IxFgpaZj6p6jzNg6ley8rlVy+ejQzDS1ITWyAKIKjqyDb1P8gXcOLcskLT64xfeeHPNvhX2fA6674Hhiwgdkzj77oUhnpmvFdQEQCqm70OdiZJzxusb8Xfq6kJsiAJuUqq2IrUtWqXnzVkDOSC/BiS4eBS6FTGjkX0fR7bkKF7GisPCWlva+lR0ce732gQAQNfe3PZCjX2V38kriyCOiBv3zD4RlWyRbOTEirCtvYpS3nO5sISQ+RenK9yXMSUjlULi6JyHT2w+yBUMA2E4EB9ChwldE9RGV1Yst2tb5McKXNtc3QvTUNHtOnEInvQv2N01dN9eGOAL78hUylMeI0IUoGfiTb4iW1ckSngNeIFi2EPxzB5TqnlRoLeVv/HnBEehJHp2tKQbRbB3w2f0oVUytit+N0LniXSybWyC9NeCEPmOaM84q0FWdayZaCPr3qDZly3SErjcriBeUdKQA0uLUUyTos6OtD4QeI0ng/r9GYLBhypxfwefSAg8JdeXtBJZiPPaK4hLpe6j17ofzwlckJLTrTHum9Bvjx1ao0GD2iFkfWSJZ4SOmwOyXzMbLwIjxHqmnD18nH1DybZpHKlrCP7Ouu0HSYUMX72LSouLuxNgGmAZO6Tq0ZsIekTE+ZxKHhm3T23DfL58yQIQo69MCITMUSCQ4q54gAt2TpxSaWV5S+KM1sHx5m2CRrC4KbK09EI+jhCNw/1nAVLrFGq9EwjQDabQi2EnhX2P1QN2GGyPZmJBfmVWYF3wn3xiXQL9TMTGU+v8wc2wtr29aNImQsPkaup41kYqAHfhRh336kdvFm3QAEcNWiSOBF8CW3XBtvzs7XxMAmhDuccDfuxzmbQrlq+IVBPgcGGxXoW+sFhPVknD9KYoXfcfVFyOsHZ/OaQFdFNPn3X/9KzvmbQZlFKG0iPXhM2dKKR4ZKW5n5DxbhyUzActmXfBzVzbst0HkYSo2uIRBgHtdo9DJWZWGc+CQpEWQI3Pva2YbtlD1UTA1WpSKpuy6y8IooCQhKm3GbR8jixlyBHJWBtayVvT0bHoSkdHjReNgiXSIZwx1JVrQZcoQyzwNXbOUQ/TLRkvGVbqthb28gFQhDphKc4TCurs/AeYpaANEhPF1Fu+gRtsjQsTrr50XoNXy9zN5dTA3ymViHc5FTmLjCNHokkzUyOAk0ede+f74zrNHkR2tvRYu9z4EJ1nc/iRVif5gfwpuevW0ggdj8KF3PiKI8JjAx1qxnJSOQCRXsZAhj71ryBiLYhxSdmUhgSIftiC1UQczsVzHYcNJDmsNiElSn7Mxwjt/zPe0rCHgEn8wWKxBCM9Pq1VnRuTco4De1FAo9Hii0jWst2pfwmNmr2bFw7UiXtU71NAfSzC5k23g9Kig//WERsAyiUOQJX7GJO7NrkwTsLMhWj7Ul/xCMTJmSVoLNIScENKbBWLIFmIHpEGT8MHBTOb+7T5InNqT22apaizmXY6L+/JPS+NQzgHADc5NvVn9/of6bt2tRRI2tErxholm+KtunuQXPkc8oocRXXeILs1MD+0WqUPVtQjAsV4n4lSiSvi8JwJzGu3w3sPiwkmITFSXHUSkdRllwlTD8zNCqbt1ERcNZilEQ40LB2ULPuKDUaFU/WxTz+Ugp37Y5BYLokcK4Yc6oPp8wcCrrWArkG86PgUO8DkDBNjtZ0pZePpKA91avT8JSnJIyeKaPCTUcDYjOARM1Wv728btX68xoLm8gES3FeInHTXUzPETeWAbG0ZNQnblstua6+FTtoPFNVn3Ksr3ylUSsWcAb7Owej5K9aTh50aamjpgfUjrMMA5h70mbaIA3PeKgYpN/oENzdEpxUyjVYHhCdv97QSSMAG/ek6AiwJfluv612aAgidW+lhN26judYI5nh0NZA+nHTwvXOfJT4y0Gx21SoouHH7T/ads5/VzmAmMEhuB6KN9Y954HS55vdtzscJM6TQ5TZnvJrhE0SqKxg8l8F4m03Hh0FW3VlqJvU1lbja8Tenaj/pvZPuvgnMYcE5GFAaIeW0k69oSh3ll4jfsSlcuNQKQsLu4YeFNq+j2xICS/iw2eeX0T9TfHCdTFYXy1IzjBCS+P6k6HZzt8OwYGWE6F/GUO4zLqC96BaI2pJLC8LSwBZnk+hwr6/oYDIRpABxGEo8QXHUyw4M80yyIwO8box6/ctWCbu3H05avqm5lD/DAjkJwlwn3XM+MA+x40yrwcbottXb7La0yAXj1Sgs8Bcr7PKpG2bomsXiDMeI/1MKhnFcFY7Xj13VXNVJ68Ez5rFpj/gCJYsrqHeWYAnCpKajGgUJMjcM5cUUhi6lsl7ESkiBME+LTRPqqJcIjcu1Qm3/n2JXs2aAeiWdvBxoyliT/Q+g9UWOdqN9cVUhfpG66YkN9ZZ9xI+kqmJKlwAknGZYgG6NICvN2AMEvDXMUHDZFVDeGd3+VeK1bKJsSn5NBzqnu7UKafyBxs9uSH4KcUEK+fi/tZt5p7YrxDlfHchDX46SKKHG7Hhjdv8zGeE6ycU4Qg2+WYagAzHFoIsY9QJuPnq6fsYoc7H/wyS54LoTJsTyzBgHL0ZmewmWJCpOpdgkvijMCZdfi6Q0zKsh+cHFK0JhbLMxCd6Vcf039Bzw6J6GyIpwPbs78MzSP5HHCIU95x2auoUK5E/rtVrwkvDkiXI2/rudNyzo5RSZDJi2vaFEvBdH5540yv5fiJcE3KsOJgFpdhygb9fB6r4vNwXyuzRylQvAh1p1jw4l430QXtTTCGBwDA30l7OzBNnRPTeF0bGu0Fuo7PvUJ09gT1uxrkWxcAOpCy/kqGVbUTRT+b0XroGV+bCtY5G6mc7G/tS7Ewyv9RQQ+jfXG85q00OryJkRquLaLWO8XMFsfHAUi5v4tO/2+Xf/tDvmZ2Wc4gum2TUQgBdcIRkB5zH/o1Ts23IMgpS7sRgTNXFG1beq2ARbPu273wm2Hp7QZmoH6C+l2h7sVXil2a5RcC3Nfo1xB7MRWmgD5gJucs9MQ28MGAVDBQNnc+RKN6iY+N70cvcsdJa5n+56zxDnHAYrQ2IxImhTSNZ0zjSW0tKKwzhQji2HVWX5JYL3gjRPtcy7Ns6wVSVOn4ZAD4W1v04ThXoWZ7G6A7+5RQb/YfQsVh8HDBeH7OiQO0HNos3mbHBbNW+lTKfkAfHRqe86thIL7JFpiBmDPu9Dtps9irNg/UmBA1lHAmcx59p1eTbLr+KGuNRZT1d8PAY6FANQQKEZQAyXexuiBpY+56sIdBsjLla4jDaRnoDDjsGE3SJSzDoIVyEFY4ervktlF60NtBy6UInkrWak0rJEA9SiOBjH/n+4GSJfw6XSk122bTGpMbCz/XU6RHL3+f3u5K3w7YvrLe0ULMjqWIsS+yMSIaf2CxmfNHtkAxbLEx8sQmWIm1fsO6LKr13StfaKvHkq7UbIwI085r8FflHsztISJY89dxDnr8+SJRBnS8rfuPL+CSzX3INZ9l34CIX/eOrqOUKEUPRJwbhRnVShJV1b+ZiTMTscdft6c33gF7QbM3JP6xmTO0YmVNNCybhha3lzLUMEfjBdjF5M2sg7LAKcUdTu3cxw/Hst0lzFB86ZpS2MJbjBVKnCpW2J6Ct88fe1lNGGSMJIAiT/zfQzX15RfNqPQNyW9qr3ua5ZhObsQRCAVmyF0CFC56zTsHgU6FMml5NRt0zr1ZMOxq8Bakl2uL4bdJ40MnG8fTQB5oH0e7Qndgnz75bXc4r+9c+d4j9gtMhtNAwhIl+vfd2R2fZfaUPLS206jPKzf/00E07bLcmw3kCQb2eV7UItMRgsCJi7cYKTMBbTgOR71F7KfKuWv+Nb/T1DhBA5MKeZklcFXT0z8FCrf8p09HxbS4CRiSsAJJKZlb7IqKfz0Pz0IbMawN7YjIkFOVFTmcZacYA1C7pEAg775Bmuu0fDKNAkKOxFMMCVVnFkeCSUM4gJ6AGR0KLIInNEyW6NsnygZgaA3r0sdrGNtg1Qs0Uak8J6oBbS+t2BrH4pYyHxKOiGUX9Kru89cFOA31pzRDsqN+S4Qg67qe+n75k0TEiHaHO8TA1VINBp+oO6e47nLbJsa8xK1ssM6B2f9Ksck0NjQZaYxpyXZmY1K8asl7MPHbT/q2ijy8BJy/8cgAadsKPdyePx68jg/j7KqmKP8KbkO1VO4wUWb0dkovrtEmjjkyuj6rnutBVKbU2VTFg6VbETTUnKzXaes0YwIo0QK+/wQd3kLn2XF/yTub+kdfDlK0vOXMkHn+YyBBAfLPLHtqaA0eBgRgFB+B9JOXo5gLijH4+So1k5S+iqztL5ugigjPOLybmWnG0c5WyIJ31uiaZYFLy+Jtux6e4nv57ZX6cJFCTHgOZMMc2Rw7rLn2OMLqlnI2qUJsqNDxZcw/dIUNdH7yQxeyvUExLodsoZ2tnPyYp1sjKynYA3ZcCLrNVcj8mYyv2+hFbPC9Gt9kgPm2JtXrI8zys1hzkV+x4xT2Jf4lgoQstgGc3Bg5carkdL1+yX7u/zQ1XyionONQbZzwm0vdcP9oVGo+VgVvaji/5ICCTqU1Lk+z247m7fBu14Hg5h3Ui0XfCDSMDIMP8pNbFkWgP+PrCQBeZ3VZfPOOOsP+o1AsauExaf4QN4nT1yZkjsnCNCGDhOLozHFszChpdWGtXQN/BofET5f3cJNmXRmAzBHrUvyOwGF1PmEmZBgbtUbEk03p+AZTt0ldXNXD3yr3kCzRSNfKk63DQshHV0O1Kh4iwDhZQcILffliUA3w6IZBReBcRg6daEnGnQsW9/uTBdtfKu5Gnabfv4XEVTrfYEyivW5yOvr+NfJYWtMdF86TG+y346hFIhhpKpjTYJkKUvDoeu4nbLR17G73d/WydbHcUSMZ9sylv2XOhyO5jydOc1nMJDUtaugvvXnjibw5ijskZpojfv6uGOfowj2LQq4mw7uGamh+bE+iAnhD+cshOSovpa0HoKdV19HSftJ9ixlvYb1BX5Hnk1m8mqMMElHGSPAYU/ouIPtyXJFqWnF57CHejyyJMNNcs8e1DiaG4iNh1BqhqCKMh0VPQcox24KsAfbSiePUt1J8S9EWFrfv0zZoiXMENAmURkZr3b0OKK8OguTbqOH5WK/MkP0WVOO+PJgzS5YyqrjWYifW458b7X+qR3a2Ytq7p535rNRksGukETWMpgyrJaLCYOaXduyqOO9xENE1zitPppMRhZCcurUj8eK4uq04NJN6303YfA+30qjQ+1jtVgLJwdCgDQrdQxXVuI9G0mHIi7wBOjmpLRQkMcAwDim+CBf5n9m/O0w7dJ6tSwr7ErngqIBevDmGL8zBgbq4EvRU9BXqetlu7GbNFqok4xbkaLYkDtldrKVlrVvgKazsqBzzooUnVfHDj0hukCKgp64+Mx6o5vnYrH5QW7jlSTqiLLZsAvnrv8cxbq73lIccdwh6RKcEVdLgx+H4PziSeJAYQvsc/x9ELVanjNAregULQNIL7jB8ITd0gLbOCacERyVdIHHIZrSL4SqlbYLGceGSDbPReIA4aASDGHF1cpM+VQB54wGmftzwgSgNb4Q/+CMM5q1/Dsacc9+be4YgM+46WXakR+fUW4Soh4+uPvOTspNQkhZd2dFJFu6eGDihar9Gz2xDmJZ1DZPw26w1AeyMxZZVPjk+z/GKqDiXn3jnGR2v7SNoawudLXdWSvLcsT3PjZxhgqi7OsELAcCYDLQJLe2ImlPU4gQjyTIioqNj0LTGtGwmSKa6jb45lSY0k6cHqG3UtZHLQM8+QvCWLUpJqMWxwO6B4cxlepwEhR3WiWQPQR0iy30haFL+3nnhVXsmfdjPHI1Q/T9IzrfUGZ2yCfIM6l1oJKOXF2qFHSLSWVMb728RcqNFV7YmODAqr8at+MVAm+W5L5W6bq9oOmnHPgkEe9V2d56fCoRNosrZvzEsZwYvOw38ykQWsagyD/TVKq9rP4W1+glB9coCNJJnkHeu+GvT8LviJIa11xUvc9/5K6GRGk3aRAfoc+L8h1kSonXP4b8LJDDoXZBDFWiqhTfpBAlWhJqKvA0NemhBOP4x3s8fDRUmWncfvXIDfCYgnC3YbsGphK5k2pTluqPrSebEjXfAoCAzdmd4L2GOSaFpP2HvZfTndz4rqnuIEksXq/ZzQoNCmERybeD4qH5pkBn32swxhmG0GlrTp7RuLQ8C79R184HbYWxNKLtcZ5+vh8NNmLIAb0tmo1Ni+8u9WdjtrhddlInTIBBgx0WljEm58leQBsEo6dtb0kr1/5fs/3LASvn7NRUuR8OOvs5hbe5EhH0POAg0xVB4QJj5w/q9hrEPYAaONf10zOx8byOA4jJBOocXcnQJJ6FMcQqcndAgH2eQwHBr9T3xR5j7Siz7w1dECb/7OOlLOACOQcwuWaIRIQfa446fDuByDuXP9QK/ICNZFqma6xvQIUsYmvOiCRCR62au4KYFuvrc9jfFSnNAVGTIjqazx8bGK/BqTlUDTejFWrEq+AFpY7q+a4FSyuBo9baZmO7kK+yqb6B22ByF2vvRqECXhyMvrSYdIXi3+3tRNnN/iWSSkZzUp3shhPkvb43XXEP09dSTrzW2wLo7VFMEUMxCkzb3NeHyDoTmvlaByV8AOV+HspCWcF6FKit5dwqXedSprDKH3ryi+VV3PM3bJEENHVnfpdAoKaexnwNRYRKlAVECJCv27FYhIO4Ck7mzgdZtGAakiXc7BXRDeqrT1LTCKJqIS2ZJN+RZxkS1Oc2CndI24ZK4K7L5Ij1hJifAlQqTKN8QCUY+N4dvEYWcpoe+H6W8siI0wtHVcKEUXCSXzvOoZDtJMQeR4kLhahx4D8x+djRYgnrTHMXraST90x3RfJw07pwMhdQ6MzhgyroszLDUMIHizqS7fDu5K1KZQl5iif9D198wwgmpiPL0BwcBNeIXetAPjrChLzjx8nEzATDYih0IXYe2tw6l7zBgf/y67VwZnOy0HFkipco2Qe2w/rCWvGkwan0xIxG/5zWhY2CtNrUbaar2OGZqo3pw1YWk6PBSMbfVkxWTg6UYRzSBH7+E8Znb0xZs+H8KWZkaMlp0CgV7moWxiQcnhZbhhGzzb98sJSiYVmu67CXDvrIa9tai80Q4wAYQPyBm6gsJOHtDRpgkMqz0jefvHkJZCPFXM4b6ANcaiEgIwOmidvXlDBJU2mdWMJLlDFsAlmxRVbnv4oxe8k7Ii9f06oH3UJaZrsPmISjXqhmMPLZzJgOKd0F00URja21eh1mjY1zzQnFLggPK8VzXSr5hXZVS/8yEmjYf6f0IOcVkmH9lObI5GSedkL43gPclOUpQwRxsMswSJG8a5qZxW/KDrQ0+93rNHvKezbCbDKtp+fu68TGFuR6vcahmuL0uQw2fPP1AiW3mntKIXJuV7lblhgMkt0lPS2iQE8Yq696lVthSj+cj4gtFMR8mYQOBEKySE7x9FJmUQCZs/Njvb57pJe+KLRvc7UsfHPV3MEQEo5tpHoLSOKqJiPZE1alhNnSGDMUh8jJB+gL6Gr7aCHUb6LvP+/3oLX7Q5JAY5MqwwKlZ7QVlIvcJlVhYH2fhTle56035KtUCgeSPqa/fHgG47K9wKQ4yP32m9+/G6V2opzDzk306esiRBzXhKlA/Mxyml6DSyEuu7ZP/2yYpo24IZIDduA7LW+5zL6HkBMimAdB8mdOmXBUDFyIY7xyYbq/kk2x6HqrTvXZ9yHTdocK+pNkbb2W9ssHPsVr80iE00h11+6UFoMr16wTKvH97HHmOeY1ie0dzKPgNRHS1LcABwZn8QbxjMsF1igd69oTAtX83Wy8/HvSp4/omMuM8g9cacKbsxfcaJyLg3M9UQRLEUQZxWYGP3bKqedd/sHRvobBkCgE2DQSP7+dOMgpayKdbGM6XoxardML6nqa4k18jBVjyNdIGoJAfc8ysIc5TMFefKpXiJXIJFZYIBidXfwlQRsQJ9sC4aGUHf3fDAZKrXvFlrEkcui5I/JbySviPqDVmL6hYo7a1ZJxGJUTjI2u8/Z9SjODiMFyBv1f4h7/KW6Mknlhv48U1jN2BZFZt6Ng/5UQ50SrLnMblocuTnML04QinJZG9uB+rRhu3yOLEQ4W5kWi0345+eLnAclfkQMoQYtOotoH3n2u13swZ67fzl6n+xzTeCGw9HW45MlCX2N0a/eMXNM/jAQNi7S0DJsRpxwunTlC0lCPYNNMN2YUcw0mCv6mAc7uI+u/uhSYXOYVpoHHZKHSFwdEAYMP5wpvyTO2GV25M69qLaiSCjvpfVhBvihY4PVKRHLuFZxdRowFuP/DFB3bGVFgJfQuGMI35MzGzKnp5geRCcXik+FlTtZovxGAD6wZmHq1Jh1lHElNrljUFogStX63xnvxyt8OWB916xFxUy99sYQA2/7/velOMknr160Xkp8UASdPAiT4bWg5xuFh/GyAt3dZm2FJDDu40vEovvqw9WW80ZRX+nFxNfvneLmZ8cXOEOpMLBG3bpuWNfqYPQ0dxo6PspKYJ5zSdidKy+C4NnppwkY8JV9bCDs8vbNLXuEU7Z7TA1O6z7Jkl+6Mop5JzQJ0Dxea4kNYHeMgsEUlTEhIVJkFLLKAQep87phI+TXScuqbiX2UQwswAWxYQNUbug/hDYkqX4wx/aQYzw5gIunkLElCbiLpduA4ZwUhOMHVAeD/c+vp0jCt4P/uA330Yrws/lZffwpkIhWxNA4+ieQtG4vXcmRHnigWTAkMyEyY8yRZsBQ6eY
Variant 1
DifficultyLevel
576
Question
Worked Solution
Strategy 1
Test each option:
If
= 9,
|
|
3 × 9 |
= 3 × 3 + 9 + 9 |
27 |
= 27 ✓ |
Strategy 2 (more advanced)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 = 3
 $\times$  = ( $\times$ 3 ) +  + 
What is the value of ?
|
workedSolution | Strategy 1
Test each option:
If  = 9,
| | |
| ---------------------: | -------------- |
| 3 $\times$ 9 | \= 3 $\times$ 3 + 9 + 9 |
| 27 | \= 27  $\checkmark$ |
Strategy 2 (more advanced)
3 $\times$  = 3 $\times$ 3 +  + 
1 x  = 9
$\therefore$
 = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX196W5Z3oAlbRFDS0F2C7BZu+wg0nZogLU+U2Ud0A5LQVsGUS8zNhoXXXVOyeUJgB6JD6qb2KHecSU2hc+xpLJcpQncD2XxZSk34zMiLbB8p021VT366C5/kTC6wZ1aiPWJ4KvsRoXpV/g63VocLHrDFdTbbXMDxF9adHwxY9leUEy7GUqnXRR/vj9JultnsdDs+wPzEzdxx1Yrkws467ZcToI28bgy3xJe/L3IU60vApfQtIDeTDua+zqK6FF+TJTH8iLGDptLG4mWLZhz5AbTV34my8gj19KaSZ/cm2z6bvexwhP3tQUfaDSB5+O9S2TXDjWfXVc2LYXqYoZJMkTMqpUI3zSJpqEiLgvG3QfjxE5E+kqe/GRgo87jn/ch0lOBgr7I0U7/zmM2wm0Ps4drmGiZwPGkAe/G4+/9K8dpfu4VTxnuzYOl5YeHaHZld267ccOiiy3l6fkfMYXVfN4dl0bbf9XaySFiVnan3hw2iPBh1XOIjqdYjegi+xLhExFW8EILspg5bZsKlzyYsdeCXgIerr8GEs7w4oZHz9yNanmRj1c+WXVYjXa6+3exo/znsmyehN9bl3LSbz2QQLL+QrzvKzJWjCaIVH93pPsBmmty4FfpJzZs/TBlCyYTy1vjQUnQs4kZq2qW2CwoNfolhJScUnUfJPApYyu24w16m9NbinMEmVVvrqpdZi+zoq4jDH6ZUHZc9+oaTt7kEzZqTKwQxZkEWWjSh9+K8XGVJR94T6qe2m2bQfyi3HiWmO6s709mQc0US0STuRTyQaizPdt7GWDMx2bPEABPynPmEcdl+j2DlMfmofP7J4AenyJYQseXiMZv8gu4henL0PJ5hpIQ0e5DWNOy2IHAnCqHozeKrcf4aP4mbTviN0xyhbGNERp3xg15LR3xx3VkbkFGwNaIUyo9F8vmgXIuxclpGHG50hxSzlKqFwR1z8DAVYEnr0TdbiU9CgEOS6ppz5PsSw1+UojpaI+QzKGjm5ox5QfkdxjZz6+3TnS0MqZ5GzO8yoVvtZGakRXgD3U7mAQZshOYLQsFMDfzm6zdlU0Se5W7LUKfaUzVWuoHgbhp8Q88wIGUe96ANIpgPLLRPdKhRbiyXV8oh8Z0D5zz2cRTgWDNeNslzqpiyW62iDrOeSAmpeQXLCqgA/rIy1sPCFNiJm8P91o48OtLrwIW9GMBeSXqh0XH5INMuOFDYTPqxOj5pezCfqOBQgnoB7DWMAQ+fac4BhDB6FN6zG0kpfPORD2xVGA28JW/kO/E4KThTK3q3jOeLya7XIBfPLAm91b2P7v66IWkq6ImWWvZ1kcxABJ9t9qxrOZZJ/exU+pzERYzNawF2gVM5cQpifJIb/UiL7kOsoM8t2FvLddqRd9s32VuA12S2r1JFrGh9FL0UX6ZF2jTcrGd1Ux8AYmXlXUnO3Mcqxh+ZE+ZntxeohqsOcbmKFQNBtZWL9xsCQHjc2I0syU0HmRCW9Ir7gk/uf1yKIyW/hwxeHWzJ7l3emTiWu3YsRXdSydVqgWIQmJCw8/whkE3AA+3mSSfM93DGwOD1XVVTqeNg9KDok4bwm/P94611N0ViwqpDHZCFtDvwarURd8bxBLHnyODHkEknqB/+LS6aMs0yIpicCXi6mwgcnNDIlI6cf1U2ytakYzkY8ziecsR3u+UnSVhPrn1LGp4baO6hpwZ/VziIf3IhR2artkWXXQoHjIpP2hy5nlE7lVIv0St0tUQ133rsCDKWCZ+Shr3ZhyvcMzVipzVrwyzksHqmm96OF/3OUXMZrp19hjL/j19AEPsbx4fG2appX7w7M4dW1Fq0B01O53jln8FvzmasswUy2ib0V4lVjrouzS5NwbJEnVSc/Oz6WHrX84VEgu+1ubBdsRYYj3ONK88Jx0fhw3plCxINT0NiUpvHZTB+QLva0zUbrHeJEaJ3gjegNqRoRfx3WCRMIsHC0fjk41mwuYz3kb5QqcjtRTnfQrDfLYxm/PA20bFSlYGjjzTqoqdvbIrphBpkMyQcciDL3dt6HP8aG8kuar7DctdtO70r6zzd97AnwybkHx1TBQYq66RwULlH9hofB8UFMBy9aKkqhVyGrmJwhwpbshK/9aztOaQyMhMdIXwOYd/FuYR1RZHlRE355A8vTQPX+hPgXEOgWynFYU1IEzLyDsfCt3CuMPrn1AtBpzStsbhLl2EQsj96Eh3HPrqmyCL8IEYJsPzYB9FEbbB3l3njplOumxBG1oTBEGh0A+upWr+KB2Jck/Tb/GuVCQxlA25vCefax02tMzFgdgjEtoNLCn1Dss99FDom3LW2kjM/lKoM3SE0BnAlKWIOi37Iu0/2OMXXMngLSP3tDUFJ3uKLWTJgtu7lQfRb4GRLdUrdPuakYQdu/ieN5trmoq4IKX/XL4Q55neWZszw9lIYUOHEOcv7fLNgBq6NRmtVQflt0ZuftEzgiw+0iZMpU1KlUdR1AGkjXVVcC+UPwOAiA4JfB2O6zy6FBg2lOO676tWfZbF6mnE7TPtr7uujkIl/J8KyRDkmtDLJtJAq2zpGmtKsOXqHdo7711pcjuAhsWTBLUE0al6q5HhhdnSAHMHJj4ssUJhSyG37bDhYjIPUwWRCJpvNvxp9wwvuPqH+2D36PY6T17I4gBQgMCtY+iBYvtVrJWO+fT+OHzY6HgKp3lcDZJPT8d1TGFFXksJQCGjLRUVDdQ1QLV/bxU46kol/YQSuyPho73Mw8LbxndWH/MOctfYQPIWYvouiKauthiXFiHAXxGkLCLhM72OpaU8rIrOu1p2Xi5TF47sCOXnds6yeWOJDPT9z67QkDoMTTrtb8bQzp9QK4x0LkfrtJ+apMn4pA0C8x3vmaFhZsDuqVGCVpKIwW7YJ1Sq2pTMpPyoCnCnK5pio4UvxOkuml0qIE3KY8/8bF/swyPoYNt9kXvpU+28rIB9SBgA2BcqLv6YAJNc6/s4AyEi7ZlcFKrLhgTn/Rc/v0kxoFA7ZknFu4jVI94R/60vqBvq93rvqFAq+iMDh7sztPpXwr0c6NcjHB2bs48yWrjN0W7y2PyK+1gkZcZtA1uXBSmsKam9NfOErbC2Fnphle77nHUm1C6OgW3cdAboYvMob2prejUO1EJnOOgLGhTd+7t4W0zvVU7MmoW+CMtapSIDzXd/ZQKPX1raLXaH6YM3u4thmaEvdYZM3gsan0Q6L6DbuAss5P0DDx7/O5Jsg1O1xbKz9sWX3v7Q+PExHfMfksB/dV9n9dWXRhCGr7Y/LWa1y0kiGBvMuEg38E6JEZ+vZpvYzexmPwNIn+KY+JwGwqoL2JfxG0rChQ15ywAJZP72Qig6ZAWzoWjdoeRj9I9QE08Gher0Zolz8oT2/ZKAsUYZlk3FIk8w49sGhbEOlsBrnuYufHyEuGKjQUVArOCS3zxjzYlQdtJwTQqO0LUqQ4MCqERPOdETI2TJd0OJcN8FR1jh0h7mnmm4Kv8a1lzf4+Xk3Ewe3iS+ZC3fqSNOpBMbqCDPFokFG8FkYE9YI4AQ8vbUhyqgnGSDTgL/xHsEm8UmEa8+nCcCJ9mB1iM3ONja/D2iG3/c+EL9/3X2DJEQ7gHjqcENzs4TaVl7xI6hHNBpW1QVUojt3Eo6UzvGt4C2uTyWQ/jehFk3ebo1d0XRYV2hb6iVvX1TLODccd9N3fJDj0xEf/xGCELXFwvHABw+C4GZDVzrJLOi0ymfFMSo02weTyw2L8N6Rn0R0PFjABRhqg7cWvoc2goFLTExXdzdKZvhUYnhrX8H6nqhMTldOQe1tyF1a32HewTmApzdKhnjDbOd+0zLHEgQwB3kxU9D9nXCWvBDiyrUM3o9S6JfUEVjHXL8nmtSr32cKTsJ8DgdONd58N5fzelc/aiElvGw09y2ibY77sZnf8Opc4QVI3z+YyIM/wwWwGFc5IXQpWhRHVd1AGiTi1a0lD05S3xx1fU1J4oQrqkLODJoSI/WcLByz+V6MWh7Y8NwyiUl3/MkEbi2JMRAxw/BQ6jNHcy4LrqahV4OM/BpCHIS7ZIDD4+OtC+Gwrc8FppDDmy2xYihCVj6tZv7kGVcMLkH7bkdvD9IQP56JL+vmwMX5ZgHnQylLKAkbCFhaImctZO3F4qCqYgkhbs1pRbk0Vl5XZ/lVOMYQ9Y4yju5XffETmsiE5ro5GLzOODfq6nXnx7pW8uVD4TGsnljKczmBbUmg3/Z1Wy3B9ND/Zu14cyoWczxs9+rpEPLI3nYEhkcPpjhvEyQGtkWoAtJafzLivwiRQ1rS1TURUFHPXWWYsEUpoUGLkgx1JQMnXdi/Pput3ooCde+Y3FlxssqV2OHIZSnb0Q9wWeDGldMjuqjTPugQ77W/LeSxcFo18XF7y4eGgfY+R54uWo1qV+i+Mj8I6H3juM9gzr0c8CQ5bFh0fJqajXW53FrddqvQRuZRiJkaAmJFgWu63WBpThu0dOOz6PxwTunQwYrrH3TFcig886e7/JNq9XCbXMqrbiFZocSyyjIUymh1o5N+3lCubFbwHtioawtAQHW6xw2171WdMS1Me+fRiIOYyS62LGZGEttTfYmRbZzk7oZwbs3PClEHnJ2pj+XRrI0mbUHZ6NlcifKwPnTekOZojGRBN8xx2FmWab1wvNIJIQIpZE5qYqhtqOwuvKCgWf5nw3//5IDIXzj3PAbI6upWR0tv1wJN8ak/ph3W2d6UlSGbZSJ67BFYALUPTpBhKx4m+1GcMnDq0lSJ103XgR3Mt/XFKrEUGRAVffZtCwfGPBmc0ylDYw5G7B0ucJ3kxHBdXDASaH9Iuh05xotRoB2mSRwLl2WojBdHUuxkw+oH5md79zlr1TrngCAfwuz1jUGA8joM2Rl6zLyt6ocip/KePeZASmaEEZga9daMSAJ9R9vdxeUO/cCMMkMZURSM2BuhMnh1Q3lm7GgUyqjrkZfQjqP4m5soiQ2jnSyk5RqP9iABC5sUV0FLKovHG+VGC92Kli/5ckCiW2YyHIz7DH2Tu2SooAdcHkPtyMLap3oBqzLo9lE+/4mr7fAu6J0YhPCAb+bjSkO+pi6FFq7dkEp1xnKPM4/f8F8jFdevtlvXykK36ZLJIeNOnkdxjlVSqdyIyWvl9ycU3CF5f7XcZioDmc5tTxFiCq6uN7NugJpyP1ApfHgldoT2yDWytvsRspTeKxHUqcc6fyHhy7CDAngnsRtwZnLh8UXQyW36rU+oORXHTRhkraZz+Iz9F3iY2U6eqswDL86xXD2JPr1szCj6EWe34GDths158uMQHzZuJ+7GJ6zPncgN9K5noPxEr3spT97qFrL4KX4UTcSp31NChvUoywdwrOdjd2I4bckjvJlnu2f6+wIYr1qeScRwYw45IsrVFhcL90NpyrCqeeX/Zqv0ZvR9QCjZjtp0JZpj8FpwpnXxRhMg2f/34xdVXIZ68oZJgA/siLBYVQ0sMBZ/Ojn7Jhj14dEWcPdAnpICiyBgPyWNquZDy/nBL7fXtWu1YZyJg3oTgvby70a7WRQrNibNyvXsDfHPwgUFVGzJIY3o5y1E3HZK7faEBMZfLCyFEftcE6BaaKh0GuxPgVS+GGPYG4ej4ByM2M7ZPY9vck49q5V7AENqB2WkZBVkkC3RJCH3HdI0gAg/33lbR74CPK5wkzh88PDUsQtXseTwIzOMxDjvC4ayRM91XQX7cwohEPRjkstA8pHtH+2lMz9Q9gN43k/Q5lJHd1cjygS148nlhsSA4M7LZgkwdk465EJnIpHQkk3IEE5WWepLWriiOIyjftN0et5aMMLQkB+P7+o3OoH49Krfc8JHXftuXytGe9rUB6q4aC/buOir4KjCGel8k24BXHSPBQmsBEKH//YfieYg6jfmd3ehkBuFFy7wfdIiTQ6b8Wn3SWBh2CXNXxIeUC1lCyRh4Ffbs1lzZr5jGkW5CAFmSGvE8jleOBaBgxM7N8xIGI+SwkflHli2TK3JcHxof7+N7zc3i9kV1J26ozU45BdB25fZ2VsK8eIZtubzxbfMuZLXc+UCa8/AOSBuLk10Bu9bnORMoPC0NcIdN+VUhb6z+fzypd+aALl8nBAvknJXA7LivXWXthJ1rjG5xcDmKz0TTJQ7+K4zrCK4b+9yXoMXrDxUe7L32/K06WrNAE77rQl96KaDQp32HhDH13QO/FhpGyb4ySWKbNbc3MXmS0IlH3h7fLHMRzYM8i8IT+wOFussKcdjiXt7xETzKKkOBFXlVA5IhW6m1NmfsP5hoyTKuu9injlIC7I//OCGQpJ6cFg5f5CvUUxtjyQw+8NqVNElN4GczLIg8AkJcPHdxcKF6emqtbsMfXWB24I6Uoof/9AW4Uuq52O9fLM/5IC5ul0EeUIqS4QHBtQjyAQxO5WJbIQEHUBVS/FdvLrwwtFSeOehp46a9XuWBLWlUhv9GcwxdK2dJtfzmkMYNEMuGYuUEE+wqMNXYkgTzCPEcRJgQoihtyRSOl/C5sbTPYJN6ElOsIY7uVse3yWv5+THgkOuORYe0MBaNBgQ96sILaMsauZVDl7jOvvy8G5fILB0MELxFasftZxhyFbDonXFtl2hIpUr1/UIQladNyGNvu3/f/mG8Bq6zcZ61VgbzROmgrEFqnTT9lOHm4K5Hfr0xpEb3LUp6hADJ5rF1wManw2rJ4HYfNM3QXSyxR4UOkmqb29gH0OTlJJd7mDlwSE9ZJh2DghCMDMtBcaVckbNEjAiEchO2N/yiown2sFACnRnpU5cTUiSPG5xAKtWE2uLxJMMC+Fj24bEdp7I78emifYXsZDNZ9vKOJwSKqH8TzX15sfZfvyJT+wt5sCdN1fdD6wNmlZGHbiigCU28QFrvFG7jpiukEZeT2wjduQL4vZBRERYk/yXttIo3pLspZj+jCHG2oqmpKMN36FyC/xs+CrrUTtf2GCjK+ZU6tqWXKxRSamEz0ITcJqSOiXDBuDSSAyvXeqV6ptLobMqQvjxwB7e9Gvy7Htiqau2d8NW+HT6N0WztUHCPb3hx9jW9kwSAVZIknYzZ7E1RuHeVWxBAS2wX0JLbouhYjh0busFVwT7ZsaLL18LzrkmIJnrzchu3rEcT9m68ftmN1oPSt4gPvCAyC9o6YLK45Ps521HPcWnodTL9i+vQ7VJKT3sPyWPHULqIOvs/q4XRUboBRylW4FNQ5dQucB45F8SX7MTO0dRihEE8T8h0SWYz06PcmipmT6GUi/3znr8lmIJyMoRvnc7cyrGxhwDYHf1bD+lb7NWRW1RmWB/axpTWe1WltQipRrrL6ja20C2PEqAax4RkACiVD7dlUByGCccpgk236B9TduDxAJ/VPW6ZyLMEs17nnW6R0KsBLxS8ajzISf93Q6IF8TwbqAENA9yAiVYiSZWuNDOQAFGQM96pniPNXnjfJlC+d8OMVTZuwDeJpQHryWa0EHsqLo1HT4MXMRipIIYhNSj5xUGVZYOzFT3zt1r0+Xh1exQ4qC3FkPSdPpP3FQSB5rIuCqoZTkVhdVFyEE/XTgaFsTMqgSgsCatyTZukI/AYoxOZclwzI+4X4VrsCHWaYQKWIsbf/myeP22l6B0Of7TRiVG0UrCsES+g+WI+OW7CnMiHC7fZUKFjt/bR0AyPrsv53g2SQ0rZX4VANkiqocyaIvLwzMaSIpiJ30eKHx24R1W7NM2XMaMlEf5tco1ohUFyI3oOiRW1iQj297uwwJNtRjHCShl43PmQgm7ZBz0W1Jmin7kkcLJRpIWSdSCvB1xIDVvy0EA6Zwc3K/uvqqLnGjnK6D8h8yfJnWiaAtCWnacMiXlpZ9AlD5+cJi/JmPwWwz1cZxvPUbpQWwL5+eAcw1w3JPm7LxUDivEs6ehPCp8gRgQ1WOzAx03+i15lHzg2JpWUDJuJfwk0dGRbpdzdvXS19XO7lT5DLukbF9xa6CzqPD+GdAR7aVvI660e2L2krLq6HGTiuclFAak1QTWBbLM1wzdGrDMVITtu0gq3AmR+Ht94GrMlUZqgQ1zpgI+SiK5uQfu9lU1D/O9/+O2N9DV1ZLxeubLCMaLYxlVczjBkXZGpH+PrSV88EZwJMZoJJ2kYF4oUm+t3zbIESp14ZOshXcRA72544DtlDyrUkLKnCLo5zo2Ygc8hH9w20pL9hXwiQ55QiafUdz92GFtwt36kHgYln+xHpTij1S1vMrluFzZDkhE+uFLWmXx5UWGl4zbskJ9HbLAs6jvbGq/Dq23sipfVf49td/kDLVaOmqfv5/FetXP3auZGeMXadv6kQ6bjItgNAG0rPaUlONZ01DGiPQ7zSgU/JnY2j3vDq8+XCqHfXRdxYEx9sfjla9rautTogjChVIakDvFW+eXm/emEw/29RuY2ncbuApMASX0Q/Wk2Vsx8jLieXvH9zHMyLKh/pb+w4/exa6EXMnr2TTbj6Wbs5H84WBHZba37f7VuregcGDTIFjS0xJJ4o1MOYrtn0+9DsyTzWsSkjUanb8sQl4i6G3JkCsVhOlczXysd/e4yp7OMJiMDAQ5tyY3WquFM4v52hTVe2JXx4OphWw1v7EhZ4SezromqEARYQWXMvPFLN5iYs6+Zgyyah/ZhTm3/gt1mzQffusZpJ8mUD8Im0oIK4sbQziMJWEphtZjgRwpI9prRJ+V/3lulAGtZlgHsskPA7d2JgBv9Wc4J0k5mY7jGAYG+SpGocrcRoMhjblSOaQUaCXNGfdSk9v15O+KTKHDShw/ekzj1CbjgJioZYrTtsYvFZi+oVdwElA3II8/j4y2FjlNwCmH7u5mfIYvt/MI3UWNNzWjyxazImYL87tvrbqywvPTNsSak2mZ0gboajNE
Variant 2
DifficultyLevel
577
Question
Worked Solution
Strategy 1
Test each option:
If
= 3,
|
|
6 × 3 |
= 6 × 2 + 3 + 3 |
18 |
= 18 ✓ |
Strategy 2 (more advanced)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 = 6
 $\times$  = ( $\times$ 2 ) +  + 
What is the value of ?
|
workedSolution | Strategy 1
Test each option:
If  = 3,
| | |
| ---------------------: | -------------- |
| 6 $\times$ 3 | \= 6 $\times$ 2 + 3 + 3 |
| 18 | \= 18  $\checkmark$ |
Strategy 2 (more advanced)
6 $\times$  = 6 $\times$ 2 +  + 
4 x  = 12
$\therefore$
 = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+a9oDEVxGvenmIZnB6jzL2q/9+OzicBydk6ZvZMEGBHJqtjMahTxRM+YKNBRVgvRMRETOkBwBBY8sw/mlfOvTpCO3nzieGE+WYFt3gmE3fRrX36/GG1we9laWeX0cxXhAqlRS08md1rjL39vfad+bL8vim3Py1Q6fgbxfFEuaEssMr8UaqoDCQt/Q6Ha2Y1MRg4yaVUM8S1rI++CURje+cmnT8Lyj0MixSoOhhkwWOH5gY+A9WoglQ73XQc2DG6ARpRR0WpCENuAhntmbYFwbQ9+cMICWV3OTl62eBGMUEiYqfqhe8JVB/gOc8f0mrI5EiErVZFGi7ObCcG8Bj0I2xZWUBzruAyEYOO/mbnGm3bH2WJJKQEXrRw9NUUQKkjs33COYidwx3Vn2DF+2lc5qZi1FcuNP1a8++2bRQJ4kPujJqaxp5gRqSYwXPO/COYa5Z8F7pZ98snTqXYCYZseH2XchxAhWKz/JngCJWsrm/idEiWTGDOqhJZPA5PZBcYE7wi+Wl4aY8ZC7GNfBIo8XtEsuvIVI0+C3gxW+ZsTWtnS4+tdbxvim+jQFp7zX57PQWTkZPGkBYX9Cjq7UUxnr/u/CUkircW7mpleFwGgTRJzbdlSsbHIUCeIkZg48OlkeXHfrYR/z/09E1ldUboiJEAGvWlIpOYLaVdzQlBSLRAMICEbg3RvTZWg0Q1qClOA+NE/So2eWDEswyO7dHqigLwJlDVeDLREuvWksTbm/943xmeQh17aahWr2GnOGcjsa7CZIQmQZfTRF5a58gtzDBGXOhZq2CPptJM3TTDRqnBMbBRwgs60NDwl/9Ymgq/RDjExMqZXXL/mCsI0D4Jks8Cxy8/vnod2Yha3aSikMwnQVobUpyqMvPNACCrYyctTnFfuKWLnf0NZw8qNw92GO9UlbbZlouaxwomP+nFvMTXAn0nlr1Dl1DT4WuADAwmpW4I/wOVixLZgm6rlxDYUbdFw9hwemTYCmldz3iVbfKuc90gdRHRlnDzAKUmhTxzLd9xiI3unzjmIK/z2SS6Feh+9IKTA4c1vL3jdI5mPHteRsKJVJ9VsMPSDbl2QanqKI2+DZrOT/1E6cXGQa546k3qW+soQNbhWt+iy9dfmDxZZXxuXPfZsOnsMxqwyQIyPwfhoYK98OSDy7o9Tk11Q/DUc6ur2IICRtUiw8jBIwvg+ml+rMsQ5f4eMo0pls38BfaC0Bh5MX+i0bE253SzZN18Nh51H2mtidcyFxAb+FJND4gF52Nq6RlUrTSsL7WzufljNcIf4gakOX9g6cbOQ9RLGFbYCbk5truUjYLnXTCkIObD5BCudv8NeVZWhUCFkesQR79/sab+x7PjOBd2yxpXV/2XuNgEAQ0oK0G0JvfPyWORpenPpKDNUNXJ6GXoR3W86DxI/Dna2hseJpty8EuI3Ta1Opbl1dZ+oBAFtVYBYbHhi52tD49e4PNdAV7ozHIie3/kvTv+YAy8zWEPO7UZjrCq5d2McWQxcQq/YkPg1Lq4XKEteVz+yuhpFTqztn3PUtfTmnc1tXLyuceJNOJkkrj1fZQTXDV4ft6PlOeLiG1QnayH4GCeHByg3kAxoOcrMfnZUgSq/o6+bDm6V48WCHVoq+E4f2RUEpbQyFS8kRvsqovKLHeSClUi6GpoRhdEMEJrfKYqIumdIDc3voBSpZ+5rOPq1vYCuZ1vtO0w+pQQCy4oSu/9nJ+1j4ZrCoVBjFnFZMzxmuUpsS7/fca8Qe8qM62vUbR4Uk1ihFqVIlWe3B9W3h3pZSDv9pG20d5jPGMAUNqJJZguLP9FJcBsSQNj9VQ7NHl8zhWYxKvRVX3XzedoonBanUzZeub2YSGn2lSjBUsAxbJNeyIt1WOGLpwlRSslcsObg74qWnUCrGbJ0aZAD0Q3YoLupSX+WCqniPaoXCjjcbdyPiKurtC6mcMayc3y57QKTHs5ujOKxaysgEgRIzWbeEpNIGwpbqfhDcdmXoQDpvW88+Yon23Rv13EygV/T3eCJICBVr3yxt5IIyfLRflNkixOrmjR8l8n/f8Q637ZwgCQXJLzDlA4G6Tk1pXImgzwIHIBI9n9HESEQRF+1cPsaR+5gmotDqllPQRfcrvjqmFUeXDidlCZTsZR9+J5+f9Ij0Auxq2hce/Y+mUi5hBl4kl5NSVYMFDfPubxYJSp0JxWNqN/n/KSCqbHuHsyOpbZSR7J32ni5iN3fSluY0LHkStB2fshbX3lBxXqK+77cnpL+EpKPRDH6hsL6Vmzubgy7aH0VgVIufzRifdmKlHJEl4ugQkqNopyN2mbcAWkhnagbIRx9jniRPYtgigYZgH5WflQKHhJiewtZaVKomTPSs7GTKogl+w6W4SJY9vRkpU9btyld+ouVwzb8J3nvqwhgW5fw+XkB7ZOzCU+cYoQXyoUJziKhooUHseYQ+di2W+gmMX4fJZBKYkseUMEIDe4FquEJCQ1YE7oHWV4rFJ6W+bxeDagA1t7rAG3XogmxOQ11VjMTNh3QOkf8W5zpSxQQ7Vq68G2+sJ/Ckr0B1E62aZI9577rgnQPDdtwurfQrSx9By4e5vTdv9bZFCQEkTUSDfnwpyynsGTlxK9XwstMRveICpVCc/aCTDPVgy4I4pISfgXMXGLMFxrrqB/1Om0orryiW3ZjGerNZ2cWOG3SmeAeYsJKJxDAx283Jdax+k/rjJnWXwIXNWClRg1wVwDTupdydMpRpEpDVlj8lvZF8CzBNLugna/Taz5IsQt8ULph4WLKS3RUdGZwd/89xMYAVG14ZQy+I6I3B4qznwYa7q8mvVDyqIV8drwmj/g36/0cf4/mZ3Gja5TT1q1Y4FQEI2O+IJ5SMTUh3en0QfwSRN2sPgCS+GN06XwDjt/QT7c4qWEz6OloLlfxBacpDqGHhWkKuHCG8IEkH7bjtPqzdJ5eaRrFH3gpkDzM37eTf3UALsI4acJIhw/rrrv/fbJzeEd6Cdlf/s6uwlIEgpcxavWFfhsJqASQWdUU0U27KkIbAdkIgxSVsw0j5smrdu1z0pr1wDuLkeOXZBtknbJOjzWEZJSgsKTRCefLUlcbYG5tUP4U+kFWgiPX0rjPKlnEx+Gr6G2EDht8cOVQHcLfZOpQuzgpZB5fj8SsKSFPiDRfqkveEBhGlN3j3g8vKZErfCIkS8Cy2N32/tRpShW9JmTW1wNJy/ZNejTj7jASa8OuJ0XnJC8C4c42wWaYKQDNPBTtqzztk4t/EkmsbTANm1iXRgSy0nN6oFYfvSd4YCxV1Bsd0jA99EpDumjzS6eXLr0gKZwJO7xbMSH4Cq11rEEtPiXw1M2I+r7Sjil1YlKECxbYWCDjSsFUTlyvWo7tygQTGJdGb7ElL+2Kjq9o+hjOixJGwmLgvzIAMT0YzzK1HnScIMk2jvAT6xDP51Q57nQ7h4xgF57j6A3A4aX4jEgGCiMIQ+xKCg2Gelnr9CRSPoH1Se4b+JS0WH9c28cS7ticTQQ6JvLaANtMwRbDcXLw7K7OE54bcH6cmvPKtB757I0gozmx3FkkcaXY6ZiKiNxGexm5Y7/5hGicUWSpyTze8bztPd22/EzDWfED9G8hYpMntPxYlqiiTIrq7LlOX+Fgkj1kLSIKop8daqoEa8PYHHWitdxS2ZCMsJhDBoQVMgXBK3tX791seU2NBP6EgabJIB87esrAi7a1m3dfQ3dDqJ+D46A32Ogdkzmup1T65QFqTVEDftz+yD2alIsFgtplnrGifhZ7y15e1+wCVst/GMpMuD1Wf5ByJZVFMQdtSreXztVcATB4UGNqR2D7l75WRF69Eaxrt7lKvzZUQPvm+FL44hNfitcubzHjDOTUiaJCtpmpm3CH0+fUnK3JA+4xER/RvyiEvDO3ShOdXRipXWbyJ4M/YbkJl0gNfQ1zaXIaAkHg5LqdDSREfQ59T3oWtl0c39BbZLMVNw2uIUFa0WQe1UScZrKuH5iI6CvWZLulVMCBZuv6ArKhD0cs43GzpXJFL424X+rEOzrgcflEsMQ82SHas1rX9Jfn6KcfmTNh48YsKPhd8bU/8vJcqfJr1X+2mHLqzXpZdhY+VhABDdezsD422XK19GcnqZ0NGVXgI3JLTwHsG0ajDeekNiMYiVpBlh/Iy13Recen+ZmfyW95Q9AQx33zsHQ/dWGOC700DEadJAXfxadYuqH6mn2tbiz5IK3itXGxUMypwQHgJ1IwlQ1oiEZd8u93HqKkMC5XAKc8NTfxENR4EGxnMDx68HDfMvtsHt9erL90TQt+9kTpoRzBzx4Pn1BjubK0USDF8HRcbjcU9g50h3fJaUWspNXOmz7w8CG4F44G+5TFCr+gxsPUldF70yHv3AsEUdObfXpopuTFv05/0Kn/wjsF8NDaF13DtF2GNWu/47n90mAaqqh+nZ153zBpXUb5RXXwoyI70vd83tt3C+x1bgMtuSl2B3d7xaTF64+1YUngr0LI7qU9jqNsvf1W9UoJzC+xuY4Oa1/fkpV4loXV+DEaBoperbGWRy2FoNclE2b/PG7NPev9AwsNLLV5pNWXfOLOdXGJkEB27uzVQOFMW3DXKuFzW68/JI67h71hpeHWc8vSbKckEp7A9DGh4fmCtM9xljPwRT8kn7uV2JbNCM1AhZ8cCIZv3G3fm/WaBLcZeYDyA4W+Cb8FpO+YrN8vTu0tyWnHqTpU4jvTZwbaB7H+M1vsodfLO9kNwF3p/CBmaaW69bvTcJGU+fg70pSEUAtxUrTENlAliUcJTPlfRCwglgefecdCnTLCLSKPgGqNKNVVLgOfnYFvuSbEvhA6T8kYbuwIbJS7/ak+mB6vUBOuka9Q7tx+Kx6Upzs4mgOm590xekqWH55QrRMmlIZhIpFqUr5agYfe2tBGy9uFioYZU1q5kTsNdc9zjZKyUI1AuOQQtGGhl+iNyfsmgEbUAB7tvCWttCaWnCsl29iBsCNKWOoP8DItAzUJvViFCnRfhSh9UnoggwMlG3NjgECUz1nGqJ34qiSRIh6PKkSfaNfVvKkwBpi5ZiGNWX6YMP7tvHGwLSOyibyoV8P3C5srN35M/fVHtBiqrV4xcmhul4yonV4aeFxQEBhPfRqg8xvGC6XaIIYvb5giR0Rtj/y+i8qmXLA1qe6pl2jqHIueyq8bliNMxKRIoEUur+rbs0ebbdqw0bM5PYX3ILqkyb4qQHgOArilKYwVoMLzvNKt5DdWVJ2WaEAl62JYeYHpYV3xlqtPsANJc5RtDmlFlxV0Edm1l/O+h6/332atbSHmkNgJSy7yQLkhyBCdLQ65yuysgcYM+5VvgHsNiPrASvVKPiIqOFwMvrxDew+A85Ef6Zzn9UEv61I0HajY0X2I8Kw7yycMYcDXSd8o3dEjPOJoA4bPwOp0ftbKzTyGtgs0g/QqEE7rdzXnE+pVHMD/+pQLkLLangRQTxO9KDAJ259cD6eYmHiAPCn8WnKuer0ICG5YXVPpOSQb3teelPPYT1esFFxJ4dGQUGtQPr6fj/T2CXoAF78F+9Q/JzwdpezWtqUS1xhGiKgr4iDwEO+Q1JVGthvGtodCDTAK/9QgQmxfQVK6dSR7S1OAibNZfhc9oAb4ncWO1aUQkOCzYkI+EvRf4wbEtrePSUrqRXeon90XX85MWuIv2Uw2+6ufqzTmv1c6Uueqnz8Veomq9dkay7TVSUG34Sanjkw5gSLC5ITQY1hEBHPzn6z2tOcCJWOGFLf/bMbHqAGjv9ADgtK29ELc2s+60oqAvOdeqMaJhyTnWkpcuF5jw85DqUYMi7GnSkxVyr27OK18wVo3/Ph628mPBlEz20BaYMbXZk+9cJEzhYoYVg50WjDki+9qxEB8xPfP6ptuTRVw2wLT+iQavuFs9cs2WJ5F8OvoCgS0xTqQPqZBoUhESJ86bL2SUvxo5jpivyHOxqn5PugQ+OwJdN923zsH70/SF0fqSoH0dZSfp5forSJv724c/eRMu3hVGjCbAOE/M1I+EiGzTA2LihSJl4XTOORAlsJ3KOo0OzitX8k3dAJAo4gnAdf1uwU6LCWbPBek1HpGGzMkdjjI8bkmADFR472uTfJGGpdO6tA/jFLF0VMAHILtKYPJm79SaIvZ/hB9QkY+tGQIJMljEM5mHVdJUTwW4+BLGd7R7d4ejJI4IgstoR9h9FwKahAqaSbCP0AkBWCsGg5t+clAb1ISe/xumrrp5d8mugsd8W3vKi+Fbd4/kuJ0LSo6Qouh3B13AZzUEwxyKk5NydGmgeFNbhKZ5FZoNXAq2gXkaJXvubOEie9NUX95AB+5UY/fBYORaewkUNqwNmT8huqPs1X+BE3xI9Eg5EFMCi3b2hidQEJ2Xk5Aoe3cntsD52YKKiU1EgpQYhgSyHU3mwiJLItVZwAZ+L3Ajk4wg/4+IYwBCM+mTNPiEgbRJI7mgnYIZj5G8lZI9hM4/UbYKyi3VYNmx510FuxG7ieXa/J1PlILpb89HOZLbBNwZMWitFOEUhqg2fI9vYPB9PiDwJZAMzKKcI+xTsd+SxTE7DZ77DW6vdrBHPVqqNe5dLutu7rONtptuuKWoqvizUGAaGA9R4167TPxaJKGXcBWgiBRMhE4RqxMG11kYMJUnf2Uajgabhm27BRXw9s23nc3cJ2idKqsC5meRt0NzzillNlMc+ySNUOLl2yWLsYt2XTsO1PdvWBomDagQ+Cr+kAIOE7iVUGbU2EtZ0q63m3vfTj9b5B+Sb2c8tBRsVG94DQlS2QjfjrQO+TGjgrHKWCIGV57LsZkAEKaExibMr06w1bGgSYGEFQOn1c7fzVMp0Cr8IUhc9xcOgiUZ1MzpjBFXMexs/D3NaKaLR0aDUFxF8QZRDUD/GtyyXauPvSlaY7l3svg62lSpvNlftPkOhcV3YQPkV3A2C3LJwzELIwSeIoTvXyOXL4RZtD32f3xAj7jBf3Ru6HlD1K82dqjii+M5H8/R0rxrMnnn26Vg8LqWaDFTg0nzgMseKc//7kDccvc3g8SPXaBiTNb8FeLT5WcovnYMHp+3TCzGqj8w9Kg+VgNI/K8mwURzR+AnxR7ip55oImgWCF9YCZOcb5jgYctEGKTyqdb413BqllMs4MsEXdh1LqXW9KCkEsfNuOqQrpGNM0IW2fUCMoMUtdzkXkp9OunDlkwrL3677vmPqVof2a0K33DeabvMYkmFfyCiTfe+rosUjoFSDvvjU8qgdwlFSlDSVLihhF+ucUtZWB4mC7EXz0Mqef4oB/oAtrev4sU4Hrrg+Ospt4uGJ7xRRAvoQDBWWBH/3B91r8anPK/CL0MvJD3t2eXEIWwGemvIcOIv9hP6266lL1Urm9VrQ5tkjWTgsmpuwNipcRXE+xSLKROptfc6V0GzyhuiqBVb5yk48oWlGWRrsfIBs1BbFreOa89+z4KYxTmDqpq++WnqUiQFIYfjLjZMDalc4/uhqlKMcsHdwq5hBUz5YqtW0DPMsNJ/Cawcv0GVQIvC27ft1Ozq3zYFHIkSeY9RTZAbiFUJRRDCo5uTRUstRq2SnLT4cJzdfsaYibGoZ1VBVQ41l5h0LsdUXcgSxC3Wfy0jwzSek5jMQ6VaUmvHWUF/RmQ+2FzQ6siua3p2mU/dJ54OyQZMott7GaPuympfJG7cRxgKpKp3jANYD5vtrP+ow23c6iJfBQLV3GD9tvVSAHeBzeGjwNfOWkNmSjCKqyEpkYarSaaG/Fql4JpdnS9MDcsfq32lRV0fcATZ9a8ybC4TRhzbDZF+ZUvuFb9US4m4gJykRPAtqCOoca7Ba9yRLLyxECjFi3y/C8rx6ES63N6LWqvOWKThUy1KdWUTaa/Yk4e1HvyA8x9vM7uL+WGIRL1DQU/T3ahsesZhkcAeqNxM6j0gE5irjqx4XG+Il57vV4K30uqYpvUIYYMNDJ1jmv3i1/IOxZudIu5X6z6DZyl+N7OkgrVulohY+pzKzoj3yTvVwJNPi/+llkflpMadzXmY+IR0cvmNl2hlGeQoOeqDLHbfnnrj8UWUCXTbIHZcOsphwkigDJtZe8wpNZKUNKP6zdxTCw1hELYa2jYtMNfqsaJOfQ2MTp+TOkaqCEMpPIwkPis39ZhuCdjCi1mlyLu6/ni3lkRVqApoUWjX9BlH+iC227BpctQNloZJuOhPApVlFeWju47GcPVNt/asZ98qqwBtifZmIjixde8DdZJ3VHuHjiRF7py6ru7h17P0LPk4CjCElwJO2pAMo15/sOU7prrfnoaaxJ443nSLH6CIgInYH5wVYyb9VOvGblrgOUNpW+KR6W2uZRxzGyTyO132yDWK+e9lQ4W245Xb/KQ7BWwErCYw5DzWwTRO2H76EiEl/nzlzwV7f+UTTwVZly1tduReuV5x6dH67dXD7RRnx+iZKpg94WNR/W3l+Ng+W00JTfBYwyM3Yu3hCuKZq4H5RwpQY3VJtQYQ3nqgfqdOcbnec0U/Ln1y5yrKmiB4A3e+LOlh10MQzFrWOoaDA19JkTNvixtjoQ78zdGN44P/eEWxoRqTCw3EpBYaQzpaUzaAzzQrY6twEfTnxcxY7bUwn84xIu7WvpzlEwBztd7+YZnLFKyzz/Kbfjtiqsz0PdMK0mJKsjiYmcPYGfQnwwwgGaR3LBTbGX9gtdsTKKWL1EuTjEHyMa3wGslbLXnEgVhE3krzeUAps+gRC/pr5CJ0jstwuE6CHjILdUvnnmDyKWh3XaM87P9wk0rQClUXuZNzJtnn+EWsASLlCs0fiKotyH/hXhN9zVPULYgR5j4/7mp8oFX33BY73jQCa4o53dbWG2sDV2F5RtfNGyYEqx5LSSzxdAHkpN81cmighwPGnMw==
Variant 3
DifficultyLevel
576
Question
Worked Solution
Strategy 1
Test each option:
If
= 10,
|
|
4 × 10 |
= 4 × 5 + 10 + 10 |
40 |
= 40 ✓ |
Strategy 2 (more advanced)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 = 4
 $\times$  = ( $\times$ 5 ) +  + 
What is the value of ?
|
workedSolution | Strategy 1
Test each option:
If  = 10,
| | |
| ---------------------: | -------------- |
| 4 $\times$ 10 | \= 4 $\times$ 5 + 10 + 10 |
| 40 | \= 40  $\checkmark$ |
Strategy 2 (more advanced)
4 $\times$  = 4 $\times$ 5 +  + 
2 x  = 20
$\therefore$
 = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+tIAjXV0zjePUUWW49OElVhSQ6QHPWQJXBhtlHqbUECmaFrs/5rgX/c9k7+Q9KWT67xkN6H3HatL7KYPO3nLZzj42/eE7d7bh6uAvx7iW095A2r1LUjwZBQ1iCnQX/gNKqjvRmKYQawYtIuj25BpwzROVPblS4PleX2ZZF3PefldXTIr4Trb6Izj1AiK+uD6CVsQKIQrswf1Sz3w36RTvn6OgbMpsU3asYtkjPCu+mSMVkxijd+/3yEz4DtQ5DmdzRLqalw6Qfly3V0QxHcCemTbdLHC1LVzE4ezQSuetydlFBmKD9NiYJsG8sNFZttiKbs+kxvI/tR7ZXfDzA3w4czJ8hItbA7cE2gdPZW4D3bwkpdgRIG0z2bp0TE4sj3wa1P82TpijQi0JWqoqcQzwRPBrei4hw+Z48CxpI3H+N2eIcdHxZJ7mwn98MF38wUSQFU4B9BgxvzZRg2DCZI/ALmvZNcOtlXRTtKSh8ZtUFEtgmHtjJaK2dF6AAwYlBMV3kvxMUV9LhAxjG6B8h/PqC0Z9M5cDUZpJvOSC3nnkgMqVCGOdgAxl9q+c7JYcdNG8V6xtmkML5csKLkEdyPeo9ZQh9wxTeNvp6dtORlGaAm9rHxeQwAOnLqiPRwSIDqhT4t80hcfG9ZjNvn1zWZubJL0lUSswHNb+VBqaOCk28VBHWG1c0RbFBzZNKveCw/mUpEwz0AARU7hxjXfkcdaV8Qt1OjVzLiNALP8aW3WrZuG8wdff4RuQYGGPw8EBHe+s/j57SDxHJsVIh4gNt/ybzeXjziF18YCXD2TdYCx2F9I6PseKgy8NBZQF6674uVuD3T341ypu7DBPPo37ssE7SNFGjQzCbTzETvwMIV5+raYAoiWOCTlJgDsAztf+QxlN+3D+gHrnJhU78uKkya/rB71hhxUROH8WLV8OazhFxiecHNL2ZAGrVwEVXoStOfhuCmK1AlRUjbRWKNCp3QuhGi0hBAtLcCPYq7CdeNe8zaoASbVBNrVJBuvFaYZMGeOzSmvDWPLPaf0xNF3OYBlHn/sQ231lXmUUQ/WE/OdNUGDxUWRemShUjcKNeaegB9vCTHmi8Xe5rDVI6z7/0FRPEaJLsr+uCyMVeqWA1eYEi8p5/+QZaLxq4Vsa6+6WF8FbmqK5WFY0JqBVUkU82U1fuGsTKaknjUiow9Xri4z+U3U6kyb2dbpquf83GoZdVxj5CBKb2xmI/1HvHnipCPlmrXXyYi9tp+AgWizkXgIUmWg/1dKSO2JzCHCi44xsk9e2Be0F1+5ssqtSxuKkKRb0iEyigEC+b4Wv0oN2WV0jYguAdG6AqMDjEhsItwf70Yi+2AoaSD28iEuHHlZoTShQnDwvDQ2g2fEV4ghWqCdCwv8dJkXExRxtgpBzb18ppKn4S7rP+R4nT8pys6nNOLbW2wMbxVBKWPZbM4rLiGYXlkTVhHPFwms51XYMZ/svbD6uMiuKmz3GerW+gmTfnGYbZX5H1uL+jmNcXQfzB1kHkrOlOaNqdhB46RSjdOyyKdlM3IoDhiNSfYncpbhyXSgFYI10pJB03QY0OMz959OXDJ+aK9nhknZ4EDUxtr0oJF1L5a6LFNj9ORasp5j0Smmd77n6gMp2YcJZulnhTTmD3C6zUiBkGXped9jmk3U7XI6u7Gh/Wg4ipVnPnNo8M0DhbjlHL+aj64iT0PqKWF7VwjeiU+th5C/LUlDF7jCsXgEsb+eCeKIUWd1RdYFv8vFTIyO0cW2q5+l0djwSJ2dZiyulE6QfS8Td+M6Ne+8o5o0NJ2ExE4ATU7dXEfwJlyah7c2/FTow9W8++y3V4+FL4II/3f7PvZkcLIINTGjeGTUCgZdPF1cSCxYuZWt350PAy2gb51UYGmY6wijyTn8nW2zYZ9X8a5AYXilRTrjqqhAlgGb3ih7GmLXRoEW1cv3EBG3FdztpzWocsdi/VxfQ6BRBtGa4wuayOnBdtzJEQ76NevVY/f0HJrLWtprJ5D+xu/lEaQ4muvr89Zs0jh7zgof/a3FmLcSFb2M+9a4RQ8P5Ko8IQagmuqTFxaI/e5sojXDFv8Hr1ghzqUwcUJCoTI9x1Ffw5RY5QUSaBEU1aIS4IC1F0ymXEjIlV7RcAXarJfuxNU5AuHwDPRfaYZBXU+0y29vuABvubYBOL06Jg26BLqpxIygT+LlGRnHGQS9Q7ccI8sjxwr22LOLEdyxkXbFcPNAdnnXpxQjPP+GlyFeD/RFtQe7vaOfXJv2HJXfP8eNyIZApig6p+PqaIaz01TTCkueDHfM5D/hkpZ3sqk9vTkP0Znh6D8SdEwi9nIJO/A16IV2ysWm0rX+ptDHwB423//JlD2a0aYyysCcVBQVrGUazFe3cjTC7J8SyyjDQ3C6sczRVGoo9oEkw3u9OO8beEUdfWaIkvWYW+mAgk2gnMh8Z5ZpjdZU9wAV2iwtBsrzqhR/1TMXLuNOGXNJa/mLAyutv3YD9EZBkSVXXCk8zTynbfLFn9mEG/JNDqcU1MGIdqVwUNEtkXM4kefKiFj3k0aR6TRpI1+rgzpJjGG50kgDaU0b+UNAy/5TOXraS6aGLkgO8DeLoZH96+UQbbZQmST3kCTQsxYueowmu3erbpP8CCgYPPLqjeccV+EeuQLuos5lrYUXHfJh+kSYtqBq8t9y0e56jhPntAI+dY1esPrijefTTFlA/8aEwOAO3c3Hko7WUjr90gihi/Dv0sosuE6HFMjkAOfODcZWEb9CSfLgNdGczKsGtvL3ZryisY4udhjJHJW3hk6Wo+pAa4xMkBZF17CDBLtP5jr+z32pCMza55wpW2guuVDh3Xd8zwHkduQLRIl34frjlEB0ORLxQmuJYytQPnki13VCl8l+oBihFLq76SW1oYRiqmezG+El3mFvL0yWkSgAuulNJ20TBIO+cshQe/r9+7C3+KtUagOurDjwVbaXg385o5l2lk7tKk2dNu2CFaloa58Vp6IKwFgC1ueiXxOka7ubzJFzuhCZlySpWbnzZc+le6FoECGvzjCFHFBQtEsBsNaUNALem5saiSJhJD2jbliCEr3NKzWY28t6OYB3X+ZYWHXinKABm5zffYf+TMZd53X/4n5RXFMz25JBhm4iMAkOnMGUiwSl0QdB1meWpW105nHEJZj7UTJh/AbzsExkAFVYI5DKgHGZjGaad0pctrB/Bu4fP66M/lpxZ53fzfZykbhNFBnUm56ShERDKfQKX2day2geajG8IrMIACXDy2hIG1Ia90Fkbc0SrU6AiNoLBvB0bFlk3WX1DdtMryWwz3C871M2aCmInqywwyXsoEq4vGyDXGcEoJhseiyw28Z/TM+AZOLCL3oSj3ZFTtwcZxk/cayzWF5Mx4NgcK6iOXuEE7AYlR1uVH3lPLNwtmnqUvtm7bAgmBixt0flpje4HtiIFZwDzvKitck32SlSfE8GOcJFA97BlMF55Lrk5fbI8Dl+f7zdECrfAAkRhITlgehsBgBJNSZ88VhV/ZNNJM/Xui9sXROww5gIcpySE2bE/kz5fc0Xk09QnRqJmoZ/t+BIgR46lhQas7ltrjjcUlZ4SL0TkhCH9Lb0h59lwSFWNhNAIRgsBvVAB+HmYErD9m1QaSeGqVzJGHJyQFh0eWmVGUilhDk9Ou8LQoHGqfdcF1NwtgdPLSrYoyudA1DddPUdIs01F4lXQHfFvVQulMV+4E+VTDXkmXNCHtQ2wEyi1ccqmZovlKx/tDwfEXe3jR7gtiMdFP11RxOTSmKCaQ2mDO5BR1x0GPYXYEOLtaGZhUubmeBhSLHxfTKw2kry9AUEIw0wyOJUPQxT8L8DFF3ShLCDjXg3rrmOY4aBshki/W3Lx6HJzFGvyb80JYapOS4+GxqVfpPeZOTj3M8MBwhtlPnsQxIZANqc08Lrdo/TJ7cwKSx6dhPeT6uJiaVx6sXvrRzYN6cG0VbAmUNAdmryl0qkzekY3wTZVkN3H6fBf1gxo6dBRdDNUIcRZcBtXAxqzVGR+RI7ehPXdYTVpGc+wliEQFi6KgnSN3gj50D4ZojQGGsdUbf0XcS+esU2pfyAdz5FWCoGsAPGSaLj+D5T1mIXERUMc+ELkiC7fBsTYIyqPICohiHpbd9WcD51/TIt/WXVFVDBr2Nd2+OOQQ4UfnOos2slojYZU5dB0uIH95Sn1NqdZRxdaOLrJIRK3c8U0/K/CPVzDDaoUapeGMhalYIYdNt5Ejs2Ut9PykA0/dXPft98x1dNN8kFiRpc+8fYGu+AMvnU/m7R9SvvwBrcS537jhYhz7mzOif8Rdac87gOW6SFl9D87AdRL/PWQkKIWreYtLMAli+iDISW7VJm1NSfVfuxPCvv5DX/T1hA/BapowgPPIh9WTlx6yrRLLYZhvsfz5xg4OxenBtr85Q8l4x409okgV+Gc1goazWXalu/TkI+xJ+c/clyqcU74ZFYS9C2RO/nKmjZCX2zO72oRvl7PoRomWw7Hw9e5LXDLFGzQG6qRhP2FJXiCrfJT39QcjHSN0Agu9e1QxprMubHIksub8xZNaseRH57XCyUApcYfOLpXRiFcvoidp8Bf7niA+wZJog+ZXE5uGtqbww3cGFU5ZJfQWvEZ31G9Gv0M2doqVsS0QFlfLUxCwNj053eecijmNh5HpVJbt8P24bFk8wnDXXOu1PQuLKCCD48Qxin6tbPpwhCB+eQptOzGpyIoXb4UZ4oblqnbPxJ41VHAZfACjZ+5E35lCcQfZ6Bs6dJOmytuZbgqUf1KJzZm5gRro/bn+Rr46XAAR/JFAIxW8O7tlPw9OB5yEAKgXatow3vPsixMVEpAPx0zvLXr/sIr1uITF8iorNiWpVxu2oLDLn9Cfmu27rzZ+oB6oxVpMMKsbxpWHIU0mBrmgStYZynxytpaAr/JwBZKuFJuFPIz/btwE2JTQXO4WYo85aBMaGCsSpizbcbsLSxei96sBRlHPmseGoYPxYyPpUSOITBWlM5sGqd005U4Vsalwp8VQCNGSg7TyOi5/iTq2AvBqYjL1gKd6d1SzrwTZrV47gopRPqZJ7VxDfdOv0ZMcjZCywF3Vh2n1V3QGlB8+0KJB1hqgbvpsuVJlt/e3tM7qqYym2U5/OA73fz7aCnij8zD5KAXEy/ny9UwjC2MLCEQa+xRlMlSqz+pQNSRqrcilTumkx/K7IEu5PuqVZXOZiUGJzTFS6T8Pd+9EOlQe2xCqJedr0APaoDvYnfqIq4om9ofDUTfJtKN2x0UdlTt/xU83Sxl3/ciNzWZQaxE68KT+lv5wisDzHDF+K7ccXmWm9YSZTLs2Z6Im/c62q2KaK9ZmxtjSwb4OXAUtvLnfwv/fAOduwjWLzvFJyjhELmHR9UYlTBQxmd8v7MGjvkMRoLL5Dkxqx7iJcfQ+84bP7gfwHuNaeiZtf9O/gqVSUzkVe9HhRdPJ5x9l22uOxo80neBjQo3agQ/S6VVOzKuoYYf4ImWOgPrPkRUSbBl9rdn4G/vWi9fx3lU1CCmE5FeAhfVoRz/45ikw7hYpMt/h+i9ah+U8oOWDviMCyJMguM1Y5jN6CsHexWFLen9uCQlA8c4hKrQxJDygxOet1O+01tpsDSe++3ADexvGBfOTwNABNgTRu2fbCcRxAurcUh+Bgm6zQtCHeYQhd9LEc/wknDSfqLZH7wFDWBDConu8PmJ8iXP9TKXJT69uCHASHdrKsalhI/phKC3l37twx0rjKIOBBOhFiLFPjwqEslPC4C7MlfJYe9G10qlTMhGzt/T6t1B4xFQH2LwLfHSXXCej1I+d/m4a0H0uSEGXwZ865hYCE+OTJYamnWUx7nKkXAgFPa7M3ywuvM6XdVBo6foNjAWviLmFPIz8o6JQmQ/6hdIo5OyKWo9/i7C/85L8hDvX/SRKYlWtFY75xd214q4Fq67z6lKg2cpInXLpOXEwLNZXfLqGuhKqPWo897RZjTaq/lTJHFUyBKLihBYQrfd0GVuJhUFxpsS1jGX67gS4MLUNlXIohwBP1X3nipeyBHE0aSw67hY69DmZzL5EgaIPvOZ2azb0hWswvqaTcCSSe3NNd1hIwoqK0dJ7/pOZyBPIH5iA58/tAbsqHef6q/Y0Gnqia+3wP0HUFOEkfstQD6qT3i39Jd52U4jHvTc6bx9FfbxPLVSoEO66QZQpxDM9TWCoLdEbGuw8VHd7tj+osImf2FSxtzphA2JL3jkcp5FPpsAIfuFoPHQuAnvPXpltR2L3HhNa5+faGAKm0VRdD1+9yjLJOhFjQ/kmhgN7t3H2JhUar7bJhBHDcKAz4qMzwA3zYJ46Z/kmK6XALa2iDfXe7tDPfq+VgQnn+DPsaVMfQCkffxizU9L/097M98Y8OFGk97GkRFljLiNOQ6scInds++Eq1QYbt2h7cs2FPB0WBSTZNAgKCDKTzS9YLN/NMX6QUUUT7cjhEKm/Tl4ckiRC9DNq/zgwUgGIMkUcTCUMLnJHp7K1PWEqh9u3UVpJsq1URoy2OPbAV4GOd3ZCPySSbJc8/OIHk5OOzP2LLv2CmcnBrqz6CaxqTzgfL4r5IdoEWyUbu59WtsHi8N194A0vIReGDvicw3mae8/tFm2J2a2H6jPLTpcyCIIyrbOP9ZJfeWObyFNIJMGRn52tAKeqsz4S3hs7Wr5E44i4lIHwHqKMJeGDFjp4gLN9CQrIxXe89hR4Cucw3hhAEsPE7E3x/zKXCCGNrHhrEb2WG9q/Ib2eoohcaBrF36oViPcvU30ttVNqM+byEh7ctVb7aDsnljpB7/iSF7u1Ezs8XNlUNImacX7OLnpdtMeZbwF9fmmv30zFuCN8q2GougE46J3euc6OxjuwhRu0zDwm7Qe8fGL9t8AzrFLwDt7ZMcQeiRKNK+9V6hVnP0T7LrpKiGNveg0hKTOoayQ89PbtzBkx0ZTjRVGJ++r18zYy6FQQ2lB1Hg9iY4aoh+FwyPTKcE7N+9J1u/e1LIGfH7obBQwkFXwBautfI2ZEVvpBxnOaF02IA0ydLw647y1OQ3j4BXY+4MGdsoB+EVWLZquxXz3CQ7cvpNLxl0heRA6sU2fvSr8Sv/Z/Iu5KeQgaWXIrzjpldnFO8Y+E0EpvbrPsHQ55rjvdhd4CzDZ3oc7Q5qexTKOtOHtzSh6P93RT1IXsSNIpEx6uPRT/O+fijmrWcEqWUgjlbY9G0xtiL4etp2RrpXdmjZtDLI5ItT5MZQyb8BYDxOhf4t6oki/oTEOASMx5NzJwksO/eJuCWGO51Epkvt01pV7JWghT3MDjO4Jn3jaITSik5CeOn2NIKdj1Zpsep/Oxlmc5GLvtZ5xbtPz1LyWzQNzHJvurI56vsnUzLJHhgYmS1XnqWEAflH0tzdz5LKNk7c+ChB5vJsZMmWwB/77uPWgZSyikrLXUCBhm40c4Kml6vLLMvVvflsFeBZwqX+0CVCotZ7huK0LcatvaoRtqUq+1rDFW6n0mwwPfYFOMMLX6jae8BxRpLu7tFRkvv+8vpHQVtlZh4Wox3/dAEgpKfBX4e4vZDhNBI6EMbuDCw9c4T3BznQNEbi9HWYFUkIx/tFOIFwseNBxkC6Q4uT6Cm/QYVDbRVZs9LKavG+RX6sgtaDCdBk6kdc+rcpiIWOcN7mT+qX/hzSGOGlg62BPpsaGWTpsmN+0CuGABBdzJ0sZWpZ6KiMScW2aTK9efOOR3PGVrEXdUOhAPYjhUZGB+UOgdk4fN6xDb6IfxnoUGS44XNnNs5H7+hBrhB6Nv1we8x3QkPlZ9Q7/DQtSNx31j+WZnwkxhWade49iA8gtIu1KD27yW1lM4mCSYYun9qF3WYzi0c1U6xKnj4H2Dt/1o6u3ok0nfvQ7hBvl4GJ2B1CDeYwVFbWMcX1pulRfoaJqWxr7VfbMpK7j0iJR3zUHWbTbguMja4Jr0boO957niB/w0pj02ZwXaIBFw59EqrCUwTeBML2Vqdz18WWVL7E6p9GAo79hvV/H8wuYA+JvOX55a877rxO/PMjLbYbeVhui7nCkYpQWm/Z8rV3jaS/CNSbJ2kNjQC4IhPZT3EwN0BdRqhMcbtWw8BtixIoI7Nx5BXyfxwHK7S3iJZM0ED1xOkh8K7XSfYGwiqK+71y8/oiSBDU8tJEwgpxRTDPbKipkI91plAAvBddgtTkgGRmB3wBvZM3E2gEuSPivCNbX+FFSwn1kRX/GlyVW9GTOPJb+dyAjeRtbZc/mZd9ws5uQm3KwTsjXX/Wj1fubeeqQh/vU9nCMxpVApPULmbOmTH2I/Ri+EOHJ1QBVLA+XN7FZckYT4GiyyexmTcoAOSqNEJuG50E81ZBVe2/cHveMduC0U55E+MXNs3bsSa0Qv3CzVUCivi32oBaT8H8uwB9hVSOFxoztxIdQfUNhZ3ljYFIwPtyF6bDHMDlh/c7ICR4vY+w81SeVJGUZpDMXTa9Ma/ilujHkT09+zx03SWCja07HvPWq+aLukt7CCe1McISzKNHqvtULWl2sq52w2XtBbmUF6Epjq6jJYf8Rpovkkkn/Yp5IZ8UPFGKjcy41a7wVAe2Ek3+0tNIDBdbAR/YQ3c2EDHo41rHTNGh9kA4fKGYmJaddPnNq9Oq5UVdG1nlK1PD73OTEvXrherGtjLWepnlU/Lq6fWGZIGzpV0VlD+ofNjhmJeP4AW0bWIFR3oTbft4AnS5wvyzh8t8oOPQ1pGNVL+ELuAXShTCoDtKtmD54pcd724D8dowWj/oImuPpG0sO8kC+C4e2r6Ty+g6SkwZQj8La4u771XdrlTCebFh0c7XRbGXkvvwAwAuSU+5enaNYaHr29y68RwOUKdvECoUWB6kePhtPpZqfMMzuPNVLnweivOoo4c6btkGTreznbd4bvrNNJHDjmf6JSltIMMSVe3Xu2+eZQ3re8A7zcZF4/FExNzsA/NI4FpPyfFjt7ymRC+1rVCwLat7tQdB89mhAPoMJtvVVsIZCvUIrH/QcQUBfW8T+qrrzpD9Ho2xgxNrsdIVKZY9nyJx2KdbhSQTLca0O+dnv4yMAEi8VsL6N/GXzzKcrVZdakKEepSe7PUYLX8RcAghXPO3msLBS1VRtDbMaushT4MKeYLQ==
Variant 4
DifficultyLevel
575
Question
Worked Solution
Strategy 1
Test each option:
If
= 3,
|
|
9 × 3 |
= 9 × 2 + 3 + 3 + 3 |
27 |
= 27 ✓ |
Strategy 2 (more advanced)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 = 9
 $\times$  = ( $\times$ 2 ) +  +  + 
What is the value of ?
|
workedSolution | Strategy 1
Test each option:
If  = 3,
| | |
| ---------------------: | -------------- |
| 9 $\times$ 3 | \= 9 $\times$ 2 + 3 + 3 + 3 |
| 27 | \= 27  $\checkmark$ |
Strategy 2 (more advanced)
9 $\times$  = 9 $\times$ 2 +  +  + 
6 x  = 18
$\therefore$
 = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/2l+ozE7m4lQWVgGGD6q8FKn7ymn1Jzl2LYtqD7M+v4mRPlKBI9DQHKQVYcecyDFhw5wtNfRL9W8d1YSWHgRmF9muHDtyBXzDx3RjWPtGqIELeOQdK58ktf2zL2hrDivsxsbj3Qa0gcFQQ6s4OOEdRWj2gdjPxnlOXSFo7YDV33myg37dfvAujPP9PnahqEDk7XPuMuORBfQN8dho8o4AlKs23huoN+CgYqT53X6oe1aHNvRnOEFzwaa6XU5aldlTtrSr2HpIgFECkPARa1Uc2+kopBFC9jj3ZX1fu36clS5fd9eTgQ4Uf+MP7jmGg0mtaRvFRyeHsUnFCFRXLYVHX93m+ziM38uhzFDd0IQLQ3aCIR1siLJOF2T/h0aOm7gZ8S1W325bOMdh1HvYlx5a0oOHlcduNjv5aNancn/nNIpJRJYdbfk2B3SrDHi4j7mlOxkqEZTtu2mRjrOw82HVyTQRaBBO5IO+UJr5SirT5xM3yoMtEeuvPpjAAesF6suXCuvCbwJHpdSIsosGfqOA8zqPttek1qsjtj5CBR1fZLKf3q95Ufx81cxs+bb8RHg9iMxEeG0An6sRt6yB7zyhpJJE+u/tuMW+lyRib/1DTkOULCBCxHNZ0EOiFE1ttD1T7WmAK9jbKFxyJ9rYi64zoi/UuCkKyVyE/8ycu+eBWYqq6oHxhtvbhbL2DbFcaVoQFKQirpSpg3vaAksutP4WF84vCJaFLh1wzoqEuoe9pfHvnpSrQYwdWPJtkElNWmkBCSV5z6PxGJv4psnekBNJXYcmVDiQnt+Ls5+lZHy+rj0UScJog5hX/O6DmGre0uORNt2lRwAJ8DrQcT6H+4GLVJuexRftCxveUTeGkvz6tSoc+wSvqgkBRNBYTQ1lVbeiTSKP8rQ/0Sa/aOtkthBTkjOIfR1lH4zAGdlFUCWLNLHND+FgG2q4l54NU3Q/SZ5xRfLBvQ4DQPQ8WQa2lIT4Y15UfVBZ0nMCQDsQHdFLL+tvWBc3GfU1I+5a7B9/xrYluGC4gzes/5NPtixNzPtxRca3OkTjD9Rmr/oXxRQ4vWtdr1em3AocjgUa4AIuHYv2rjhOPdK/DU3FvkbBPPtK0cjsg3fFAJn51eX/0Z56ueWhvXTDl9I2LPP6qaAEaeoMx47DVYlaC+0HKwT2Oko7nrVo4HIsK/OgEI93T5RPuTPwHILlA/TImUnODME1W9E3f7EbvwvXdg5fsj10xFQOddJ1R4d1dEFwAnllILzM979JbtmOhJtsJxtYBrRmRgc63P4Mk/Zu0dilryXomWnt8JwlQcAqlpbSJ1Je8elUSO5THFuBo20+DDD9LqA7W1YdvBI5PdoG+hZZp/70x3cPTB4CB15jO14HvS8VoxzqT7kH/OhHu6t1f49aYpbfzPkfRjxwf519Ga8dtTVE/KwmUhHTHJLkKVL890zBqdCOxA//FyP4paDYu22rzNnSxRgs95jXg9SiTZzrGbxSeHzbgOtOVypUceIlgzA4VAsUh9t6L2zdbibnKvVCwzXsayQ3MCiI1kPY8qvcST/J01ayBJayDJDzFwssZIWG97U9ge0+MdS1jfWQQ95bxDR0D2Revk34eviH/kfZCcZP+K8o2n7v5Th21FAvKC47Ur4ciwhm5SB2E3L7NGIDgX0Y36O+iXkfxAxc9AL92mSoB6IVqXC2hsqRS1nf54thH1vTDXgsKKx10KBXgJWA0RvaeQX6XDVV6gGMZY7taIW1Xvt65FWSDSlcKzLwHGJpw4kLD/g4jD63j6xdkOhl/34FIP8pyJ82sw2qnhoN7+JNKXtfyD0VsQZh6+SdS4kcy9LMY7tcgHulPG//wV+DSevDVFOMPxY1ViNOC0PJOUJsH+xfkXJGwenlr/3jrTfQe8y2n7rm5i1W6eHxsCyLTj7gSFcbzYWkhF5ZGVZwxKlPsomAuCgcTM0QHRooRxj1RK1n6e/pQM5qHWz3YYoHbtJG/kGYthxWDY7E+WHE2/vIWbd0eL4nIkdtoHBrmXxy3ZmnDy5G9JbJI29qmn8jAOxyaCVKmIfxUQEYX13xQOLL29Icw9T+w095PqV9jjl0JJ+Hcvs7Z0yPQ8loL7CbQe60vORjfZ6DtKQ3PwrUKnRr1MX9UZ1aO/N1W51Nh81FH45tW12qvo9D49vKHd5h+DDrr7Keb2BJZNfMzuix+16npexjkJ5Psu1v6NJw6dvgKHb9oGW5vFz1BZi4yEbJKX+5vFS/ySrAu0Cs4V7yJjKzueOzn7oE6i/tt64Nhxvad0JVG+LF1Qt/efFCmXogalauI5i4C4SD8/oB6utSYnKdCrcY8QsntFxrCBP/JUB/oHK+Y4rXQfxY1F6Z+tWDpW8Nb3BARLpWxlwy0DfNUCUPGIQ0z8T+RVt7/gSuwsQ+HCqD/7ICxnQzhGYtBnn/rNbKM87LSqRO5F6hb2fUsTOfD+2BtvBUo4MPWuy1wC/rS9LS/97ppEzJwgA9jDOnW33FSh4mPTp08AH8XZ9Z/ILAUPNoYENGsAn0kqDDEs1PNxYXjyXLHa+/Jw9O2Bmy86a2T3oQuho0q/6mNzBYimF2O9xE3eO3/UG2z4L16xcijeERuoxiaMirz25L2AGMORtEEOLC9BQGpA82vfoVBVwQnTkg3WmzTPRZZGL9D1P2/uwZbvBpJFyCgNu/YLz1/5duo8x9qeLEOA5VwFs+ifJ0i57e3fiWiD7VFyXCxEzFdSnGN9j+NFxxUHJiAaJwIOyfMVXJ8YiUqi5pl2Aia9cWBvpu923RPdJQ4dnf0uiLpsIIRvYs08nCRSfgr8/kdhVZ6etPgQcMn2fTBayxnLCubDHsffQp8k0NL4LxT4pGAzC972k6qwaZdYrqwiiFGYtGvs+GdAorvlAdx+/Xm7VwcysF5vMVUXKBYGkmqbdlfwWt78MmDMAbBH5Rsf8FDO57nkU4l6SM0DZRPHqcM8QXdwk+kiUnBEs3hGl2YADfxBlIU3iIvkexTHCPfDVzl0lQi9uNlDDhxCUG5bYuLOy1/UOU6/dqrau2dKVTY+KckfLZxNaEzHlUvmn1jhp7XVdYccTbRYy88H7YBB1PBzOPKmWqW8awRZT6MeZ+x6aKov0DarWIs0DbOhVWebwU0ZBWztY2XAUs1wAiU12Kw5RmhnAtj7urM1HY7v4LFXx5RYd4PYPeEe2BOhRqK3mDyxqdiNn90dERzfXaN3rWhq9DBJpvs9iPwmEaXLqbfy34nGkCAU8bVhJANU4z+uilw2OJKm7pfnu3xRM4ZA5kQJGa+upw3M4ZbrtKOAD9OwE8A7eteWzeHlgEjFIuIdAEEm9XZAWoQtiAiR1IoaNkx/E801nW8gZycltREkhtfQWpyuR2jRfaVJML36oV4DS0U0v6uJuOE+9OGZXI/YYnjrCBFuSbfS0+yRBJWyTLOWPSTNwTN8vS42UFz0kTJ8S7yg/hrs8xqzB30+KDnsK4V42hJuLtghRn7F4PCpOnBSJ4HO/EtJvrf0aN1vlLA/kBRRIX78QsO7F9SwMmrFI61xF8c8H7MU3XozdveaBJSUmuAC0kK8/SYnpNflBeGNe8bK+Ui8y0bi6mQJN6sUgMenIQQFPw6tvoQ0XBr3Cy+NJP41ZxL9wRpleTjbHum1BnRDfwFaviBYF74f7W0iGAlZyyqNCDiIlgGodD3mrmFtxtv7iWTPWpXZ7QwiEkHhknEeTbJyjontNGSWTVfI4Sg0KxQINwydBsFDR3WAFNtiCZRmLq77K6ZKVUA1JVso8D0iPklQIRs1Djmcfa11VR8nKHqaa/Ul8qsnt166sG2rJOeKtPXYjF4oq9bGfJsgNPHhGCncMaVGXGH+jSqDSRxqlc4L4OJsIJqcBEgjTG97BUP8EXRDFgcoSQGkEovSsd3aGwmlJkm/4jpq1L6PAECypx2I9BxU80V8XCrGUnge7VR3i9XdExRBrc1mB3UREjjCYVuJw34KS455rvh+U4m6hOmqXEXCD8hPFxYS0suTghbBWHPVH4JZvn8uf4PVJ95wwjeoe9yAcCAM+aoJVyuQtd9udOCUXwgUPnLKwrbRC/gXUYSvw9daCLgSQfJxX/a1nhfLD32Hm1LfaBB7hKYag93dWA7tZlHxwbi3ghe9xQDEuSV0d9BhI2h/9aHjZwFlyqvk7XWwLH1DVLCZtO1NisIMMi0cI2ZQUKD7Mt8E2lbEYwWDSyFNaXZ5fdr3JtRRbUnWZ6LXNzRyomtJELloi0DIb9uAgFjWYDi/uJVJMvjrXEitSS341xZXwpVb8eo807kjRhX5SR6su/EcAxKJMygCMM1M4wORm0ifVOryr7AJq8t3xYWQborTYIvxLeuGYzOWXtIujEt4WPsI3t3Msujx0qrIClQpbV0ll6T8o38bDtfghagIiexFAiQE+QRvwTxOEWgZtYsqN56SVOPB+AYspj8K1JOQGVqhiQYf8NCw8+Bu57VUpArrIOKnSFQvNitaR3v1t7gTNHndC1qi6tmKolKEYU+j0VTK8ZEe/GN28820h56uZgUvpodn5UfnQdhxTKMNQ+9t/CvPkTtHXjjtpe8fT85OOxJajjLb+lkV7bCi6q+2dEqxlxkpDv4jZpWpOVSjaC1ooHIw8q4JiunkTGVWNyi6f9PXW8CLledJMMwFYYpQaufQF0NvbEXxENNBeRAeAdjkiPHIISMpKgH1kYPIEiE3ssVmg4BLatT0EEd1pImxOEkL3R85JncB6QWFWzJOuKcyJjAg0bkp8yKFPdjrAfK40jmRnfqFZf7bwTRramBMFx/P2d2iafgZF354/9y0aCSrkFCKMtnpVet6pjeybkLRFcu6F+/lRi1230JKqowp7M7PzLcGT3E8/ka1y5Wr7VoUSD5dUAQHH2L9A7ejbI0vyvtgJW7jqj3q0MXsKwe7S0xdXbvDOSuf71p9piojEY3llHBbWcrJ9jASyu00B/69Z9Oby5qfuTWKe4jUT0FyJFP/A5LTQ/TYYAPXL41jWSMhwloA04+NC03Bs8L19D1xii8+qrGTK8cD9BpJojsf2vgWTxDCdgOeLEqk1TCJbTKEoD5TLa2otNaGpyt5nXlnD/PZ8sKYymgA8RFWFhosDgM6v6matIv8A0jwQDsFuKigm5Pl1THHTezBhqsv3n974Ti0Tf69VK2+BJBUzuJsWpNoD6cAyjq24FdXezx4a57+is6RXHJAsFc4aFXTjTG6RoX1/jJtYfE6wqHTBaGo0bc+5V2dfGmwAYxYpEGLz06uAcx+Ncbpyr3Brkm8r/tkxqzILtmsjhjzmXuLrLBCgdj6whHQ5UH0Ty0TaMpmtrPDKDgFtrjhinTh6Vp8uxL77lNQvVpebbhihLSq0ybfcdcdk3dNUhlpB49pxC0CJbVoH6wNHUc3fAw9yZcBfj31pJB6YhqL5ve97x0an6F8gzLoYJIpHQfJj/DcQjek/o+6o4hlleo4Wr+p1TF6kvvb2jX4SCaqTVe8u+Gcuqi2QL4TO8++uW+odFventPGdzsL8i108zk9qjRjxZWXGuIl7WyBKWUOo8BcIeA+Q0I9h14f7CIzOQtWIhMN8SlLbdJHFoDK4ySeFJrHmXXqF+Naj2Q/f4X+I9H8Dx673eSioVq/GIi+8Kqe7ik1DkIPm+a2JTq2qJrt/LB1jpzvjDmIerVCvvjzk6BWbmYn8Zp/w+eltcZeHyx8YZGRvR7ctOazvOJVPNlFvrHWBQ6DD4M89dQPeYnhp4PoVk1kKVIGU7bKddd6lvTDvZBbDjhT4SJagA+XhZvC0jc0ualWOpaWKBjgczzRAo58ax9XAGqmU1pwplGniesL2BRv33X0jfwZcx9a9AUKmRSirMAbbwS+9hhagTZeRCV3XpQ+iR974ab8lPpecZLm3zCTYWY2q1Qf3rIyO+4pD0on3ym/tfca6omED51kz+nd154k7Q8B/3lvC/gpiOaecN+Bme3PMbc0LM6RRzKmDgdHT2dE2u7g4wQpQfYXka5LPA/Z/7aQsf4B0uU+R0Cy0nOMmIfX21aj1L/9D0Q846rAbCF2SQnjC9er5VnUR89K3Wx3tO1uItz73jQKV9nD90PdZtS2zny1E8Rvbj8aNMZJndHAwbC3Udzgsh1Ayz2KVNzJoIaLXnwsp/EyZ+qyjiUeeoGzB21LD20Ab3Mh4yFObkMO63gkbPhpZpkQXu7u6uvA85qzyQ052Citdqb4kY0SwOlcSlYfwJwpe2LBC4Ik/TPm4H+mIMjw86E0X6luXIcUsukdB459wSKlpWjSwcImWbVk9gqgJcgnFpU7YVOHDELgccJE+qUr/hb7z529+L0oId9EQ1vc5rZalf80fZH2Q6xKI19wxwguyvWH2szQBsa/po/SbUrcsfpJkrtvObtQOETFA9tNTaeWf4M1TPdHKzVIMxiZvZoJOJx5Qp58H9PO9HGB/pVaoMYVaJkFU5UYHQO3d2dwmelA94Oa2h9OfDHJ++0+SJmt0J/bZ6e0eeexvXsSzInqqnlrhv1XZAXf+G1JugiE/cvSykdwS02YhtmhVU98+Fe84NEYFntqMAtn0ju+Lb5wS+PE/4KXsPIqH84/vPXxtGAXIow1g3Ntltm19HfaigfBRkkwRdyxTBNxc6TirD2A1znTwJzvK/bNHhHfUHtO6Q5sJTsTKPzVRv+pRcrfF1Wz0K8QLFXEUTIzwKUPXaYx7QOS7U5w3Z/L74wvd8ugG1Sm36b38NLgt04swZUm9KVDSl1GaSW3d6O7DSe3SaAnG2oaKISPuZi26OhATfdHK3Ee2ydDwvgYxjzks29gSYHvZatYaRG0qFar+o68sf4ZebMbGFyU1yG4UR5wQl4JnLJ3/YyG+bL0K2SSngIvs16tOwwUh93fb5AJh81tkzwaeLsL+0HtDeqhSPPlxkJ2OgEJaR6DNW4tCSNLraPKSw69ImwE23h9u60+KyJFQnSAr2HU+85mfykHYl3uVHNYDM0GfrrbR6n0Dh7C5s1Gv7o1rMPNqoTeMpVyQxg+5yoCn6Xhc44rC3arH1TnT21S0xnDJCe+5Bti0WGYJjJWNTy78+zfryFISTA4EWWmk2UUW+yRW4Cdt32V+5z85fjh6U2FA99aOUR2UwL7HHpsYW7AlQWK4jUjyv2SS/IT8ceYU2f2QEhucbWAVKy3U1ApH24K9SoUlld1b/Qv59ZUGQaq24wb3prkxz7FbW2bxLTXT2C8z1CvHrbAl9rRh0uD4Mvb3EDPSwRg4N9YDmtv7+cMDPV3XzyFrb/q1UaWIZU9IarHESkgKUmRP1f998ANOrB8EzZi3fWCDjh1r8h3hYNHiMPdyO/+2qeo/d+YzkFWwINeHXqhdBQhWIaPRdzU05hSMMwRimipE8L+mzzo4cvd0VH18gbhhm8zXIV+JQjlLWnDmvFpAMS+UgLHTf9eFwKopNatxPKu5NeVMm8kmbXJOkiVDXj8B3Vid4UGAmAF7hy4K2Q93aJTyQu6z1wvHyNDoRaIj5P+S4xdLIinMvzbXPNp6gpDvBKa39xPlf+eZGCQlabtguW+/3iZZ0tFuQYBA75lBoJfk7EjbvtBuPLDVce8rMymPFdF4fnP1H4aexmN4aWBKRsBfqcITui/uwymxotkW0PnIGwCYB5y7gDkbhFWtSvUFEnHKVZSY9UkWG1kvQnNCKTISQIMb37oG+/dKKfllXlaPehr9ct/pvnKiMt1OaajKzFX3DxMf19CRx3rgZ4M4iJFB0/PcMjSnBGwXB9YtkoZO9ZotlF8NC37M2Lfo1sEmzG8KQYWsvPDljE3Y7mdL7f7+Xh/dDKT9EYFhMDCJ7ac7o44fsTlMIn06RYq9dwH95Wfqo2uV8wl8iC/ZrCloEq6o9R5NxEmMowzdkOVZqznC53hnFfOJqoK08afWCs+SwjwaNboDe/w4Rmwjphfe/gPMDduheamea058Gaa1W02evQ52mFo2ChyjRhPtGQLS7TIjqO9TZ8jOtO1B6uWABss4RQywY7qipld/6WbXt6w/g8ZEyHZPWTZdU3c3LxO0h5Z4iE8QbbdqPgnGTrFubstsrmK56HOnUjp6HDFrJPpwJSqZoVO5DbfaSOYYsqb4zry8vKKjhN7mD+CJrBVE+GA1QI1EhZTZT92ETles7YNbLfQgNyzzBLm9MpyD10t+TUBlRSqW7dD6zZwAtcVtPVmN2ZJpGOYXzLQb8P3Mwu3C6RC6unkg2Q5bSP7Anq4QasbcuEAFOP5grjWob2iRTjfsmjQ9YA60VoRUyTaA4ioo8BNs3kN7V9L5PdyMSb48IsVQCqkxn2Ag5bsuQPrxyiza+wtn32t1Lfn4LlgpxVHd03QsxJrblGYx+GqkE+M0+4BZDG5KG8kc8nOLgJ0/CTxgIQsQjng7YS13vn05LchfqtzgkLxuxQ/NEaPkMxfaAAVjdqE60HwHk3P14LoxUwB9Hf4tw5RiVNqq6YSPxpgzy8gY0HMcZNFe+nLvElcfvbcvr0j6QccQX97WaTNn9cOxjMkqlhnPJ3wtR62uVFY6OJHXlAjZ5wNWhEF7vgOgDljhqzCafjmm/hjIYpbIMWkvPQAIZPMa+W
Variant 5
DifficultyLevel
570
Question
Worked Solution
Strategy 1
Test each option:
If
= 6,
|
|
2 × 6 |
= 2 × 3 + 6 |
12 |
= 12 ✓ |
Strategy 2 (more advanced)
2 ×
= 2 × 3 +
1 x
= 6
∴
= 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 = 2
 $\times$  = ( $\times$ 3 ) + 
What is the value of ?
|
workedSolution | Strategy 1
Test each option:
If  = 6,
| | |
| ---------------------: | -------------- |
| 2 $\times$ 6 | \= 2 $\times$ 3 + 6 |
| 12 | \= 12  $\checkmark$ |
Strategy 2 (more advanced)
2 $\times$  = 2 $\times$ 3 + 
1 x  = 6
$\therefore$
 = {{{correctAnswer}}}
|
correctAnswer | |
Answers