Algebra, NAPX-H4-CA18
U2FsdGVkX18gzAFWZG5duvTaM7q6eNZ6zB1k0SdC40QTz97mtCIW6oS9fv6MZJjbawkVo1jQjGgN1VbnTCOixWm5+HCMBuQYvMmmHlKnzVn9ZQG37xBwJlaEcV1Oq6t13dVmZRgtU1wAeO55MC3dmaBXD/l58Ab9tqzPffppM2wGUYc6j1bTQeH5ramqtgq1gZsJIjQlSyoMowLPG0oFru4f1u0+RKWsJYGPhBjpleD7Djm8S8qirUd1fjC0zFFII3z/02JpOSylTjoSjeVv12/SAqL/sYttFVD/Ri+0jB9WeifCA/JeZbXm2hbym0Mt+0jd6VYNWO2nBcA/Be58zvdxBHYf56bviS4PIfGcKVDuBpDcOl2NQDxCpvquJm6lbGkvDXWCOifil+nr5G2UaXMmJYCCWFP1YtNTLBUAxwOsPGFF9/unDAt7LgCjqhABgGBrWzDW3mBmX2uEuFNG1uIixcl2f4p/4M8rF3desuOURi2AeReZudzzaYNYM7zmXYp+N4zjmJutA1h0oY4ePOLszfaf8hyNOAlhD3LH2LhiQaRR853kvLA4g9xqZlAyJtyIswEIe8yNsax+OMG6mwK2g03EiHkidYfYzaMwL7vaQGzRUl3MFBrwTky3rBND3wd7UoE8wu7U8jFDcWrVIKHIPr9D6M/C/5sip0pYraN+Lmx2CfBAK7/NVXlZXUU1E10kOPGo0/y70A19XAWlBntZL+aMKmh7D3XYOBWQQKaamJVJNjcDVRTIiQEXTUOg+FYgK/qqt+d3ICZ4oIYdeikHDQjxk9n12qdj/0Ra+4GjYdPqt45QQbxF8/HkzbaG/DapY2HuCX5O4bj1lQx/35INn9c1vg+K1SYIYGw9YVGdRgaFKSbJOwCWF4Rksppogv3vy+LZlsO7vb3jBoYflQhR/+cU3cfQyivMvpGUp3wadmSDqql+MLajgLjXGImbLUgFg6/9UtxaebpwbyAaFl2ikF5YN5MUQZixfgsJ0SIdSQp9gSAs6BkWgYhs8Erw7HUBw4jRSUKBIVtj/Pm4RRaIlQEjO1OnX7Zn1fT3sjJ4FvrSCW2ajYm/EeAesaf+7ALPyNjgYSmG7UxL8wf8oedW3Jy6gFTV1PEpp4QOidTz5nw5DJnauwBzk8FKLzt2W5uQnHOEkmKUpvis+xpq+uF2FbL/C0lqP5qsvtP/92Jo5G5NbTCZDp/X7JwIAKBYlbf9W4vMOUzNedNC/CpdMHeUbbx4/3vZsDsHW90iOymGbVIQUke9LhHNHvjTO4qP4Oc/4tSTcnbNo4IttsWaH4haIW6cVUREjk6Luaa4+HNLs0CMMI9U8w4bbVrbDbePiIPzW8ita+zSq/LvqcyAYr92SnHE9sEgQPz+3Ip1MTxvi8rp0XMS6z5il2PH7i4miPsralJqkI3hMt0D3c5iIo1Z5pd7LSFkU0gpz1wXtLXufE3snqs/lYZ2pOE9/2jyHkD8TtGnvfsvIFXoMBrESUnH4wE5MShcM8qdj3zObfp4tbKfESC5nMNvFrlO7xknyfXUuIWesdovCFkC/jlXUh3fqM1XbSs/nLUsGZJkcPshIf5pD8YY4/UpAUe1kVMLeHq+fSeo4cTySWqYomK/r3LVZyY949RImJwSjljZba6pvaeb/KPzpHXDAUJajAXRpNuhXvNRaL09CXnnmJ3RKLpSzUGhMle0TctZ+owSy4CHaeCtrdxoS5wts9m89J5gEQT8FRbSTdMJYqsqwRwYelN6p9RHsM6YyhhN0aZ+NDeCP3u6GEnUiJgHD2DpMBonbVl0RwNZE+vCGM3m1iNdxSFIIcQOHZol0bV6wz4a9jfkV7kXrpD6y4hu/q/QWW4I4fPKiW+75esGFgeX18R2NZp8U61WrdflYJeP6sVrYi/nwgp8m34g0abK2wDjt9tbZTNW4rXcgsSexpgCdTMkaMwnXOCSjcwHdV89hufjPCDXvGDheY6fXYnPymfjYJKrTTlpTekTTS1fgp6BEVJ3Iil6+mZkg78xybFG8ckVOCrQJWU0Pmt0Y/npH1qK0racbmcH+qHixL6OfUmJUhqrEMxFRCvvXW+gIzMoIdxnRj91ZR6XcQ6zVdfF7s77I7lepc+W/rr7giT7ikCw92+K0hzGGKMGR2BNL6U8xTy9LR9Q1IYtYn7l7W9rXi+TfRosSO9A4Q4JKsstsLOsvT2heE9tD9q89ofItj7QlnHtA+/gjOTtmHBjWuOzL91dXfn6rtei0EowbyPUv/aEqxVdgBJ7dnyGJxQ1qJAfdbljiiU869FVj3+l+pz73n9XqzSmWPJ8eCmakTousXOgx/TFUpTxzOwheiI+TfTNrktZujfm1n/4fiqf5U0SBWJVnYzgi5A12IJjFX8KbB2qxmhaIANOsk/gwb7XHk11G0gqGXnJJFAEKNly8ygz0tx8qR4acExw4qEr+HmjjtEtlFRo9hvs1VtFFeHU9Ec4qfMkh16Indf8eXaKZLg5AuVKYqWMml64D/D1vo894hBOJsWf4N/xPSJUJ6JqpxaB5sTU9O6XgEH6gS0W4BlCSoGBzz+6rs+eb58OfgONELm2NWyT4GIdG4VP7mXBd3NqjV3xLqMxS5ESlyj7LsPCjCyGUrM2vYDqqQX31D8CYkUEEBjMK8zkv+d9mlPjFDd1LozHojwxrAPzdAg90bwvxHRJMmVRu/lxdotrAoXDGft5vu0SjYBgglksb1K2MyNl+KxPA7aeN2jIjays/LTg3xd9dePScQtKoSZEyqno/Gzftu/nTF1iiN7F2Q3SNFeQnd7X77mmPjAYKaoc23XcZhDqsj83fn+iP9HA+7/B/lpkKMQpAjym8McN5GxBEd3xbU3BRKlFZ2xLP+58hyJybNmjl9CBQl8Wg9OF7fddlM7mj/2zHjjd4z7Do/pb1BV7fESoxaqNuykZNMNuLMKx9Ghr17Mc1B6KWLGDbNxIeY+xuJ2a6HFtVZpgtF/L14ydoRZw2sKTnMO10lCBZvWF0qkimFXEYdXkyK9E9v2VNMKL4qaxPq7U80YMbRILQUADdZGi2fOSCM/9f/GzgPmJbbj5gQMZhS0TaFS0jsHk0Doqbbv20nW4au7p2Tc3gaGFZGEbN7geDBaD6762+7ZMyeWDBGkjz5TAdb55+7CXYRiOdoARtLJEURzWZxWHfpJp5gleHoH/5KcHusWzIi5kMXc+8h4u3FQh8VDzxk945VXuXhfoL3CIx+82kOeSEhl6vwLtw+ZtYdaw4gBLvR55S9fdxlRW1TjQFW5r/kBkI/TDbyJxu2M0euvDJWHh5O/yBwmZUWTQbsTZFLtu3dNxsOI4Vi7Ds3sfYM8Hlt96Q8PPnzLJK3mNVsKXqfYVq2iBe+aTnCnzE6umaGfVVcFWVwDOD/kgtzlleUPdkLMmFXpt7aklCL+QGi9rC/GDZ5Fv9C3OI92DBTHw0OVt1yOdQGUsKPL+8j39iyKlYNRn+nO1QcsZzHc20P9p14iYp4IC+D58fVwLON7MuUJTsfevgFZwDoFhwzLDGCfuaWxa/wqeTAnQQdkmFLk0CR+r1GitNELq0qzoltXeefYkMJptSROLXF6aaxnQwp/Wt7mIcY60qBCMH2VcFBVlovDdrxRQrMvLvFrIiDO8bnyHSNkRDAvK+FtaGtlaZzz7ZqRitwFN7O1RMwrQgok9M71pkr4bOCLx55vty8eGyj0r3hPKwCgBGXCZ6i/5wsZx8rCKhotzbGfeZRekdU8WWkGUYNAtXyKVp4yJd6I3ydKBiTSoznGaCkS7yng7HsWGIHEnDaILxBkp/z0H4yYnwfoglhw4aDH/zINmxSd90oL/Hw29sG0/e+69T18B212FQ+7q8ccNHzJBhkaDT0WHmWUoVPIEUlwK8Pkk86p7e4Yg9OHRiRaP04ht9ZWSgis/WXn3Z6/dQ4CnBzQeLBWVr0AdOWElwtfgRR9dYRmFvlkqYvLLOv+GYfjPZBKWkrwLuKORflVRQcE1mWWsk/Qf9PylPTWcCRFHYD59BJ43LRCgvbZ5TiUHw+uD0P07oOuET6ftbGht5IKz3bPDxXE2Ajh8j0x9inHRuF2Z+H+SHGtavwobUAr+8KKuPvFzVfIXjY7vZiBhPXerpOqlaoBsuNbFGaliJPNsAXf2gyQHNj9h007oLfJf7nA4H/ezoC+z5ITGzvqhuR/VUDZVVUKiW0A54wUKqDJ6rICAsoJT2tRyXkS0R64ZAwY59Spp3Fa5Jub7YU3o0BuNN4cRVICuR8myWZZYAPUqAlkWhsajJ17fSZpcJ69aETaNOQ6s8HbhYY1MUfr9EgnvJiei2GFCiQ/OUJHGNI+kSy0v6VoACtpw2tXw/jKZCI8XtS5SU1P6Hx830wd44t+YjIKy9XxGNMpi8fbWiFNy3J/1/n/YmRbd+gv0GALCNZhIeIKNqHWIMJb/dCJp6Jc9Pmbk4e9fZtp/4f34aE8wuZrdV9KU3XtkxaD1dXkYqHvZkXlMQimsVdh9SQPjenUxAKE2uKVEv6rR3YUO2xL1QKb2TlExyrtW2CtJoj/vTBZTkicwroJDrrYZoKkSce9DcH7oobwKxfWRbKsF8fdi1O29vIL87UGQgRRKpNdFMPGFjjVgGXBgpZg6uqANgUBCdFqSYwb2+gdWam47GSx0DXHP9UNIndbHfB2wrhXP2BUDUdLS2mZpFUAkitRoaCONNyIxN3o+5JY6vLEToypAMYt2YL3d0yz1FvRxyEM+DTyQFYMV4wyZbB+P8jBicwenWC6WjdCV7bKqYah+mFPJ07N2NMGnDEZOWsUxibe4YUtU4XmLnKHzV/bqBfNhiHy1qU3YLgQEkWLup4gI/cHmywU9gT1bQPqySm57D40WqMZxtGZBjCexeHDNNKgRen+xwkG7rpR31dxwL8sRLrMGNqDT1cfdWV/xHJ38zbbc5IKm2XNPXNPTY0kRY3I+YrCl8c23HXgbEfSAQgd4dtV1jUcNgteNCxTAsAfBH7Mw6nKgJpy+3IvP8EotLHrDdVSr9EjIM4wukc5eFVdP51SCeeYTWLDKmmW8KMldfYuyj1fse1iyU9KTsIHQlQU70mtl04aRyOoKEkPsJ91scqB+cucPKzn0gIIQU916XlKU3mTyZ3kWTQ6+NMN9P48gdzEZ9vSDuJei/lb/1+6vdYtcnJkOouf35Tr62xcOBT7vh+GrzS1iVqHGUyQf1RNOzcPYqdA1n7MqNyLaT/GfZ/+OTURm+/CSc6ND7+xQF5XBWUHkSYBgYPPYsgIfSMAccX+ZvtujHe5uJ2NR3ZIQU3XdfR5Oz4GxP60tKauj4Xe06gE4oYGntlsAQ+gJ/+SLnDoNYjPkm5K/bE+ePoV1/zXbRrJhXAv11+Egp8PYISAuhYR3Td49nwpJ/KhiZozDLiTrHyT4BZgo6p21MNZdYk7J1crbgHaVFwLnw13/ZcJ3T/xSXdW6TtWofeKisgQXDcGvwhz3GTEbWtL/v/yPrKO+yWWtc5Ix+E9R1re0CzcxFYpufksdy6TBfinwPHBpR2apM2Fks7V5py7HTX3eJSExIqx18I4Ihl7NHCmYuQK/Ka4KDwNxdrMiDKFJxN6OZByUtAd7R3wWtbwTq3acMFT2dAycE63StbnuIk6HbDi3szqlF0Asm258kNOPY4PrGvp1u0f0v9gteXedesoH9FwdBSfneWbYSWot305P13QpRkxzI0LvezM9valn8JQIjoCUoLmat1PUIKTmRphCD/7vZdGF3yRY/XG22FJi2nzRbMxVfLMbvouul9ZTRWlK5uaO5QITMgXLUmy0QFQEbqTgsPaIzwqjpx5/AIprTJf8I+M5bPE/91UHFw5hi/ZDqJlS/IqY8btHYO0nTnJ8SmUpoDJ0V3enjOXAO/eSEvV8NFqWBDFJ/oqmzuVnsUIrDeqKZACr8Qg/UayyXGqU61tqO3G9NDLikbL+NqYW7SuYvnssXR9ytMdFpLs4RZcSqroh8PmpzGPbQd21k5ZTO99rKMLGsITyqhCsVRDZwOy7MHMCdpmSPgU5lUzAY6Q5teMBbpGln/fgeTekiw3lGJAfY30/W/i+72hikDQ5PMnqQsNv8CQxKViC66S3vPWJ3KoO506HHy+PJm9SfUxa17bdLevbOs72rzsKhMYz2nUJhi96zvvRHG4rxeVhgOQmNKjxfokB4cBAw/tedoAcTVJoQS1xUUUsHVx0kkPtBoO2xv/eSrtGtbDmeCuAZxWqMXNON61qPoCRI7fRUDoFNywO9pcCxdtXXt3GEdZAI3f7p4PGA66NbvJZjjqIuWxQzpw7gP9PpO0X2ylkgGcF1e//IL5F84KItSOwJB3tTxfObtxeVNm09tV5Nq/jT7CBi0/tZZL7hVbjOMFUR97Jk8HClRGexKS7RWVNZKy13HrTdLgO+pC+0Nk2yFRpsUmC9l6Nx1ULo5BoHxI7K3Uv4hX4duri6v8d8dA6dOpbp9Y9mJCxh8WGzf/r70vLnSxYvUgktnlLZaMLbx6qvRLoNT5LLiX9b9xlMdIPzI0aNlDgQs0RBtpT6Kv5u1j6XOpEhjZqJuJJJ2Q8qaLFI+gXOLOmhF1nvgrmLpt+7VnsiCBKXG/hKHzK0H4SSVNj6cf9GlC9kywnG9Ba2tgAMwfVWay46klonBizS8Fm5/nKDhdJJTKwI8s8RHdwDObP6si1qfiiPW0MPrxdc66aoaPN27eC76Lf5ASU6VR/xXezZPcFlz8zg0QA1FNjGxoCCszrw3LBOTRvXpOTrSSGSQZv/PfqE6hpCCp4wtlt6R2PYCK09Rh+SLxg91liX/AbY+1yzg0yYbZWa95svesZpDPE9rIPGqAEkF6BDtfF4mHajwv73RXSmxq4lsl+3rK3SSPaYdkJpXdYFCuGUEnZwJNIX8kBFZB6XlhRc5qW/W9iAe7dohlPfMmPMbiN742zIp3t9bFJ7YQ2RRoWRonpF6U7FSwo8+sDgSiV1KWt7gXgDNWNx4e1pyyng4ZHQi2j9coNIGq3PkY7qnTVHExzXbaSYlUjiOolmtKD05+9aZpyt2hX25mom0QfDxe1wVW6N/uyUuCynEeQJBm7s79ajdpjQwcZgR4ZkKrNmvvZMgBRwnFIhC3YxU47UrW2ABT3FgvhRMLqjsMdlWh49Acn3u078GcpGsJT0sRz65iKcHhf2i6x63DPafJOa7BIeJRUvHupTiFLFsODUeXbbDKQ3Er8trBAHaMgZkjns/3u+f2mDELKWZyVKfS2d7WqNsyNys1cml3J6bF1VVSMYZSm19LZCOckq/GmZ/fgKuPU4m4iTsSwaQQ2MOXA/+LoDgYq7vjs7zuKvEjiNK4D9V7Mbmeot749oS95d49uO56y9ime2gegxo1xU9brKWGYdM+KXXsZgIqWKYe1RIYKkL21TtY3f1QeNuywhc4x+eJW0aCAKU8HdSjRNTIXUCl43wKD1nfJdgUiDDaKQwBmkMCNMaLL54qocWRHW3CRjevHLfKUofDLXTLuMqtF77GdIEmn3VDv7CrRXuXTMcnLAi5JizfRYd8vdQvrzI5QdqIM9eEYgU7r2rar1iXzC4NxDD8f5oERNhY/0tFN3ZVuLDt9ltN3//QlxCEvNHOOOQ1hJCRHliQdx9W4XOYuj9npdctqaxA21y9AQ5DvHlyO3r0edUyMlx0J55WN09zpJxNG+L5kdkSTKF2qCn6HxpiuAMgGvawNTJjig9uNKMwmyD1GUH7NvIQvQ1UWzBVaCQZN4vUAvZmrqaFhBIxhfePMTactSy22ZSEN2PMjprRzWwBmxQvb0Yau3bellDu0Zy/6TOOknAm9XMMOD2l5wf56eEbtXVAc3TfoTTFEBeE6oiMa1i+VKk5+PwTz4Irs8d2Eq7Db9vSS22vDlCmGYoKHKCwMcm5Iz7zbuqoX2ulOIGbYG6Zczrrbgn+Fh3j6mtGdBC5w5sZQg0TzEsSFLW0XFuovC1uCwIrVEJNQN7nncdSTvrAIN3hxusCV/vi2GUkTuV0XuP4ZhansZv3QDoKpRfKFi7NEZPnIaD7BHn1VaVxmX9G00hvkh8sruI6xirC/S/82LMdDcHB0csIJMzvhvDy+61qRNWKOaGLotYigKfu2C1V+/6r5r6ackGgZijlq61FUUtqhPNIZjIXyy2jPo87n28U2/zviuSMyjVqE2Yw0TsRkCnBgXsrg5rA9QlhNA5gB+yVM+yKCUUoqPhS60Gn/i05q+w7lqL0+rEwfLjzCZ/XShxNUOj357TLbOlmOLfoHIji1eZ8DuPSGjVk26G3kCwY32yimQqgst/kKXNE75rRdXicEnR1AbaMAYMGd3ob3TlztLxO69MxBhUo8DlJJpjIebkRwkR3ZCnt224Ou2nLtj27mWPVIrTX+Xm9rv4zY9oXSryqv2tULWYfBRliwhcHQTl1hFpkKVxuEXZEd9wPSngzYIA7qmq5YAMNrQXCFvjElvVM6upVb2RMpCvuN4j6Vk68OgyE63XK1Sih4SMQjz5X/acMBnSWFTaWjZ5+lhRCi67tlVM7iFazkya0tc/SoiK4xYjkl7TaRVzMcWOTvCBEzUYnnTm0Aumeix/HSDuSoqYSvrj8jdBZcJn/MIbI/4N9NYwQBXhHWS/LGfkWX/bCw0Ung8HmOUDmarA8jhcKoQ+AFH8KYlCiXXyKQ2uNDRfW0doEbfC1WkYeDwYev4wabMcRRKs1W9kdun7N0rZailo+BJa7z9KqQEW2P6lqtFWw0OtXDrj4ZHTpsVKUXF5ATbZWlRbU2ERB+3ydtvndOqvfFinP8ULq8HVHTAe5BG4V+/YaWYkg8T7czNEFpw1Lzi9uk5WXa+huUnQec9nWcB5+0dgL298NB3P0RRm1uLdrTC4LXPe/jW/63vyqE7ZTOkCok/paKLvR5iKkYLshsIdTk8LxzBi/BXTQyCm/S1Dcq94bkHh8Pq85wrbh7JGAsRdOynm4afT9HMQN0j1vD8QhohhZCegG5Dolbm1DJqwW6gDkYPWi1TCDianK389PvxcxgoLQRHWf7YFtRc49koT1VbLss6A0IsC8LW0HWyGoGf8ze3CXzkyPb24EJdg8ATAYSrUmK37+xlV2BOWqoHFSNeSxjBQgJ2/t2ENbeLX6sjFFtX4uta6xQvdfafzcPLHAL5qSNaWsDAoWpRBNR+Jx+cnTBffBq5izTZ9tWGswQ2/a5qwyL4BN26n/5YZsCNsRxKEP2JLLvRqGr1TmzvVSg5DuAt/5oSlSf2W1/n3hAuNgO7P4rb+OPEo1TFgW2rIBCO5a65oIPrhFvkK0ugMVRlqgiBUX2SBTcCflMueD45Spi2BqOAdBQb/WMGZGornFFOWxinNDIHH0w2b194Q5o+Xr1NlDPbSP962/waskmTBWleiJVvLpWwEBQRwXLih3rLatLNzMxvpeMFjC7x6d19SulS8toMpt2HnOaU2NJiBxrGUcv0RfKHfyr4N6dHE4TMDFkxL7g9nmfm/cO6J1U36LWPAyQkNWcGdfojxmnTA/vuPSwn0ENociyBA0W3uuBlT7DIU4jZYdP7e9OWtN7isN/+vSGwT6aRz196RZZ+TJtE3wkKvv9bbGmTaCjzKcUwv24Q2MWDb/NEYgMpYzGsbLWBf4/epYfie8m2dGoNaJnpDrSeYyaAPk/GKylnx3U/BOUrSotIuGwdB06GkdF7WLel6qwzLBJ6k7zGdGgNJUbJuRVvRKLHk/3tl1FwCTSDnX6TLZPrymYagGP/04XWaHWVCOu3d3BTT9vRCEWJrvOGa2vgKgAatXWifB3lJnRoy7kJHqoHm/vWY7KcngBETzhOnzRbpPIzotMuBrNDbNOnIoopj4B7ZAdsFuyin0p8LzV2JXfeaKqQ037BkAc0JQjsCLyE/OeMbc3ybJWERNCZ8xNvI2Tvbm60/Ncgu3eF4dvpsa7OGbarty98WKz6axbIexP5P4gOvwdK+73H5hdWZi+bWuIOU/OjXrGFUjyQ6HG8eH1F1h+Kz/xEFjCka2fT5GIhWGYHco2nwoUq2CwzZZLi3uokZJXAwnmPsbI/WhWknnKAixu6oXgyzV8POzzCoPgdMaDHJAuDtJ2xZwku+uxqO3aJc1j+O45N5/9ggOljWQ6sJG+Iyqnp14RyVN8myH2o6DfsZKiz8ArbPOEUlIO0fJ9GgfL3//xVD1jfGPYfoPqK4+TRHlkt3pimnMmQ4ewmkXN/Cczxc3viZj7KfRCnj9KfTfQkFwuUCQkBXp83612R8CAlVKUxWEzW+1qZW9RcaKVUn6pUGYdqf83Sn4p1GX4m/ljTH9vOragQarPO56OCsjwyfgfSG+MH++ipu/QoJTEbW+jvfm0NEthq8Uz8ECtLEwL5Fy7pqY3g2VZP4aDg1+ebbS1F9nbdPr1vwcLbMluDFnjdH7SMtSQMImxi8KJiTE9AGk2y0yhnz8t+LO3LO0UbNoShgKrI5MlRktuR+9K7RvGk0OlPVDvWSdYDhvCftNYBVj9heBAsDVwqbfuaTW5I/vma4zvWHXvgB5FnRo7KGpxatQeFJHA8BWejvrKawmFvu5URBXHEGoH1HLqoNlpGmgFOjCTZVSp4iBcRQEpNnQKtkB/zb5DPrNgFrB9mzO+JfkWgQXtAff/fcx5ZvWmr9uLf/5/RLZZNk+5nGGIt2sA/3JCxPsMYnyjRPX84Axq6qYTwZ0TnFRkHGauIW7NWmW6apTI6TwFNvg6rQOkhva+uB4YosAQ+TCf3IDOpoCBHk/RTknR0tGrJQw5rgApptbdxkNQ2bOZC0APybddbKvRqrbNImbj4TPZfU/94B0QtUNoTYEeSMpMslRJ5+lOiOc8oLM/EEPTHclYRxzqXPIopX8biSG9ZigCkoKf8yQqM1TN8LdXS2dsMgMnQ14nlZ5YpY6MCSNBB/8HZH0snqQc7NRG7p/oQ7piXMTl49ePU+y3RNBEeE2cpVUE6En9jsgUwmt2kC1vPIlUky2PSjDQZyGCX6j1kDdNABHHo1ALfoPb76t3vKU0NY9ZYmYBE6/gAd9CzggBlHxclTngdxa7n8t25JuNr0wqqmd2HIAMA5hBsukCAff6FvjSoH7QeYpr1x2LWF8JcIyu6Ywz18M5v9258E2/7FgO3CIiNNYFqWmFe5EgTEQWWbC/rSLgxFGLl2aaUbTuczbvWwuIW08zItVfXNCNa6YC50Fq7E4hkGYzKrEk6NutXFSUBkC3uwukjNUmfD/DjsUwV8DPvOdI2WTBBmWe6VeN/fMptLWieK0+4JBefVCMPzTzg6aJZrpYgZr2nnE10ZWztTlKD5ktYp5KXxXygTgMH+IoBiuzIIWqvXgFtDHiC83k3/bR8eBPiEHqlefplTdiEE7JFIwDDNL18KJiXY2M+aAD5M27KddFlTQ7aMikxpu6ED0P7Vm7l5HQv4gBjCdE4bwsiSczHPGKPPaRBMHyRyzGGwtALQ25wiq3UCc9ExL84M4TXGdamUOzIAFCN6Fui24sSRby6QBsB+cCWLd5EYn6TfnxsKgu9zLUn5MZi/nRDUb/jSL64j3P1tH9SA2o+HmGx6/DHNXiJCpBscFW+Xs1UbV3P9j5oXpt1bb5CZKs7fCy65zN8mOtKoe1xbaGRzNLnOWnwrv9Pc4KBZhB+2AQKKeFInPZEJol1dJaKvbHrfn7CeLBkAZyFyKiBc2wjYJWe7kvx1IxX1EC/PkCqOuKy3bL1SNK/5w8ZAPbQU0WQcZwZvTnVDuRxQ/7y+qUQOKA3HcZXfgmndm5jIDaJuMWsqHQI0bWl5QVCPNq9MzF5nSD8mqNxgfD3eQcNzGvFyWAIIHRR0oOMDiHBy4xpDOy8DEV6H+Zmy89YSRxUDc+iH5bLArqWjN9ovP+C5mk65Fy2lcdE6usindlQ8gqvhTjrtHRlzv8YUSI2dJbrJnvVglFHAnN9j4j3C6YdUXGY5nRo74617WjqAytoMQ8zhEuIN1bztdKvWGj6ivCyt0QtMzFnI/fWOMeeC0n7PEOWKzDvKN7YUJcIYEWtwsQnunYM0i9FQSik1f7ieORf06x4GRpgANMmeZ07+rKiZdQ66uT0djOmNOKxuufh5pK9xxqktsDxgF2ofdFy4s/+dUHqGR9pFolihChEykEwVVxwXF6jb+YsfAvcHZqLxh6mmBD0jPaHZxpkkFA0MR9eQVKkJOUXAsCzA9PcNSUSWIn0SNIa0O04kTO9cRpqHlwyIC1iVsRHvLKoOAADQoR5kg/KiZwsJM7bcTrWPQ3zZfwXu4iGj4UZIWW1h+d14iSVXJ56mWgFylrblrDWyYXGGrRwaCYTxP2bhsf1fwLjwl2N61QPGhZCMQXp4OM4nyyt2XcLkLnjIQ5euyqgpdrSh+8n9qXtuS2LEsg4wFsFEZTQQz1epeni614RDdC/oHgb+LN4DxHraylmRCtWOXAxd99ExgxCXNxuwKvZ5I1CySC4js2/hQShmd7LBWjzb05xZkNLgrgyosU5ltQM3Vm/AlU86pwzcZ6rd8KSFUMfz3IUZrYXQNeMc231y/+cIGoqISQBiThNWMsQTxu6SGi7/KvaRNikUD8FMR3gFe8xkRMMimvt2H3qiKE5qEkwaTDtMkSKuaGOff8Swb6eWmrJyRSOChal3q1X6rjsONIzA6vpnqM7+THXDubUZBuTyVuf7HMA7LKVfvce351Cz/Goy9j+uA0drUBoPF7uqhpifkXjZ0vJVMMOzXH2SUxq0S8nuH6/bwfPjxjc3CBlbv+tFxoDJ4RrGkAqZrdsQUYWSeyzCwrXeCI9ZY07xSpXcOYrCb6JOhYnyARNzuDWnfCYszAkFihJ4oKJFmyNViUUGUJm9M5wR/JitsRZRDJfMnq2Ebjk+lJj9cbXzlNU1eEtngOeUlKixkJL5Iij5BSKnl1UvbktBIwY6xhXhcAGSZyjV50KqaPRJ85hz4n5cBLYRG9v4QVl7+IAA/vU5PZxLc4a7dXssiZ7H2/HXJoJBMP3h4VVdoV+BZmBUSe3jojWZyWfFKuRU2+BSuSu353XL1BadsGaM9hu9k20gHqpC22kVB/+CYNRAzUv705t6mFY4pKIh6MI0vCeTRt386tPJYYjMY5Ao/6CbnfN5ZMrhDL9X8n5iNDlR8fsGLdCWq5i+d5KT207lyPUfXLobBaxT2OtjT9UPValQ58gXRSc87wtQ0l7YAVhwKeLPMxb6zMeb9MYNHatX+1KFNU5ZUlcrh5OplS9WKoYbr1CO0VtQZzL4a79ZpB8606VgYNgjVDPrTWCLgSyLPF5ygh1AFIUe5lt9xf8s8sh0Crbb/HMFFWnXXkw4IV14mijQ78T1oZDOdq5iXZX5o/6sIfoqS1uWeFCjVHnq+xlG/T2zBMNqe07ANU3PUrbWpUSsb1ANENstWB0LkSaNluqlzd/bkgfoHWVpPQeNPx5I2ynKvL3x2f7RRKkX1YMzb3hTGhf09wEwGSTRiwbYvJ9Y3fTdDsZetm5nFwfevYpXBa+0SccjuIpHHMFpSIyulymnIH00WF7kJ+/xWbSY/WxBCTcPCWoJHN/hJPZSVWmuNnNdRMMfFfr88mbf0n1jE+duz0QylWQKrRWaM90c0aph0f8z9XupV9Tb9Ho8TPnezXth2kav6n91UQOqYUqobGrswlPPpj18K5UMKi78h7ZGc8+2rWKumAxt6t/qzNpuhL79EoVZD7ViPwivweiZdXALQwM4TYnX0axgNFxrA504hwUDFSXmQWfLkvhGhXy+C88+za8oBlBIYYWFXlmORUD2GTnjRImUa70Xp42+7LN4FJEA4hg55XCNl1gElcoYD0vbz1ImBoAWHwv8MllLsSH1Hz6yFMsnG8SKCcoIzj5SfUUU6Ep7EJpxk4Xt9coo4oTOrsVYx5LMw3E2G4vWA8u3+SE1cke3JvFM4IvtSTUup9JMZNmPDLMKuuy80LAFesz183zz2wMQd+SKGdtdg/aMpZ/qdRgu+xnRhtB8n5A+gkKEOpKKsIHeJsGjOLVPbtiHxzIOKYbKmV3iBeTRdIfd+emz9uEhgxVta19sQYiUK7zQQ1ifMMhek50YznJRscNgp2HwiyjH4sBfwY9zVjUNmry/GNjBV9TY1bX4Ms7X9xATWhMmXynFg9Wer2bGfNSlqArHjlhpXEgt4BZV9MOxJP0TMDNyMMeC2B+O6nl3QqyZh6dwE9U7Em0bvGopBpjsX0niaVr+kOe0tTHGWVFTmmB4M/ag9ag+6w+S9Xv2l/Uc4PfNIjBAcA4lYahm+VMDwN8gb/zf0vnC8xCS3GIEr4edpsjdbpoj7vETQElz9dG3RYR3W5v0fWoNLiBHaTSI99MBuPlEDHoSBbfdzAF/7QBGVgX+NRWfe9852GwoTcCx4oqTjeXx6MUrdPtcO1pMfHEyABzJNrv3nrbUn099RCT61ASN8js3/hqp4wn+wxipSNEk/uzfgGR2UzcbLRGAZS5sewhwafCbbCMHJ+iWsWtj+AjoKWoshMAZJLJeXnVWYGnRj9ILTYKPi4dXvxCx9J50CzpUxHJ9PGHWNwh/PD7RaoX0XyZlRRXzLd4Hl2om651YqYWZ7T9ahS4W+Kcd4euebkprrIof/e3QKchvE+H1J31oWivk+gb6/08WWRWzITkmZrPFa2joKjjU+m3IWNdQBycxxlz3ngzrxQyniv6ZqLbT40SrQVujY5FrxDzMOJCaNLLmiwT89Fmq/4yUq+aAN6fL+wTVQNhTt948ysi7lyHTGJBxNuYnJR+F4ovPG1U2aU9b95/ek6Ve2R6y/svTtAfP5ccpbZ4EhGNfkT3TgtiWqTXXEhRLEcYssuC2soJbjXUFNO1jZuyTcRdRVgssx0OPEwbYNqYcbTcWtWNzHODY7h5mdCMmoe+giaPl973nV7abeCGtcNxBXvTvsjpLNyo8sf3KOkW7lG13A0IW/DZQzUnXd1eoAZ/o/fv8XOIq2O9HMkRaH7fVuwMoKYYQzm1+DZTYLF+pYGAkz5efYRxgX5Ahx7VgRaiHociujxdstJegiNboXPU1vncJOFr8zHe42LKFsi0myYpgV5mYmkwkh8QPCJPLXzjrESw/wKD9kciHmYhuqQ03L1nd8oL11e8e5zSQhHats4WM/rUMroFiG7gwTC8DZWqNMsvDjtXCn/mVg25aHLMqUBq0Z0JY3JwTcgyGiKviFQnbpi1zFNd8kg+502QQMUhtj3RM3DSqg/8rrzxF7lOwRm4MB9i+Vi+FdqnhbT1xJeN3V0VIH4lR6AIpASrk9Zo0uQUu2xnXT/HdMZK3kuFyzFMQOHWYiBrIamw+NAs+y25qELC1LcX1qY05ck56jxvTbKIhiuDHW/t+NsX14kZ6moePmGyQpfYucUQFtkH2TBa1IVuSjZCaTmUGxX8kxx9Z5BBg/Mm0KA6A5dvm039C8gv0aQTnFkfc4iR1UKNI5DcIqoFA1ehxQLRckyHPV8Pz0AN21Z54KRFkNKopKnbmYgZWpReiKzhB9XNMzB0DmAbrlLOaPSDt3F9l/+vY3cTKkqfe/FvhQMmoZJZ5okpjd26mLqif8budsIWkcA9h2zbsszed7Au4CQi/rwL+Ua8jIeGzdaJJWx1TZT3lVmxEZ/FbnVuEkUc7PO7J8kDaGqtOLgQiOufmbqEpvxfpVcQu1fx/+yEDQNi4In30CuJMmGIL5LA7HKtmtSestRTRw/y9rY5tIkXoi+501J/p3CWBh6Y6z/uEWpPzRXXolmFQGmS23h2kl1ZaSmw758VGcbaORy3ZMEGlfNgLNU9W/efTsCXlDK4B6c6DHcw/QWd4rsHtt+NOI/ctn8WKEaoDpsEakDnFLTRhbCKbs+A2v3WT0Lm6c1p0XGczXc2Vst2diQU1gIZuEvauH70bwi89hg8bjWDei6B34oqRjrTzqbcO42SBdTH/G3NPKdRI2Jt0EiXGvZ2zJYcUaW5oRIh2vS2t55vBNCA+DJb5YuS06i3k0ti1BqibljQMDfl9hdNl1FXJyOozq4M6PNOFDL9iis6zUMcaOq9XoVbHcO7huvi/C5fvRXA47Y4ne27fb5V8pS4M/YXwQi+VWTOnoprHTGf0SnlnI9srh8cnM+vYUUqSDQ4vO6KpwrRJNVKIP0HcGO6nxYkph3VLBHYGkIQDeVjLersaQy6yqi37I3RwKkFzli/hMMQkOrfV3kKkKMN9FVcfq5iUKKi0lv6IxODRkrZljummt6i2/O+lccLuWgdwRr5b8aPmrOOm01eEkFsPY2k7Hi9pkArsj3kk04LDPY3f4tZj2yRdsAO8ovhJ0hngens9ftGoyWdh38qMEscY+89lMzO0MXfsYx/PIBexBI8uN56Dnatu8ZZvcma1eULlxQCSPjF88sKUMMzHfB4PDuO8iQZ1+72VJPbXTlpwpm1j237nERQmZ+Rd9Pv2gmKUWRZUiR3R/kZJAuirYqRwEAZukE6CnRL8aBqgyaBmDAHEvtgkjqwNeG4VUkd07F9vM2m1guzVBPvCZtazRBGC5xOvnZ8+3tOKexXgeNXNycv/Oy6xwO+c0G5PC3fnOfXBDbM7nP6dHb8Ytf0hugKAir+tue/GB/naBjnx8y0i4MLbnAd/hHi+49g/Ec+qeM4aZA6ykh/T6DCvautwdqX97g3omw94IWloDhQEO0CukqS/4+ryo0HI+Zws63pAgzKsMPgpwoDKPAFFlujxKKglvObaSSAyMIyn19YaIc1OvudsgE2UlSRQQTcIQ/ZUqFlTt78VSF3XOusMmKp5B8zUgz1XFPy4EKvXNKeMZQF6GlbaXv3OjlHnX1WdwOJvlxrSSyzreNmGScLVO7KXPsA08F1qHP3s2BfpcJhjSNEX7gJB/G5zMSrWF5EQ/npAJzB4IhDi1JIo6nRuiM/+rle4R4XxuEItUfUc3tTEdZNHuE6QLnSwK1Wxvyj899iG+ySnxwn8bw6mosMY0q9bVXqQQ8wES5S7APL9bRA+mZQqVmRMLuDAq5xnSrHehXjtHuN5cpHzjeqOpGK4MCsg/bfYTo5FvWcwIGCWaW3QyKsZwRUXWNLAO9ReoCt28Fzn7IKfxdkpOHRxnP/dNWDOp8Jbm0UWG8mD33zR6WSc6Zx/O5ZVq66FIWewjGQMBrJlUfbK1P0+sphhZZt7L6i9pnKzxpWJZqX1qF4t/0F/3ETL5CLWt7l6KYiGsXPOP9Sqda+B9ipvr28qHXmF4csOrHjuDM0TshTbWe35bUejsPHmJQrTyHtVQVTnHhSg8uKZ6eZa9/sg/8HUVq4GI+YoRbvrbhfnAhj5TKIVxt9z/5qBPfPsp8JTk8/TcXi0r/QL3mst55JItk5tcmJBMGSq+L4moHkAYP/1mQ1c1vlSMxmLBtx+gWOuiSCSmoZT7uBLC6/MepT/9V8RprL6rUhN4z9pgWg3yXcZ9daULoyLIYYwyeYOXOMCgUHGglEqrMumQ97oc/kXmGW1tSH90xi1XK7zjBPn1YrvPdcOCnD62cy1kes/2eXN7FvvObGBiKoAuQw34Rfc66jazSZAxvccs3DE7Dyd99ol1FaWb5nzXt8BxJqx3bZ38lsncbNSPi97UBsXJpBASuF4HTemzw8qj9wIE42p7s/Oz84vEJ1iaBSUP65MJPrcfAYfR56o237pU+etG2KplWmC3h3+9YnP0BsWN1A4I+QCd25OeuSG1DaSMcIAm4vZ7pfYTJDcoIImyrhCdhRUimc8PKkQh3cV2OPkmmkhT4qkRX07flrO6Ikw2eKv+15fZ7wbIeriEajv1951ztzZdSXyYQA26lN3G/x+x1JwYfseXWp3qlcGlbK5cXQvj8Ac4X6HxcA6MVC0NDCOBVcwwVfvEkm2/JgTk4G1r2c/ooQD7qBe+yxOvjjntfm5s+44nIiFcnqKjEA+sF8207HK9mdc50vBrYtHk5c6XL0QAJLgI7pvBa3zbV9WPhvDcFyYpOJu1coeiLkSx43aaeujFIy+/Ta1S3c9FD6SwGcMvJpMEwndYfVuGebm8Hr9s2hylmDNxkE4VYo3xiO4AuX0lvq14gmpjo5ej3kwrQ6/gFC58ZKpDCEeoUilpn70cNSDrSZoqo6B7wwpeyioekr5ySibL7n+BdTQi38tMCq4qoB55HlH3nyGaRt8Ali6EHzHjZoFc7bf0U7xbJuFfVI1KFx+HHztTS/J+4+a46oQfP4oI9jEk2efVtwJAay2x5hM9ae4Axd3iAw25OzgPaPIXaijiXS1pat4ZPTxUzonQdoUc05kURjiypGKj0JAe82vL7DpMOPC7k3ZusMN5vj0DwXqcQ1q5UsuUMlHRz33nZ/qaWeUs1/ZblsJuFJPL2Oa9q2NGQWMF1JklpMKIxkd9nycchZJePiKQfzZtUnX1igj6oFVjSw813PrjIM9nhSVmk5O3Pfmj0GHri9e672EPYBh9G7lIZQXlHNycYb474iDK2MZE2YPXwVVl/VZPG7s4rOnHlBMfVNFNWp5Qsn+ta9saR6OazwmvFxHLh5wE17YeQlc/g2kxGHY4Dnabv5tfwTNCf0w4lI6dRu/+hI2d4oX/rDbxfseNQZh5hduoflLYo7KeOrsiOMmO56MPJI/ls0s7C4pjKvZqxovbp2hNy/61r+edlkkpkHCCMqX69MPnC5b5FXROBYGQ3I31ZTau6/Fi9GQjkXzP5pwQvgEAtgCwXClw6+v6PkRTdw1azxi/QA7L7CD33TfrRkK5h2VJtyu6L+bR/L+C5miQ9fgl+2pU+af95tC6TSMVLcJAaXPxR9TNxUqvhe4B/X58G49r10PipKTRf71Vyd+nisJK68ASMSkrq4g6K7vybR7Dg4fdPAS6uJpBchT4k/z69rROAfGkowwdnK6l76ShX1sWgJZCjCxV2tbZvazRaqwmrulGQjvaBfTtRW15FT/7pRSgEHVzzbj67LteUHbxN2fHc/nlk7ymlZUkCJrO/rq5salC17sJXHypCfURZDT7cg0KHXdppL0oZrHKO6+NmgkJe8qQobVm5nzG6/tVJiZY2RmSwiLNna0ncKspmXmGcikFe1tco9IWNFoZYFQ+DVO0ScWiiGnG/bTj6bGW4rabow76+7GFBRaDovDhxcvm73CqzBZSCu+rjewGxfzUsU2JA1YGBgOGSYI/zCL6StHmldGYrYlfC6wyzK8jVESN8nyYUNPVxdsWuCZjHS5wYY0VLC52pQIF2WelyhMNXUAwPvhQBZnlp9RtEZFUuldmupfsXpp/iintDuTC2d2p1b//6lRTYwnWmdMvAEAS9eplCJmerUfwJsrcrdQju9DeS1sya4IeyupW39cy0WOFSsXDmArNNA4YXmh4CdXepwmqKT3ZX8UPVK5XWB7SPgao5woC6bXGbqXWGcqlbjZxvLFCQTHGbRSRqnYObjkP4inWD4dbF4Z+zJRHjCIOIwR1VhUmJAm2SoE6YXnXjwlTfrAu1mTNkpl7Wo6PVTg8wKdeDJd4oraJxB5HxMGsUasn+lX4OfaUYlIDro6S8+oGIXW4sUvUam8DYZl3LZh9/3ZbZyCHPAHASdEJ0JKzLfU4GYdjzTbD20AqdVcOSLh7Vduv5s9EuISP+PgmTPX9gdf6IrFclfbF46pAu2B8HpMmms+DtSc6buaRQY/t78SJKmAmkKkXDM8Mr6K9fYSmRd5Q9ierFTIwEWi31Ht2cETJU8mSDb6/ZIOrXUtiNcJBLJ0ASA4XmU0Mju+TS6+I1efYGqm1/F0RZC7fFYabiaRPF51APPaPsw9vogjcibPehgYtHNFH9dwEoOvjfgUbtZ4FQ12ThQyOtOmAAPMnm8QTYSLOeJDSfK/WOqJ2rT7FNoqT8KDY3oRq1VY0JDrnSGzKVZaCKreg8vPvXD291kF+ONZB4b77DEhLx7Nkvo8GZ4pyzZP637P8u3dXKEBcVwtj4t4KDyKWfT2YHRFnPQap+MEF/epogaweqN5XdA3OVWx3bWsLM56cl1kaku2gszg2FpUBCYKNDtqjL0jcTiMeri1WhDUyFTdoQv7tFpu9T9Ep0cyEidD2Gsvrglz+GXR/nM9toxpHB2RJ7i7d9A6PKKL48/AIcoiiXsyUFwryZ/vwkjXPGOf22PHIZYqK05ebv8wAK299kNpu+DjJQmGq3ZFv+JxBc5QPrC79xLAUVvF2ZXlmJBzFPCiFkPtTJWdG4DznLG/IA4ZeUJhxtkLYpbIAGSUOhD33OOv+Ny93p5Lat98jZ+pCVi0kYZQ/3Bu7gOle+ZPHiNYHfRSi9NOkusmtFxFYkhQUYxVKsmLFj/pELbDcSMF5C9gCTF13DBLnMkwxtb2qMFkLiXZhIaZsJ1RFH7zSA9hzw9PCx1Q/ghg4PhWI0lKsvAywiMNhL4EXRq1YN88cOkaHMzquBpuUpkGmmZMc09E1z5w5S/tXrNOkSKDKFMbbledav/EwMRUDckHPNgWsHvbJYLePvFpAxexKxlOMt7ofKBIbMKCcRaMY9OFOUzJZg8KXTvJnlQaxv+KnKq67E8coheorqWior7B7SO5hRRxbIfvcng2mmUG+TA/kiG6e0UC90OoMG/VOpJrMHTFW/08311ZcXGriA3wUf0VIafCI9P7ayPPQekbJxP3DahPM+urCI97h7+7djH0GSaDLlJCbG/t4Ri1fxS4TiM0N0O9YnS1DAqKS3PXMC9l7fdmV7DdWGFD1ZATBpjY/VhpV6mPZuUEt0Bj3j2teOgjUBJeY7OutQChkyl+bFFXTaoKX3CtN/wPPhuOcUUisqj/Qctcslv7SZM9W1+stgnMqtxDc0nsVSCLdDUMD2xUI5hCCy5MVhSX8pMgrkHIO4spc5KDG6NTjYGnXmHmp91p9OA5rQR9muHNCl
Variant 0
DifficultyLevel
668
Question
Rearrange the equation 6y + 7 = x so that y is the subject.
Which of these correctly gives y as the subject?
Worked Solution
|
|
6y + 7 |
= x |
6y |
= x − 7 |
y |
= 6x−7 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Rearrange the equation $\ 6\large y$ + 7 = $\large x$ so that $\large y$ is the subject.
Which of these correctly gives $\large y$ as the subject?
|
workedSolution |
| | |
| ------------: | ---------- |
| $6\large y$ + 7 | \= $\large x$ |
| $6\large y$ | \= $\large x$ $-$ 7 |
| $\large y$ | \= $\dfrac{x-7}{6}$ |
|
correctAnswer | $\large y$ = $\dfrac{x-7}{6}$ |
Answers
Is Correct? | Answer |
✓ | y = 6x−7 |
x | y = 6x+7 |
x | y = 6x − 7 |
x | y = 6x + 7 |
U2FsdGVkX1+KHPpabBTt5+qfctUsxwZ4VMdzuemZDiD8nSdN8wZiRLPt/PkhYN9HgLpiHKwLfey9ynrCby+KbRA7bKVpMZGhGZwfdGRMGPTnnfw9rI7UHqEdFE313BhEZBgf5VFTe6/pn/PvZNq/+IkvBRZqzxuIG8yavy2hxZfbVABY8ldYyvQxImVBQVT0WMqC38Tyn+oAr0ipL0yeEG3YKw4BSap9FJDrM4vLIxijRAqTqrZWE0eXW65UPu/L9ZsKmIbzk7/42ifIhiCqsH8/Gr0RvrANujhXdFESq308TdlOPe35DcWO5MR8s6/+bm/4z1tRn9odSgjzbucVAi9x8599IckKqI3BQrOGKxkNAgavSFZRMsczyQ+HelS5x8oKwOwwlLW49yYDoK9G3miGUYZ4HfjJBji1t3IlZ8/1gCFvG1+tF1dJSzdahIzcapcedXyns/jWIcs4PZ36NxQTaSuVtaTtq5vnb7ov8N7W6CMpEk/WJYhRq+w4AUXY+TcizlNPGeqOJnbYgWrYEMjUElgDxkUvZr84AfveTQsSIUgcu9woadmY/O/w24vhyGHJH1zVflwZqUxAfQaQsw2M+LCzHR5LcvsHP0evsT8iZPETWNqmhGMzf6/sDsjIiWmESUVh4zaLq1KGAeQItABRqS5DvmVOJ+bJc7ZT15t9ZL5UqPOTHb96fEmgDcR9SYNeRs0lxndvDpGPqTjmQ7DqrN3v3Y4eyVNlNgVRl+ETKp18eZJjVjfW2s9erCT8eBw2xn9d5JddyiT7WApbvSDzGOFAvL1b8tU7AttRSe/PbWRbll0rMPlAcY044V/I+bk4ir+VrF6gdV1ima0le5x37SnodPXxiTT8vWJRKZVERpa0+FwlbbeGtFf2LpW+KFdT7vogjZbGwx92+xffhDLTY+8PeEtZdjkEhPTVuvRE1YqLX5Gcnq/+RAewKQlU+kcPIyvPRplhnV/LxpQyDMDA9CasgMWDIrr57vZRBPCh5vyQ8TSjhqYr9QKMEioqgQasnpK7zG0UGkTtPcpto7zFTsy1URPoZurF/XTpeauE/8Ff38L6P8ueyG34A1ZL2+p86kguSXxs7HmLHo2QMbThfN6PkTFXJKRo5Vb4z1RfviM8S9Y/DkEhX71awrkDVvpLlGcgp78hybHW0qewF18G0gcpeDPFt77U+GGG9GyMYhSbulrEjiGCYRKDUV3+hBWBkj5LDbRRh+2gZVchMhkjFiPshxLhJ84rkw0rm+ehgEixJwfEMPfWd3pbxcHpPXj9sYUVJ93QSr7fk8J8ky9O+wNf2VxT0mBdVbLuvrFs6WFJSByZFQlZLSQ+vp6EQ+36DeGhkttdc+v6rq3HVGUoLMW1GI7HmxpgChaiTCefJWfAZKQ+KQEV6FEtyDLOhyU6CklZGUH83diF+7xu09kBD021NKvi74DvsLDnNzVYu0Zm9j0HP98ZhIobdsOTDExUXLmyS+2p8JFTu4DFVivBdjlZqyZOyJg4u0L3V7+rtZ1THAyKbT/KTuFjrjJQcU8HZNGRHLyOTh4KpeljJ9wL5qWSA/bhLyXgh8jWn5XFWAZRgltEEA+a31hiGGu1F8pzPMvS+mM5kRs8mtE9J/awAsUuVzOZ2muNxirvSsCNXT78Co2zBnGrBvtfSX4Cyvxd/btijeZ+jGCM+UXJ9oFUQya1qBRhfej7eSSHLDMURtnSFxiM2QyUlWQ6lwhCXiEGKh/Bt9fnYejgftw/M7vf4tSNa99BTkyDcmNzVVZVe3TEqUA+LInww5F5vxpw8dm+mCjVlebJy59lcNAGOShD8Gja+Ht6BCI9xgITX3WDXqo75F1WAfgTXVCaaVF6/7qCIvTOVoWRCFky82pv11PRBMH+Shm2rsG4fXveE99X4foGLQ+4XOgktE+oQ0NKqfLV4nVo1oeIb+RTr3oNHue4aFZ12Ribkn+7xJeBqVMK02jhPP8MDyMGCfJpLWnV5CzqxqA33fWwe/fcEegkOVge/S2Sd9H0g2ilLlAtoV5+b/g8kJXNyxmOB1r6PXZvVLMwM98rGLldIE1Ln9UyO42Rj+qO0NQHtAz8PQQ6n/ZoCSor17V5UcAm7R3Hi1m2puCQsCMRZO5T0ZKH2z7rKse0MM+bdo7ZQJfLBxZEsdiwYrOZBF5r86hKjxKjImtD45xTkvNDEeEeGRL2TdbV3bP1hSLub3beRHzUOKf2MxKYXUhmh2wPkPWHJWB46rPPR4ibfRk0Rmna5Vw+f/KEoCjp+H/itZVRu3R6yG4TIQWTlNVTFZqRXEAvDUoqXq5/v5Qk5XkkxlITvXb/26/mFU/DhsFpLfdtD53PN110f0nARTYi/oSXHJBeXj4XP4YZld2qmlIkpLQW94/7pMSaWUH1ujl1aWs0cxR7PXwIZKiWHWLmi5GeaO7vw2+nwtqleHrfA1fMi2C+s8Hs5CdigXAU2TejYu0CX+fMowDvsaITcWnDbcTR0Gk1LelMUsiBSOrnI38s8WGXlRHxh/6UlewtaRNhIA6VvW3y1cFztVL+xG96tmfPvbwoWkYPERsWpfQrvVjCvWPaRoMoB9sFzUtBWFCbvUF2mZJyI4NRWxo6RPy7kF18488NWRqoOixSq4+N/tdl0oujAfu/GfCc+Fc7lOodEgifeZVb6UyaFmQmIDkLi94R7VztPtuqzQEEci8Kvdk40Sw13TVkKIys7nzU4UIlqYi7vqZICp0ivI7tZ+Pt7ZUNx+PTLjYIrit0LSqiWx+AG7SEcukWppDHNFMXtnY/PfV+79ZEs9pA7TjcfgDt3YA5EdBEi9Fjclv8Knn90jObAPWKD5u+hc2WWpXqjpAVSy9Q3M5DQY8RLcWjcl42f88qO7ZssW9/F8VjQCFyDV8SnmB5/AEvsP3DcQdzE97t4Mqd9H80V6tubDJlv7cDWJtaT7I4FzJLeLYQm4p+FDnmDp3FATtHYXutdHaYBXU5fNL+BReRybIrjR9PHvHLwubVJBqlWRIs76uKyVz0v9oWd98au+OIa78/wEJCItBx+EHDj2290FyIo0Hos1oPxN09ZRs48KDvpd4ln+lA2kKryQYgMtIOOwbCm1AF/bFJ1iQ/0+Rj2CrVv9288Nf/ecxoL0jElcVlnQF3ERhmfaWWzC8fm8/kRMhFJ+0Wy9AhR2YuiRVevvJGN9cHovpGDWFvgnd/WYVCj4ymw6E8Tr2bD0w4zcrluMLV2rNnkBa29R7DwiWs2kKzg09hpoi6o1m4LV98PA2upEBAkKHJlNdnbuc5tlX8vv05Y7W3hr+KFZtiG6RRZYuJrT1+k8e9oM5APe9fhf7sbSLzGs/Z3+q7qqm0D3DL6ew/AqBOA8PN4c/wk5tTS7jKagKWDYFHb/tUnBfYkFlWBBso3Snaydi0a2E6qCyMH+iySTn+8dU0lV+K1C1cP3hAFsjhWJiJXY6AJAx26c0VJ4wBywI3uFP7m0LIzhZmZo/vnbqEq1sY2tL4h7eNYVTDH1pWodWV3Dmderk1f4G8pPhGgJe8EtZX0Ssw4enEIQbYYTp9Dpzn0CLJf41Fi3Fxn/JuHlibvfVRSpcXmhg9YdgMqWE/hljSe5eg5aYMCD3JxtE8uQCYk+nxH0GBI2GZmpSssqZ9EDNrmtG8fRPlCIS8XKQztSAqGA/GXgfkjH06YnXDns1h3kV4UVBGa+hkBCQFPOaoKf4fwn62gS988BR4xZuj64a7n0+zKzS45vrT4PVPziIyDB83WfhuQi2YBDpKNMXwzvF34/bjvIitXmo97puPkkANNBwya4MQZxagrImWBzWeFJ3EGOVMQraQg6jCD33otJY7jloLzP27x3r2iHUwX+MwS5BRf0tVrNSaSCxlg3bjIIMUAN/yz/hBh8R3Psc89bjNxHzESbrsjSfNDQLvHlmpMJXf0QNC9AptuonsZVC2/49Q5YsRJsgUskdaKi6YYEuPz0NZzocLDdlRTvVGkFJSuImpJaU9bP7BhheJdD8IzZO5vXBq0muVXbI0UK3xtTZHn6M11/vmqxhNXnio3KyomgJSkHYNU44nWCWtf+bEYDsFglxJB8Tov0nP4jRA8k2oo7EL6+qJ9HYz8azomWvHjhrNBO9X5BrgSHzbGL5em+smC2bXjZAJEOui//8uZH2qRfd1XPkjxyuJSSyP+E9IMA1bjNQolUi2QPRg4Y3hhoYY5bxJ+/IlN1jAyipAVxmPNVj0i/xMCxTwACRxt1Ne0eQO6AOVad5H7E1y3qAP5fgCa2PU8K5KHnmXdNQwhEpVDvPlpoi+kAlbZzNTiJpR7fq4QDUMcKzE5RbWcY+CnD8qXkr+YaydADP2THp5LQq7JVyYhFKiVLton3I/FCmHYaoYOGJvJcN5Uod/oP1vzroWzhxQi7XkYOUrCWf25rwPNA9WxpBbG7vWN/bNREmoOYAdtkJR4wQDHTnaagYWaivAV2Y7vMq7OSwgEoR+fl1PITyF9ynzz3eEr9llrXf4UZvygqvtZjHKXMbSuVlqMhBLRho5590j1TKQK8IauSkkN0ZZ7+NlNZZRCVsz5kLPV0jzs+NHiX66KnQSj5of6oJZA5jksRpxgt4F9Fi+HMv8HfMvulLibjYPzL3YGmvE5NKf5+g8eNuPC12MpUrZsh+WhAHM7YCxTBStrmiNipkbAOO48jKumYkpsbstljKwzeNEKuJKF+rBmaJ8fDUbnVKSEA80nifT8IybqC8Hn1EmbDenReH/EyEJ0z7nrLQcx2KQTsBtf9Jl3uYYzB1+WFFbdWO4jmMie2/kT7/n9Q5A1CjwmGixBeR1wj737e08Sw4nDM80MRfhdbnRhXvpqUk+LAFKJnsRNaZ+Zld5dQHy4/Dpz7TsT2gSU11K32hH7k/u19rs7d8ifzX2rV5CtR1qauxynFAnBjlsKMk5fYjNQ3oSZ5aCUtlfYYaoKe+xBEfyYITezfUZWaLAsOnss9mcGIHHwYGGKzHrvBtnmjUArozQsgMOTfo5L3UA4NIk30kARQZsplwHiW1SYAeH8gFHlEFGHv/lWwLMNYk/tffdh89+CFthIsIlztjZtcfdAPnvK1SotKhiEIeNzMAQbTc6VwdFXo9v2Xt9vh/Q75T2PDo2BIDZtLT9HhNZzZhKuZYTU9hycdCdHx4GjdfDGHsksLUAYXH4oeUrq6dIGrhYfeHO124+05sWRD9ALR+eTuP+hsnGi1piPrwosZS6Hl0zhvz4I9yVY+kYH3G0UJIbV2XRxNk/4XBJTY3aKzmEYYMeXbSKualgHfQ9qMu5yz+M8ODcvbTT02YO52R+zlIamAYKS1lMvBnt9xwPyP/0T+EpSuYohzne4OsHlJt8g+nUHy1YY2nhnEnM/vLeV+yfyKhJsKIAUi7KwWDXOhxsL1H3lCYlaWNuMfDfZ/ks3vGhRlr7T46tfZRe5uXDbq+X9VYmSYY/1LsOqWc0emBMt2EXCsp0d/td8OUWxTBwrFjzVdPYTXgVweUuaO6nRuPUlevwwxnfy5Y91EdFasTlK68eDtjt2teS6FBQNEOSNK/tOjEOiVDfNm/ICZDPLDUXD4o7QIBCULOZpEvTPG57zsDpqV3/G2CPqfTs7ocvGB12xB+UI+H9DFv+9MezaBJj4cE27ADW3TG1O4il55S0G3Hi1mz2nC/5dssI5BJ60aIoZ5UJCcDJ2bZbPQSJjUdzYdfPw2GLzAtFigAdaIAzQ819kq7Qc3ZdqCGRaXHvXEDXrW5UW4MFK29o3bidZRaeUAesyeH2WLe+cve4UE0ns7Kd1Q6XOSzAUh6HPbwQD8zDlf64S58fUfAgLC0j9Y/Ku3DpOZYYYVDo78yS9ObacEQfT8sI+u0MQkIVH4s55YGVMoj01RkhcI0RTG64BX+9ohCJNyTW2lB4wCBm6/DFg0xXl9MfmgO4WN6asbyS5RUwFIa/ULmCTdIgA2/zyTw+2dz3Br91vewEAkVFoCQiiYaGMnKuhcLHMUpqtMLuFM2YXNBZAqHOP6ynhXibnVrFRGMDNjn/9afzBDgWldAt8mG1OAGNQ08Cblz1cC27J6czuvODwC1pmnieOizsEcuCaURKkTIARmBTfN93WuXVdn6gRf6tfO0DcZjsUS4l6PJdNqNjFaETUvgWbkvWyrmrBfJ7bIAeO7QyQEf6cXTZsugxsDKZ/ouOAX5tj4s2CQgGjh3ILKciXk5QTN/C7huwN7iFGnX95OJp+0zCK8CgZzeMJqhyn0eD0pkO7QMKSaO4v7qQUglMi8gKqBC6iLNpMLmFV5Je63ceEORYQGdAd953aQycknJw0eCCO9OhFzPYQfnJ02GoNbnVX4MvfGBBN4AqSHr+ePQH/gD7cwObnjE/sjTWTgYabAzhjhNbhO3cebfl+vfD4hCT7oIJ9r5QHcRxP6cCV+c6rO2jKhfoS1FNKzzZoLw0/ZZpONhPJNREyv/o+tZQeiGT6nj0ZqvikFWORDJjYH2m7bj2OiDJTS4PUiiQZhHKLm2FkwxNuOE0d6fqC0m3OW9BMc+u5+gr8LCkvYc4AWp+rG3bC3iEEPowq/KpOUZsfMdMHWaegsiAeFyXjlPZyvLDHa2ylloZ2QLODIrJUWvC/ySqzVDBNGUdSKYYLeitf1/sUJnHsD1TfnbWCOYUimBPeNpxg0MAqRkd1RQOzJ4DmKFfZuBsszWz5O09Ht+O81bk554vvr/9wUNmPLl5tNzYRWe3o8PedpQRvNkqXI1ASIZ7wng7in5GrVKNqQ8Dij2Y0sIF42n1ZR+t85rLwiz1OO+Yq5zXqseL5pp//ZvQuZmBjGW/ePWPx3XYhmermu8T6kv0PW+qqng6qGoRgFLDSZ6AkaYtD7OUPp1/bLd1ZkKbQc1ajtWdxZaL/YE8Ox46T0s6ZCqhOm2oY2Bub3YddVkEYdbYkcbJSu1zWTw4KRCmRBGln5ctgsTjRV3/zdfk+PKdbmLhVrLnQn7aFR8XiyUkIs+KVZpTshq6sRVdXMFsBD+SG8zxTCygwWB/pqywZPN2T0xZksEGkH+A3owbSOaZYmYIEyoM5yMbB0bZaUyMccmLxbXJ1rAh6BJBlQfs8YDFkWPPqZzT6joUzCeFd6f0dg7Kew1k+bOPBXYyl99YGT/MSW2Vl0D0EA1zpt0z+VZ0XicN4npeThFVm0tHAhrgreX+mw/T9ad5Img8rNVd9EdvtW8HTT6echKQKKPP0sRWgnJyCZmt4H5mu5ZeYWZWxNuzgC07K909RXhb4AtXL+oZx5Ra3D4QD+ZW3JHPdYZjbHTJZWt08mtXlboEtSlIdIAZmZHrfFVCXLO4mhlb/sZ6Jga/BnFgbphL3dz4VUY6NuNKuRzj03Pd29iOseliguXb5YhWaGNRgERNHZEoqQ2fMbqZ0dA0rrc6ja6Iy/49KzSQ9UheskT4vMZXEnEvRVMLZ+/s0u/B9VoZoFw9crO1D1rNbQTC6PeRACgL5Qb4pF/NlumrAAMd2QN+0jTC0i5TEGRLJNhxu0OCGF273+EtLbmlKR1Z+UzudCxoI7/SNJW9NOszqnS/iKbwtl/XM6Ef9YMphBPFiDll/oQitRO1ELfjonqUIU2+PTnM5D56Y6G0L5Qupcf+6ntom+IT+ZMPevaGf8UqRR9kjW2gKtYQ8eyMbD7mlCBZzJj0uQtOzVq2W2qAq0T8pfzbgNLJAWq5h8BqMERZZ+sGnlWHd62ZFo4B1YpmpocLPb7RkCQuqftaHuQONLcLFqwlvY15j8Mzb8SPa41ddGlV8rE0G3qjHe7A8elIB4sg9llO5B75/zyYXOsHG3+EBsINu1vWikCitELCUV3tQwS6nLwHEWrZBS1tE3OvH1f6EtdbEuEHlEMXmTKai/5DNOoh48LlPkHf+/Y3xLwEAKb/qUbbU1OFvHMYIRIzsD+ydhaiNmHZF6Xm8Tdp7BZqSK09bvytniClVe9ML3106ISFP736rVTlKQu0FwDZk4lk3w6pBIS/v7nhGfTt3UCzTB0D6R/p5pO2DlTgNQQvNVkOiPhrOAsfaHkIJLoY9z+24HrZ0i8VQEv7/HoL4aCoQ9Q+Vv4lU0DFP/mYJZJszW25/de9MBju7mKnLANAi2UaPfnwJsYi+BJQczsI/XXg+FnZEc/NE+s/5oOB+l03+sA9lUnjFQkAIsuOkS3C9v1YLgUp7w4QjxPIiD3mRSMw0U4pA/iFMtmA9wFtC/rEwRUrwRiuF1N9C81wu5i5cTYUAViJpGH21WylfUnXgFPaA7BTFAadv9XnO8oupYOAd7yVdyLOW2KyPWAk1u+cZ7l0EmCzSjMGoflVzqB4HddvRsI5SxI5PMywmhg1+lAPpI/QHcU6Zl75sV7AsMHzfJc0zHNPL2gVMP3tibgmD0S/Ef/OdayxQldUKs7qANj8NIXJ/E/uDRdt9eiSgWwGZbwdAsr9XEJfWAYpWeharL4NTEvYAT4aHJvNo/LOBSAQlKYqRYbgFlO+eUwfzm6S3HnUc1NX6cSXaZ61h4fIlOyIFaBTU01MRKIuItTTGEGHWvlPoB2R0UfHvgrcSKQYcuFO9zfBqqb/HE3mB+UbN40Ku2Xa3hYxzWGmC9GkUlFqjzT5T47Yg/1fUfj1isKy0Bar+53Y3E+cgAHzSIvlX23ZZiNB4cn4n3mWn3wAbqL0/nboX9G17HmDJ9zhA8RZTqObSmc1uTjYYKnbdQ4w/PabahcFricfnKTEqxn+SKIUGcOMbS6/j1sTRChIRXUVLXgCDyGZGEhZ42bjQ4omS+4iTHwjogJ3KfjRhTAT0ZsMX1Z/wO3LdZjcj4VnOmAWeVSRorglEKFkNwx+SagtlcxaLm+oAFFs+7qmlq01iulwPv2Y5JtUktFy73qCovm0xzm2ZKHVxTBeluO8aD3hVq2Ls7Fwwn8Qakuwy0LxE+qoVtFtKkecmj5jPajqZLVDPl6LaS1B1LriggkxN0Ab/PJuEQu+FuZDZOsgSSErmdnxdMnyAxUJkk73DLl9DMVXGgGcDNM0kzpB7GxFGeD8lEOaOKTAY+0yga2nHYGvKsq9z9ZaAZc3t9N8+f9vNOdQfEqzuX8BdfqjsbHM/waEz627DlEBCBrcQmICo2lbS91xBrVkZPG6XRRW95vhPsT/mVZ+b26Ur2dCWlaQVDQ4Rk6IAgPlFojhlmUGk3VvfAQLvkxjlG+PVVSGTAEi6V+ahqNWLA6nAPzcgWtAQKQxhem+8uTeh2KhcjZAyqPstt2QMaKpJlFdTemjf9HSuzMjgtWD9ORxTjDoFQMSPg0mFbTZJRd4E21+yapF6Yf1Fv8q5TKlNfjjpQp5rtKRggWvv9HfJAW3oBqSoyZjlQcmCvm5AauryHfs11bAXcHdpz8l8wTrp5yKgn1DdI81hHilvNnpOaWJMJpaY4jGJ1hgXwSF1RoIDNGF1Z1csOj88KA0Dz/kguvUualujyeI0xjREmpc6m77dFAj2o4Bf9KkyvCjJWV2yGJAY4lsTByXIghHS5b2TtmnaCWO5/XH4W0dsvmCGN40nI1HthD5DOUf2qBHRUKHl3kTO9hMTyyRje5gn7dhZAMpu3cig0+EB8WXGpAgSRY9mHC1PRVov8zjY7xNEFxUP7C0u5m9DPVa/O19nbWMy6F8mFdarcgaAheP9oq3QItYLokZARZMfwql5UwVgnY0lOFrfp0XrZUeK/wMshSbTvfSXr3RCO/G7ufLLB2fqCUclPHkzcxyY1NuU9yNaZFtPlUc/7ZujwIHa4Q5wAEVwovquZZlBdjGfCukZPIv6dXJaKr9rnij8tVFCjRntarxE5+DMxDC/MXUGiUrzcF4B0M9QPAvep8NL6E+Q+JzW1JG/cVcfVltJm0/30YNUGa7e8vpw1rY0m8ATHkrDB/3Of9uspl0t6X14O5IvPro4/6xlPTE1nKcoT9VQ9EHMTF+9U/4ELWtt0yJ9eHYfbsIQabyomhEPtPQ/PL+xBcfMIqoJmJpjbuTwj06rhQFvxpXA+oXQ4lOQnofJr3KD38SgT7rFgQeUbj0f4wJK83B4Il8NUJD8OBZP+eDuhypv1q23bvkf3kxuSIRfrfgWc02fxPuMusRdRBa2sR8pqnNc5l10Mxklbg5W+B3VBDa99wbRtiFZLT93yUxux+uTsDjwElrDvcdMz/KX6kQ/j09IomL88r9Cs8e0yrESYrdpxwoAVG3hMyGugkKSfYZMh+8VS8XEa8iHHp+QqZRyS1VTLAvaJ3ppM3LSiPa2Q3PqZIAkODNbq0kzMPAPXYdMjlGB6AXxZIYjxk0H1gHVsTXRhnzQ80WbElxIwwzXni5HrM6DD0xggbUuavez9XiUZkIykBGvaXy3D/MGV3H7PWpa4c3LoO6PUi0Og7i6lC6gpjBGHuiH7LAwW/sb9dZaDAeHz0PhHCXRgKHxbPkvV1LssgfjbPypK3tgFl1WCCn14Ge05GMOKqoEFLEbFZZvIqsoLOKAspHA/0n+KbeqGBE8xAu8IFZAiXB6kb6dON6X5IRlRBQir3IDrUslH6JelmATyvxlef0+7ZiYGPupkaauI8aP8Q+yIdg7/gEj4RY10v1+bn/j9XYnJYQhT5Ea2km9OTRELx/MFVJWrvf/ttiOmnNiKMyU46Z0SrCLDmRzu+Ru/9pA6G+5rWEEaGkc8n36WxNCo2YUxgrP8uM+qTAYHo1Dd36lN4jnvh8Rp3sp97Nx28E85nPMRl8hHNR0BfVSCXUqpoe4ma7JomA3b19yu68d5eSS20lMo5g7Y5CrHTTbW9UDIcRYQaPmtIqIkyqxwkZ7XxU3sIjD7PIBqd2Ui0LYklopVH6fvnX+M8/GBme+xy0S6F2MV7v9WOTiKSUD3zAXOSySEX83Xcm7IPrAxVs107HGda0TVd5gT22si4mq5C/KqfOpZqkr6PlMEcmRVOKC5a8ACRtfTckJGSt8jUEkzC2a6/K5UNYz2yyRVkzjZwNu/XWpl9qwF3aQW54h3UqUGtR0pDr6C5I7wKFbxko1BC+brwxqLrrYOWQz6BxopFL3GDMZprtngPVafb9jA8iGUflJld9ep7OgZaeYSYtGjZL8S9pt9OP1s2k5tGZPxanHKY2COYETMcpQyNDRAjIJsdtvMADkcaeSuu67K0otektVNQZN+9U184Rx3/ySW1EtwIxc5cVDl5DVIjz82vytJ1ivQfhOTH/FJMEvtwO5FbzNKmamG40H0tah2vYY8Z4c/ghZb75slbv+4xZlUU+owkrEAMZ14h03ajsUF2D3hwgRH/bbEX9SpeJ8IgcRP2t+S8IDw67TEctANixhbjq2tpyaWWvD4P7Ts+Vj3ipR1XSUJFIHZLbdr9iVhzDrxg8YZoKegPU/CBkAIb9j2nADFJLzyHdZmeuRczgNTbHQlOD+IWm71CJ2BjMlD1ecu4Vu4HmDqeKYWsZXrsJ3U86VGi8kaBpnNKwLb3zSAsBF9HZkvy1/9JPw/hw1ey5EItlYUy59qU+8ADUynpemguHKohfrJvM/Y5R9mSXh/yZqBVSUKCV4jipaXWQgSFK4pPbHilPEXLzsT+4LgO5riZnqGi3CYd76XApuUcc8K4BTXrPZgZwTZu2oFdfyyL6gA6g0kTkpXff4awRsUwi+vEQ5Q/GoAm0/+k+09N5ViMRYJKC3kV/GyZBoLo8+4Y7DUInMjKQu8DPanDYr7lDclxATVZKso1NSHo7E4WlnB+DDOlke8vNpiLkvZErDJgRZD7xVm8Xe9YYJlZWmnlfKLwdVy4Xe0oCFZB2n3Eb5n1tvI+14boIZOXLloghYoz5uzpDRgPzqrvntSS4U77hoNGAMO4muF5qfA1ZWEF90vQ3r3v3LCApCG0z3eQR1XOXipw4Hc5gvNCBg/j9VeoVCbYPgN/e0MKe76qSY4XYhS3ZlxXxM/xbQCE2CVv873n99VBi+fYzUgRVfjH0f5KqXoipKVtvBI/CAJUUayLlydC48iUgTHsocZL4Lj+3r8b5jppkcN/LbvGW6cuFU2AGew04KYH8NavmNSB14TOzCZQ3g+BZH7D6eic7KWg4HpGP0zTWMRs9jXT811m0iyG8XtHg8md9Dx48zrzwX3vW9klatATAYvdYgtQZprDLus4VYRWQwaUwaP/eIumS73w1De9bqjOfA1dAMbf1AmqV6UwOLkFY48OdmD1j030P0zI/Q0L0f8bUl3mf7zDd31KukOkRps/8bzd4SfH+srXN+I86K3cre8jHGAH8PLh8YCm/jeegqf/ahlcc+T5YGaMwmGsOlct+X95jkw5w1EtBiT8eZj8HuvgWUSGGeAOMCAWkThFX7P/XEMpSwie9WrgMxwB1QFTuvj8CkWGSg+HYAgXzKxpH++7SHl8ukpwLRZmo2rUN45zbVwdZQBXlsm+G/2w2l4PSTmkV+M0hs1anr62MivOWYa/9sIZ9SxJIIAWjx8SpuhXL7QLOh20mWfGuIrcvP6vdCLaXnytn+aCVb7mfXS2+aY6aBcUC/1TyCzgBBpdXTJdwlaLitnF2a7NjA4CtNLSJ0kCOWP3uY5jLrU9qjaU4Y+9qK0zGnJZdlQWhtMctiiReX57mI3tJgkabsGGpPn8IYxIKMaiYxPpP0JVJqoBwCJZlxis9hd/yTdUN4zf4TFP+lnSiADImLN32q1Hlx1O9fJE5LoG0vla4v/0xQyH1YqcVp/Ez9gKqGrKj2LpvIZ5CGz9aFsOXVqXa5Gf3MAL5A5N8X3bpH6If2zoWciKptUluY8EfVtg5f85htIoBEVmpMDWgpOcwUNp/9gZXj8mMSvZ8NNuKQ9re3Veg3vD5njU4ieyTxFrPAsiRkL1dvyX++1bF5vkCHA5N8OnXSJ+dtPW3y2aYBZOyBXoOx7Km19Pt+cy9V/cEjytnhBXfKyTuGAdm28JMyP36xgZLf9c0BHHWpmq7M9i13shqGPQ4AvjAV8MgFrMCWz0L0dwlearagyl55G4pzzSG03N2Fk0u5a64l6dW7szvnVRR6VorNuoBzUq938/1xOSNFNCrRKLmC0uIhvjhvGDyMCYR4sjQjyNle06CZV9xZcn+8ojGHARre5Vkz5128V+f9Ke8nSmJl1R3PfVyYuvq1XZZuLwL/yuriDGSita+MwuRREgLfoUsMuSTh7ODGxMQrPVjuMrVNLqhjqFveVYeGhK0udeGFoCA4RbWKimaXLNzLN5fblhG060eg6uAegg7qCpzl6eICL7iYhFr9yPZy+bAW/q2BsL4vy5QL0d2B58Xdl7nuFmqAY4gb+IaGDknq1hp1e7j1i2Dy5j+Un+1GAwN081MtPhu5R7YZwhRdT9DbCWzusdu5ta7OoLTiJLK2fPsyW0tldPgZXlJE/nrTFKmEBJ4ihNHXbNvCwATWEBnyj7W2brAabi2rVFlfN5gJ9sMHDBbmcVQzWAyFHJjtjw9tsRWWv6t+Ejan2bvoLEkgm3n42j6h0y2WAoO9ffNYgFpbh/EXWjv7TuJrdrlBlsd3smRFwV/hqQTNTkSsOxyI4gSKT0Krb2/kur/JgLFrWvw8WcGdBGObCl09R/YK3323p/DnO8YUF8ZPd2zDG6ROIExR2IuxDMJjuhJWz7qctKEEzvoU+Dle4gyvxSmZz6CB0d6sLYH7n/+X8KM7WKjf7pKPtD1DN2urSrg3xdAWLTODA5l8m9tJ9ARJ2Vv3Vo5lLuDHj6BgnuGGGVEcazA7Uj3WDDbHyalhp4NxlxVVbkMosWa5CnExZ+56FzmZV4rkjPk+EakKhnb6jD8MfJzaDqPxeYia4NZcNg3EbF99nvdUN/QithL6ZP+Jaa34mraum+nAqHtf5JnbUZoGpnpFg7Wyie5+I739S5hqmRIk4Bc0ZHDxtNEu8Fu+SAiuak4Lu7JDTLA61DtkhDjXYlJO5NYEONHV+GRfSaOC05ivrekYVchcfoLKKfJDOFm6hmbGD92l8AWLjXUtC2XpW9dfX+y1F1HqTQXRUYXsb8FDyx0phcFRd7oLZ62cN5nEzr5+BhzBq8fnEk7ei0OMeZPsnMsUsRPmobTIDn+P3qlSgBEQAaIurW8PtUR9SFoY7+PU8YqCQ73NJnVABc2+01ait/T8nyYbsZjmYGmigqxFpI26ys65AhslcO8egi598vSCISnVo+oW8xBvMNnXwzd2BaLoiQXSUuN/iEPhzvypPFstWaFFkDd4KZ9moLUDDIADFZKlUZE+JGzA0lfny2iI0IjWCYt+TT9CtEDT3BUGEXfnVbuuz1qJN8ryLAG7RMJDpoDRWEazNiXZs4/z2VZsxLssJd4nKqdV56FgQQxxhd9o4jqRXmr87yx4tXnuRvYYLYEKVQ60HdJ7YYXeaICznsg7WkgAH3Pl9QzTzMJIM5T0yohmEAedw8y6AjbJ3FvoCW+MWYUw7y4nuraOMnGHkrndnX/YI/4W2smr5Pd1MGTl79ZK2ycagAMkXyjboAEakS8NILVQ6qBFwR4n0dg4eqKhzWwSjHMMtFmdE+/aHirKn2mCHMty9O9pK5jE7f3+8aiiMHzPEGwCSC27/RTE08cOuUsodcz7T4e/5199S3+XyK6s8n0j3emkgxIqL9Vv3yKr5xIUFjlN39KmWU86EWPh5T6MWlTmBHpGZUyJZSNc+0DDtmb24hehsx/8gkcDtwasuQS/goe0CHFy31YNKb4EOTXK13RIJZj0fmoyPDsEbgM7H8172FmXuncwf0DvIdhg7+IyE7YNNwol/ORzmNxA3Isoqqv6aHu8qyKnmxQZbVb/cEouL5I5ebT0/RB6nvss+pVzVKcB0rE9odPXRQsbqMkk6R36+VAoGjTLcrrg4agA08G3rnYVNPeMWWMGqB88WdjQ5ljo4L3aLUBD0ysw5oCT5d81pCUbwpnSjdIupvvxC32JAaLgHO/awIpHBkvslq+ap4jP43K6JAWMganN6QyiD7uac+y/249MC7hZXYr4pC1/jsq/r+fgrpB/FQ6+ezUfXxD0RdMM7yfwSNoa03nANfTllPLfqisHdGzUc+wy4p6vs0QzuVWn9xNHwYViB8sB/QhqNGKWjI3r3NCzZuuUBI4gc6MrbLfO2C8xIjkJyKcsYfxiUUPnHmdC1IkM9ZjNqHwxyPkCDq5w+4TwXsNFaDrevjTKeJ91AnGpjCeVfwlz3DrnyF3rTbolNLiHkoFvKxnq569RrVOmdAAOxo48rYHi8ihfJ43WJXUI7roERhEE69PDAvmhx0sDiE5vEG8OaPpuwCpdTecNYIcT04Rd6g/iM3b/JL1ulL++NG4ykG+Z7tkC7m6Eaf/LcUB39WEHE/yb3VWgpBq2JeZC6gXKbcV0sj/IRIsxiGhjx1hTRHTBPOmFVUjFOs+vay3rYmh9oGpOQkftaSgR+9wARR3GVROLwQnV4tmhK21FzYYbivlygHG0M3P4XW8SAN1kIDKQ/v9cfPKcbJePRb4BlWO+VWfeLKPMIN5sg9HqeMOIQkubfAXd51pdUikTuIYS8vfazndvhqUpsLwPf7nAoee9KZdafmUwS2vNuuvESuVqUU+m1I1SR6OUjbA2NbrDJxWaTjtDu5ICPEpnujD/R7Wkn8A0cK7JxlyGHRuCCfPb0XoGSLOUqg8wYp6lRJlr1UoYmfbhbcxLutpLuYc7vEehvdUU447tO+ulQ4XrhUhMe8mYkO5l0RyoqMN29170d0dE+PN3EneiPSMjVk4vXbA2t6FrZWwx0pkme/uiSn7WLYR05TnlYolNmHq8NrfOkUDBqs2rOXIMXHYXv8rgh7re9gzlCB9cEP2bWQWM8SleL5eLwd3nixdIYQMBvraNGyX/AYPaGOxtvB8ke97CQxt0V4O7ytvGre2HfCbmQwXAVK63aNbpciQPL129Akf8ADl3ME7yBwLdnU7SFrq2evqTyDysz1shnjpTiuL4ezpRSG7r8SBp+4h2wfYL0k9Rx72y+z3z9BYh3b5xh33Wk/J+t8DdRKgQqwjXFjNek9MHJbPJePR+nTTJQQqVTUTr8IzmUZRyv9EIEpHCYLJtRJlf4NVF+vV/DLwqEFjJpCD/qKfjVq1MiUEMtLPMo2lV/bRwaC3obul3mNdMfUm6I+mApf2494abcDEHU3ivUmCgRofTYAFHLG1E93PV+yDvc7kOS3wSsz7NAMv+g/dyg15xeHcxRntxO2EhsgDfZUiFPTttjl/jJPoAyFX9mOO0OqbN9za4ldc5olAaHBsISXV5DiG/C3Y7dYwn4zHDm7N/8MLs9mJU2wMaUbmDMJ2DYo/uqpOocbkVjDWzUaAO1IE5WwZVHtU53c5pNqpBvpUDUsoPy6kkZrWBk8ojbTIG8ahhwvTqCLBOflGArsClQlR6H5Y/0+El2/UZiM2AKADGLo3dqHLjUPwV81HhJAyfdYclfrToNtjLH8PsYmCOZIK4bPdJDLkRvdxxys4gKTKoSWuXq5EDZjy3iavqxDSIiY+CPx9t81lm1BcsqU5E8ARtRXtftZ4CZgs8GZv4JLDq1BGZcze2lWanrl4L72w4Y/ipqHmOSArH+UAdv/HEmny5LQZxYQZCUR0XPeqmuMCq9bBpeEkyzsAPN5MMpn6rDdlttIyIKC4Eu+gdSV1GgJbgkzV8PRK5Z4puahKz19oyjwVvLktkWmDC7sTshN5VNm22oNOKnpfdCJSqruRMqi3npRarPB49rLXWxyT2jgybMx0CsPl5y9LeHaYL0B4DzJYN/nPKhwZkT9PPBYcBiOsawztTSD/TenIItOUZtWfIpW56i721vQ8Fik+6D44UDTpD0KEnfuYc14MltEiD9FMpN1kWHgPoyIUThIbD+5uz0elpX2G0la0pEbSfE+6ZqgDShK+VK0zJA8C2eZ8q1w6KctC1t/n/hxuh2HqRG1g90kFYyZ8F3q31dxbCtqLXi+muTnLk+iLQqr/UtjnK3NUcneUIf0b5YwVzsSYfbIIGZZ3L8bqMacYi69WxpYo0EqFWpOYDUz1n7SkaZJptFBZZwIFEZuCEP0paQCCI99cu95SUS/P5OMRmqBqDB5k/o/rkekeVjRVHiplR+K4kDFm5R+jhkOE7Ib57Jia88MmmoZC+ApjNqL0YaC+lsVaEQITWw/a/BQlKIdMV7vTkZo5F+yGF6bTYWsI0dBLWUsyno7iFxdloQEIQ3upMoKyFEnPHvpcAAozzjsl8/A7STjynZbrkuX1saGLC3IrgEKQXYwTExnlX9gTASSBlutHRyZzbvKb3XvXqQuHpTSeuaRprxzwXWoqc0QTwlOXMY1ccjyiiPj4Y3wjMmF1bjJRujZ03rbHfJssHfROn6Go3Ye8Id3dxqN5sHiXUdOeUlVimSzz/5V2jEnvaFJLeJEuXRp4JakeleQ16xnkXlF1PyygnPWOS49qUng/4LwSK/AROdnLggozpV9Js+QNvFCdLtlgD2XCUSsDuU+iPh/igbgZcUBeTcyWtLYClC4oDvH1wzUFGDY3v6awsfEHs1u1Fs7hUAl5KJOcNOQjtoXn1XtHNqcBGXexoMLBEqulG6NsHKAist786KFunvHo2Lk6HrIpOHsxs5wvMTWTs8FWsKU6VEL0PLtA3tPrW/feld0BYlmU7llGrW+jtoI4IiFwqpR0SI1cDeKupiZAxgngcABm9XcXE7VDiJbCc87keXQjdQX3K/UYMf6oP/mjzGkRt2Xd1XZXQAZyRytedgWN8cQ94zQYlR4lVbS12i4BkBn4WUi4sh4o120s5iTce709X5U3XxJsp2phpeHZng+bJojdwBxHMIRHx7zEEeN33j4q5DgApX/mIfFAzbYKP7md7qAazXdtet7fB1kQhv+/vaMXSppQ3wTswfKnbJIvKpesA8kJXRw3sTvs36HUG2iLD07PdxG9eIxrBydOA57toe4tkDjYMkcrEUoj2K0/B2pdHqHbPUls+w/M7mgrHTyqkCR0DzrFIKBVWCnQO66j9qTRVLc5wv7a/fCIs+G8n4oHBNyagDqQFZcVEHfgRxOD8FS3e57iX66qr9sq9wNzgc9H8sdr7D7qEynUFa8UNPeIclp328l/tfbI2tuRk1m/OIF7JANWbRrE9VBAIAA+vTjfk3KdAkGwr486kkWcFkevW6FKjMGGm3Gt/epsow8COElCPOD8N7/IQVATIqR0UCMkioYSL2KkSvhIjeARTVzSP5U1rPjM0aiUlARzvOPlK2eZBD1RPVVaBvCQQHMT6DKCF72ma7e7J1TRzqDyWbhQUGeHD5Az4itSiBZG5xjA29rU2UQGN4CU10Xbo4YBu9v8dPfb5bMw0hlgG+O0qTC7KgQINQQGADHy3BLs1st0pOL2Z2hEWCuyreHuU0gYmMHQuDtI7OS36zImlAu+qYScpSSdbM3xakuvV9vBf0+UBx72L4OdmtXXUiuCC4hY28KcjHnV0jUG2HA4qcPdjSVWM+xkBUeffJYgvUCxtEzTCaGgrjKDgQhBYYJPDZ/Dubbd1qeV7mTtsVfJNnNvUB7Xr6U3TtIcYv6lg8cMsqarp12zv7h2TWbHfE/tm6H62lUM3tFmB+8Ke44rxeBXE3gpIZT9sM+eNE39bW8bg00QT+YE2MlkcfAzNl26M4aPHHuU5tD8d9dJ3PpkuWljLnCbBaTBUhagvWrqUD7ljxBjn5Ir0Pi9ofM2sFVbSNA+m9xYYIKZgLIkGt+XRjX9RAYV4kJNbQBnOJYdPK/HR0y9vy9+iyi3IUhL/QT+hbe//dxLGTNeN/5lpWm77MrkiVTcjukwuo+Zn87u8yOpDqvATgXdomgLWVUzkU4FwwtbzAK9YkdrQoixNs3Sgr3g7DU+gE2Z3xOAcp0lnY/hvw0eH7Q4ZkrqdJyWbgAHWzHPZ8HxDrrGRNGT3IC81w4D2x4Vd4RoapDDyTqymTjnZHuQrIxwftxq1gkQCVhw5Yu5YHVz6467YtYToTQkv8srA5TqaVEgav3GwJp0Xil07VnocDcl1DL1wfGPcIH6O7PcvenbBRH/dkGSvrKCQRZ3F5PLqUR+eHlnQtcJGTgbVIarWDvjxbiRhIVk8phI/IOHzAhCflORgNdw7vn8J2n81GI1JHxY/Q1zdJ1rciG5UIzhX6p9wFVbWINTzS6d1lx1DvvFau1G2WgvtEppcbh4NqtC4R+0yQxM5L7CPBJ+FNE3Xfj+qtS9/MOfDNs9YMA4J6+04lzf6qLp8xM0Qg8Fhl3q13ztbdpGb7TveWQYsYLq0R1IrI2GhgR0YYPuOgFyHu2cbauqz2DkRmso4FKXE7dXTGO2PDLdKCIJ67A1N2wgoZ2dYtex0HUt+dmcO+c5rU1W6Lejt18ej90NNxU0/CVKiPtcpapXAffQef2MuLSZpQywA/sS6J4JQjKraYpmSaKiP8hA6xDcZZFqzorhpGyb3jFJ+IFz1B5o84aX0TInw1LqfULbS5G2fiN7r58HqR0xhIBf9lgkyWQ/S52sIJr+IM6iwKCUUXKnK6ycuBk2uOykeln7dYcxYguap+ORXkAf7VpQ+WKThXw7X9pwEtVBpMbzB7cnJEEhUYmcrk5XF7gZ7kUKn7dKct0SQuqmReXQD/JHtyrBugEMHQ92Y2qW03UFDqqYaI1FfeTmb231qGFb7HkSQEcW1Bv/i8oU0T5pxB/q7uLtj3cEc7JyHoandj8nnC31LReOxiYzYvClmCTY1ArQeykuDqCu3mB1m5YlYMxhUBcQWIk6Sw7lqdHS5D5n5IB9tlFbidOTik43pNs8ZfQ3+1nKrYXQ71ZwdAwNeu2j0ozgUfGIP9DToJNmpFeuGAHFLSHFo+yZmdS58wyJ+EHTHN+ZrFaRx/nzmEMRGZzZxtIVSm+9+rZxa2mwnlUE5agZVqiIEmz5tDvvvUjOevrldFEETkykyB4LiWO5UP8l/JIIqLxHWv58cJkMSQuLhcQlwU3bDEMiLz3OCscsOcI7KBjmUI/xrCjgWkQkTdYvxV1CcFO1zdtHT+miKntnS2D8lqWTS/4IxfujLuzlszO6vyA2ZAcpRvkLYqrvHdTdlthj1b68RL2h2JKAZU5rDWrOeuST6ejgS1CPswRUdjF5wYAV7RZsHaSOU0bEuouLqF0htsopPGjPeB7trth8A/Hmv3xxXFU36pG5V921xyso9dbEjM8UCD0ou5FFRXFAVcZoR1Qz1a1eAv1+ttCVZjtingm2
Variant 1
DifficultyLevel
668
Question
Rearrange the equation 3m + 4 = n so that m is the subject.
Which of these correctly gives m as the subject?
Worked Solution
|
|
3m + 4 |
= n |
3m |
= n − 4 |
m |
= 3n−4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Rearrange the equation $\ 3\large m$ + 4 = $\large n$ so that $\large m$ is the subject.
Which of these correctly gives $\large m$ as the subject?
|
workedSolution |
| | |
| ------------: | ---------- |
| $3\large m$ + 4 | \= $\large n$ |
| $3\large m$ | \= $\large n$ $-$ 4 |
| $\large m$ | \= $\dfrac{n-4}{3}$ |
|
correctAnswer | $\large m$ = $\dfrac{n-4}{3}$ |
Answers
Is Correct? | Answer |
x | m = 4n−3 |
✓ | m = 3n−4 |
x | m = 3n − 4 |
x | m = 3n + 4 |
U2FsdGVkX18tnAyVktmNBVwjVcgJphdnEzT3doXCJ4BhzEAnPI86TP2R3GiGndqFg09ztNZwS4Fuh5CEq3+CbgDxg/4gn+YxkRkbRGamdTk09/DnAb0Wjlv/8FO1L/iKp5ysukotMr5to4frTH+ivEHne5mIe/KgM6dT7L+f703xKfQqtTl9wza8RHKzjMwQKxkS/QRK0Os9rw5/jGoMiVIeph4R8Fjy7aRNr5WgewlMzdAFeUAOM5dyQI4o+9YcQTi4M3KehAuSvTEmI/+eh+jRxBa+mzFh44KlfNrj4e+Ur/fnjSPkva+WTj8KJr7Vu2PAKX/Unob3ABb+DRUa1h4efj71E0PXAW5/cLb7NbuJG8qJwxVPHdPUPrtiFp8L6XwYQfCDHcLuSdszglGJ9nXAjOym9/nEbbvJUuXE+giIKa2ol3lClNcS2Utf0+bxS/y/+QsLRkmmpDNxU4B9Y6gOCRIm7UyTcHcKLrrcAYa7MXOnvWS6j9ndJdeKXcj1CJwjlWvhfv8eBgeuKGxh9ZKG2ZmuBKAAAh4GPBy7d6UmhPRq0hdP7L0csiN9twcF1bqmYz7IjFwN479W2XtR6/5DOEnZdgQ8eizP6l+yWptd7AwYaHjnPcjWIRS0Pvdnl5bzKAz28dDNvt+o5JzwwrJrrHPkma9WHxvK0MdAZHGBnskVGyTvCrRKjRzWDe5rksdDah/vD0YonLj6oKhWVjPyPQFGVMnveGt9I+yLoq0N43pGlqNJ8aO3BX5is3OX1q/W47Lem6mFvG0MHFziGZpbzD2U0/wxxhXTSL2SuiCXKdmRWSGKYxBHp4tzUtgzsN/thTX4nLRMX1fP39tuA+PjuTsOdeRX5Uoc/paLiv5GspdF8/sFxtihTJ76c/tDbDVcXljsoD+pcchxRUY6EikcaFtAMPU3nk0Ej//6tp37o3amxJ8Nu2F/KbpmFA+CPYfKyfdBtQ1biWXpGNpHksbYVD3URqYbohuKZiPV4+psCuVM2H1DNMISBXHUzIjioigPU5I5gX/6S/J+1s9uZ8CNStZp4Hps2m5+4RYFMUDYRvi9YnobyOsrxSsSMWiKSiYm1EdZJUl00iMNZLJfwpc3sj28SWXjuZvK/+UjYLzGM3m0o/dluLHdK0NyqF/cEPfcYX5o3xTsAwYGUlUBaW13QdT1K9yx1BAi7ahAKnzQzMFQXqlvEk/DHbxGswVWt4HOwlRL7ND3tU+Mj7szNVpsphcUo/3lfmSvI4Hyt40v+jycBlAw0nfCPbNIySruQUhp81Tn0PY+Ke9T7SP4WfIgy+nU7MvC4CFEPMxMm9eoVevV3wrOewYPx8M8iUh/Ez3KkctKAMoG+1AeIn1pfAoyZafpDiSNtfz6/hV/z6Csf3OrfQ8wRtRiRnocazc+cKQlurAmKYpe5jE68q9bH9hwPFN6DlIu7k6soSNoBqpy81aou5dOuhnFQOxWFpuuChcq9vQwyXxB2wqAii1gQuXj26W56Vo2yuVvPFfWG17vamOZLSUaL4BgPYSTJzcXJfmhbLZc2qzQxjPRKPIPq0InJKpEusBD1ltgV5BJG4avE9gcF1Cr5EKG9tbgHsSy1JhhgQ0zWYl+hy88FzqIbNAyd++/JuhRIHiWJmkyC/XLtZSaQnX82KX4j/l6ty4y/5wdduhlf1OPSyZb/5Ojl+ZLkfzyTCqSfBflSv08UccHACqBt3uhXCTQDsdKeZ+Fm7wQAWsPvatb54N5KClJORl6x/cyugyp7Cn95HgqAtKGMvT+Stjt32xkfAJ27pJxlUVAmYSeJQ3KEZ8moiHPZ+dVZLN0zApq5xWobM8/p8QDQ4wAFzuoEJM+Jgrz5uCw4NPeoeDLkV6xoyjS/lZHHt7vt8jwae4eDWHbD+ZVNL1w3rk8Bjdn6vFzUrJUAjQ8cVUVH/8Zy+bUwsywbw87E1J7m9iS9GWZ4gai9srpyZUEKArhseSGYIyqgIhq8QxFMX+3ge/EYrnpjCBQlJH+zjl/jEkaTwlv+GRIR/ebEPursq4SWLUpxdZ5leXzk9f1carHgv5nikQst4s7dj49h+BPgiH4hqun/yi1WpVNNeC7vXDVXLdOFAB++UEPA2bEDPoqnB/PM3697LejbTslRRyzZtxyt5OSfCbAAx0RdC37AoeSCriH6kriwR19JpcRCnQI4DujhzMS8YribWkQmBvvPuuERB8GpgvDdcztuhkJ2zLiRT1JqX48bszK8eGzb7adJpT/mT2R3+w+nl1lKlgHNud5uaBriKDvh6D0wYneCcdDNpbTvW9hWIjgvZIcUsVtlTEjtWfSzdIrkJ4VAfCt4tvVnH1eTfX9fATVobNDmh3Okmb8XyI8CznHoYa4q36UIesbmtr5dbL9goqOXnAxGCamS5zBDlThiV1bZ3cd7OrMosXccw1REvW6mP1Qg1OfKvNJ4vo8dKTWwNzv05JAnAIW070zBZ+A1HxwD20nbgaMZWuf7IZVP1aKo9OO7dMZUyQwSQJHvxDR1k+xBzHCB+z2XF90W2tBGFK3EPQPiZxb2poYMbTGAcS4g0bF7ZBRrXe7E/NYv30YyYAdNMTJZ5UstxByHeIwlLrO11/V4xVvz+CIi1SpciICAAB2MciV38uZgQy39Q7/CtKd/NGIZfhBYS8RslHirEvfoLkrFXZC1cgaTLT5yuNAA9LwIHcO/GiO6VvCAZ32M7A+/BI5zFpcI/gkoPUOLhzQwHo18Fy7Js1BeeOg6Zk7a5ejzkKyaYU2Bh/C9LLVw2EyrFkG6b+dB9ew2fpERmeVlpazxmVVwqwFFxjxvEIhkHHgCLD1ZPnAWZf2s9q1ES21DuFYT/0uTNINdNEOtdfAma1oMlpF/2ojuUyqhBVFdR86n0YvPG/OuFaRShmiKIYLXXDyfgUALL1j6mE/PWXIXJAWTbXaxvt75AgqW6h53tI1ol8uHdxVXSMdKyZKWWvTvpJOzCYWePC04r4UtoGItUzj0WDQOM7K/Dv8okMgMM2fwFlB0Zt3zU9ZpBdj9QLN7cNN24JJgzQfkvMpTUh/GJCLeyzIj7/aGEiBP48bM2fp4ndqVzPn9U4yaeYlJUasYc8I2S1GZI9n+kcGVn0cPTCoMpBlAevDi6oZspzIB+luhoRCiadLigzhQr9JzgJ7Jg0l/OTAveHJ2ksu7lh57ZIel7Bw6C8nc5umTERMsw5kzLhQLJys5g5pdmxVrfAXf2HRGKTYlzb6P0jxEbENQdphhKBGyR8jlha97QWfgbPUWcgV6YxKz261JMjSWJ3cpY5zngHeNBGOEIsJ1wmSi1wguKXvXwR0OftNKkkmkOLYLghY73LcE59H4GQU0CRfciInsXmkOuF45oDEdzLSoCwoPDPe/uLhIFmZRw9Y6uImMGa2Ry9ivNzceFy4h8hsDrkOFj+3wbjN/QOevP7oWg48foLQWtgFtSCqnc9YzJZ6WcaEN4XZYS5TvZjBGSJsMZcvfazX8J5WIAwBEj/TciZlNQ8uJxBMVuKPA7ibb1yo9QrjITMs0c61rp91cf0SQmqWIiDmD643SFp1+wLjiKC+gny1ESOoqNlsVQEHY7nskoN2Oy1wWrrWgk3rIF1QdaEc08TDF9qQY+8xNld9M5mmO1NzJi4xxWMO1PTMe1B7bonoSP+r6vMTONluU9dJpuNyYwrY9+80vozaU19kZGtOivSDOmMghURitwpxxMpoUfkJJE0BeMwV0BGd3EQGa3odUkevSwpxzenTL8RBhTLxhVBnnTHwXRhUnld/DDjlwVhrppfblIJJKgmWbFmaJ2SPwRAPXLX3krJTMFcqwCYItwibLv5MYQa7hRJEQlwJuahGltCA7NT3TrEsw6DLfWqLqzu29PCkHg7V39gpwoVc/TNBldWGdavxmrvXZNh/4/SwXiwFXQ2iJiqAbceqzMi+Ld/0DlEdQYTHjqC+UZqaE3KGPQZy/rNr1RofB0VdgwkZsbSQLE8m3piD5Uu+lpFkeWA1eXFRsNPyEnQonxiseZ0eNED7Vn5QNAlHM792PQDpAK2JCfe1uScLiyakSkfD4wDOB2KqRH4VsI4/VbOiAKcQrb/BgYR4bWz8oB0PNTewCCRDrJzFb4Oh9oqoVQo3avPQtUfwrpCGctmf6pUxHRcP9cV+49ou4FtCypUz0V2v895OrYkwdrGHv6+wqTBxXL4K1ewbDuWzIGCqQQSVDCAA/tsuMUT2RpUs4BIAAvM1N/QPwG+EIRSTEmUrQftlfrTp96Mm26L+/ZKaLxjkexxWjxn6tMClfHtvl9V1rtR+EKLjcTIzZZZGe18svyRkGSvh0CUHKUIZbi15ZdOu1ERpp44EVRFRV61E7zU3ohj8V+qeORwVpAjTCRvUSBJkHsq5fd1xOTxn6ehCThE6r96C4Iq/PqUE3fyG3/pkCDUX7aIItbL0Tb9go+98OiNA5dSPnq1/o89Y/jugSnS6uxZoHyZbTl/6hSDV/Ce+vrGhvQyczAcHgPL3C2npqmdxJ25iJVDEdXb0kdXvXuKEn9yQCYzP3rKI9yF3+th/ug+Fno1SF21FyRleTmx1xSfs+Ke3NJyhBvCA61kW9SZJpODiFWusk8X5WR5PrrVR/Av1J+RYOhaZD4BeSWzziEE6/fWH+rccUSM955j8SuijkyGBNQS1RzotcwLCr11MmUMS3WXyNX5Z/aTJW9bd5vhWGwagbxUL9J5a/aPpMwB/EjzwBjLhFWmwCCcnkeFmXjwvFWdTlTYbSFJJnxrYiMNkUn3Y+jglFn6xVQW41Hy8/6+tkV7jg3GZ2+3lgOn697F9NHEQft1UbBLZqRSBFR9IyHnSLxxEE8KUBwYcval/mqlBwePSAi9uwaKWhUPCtdydjAFJB8B2L5m9SfUdTxDFOp9/v8jK0Lslxjuw4y//23EUtm4Tl6gmg3eLYc6wfVg/J4F8yaU6fMs6KnwjSf74VWASqyUvB6g7gpt8QqaHiJnjeL9KQ2ig8vGRWM+wCX+GIo3xlMzku0lXOrg7JBeUiiAs5zuzS7nW/wi3R29/d++QYtsiWjZ+S9UqZ0JXhN6XFthKoViMey/s0oS9u+4wSEm5bm0kEVZglOGvRvFVMkpfeuUL0kMubzILSf4eYHmVZFsBjHiL2MUslPgmu62+QPzjFUmebpJWiLQ8lhZuuQJo7W1mkh3JaLK+6am963CBIy3jozBzVJrfFXC1z33rCnghWZ8f2d0el+DcPUJVoYcYjIkb8HQYU28PYUeB6bc01leZP3ydPY9IDy9r5B7l8L59mBu2syX5i1BmHSMnPhw1la35mig+7E1OWMjhe0L8ZFG0zr/FUTEH9fdiwTJJnLzn0d6YnNfAYrmdhjMlAZb3zULtkCMWiUUhBeW1BTBCJ01887rvPdJscqnMsr2BqfaitrXsaBxwgwifzfLaCkbSgB8WRbPGh4stfzSxAeN3mA5Oaa3FDJsLagD7EWYDLE6s+dry/YkLvvFJHe3pGO2CANItuH/qOp6LoOjMN+8nbm+jOXDDKKij5u3z/eZ+aMp/rRdu/7M16Z+BtrmmpsE5zlPZ4YG9IImIwfVnkNvYpQckB/GbDdBEmgQtoGNhyMyeB6IrA4aLb/YxKte2y0X3qSM1k9SgWnHfOCRizS9+CloAeEupjlcvJZck8GqPizpcHHECLvobDhch+OmHvdeQlijxgH2S1WqYNWxko4VciqYdQ/ZimyFZ8BfmC+uUHVsj5mRbIIhxaPTXIUvZAxymcPco3Xz/puHoOT3dzRqmh9m7F9g639wBLzHSDkkRkLmg4dhZD++4x62xT1EeB4KqpTw0xJa7rKOIk2Kk8q3MUhyU+AjuEgai/5nXFcRrRiNR8CeO9oBVXem/FaeOO6SJfgAOyZtD5SaxmYIjxektea+mc3h0Ae4nbYphKx3PVEDFDXZpPlwh/T7h2Lt6s6MMqGpgUkcav/DcLxjULI5K7/Eb+/Vn565GeBwIWa+zQR2Qwh/uKVQ/KBvMg+oN/73mkDoRn963hoMezBuoMsWtB7fjaQnWslPaAD4f93a4Ep2txQU2Jr2VG8Z+a+WKcVQpkC6Og/LGH4d1MKXoDSB4xHh9Vs3Kb49XWf6FY9+8EGKV/EZlpNOTI8pP+5OCxE9bk9/j6QD+kAM7655YmXxmAF6iB0O2k/WIzLi6E5//W4qjmZE/95Okh4H9Gy3l/uUhW3w/LRA/SauP7fWWvu/LGNlJwQfqTzHmYlf18if2BCF6xMJKP+z663JUxMaS/Ah43RARmlgiuJLY1ewy2ZBjKP9GuXXOkJSE7LlN61eYgpiL0pwQc1raR/mgeiL4qhpOMmNJJkNyml8MoAwR201OxLsIr2rDShkud6LDZ0OjGqIulrMhE+UVcI9QHqDjsr8+h4XWTsrI1Ak/yUEUEfblbrdm1Imlg1Meb3hmsnCvie5ugSEvt+w1C0nB7o22SET5Po0JkwAXH+NmT6IwskO1PFJYmLn42dopYN787F0GYOYJ3r5i9jXqtH9v9XNNtY2P7RvuuPKIMD87KjOu1yXlJpNvUZE8TOtqC6oiTR+WMjLpCBzuaBWW1Gafz6UXhNjnTx6AJUyio/WH5Lpkn4j+fXK0LzT8zKIQuFW2exLq8slxeGpZZzNFMqxTmxfQ4x+r1OwpTMHUbaNR35I2Rd7Mkalnvv8sExlM5JGdeqtFPNLxtcQIfOAll8fR7mz/rK3r7vvwSRR+deb6JrcvWqxQK6pu1f1gV2jPX4xG4jlC+7lFh2gsnLIoipsOBb1GwpByukHtmBoHnq1iI6ihSFb9HJmZYg65HGL0tLWnPFm8WtUA5XKi4xyOFMD1/vFwGyT4+c7PeiZO59B53+47QjhFnTICq202Vjo8IdXAy4v3iG0/zhs/+MYpCahzIzIAkdLsHd9mUUyOIa+j5HRv7SoXtwsR2IT2iWrXSMRYho5xtXvOQQ6vG7CLFpU/2ymuOh/QyCt2pX6f6AqIYi0t/7Y9JggWh/u+l11Uc5LaURFxAe7W7qvaaNhdinAJ1gQyFvVZkVTmXZRJGXl+pQ/GrOsZf3T1UapyXerJVaEnFzLblmfsI/klfhjBGQJ/zgqM0XdC5Icg3+AAzdWA6cgyrcascyUAPtMzHIz8Oqf8vxevyY8iEiYwav9Mt6pTlleBAye81ydi7V6HXYXTQlqCrsHFUtroa+f2INhd4VnvrXgbv+xAoJGkzHiHR5yapcsNi2FaVrSvmKLFISoJnwNccuH6qpO0jI7xJbsQ4R8o7uA4/LmyrFPW+eJSXGjfY3glZPhb5irGRjiEFJLKylQ2wEID963OIL26xRSElG9BHqKGXAPyDmXwS7fcOie9BdKL/0IV0TcM1Ovda/EWF7sxk1eK1gpcKHR62lj1NJ+MHSaSLocdArGqDmbuIrNHV1bcahd23NDL7KPcJCfvu3ANwdJqy4qD9b6A+Vjp/Wkq7pYYgjaxc91UkKrDBC7u78osJFUWDJkHXbp2OiYtHgtGy0CHwQaQXiQi+5xss1Tx70DjNw+TSWPPTgDX+3qLQC6fZbdPCthwcT3GNmbI2qnKgON2YRo+yqig+vhL+Ew2iDkbvMMATlYxW+fa9w1gF0rYR8fRqEgre6MrU2pVmY7Bsl8ffij7csxb6FEpZivxyxce5hUfTEDinPUQrNAMUeMUkpyV1dPgaT+cCW07oMU3aAk4Zx1RdrVFpXYkztx3G6qFyyxZ6PAw5AowZkAPsEHHAT1VWWX67+t0OgGDnY+FXg1z/ETwAuaNbqfQkJ8mpbyRwXl7jAtkHihtb5KztMny+xNihXMrlifBePfPxCJWdeYJrjeOicP3RmsbyVPPjdLXdd1x718dv2DXd4z6jlpUhmVFosrZSGYksuRH9Cms4/T98WmhAkjEJSNTrbl1y+1fmqVaM1vlctqq/9h+lWlnl7pOdAXDXhseL3WdmtM6aT47KO6srBoUWV2E/K82sgKw088ReaurIQan7RMfYir8f7tnO0SGR2TJlbi461x41s7D2MM0jV+uYyP9l2JhJCRvR1G45iVavxhOeh4Q9MqLynd5/8mVp5JdclxZtmUamQ5UViL/43d/Alx3JeR1eWjzCHf9W4TxXR3guzgLfpWa0fDGu3p+ORGoc6GSiqr9FnezD88iPFW/f8zc+DfDBieS9qAs2xEnuGyJxbTBg947BZkNuFiYV+EOpLCO4rQSrIGUtyd16brJIUA0sfAcnMw4zVtps1eSrAybDM2Rm4M4GEPzst4+hAXGn3AZ1bHQ/zeDW5u0FP4t6me3Q9QZ8aFnHT8xFlyZCe63tj/tRA9M4dv0gIrvOWPTo5nHjocG3nMIP5mFZvjsVZ7ywUbH3ejQjhZjlzxX0PH0BK0ncezJBxLmoGHfkmCz9wYAiXhZwiZZq+Y04VdpZzpBuMykOsIPoTt0afaHs3z/eorl2IQdtOx+pW0dxxV9/OM+qUzUafd6Gucta7E6Yw28uW2dnUTgxShtMaTFaM4laukzJ1PGf5hKTNYJ8+QAMVAzet/TyyMJTs8wwPTnUbkeUhrgxIH2tM2ivykBh8ScHTbN3aqxSTgYXTr4KoJ3y3kmz9Q3Nf2AXnVW65ljuOWe2BbRSUc8iQR6acnF8e7kFqBZx1+rPDf2OMSRk8Cd9XKImRh+dZaer6VvvXcW/atj19Qp2EsVBxo8lzl0OmuZpaMppU70RjgH+9YE993TxFdANoh4miWKqYnpNrINCxpC8DRUCAdTmwvWtr9W2ZXU8ZDOgNQTrbXZAoc5bdp3RGvWFZiP9Grx+TcqHw5lYaOSZmk6V1z47KU+hEUCmxD6Mek71dFU+9z9os772eqfWGnyq1trZV7/4AvrPYlXVIzthvf+5may0BU3YxdPCsLtVD6cmgbsEcZArhHYLQolaJLQzxsKw1B2ND3g9f63hmffZZs6/2I+KXG3cQF0bzCI1R8XWXOT/PLUc9ef2Yy+Q59r+kYH+xRmRvf3QHbAzFRMqWLlWhQ8h1YhbQWOmg/UBDwD3lyEN9pr3bQFrIDpPL3x8kt9QPMT2kyjPEOCZnLsGjPBUSQ7Y4s9tz3A39ejrI+i9HyvkB/RcKXykAOih/TOdW1839mxAy2cYcbuSuvgtqgWReWbe28OZ9l1rAOkDPsDy6aDmxjUALRC4L4wa8G0ZaemBmOFnV3VYoKXkApOx/IZ/SFVsfgIlMlcrHgT//P4/7B4E0TdrTmhLqhmgRcoPAnXit3XZWFv96hBp/6Pin+pz/L3e15eom+LO0EtnWpuMEdfjco4l33GfwTVdBK7tzhHSju4sntOO0ONo1gnxZUmVg2f6XJ0av4V0AZudM0vYPokVXtBPR3qd3dRPeo29hAm3C/JhSeNwqVJuQt8f9lfDKJ8n72RiNWJyBD6jZ41hssip/GpCaBe3DN+UWX349RnRXw8bsrDECqQ9ZI1nYWyZMHtjxbedmQOMOEADz8QBrgZgGt5DspTVxLydSlhvKKeYw5iz+jZKLACaY659GdgZExrUW7pQFMsG9Nftb99CjH4puwgnL+yGOZWlXq5RGU/F+X60T28TSuAuWfiQMRwoBwhmu1093PhP4G0Z/nc/tTUVVos9fUv7fq9TAUvpxUdCo01QCGe62l2HvYN2JUanF35NYRwYCgFubsZjSuKkTidpBB/Eg83CnvYdNjusi8kih7HXjNmlY1hlbfvv0bwHBGOHlmsSDDWyESsKzqWYQKv77zCM18cgn4aUfuPzYDf3LRycdgMMhjhgj5f8ca7tjxHEQChCt67+81m78uoJpnu+TikSxCt++eijnYqJvg3hHlQLA0fs8AKxChs3q31ZCij7NxIkKGB8YZklWZBaGaSWBd/qIQGxgcMzwKv0xAZ73Vq7QnRUAE99zoNLVQ7fxv8ml9eS0I4ukySSYBVSQWphGS6f4r0EPno7KcVdgur0oGc5ZAaNKtDl3+Qi4dDKDk4/WOxpU6AVlg0B86Y25QcbZyfl/v3Tmt3++UsZhwpD4NzmKWXuKGij5OTdrv2ilLauFeqXkicvvGxYJUbCyOyTcCFuuPoeHNrVHTZdpkKgnVN5U+1IjCpjUgMXWZMaUjQ8PclmqSGPv/RYkCco1Hlc2o2uQJju3e0cF/bP1Jhw0za9uVPYEXZy7irdcPYneiQ25KtnJzRXQLYk0+x+aw2GGKTo/N1ktNrSY+tSSRSajswTZrUB/zIEw6DEuvOkjNB6YfMxQg1fjRN7505f2rTiXtUrlr8WKaYi8AKjmt34azPix1ig4I+Y38pHDklosaCQKhlp+PVjfUlB3V3RV0aHkiU/ACFHvyvjXzq4zKQLW3yDnxob3svEgrS/UDx+Tp+UYGJsJa/eA0/rlEwuOXiAoa2vbnjew4d+IeaqLcpC8p08o0wigssPKR3V9TG9BlGwe3xpa3yfMUhUntd2pEb3Yn2+ls46OY/dsQlHq4xi2bncGxSYqc8fFCC+2j30JsmiMvDbyI9lDmnFo0Ovs9Qu8SquIckrV2BYFePi6wOyUMYuM/TlM++FHlM57TxI9bxXFLluQFKdQ8/zSZY53xOFBQwMo2v3zejMsPnV2sPW4lAiPHvvNviVPkLi9HSSyxcdTuY/X9UBSwgjy5NrtzFviibHKEgRFowlTq1ZxE7cWV6a21JQGA8wBavHz7e3DszHzsTD7jIy7L9eF8LW2sXBYLO4t2QXdw3HKUmbIHctvdnCmX5WHvllqVWYBrISNTTpAd5fZtk+xsWqs9p2FhV6d2JMUKcd9MO/o7dYHRBpmQIypi79gdD/GLv0tUHHkjQiITDGEvjDNxVfv1winEfjzrZXR0WR2Um46EJTYqbwSHhAJWuf1NOidQ26q4BOg6vM3+JrmjJkJeQcH7OHZHo2ZJQpNs902zX8xsLmyQ7VaJqz7tVH3zL/R7JdRdslWCtlVaSxkPmTkTJemHya5RYtAXCYgKMcjiAhq8rwr+LGZgp/cEJFzRuOE/NNnLz3L7Bz9R6FKh2OkMoIEIHLk3/NuuC5FIndcKGAMv++xlDMjVl8NeuqyTyKa7rElej6TF2VfN/v5QfQj3TjDg/m2kFNP7ANrpDRVsLEsKb1byQn+s9Cn7X+4FCnzpD7DdFLXQWIKCGp9DfUqlmArXFqe/xf7383kTeAW2+IxE6/sfDcubVLEN1YFrTB8cnGpNG/Czw+waHAwFtmqlNuCJ8YXTD6tje+5rcbpQ1vvWc4apUuT+wWF5L9V8BmuRYQX4kfYfWhaz7c4YcpPU3gTGUnRyZjx5zh0CVAIg4nyJWo6CWsDy/XigM0yCIzYVhZVMTefkl9Vg1WH3y93OmQeZ1BfS8ZPxC7/8GvihUft1UXuE9GeK+KBqqHe5Xp5Zy6EJuQNURJHJIpIScU3bN0EIBD2JbhGUI4d0yZ1L04pl3N8ArqHwkiEsmYFRgysx/nb8AoVyQ+FTOZMysxEZHwkn/QbYayyj/XuK58fifhx+MBwKUf1CinXVmVEg7T4MPbTHYxzJJQc98398rFKRidH5Oz6mQzS1K+90zNmuhnRGZ41M5dCVZhD5mwT530WMZ08VX7iSySVtvgo5pVGLPjMSA/nOOGkWOEt7MrzNRqZ6pY4ZBovQxH8vU/fzB4BaqHMNnoWDIAfy/AdorxWil8dXaYZz8cajpmI00S0vGiGGj5/CiVXv4H0+6BzzEw5cNDOTzrurHfA7hyoIRlt/Ox1/PkEPqWgkYWf0TLbP783YnBxSrgOCl2+A6ZUJP9A27KwKVs5xdtPdIECt46TuwgtoYUMhE2Vov0bwA0/XxHj4S/DtBnAGm1YoOJ6QvcPdU/mF1Cn0jkvaDie2XWMICNa7clKFH0ndZWzQ/+Ju9oJN6wakZRCvZAJ9dwC4Gwg4QgiGe0K4myeAZty1CDjcF4eb8y81bpd8sdly5QodWOj9BrlPkFHa88E1hO2V5LPwHie9wVmTqkV5QYw2anoANfOssXTJok3COafof6kBLQ85GMQVscazvKgQeOzmZGq7EhI97LnKiSFjgCoC1EmO7jFoXjdgf4cJALMxMzUGZ/rTCKu+Sw8ZsEKSX8cPymV6aAd/u0YQte1h+iEpc+LuilNfLzTTThIXmo0BTI+F4ROgU0Oe6hSVxKftdzFKfd25RMHXK3d2PY9sykegWhhRbglTLE3A/vojonW6DajUuOkQ2Yp3hYGf/mId8jPcYmog8WZzsZa/gqt8AcsUa2C5KbHL9Q3H+QUh2CC2FIFBDfHYNkmxm4nVknlGafoyBL9mgeVmaIlivJVzgtNLvkbp+N/JoVCupx0SVXt8iIhTidoTxZkySGTdjPH19U288n9iZdbqmpqWhKymB/gloZTIv0yXld+/zoo2enQaZLGDp4bUUIRd2cLwYUPYY9RnC6B9s4j7iwEWKwF3boJnkgsYgvkOrJirEzfFeserHRfQkzFmgbLG5Bzsax+NRt7Cnvc1BTU1Btj8WjYI4fy/AF5ADnmPMa5A/lstyS3Ht6UwOtrwQ28IAmXSxu8YbqRhbrFmTr3Vx+4p4mvy5ZPLIvksZBU57IVjRt7yDfE+5iEudc9wEevvoCx1trf9QXVjOM87QAyNroYk2I4YF/gcMCwjzQY3vaK5NvUkScyPj5ZCk4smhHNhmEOiko36+Vx3NlEy69eRjGq2J9YtoaEkMwenfcRKaLzCl/8hwPN59u+O/dBHbZjBfyxUgy4ZICheNjIZMGGBtzVDFXDnw9JEPHI78NtCKUaxfVWLPKR3Yqu/8R+dLOYyzyzaItze2lS0v1fIDnl0EXXV+aBRnrIwBFqvqgddnWiSLhBFvj0GAFTnj5KMrLhDmzTFoIiydm2+6HCJDHPhnV9M6MnbqBXmu8WtGVxD9mO2mdLPuTXEIrmlYw07pt46v3P9TbvLXidqfrBdj4p/fOicyRUq3O66ShjmDsPTHas+Ri5TKFaghGkoiypHCpAOOo0FoTlsETYlK/PKIkrn7o7VwRDPrJzQacLxLl5ftAbTcv2DUkb8TggCnVNqVnp0PHOIaM2O3lTl/putkf/cxdHhP9u1tZclle+oDNYoodubtHWAKYsEViPYvcJVtAudRcdms3ZBfNH1abs9Nl+j/py+AagZ7Z3T74pV7S3olDA6nkZtjWRjaW/PWJUkCj2D9cTNuaa17uXfSHWTfgq0zsyqalWuoKq2lGu6zRqKh488ALAc+GtLVSJ0Nk53jiI0aABMO8PoejCyB2RURoIhmLTjyO1qG19FtVeQAGhSd8MP9miJQ9INpahyDXqBD+vyCghICCsEJxUBTZgqOfKsb1cIdZXep20yKVpSuT5LaShKGJyOfqiJLna9cTwteQ0lBW1/S4pL8TT8Rbrl5SPBJfF7yMyoS1gecjmx2ciySRzGrIp4Qe6Y558hA+juPER5H0qZFiVWwMpvxAmFGpxUI9MBGdaTBA/a7pB1OEtp/z8r0Js6g7wCdU/naw3bjglyC/YogIKXJYOhgBosZAoZK501g7qIfEi3yyFiFo4KsXAdMAi+PW2D5uq6br1YmW/iReMINz0BANEgVh8+VXr1tiKLUv0FO6E57Jhqblc4TwRCo9YwDlyX8yTvWGHsoo7ye3uEc140YVcpuJ+0KPw+HfcLTlUwPs9H7HDEzWT/D78Ei+ITMjG/QWD2wMCFAb4yMfoEB7ShIH7hT/hbTKVFqgVidV3IiNs9hk2d3fHLnD0hO9xPjGQkAX+x3X2GtDr/M5zY6KNtlx1iMLqRztV8epMdJZNYzenbyJVszGS1zE9+lhbuV0VCMcvw2tPDLvnQxgBdvo1H9SmE8qQ++SkpZKbMcqPil/zNdI78AvLueyc1zVWrqHiuu1RLCr50DroTNVXgvtbsyINtIMIZ4yd9r6RKD9IgQIvhIHvcAPTJOL18BvHXwq/9nRawHNUuKh7wRoLSXHjjVKZ/5CawAR9QsB8Is3Re3WTGfJ5TpyBoVlIZN0VBqlg2FwrgIGgigB0yNIcHfhA237SN/hgX6zF4RnTimdTYy52tAZxDig4UuPhANoMkfthEYQjMTMu3NcyM/HCCwON4jegX1Y76SAe/OESxa3M18KOenh80tMDcnwGn8o5Dslh0c6E/mrDuspU+odGesiHCkS4742BtxZ1u7c9pODrbBebGuolojL+zeNPMFoWPs1PxgyvcLe3oe0WDGt9LIA4eS5aXbs4+g0+HpFA/mDF7C7qkBjUuntuUL7GxdoUotZY7fbDAccA6xzYJQGSWH9/+TApBByez+Jw8vQ9Cuwo3HJG+9/EFTYKX0EjxUQYZWyo3uJDpUj8Ufxc5E7l6mYA+2G6818VmzHNXq2RSXfDcm5pmi2nuLi72mt2UA1qb+YUwur9y+/o878UBAVOeuDDxGqQvU7ZmuthFU1Bdl1V3O7BKZfU6K2l8FF60h5sGIf0Ppg6IFccNmgUmJdN9GlDQMN40QsaWbByJL6nmp/YKWv5jY0x6rAEKVF0Wb3LcDW7WlQZNkUyV4faIKT8o8ERc6ZXX3KOy2VjZe2mkVpidpy2owhi4XqCEeOK0sh9Xnc6KrXOSkEvDQySQdyOlSzi44y4RMmhYi7xUpfOQIYy0BSuPDxDpyw2rxPJjAB+j6G9coK4UiOKxHDPoErsTXQRgv9EGTo5dMvIqGgI1GVxTI58S5dk7BlhjSHRQzpgEkz4lMxs3upE+/TjntHPKjpT3d1fQjJs+XWhknVVKLlSc5bbqr59qAEIZAFbhvF6zCxjPKT+LWSHlFP5Vuk79NICRZX5gL6lyPSVf1HUhM+h4etmyD16uDsY1HtRDvVZD5qz1oMqHW8K+lB2fESCC5PFPj9h2pfaIlOLQvI59riEbO6NN4Uz9sGXhf7K3tsrl8+hk4tOLZP23CUxOoE/vXyImdP6kwiWh4NTq35aO6HFpVr6RLxrU4LtuUuy0vn13EfoIMu+4rxrFuj9RppmW6ASrioo8ABwI8PWjaKmKw6yrxdq4gieEYRu7LQgw2fG+mT7DlLS9WWrTLPusuBCZDnKmRtjG68Id0JuePZmQb0PVJI+B/asSNuybCpLPiPxGxig1DLC/mAurC8HF9vS8fb6Ty1wyYJktuwXDul+gD/Xhumgycg6alU+1ZeAwqiTIbzYTGc6aL9dpmiB2uN3/pUND52pjMClYLZSGTcAa7VXdmLFrbV9JmmXWYRHdpAHaGP8GKthmleq0yiap68iZDfhiRQUxmMGseFmOiSuetXX2l8Qa9wus8/LjaQ32P5GHvhiOFXoQPEZ3xk2rWxPcR6lQR2cawFfeihiKjtqWcTEPXz6UzwfSU/4ZKrJoz39YdNnvY9FjmBgptvSIaIgqKj/XxdTjRS8/YJDG+C+aO5n18QIV+Y9sykzW5VQnzh/UVGw/LpwzspE/EikJHhQbLW8z00W1VXX5SpgpNWwHp2BZwyAe1gdDQLMRD2kmbFf394Dm9bNFdO2XVOiNsBtG7I6scuAw/oaQW8DcPEbUlryw2umgGk1gesfnIQlzGsssryl9mrp4lyevrbp7d0q2EDK2aahr9qYzQmffDYtJWz083WHLGMKZ4PoLLrreMwLLNy6Z4FPKYMH+HGkG3cz6daUD8ad85sbu773hnQWH1Gsg9IRSdexGrN+7MFex45ho0ne23k2R0xJlZ92I/FCEaLr77yPbhKjHxR4Ppqsx0Tt4TG4EfArZH3SsS2wrCdNFWdLiVCE64wCgdo5r3GONa/YAuFOh822m2dn7Z+x0Dfiw2251obk4LyKPwNWYf9IWN/GiFj48yDc4cxsQsXcAX2UkgZ3oiVlq4j2I+gUvZib7tcdGPCU43Eyqcq9IlP+k4C5G67Lfo5vO7H4JyvNnefuNKY6SeLDmwg74OtTWYNCc4+aGOyxRvsDIUpj77xYh+sQjee7I+SvFCU5AfO+W2rMoDcgt62051jc1RjwK9kqGaAuvqowgk92V7r8fsfFUxQrNaTUWI6dqkHVLi5566uu1A95yjppGvMjV11YxBp7gI7fQgSzdoP8f4Uh2VYqJUgU5/sG9VqmUdVWtNDJMahDguc+h7MsQ9AMgWkbnVLcHUQ++yPPkEW1sF2FglFU3r3o+C9QGc2rqZhyNGl84RHIObazOzwPKTIuaRvE7i5ywtbg80xufOlLL94dGNJbw+7u4yz4dTnqV2XgCRJt1DUA4j3VTPd02VE7tW/eVHCTgsBe6ou4raGyzBDtUracxWG+zxa+a3GJyFqouHzTZIB1ALz6lnZdXFtvL6uATByhcjBAevaaeeNoj4MPEFhaQNH6S0dqP6JLhL/B9uFJlKf5GlzbDvYV3bqi+ubpFnSD5+dXhHY0xwEm3mRWEUXJIS+jNSNqbRyK/lHk8mPdd/Jd3X+mXH0eaQfimR/d3YXIm/kTU04x3yJm9w7321BNcLQ2ykG3PRsxnGMsmKF7h/DmGBtT6ISGXv4RDShc8N8QADym5Bu3t8ufGxbeILADYicrFCoLU37oAOuEBqJdw0EYqt9AgY/80KCLNzcd4DphlykTDmYRbiVSnZtJlMGbUqyRGlGMlVW4FLxixr7iUM2gCO1WA2FP9L6mQmQ7VbQKhJrXQ4EpkBGlSLqcj4MmO8hW6GSZr5/0l90d64iogmv2xRQUwE0JhcQkHiOqew2yfTwTyrCDEkr16XtfuBmVjp2tc2QfBgAfb0QdZrJi0auCLghP9gaNg++4g6mPzwA9ONKdYkEhFGAsgwmEia6SOOLvSd6yCp5KIZIHIVP7O1BxALnw12K3A0yPBIR7EkOYQA4Ia3LMakjcZ0mOHEegpp7E+RQtwM2oL7xLLIw8/1JE3Hdtx2gDy2+/329vG+E/AT4OgR8n/bDjWkOLGcvKJMONGNGm4f7n42mPXvPEsgg7OyZFgNv+BRGNaC11PaJgBlvz80MG0ywoQbSbFN12pjaNo+41y567PLtoNcYe0Y6xBpQldenrfr23i5Bs3JHPGl1DIzvVp8wBZO/RZWCC/nCd4QJKrerW47Zxq8v8693qz0JbepkmXsxMWvWAceT+9fIFW62vfNg8USorGc6Gp4KBgMg7EeaU7Nd8z2AIbpLio9PLWTyoiRCnvDzzN8ZfCFfyAXv0fWtbrpEz1NpnthOOUdVE6W7YUBOqxbn+0BiuXKS2H+AS6UNdEhl01ys5wAKMyLTkYhGncFHabzsHNmG/9si/X5AOO2vHSvJMKu3g7Bex0JK+XA2853Z5oVEowCyLPqaoxJZ1uach9ysLveIOktbKplcsRRqA6bPsZR//IPT7/ARh3S1mWnExSPWK8CPgDaI6WFFQ455lT04EWU3as+auolnaqkGJ49O77V9WuPfqjozfiYSlpxMqoDiz8B2ryy18wcao6JE2Dp0wFwP9I6Wo3fSPobb1q6bvt9iDQFwkFfLSVExYNov4tO77k2M1CgZz7LTEFvZ4d8V5NeZkp5Dl7pSJPI0gytsb59jNsli0J3b2enBwhOp93zqZrTDS8RGW9HqU8NG1QdSvBiuVxsdFVWIKH1/oRIHD/uISIRzJU3svcHwR4leyqfzPI4yjS5F7Qa8VHY6pvc2U4RZgOareC6VLzpz4HAyfntvVNMEZMAeSA1QddcAHOyiMyXzXEwMKc88dVG7MX7DGQc8sSehwT5LxAYg14J0bcUI7kDacTFQGMHGkZImBJC2trzrwHlifojnfqajT6kNqO41fRBNlVQaMY2hFrIjtbfsfKGTVDtH3Mu0GGfrj7Cx3mZOh4oB8fhZcqfPEh7AQ2S0CwQHFOktSB2GnQq/ThlMCj8rDub9auWDRJCsnKXMPcMRe5B7hljEUV6VsZHP0u83TArVbFfgi+OuaGBfzDNAg/S5RLW2ucQFSG5zb/10C6SjSXTrn8pktkHRQKP3io8rtrALCJ7H4XWJmXKLfR2L5BS1axHwZe7FaMCdcJT4UwDvZpCS+PBHM+594hiMreYznmiDAamPRP4XoUN7GCtJdYNhXGAoAhe/7lZG5/zXYXChEtaXW8kC4lRtIDdN+aa8Dld757VJbsQIfpw7OQh0zXnBKWIBRhLHgbLsM6Q8i/mS3QDNpJN6ZWzZYrTFPODddG1i08yuOV5wemQAVMxeP2VQg3bz1QSmW+7PdBaCE9NltsZUXCEuvuQdFWDzedczDpkz0yMOXhl1UXUpRKXN4oGqEGpZSfI/mJ2GrGXEzD96hPvR5JbeUhigsV2mJALGZA3O+d001shdDJ5bwytRIzeBN2zNt7BC51Hgt5TiOYddXmnEYhO/ovIu4gSgQIdesGUc37FY4yi+z8ZG9Nt/jQGSoGztrYv6KuwYKp0WdSqgQPkpMrS4RbSBRO9PH04N5WK9tgluwHuDDZ4YyaGHC+qBuMRd9zoY3WouXvQBfJ3C7Ev4ymNaluygkHzSG0FFEVYtM7K5D2tDJea55lM20gHIuW5LY5EP/3wIS99PU9mnrjkmb11/hAFx07HDUzCqeQFTp+dRq1acaJfmAEPzc6WlzQEUEWdKS4BiobJjjquZW1rnQ5qk7OmDTYb1t1Ycz5EalGPxVBUxgvMHjtecPtHseoFRsEWxR1itzTxX0r/Tw9OsUm/cJvAp4gmMAAjfHe5ssvCLNaAoz2nfeqn1I/thy8D5vzfjDbq1hFTgjnRGd+OdjRCvG/+WDFPKmEwrM3Cfc0VlXoioAO2nKi8bKqLqL1Z2zbvH69OvpqXE/urU2+PK6+4NN33gWcyLDVT1tlZNp59xTl/7etTop7aaf0FGMGuYi4wxrH/XklJCczhy5hD3Z1WIC7aKS69gbvdAHZGkidI/RwI2CgUZU8XOWGMmnoSvHTk879nO0FerPFZul0o3ZFSdSWSw1ZJ/35PdpvuXk/EQWmlEFHtTLPv/5R8uiuTFG9TPeButpcobYKyCVLlJFKOb3kbu4bstqxpauIrpBIXWtZhSJCWi4zrJeqLQw+8Cw+uhjdIDgmYSOit0oBIcAugC+mkpYlQ9+UIxVJx4cPphKsJPVFf166UdvCapnPGFxdjRBtmz7rM1LulBd3vnXdA1DMR2aesuOd7UWMOST+v2CyLM4IR7WIXcgIJ322et4gevbAtHoFiXI0p2TtBOmoFBzeMY3OlrdMp0uDUYR0pJn1Fel26pkuj0QDA+iycVLqr6rZmPGE74ppiAhVxMeHkPeleFlGprDoQwygkyWAd8vQxi+miX/I9J6Dinh5g03cDF9lp31s9Km/NFbdz38cxsRSGrrzjIRBq+PRX6YNhIRglW6SoJ2xzm3CMN9uCH/bbiKRZ9OVf35u05Hnv4KLfQOF41l5vh4uiMZOESP7svSn5AcsYygkbb2FEhWwf58GJ5PkfYYq6PL9uNnO/3vmP1DOjgA9iqwruIwplCrazlcB92eGhvIHIcapsDsT/eE1zksSCMCRx7mKe8axXGB0b9OOGbU9/ljZuOk9WlJTebRG7wVJ75OrdwCkm7Z89RU7bzTf7YjXeYJQshvXWeY/fPYGqh6pkyIcdaYusDMovyu/bJLyEFlxdDALjbuZG6BHAdNCta4eyGaVTU58jbYeZyPwD9fuSLlELL3IjzIpjN0INIQqJZ4t5BgU5MRmM/vhbLgiz+mAcQKTyIJ7HoCrvSlAh/Vzl8cRAATNfeHpQXRQ2/shNe4EEPZAlVXgCNIX6fe3Y/oPMLxXoOQ1Ml/S48zqP2jgsg7nCB1beaeAi8NJqvLpSuR97zOrciZYQQD71nCVrljCFUNY036WztGV5G9NnZ4W+clj/Mr/r/c+F/GQ4y80b4jt0MJb1Ox9VcLXTSqKl/w6KqvbmrZBpxZZRbJS9p1bJa23vuvxGLkEkviXU2xk3bVXnywhSjrLBJfBKrj2QZfWCet8b0I6vqJYnnb4ZnmpFegHWXgc7INm1BMiNBS9sCIhk/qfrsLIKxySv/HpKGc+Sb9No2iLEe8WBMnltQE7cXG0O/6MPuFU7iy8+AxQbGaFxn5iQ+4kn6GE9OtjYGCS94SIfeeWzHT1BO8K4z9H7R4+LuIl8gP/Zl3mhT3eaqk0qDxPcwlr+mpTX/900mW8NkaJCkVBcvrdWC6Yo+lOY04LMRKxZ8qUEZQ0mM8tWImbr83ilEODHHZd3IWRZtVaHfl8bLkwUBXF0ptVhv3euG4DKGxHt0by0wP1wlCaXZDmJdtH6MnNK1hT5Mp52bL82QL4GmkJp4mTcvqlmHdNsgMl8xIDKhTIfK+TTVmV0nzUxkn7xX+cbTfSTsbySjTuxNUWCxpy6ZF25S4QApUPdVW50JRasMPjDopnpbs/EUirZ7J6n7fhbmeHfSdUSugF5dQ8Zq5PGT8IzbA0lBh+2sNnNZOaHcCwkR/CQ2GT00AC9Ce2osH9D3am02U/CickL0Gfxzw2D7Kw85XndjxCoFPWOey5SM3B2cf7gslSE5fIFLisVgFI9wdr/FvFzwCzJ4aVwQu7ks75KtyHYQKiaxD9bJ5djz4wTDn8EDvlOG1jbeISyu2IuVOSB5bgWb5RydJaysj3KciybxNlOEyebA1STcisvprnY8ZkAsBvlalTvLhqR1QI0cAyFTJTkuhRbwwlRc1s/yY1Tt5olwwOn54Gat6NJ4MCUCCzdaPsBn/G0JxGZ1VUROih3ahPPXhLvvp4M/AKlLMJPOw/mGudX2ef2aFGiPHYsMwoU1uEZwv1Bj/VZvsWVDDCGIALq3DhayoTa7mdIGmHzzY/q+KNlQ5Z6c0ggtvlovXwi4YbVXyvTpYtc4hpF21jtpibG/IjLDDpb9QprbsPCRRSYfzXUEWp8ePXjID8Vq21DNcWXKlikZPgkH6tHzsKR9iFvdz0OdfOE6piLPCF70/4xqLBuSwP93+CSBBsxQ9tbDWJLY2EFFZs78tmlFkwgf5wBlrV5oWlPKL4JnTI+1IXD5hw0cPr8+aOTM+2RtvPUJWsa1nVZ0woFXkBFYEBNe3g28utVw5juZHqrcZH6LRrYyPJ7FPgk05xBq5y51qZEFkk5OJVjLVAliS6LdXZKYFAq+ZJAn1Lvu2avlEdxPjgjxnKs3v0XENKivnmSx0nC+atfZZmCtXuYvy2s+42DpXQNtAQ5BhsAPF+pmVYcOIQdmQfhv3QpUNyDyBhDhWmJxLcX8Er0apzFuP+taY+EV62byZTF4WJ7fcdc9W8wrucs2blRFoHa+HrxTDDYQsU4OXsE7v/6e1l8FkcNjG+BvZEdFbxNxp/sFRhwbUj82PimG7/AH5b6pcXf4YdaJxHxvqkViG6D0Dv9Ui/QM1/Ep12W+yEED/GhAGWNc+v5gDW7dy4s316aOWyI3+qYlTOyByhB6cabsYufBCS/eGJ1cDI/S9mVrdc/3xTqy2/n++TvOGBc4oaWKcNW5s+cd0dOhgnYNUxzrnic60RlRifB/fIyDTFAs6MUbQBQc+TRVGbu3G1W6OiAA0GWj7iszOpqpC54WWGkvVPqFTYfb4rVFz0zS0CoV+bn7p0bxQpHwoknKJc=
Variant 2
DifficultyLevel
668
Question
Rearrange the equation 4y − 3 = x so that y is the subject.
Which of these correctly gives y as the subject?
Worked Solution
|
|
4y − 3 |
= x |
4y |
= x + 3 |
y |
= 4x+3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Rearrange the equation $\ 4\large y$ $-$ 3 = $\large x$ so that $\large y$ is the subject.
Which of these correctly gives $\large y$ as the subject?
|
workedSolution |
| | |
| ------------: | ---------- |
| $4\large y$ $-$ 3 | \= $\large x$ |
| $4\large y$ | \= $\large x$ + 3 |
| $\large y$ | \= $\dfrac{x + 3}{4}$ |
|
correctAnswer | $\large y$ = $\dfrac{x+3}{4}$ |
Answers
Is Correct? | Answer |
x | y = 4x−3 |
x | y = 4x − 3 |
✓ | y = 4x+3 |
x | y = 4x + 3 |
U2FsdGVkX19BQIWamwqYO10Dx+VrwP6r+w34Wi0pdZUzEZc1UlmFM5tUUYbO5k29YdFdwKoRYgpcT/1eaEIZyw8CKo4Ue1l2rUUzjkYdXB+wAgy4jQsk/Ypr0CNS1jhGsGQLoaP6mYMh7bZ6yxMLJKLzoX7vd47Lz7uj6/Q5fFHNjoIe1F6Bto4DOkUxKZ8NodeXQrsKOHEqD0Cxsf8cFR4yCawB0iniH4BgoiBH9R6YExdVsvkbeiEm11VDKTzc0EBhBBJvpVvGq/8AXCvo1fzxvYzXAQblUVUndmB94tWoI39oPyV8zzNfqkkrQ5XsDVYm5WWD4+Z3mFVn5tDi0ktP3mZAJY4VRdSZmL7ziETr8wQwTCxJn7dn0fjenjUofD7PaszKIaVjJwb/wh7XlqaSwhk9kWLe6HPbzvM/3HhJAosRh0gM+rWmV9mMjJYIsx3GEg+vYrhnaYj7qoT4qwGyhYCftzLo+LQgYUykgH00wi6CZkAEQHNNoZSnRcUBTg5rIHPCTE75uCltBHTaBx9r9WoehJbtD7oJp9gmtlNCN2pUOH74WSclF8jJxo4x66FOO0TTuKruJSUCNgyOQ2HhYQMi4TttfU8wnqF3jMyKaz4nE68xW2o/whs6aqFe2cnxw3rrhWUcEfVo4gMY0W20PhbIOkGRInjoHuGYWXiiaW84TQm7OERP49VaUCcYD3RtccUF5L0QIKQQTfw42WdgKcLXEJ6uNqscgzZUHi9OctVxOGu7phS7HJpgv4tKFfsJuPegcsabFtb3mzQP4mjRHAnmcS+DO9/+ScK6ZE2n+Ov0dT5Dh0auPX9IRkWXlnmo1P+nO8HL/IWbbfqSSFUbQ8G6+mJlDhKPYvpcnsjKkBlgvA6jaG1myjZ2VFIRLnHaoUG2/sKlg6/f/d8qtfLugx1ocYbBBOO1D5ViBFZnEdh3+Yzl8ndspT49Pkb+3engrWegqKuWfvzaohKCYaEde9wBsrKhB+Dn8ay5waYvMV7AW1EZZCoozLZ8AuEbyDmZvzyc3wM1BrsjiC7l+DV3A5ge7sV2dndLbB0PZXRfWNg/PXkxbfdhdyOC74i/4yqrCoRHH3N0FoUVdxLW2pBXsc9qs3EGk2q7tZgpBhmLTWD6a7UVlimFBp9fbCE6augCAiDLUdPjja1FjJtxSpQHY8/jutZHzuuAdQjJ2fkWDJerToxAvQx9XId9SHobP0nmaxl+a+eBg/bMnq2LmslwDiJVcrnMAMSqiQmpcO41c6ZzCMWKpQwv5n3KuNUMVfMFGx83sj9QSXwJthnIvbmCXColkYA8kdLnqoDyrSML6yIcIPf4qH9MuIAl3h99ApLsfbGi+UVoQdmDPZbqp+EGVw7sh9n7ml6eIP35BFkiZO1gxajS/lRWLB0ROxedwAnOVGsNXtbXvvH7Ev3wyY+AuM/og/kO74Kg0DOGDvpsJ0AksAbTBs+wWuwZgf+0uZqlV51xTQSpxGhxaLkjiFmi2ZUDA+dNLKDc+4Q+ZtQvtlbK463/JF7iW+ZS7vhDZFXhzMzJt/6dF2xMhx0HxE5qJnbQvi97H9fUcYiL3NhDbmM6rv9EsyMRL0k4mrRDE6VQvQQ6+pZMG5djuHCwLy/Q30iTlalerCiEliHmC+NOCIA3w9IQb+dujOCJb5AzuKj66Ul9OIqHhtgqvy5mWuI7HHJYQrGLeKDUiiFKmUEr1OjEnValuJVJaCvpxetdhxFJfklhHQi2gH4sZGMC8tojrYz7nmi5LpcNJcc9zrbYX77xaKpRc6E0l94IGDtx24mN3yt4GVy+da0VlEYaWDcywPrvD7dzYObddI3SsVxd7B3NtE0QV8zh2VANf5s+XiWEjl/e6UZTlqKc6eyJy1OUVs4RQRBceRV/Ug7e6dIMoDxp/MHSrMr1W0Oe4YT4HsXVWXwanOljpiYVLQmYSzFZFSHnnejuUkUB+oUdQ4sj/o5kHHZbwpF1IBIDBinMa4aq/3H2nsw+2rbLgKsnoWoMt2MsV9K7BLyp1H5Eq3JxjvQsaKbiukitj9MObA9teLPkORLRWoD1fjMv8ZfMsBaUjt5RM/8zDAVDBxhCVahGUr+ZtO2z2jMruc/2FtIJGOF4r2CkIB6s4zZbhQxXlWzJOhTuMmGy4WX9umNoSRdwgCGF1h7+k9GfnDXTytepG/CzDEp8CCnmH20/LNaHhnL25wD6gwQxmAIF+ArZykYbFgrUEsom8yvIh2m8h0apiWnq2LAo88gWbBiSySLOphyv9stOwvXT5l79LWkEoaZSR46oYRqXn8ZDabuk/GWqa1yWw5UCyYNSNADZUD0nBFTNNIqDLj061SP2BQdTIeUyluIIsXTVdeWuTHwj3fAH2hVOC9yN205nAbodsac8QbSu/e0gLMfr54rO6oZtGq+Rw5YKwnmq/yKo51NQKTWUlOW2j26iJGyaO6L127Nu6eN4p8Pr3XVPohbk1EmaLomRgIRUtQCP4n1Cd6jgzciN8INP8lvYqtPcLA0BN5xSXUc8SEjSq7P/9675z5qyo0Y4830DfOYVaA8EsjJENKLNW/1xVR7hL6Rmv8Csfp9Uoa4cY/eJLhOxmy+7rDgIuDMQZl4gizMPVyx5s8sS7sauF3NZefxXIp1rEfVEOoYdEyUkybJiEnapUdjWpk0as7EmZdjMK6uAsrWmjmMpv3x24Qp60QtCotIWzIE/z0vMQrclbuW36A6cRDKFd9bo9uv91rQPPwlrBXC+V9YlRfu2htCZhKw/D7ogREtcRtbQz2qJxIor2or5YOYBhvEKnZZCvOaiMsOUGp2w/aiykNqKAHmWXBCOa1ZC0EytnGVWVZAvLPoj0eppn9hZHMQuKP2CvI5np/MVoBRPQ23SOffRZr8R314VJi18rL/Ait9PH0fu7p+6sn2rpKYcmrdQ4cbM3fqlki4Bz2pHd1b1J9pBMwOpPUGEsMwTMv2Hyvn0DF2dldE5AfG0a6w4N1w1LXwBGMcsuBgjjLJnfxdqQZuZCbVAM6+aL61NeEKW2ITCd/6O+4H954R1aVa9CpvzWzHO/aSj8YQvgCXvY7uRai1FcVGR2h4w9tqxLv07qtUxMri30oyKg7Asfu/c1acScma+eE4aozcVpqspSLPj2PZDgwhKeNQw7sSDlQCuo7sYaPpHcJbxaH0+EuDjamdD2HBmygeIGZpcMVe8hC7c8lhpG+eIECPlhD3nm4APEvk1IB2Y9tJzToc90OYD8pp8Gy8JymerHpqlw2xDlqs26KQw0DFgE9rdXDNu9by118MxS7afoZdteoUskrI4/llDZ9Wd2FjgarCZYisfjuJdM3jh/sCUV+5fGUp1R6flsq6gJ/KrXOQQI88lHRuuSPgSgtMqnMiQOIqb6i5WblqTIOPtTHgIsH/iO2xuFX4TfM48RYUai4dZWRx1DkVQwq+DhwGFwEmgpO2ayerYEmCX8wBtWsVADPlUxmj9cwMlF0nvbGGU6uZ8oEiJAhVmnp1XkLbj0gQhXx1N3j/H82jpBGkNK+HV/e4yzluYrxwANUV16mTnR8fvIizbd9+4KOkeaS5zCYcnITGunpvV5FY64J+xMel/4WMJQifbo9WJn03PmOHCWBoPLOFXjIVgpEJYQGW4Jb+W6wkyUz13QWI1jveYhBfcMd6/fxKCNJjdBt5xBFi0vK5LtdThuLm7jxXCc5vwaLdMFQFWxU+JRVMVLgd/Ry6A8QAfQ9J6PXgInwbOdlo1IwnraQw3iNJcm9f4x/2wpOTIP8bAV+QfDbX1peJCvc9OMogvYk1aSJH0fTYepHoJQwll0hC52BP/DLmJ1gaIS5aFT7ybbvqAjELF9Ql+V8U5n9RTimVpDBynfQg1zG6URvjwNWH50FZTQqAANRVz4PjHOv9fEdYd5N8S45i21q5EqccI8F6XLGMXAoNdG8YvPwfThZoS254hjZj/DINWuI4uil05GWiDy6NIPFNh9SfvBs1aZpM9Y9q+izqsrW43mKXGRou3wFWo9WtC4XueWweiFpFNnEm+F2a/Ve/IA+NebM7ddqqsHy8ebwBRKUsEYKxgot2OH7Efo6djjvK+VQkq3UHqRr8FcyRbZ/kuag0SXLcdxikT/7771OT6hqFjjPrQEfOHunxAqKhkpnlfhQUWvZc6Fqdoqhh06NeITSzZ88EvWYkqUmWvsKPU+NttSrLM8wqfspsLBhs7jpVxQFAz8rIBBYlXAxY8IgrodkXmn+lkzCahYjsmhLj641uE3RTBKGIy6PmbYTvsgZPv+Y6lkCzYZlW3JNzJ/M20GjE5hNle2IzzFcrDDNg98FCCMe5YIgulXK5Zj8W/1z6n4sfJgVKyHo/ndHKhpbAuL2w5nZnanog0YhFms1nniNRm3516t4pnvT9lBjey+tyDv4XlP/kexQudVJFSTIGxOeHFY68QcMNFAhV50lGfYRcYQLEM27HXsDmhKyjkvNthbutBwQyeD2NXhnJ9F9fUXoEXokpzyAVKNgQNMGmxk3vwlOsVDeTPQ4I9D4/M1PA3JvXNpNNPg1ByHvbjjJ8FG/qpgle757NuEXzAjugyobzuug6Xvkqe3cZxRZwRyEbVjTK2WaMqHwMnuPWc/iy0L02YQeoFPaF0J1aBEYufRa2038LZVFIP7V2apTGMOYsq7txBPmHh409eNfW46Jp9SoAALVqaXy4OFNQCmiuwaSrhbSvIDg5n/jfte0phzuLhEHDjXsUjJ2COpnlwGFjuZgugtjY3aJJwS9i+LSOPf2AcGh/Dq6thwP5vsmXoX/f0JXr81HDgFq14okW2NEy+9ZwJ5NxusR8sZwuNAPjooEbq81evCc/87uqjF+A5+wlXU7aVy06+JF2REC6+WAuqGRSMIdWXa29rka2ClVmzvAnufXM2ZlEFNGS/kTvqYRL1U5xFJVd4VZET54Y8GU+IL8c7w2jOomO4O/AMThnRe48PDPXHCqwZJkGDZ+VfLIgAS6LATelnQxt8Xv/sAP7orU/bf5pmz8FD3ctKH17KBGpkCCnMQbNldjaEkO0Toke8nkF5v3JKDWqdKIzCO6XE6ZDwEpf0P5w84v5RBUmrgFUvWErP6H9qzHV9Ty1MiLZZmacqW1+DzMMhIH3QcuShd3w5w/RS2T3AQyVNC5IdP3fil7ZfxgBInMDN2Lvj7nG58JbQkk5qatBLw/GX5AeaW2ukgcox0UMbSx3PMAbiYQvP5SnNyxNvLp/pvY+ZgXiKTpN07yS/+vzWFxOsbKwJnumn2IUvNUJPJInzUAad5w4RhjMTsTMieJ1+j0fN577adhtW4QfRL769qFdkS5z+tSCmWLViIbtCkp9UlEIf+Z+NjyDUnoaPOEi97+RVPFAEohT5fDIjxu4epsWG0Yh9nL+cT9yI+I7sBY0use9zH/84hf2Y2+Po0YNGc9urAnKU9+xskt8h6sE5WATiAVfdhl5Wmecj34Lyk6E/WzaDsPN6f1RsQ6kUBbQGpuxbKk7f1oYOyITfTFJSr0hynCidSjlTHLiaZ4kzugdkUZiWvLKyXEg8Mc+fatf0XH7TPEEMBdfpjruC71P+F/M4NvPCxTyyeAEJCAtF3B4sus/7UvJTUiePaM5VLuZ8GdaSbhSRALPHH3//WGsnhB8Ks/cyZ82nTUnhJYNVhjxnaELNyYm66bjavvEjytLUx0YpKcsDNcRXfQBY62/a+L646s1WDQx4+MZ8bMXY25yuaER98WzE9d0RweBLzVoPPR6NY9K8bJ0USpMS0QtY+xwpKgFOzBIxs750aUk9XdP2lcXIuSV/RAdag0eXl3FRuWCfyO3kaxLYOE+REfGPO0k/IzaV4pWNrEQWwbaMlF2Tgok02VrpFxBEbKCdABhhJDyGwZwnn9BYAFCGQpo0V0x/WYMNvH0dWzgrAYY0aVTcVxfi6/xWwslu5TYKrVZQAcewZYoLtNpzOGMQV2GrjoW1VbxJAuOx4FywPRU4wdUDzFUUof4TnDnej6flIjvmSg5yByaWwlOjBbK7YEegaylRbWgRChcRgv9lp5yca+7ip5lFCcWtv33lonL4C7eLe9+rORfSDMgTTWjjm5v0J3Sx87AMZZhi/lYBQIK9rb0jzyrJ9Rr7IwaGFfiw/vzdy0902WS9O6/JreMp2h65X5JcAj9adGmwogU6UMS/lmP9RF4DfWTaREQopUBKRbjT4h5OICOx8mehEN5yY9cadWoo/enGfV9JtkeTE8EYNiM2JYQ7mzxGNVtOUF6xUb1Lewyc/wDiYopWcXUIogGy44GzetpThqWYrdtCbwEBV8j9Owlp3l6WycLGTuN7wbhszJCW6je+yapZWIZebz6q+SqxrXhKP0/Dl2uyw9NZ9S9rS2e33RAtGFLkByw6n5HMd/gz6um51gFV9IpdKAngTMuq8QzClqOznKm3xcKCzGaCxhhI1DEgDUvuEjzUP0mueDZ8habqErJ4Rz5DHpJU0DYRRf8HcrddH+fZzJczxFlk4WBmWdJ2mkDKTVhrCvx4U7lYQnquiJwif6523X3/PSaG8KL5/GuznU0EoBgKWBLNIB26zpFr8Ujf6Fh4K30Cb9I6O3IFdZhkFbrUdN23nPljybhrt04XNmNQZQ4dwD3GPzQeq0Wc+oHGC0eLVEefw4T0/kWO6ch6GMJ8IPRJwO5AFG6mB/QV6a9y1R6dawPYweaTnUdE5R8py94UATzSib7rKDRnYAHNMamn6dFZaJGX+Ww67b1R+E8EMWbg79B0FvxBCXrtutOvPyxBq6f/uYdRCgLXWp+DVxAAoYElcR0rHtbPDDWFTy5lb7R3WiGYGSnpxrBqcbHvl48SN5kCrBlaxr/vqOaMSM1kvdpbda2NBF+S3uWSUQmDyPBfaoREEFehkd3JtVvvF8R/UlYFHoPdOE74ISQf6YCXmOwh+dQW+0v8+WNTH57pyZoL8X1pHKTheN41xxbnHfQgIPReO1LkkVSuxAyGLShyEtSE4UBpDVmk6XP492nujVzoy6URzWE9vYNbUIJ0ZXDRtsyKpHYUak/SRAD3r3iX5oLDX7HWiaWrpYAl2OxPQyz4TjbpI56F68YoJk6p9YMaQCJ5UZZ5OjusL8GkKYiYC+SmVv17AzE+H9zdKP2yzur1KYmBdMrJSChLIwuDtikeprKbQN8y9LXOlm3is66aR/rkzqloXLHmQxLgF3a7q28UsRndnHJE6Y30WtMKR3ZS/5jHPGemR7U2TfyGp5lBkxgMLdbqAkN6STV2+5ojC6W+IQy0ylPIFrYXLqROopkKQohMy0lvuU7UJmhSrjNPcwYNzAeMNthJHAjGYMc6YtYEFtUVbSuONja3/A908uCS6gGR42kKAhGgcCieNm3tKbyZpH9bza1/9vwn/zABLWKEnOZ3GNZT4B5Kvlgmr2rEK8rGcRFI8YsupWHBfLNkL40/iFvYd+RcWdsw2Ccu3JBsuaCuVkN98ug6jXyJaEh2EF8xxHwRYcLnDoGfLEbrOf78FlLHR+7uaE92f15tjL4kfLdVvPltnhKw8iOWzf7VWYQ8BiL95J7h/e6P+MMxuEIX/bU9biOOqD+WthA0U7LMrCbN7oxm1tAtLmgPWGhee/yJdu99pEnW4nEmaKUywiTP5dg2UmOMzOzqUHMHSLFQoNgdfyMqNyj2wBykQqKTkvj8UGUPZKKU25rUQ5jZ3z+Ikm10QwRRt8LTU0nTemkUuDMc4PxZdEATFiJM23sEfVNlJGOBxamvPrMHE85fyAaycYQsDSU3EU9I81kG9tDDmLAq0e8x0/T8GyLdrr0Z1ZlL3ntiLW9PGo/8H/BqhI9txHtj1J590vvIct42di7OMywppyyB6HX5DIQ4v9/QbfK1lTVGKgDwRDMbqUWxBw7aEt1Ju86y1lnpFnJ6SWa6Tqj3twnwQv3oHHsC5YUqz6lBrxlS7K3FCZLKtdW3KU6WuEP2tXzx8kUNJbom1gtkuxGRfN5RARjAWu19PDcwpjVB8GeTm9sVnC1UENu682WE2gm3M9uEXP5wXRvyk4RNEtcT6uN8zdJym21tWDO96G8A2LpXxwpR2OUvh6W1NALI8lqqr5XBvra9F6yj/FskjEfSMFt6E/5JMzZkubL18yww0VEW+RuAat96t7Hc2K6g5uj118E15BOo2wTWWWsVzswOcQ9cfXVE2SCq2dMg74aXpGqoJffSOHQiuTIVCwuBOIGRmh0aKVtDXAmvlWkh0jsjaqBJ0g+7sEZ+xerI7KNyVBWSdiNm4ghBFLZP7Z0aTd2rJ5srsYpmJOUVO+8UcyJFtEQmcppkLpJRK13TTdA/dYoPfm9W+Jty4fNKje59Bb+DZXyK1bnWRFGRuAvjnntVkaSJjFzvh9Ujxlbn1+WdngbxokoSzqfYeUKVG85TbAcrAB6IBNiN82gMBuclop1OEM/1LLe4Fnaw5wZBGKEZ8LRuRC0Bb5Q4wHObIfkkouIVYbb71ELsmFgC71TO77B85Q9eaxiEfOq7RoTys1gWQ8RQZDvWiX9qImCQg9J8clMN2QZk7NP2jfs31z/ugEgi9mSxAgqtPoYXQ2LzeO5B5ipVmCDORxsjfP5OmqUZ3om0/WlQ5gv5xqrkTsJgkJQhaeqkeoGbEB1PWbT6ycI+PKfjfaNjea5VWKmu6DhUo70UaL/WCSLZP7GTWnzMzWWxtlR/SnP7pbIznWxP2hGPjWHLMqdHXS/tMvxvk1a5IARXNkrFCEXVuN5rVwOZI6CgZDIhIiSfhq79eU97zK2dQ+IY7NbXRiimTqUDYkbkobR3ggwrthOC0VyLLPU7JPebzptWaMKQtRQ5/YMi5ebq+DEmFrjHBPNcmlwVCkEZ4EMCbt2rENRmZeNXBdaexlprDz8BK8TDbl9w6yf73I9ozGHztnCkJ+KMmoXGH2Ie1vYD8IP2Wsr+oBE8GD+Y6Lr4YksiBdgBASllLhwfxsg2TanXd5TCpKzhDqQq/cQhUUSQyJVrbpv3o2h1vM6RmkzUF1RKWCPXz4KP3qE71he+It0UYDUhmlinxLtcGeU/Rys6VrsX4gZ8IkLgnCZAAb8qxMjY6F8Y1UFTaj6xDYOFuMnWX1jyXQyslFhlNK+bafb2D+nIEHV5kkXXpuujpHTVuKEtmraMMg2nKrYdtIX0jGp2SQqYfgBpFdrvdhxrECPOPOLZg46zrT3OHO6hwmVmJMCdSkq7kxTF2/xgNKbBAP4Hjw9EXeTF150FY7PC1atqqaXsshQX3cvaMa+d0/TnO6r5kFl7QOr4MCWOiCck4NLHoqsXrvONsF28BiDR9fHIEfpiBy/VFkmCQa4LRGuTic448Q/HzHctOqYbAKohXxMcxf8m554BEGDF5dDjXJYtC5ma9rUZZLjA2GXMxn3FHu7VFS8Vcvv5k5CnLGPH1LSmZwSHetJpEXQDF7oEgr7hqKzTPuRTKYZj+fvW1UPBw4urCsITLivQPhZGt0mOP9EC8IOSFCZBAOsnN9eRYfH4fm95qccx3E5kSHem07uA3Sm9b7LE3RGMd0Yn4foUX06bwMogJx6zHkWZqVgtoS8U3mi6Qbk4FXpRXyyaQ9abc4t0B2EV/Eto1+wPp8VmtBwMK4KEMEoEt1pFubkpWZhoHhAANxAKOvrXlt+g3YEMZLnJWlWvVzMClRt5wJNdziCZN5mNmChvPmSfJYBZW78wYE8S8jTdsg9Es1ySPurShBNfyCScr/XyYyR2kjGzefLpn0/oqHD5NMhBCXWiE+dTdaMNLd+fPoXB0UkdZj7Qv6iGl1HgDUOo1ySNIiufH1JewEg7sw11fF0yzjag0ZMxyUC7jvvgdwRP3oUblTauazV6iCBJJ5vh3FzqM7/6XwI0i6XaKVEGyqoMDDjNxPqRlGvw9R0s9Y81s92syMBuHKtphuuV/SQWxINt7sLZNn7K28HcZcPDZZM8DRf+7N1mial3n5RfGkUdTNJ+1OPzb838ELZgFRh45yTDBp2RUgf2YBKOrXhZcMGx3UyT6ewpnLnSLOyACwLqqTfkhPf67EuZXRikbSiFt0cHuuneSTkw6GGGUKoBCBWvWH8YtZfrmiSrCZBPmBNPDWjxgeS4PllZ2DerOzrEcaVw7GsZMdyuxh9osYe7mlURfp56De+vLdwp3hAwelmRx4mvr7ePEiliHjjjnt/KqZsN3FbljwoQDm05/XhFLri64ECwACk699Fb7nv3l7zcr9n0gibvP5JHo5vfTQJUUgIVaAY84gladKIk9GuKbU7XtS45xDIeyZbWledqasE1hctG0R/MzH/ErJzd5dCRHTNb7ovQQZOhUWm/cydCRVLOquG7Nh6GP8t6W7S3gtxv3WYrL3es5Gym9OEV31iU+WXyBM5b71g26ed8t2C6xrEsQinHY6eM7dK31jjkXP9Xf0C4Uem/6jchvpEpy6Zo2mMicXHJsbEau/3WTcbmyHxAc7Y+Lon39mWSSfx9ndAullT0oAEUQfiW8JvIshUycqMXlL8ot4OoMtZtxE49kpRHloFVdM9T8X8kLoZ9bt9SyUt4433fPRyEs/nUWgC7XiFmWHquGtgR8SfsrhRmBGiIsopukZOjBTTbFtjSyd5NRH8kPzKUY1KPzv4+tKf80s8hMjCwNQ9imQwblcj5DhFuUEYYxGD/083NHd4mgmGzKs6opTCqF96+AAiuxuIbdUMew4mte5pzmimVI7u0rApi4C+oSD23xQOBA0GTQ/ozH9UPunqUfRF8QTgf0RczgChTKmhois6zBTyCCNv6vPSiNW2sSQp08QK9BhBQ/BA+dQMluIli2nvN0g8+37eH3E/NZXvKMkDnuDbTmFGfVA/0cBu0G4hxP6daJZ6fYkx6LRRCy9TyEW9mOXCXHWQukayC7VB15uIZkjyi1EJAKbMoud+G72FuwCouXI1uvus6qzTy5B+hZ18ff6KTADNG4ZMGVzqkyWEjS9V2FYm4CeKdb61ig4QGMag9uMVir46m7RUeLQWFUNm6eF8pHhFkIG55lJOBkJhM3W2k5E/31RWNvjc1IRbbX0a1SXlTNNPX95ERcWpLep/9nhbVaVxn+WK0h+y3WQyHPv9sd+J/HxYflR9XSG9oSqf5NxBDcgdlHA9pc+LmCnO+70TOyySpDAs0lzXQxi1WP86crM6geAXmLw1xiLeqVUuj/e5sfZDQ5ayyFGcTWF3OQiFdmhj6KESCJZkNwtGYiO2KdeGi2w5Wt6OVV/3NeZ4/urciFaIx3VPUqqn7v60SzB5fOaEd6VjQbp3lmLhPHPMCBgf1CYqT2gPupUr46bkejCIkal0GdqGmzil35lpKVN+lv94gSgNIprhsvrgZIgUXiu56zilJ488KMjOQ+uO8IeNxKlj9HtuPwGIY9+zfv23IvZbtCwubKThLLNHCkHdQQ9q0XIhf5YbBpVFHb/OLHoi2ItgnQrct2u12QJ0JjHUrY2oKjQZtNvUIIwMQBccfoASJLkN2RKu3mpZE7jkHI1NBYwaHxAqV8VU6vbXdaMR1UA6qTebTB5hC8YdkxMk2XEUJX2O31CdA9SXC90PsaEmrR4/jWk1o9jIxMonRxBfcoOzqWNcdizdLJTCNCTylshBeg3QcObl8tKRjdFkR21/xVI07T6zprGERZkliPEASxSwzmH347jHruHPBeox8E00FljqCxJL3cssc/uNnH086Ugmtu4n31wmsym1kOYQ7w8Pv2CK7Km1Oc6nkPoYvepndRxRduFGsdg/xZ7P8q84dU9AQ/lCKH5mvqVY3GpD3+xZQ9f/wYMJXm/3CE467wLprfnRZ4Tbx01JYn0E3VIMTwiz3XdcbxkDgvopdo47ynZoTdA/xORUFPtV1nMzdGOD25E02VaHca2XxHlnDoZAhOuE+g4KoZ4aBGXlkav6eJkTcFrp/rjxGBESikCzixaMcc3QBiB+jh90BHl4uX6s6WcSdnClkbaFpritLGjBxil3TXm8s2GNY860zdIR+jHPTz3lIhqYc2A45OAmksn2I0yYoTljj4hmX5BOwWyNuBtdOzNjJ6Y7drznP5OhI3mOR9vBUZ/v40M2b46rq8eWglaN3ROrDfJtWwX5fM+FsWl6VI0uUyRr1mdV67y62k28edUczzyevHbvZ9QAW4tmY8y9HUMPMUywAcaTw0DW6jmy8qje597+2ZLEZ807Zizs9p+nZIzgS/xczUhxnZGKLJVWkmQ4ynAHuqKsprgoDgf2OywiubZ88cp1/ud6QY+dILbCRcX+FZ8at0Z9MiOhT/ZXCyJ+08F3ceiBdc0OTt/w3g98LvzeL68p6eOu8B7MH35epxsoK9PtE7cUTkKZyqu6Bh9qCGvlmgVseDOC+SWMUY5JGZfJPWEEhhAXq0cPXt5GwNlfFVYquidVqPj01WQd8yH3ViNJFkFcyUDN7iOYcDRGvGasdlOQxPQdbD1/yxLKUs7aTNiffusbNBNwcNJujTVwwUx7c4zQ4/SCXzTTHNIHt8mwOrE6BAm0NlcdzGyFPqrroirS3ZGmo2A4hbX0g4b8K16Gd9fAxUwNSSyJc4zxGky7acxf9X6wUxJVWx8OMs7GUwMmNDIMb3PtJyPzvTcPxgo5j5S49ud/OgAlsKB5bxg3s7XCXn5fv7J9pmOPSqOedrhyezg0Zae7wS3JUa+Tg4f8F5J+BCVm94UySYh/v9A4dWGOWQ96r1QBOTaspjCi1lu8F7APa2R3BfjVKQZenLkJL1U3d/XwVaEltjC38MNQ0JgJZ1spjSZ5TnpFGSHPWln8cLom7gjuj+ptvsgw557Ohap2xMivWZryVGEDTvFu8GaQ5b+Jjy0TkqU92+tRrxaQWQmSS2bDVd5mpDfpUMC1jh81bf/6GAKLonJVEdhTrjwlTjpcQiNr1GAo3iWLRu86Pe/eSXxOMK0V5Hs2PCPDC59fT7l3yINFK6XGuna8sHLI+T9AnBovLIlIAGYxUTW9081evNGWrV4qekGv/+fIwPDAtM7/INY2qcvEdW/lmCeRbs8W8eJxYN2MkCJQWmvxqN1YOp9j3fHmElj1lAcyiidIeWLSalrtQyOb/gTIdHqNp5C0c5okFxnn1A59nmmYlFFq3vSv/LqKKn0vS+vyM4GQqvReFPRK+tYFWIZnbMk0i2FyiYRXa9utilkDWlciLhZWTl3fwlsz3xAq1HXvDTjDsZJ+J122l1kF7u6GGzzM9/uVQpsLZe66XVGb6mm2ru/OqFz38DBT81CSuaCOT0iChQU9TF9drDZUmMuWINV9B9rZS4b+dvvdeF3STZKUoVQuS//9jokK1z8FPtunjo2YeH9sXjGuWNTVZqm2KqDVAUv6iVFoNEXQ21ULIoMtiHRAN6NsAvXvChKYCc3fk+6RtuY6oWc7oXSc6TYnOXORd0QJwbzQHrXQQvXTDTC+AlsixRhSz9fI2mA54wNRdiIJehsBGg7PRsPTY6gvldO9X3OvOgVoqHYfQsqRZctOHBlqmRQpVjz7oiXyfZ33O7B0/vpldYWFs7zReGNcE6RwOt4qI5lpuBmqrth9RYaZ1LXX8FQ2raOoFxVID2yFBab3lcenM+gp/+RmnWaMf2CeoLc/SC15RSMmFVC32kukXmgXFSvsEzLhad/k0fcmTV4oJbPS4djEqWytKjb5iuj0p1c78tNERPKMQff5tp/Khy/GioPZUR2z43c1OhgmboMNakha7fvhECrLpAQy//PjTPnmf3BNUOK9819fVIeZK1CeFpfzf1xExQwt0rE6t/XaIzg1aPdylOgnzaf0EpLr1iebTqYBT2IOIfbXycaoVmCB33D3lS55UTb1jP91Zypc/CdSjIcIqGWWMzGPfNkXs7JJ0UhWVMuPBEP7l8y5SNeUj2QH0WuT+sUZiO5jw5JsqTwRJrfadTxU9Z7u/JXFp9yqbfTHXKqi7dv5xrBkcDx7/Xev42LpaALvuVbpzPw4cEDlGbA9AXtLqZHaP2IMOtT3rbO0ORZn5sfcoYIPb5iiW7SxzFzzAfRw26FFuDOnVhtGmok6wtrN+oECuODg5N2GDhjzU4YB2O77EyleUyMW6HoJnVlp1gwL0jcHmY1D7AvW0iP1IdEXAJ77NQR+HEdctvr0yuLNiKsJlQPO8e3Ck9nOnOE8xM/OUVxPqhXAfwYXxqXuMLASVR5PdkenmzYOEZ/x0JlD/gmgLCIZf+vzisyQcMxUvcyXG1KqZSfJryoFWlpbh+y5fShfJaHBP2p9q+4z+hCXR+eDxkdc/jxkTYTnIj3ENT5iHM/ERCThtaG613cVAlof+e0gC+mQ0TtLBBHKovJWDV0SEtDmbbYWGY5EKexmgZXu9eAoMS+JHF9VS7L9v4EdYTnPsIymSFZd4euEFhOs1RmDhSA8zf0kh3SLRku6Ls7zazISW4lDR2vmKTK1Edm+0DLfBt5TzdX7Gu9vQpusay9UFhp6uiYTMDg6utNLRHBSrI/eLwQ7/KYsXDA9QSLPOAWTNEot3ogfijADBkqMTC2Hg8qh86JCuLLx2sSkXxvaRHKBu5ULucRQy59tYzwS5/tVjpw7agbwZROtMZGWd4VqvtaqxlVKRD06hm86DZzP3nQlpms4Mut9mHWlau0HWFQKqOUlDTkJIrt1JnM8qpydWlyTkLle4oZnU65L7rhoyPjDAXMbl416MG0VtqtLu09rIHCa24WaLVLFOqLDBOBvyWx9M8r8J+9+9pNYhH9Izur7v8qrPzg34jokSpKBr7fiBKrJk2M3ZFBMqoLM5m3hzVu7GFqs1bwQXDf2e0NotpHerUMDxvLq2WqwOHzA0YF1PfwtNBWSfcCL6CjSoZX2Ms1QQTiiqh45vUR6VU3LlC/V6/E+zNzaLcKG95TuiGW4AMomPI/imGYORScp2QvM1New/Muxs1t0OPym9fYNOOA51yUGwxbBZBmybVbAioJRY0dlGWwERESjk5t/h6/f58nqP+U0RDs44ZPxWNSYquMyXdpDqObfRYY9JenoSNbsDhOS0cTOgG5qjA/K8Lz1wDrUOrM08SEUlGd8GmP3LBitS0wHn4RTSGXBKKoFwHQSh8M7Trw8OAWoPoEnvOjxK2GZLBJwcvpBU4V9A/vNoB0nsCZ0MvOBGAIhq+b5LsjYUY8AwkgFzMr+jka3W5MPfHIC1UW7MttLtEaALTtexJ96ijWBsjV2Q595qsd4BEoN+DGhXKh4xy9fx0hEIgwpM/6DY12AtX90EzTR45nl8siJ1tZFvty/0SEcEDGxVA6zNK3F9bVDH1KkP73y2WBPxtdjt2u1fWssK0ZFJ8iHKikk9+EoQOUazkb0+vhxeCszT12axlFmQdHFd4qijWAbPzZCu2N5ivdDBGE6E5A6tL5b/eB5snJhx6F13xvqatYJ+3jjJ08zTz7IKNfoUCXurUDFM/l+lK95UeaK9tZAGf+SVv2BMM1d9r8a8bTDIS2OOySdUGJjdxdNuhQQaFvPilVh4SQxah2AOWAMInaAdr5o6eGtO1kYLx1cLNgMC2WLmM8wchMKldw/yVkxHNRptZVTR32mwn/reGhi/ZhXhyIruh6GVkUVoeLA+s6eqOp5mdHZy74qODBENOYevbLDbAcTo6dwJ7aUCZit98Ki6/NMbJ+UB4mkQIuBRBsLnE22FkSi4/K88QXCvvz0DokdRtB6SLyiBxnL4U7a7cCPhvhawt/wpIWIs8KpstgqVmj/C0aMRGEWrMmSJmv/LpwNEObABGRhMa6vU3c+ZheDZ8/K6WigA+oBWploGWnaObzH5TqYOzdUgcLp97fGgMMFIb3mNL741Sag7lCiIOcIwcK164R8nNFBQRVShI9O4nl+CyD/9UBdnhh2J91IxAVJTi1nTTo1nuJZQcRWYJ8I3oamzLV5/LDHRpExKinUsimAndmL4J6OlP6mzqbQ8klyLIm5wbnbTtkc/sx00jPtxAA/b8Wr/eXLILUWMQIbdrY4U7yNlWx6VYcwZDNlxxH8GWaVhFaPX5rmVzqLo7h5aYBhRRzCRyEtokRLssiioPUFwnTg8Bpo5Hi5zriFDzLX+ZNgwb/N45ouk4Pn48LC/cJKXsI+sROxaSloeDcIFsVNkq5177xdYuNAS+N3vIQV99PY0LtlzRMbcLdo/FiJaIUzTgwWRikPZsZ6ZTk73saIG2Zg+6jA0wbtzsDMpO1yMmNN8s1Dz5NGl6dhTgTihy0NGJZTBHW451jnDy2Pvt+yiYywHhT36kfqVsglW1eKGYaJCK6jiCa9sjL/3S9BBGupQdCJ8zIZn24WoxclbOVFRRKOGtLBiwDO4ApPLcotJnFTFznp7Qj0L8BaNtqOsku/TMLLP2KUxkfPIViTUi912t/roGwLnErGNb2EupgSNN43wzYsxUpPBasu+xseOmbfXTdD4pzhHqS4F/P1hCg/CAeYcYQ+UzPtwer6GioyFZnMtHF5+OTz+4FJB1WA9rNdeAq36M4uq+vYVZbfHOT7cZq5cE+IDOfrlfC4fLxtvffMsvbm+v0BRdsLq8EF0/5EXFyk6wAGv7y5ianeoyYt43Prm8OXpY6AnRMaWl4Ya6pKNML4mSpumMCDextKroi2aYWwNYCtZZ0ghoKK18TGfyhAyFR1eDpI1+lAiFdbT8isyA0Bvt1Ckf3T/u9kexgnLg0fmY0xVSiAR7mh0zhfQbniVTOxu8cS1ck7i5wHBr2zpheB2QtZdph7EeOdmzjIZuTD9gicyQKS1110NwyOq5Vsv7YgYF+w9N/xZQe64nWt5fCiFeoeIkV6Me5XN+Rdcnu8dohzj2uMQv+NWn4GS+NWI+ugYsEt5xU6zVaLqPdaViHctAiqX9LsRj4ADfH48wxgpkXTpgAHfzed/V5hXKGtHsqicuXhRvw0mEF7MgtBpCHNpxeitnKBuepZ3jsusjdQqgTC+nLTnYrt8c2sOhL5XP5mn9GC2TZc+iwukPl7BHonmgP3hekMDNqUNRG3FO/Xgsf6sMR3VvB2FsoWtZSTC+5nOqoDiETdaPB4ep4lcvVr3h+A8djiIvDAW7fvrWAgY6fQOVhNZF9z+nGW9boOUv9XeplWPKiR9gMT6eM6v5nkzkCxwqmUl24Ufk16yaNqbbnoz6NEP70kh+mQrkcgcB+GlcVLQtwT524RBBINbbpwMy8Ymr0XK/Y1Q2YigrsnBulwnGI6SPmh8AMmo6r/3K6nuANjzPDXIykMvVtpB97pMefi3Gdz+jcNHl5SirXcjbY3mhi7wLJOzWGau/oY0NcVsn2lP5bJrD5xVkkNateIOCCJtmSu+++RAzyH4XMxCxuLcniLALA+H/A8pRuH5fZoNFu8+9JvHUegq3dNnQoRnIaswgM4bMUQYKrUH/H4JrMfRPR8cfAvmwAjyqcviM5tQxdZJWsXbvSvzc4CmeUrkOcHREFz43TnUWg+YFBHkC14/gpkRDMAVA8+TZyGTLK/22xLTvN/h+vtatdt2QLNyqtILb20eL6l6nxH+srooY89aH4qRWL6LojwaFetZZ0tB3i/KwWSBTB3eLVwQybFGE7aHEvhNtyzCiv64MOLQ9xc4P0NSBxxgyYHi/lMJge4NUDBMKITMybMtVbVaB5iUu10mcsPMe/3UmMM1yRdE8A7C9X++AK1Hr0vzERjid4gaZxNO6901D2EAjDiNT0Anx5TXN8MxjUbia4VlcwRG98dw/qQbkjlzhRg0z+7Oo+kP3qCO6/xwyE+iR57I7ybnGdGElqylk6N87OI9x5hEfeQy2fYa6Ki/uMVSjQFrgjvToMUJeQeI0TIWP4Eq4KMLDYpdja7yNlxTS59iLb+C6XOKYt7Ur6+36xF3UDCst6YcYZ2SSncaQY8YZ69GTCI7ZggY1d3Z4JAvmjVlOJlBRqHgjoyCeySaRRCqtOqFymuuM4GS6kWUep4LKr2mHkWVuGs8fU30RudKr1YEPrJ3i7daf0ckUPNcTvZOBkNqkrpqc3zAOCsR7fiuNt1eIa1w0IUN7AcF7dNOumdlPzXXCOfO3P7Vcr1S5OPdi10lTjGO0hJrTwm6Ig1Cj7TtGXHqRqSVRepHGEKD35S+ZCVPyDyUea/nJdmjs9FpP73EsPTaWluEiQMrKJrL67o+Y4sgABdfqNhHpaBURMkdT+ik/smdFS+R9Joix9j7+122rBdddOz25YjHQoU/NzwMPqdlcL7HqGMhRftI6lEt9cN7hHoMrSQXho6XiH+pxlc1DZdGHiD0rPgyoG8r4pvAcIA2gdqbbvTOP8zFYiXR1m4oN+is5USZbnSbzfTjMXvR4mvfSsqq9SszF4kauCtG3CNYKRhW8M1vR3vTey4tD9/R7zCTTwcYlB+QWgQprb3pBX6i19UyW/i/Gt9teudwRf2YXza5q/I7DAccRui9br3bIG7g0i4UMAZRFP7pajSC0CEOZ9x/YlSLaIcjmCzPdXrQ44Ion/Tkgwc/m/PpvkB8mEFNYkfgdZZmbyu6pfFlebKHwyJoHXXvmz3sv+zJn2Ch+rQToM8uwcizXv13Cz0ckpDvF6EvIiVekL6gggSIwEL/ug2joGEGrzQxKAgpXR8UZk2FANPpDTtzoRRJUsY076iBOSRuqu+d93KIo49UOyrTmlnGeX64Xi751GNdlienxZJVeTYYknbg1PtqEszBJr/mVKG7OPnuzML529UbQDI+1xJIZeR5T8zGI4gJVnH7IGhv95AqvmfvZNyMSVZ8Z50ZiVfyc2UY4EKz2Zs9qgy7etljorxe2ZGmOazObiznRlBcQ4FnYQFE1NrXE4JakXWcQCK9w8m4jVeGDl/1DHco3Shtp7QONCcfR0rMbpdPJMV1r0y2gV3n4rJO+NzSOTVGTzdupvYQtXxXynPJK/IQ2qXjOvA9t3BIvJJMW5D6hwtYrJ7vIhTQuwbOagQlwjgvWlfR7o+2/DGnay9iRaCxxvUghkJ0Hx3zDWOXoYa3X3f6uP6CoTmZjsq9DkigyX9G6Oav1Souhd0yDtmaXW0UF/Pq8L/vZACzdhPkBTKIr4RWr2jhx6A/WdpHAPWJ5ntDLcaQO7HY+3RF52lY3/mxETizgabf4gHj6CcPp5CXpArgbKX7L+us2fIzDYOuAlliPHPZbEJ8O1ituI2EpEcrs/Gt2CEFCnc76AReYEaq8acpBEg9CxcYVBKxitaEDqkYpfemKi0fzXFdll+oOPMmROoZDkCjyNgKujoxHlqTLy7d3RQ5i7cMJJDXfqZSpcAd5ctqQy/uZDsVmrBkQqMOk7z7N+mnE4uWApdZOcB40voPQerRX7gci+jIVC3d93IpzN9f8huHd0BJvNx+LDkHkCJvyUx0AwaL/nNZkRMpKNv1jwT0OPiZ7ckRDl0/l3uUnj7oTWgG7q4QDSrDaiswfX7tyBkvO+YJGHVYKCuVgW6s9KpX93b0gYkVVSl/+uQwid1Fi12aVFMiUTbX2LISDsi5YEUqSAU+boL2IEQPN6bmMefA2ZVjKWDbZhbH3GWwa9ay9GFC7d0ci81EmenurW8VOVXe9Y03i213Y0KxiBTHsL6TfBqnoh7UXhjHLMieZeozXlQ9NjzAKNE4aKZOkKHkOV/rRFQYb0xCsaj9+1z2hLHNCZBcOxJhfgZ3ngPP5j9rZeqlwdGT77IpVrDMN6bwfgh1PR5XX7VrwyU9v2P2cgHsWFBrSU/hpWTAunlEu+WKFLCtjNAgxLTDbOMHrTz+3dXBKmunhVdL65GouLsF5Iqrrrk6T1RwcdO5CnAo1BZkSlJhUwGAuxv3epJnFdVqXN3oghmmmKPaVifz7xrJRK+hmcLMP6dQkiB/N8qBW4A2bAkqVP6qUvO5n6fgIatIjuIw46pE5g9AfzzNrNZsnEDiRM+dau7rVLhqlnrwzR4cVi9i8hlvQuJF7n9cPSghQZnquPDdUe/PNeEFkPfDNlNd9xeEaOb74TtCblaB66sur4qHr4ak5qDlXK56qTYJoDFpZFebcDXqw1DQg033tfZ1WVEUMFgM2ebORIQAerxzOjv8F1N+E71M5FOJT4rv2LpWxt8B6QsX5U/Ra44bFzRm45QaIANJbRq6u5HsfUG3dZ6pUFnjDgegn710a/OM9b40w4CEyP8yQ5o/DS96zT6/8VGV8Vr0EJUAynfQgcd4AAV4fixMq3QgLT/NyS4ANxlygx8nAxevPwVPdlw7+NUHjxZmGa/VHgPWKctHn0eFFK5XCPKQ+M6ThN0ZEeoGQSi7D7QhXWmqYhOvJZ9j05uSpoU1AshdKrkmjfNfST4O5HrQXV3AXRXOlsc2kj0ovr0I07a35xEwLMi+/ATFegwlGdawPunNARtdTuXn143OCsvB1iuowSKkxDqeM1k7Gv0xs6G3Dm8cNyPJXAOLapdmkxebFwNQK+UOOTmyB3JL5+Y6OEjkrtH0sfUDZ3ZTpvNbWyTpz4B6xFScKxILfqMCe1clEYdCR4sp019ns8G3Seli8ktv1d/DPsyYT3RQdUzrN/whVuKEClnqOmTZQu9691glgr+HVf8AcQPi09vz3nvu+qh305zuKDB7WK+THZTN4X8tc9tNkDffXjQZBAI9q3oOpJ3GKv/BS2oKivRV8wXQwQ7lBt+Ku4u/8+VLrBVaj9KUxQo8e9v4XttUYXU/r7WDbnbjOuBO/xpVaf5WIm+XaGDBS30vf70CBi3+44tioj6uanKI5wLZ6tbAcozNQ2m43Pf20/f2tW+qKf5YeulDLudAj6XEz4y4EhkpuYa/lxV+67IF4p/5lBiQJTsNnx3Z9uVHlDwsZ6Bfl19RM3fTkYfZoR6tN0LepPD3KYM/E7f4yxks8tp+tq5bKTe9jRsmsmmFxMXNQuKIyfm+FgMwkwsorqnvHN0rfqk5FVSFietx+hkH2FGSES9WaBADtgTIFMIXDQVol28Ip9IJSXlvAYYVrBOMhsEVhKekLC/UwU85X74VQobQz41WBtp30boT1jhLebf2sEOJ4h+9uABZkKdNgfBRJuNvOMrzLS0gOgVOE0v7ri8YlJ7TYwU7hjSN69L8xQEpHO378sZUna/KS4Ml+Hnq58Gd1/1pTfvSp5pRb4m29i28qFMZoysvCOHovz0zn8RHzU4MoYLKvxmZhS0YUPS60qX4FwlMKt6LGqKsZ5FlDxhbCKgyEDpzlTpU97PrJxjBICco2sCXmxIFY8sxo0nEHiw6YvLFJJJQ5zdxiO+7vjkdMie2KVZ4g6aHb/ymp3IC96uFLnOX2MGvH7OcU93UAwz1mCxn/wAFNO2m71FZwguztSQBiNYjwUS7EwMqVzX4NJdeR/kUdxDckZEtQnEvBrDr9VKx0OY7r8pWABEpXbd6FZ32MfOd9BnNp0wXAgT/WWTyxKGW6Wp1euqzg6XkBnHBPy19t2fwGlO4g7dtyvwu/CD0uPqYN64OjutfMOgsVUijF+/Fc1csDYvP6zDmhRNOq7zKgz6k81/licd8UPFQLvVyi5mqoOPuRkVDBsUZ/1u3H8I82tya0KlDfzkexwHQVyHmgRZQD1AdKBJytVIxCLmvm+0SNgWEtSO/b6r6LZNwGVW/qLbNoiW4opCJf5A2kDXRH/5dCasrocl5AP2stXlli7QS96ZeJGaCm2PJkuU+dESvthHWvnOMMaL23NJrupku9xl8jujRAdtZsJXKrgpfp/cL+ZWSO/l1culBbyJQfZj/tiAkopGEGzO5M5XdSQKQaApUKHSPpaco0N+h967YV0J9j0ulHJyKccygtC09aQzHdhIgjO/WdNqltMY=
Variant 3
DifficultyLevel
670
Question
Rearrange the equation 5y − 7 = 2x so that y is the subject.
Which of these correctly gives y as the subject?
Worked Solution
|
|
5y − 7 |
= 2x |
5y |
= 2x + 7 |
y |
= 52x+7 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Rearrange the equation $\ 5\large y$ $-$ 7 = $2\large x$ so that $\large y$ is the subject.
Which of these correctly gives $\large y$ as the subject?
|
workedSolution |
| | |
| ------------: | ---------- |
| $5\large y$ $-$ 7 | \= $2\large x$ |
| $5\large y$ | \= $2\large x$ + 7 |
| $\large y$ | \= $\dfrac{2x+7}{5}$ |
|
correctAnswer | $\large y$ \= $\dfrac{2x+7}{5}$ |
Answers
Is Correct? | Answer |
x | y = 2x + 7 |
x | y = 2x − 7 |
x | y = 52x−7 |
✓ | y = 52x+7 |
U2FsdGVkX1/i6m05bSzjMIuPMjcQCDyC+olBTwkjgjh0G0jKtIdxUBAaGeCeNOX3/mhTjlPQCw3AIndYAafUhFHmTcvNskxA4c/jgIXO3Bazqq+roDBvMRdDOIuAAUJzEXEnQXWHb3b1aofmFtuO/lPgjPGki9oG72WpsPMib50O410M9kXsB4ymfZB26UOlQIPze/nRoh1HbfOdV3FAR2mSPG94yMUBFraXrIJybX8Qw8gkF4lAlsp9gdTTvbz9B90zFCV2/z17/K7C3X0irewDgwJn3LFPBAUAtZtPpvYRgUmuGJpzCHLi7N0y0Bv4O4EccMpvIGtG9GkCeHUlgAYlLJW9i6x3yQ6nj/G7SWbGCKIBZOEWW6o6IIICuGsEEHSWuqcxmofP6kWyFiiEx6+v2T+pl968dZPu4amjyAnIuEG5JQyBLEViRp1kJCxKcldVnQxPR+e9cdILgDwc0Uk+z44KQmgeTtK5KbGb8Q93/zsJEZFy5kjM2YbHl36EimY1NW3nXecvQIhrhACfaCRkajd/3S0SYUkXV+QhTlJvgJU8e1iCGyuhefQFZVtuBLs5lL6UXGCrFOlQweYqE56uTQFWZvYjqlhfjPNSf1OqhGOutE3lqJDkUehSkWht47E3nFImbLhUxbcZ2MmGU7DRPTsLiYtI4bJxQuS1ead3UE/TocnQjye5EAfSwTPGjWyyEJqNEaWP5lIqKd+LTY/hpgm3YMFqp7UZIS0ZOyTHY6rQRfH0BmcWamkNNwwwJJMgJBVmOsRHZZkNUlYLl0/W4s1QJ6aQLUih7l2qcDYFPYeDMFMAfQwRb+qCpOg5C2EYvUp4l0MNr13t4KFGyY46zhWp22XhAsnzIAmbYlyloWGxhK+daqMjXrjKVexACSlQDV3UFAHQdHvP+kWFMXBQy0uDrnl0NO7brOYlaSAwmrhueN3Dx2LjJbBDoNIoPsOauqwqe1BELXUrJjeKDnYZ9U2E4OM0ZMOqlq98hB1Hg22R7708O/d1lBTPsJmDncgAzGWhnjsfOAIzKaXuGEmI7mvs9R3z6XU5octOriEImXrwrLr2wigKmXXvEZSfaKIR7zPmgaGYL/71cFCvsl1BUMnsCxuZsGBw0QWZ2U5vGJx8gCSlRRXUdonKtmHIq3Sy7KEYoFKSAAOCFu4EsH+dx0mHWC6TLqLMSnJEYxf5ZeTRC4XAisEza4iCrjvBHwdAavOY+PbW28iIY9eICATQ3uQ5ulV9h0FIGHzFcy/+3Xy0vBqATUifbiMn26+eglAnegmxk7mbj/PVmztwn7FFpTmPjxPC8sfDNiSY91mAiAAtBwkTa5zDA/pmNbyLt1bRu3eJRT4sotekeSfwVj+F9nFsQHs5WXsjqQprOSUcdI2n6jegmaOb0Cg4KcVo3gob0gkBOMuyNP8ibm8BIQGPf7Vn7/zxf+wc/siIN7InOrjfWx8pQxJxjpl41qAK9/wc/CuKKB3yKKBxxxQ44ESqxHZ3NpuRduf+7Q+ZCURzgaCTYAk11C1mc2t3IGzHd6C5B4XSuLqUgR6mSlg9W3TuvrWLwFgrNJIV/U/TpO6sf9XWQyKRKYpjrUyJrxSdQc77RHUDXTAtWItS7PdmiXTnVjV02ST17LNwrvvzch72s+85hN5ok62urEdgBhQ5PpRpa/rHOg//NXDp7+5Nkd4702N4rtT+znPRE1Y1O8B7tPLm3d9BmPfp93pIaZZa5HvOTBkTODuLOV8boDe78L3CPyoLiSVwWSm0Aol1KBz8csQNu2+1u1VmoV/63KLz7PdypHvYFxaTqm/gL6+H+0db4r/JZvWzGB0q3BWfNwOmRVaOih6nvgnv+KzClVJ+uBqbgNaQYzvTKQiura8WCsgoqJB/DuSIMSV3+T/vJI7XU+lfYEqabaBrpSIaSx/qiAZybkgI+b4TzW0o+VJ5usX+va3b3YlorjYvrS+6Zjy3oIzf2ODPaseKXYgx5JNDWxdskNQn3F1BHzCurMo7o+0+urg0Y14YxkQVdFEkdqXVhUO0eM9rBt92mHlwGTFo7B1bGRFT9jQweoNx2MSGsyg1suarBCK0FneZlLeaLXRXKFUs50/hzqo5KvD02jub73LhDaMO+SgyToO8OKZm+h0AAcNohzTRIJQjmDugNWLpr9ZNBiBdR7LBVJ6anbHzjU1vuw2EwBktGHKDj0WarWA1McUb2tOwAS3MKt5yaOVxVpkxA9snDtNa3UNXqBFAh4piyfVTN6W6MnCAjt67k3Wpdbmt7NQWHoM+hnurDQ+h5K1IyB9EPL/50ACHPJ2syQ65BjK9BPGRlgtXjI8wRpmkh/7Q84ig8nuiN9jUcRptWYb6mrtutTzJ0CyMNsAqWHLkezdtb7OrIVlpSwnOcrUtVc3UHt1Cd90OcWjKv3jMQanJKUtqXPHb/ZmcXAtos5ZQBJUdZyJOLyn6gWzs1HrC5/iZIZ2wMRLJMWYO2rAWYnQnU67S+uYErGMzX4nyb8hBQeEX+SeEnYFMBDh47YzOangT7gW94pLF+RBFjbHX5qYCvaFYP5yFX80iRwHtkS/oNZJ2NR4X+h5+Q9b3nm1QwBzk4SGvT7XfBMoxIGb/YwHKgFbKpHMNx6rr9NXMLM06VKouc2NQXh2zbIctUaHAGLBGL72/cA2ahmqKv5YD2huBEJOLm08hrdjDsr/Do1mgQY29PzeIRURnfqoGeQ9W/5W+X3oqS4Tx+jRR8hqySusekzB0gAywt+dc1flk5opL/jA7zJlSJMVBkietpD2QiPms3cc3V8CuvJDE0ccmnMpX3ka30SLjwDRzGjP2NAc4rJs5ONQuxl5SB/J9GHgu12OMBDdrtRLYstaQsx4C+5Iys8NxpwnCV5rwQ4AchdBebx7wcnq5YIAvCZaCmktS1Jf4KSdcm/h7GgVmzMYixxw6G+7m98eIB+YPpyYDUWPp/6wOkPK9HrA3K64/PA61GMfVvI297qFeIlu0yJXPAsiZmbvYhZ/cVO54McTw8h5ffs+atvuHZKEPaTSYWwXA5BiP28T4aeHl7MpKD5gzPLbggFpwIk/gG4BiQ+m99aONEdYF931KynWHo6ecI3GbY/FchEQXvSBnuNdPxsJfQIUYzdt+iW6f5aHahT7mXCBpgYpRMyQ4uAEtVL5W/6iChEotj+C+CFKh5OHCYvOeEEXptMvFLxuI6WJGviVEaHLDmZBkzX8tHFJJb4q20E3WwbflwoBWwJP1TNA+O6+B+1mfVIvrndht7gxZj/zJyfL8Dr8dwlfaOAWbI/ARQYSmLTffvtr0lwqeqL0noeMfuCGTymHclolgO4YHcqm/85d1sO+CSPjlUq8XE5gSM81LGyPpge/01xLWGWCinLMYG1g8IL9zrHu9rI6K3HE4bNZCKdNXBs7u/8cHBj7NsI+K/VrsPFqyH6AlNd2XkD+MAfrY9bzhLPX9JJ78YwhDNT2jh0nxH6yl1JiPxnfTg+esvRkLv9uuzpwiCbWPEKG+fMa+0IAN+9RujdNCVa7VIBCrLX01QoXkiqv+e3ZTpf7BB85bE/7cFUPpW4xkXfOaP75lCxJTOkwENK4Q3B/TsaK5/NDWD6i4qm4YbmPMEtjsZfHq81VpdpWF4yc2QQjp+0vr23lzyCn3U6vLVzCSc+MRssHFPiCHZH1ZKUhgKSPbZ6+HRDyUyqZpd9R+GaBM15LeXiKpA4mGDNxeRhOJNAJH3tBsVrJN6RV7E2d4YS1+PUbhTAWzqZCEUoqZ1Mk5vWwYqzDRUAs2zai8pYnR7U26+4KHR44bzb9R2m0gdEGBmTs6ZctVGgZ1RqbKUIWtAYYCkuBGLteMEXYXFmsmZaagAwGcXf6p2oxfPlv+pY8FGNyyUeduYGpbOwvQbuGNDuZ4Tck5pCL/mHhlLpvubY38pWRVt3ofoIretDWiKoaMoenDZgWROFEr/x0KZZtdssw0yi/AJdvWH9s+v31UhLZCLsnBPReGqkorgQAynlQ/Pog/+CSv8TbRUpMoYIK7wBG7kX+kVuFYT8q8JJG26/DAewhkVgv5CA90dzUEtmnjTu/rV1C6gDmC8i0ZvMNS42oqVQes6qDfxJsgpaIGQ+wpt8EG6wT4JBK1MbEym2rK4Rz2GGHQVqG0VxpP7+fc+6YxvQziUjsX2SeXhAezVBc0kYzjPK6xqsxcJ1CvT9TJNKx5s4mwE4op6xv0dXQ1UqX6NAqDUpN/EehbTY9+2H/KjI7mm8Rv6lt4leeFUyR+js1PzPG4yQIUv22tASIM3Uoc2kU1Jkrsz3UJfGcUa0IeTau6xWWVrmr33pQJYm7MzA7KS3GqSsuNWMaPMgvaYqPGrDlYYBDd9X1GD63Xrs2W0nSyY55My1K5SnOog3mOrXqibAp3CYakltuL3MC4jj8EGRhfKWTt5ykHi6VCl7toPtO1/sc7Qbm/CswKKSqoRqSBYX56YdMq4TvsKMLQAC7yZxSKQKGfK8edr5EHHjLwz3Uc/2I2e/7rs9kwAG3AH2G6twCqrdPcxHxYv/iim1z3Jw1QAbo+C/vEGFN7rq49S2FZWYVOA5QM5RFGRkXJWAhhLVjpdiQXHr6q1K5zdCQIjFKWZh0jOHNyf2hLHBcjFpSng387Ni4BTH/u7QZTRqy+dm8J6Q+L8iMAJ20A3JYgbCh8kAyQhlL/KrDq8d81g3LeaYj/cWmTb37gdKJBCsAarb6VUR29OJPM8iwdviOp5IPoqWn/jqep5dASVg6v2HAMO2QcOoKFrX7I+qkefpiTfnjdTX8+EMZxkpPy6QQifr79VveqgDSlnfxsNgyJcqrkdP1unEP+m71tD5AnGnhLBlZ6ciUFQGstqB7ZAKI2LZfbjNUtgRciFa83x2blMmJ0lzJUWeqxL/meIk6AOz+IOAJjONrQHkMU6D+MaxNl2SLg/EWiAXxhxG2HUPYc7Mp/+JQCJujazcnfF1ucp+zHk40Viv/9HDd7PKvuZ12sqG9045P5F1OUi2zW5WxynB39nEChCxS6x/BwyhEEuSKjA8JHeDoYJfSO2KKaCZBNoaS8TiAIHXx1XfykLco/Je096xhnU/SWdqLEkm5YN7+xfoq+U3F4U33XogCIpeCuJ6I6xglkFzcIP6IqDEuFJ/59KVJH9u4dYCiApKMA8e/lk81NqkbdlEzEM4p4Ra7PPKlz3iG+sj2h2EzZdpk13BU8aAheMhuX7+FkXDcGFZ59lkBqbUd7t5r13VQlryXKImY2KMkcOVYhPwTzrjEKjOG5ZTlO735n/nZWRJAnRnfLDzOWzOVElmoC/vWRx934QzOJqLEJOi9HFfTh/LKlu2dUJz+fdCwL+Zgp7JkpZprujA2p4SRPjqwyZzivMUAB6KPXWi8Szu3scjzMMDGtrbREpCgXNWkQ12Uj3u/O5d4LD7u0zCXvI7YefB+tM/WaP9mOBAUUIMBzwka8PHiKwmu4IAGCOsuFDyvn6fFTYPB4ydSYMXEgJqQ8pP5O0b5dGscDJUj0m64up3AunbGL1iezJJp0i5zgxglz/TL4eTY8XpqIe9Jq+zngdk3U+z+/qDgxFrpzXzDaXpyyyThra47YmgsenLlzeSrI5AIg31G5uXu4r9M5/Vb+LiXLDyJaRGEQcC/ezNotCtys6AE8BPA9LdT7rX1yWkPPh4KvtgRuGCPEX2pFVPoaD68jziYPSb4ax1O4IWQcsz7qSsHlWxHYJIIk+35oJhY+67BNN503Mw5DZJQhLjiQSDJW4xRgMmrFVwA3ry/x3LZCJfXPaB6P05JIizok0GoN40mfti6U60ulcoyXv+pCGun6XMJ3Jn6FN9+IXi5Z2kiCuHPmJDy9rFkqDrFI31gaqazWGPbqmH7DR5JCUlIAEJ4Ru+JKv4d8x/OTb+Iyia1lfjr76+6IxT6A39M5dh00sysGOvKtbgtiVjGnmGPgE8qXNGdBDtsUdni3LFWp2qivBsbVr2dXLdcR6stonWHmgg50SnvLJghX49zbw7Mz/ZCOMKFiur7R0ydmC+BcuPz4HpNbhR+ayljjmdzv9Izs+tFMNA0OK5iUReSEtTyw7tRUg3//CqWckJAEryiKT2CzADFqyDwB8trWraHyfwkA2CMQoVDXtXfcCkNeQ4yzo1bBQzZqcM/Vy9D5ouvHXH7svA+eezNalXwQMc6sT77UBzUqCikj/BYryNhdw9Rll8Zl571/yW8wj4d6zJEslyp1/5FFieWuT3jCXWwVLya8egyYgv2zZ8Onb+gk3Z7S7JT2EcdVIBLbO9En645FQ1KqRls9KTPh3WAc1oVlXklE9zVI2C1ACUXSISS6q5Fa5xitHYJsWLChtDlx3xDHYfmqGuHlwki660TXoitQZIdADJqO1ec4terntsT4RXXyL5R0xdzbPptrFSM3EP6QPCmfMicjx/gEB11ByUI2YnpDebF6oAD41wU0XRm/xYAbxxJpWqspMEoSPofXiz/7helSPdY/pwjBopKqfqsoKjX4j4JGRt55I4mKqemKEgW78HRcRU/bzDgG1w81eIdTnZtVehSIsckDTs+YNIJ1mnv9xYzvggt83WcUNg6FIubl00Ia/xVTcLFcaFvvHCG+Hj8VDJtWCwZ0m1BG0clGNKNcRqr1BlH7GcjHYTGZXXdyTFqfldbsWduHmF34lGe5T0kK40yzGq9+K3S2J/BytCltVvn7B571i1M627ZlVTkdr9575vUHhhSy6PcqtfnMBBlanK/aJ0tvTzuJ/q3sbiEI4pTbbwuK6ZdMJ0llXx0btCK5mxisKmm3OGHui1mMJNkpHDE3B/itMP2CjEirFE7D1C/KIpUjVL+ZrZXmzjb/N50ShLscF7dJ+pQVjZVYCcBjQLavuyHd2uEPmVXJHOSXJ8L5tiXbhSE4mix84Ky+NOJPUFPO/VpGmKTlMMhcYDPM9gpHufVJQcMUCzCaSyBua/hHAvs3TldWwzhqZQN5r8eUBm3uWWCzCtGpPGSH6Av1ZfssVmiEuknXybHv2Y7p8RGDtJeJQS5YwpsjGfB0X/a+jowPLD4C1/0QTVObKv+TUyYVsFdr/yF/wLYyw9sBPGERH/TTYXWO+1GgXtCaqXTBQ3IAochv40knX7uG3BVEXedGb4M5UsOnlp0FyNXQWUXX4MM7muNj0+fGLLjvCBvytecEgPdFnSDamKjAWvzdYVxgRLyb5GaqRRetrsVPrT6YIhDYOxOd+1GVtGmBVJME13WwYg9jvEZQhoOygzJduxMkyjrp6j/wPiTGv+9xbFLVlGw4zsOX4808QHKCrNrCqo8pVo2ORFQHEQsiqWkzPKobao+RlJr9GdFF1hNgnfcWRQaRNDfST6qdnY8d8/GW5Fix4YV/B33i8nAJdQtD+eSme4L9YlLIoB+NwzX81lSwIwk+UMR2z97F1nUVMslruD2U9XNItGoXb35Ysivqg7ktiJd3vY/BQH1HDWgwd1sUTtbEcjkpL2WQf2BBNx8Hggi+YEcWUtKeLblSLsVLYSmyQoXGEYDOJYI09dE+2OOaLKFOh51i/lhHUf5KqRhuBmCQB8ryArQ5cN5+XSHdGLLXKWdYC/CG7Bcv2hV43/Sm/OIh3NF9pNNclHut+KfnTnz/4tPUyswn1G9cGXWFG+mnteNTP4y98Ca6UEr91A2zpUIxGPqBuTXypZME4szsopBef5rXEQOGqK7FTb91MNQI5eakpL+A8MIN4UNSHuMLWSk2dXjoTYVyOOv7Ig4KMcoRzwhcOMIZ2V4NjjHqWJEE7qj6WkiO0VzB6P48w+90K+Nc70dXlQ9IrAQ/E/8T1dGslbW3QxAMNGsN+IXwMqZkU1O/dFCA9UJpGwkl0L3vHeIiXihCzA+NWSddn+JDjiWIz2B3Z/XiotTB1f0K7EeEjVBLV8WJYhCM/HuCuqssUloAWbiFJQOA2isa40RLj71kvMstREQqxgSZjTR4zdmzgIz7wOm1qpyj4N0X0sJkTzAIRme+VMA6tt9u6sVdZATrnMNydbrs3r2YjiQtwH5e3LDY7rDt3w4ghfJICLk1PnyXGGrQUkgUIwvN+pBu+iA/NvRBgG5lXRgkABXeSoE2zwBo8DofiltPdI6jwpgQRN9mbitSvBc4oOG3eFnHQB8lsQwfUKCQTUFoGlwilCblBdtmjein9jragM7CuWwo2yd2mb3hUa5dxDiJ6u9nHi+fbVqwcMmudccPO2MZ+q5rWu09D6T1eqcUTRSDkQ26fHGwkdbU5t8++tX49zrNJavnJnyASiCpxaOPvK0KwDhSa/OVP1CTyLuFVyh50Dn0d4c2JQjYRt5GqWn44dxtzEZ15nM764RWXDpoz/3vu265oWSrYZYgoqHbACErk27V/AWIzQPxU3SnrWxMP4Zg9OzXVA4t3kB8lSrzBQIq+h8ibpX8d8pmHDTOYsFA08UNb0onLjqmMPaqss8hb5UlliB+tUcLY64EgU+YMttMBtOqHzKvcEeSn3zkGpg0ZzThcOK5Vll+QRq1hM82tH4KjpG3OMjQfv4ao4KfCpyjGhzrSUr6UGo65q74AtS/AaKy7cY/nrnAwrtZXmNTJ1U6dvN5YnGV/Gz2iO51nwmzuhWXgP3kyN3RAlmZe9R66lF5GVKRzdiCdNctavvIzBQMjjB0v0xwgS1bI2FulKkdTPZ4qc5/VgbAVgnseCDihFz/m+NmHlaBOTCW3gz/T6SE8N/RZ00P4vfAy1sIkthgpErR7Ko0Glng0o/omwDV68LjsV4tXSyax8sbrqXZ/f3TtKxT4pC6KWqYp5bqDTjhUfFRTOqYWBFv2VkRrzupRRA1DlmLSm5BETFJPS95zMheI1Lt0STH9pHmigRjZaS2tz6XJ6s9Upj5eLA7GXW27Lozd0jHsupK5ZuR41ZMBv0x6UbtunHP67lw2fFDOPN1fsVJKo8jdmM6JYyApUt1BPKERFGbfz/8zp1H3dT8MU94efLd/Ml1b/wl27VMQElhnmxn1RlQkajLw+bE9kKiOod68TJMMcxf51Pe0unltUBoFWR9TqXX/6CbaHXcKcQ1ZmnwrMxkvapilyH3IqPrBBl7ega9i/GcoVZ9naPSQf7gHWC/kyiodYazz0r6Mc2X7abe/YTI1lEy1EDlLW2ZYRNv8lfrnCKBE2MGZAFS6aUWqD+kb+FF5VERrZAcLllTHJ8HszDR/vjXdeJIqyXDGTbjFPYxHOC0AUZ68kPWifOh/jscUpDLNrQxTrb+egNJhimGPQCF/czX6svh6TAoKs19Ev+6sVI6bzriNhTlPtAw5w1jzKrwLwfTVewYP3Gui44Uxv9D9JzjwhKVcnCV7DPfpOhzHZUtXLNiRRLKJDGVUTFc76LG1hp2/xbtB1627NOeVE5cSVLRVpk47qhZF1ynAQaD9SBzMIViEiLSmr5AQseNWSY31oJ6/Zimpm2xqqi+DW87C67qwjw6sQb9qGkl90d8W25UioSNDmAr9D5GmWBj7ZOOFPlQg3T9czvp1yQ8RFbia+BuESLpxA6Fyw46xuowx+QFRzOY8pkUkCR7SAZ74pXLUH9yUiocLn2pHby3AzyyAeunmxwmZM/FhQOEeGCFTBMFgKRluOE+LZpcEpTwXOXM/MIQ5oKsASgJsIS+zEhpcGtfsk2J9XI/qskVNrkNe2zNT4GnpIKPG8VvAYZ0kOtFnUtbi9WYKf6oRpQo4K4CHQib4SSU+8g4eGf8BxJX1iu9RgmcFig5qhtkYuiloSUEh4+UM50R8WQkwCcNVtVMNnn0CdsRIQHCAvuIvMXGT+IwEUzwA0vRNONFEli4DCehImz6HQKl7IVoWBGiLwKNaXFC81Omq41b2MPbvXhc1lxorcRbhJp+o56FOncrGvnU0T+BgeI+89Zq6tloE2/jrzH0KildozpmpqKeZFJA0ObibQswjWwgwQw5H1J7FUg3c1qms2elAAg4BohXQXcYozqusVuHzY5Rngx3H2aQ9yrgtgevozGpo8Ty986b+iGbuUfB0JOQtSRGisL7VKbz6SKupS7D3HDfvcbL4GRqtTjPI6jHlPRIy1ChbgZSCyFS5zoZ3GS1OpYP/sdr4b7G5CxsN04NQS5CXbUa25JIiSaK7Dcu/CgzQchmgtdxajsI34HlaOBe+BY5KBigO6/bCNAIuHsJqBSFfQ44lJ9Mivw3Ly0/FGhVH+g1WkDbIUAqW7XZSjknnujse1tNsC0jqo2bU3u64/l3TyXUoavIlW3qZyz3WugnSmVJDRpCizX9SqO4hqKt+o3Gsrf2S9cKTPmFEKPmclR2IfHankjKawl1CPD6ZAiGNknBWmdTNQ8R4JKnolb1M/frZQwSSULRXMFoi3H617ouTcYez69+8dSDrZD4/xiiRdawlfn14toQcy8bPCfcbdpOoXIxMkI5JESZj/3ZpJoEFpTig4vox4tNcjMGhkOodUw/djfwH7k/x/GCo92hvRBSkl6E1+AMH6K2IF0vMsxgUA5Atkw2Kp7ZNSWCNjgHUs1BQPWRHBKrcvNjivkBytrmQ9GlffCRENtjFpCE0OBI2qxWvkpnkavVHe2rNX7q7Pokl1Pgsvke4qMr0WjhTp8beCObtTA8cCqN3+FMsrRy1huMlmykOVBjxYnYq1xhPCtusCAdbYRgawRBLUykeigZIFJb/qnMBZXs5g40MgPFDW3fDbNtV1P46QCVICZiftX303+E74c4f8FJw0bBZ7MtK3KHzHdW+cfQ3zOP873raAuk7oh4zTZgEW0LAKs/FG3LbbYnFz41BC4E3VZhlOnAZo3EVF2NuLpIn+I51fqnWj5B3HqMoxq4oB4ceE5oI7SZ94JtWfSTEIegro0AmjmKh7TBGFOWaTowKgyR/PIe1K7nS6kpaaharPolCiS9mfSvK4bmsBb68C2dCjR8fiKlqWNnqaTpjyhj5LbilwIN64Uy/f4XC9uhdFZZzT7WRnhN5+zvjj014jYKxr3OYIQbhAVkaxEhQJnIXhwNf52iLsuV4phDuHXYNW+tc1FekyIqDImawoHhWAiwgSNhvCijSpvHBS78+hyK+kjDq9NEslJknDUk7XKfAFr6vzX/8qv5284SDXmLqE3Vv2BObb8qIOE1oPG7UGBbOBlSX65YmaxFYo/KW9s0+ILI7hNdqMJdEI1wxTEMt9fztKJGseSJ9MIPdB2OpAcYxO1IOgOoLc80WNSZWyc/eCcu9DmGBlGoNwKF7rI9l0eUt03bNZyoA+Rx2dvNZICxJEJoH5EUsrMM/IYjnQVsC+fXlFXEWi0NuWJphZpQTAs2ZWhniLSUpdjxiZlAuwKMJ6VUc1i0HBn5qCViZU9hVqNrSy3zbsxOmplEUaoH44KnFU1HrMMxLdCd5jwwSNK+oNB2ovlzdeS+T/c6xeBLxIJAfRirlc0mCX6t6JKspwwXGmUYgJPgKKhRuiDH4F76MRCQqfWLpv7jLiKSAleS+Jnyxd6WrreVvDBr9DuFBpqVjd4s1BMmrtFIgLQIJnF2s5wZN52dg9MTbvveATQX/L5mUJk08IEjwH65WHjFJ5raCB2RlgGiNC9wJi2RPU3OWCB5sgFEDAw80y1QgxC8+YWUKHEkUbni2AAxO6IhqSB6oXXX8qoj4d4DbbNEmuWwCWWRDXyMrZZkt5+JIbsxJE8Ccg5QQ8U3emjfiuQEWvtDbS/qt4dJydnNAm+oh4ybB64nYKFglab609dnWvrUe6e6ujoxFbau5m1bKp4/PtKvuGn47S6CTNg6w3WG1SA5gnZFGLO5d1PSUK/lYa6oewbOPYhtf+gTzHBAI5HQKBdbObLUxShjr9X1jzBYTqiRv9/eG9o0pYHy2IDz6U57R5260dQZzM9UH7BygYCfx8HMiNvA1ulieJ6CpfdaGt7a5CTOw/4WT2k/Zfl0kafCiqs60egwuMiJWEVN+ozJqr4MppEbt7MD8u8fgdLM4M1SWkvG4VFYqaUCbRl3PUSBEIDpfC1PLMivMyn0WaqhJqNMtVWUuYXO1UtaDMHwcZsOVVc469mK/0ENK7bUM32Jr/les59fOduhkbI9R0euVmEK7B3xWUFtTs3ue4y1aFdkTM39GlGXsHr1GKFMma0HyXstE0rub+iyNSeoVhiwA/A193TLPA4fF3hbA0f2xl+snKbCXanFHT8si8FrA0L3im7edh8xyaa072AIJd+MZrP3UDekBlPSUfJPzMZHlhB8GSbgeq2h8951NC7x+kW2ETxucE6kFYRRWyVNnpxXpNI/QIBog2Ze2xTXoLOApbkkS9QQSKJXV7NpIErUFxrMoGnpdkToIcLvjAqFU0u/b0sU8Q0j5w7PWY+IJcjZQAxnNfj6rdpzp2nfbWqmay43KQoZ3Nl25T0p5z5hpFLkC9dIgdZN28/4hccE/b2GUXzt5UY20TuyKl9K/CfqLsOsH4CoDQ3zAnKYzFougn6EdRDCnTLVxQjyTq8QoV/9YIrHjWK/ZNMSZ3Tj2ylILt1Gd3kYCDGCnLjLZ6G85eMrbf/6w57XgF1KORbD1AKkK358lcE9FHb3jxRMuqCyqCv/O5UW2fUmBJIs0RSMjNfbshOw8u58GfIp1wlkIYc+XHpzGQPFxyBLTFTJ/5viDRoVk65LiCCHV8ANJIC2y9U+3czA6cTBhT0IKNcoD1Re1ydUvJ70QBOjpUrKtT8QElAV0FjSpcZfI+f9nFPe7aDAuqh8TFTLL9SCtBk0O5wUS40718Is9RGFg5TdCOg8kMQejL9izILpnUqJcfIEujsDVvuLs4g4QhXCJL1VxhRasPD9ezwyunWjG4oI1dSc8IPoBvzkoB/uDCeLYf9WDooywh+YOEUAFIFUu1z2enH0mZpVg+c6Q/j7rbzXPNx3HxbR6t1QBffFpWw+xt4alLjToin9inb/LPELh2x5+57YR8qeU0c8QQCsRKz0dBV0DJVSp7ofiKRxxtnVLmEz4i4rL7OWn17cnxiEmggcVmZUtD4yC7C5wdOia4g5e2g3cNfF54pttR+CK81g60cjkm6Id635K687vM8IvRVlhYXNKybmDowWgzgkl4kmheM9A2+GKYYajcBC5kfyGNT2RHbuKA62zBKsGq770Qkl2ib944VF1LhnXc9gHljKCdAHvGQ0nm+1/hIRNxgEcB6/O5cOWX6YYbPGHRnF3Pqt2lkeUVqvq5mckjyXijysj/T19U7ILRKzvh3SLU3NWawam2vM7/46a0L5RAIcCGktm2CLAUAxF6BVrhwVHdGCDExpVL5ucK0Qiuj3eXplRF/qUyVm/nuZVLIooBQaqyiV7VviYy3+1Pf7OHPeYtEK+HmDqYsM8T/Gz2bowSvS6ZMQfMGTgF4JzKgHSzbJD6yPNh/EkutX/8UvoQOioRo8H0DeU8BJcDfmZ43vAtdSv2yJvSuNwHHYDEpu6YPHI5Fvpljgx9+95U0CZjObQOt7op4aLtCTNnOghcHFE+FcwzlbjKiqW4Hh6E2R/GzFtZCuWkoOvk46Wz1pP7fPu15Su5RgcPSXOGH4c/27Hpn8IR50bIDjiYDYkfcvirrdRPwU/PSiKSVTXzDwJFBir//Sgou9QP1zQGESNDGX3+zCBQCTptelHCToPI/YlbJmidUcwR4TDk1EQvfffv32oyYivolaUsnOJWyIDalOu3BMlkqnGMNCBChZ71fxjBL05/G76itky5G++cVqetkHpEDc1/6g3T/4dKRC+ypUD/jMIkViLwE5GeDSGWSl5zbA7iFaRxSpQvVMNLimvwQqtdncCQmWdh9QUVKfgArOIPI3ylisWOgBkFmSoWUmPBU52OSMsXqBMjR2yqyAD5w36P3itjgsfojK9VtpWeBy6Yqnc29R6Se+wCjng+SmevCv0bCA2Av8pbFTuVmLMpSoamo96/gpwAVL5NWH0Jehi1BsjzqFMVSWNGtuboHDQk4D7KLm/rNF2moNd/zWSy64n/h5WxKPJR7QNY8lMufzhB6oKw4eim7846yhTjo6vrfionqI/F24q+btB+TlVwP42TieAsIRX39oBhh04GVbWDLv9Iu+MR5YkpaxIVvb4Mm2pFL+oYe8nRc3AkwR1IxNm2N0XImnD+c8ZXQEyqKWh5SfFzwsLZtIWZZCV1hQ/jlCDak9TYI5jQv6HjUnhCGyUIZg3XSWgKXEFj3Zwo3tLvR62FgQLG8UZsBBSPp0Vd81/DxFv/lxFXwTVLPpNsZTWQAlip4YqJb90XlQ+iaP+c24QgqPLlgd2QeZ9nTCinpF348wTBHoXgOYU2PV5Gu9IPglI2pvi2L4SoyZVRibDALRGkmqnh6EYzHWYGOTfRVJxoZ1dZP/pE2OCu6RITx7stC0D0aGN7a2gY4J2lLkPRRHMCeTa+UeQQ0L/Fis1JI5SASCi/yQzBzPJaNV74jnDULMtqWrl0yfrssahYgA4CkWM6ZL87IJc5lYYqYkAKG64xgPjUreQfReYtzFcwlAQ7Phgz9Rp68VWKhgjpeJL3R6hQwcVXTyIuC+fXlpID6eDoN5JrD+jxxln/V6sewfK8szwzNmtEHW8mDIU0TB1KLuHcqpU5lKV84SmlJi1cEY/v5JJZXf+3K74/oFLTTjmoI0d+cDf6ZMUd63jg0kopOY9FpfoLA2qH9oxptmBA0sye7Yaj73rWFxEyRgsqx9fIL0LyLHtnYkOr+XhYafTsNJlSU6wHBF2Trh9maUaTOAtdeGeTwUFC60Q7HFoD9pweRm+3ZkJHv+Iz6cdmicaGYP4yE9svBoxfHwkEabLX7oYCAgBl6G0kQCl2TzNLPQ3Xk+GAfsUcSr2q0dGOwU2bYu5ds6q10BP68mo50qwE+Drur+2F3y06hBplGd0M5cUYecSMz0wOjWNCj3tWZJj/1xfmsVl+vpaAg31/Ra7ig6IQuPh0Ztzh9rsWQHmNh8V4IQIOZnkrhJtgK1iadzV+4g7LVERtu+PkB6TW7Zgi+MkQ6llM41scfSjgxEMU+HiUC++aP1x8Q6ghTbevS71/6z64j49LzNsdJl5XlU/D0FyKh146rrOoaJ2xcwaGNj83I7TALynNzqthjn2xZRct9ERFPhfK0sVa93HBVa79mMN6XzlXtuIVTyGwoM6EBVh+KTdmUGowWcBfCWuEvsjZ7OX6vw6964KLiH0IyUwAaQgu8xBOPbpZs9941ccPjZfOvkLN5baH3N4Z+SX15eyepI+IiGc79NAVRjoK+E5lrJkSNezw7gionTqGV+eiLyh0JC9rA4tkV4+m4sz43J1uAgst0VrUmqi2In0n7e+mG9M7sREHn7rMi4VmPIWQ7fBtC1XSDx4bkyw2THwxgb7LmlT1wTnhbvgrJTiGUHnrLLLh8fMSeWy6bH4tr1gVnXFwHDByU3+dOVeNO52clH/szwA6hUiqgs5k5CpS7tcKI6W1MsveZmNwcy+Pq5METi9dACKRMembLqDhU31RXWCqtAA4jR/avgFiBDbbnmAYWmBshJE58kMPizhe5Fp9cp+sL614NAGUkheendFFDhhty6FY8n5Keo8ubN8LiU5xpzJ1G/zaRg1T2OoxgZTu5kwtfBvOcge+jAsd9ZPCjq6Irzru15oliBQc/WAtycwdVeYwP6wldJdYb3QmNENzB6UmdCjZQxQ+J35QjVmgv9xAeJvotYcArokvO1/4A0P2iKy8v80ECoSre4Hh/yB/qyyBRYI174kTdW/IMVEhCPD/y+od+99ob2eCUFzzc97NFJ2/pkfmxUqG0+QcYrqsHIxA9UNAEPa7qeBm9FVgll1gcwTwgcnlRTjYPxf1U4B+2kB3gA4gIm9XbgYLkLpSka3ExMoyrXZRAcBKs8L3sBMf30vUwRG8a4j/Dcrsy2UFRc/V164wa8+1buq1dZoyd0OisRXEseQJx05RT/GRN5wUgfkSKkHlZbgd6J8RMqxOoZGm0AiJvDJzn4+Uc5/BxjrIDDAKyUtIe/FB0RNE2wJi7XLM5KrYRX+Dl5opsrpg7eiLDnsyuFCsr1SwwH0OOMV1WhUTFrcnhduCjia4ziLN6NnCNWqg76h3Q4gDQ80gsXFrEivk18Qay0evvbI8uBerNbr61bM9wlEs8mZzBFLkWQ4iN6UYfJndBzwqSP1ygSZPyHdVHSIdLqiYwroJhzjvYwNzf9QmUrMG1z6pDKspadlrQYwPsaG1qA31vbBoNqW/zcHFHzuMJT9mWdoJKYA7oUi0f4bSSJw+YBLr9Vp6vK+XPH5lm8gwZnKT33SDhqWwiWPhuZEkZPZFMZCBLqGbT4UwL52J9ukOcODk9NZhQNArZzEFPVAoGsJmb1KZmLkmaB4ume5OAB8ZzuVKmItxpV+YCmbUaQjyk09vLhBiMFOedj6bs/GrcLmtOy6btbwJiwFY9ZJUDzr5ZiMSiIRAH3+NTgHRKb6rXLNh5b1ErEetP3MElzbN5LJc2IdMSiVemtJnl09GtJ8VyP1+q3DUvkpmNyiLKrx1X7pPZnmcP+U9EvCweeOl37n0c9zH84ruhJeTGjzUuCoPAWCD3euhz85l8emxRPLqQaPCCiH5Jz1HJUNo2lc/waPsdN3c1YVjAaJUho+kmfyySXk7ha2Yvuum1ctPw77v6QEVM7wbk/o813I7SCFRA0Huvq+ASnbox66DqTk2L50B6NTiJFtdmMn6hK4glxr9FIGT8vXkI8fUfmaP8btb3AfZ4gAtaJigxfo5gFdH4K1LG0ryRuUMA2c5/tSrZ937VXvbW0lMvnARh+p/StfD2SMYfECcgnjoIOAEbN5iWW/YiwfcQIjkLHCxLytipdrYVwwaHj3GYcYOsuDDrq9WLPBQ7Ia8+PyMJWKqxJ6iPRazM77nn5a2HuWHCeEzMYu05BR+AR/MgePYbUJgh+265dULqeKlIAG7g79q6SYrJqFAVsPKq4IPXB/WMtmM8HRQ5NsNew8JdJbAllc1gwXXdDLTTuycsMIjK3Oy4zpvmwl8U2JOTVYP8jc8ICYTQTrl75i7+ofaAEYevu0z3gGHzQmhclW2tGvwojwNu7PgwK60MYqp2zuiYO0dpjZmuzg4ifXtofPW9JgxzKPT9COD/qnq+Wj5a+QNN/ikmAeS9upieHrAW9o6UqogdCAAxUQvByKvcjRJIRpsoC/vJYA3/Q2zmSxTOKK0IQ1r8YucHoVM81uHlbIupPjBMq5EUdyOhzDEQ9J4G36+YCcMtjJHraDGnbe4nW5fIW6/CTOjUg+3qpAF7GdpvcxKIpsh/BpUjzQq1FWyskPJ/fII1Gx6HZwx2d9WAbX2dRk5bzG61X4KqCaEsLt3ifBinuoM2776XJ7BMTagh5+ijpXm/1A5QLmBSAzGqQOqdaPka6mGbJ2QAwbDDXaXf/Oy/2cvGqlWhzwbNeQnBpkOJMibzhADm84wTquyhtvnsShuAo2pietyqFSoPCaLcJG5upVvVC/Jhwfw8eVBGNfFAaBCzlU+/j60PKxLTDQb/P+6ri6VI0Y+RU0XSLnKL13Zt+skWhoY8zStslf9OXLD3HtBOfS57xBZY+PlnjjLsHSfYv2zW1XaqJXMKDeH/YUru31CiVI1p36gQo93CLGP+9r/LJ/RbTslG3Gfezl96VC/IyR/+4HzyNC1yuRWaSYcu8uydGEnj5xpBx3il75iNX7L+Fui0YX7HcKOPVs6eBbPaz4un2DkhYbWu5fQ+9zijp5mJ1ZNl2qvIEGsgiMMwRSmQUGE8nlocDxcxmy3czW4m0yUSG0uzjCispe+4kha+1FER4mJCj5+wdkO6hjFbROS9uHuRI93aO8OGWEtZrQM/djpAwkqGjtmMIfarXlp/nkyRny0yuW/T+T9HeaToRnjBQutaY5OLehqhmN4dsXSNSlh7dVcZYeUFTbj997WLUAsgX5tbdPS/6fltB7CZQ4yP2HEp+KR02UWl2rPToCD5q1xYXmTJ6BHsYbMrGL8mPEz+7AsMMh3jqfkCMF42iuFjBG4m3c+OG/c+0s4xr575iJOxb3anVNDvQaBRzqEc6/k95nzzLhDc6wkDWQ15Sa1mudOu8x/kFWV+p07ErnqpcQ2Z0/pePEr5ZQmG/9Z3FQsZbY+6iblQ5T7wj7KU9NMAUFRbJOvvamWH05Po0njWuLHBXgsDzsVzlMDsG9hDZn5jJY3j7ywjRxFVt6fBukP0fyGKmVQidg89Q7xuzXtC/nHOej5zV17ScKsUAasLOgymtdPjKm778RwW9M/LOdVZlhMJbDDKdhHckFQ5my+PC72RyQYxuYI8gXyQe0LhL+ER7Tnm2KYruo1gCoOQGzXkdqeng62yahzRtL1AvFmK3Jy++x3UZE9Nz42sftQe5wJD5QyLnun4W+iMMfUXFW9QlIHM4COeLIYZEkttxH/l3Gqy+3J0Y2iwyLJUwQeLgy6MoDgE6WyfRPnhr5od+kBtif17hzq5BdqljIqZITw+jjpSkPPMZay+6/Wq7BslICbialO+Mo9Fz7fGoXMzyo1L3VQUrYJLuLGeKDkULdagEftC6jImgKzsWr080SLXvvWoSBaJbzyufTpNihficYqDVy2nI2TxvT/RzPvm1tW+WM0DMSTf1eszHH0KTbfP5RHUKm+niT1rdTmz/Fg4sn9/dPyyFBvazz4IVl/u5JwYXWpIgNUPvQK5j44qOUB5oQLqyzXzNDEcBMp+xb3nVOdDH314MHLdvabqupm8Of/A8lVzq5R9eICIqz+s/YDePOacliEXiGG6nEnPNOGCQk6ogbCBXL7jhJYS9hYvPPJrRo5U7OHNkHdqoccOGGWpXBDg7KH44K9yXKnHaGThiYzuIIgmVrvQFSZgrWF0Nk5qsUbuwc779aMLiYLVF05GN6ARDeD4G7eRSMrAbzyHzjP+POTfb2flIf1uzT2YeTnzIyL7zMU0cf7DYR1gwwlRanTg+IH9Pp4qfznOhzdcifNteT6QJe9PJS71WL4ZnxkEWc1d6u5mMV5C+RuLE+J+egMExd98r/TRdYHdjKCUOdLUEzYkHrhqOdUM7CFYdmbXQXK3vQarzEaUwXAPSk6ZszvXJF1UINuADGHBNgco4QxYGXz+OisXb2j+XmjoYeo33Omxm1BRX5aXXbE5/aHah61+w1ixkDodf2JD29I47uEznde5x6jgXQ/vSIzyHwNUgsyODIBivxN+Y/fdFgdhTZvTqwY/SpM7WWrRqjnKYZifuZASy15ABwiElknJ94mXLBKrsQUMtQChTyIzy/PJnf57mu/+4pgqmhgaJPCXDPiXp9m93fGC0egOGlu8I1t4yKxeczVj4smVazGnmDH4kXJmtH0Sh/K6pWtqKOnqo/it8LQUhoNviZi2Wf2quJMJPFax5OLQfvCfWczjQ3urRuA/JMqJWU1sbmVD1lNMClzUqJ7ZXHcGUddgwXsRvRfEwSBvVd3Tyk6+re04QjBr6z5k5fEgPhgtLbrwhj6qgn+LSheowl4t0h3gfuek//ejiUoMGp65vI4zG3bwyukMyvurT2sUjqAuYWNzbI9qGOGe664Fb2seuUCDEpqRmH/nAxBh7B3l/Lvlk30yiA2/htwWB9M2JevVNTRkFQSIFhE30SUIg3sio5ujcxYVHKHZZs4vJRU/iKq0c1MQcyJqKG8e9y2UUa6G+j5p7MfvxLxqzyYvsILeuqkp775nJiWgYQRH2B9aa721sOgSAK45qCecTaJPyl857rHJHIbyFa11JxD4YAdwVILtD+up08iQtK8LuIhemB+5nzJOnW150UcPXdm3loJ6//zL6ocp0TlkgHYnuRRtESvVP4jU6FpuOgFX8pm33SnWcsV3tnD5wsLdQkK2vYiNogChiUtqjHJzBcn5qppFck3e7eW+/f8p0qhMzRvacaO35YJcmzTCmK+CWWfMCfXO67RFL8tGc/IAKU36+aqe3chqErh7W4mqpoMmJMPzIcpe6ETROtUe7OG0zBTp93Zqz3YZZq7Ih5Bz/DXGEPaLdNIgBTlx0QOsw4zJsraW0ZqLcNccedut2qsO9qvu/3q+ILfKFHgKi0qORDGZlvRktGjIEGnz6ZkiElDIHUBO1SNULzXRNkGuWDfwCg4Gm2wBSI512lhlfLWDIcte1zPFI7tW6XepT6RNqF9OTTeVOcLmx5vjb52TBUDGqSstfIlLEtMEYx5E4W3C/pamCt5CGW433ZHpyGasYEfSEjnsJ6q4fbf1+Z5Ln+WUoFO9CwyKpIQLenJlAWcEx5fcqt0vUjG4H47KQGpKq4ebJXWn2+Gp61XI+iug4f3PaqUedOBpypXKPqtZOWVvLjjp2nE5/u4+B68jB6opifD8ZDpVX/8zH+/sCI2M0e7iQQi5l+N2PPRBALwH2YWfFTr+Ra+SlQ5KNy3npuxTWy4IsvJ1Y/bVMKtSljzkoWrz/SrQkN+oI+9gwpoI39+kHMP3GnE6Na8/OR2DLLwTOmmkFeBRTVC4oMYzMensFblF9+4KcXDgnK5B8HePgxBehzFmWn1RQYuWzQNZUb+jz7MQ0KMGjIwNUCyJEQqujgrrDKSKTBnlbZVAbroADdbz1T73fIn+zbV+iwBk2LVyVZ7XEWG80Ad226ufnxdW62KFaP+1nGC7CKhrRxckrxRpSFyUB4HEptKV5lfS+UtcZzJrovIj4nf02Of7h1VrUh1OgFBknPpdbGrOfqiYJRDGmNyfSdmj7EoTtbAhQncUTct86BvAvTI8HIetcGqROxcd1BP6e54FWqiRqBGSETV6wHSTjYokwXFvAUD1TSUaL5KF8WyRatkuh0ruPWhsqZGtdDhNa31m3L+krOquVuUdrzoeQZ875bXEeH+Kn3fwO+bPwopHIHPJe1d1ap6u8WMFGO2q/4AJ8O+OkoaaVYIbLr1DJvZqL0EiU8CdvHXFkY+jXTD1qUjM82OCBtWCK1ZMVqsxFDxI3JzG3GgyOjunodoHOI1pKf7RM7IFObMhrv7AwqjrlCnqIu+Rs7qPozMGpK8YyjwbWn5N3oNaUTdT7tJNkP5KMbVpZoIeTI3HvILn7d/Roo4tmppaJj1jHdeI89tz+whD7ugzJtIlltygvocoKB8YFIeHydjI6MM2VBj+48dwBg+BkmifalloBvacVtu5FZReO4zft9npcXAZwxxJPh/N+ykDg5vz5CgmRH2bh5nYBg+a9ozGeX8TcG7jRetMpH9FQTsinPZuUY8qCyU0q+Lp8+7Dh+6yG/6C5Xo8dENKRuWXkF+/el0SvBYHuPz00SELbzvsPuCRmXHchCopdvx5nxHuef5DyUtRR0MX6u8Cllvg6HP615sqSTqJENFt3Sr9Jgfx9MOT5jh58/vu+cQFRLvo7VXbATXBbZtpjTa+GTZbZQHaSzf30oezXT4eouKqZVvjE8EeDL0VnErSuSPzKiNJdLtMFm1SD2zCH6cKbaJPCRw==
Variant 4
DifficultyLevel
670
Question
Rearrange the equation 6y + x = 5 so that y is the subject.
Which of these correctly gives y as the subject?
Worked Solution
|
|
6y + x |
= 5 |
6y |
= 5 − x |
y |
= 65−x |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Rearrange the equation $\ 6\large y$ + $\large x$ = 5 so that $\large y$ is the subject.
Which of these correctly gives $\large y$ as the subject?
|
workedSolution |
| | |
| ------------: | ---------- |
| $\ 6\large y$ + $\large x$ | \= 5 |
| $6\large y$ | \= 5 $-$ $\large x$ |
| $\large y$ | \= $\dfrac{5-\large x}{6}$ |
|
correctAnswer | $\large y$ \= $\dfrac{5-\large x}{6}$ |
Answers
Is Correct? | Answer |
x | y = 5 − 6x |
x | y = 5 + 6x |
✓ | y = 65−x |
x | y = 65+x |
U2FsdGVkX18CUXfNlaBM3lXeAzbxgcy4nHGTBatg29w5B+7HafF3WcqXmhhkjyAN9QmPBOZj2zmbNwKjtxWzIhf+Jrp9E+EGBHHJN+tK13AEaGnB+B4g7BHCaATC27Z3IwXU+pwnOadOA52TT92dzKc1/FAKvKaXJ7+jgsIfINjqhOmM+xD1BNC4iXlVjLlYPycOZGi5xeklAKqk8xwj/FRmF3C+zv00SjIjm5NgUt8XrW0bih+JAFuyWu1XniKI6KzV0TbDs9Mi1JxnSYqjzUOmVEG9yAdf//kDbnor0DufNb7qMSJvR8d0cYJxnSNwsOO9W3aqnDYsDsKljhusC77yza4BMuEJ0uDXxYptekK2f1s31LhEAqAjdXN7n0vG+cdbulbEM8GVRLzPFCy1CCDIAvUrKSRPJih1yiuCdvk9EnTMgsyHQ8PUkfuA/0SECDqqd0YzRfA04uN06aLUjSDBwtUsxoMaTZXriAmnrWvrBUdkzPI74oqf/hpADnBVKoEakhs3PTaxA5vriNzQmtgJlFkJ6xmVPaeclaeFO+3ToHuhbYpnhdSDuFsML9kW3G4dbKJ+/BuLWf7fQ9wQinuY25AxoUeuprVDbUG42/72ha1BS5ULAn5Aeb5VSPHOetsZmnYU5JyCMwyV/psKK+Y15XXIieZv7SVbCUQVN4KxENdduAumvqYWF5lq2aPt/VopPRYSL3AYRc0WPxTnIpjToHlLF4liQtwMyJmc8XkUCxQsVe65KxLob78qCan7bsofHC32k2GT6mZnwYyjrvhk3joqz7jCVODieqY6YcQ7KYGUuEhDKbAGoZARAAqFo0Uc2kwvqL3TGLR3TB9H7njSmSPIcyorrc2lpdssL0cgmxOCSQ6erkLl8icQr9Lw7KWgc8FIbEUh1vuFePCXOwAS6iBYfMFkBnFMojR5zHUdUFU9r5XtfTk5Asl2hfGC4jAzTYDiryvr/JZ48fLKVYvnZe/2GUnfwbwUFcq8px0bupoLnuGITHcVYc1mqjuYRLDv65i6stmlx8lTs+LWY3T4Aw2iwf2fly9431NwRtH2Nq5NK0q+xFEUSGqYUEziRyKVvDudW/GQ6r8fqQ/UUrRrQofHaGHYDMlGA5OydoGUDyIPCA0JIAXRSC5kzUJHwrfLSvSGcwKS1LJrM2ui4n5FFKAebOC3dVywP+/bLrzAUJ5+4ynaygOriD0H8+ZXyKaP9CGME4QPX46RFVnA47yO/KTZGEpund5bGamWAVyqiHX0zoyB+t3iCSvyu30B+PiYBpw0iBilUwtphxkbglGCA/37faZbHF0tH75SmcMEZThphND+2cqR2Uh41JaQUocxwZ/S8x6Kc4cZD3MV00yNLnoqQ5rI84bAh5jc8SXv3L4d/RFeFHQIKJMjfhYKLfeqroDPCoVs3KaQF2nIE7WCDV9ZEouCZw9P9jVUmnSLddiCEU1BexymyDqqAZs2jawoQrrCFiKUhdrGltT/3DI7xNSCINtm57ZUqsnEMeXVI9CJVZXP1crr/wpsVYalvieffS4t8miJFSrKm3K0TRCg5k+rIe4xee8R+ftT6yQw3CwuzzM54/V2OV/e0l+YZ/ulpJM5L19UyLIJoWdPl78y030lZv8fShdDBBcLT37l8IWOK9ngAaBaREibgtXZEH9kJ2bd348rLpKDhWLW4wr9dTXF8zCuceStt49tBXfpGJmZGVmt60EkcyObwGVesTgX846RjCS6DeSVE4/KSvb1Uk+YTQpfwQVFdUKQwG8VrTGZ1CKQ5+ZYjobOrCRbT58Almd9dBZv9X2Ysr+w25EBHbK+6scuJOIvOJ8Eu/OCI3mdajg/ouQsBwkMk4ClvJDVLwNTob+WN8brY3Pxp7vHMwkOgEkhDBX4VIyLBh2IDcOq/ft2l03OGy/n7gjny/DSPEdkEsQGddyx69R/m1zbFXBBVvDQeCFY+MdkB9wxvugVgSfpI8pur7yya8IXWWFd68QE1TcyJkV/es5QSE3APtUbcbgJ8a1bOE+ghQx6OcaVinU7EJxQGC2cO0UGiCpsYUHfDUm66iBfrJd/9H229jy34V7E2dFBmcPDWoodb/vWpcqFjXc+yRAe0hXjK6SrTIvQdn/iwAoy88u8vn8aU7Pf+VWW5pYOk+n4jIgY7TsJ8LH4rriWZXSfzbpuE6RNlzi9jjrECtJ4GatxSiKjkQgG1p6I1diDirR0F7bTmI8stNVj1NLIv/crQ9zMLyoq/OFmSblNp82/TD94n5N/clgUUh28EH0mlwGJFrvAci2573DGsWes+B1SZNo7SD6lYceCk0guBURA4FeacYYAwapww/G9kgfgrsQlScyDdCx7x+ruNEy95hBmBsoJt+ZD9lHaJiqeEQuINdZqr55FkQ+rDwnG2bccSWlHo5JaEYwW1cE0PtcQ7+WKMqmHmjEvheC24PPb/z3+aV+agkW1Ble9Picx8mvysIFBNAtQdRnZNG+nt2RrgJzIl+tq9DfFlfISaT/iiNzJB43F/NWCCkQEm6iAv1VirZKf/n8taPfTLZ0usffZtdZCKs5BmJ4adOgKtDBEgM5/MOt2GjupVjr0LkvEmJrjihHPfeC5CT9pHPvc6URuwl8iN8ElX/iZXHlUICgU4hLV827/Re8K0Di4a3wP15r2d/Sg6GWv20Ajd5gEDjkB1bL+o3EhLBFjxxxnKmYKeBmZmGRoi8GzGhE5DNMIA+11LyJG3stYoDJORIH8ZYsU3SPDmNhlW7ucwTFyO2uiznjvXXb2A4yB0qkj7fcwZNXg0GY2XsFJhb7kXsihIPXxxTtVm7/ZeBecDxEpm5P04kZvftUdGlJL+StRrYd69r1l9MdgM+yoF7cU6SitkO0T6mgyGCiKlXGqyTvl78a3MpmHShHkdxA1Ct6gUxydg/q8XHzZN478E7USjdWk8yyemdp1GmPHPED1q6K2squQ27ozt651aGH3fB7f5VLbIB2yJZudTBkjOmSp5fAhdIVzpoeNPvVFJM4go2t5qODLmF/rezgh1Z4qp1QrMlH9K3HdUSU6/AMfiZT0PClr3VLIx99KnaALQkcoT7R2O6SrUgCfJfYQXvx5g4aAYwBXyBgfWbkopEwMUNVUMElY5Mj67EY+GPrlupm/3md3lBj57coSAB9G+QN4geqNbe8u3BxqVmoqDzx/zj4Eyge5FmSci5jW8flHSzgPGCmVF3CeoltBKlw82sx/zKKyUoESeM4PdwF1c8E34glJ2MpDeyY+J6cWFbjUKpm3DhOO3oDKrV9PurjZQSEpKvvDh7sl35/GXn8xLINU9NroJV6IP2I6hULi7sullaZaL1nh6AkM8B0cwM+t+jYNWdorbVg6jJDxw2+VJLgKrsnNwMsLttVAb200c2Vwiydp5vuj+Klc0Mq+xkXrbiV1ye5p/EaFX6ilx2zbJI9vrnXLhQY4qUxoiR2PHFTXtSEFUbOsg3akXs3Ig+8+OdOrj13K6nAUPTg1GfODBf3CpCfF5BCMr2X6PlRT8GFT9QnOhOc8YgVBhojurnjm41x8TsgaLEtDqXHXJLKF8Q9S+TNbPDUp9KlMAhPOYQm0fxTge0iL16u1o0n/lf2laKtATFayO4xNrVQNb7xdywzZ+qPJSHU7VXbYCta+QqdRuDG0i8I84Os5VjLe9B4PD8+J1ircbM4Xap1lhDIvEY1JrXBERNr+/kHvTOqMpLQaSfsxMTRriN2RaDv1pJuKV0irMzrXgmvhBhP+iKewoFJJhICtpnQxB01KH24x9gvVYK/NNReewkkQdnCKboZRnt1EM/Wm4UfJvv5t9MEmrtuWIgkqud7WaPD+2C0RP+KRiY6BPWVAPITt//g3K9mlWXzsIp6UyzOtihb7T+dOsxBbtUyoaL+o75MN51yBexrSTlK/6lBnIUb2/rg/D/swOPVwavYgk63ocaHhSZakTi0X9l146oSQuzg1Ij0o2WrDUcX1iLIotC1VYVI1RrEcgUOM1O9OmBTRKIPNKQ/FMap7EAqIn42t5S4C6R+bnWinJ3tjstJJOIfJyQmATsLuOJd0PSg1eg7h7clXAoHslsNh+SkoWLCVEuxpObt46KTdSkeCS+ozTbJqYsoespCnGFGsUp4zTK4RT9l/BgzW5MrBjH4HNF0JwokGpNt5GP1haNc48dfK2nH6c0uAV+DCQBiW4vueg/HrqkCq6q13cpMit4WQq9DsKvGEvM9XOoU+gnrrPa3O8pphygo7QUGRKGYMzPnQpq+Lyrvvx27ybXSDd1Y9lbdsl7dor2qI5+/utBRVCDJ8RsAnFlRUUu4VCebBV5dyFE7duz0fIVyNqUackEJvWCARzEX6ogd3FeRyTGhEs++7DlK9oMKQ/6HSDPJc4zyjnl2hIb7chu2BrP/6152lV9LebkDejupTosc6t2BbMymgmXpIdMYppZAulwMfSyhKrEOW3PSbxDoprvY0eOQEv2A9WnkZQcFyXBHdF+WS0Dfqg5GmlNRwzbpp3MnhcvaUy+wBMN/XpkqKsNy2WTfJBI64AvM3VMeyZ25shLAPnCQ+aLbTsFtlKLb+hpKkQSwRLPAAEWtL3ctqws3qvcycia4Lx7EdsEIaUzvrxPK9qHdNSipnOAI+oFva5kewmbQsixJlSPCsRCbwmyZKxEGGwKbglvTdsvC8GQbl5SvKGldaNY5a8iWW74LZVVl5r0ppU/xJVAKxwPG5NYljjRaMEPR6taNRJFFG0v5UMqs/yQ5OvFbMkVqVUg0YqsDRvtSLfSohxkCz3ZSDZk7QSrXyjII2pBRZ5n2hgvt8NIPUCkUuxYKwxTfE/tDLNoyGKdWLcnAS1tQvBlJ9YLxCKFS3bJ1aK3zQI6UJYtePTsQqbZAiLYBL4GcWHp3a3eZ3jjVXSWfzvsl2WMelWCxsYRw/1orj8Ot3jvjE33j6rf/cA6vdnxdP6XUv/Aft+YmqXIb4j5hEXeSZvroCPxjxLooMI1EC5vWLFWx20kbp+EuEZZd4iRdb8WFCdDOfjNpaniKt3q435swsb5lZ+wsqeoE5yPXT0WjnBEGx0xumfR+mH7qvgD5DE6+Nfwub5lEUbJuSlxedo1ABZSr9P9u3bDOARmpXOcJ+IiXtRnPKdL4bBAo+bRbeQwBA7U105YKeaYltGtTWSx1LNDXIPbWZLiSvyU9DwvYNVHVvcRCyF7N3spXePPhKDVMVr2t8VZ1HX6S0b4wgXcW7KxSp9VPwTBXVFK+6NlH7u0KikuRu9XZY5SPE2YoqnrRqllIF/RRLmB/rYMcbf73pofRbvVCwcePS4XwsnIVOFCCuDFCMmzMNSkh5Lo809cja1+LIj1H3nj0umrJSaYiC2JlkJIgTo+yANtfJM7mLlQKj7XPcbjbpQZf7/njM+YQZ84nmhdEcqcr0UTK16Su+mqsPSNZYLmOLe7Y/v4/RlfwHQrz2yV1UKSYw9sBAQ+mHWm9ihBgcQU1w3mJDuX1W+8qK+1r28fCFG0gq3UePgjUbokNklV5vwt20Kja8OHSX21Gt6M6rQP80D+XpS8tmQYQWuH4hZLcFKl2HBFasTgaRJOqGOC7fa2wcE49xJeQmPPrnYbI49ibxqgNo5V9JbgnjAQNOYtmjls8tD24xZEqLKs/mAvrje3sx1bra116wRSxg2WgaDli8mEfPMFC1YDf90u3jqPcS7LpFXW3sCaudIVC1vZSav9K9DuvqU99b+CXtZxT/s8RVEg1psfLAxjzB6SfOQwb4G32LqysCeaJZPU5KfxPBAZISbOtScMiI6nrFDLB2Kz59etCAxXRAGyMpvONAQIuaZxyrAMvVRgkSikdKEXAOX8JJRJe11P2nl5yAcjbg9MV/8F1ZLp9B4nczRw1fckxkaNXcHObA6jjl3pWEDwViXImw+QhHZ5IIae3joCvmZECP5cc8HvmUk6Ucd1nlaVgAR/wI8nmtrqSTM3zG9+KTm54/taglQS9Ch59dDYG2fLLVlRFl28XdUo/8zPxJuhzZ7vlMdk0ETENcB9kkYnOfy9KBYiGA6mnafJqdqfFHDA9ilR2ZTCPnS5BmQ8KDUNdB+/uins39J1UZmI9nixZD2DoVk0/qMryso95A5rLrJQ48QIq7046bgjI0zrsbYWeI00kJBKQSGDPgfHy8GPT+C9BonpLU6t2H8kzmuJKvT/fdQ82jJhvYaXepIA6tafzR1TVx5j1/mPxytCq/dt0/P01bI4KWoQtIUerPOwFmOwSrUvR+RCQrTFMd27vergj3vZXLjzYah0/OyRFcTivseFT7h37tJUQ68d6g9wZMbQL79vrdC/ZvOuxYQHPoaK+NlUapGTd497yC912QQRcDuFbtDT+izBCi5+8mdg6Bmgxs7TJMRuGuEdEzrw6P5okJ7MqtiezHBZZDRF/qjvrT/sYXU9MAzeCUrNCPulrQy2qIURzvpYXKtdVbp/KCvHh8Kv3XwLKLJOtIbujrq0GlYXqU3rGAhaeyB98wf1X9vHPu1Gfhqpijdu+nPedFDCQ1hijROEoQdRnTpvqtkPN+Lb0JJQjzTwcWzS1mtfyg7xdFqz6ttXIT/7w3aGabTE4zASWH4Tqq/7/18RRasRAh3CqCK6bHESJ/F3ugIxuVH6yWNZvqP+wddWORXlINlHSNRBQMfzs6wTnAQPg1sJavI8k9mSA3o69I+FkUZt1MbWV7WVaptyM2JiaH3O+q1N2BqBnjWCai8G1vTVbP9cDxEzcGdqulZDH2p5EVK6ZsSGJna1laiZdz3K2u9P8zwQHexRzGt3s9pqzHY5cyx7eYOnd8lSvj12330scM4W4H1BYVWIaMmD7oysHkz0k0sJpZ7ngVghiB/kQ2PqYp53+7zUvq+m/AFI42f1K3LgVEpGZ4qgHvRKQqmiKYKuHhgOHSklm0At5gRjXvWGUFVTUVvamt0kF1aKfEBujV1qaxuqEuzvEgqQSTlLBQNIJhKtpt67cboUjc6QQ5E5d/7kVv4K8VNDhLp2/TuMdtM539RHnH2zoES7GsjmYQum2eNUns5RBGebPj4y6Ei6o3RZa3JisvjuyFZ3YCXxE01+XOVeMZsXHPbRZ3NsD+ISbarNKofyekIQvNfG6k4C7o2qwK1tIxh4IlzLjkEpz3fsJjmBORGOM2d1O7Ycucu5MAFUt9AqoTRu4sTMjrjR2xW3VV/oEmPNa7+zJT8IJFO2OkFr9+LCVD/XJ8Z/UdOspr7QEGwQzKfaaI8zLIpDAS+TLyaj4bEOSOVyCnlpA+Odr63pqxtg1glnMvSks84lTs4hgsl8UmrKeR+8keL6rraeDIeOkkYRmoJLyFL2+rMLA9w+CrN8+RdPzTr0Gcd5cfZeZ0g2jzBFY2A1aEjQk6gB2p/WbrgfJiLTtqjIv6tGm1hrlXuWHVsh1LAb/RWtlmoIRpsrThWdoQEspfm6xUDUOfSS0jwM3D3MoD+8Smtfdtjxw7km8ivw2qjR3GF6pcBRq/nchTaKm5eQ/UJTWqwrjmCZphE1lgtfM30+yR/RJ5ZjR8uFE83EMIZPez17v8ve0v/mu2vnBTUPmPaEUkgEpl1DgvWsXgU4xeH+zPw4aiXoq4bZybtzlKhWzyz7j9XS+Q1f7WMx6Lxc1v+vF8zKUjTn4ZKSslLqYpghpJjswjysyxELLbfIaxzSu6nPbUHHqDRCjOVmwE18rQxlT71GmnTGJ4gGQVOcujdtyE1SeLbnDODf3tEfa/puHyDyI54IypTpqic0d8Wk+dr1xRflKBpvh1n2QoHTCR/kUdbLPNQhxFUDBv3rsmpnvmqFg6wrUL/hMJypHpZo0oYIUMueoCvpY8HQKq/VQdkYVaV2M49zJh3i9nYab6uu2h+nGRHDjKjogPsZ+PCiLz6XHQmjlH6xzUzZFGvf9Pzr+np3+Bh6O43PLErDelQgULOOe8xBJBZflFMIBhiMM6olj7M3dOBbZH4kPd2rnhWUWah3camPSNGwGAee8Yh1iXUXGghh1CtsHw4i8uUOE41IpkRtvMeo/sIFebtfNZV2++SXC+bnxU9CEPbIAGLXHH8eNbfYYHmENkU2Ze3TOqK81myms4bihuAZyM6vF+tOyXkeO1UeJPTZ4SEYipZskfEJI1CuYxhnifPxWMzNvYGzUAOQ+F5DuwUsUKW+PQ/N0/HrawPnrUyC8+Tm/+1DYJlvpiO2MCRvVwOv0dqq6v22cAFN4kEKko5kMKumfdfxLv4OY7Q5zWRHmhIILBqQlcVfq/E8PKdMag8UqrLT+z6r8v6p+uBEvcFxEbFuiyEbo/AYWVJPwQmfcaFIcerkL8oBO4zUigfnjli3yyCbH+m07A0BUMbhysIw76Wq1JHTQWHSWOxiY81UUWLv2taBxV5Izaz3wl38YLyKmVx470jNJ/8Qq2NZhAGNTkbZCw1Y2dWRIw3Zy4DOcvHhRVrq2FSjPf6ns2rmgnyBV418lyUfazEJDX+qiXu5yf7A8r3ONCgRObgE3cHNOT0ECvpokiD2vz38LkoHcMv3dzvygl9EDAhuvVMxUPmbnb8cSKJMY1j+iaR9LSp5gCtj5dlLCpWYRcHhhtwVrio3RMtyhLsjND8+9nwz/U0W9iw+kvt+9cBIKuIBl/iZ3elhWm48ZLcQITM5pdyNVpXwMZvB+cvbLUFzy61Q/EWBJ5ZIJjjeuANB6GZ4xsHMPYzoLcS7kloox8g8A+q+z63a9ID7auJMfdRK2FHbKKyi7/IbZwht/O0+Wz4VEkMFVXW++qvUynWfq70/oZBAGM7R7/e4a4oQXlr6zut9iq+4Io9pd7xfjglOjxv+Wk7ib7u+YnO7CpF2ZXHvT2zs2nSoXfJWP3s6vvH33FbbGz+yG9kJ0Vz2VOYsdDjguMMEpzC2I2t55RIx4Rzq5wLvckyx6HD9EQD6FntLprIenX1lznmMBQK+CRfjmK+d7S9/pSH+RMu3+i7xWPLhFoqgf1FQ3dynIBUs9Mpy8xwA67o+5omPn4HzH/JbdyiKDoTSEdTyujJfBKOU+JFWBK33Gn3i35CSZH5fY9VBwgyK931yDpd8MSUfouthOtKkmjUF+gHvgpzNjti/gsrai2J2XaEeaa17/Iu3FD1469rwOnT09p7RrPLGPCa3KwxD9JaHhBT+bSWX6Od1ncNVA6G0KYkq2qOcFPsIr5ZrkZShA8YkBj8TaxfiZDTU1FIt2lLTgGS8aV0md4vPd6eJHQQrebjYqqgubsSCtC9UVtgNPpE4CIJYE2X8F1+Bob+ITmwpN2Q844fUyIR+jD06AahqapGt53Pgfg6SVTvYZnIrxYTpxP0OgeNOKgysAFAd9ZAmN0f0ya/fA2fJHRmhU0eTgx6vpwitcndnzwuoceX9VaXpVy421UYhg5SIe/zzZHHuE3XvkAS2EPK3+1WhbtEGZlz5v9i/rMhWWXtLKm9L199kJifzQRhMmJl8XHI00pPKUn78IM9C2ihQlp08iR6WbuacD9dorKuKo1NiXZ140SHFLMigXsg+OTTTfqotri5TUMX80nBz5pNzYwdvgo/FTq5rbKJvUZ95lt3Bt83axFz8ysSWu0tIbvL2FXM/znRtrkP+FQYax/FHKP9d321AiW/4v0fGAgG3AwhIlil53VcO6iyDZGC2860OpU8iS+MrJXnxzjvbM7mKYRMVabtZt4OQ+1C9dD1j50dxlldi3zN8CfOBmyn+gHvdmYbQcKaBw3xCMOAwQz6o6fGltye1DpOelvltC9u0oUTDq/AzCozHv/WRcH9+vzfa5oO8ovgFcGCAelK3/fI4JWvFQWNXnI2L81tsf+jwB0bDbT1tSzpXySdAIgAKSkBWTpQ8r7Qf+EaRfmQE2KkntL3OR9k/rcV07eZAlSILmiutQFnUbZTPgRt7vhbbqmwaLaCI3oTJf985x4y2/enf94TXZlqbK0lg1MI0WCTN2Kr4gQIdOZyEhoAWquTQCvOkUxlJqkpepRuCBhCF4lVKMo1Szphr4zDgLF/dNlbe06AY96dJ87E495BLQI2fpYBCP6nAjk3tw6kLvl0N6PMLn/AfKZSOxWs9yqz3fRb0QG3PEjyq5hLHQaj4MsW//5J4bZPuda4+GiebFfSwmKIqNkaEaQuZncKh+GtbruoNBHSRLh+bH6lsRsq7gKbcYPtI6I6MiC1VeC/xdlhYKGOFfuAptqPTNiILdrGeK3FOrTUvndIckx9eDPIwtnS+uRcrwF8aB0oRG3Lkgey4CBRWMLf7fV15eBG1dwSk0X4cSMeJl9QmIlgsZusbx08tII7F6o/bD1gy/VM0Oybuxx0U9F4+z3Za+Bn9U5UiFFmQy8rPuxr2J8VOLNCPiiKVjDI4waw3MLioEiuoOwDQSCg7oeih93FmIpwKhZ6vfo5fmp7yN6fAvtjpm+kYYls1Ww8bTr691MrHIHjPwmVc60cOtzxcgz1+uelAyT4/lIPtk1kqxYtQHPleNJEJLVrmu5oY3irWLD9FW5IOEGahkXaiYfzx+IcGHJ1Sk3gZQ4T04TswhTDsZWsUoir3mqM9Oy3jXusc3g2zYs8gLZxqHiLEmdpXYy12shL9Z6avmUbp2jXssiM105pFEk7/PkH4Pr0DjfXPt8Vf78XZ7tXPf3CcTWg6Yxv/gxM5FsgxJH3G5oCkWJM5TlgUwI6JUxligPOu/RwpiMLk8ULMBqvimphJJZCsMYiUzJCQ+hvmpyWaQ0hwFaSEDUBHIcCFZTs4Wr8o8X50qIWZCmgzB0AEIWwHofQUfS0rXIBoa6wo4h7IYdNSamJLuZ/lWhgpNZx6RbZY9jQV6/rziu6TTg0ky+CK2ZP9nxBCqafeCYxM0BrGKApGeCQgV02SWgJQR9zIs//25wQ+g+4nR7WZWU+ghk6uEwuPjMGXy1+gP35MWXY7vndKocV4ezlM/hQ/qOr4aDpl6ifoDLLXWvO9WraixdA+rRu9TkS4RL/TXGrx7zYy0xTJbFJ3NxiWAFZHy2onZeovGmk5wP9vi2vf8oyIp5sbdN2PbMraUxNIkGo8stdn0phIz6jgweqPW/VJABvK3XatHAHM7NIRuc6z7VP9ykqjOR6GRDxzhrqMf2LERKGA2W+01Z0wBt1AeRWXxqDDh+K5o2S9O1Zj4mslJQ4pcZmG2M9CwMzJQLBC0MKxJ7botSr/+kSsNsfQRPGCPdkBaXEJ+uokqNVCRY5fxC5fLv0Pq/59PdXy37VPzIXJ7S4YG3mu2CXH3+8+mFjDYAnctpVvjOYC9EKlcG8t2cl8fxWOf+bdsU4U6cUX3wAS1bLLdO344FAZgOlGJTFCU/dCIU9XyG2JQWP1TBCv05N1kBfu5n/oXorQncuBdVYCWcid+RDx9LoZC2BO2qNFAxgWou+sgS47Mx5Tfs9+A5NT1QeE2PfxnNUaBZMu9ymvBLl0LZCFAyel2bSgc0ijeMILmmBlsQ6ED2JeacOBCqOYakhTtAAaK7dJBFYlnE5VKBdfTESBqMzLpyw71KdmhW1gNIXgy8Ggn89b1937XTrmjzOSoQjrA5N5B1NOF3PbEjkaYgjhEogj0TxwjLIDXSsPNr0TT/Ca37BQ6BiXWR7S/qj5XatE9NdxGCNKKvaP3fQbVnyAkrOoDsGmAB1BdCfECmC9aniVqZ7ENuD1f2GW7UdgktHEi4szpxjY8U1TwbCO/9nQ7hBS/9OJHjOb3WljkXp2L2e9VurFfDxqfjmr0BxcpXo5/huzMkR1ryG7+Fb2Wa7ATUclvNS/fsOg4bbkZCHLDtA3Y6JjxxXbQMu+Nkn7CVVytCbgtsB1vi/8y14/S3GMwfBZEwS0V0UTAYSZ1US7sk1+yR6cek5hRrs0l+mZitjRVIVMJ4CAlWAt4RP5TIuJk+2B4GTwQqlOvcwGjlN6h+wJLwJIZLzRbpVJwaaMaHenXn2VLCmKqaCOlcmeEyTfrLMWssc4acB1ZdIT162p7RuUfdmp9J+5wRKF98AU0pV0Uuczq2isj6zLbr/UBsb+VdxbcgFX5InAH36MYy87esGQ3rSo969ruidcB2IJuhppm4HE6Quwf8dNDhkjrXe+qtpNhGKsU5pFzukxSVig57RP1SdubOjYRxmmA/M+8ArFVMWBz2YQRJHARWs6jhSfemU0a14jF2AoPP5WsIoL7nvB917mlse5BiSkVftoRprJKYtu87VMsyFvGNN9wrvtPBUFxQXq7WKE+S+KZrgFTWzhqoQoAD5WGn/bA9xAChi2MVND4+yYbzdpoeK977LcG1Fok1J8tx1jPOZssW00//okl7JJNUe1/kqw70Lz4wC9lO6S11QzSr7RfXHIE5QYfrvAlD6nxF/THSOgDdIK2xLJe1HqjXYeALe5qEr+lmDQ64O6OBSIgZZTqSLvJlZEZTeymfG1cMl5c2q1qUO9kyyJkNxz+ZuVs6Zx5hC1cy1naw/18zmSmitzDWzZCcVAAJTCwKflhRsGx+5zHJmeuTNjTU1n+iAZrXzQww4q4e08BN9HvnHFpvJTP0RCsHp2vb1DiraT01M6EfHF0ZZ1+RA4pFzAXEKS/WeA9wfXxpUEc2r0tlvaVDVSNUmY2bpN9TPFkp1hmo93FnQGoMqSWtGAt046/0soSuQBMUBifnfA+uIrRkd2RNGtPElZ42V/OdNcz8vyXRqxlzOVMWu8bCH5uxNCr+/3PFhapkaRO64QXw6R+0esSdHflsH/esZpLGIQNKR2n6twVZN4TbIvMfVR3Z6P05Raft7awDn5FYpnbHSGMc4OnPt8bfw5FRDE7sLnDmhxPgnqTs26HFT7sevVPX4PozFOrax2oX8OpiL1UTy5ENswNJIYHtehO/WIvdsWZjKFfJ4H/8Pbmi/tSLZZKb6ebaf31ArupcVkrUMjexsErwYYIsPcNGo6JpZgynBDLtcXHJ3jr+JUFzbacgk4pOKb64hpFfNSLoANN5ZHFbeQN3PbTcNNXouROTu08ElyrS7sbftCosIoFIrz5EcMp0PUWz4qYnLa+16GPbbfDmWcmJdYINNJ33lb1mNegmChP0aOYNh5dNCdRxH/mgsP0w4b1j0zZ7d8uJEwOy5Ck6JGDQL85xhjh09/rvXwkwXBNXpd+fTjWYVt6huJVreUbE8Dgr5f9RL8HTFN3KGEZEjrFZwzGUOm8gs2AQ3dLD1shhYzSsm1DyTfivMDqsNj5Vb/FkNt/0bz16fTSt3xxBEA3+eRBSGELIaT1N48P38AGHkvzodd02xlhM+FIWhPiKgLLXNbTriOyKjkGd9hafvMmN1bmMHzsUo5AbLNbxpGVTS2EOF1ftiz5MFsmR41unvFj0BGrAnVvX61tfYF6ihyK2NwzeN7tDwcOlghtn41ZH5EXg8QtMe1pXJJEVSfhBSSEqB/H7jz0/vbVkxyY2B699IAeAPDtv8Y0ym9Ja2qI9HN72sDxCDQD92aeW0GRcA+PPIT2zUP0SPgwrCpvGbLjn2k9MTkhEYOaQDNX+utDb8cF65KwdloSk4Iob1W0PeEr9kn4GOVbSP0P1vers0HWqINp1KtVD72q3QflDhpjYdZf9sXRouNCJtY4t3AeSvjz+gGmOP4Hb3txtkWmIUiXdmVHdeIgwap44DNh+rRQ8KfRDzzM7RHHf7gAEKeB6AXHiQCPFjUK4y7rLQnoJY94kYJJD7wbb4flq6PdazX20oeU3rUm3Si3exQh4Qp1bUKDa4IkMgrXpUhwrAh5AUZdyFCtdQkeaXHxCD0NEreDwDsP87D4o7x/rr9o53DVA1deJd9UNYkLV6qkmd1rXdPyEjqX6QtVyfpiIZVrAMvNFTtLVzOrKipIHFgD5uaK4ihw1d4ZFo7UsQkJcwiQPLXKb1XbfMGWPhR5/PHc788l7W7Aljz9wNPye7/INR+i7lntw79fEv7LrtfyDympeOWIStIGQcI6Ib7ft0w3qubSIUf3/v8eE0fon81gePG0H6reBsMxlNqIIRHjYW5/vd7Acjwv6Sk5Mta8GTOYPq8C+z6T0mpuvJRKwjzBQM9SwsnkTNLN+nV7sH+i8lKotL2NejVvo6PADQxq7gwG6hc3gbjxzhJ54sboOfLTO3sW7eK8olaFAL+OltTxRTfcDH2EQSKuVjvKbXNc8BHTj72uL7qqdsNDEEXEYauSf8gH2EOXq8W9e/7q5jDFdTiRVnyDylrNQ+zssSpa+r2D6rhcOc0ZLECNJAn7uBhr5sgb5p/Yc/5GDCrYoPpiN34hkV6hFT4MJ4hPiFhWJyMynflQml0sib2yMcIbpAQ9HCSe2KNee7UL5Lfj+ieBEZr7EDUkcoh9j35TyRbaBw+VATJvYPK2dQJ1cYnZxzh/VomU4qnXcYO6SOdLAI2Ot/Xxo4fPs4c5P0Mzjx4Gg0hjSNpfCEhV/gVHvJsylEdp1/b9+bcrxp/ngGjKKbxM5PBAAuvJuBvtM+3KYUz2zuUN3gVk31daDjhuHUEZmIkA8nDzNUMQ8AkAvceMNDJg7/8XJ0Z1u3WduyCeU66lV7chI3gIL5+4j0yPEdU3luTjN8oZ8AhKo96Ssnh69zkw4GyLdCPMLUD93hQnyHUFfQhDzEK72vnKcYugSlrKeEizD86hVTs2JBwWZMe1TW9kRleeKFelGHunOYzzRafawjhgFeWtjmyAxfUkzT15Zt5eDFmrYJYPnttR0hxnL6Ad+ZzlnQK9TW1hyJ76/v32txETR+rTZ9IEusbyj+ghp6r06B8/aEWMIuO+vI2ZWKYqHZqBDvE0aTDWAW0hnE7NKC5b6GO6Rc/dh0cGql2yI/6R1F1j+48+HW7W8RyRU7dt2NejYCGrQSJg3rJuR+/irYSDJ5yLkbXGj+AGCPFnj3RiLFHaSITDTiw3/mnyErrzA6xs3CwSaF1eCuBQRTSW5Bv4YispWENm4ds24IKAbRPUotwiHriMSEnkLfVT8tXlmiuaFurinHqH6csuuv/d7vm2eHPhWHdSvu/yOVD8RpdbfXODD1OTL05qkwWvveDbhL42BU6oVUDNfVCt9TEiuELk92ht1naSQVEWHFgBrkdJTiXynStAjx1NchzSYv1EkTQ4Axr1CcvID3Y634dAJc+llV/4bGJSqBf+qn3aXJNagznoePfVy5//vYyTXLGY+wq0RxLp4GyT39wovHUbi+FZcsLtSiVZdLVuj8dprIm9Y9xUH6wMMbruqTFNxI4JphhEkT8e0jQiznvJqtNcQhrp4g00PrGJ/79WGmA53hcbfuVQ8JiPkuz6Yaakh5Je36MSLqA6o0LClJs6WlximMlMnCxqlswrUvf7/Z6X+3GS6AeNfog3K39NjU31If6PUgVTX7RNLfglwhxybJE3GXEik880llaz86lT7V/nlqCjOJDREzJ4vQM36aUiZaV81h+Is+9S/xlM8AWCaC1KF6OwjfcAX0mvqzObvRTR9djCemhjGzwCdTvVH6Gg+8zLoivJSwCayoa17i9TCmEVQIduqlO/bon/IiO8TmwCpFsuUY0xlN6xIHNwYvT9GJBMAHbu+LUTc2jI4lL7o4u+rOKT61xl5Bc/xiWOLMFqpOTVHPz3Z7e5IG1l31gQn5OqYb4ToNDW/dBDPTrtvG4bVodrtLja/mHa7vkp2+ZV9U22VxoLk3pFJSk9+12NIw/aA/8GL5WzeWrfpT3Ev+nsL+U9fEk8bZlBOfKZo9SKjrayYGAY4lLO3zNGNtcZNiXIMSlryDUlxt6FaBg9duhPYLx/roJXsfAMqhHpJUMu5+w1/q0j9RqAT0ymAHhUVk2PphJUomfx5PeNBrBj8e8Q3/3aeD5TTWLRoc3pji6RZmvQsmIXnkd2cJzYtZ9PqMvDQazy0azAhOpDp8MdkLhKzEJqsaRXUyJhvh2Cp2sa2rfmxdeeanpU6qURIcEMc7+7eO6MJd4QKbkQ3/NXH1MM2Xx0A347ZfoVOG6Cst2999+QdoByjH6ifiRBodge0Fv/c1IrM/1FcmnUBp4HfRQPFjLnlvE9Iy9KLb8U+yX3awb1ezObXiIvXIev9Y6B+OMVXoFmOrTdL6c4nFpAmFr+y06dY5QWOM/XOoozHBHnvc2LK8mZpWfPHk6dGZW1xYWZu68ovp+ru38u31JUC3R3hU+LFejC0B/XOIVwWTl3xRtxFZhDKrWtzhVS/DxVVZ5XakSFun9WXdluxx+/77gkrhFqNTToNgF2yN+C5zTJaP5HpgF5xQowweb2a58Wr+g3BkL2ufWHGGxlZselIAd58bWmE8OVjcW2AapYLhJuapBIW8QSIMrKrLns+Rue6had2cEfj0QhSTehqZZJsIuBERL7xteGqzLcQPap/MtGXQPuGXUrUlLlOf3XRhQBRmsU9pN5S8R/vXPSoDT8HrLnnijyacH5WXy7oykSsTh5PvU2JDcn2J53jpvQ2JvcdjnZZWz3yhmyDwPSBZgfQ7sAXE2bL0YJ53qtLKSjPTLDBLIJMZFs8Kv4rMrRlLRCKfzKLf1AK3Ys1HgVjm4kc6UmjiqeIfbm8PQqMYIX+tKDswhOOTqa6VUbcQ8JToExzXLIINb8dkPEcHSimx4ET/y8nga2QCxciwOU7Y4oaO9AL1Fgp4XJ6bTanRN+DHCg3Qz5sabbSGzEpFOuJN37Jp97gmC639Xkh/CPpOLi3evBQLjrY9KdP8cjeNB3GJDatj5GdomNNeyDe3lrTJ3Z5+RAfnPqjgsbEnjRn3/tWi+fN/K7lGIy0lUdMD8j8bawvFgry8m56tSzv9jAKa/5mq1JPE0urHjz986btw6IEJkRSWGN7kBZGfEdwbvLQ3LcuEVDqumxbI09yd5Ha/dnrdhKUEs5mxrXyocQXIQBbFQ/ytxQzj6Ct2sFbdZoTn4X5YM5b7PEAWLb2vwXL0+Y1Y4rnh0/F59tA548ReOE4HrsVjrKriZwadvB8HyPK1Ha1sAL9KwDaEqpUlz4LpM1Dwl2QR+Jvjdr2jHJhZMi21F+qBpNwgIJ2WQyVox/F7euSOyTOkJSdc9JpO/e4K0XGp+S705a0j1WSG16BQ4m8qB7CM/nKrRu6KXEaejRMZiUlU809nY9X3/CJda6pGO7466MFsqLGegfw0Dfg4zoaPsK+Mz5O0En2rxHDwWH9YTKXS6pcPxM9YbIuhFKXIECha9hRTBpL7wWqAJiuuYo+HCJKkW/7vZjY0z6/rEH8QEt98NeRfXsTbvvf1ylxK2gX7V8w9usd+5AC2qQWCHHZIdT3Yi/MgJnXXqsFCYKkf/zOUdnFiBKuluY0TQeCzPSrssGgFY0W+guG5WZV5EBlX1G0Wt2i6S/6v0s1xf+1QnL2yE0NTM4/eA/ogY0ZWOJAkqAaze9FgPM+Sf1BDgxgC9Wp5XVWkndsZJjBZ8U0oiXpZS3MYiHRc4WnhyC9txeI0AGoDeg55LD7PRabnXe+yyj7Wl5UWeaXo5e8sICUMFS/UDzFcDpGb+IJ9J7wDmt9/N8x8VOHtKFWxUSmXvKI9Q86JM/LWXjC93liTKQVrrtwuxFuGNcsV9ZtUSvRph17et4y5NzVde5wkGx/xdvRSVFG6JaXHWQocGS2oGNgN//NbIMyEw3pxcSAiLampnBnT08yEnuyHnTISioVtZor/UsOvBpy8BL/SYMnjKv211NiYkVmDRblV2/2riN8SMUVV3hWEoTAI96aXHxy6Gpebf+fj7ao2MDAfZoWg/58xg8/gzSwIfUtgChIOZ2COFghooiqVv5P5pZtpGB9i3CKxdMNfQllLXhTZSAG9nlKUHCZDxA7uZR0VXIhz7qyax7wJYYMgGTS5raVkcdgvuAedaRP5f12Fqa0gYNNdDQH+wFIRs0lWyA3IkX81kHLllvFi4Novjr1T/jK0iVhU7DYQDs1zdGTxIzc4GHZMItEGp/ok+hwFCKy/TMP3B/9jjgPJOYlzITpRlQddJbEgv/9oosCcGTHMoueArKcLI/14hQhGsfhuv2lEzBvEKkC5K3s3f2xZguQUe2bHAzZTBZWvt0qx1AZmR7XXibsQL3cZgnXnOYemmtkVSghNjYq1d/BetrMwqVU7O9o/7JKeLR+rpy1O1wC6zMaJJvJEMnx44aIfITw1b0w7IFE4biq4Q4pbL0O2s3No3aMNJZiSPHwUFcnruCAs32UeszrQaldY/RIKBPx+PspZilVsq2/f2FL2zJSqSakA0wN+VTYFzD2MnICVCYU4Q06vAWzDJd+cX1hHxfYtlbQRZPvWt+5g7Hu+8criPokwwMk4WsfqAnCcCfwFd/0w79rx0iIjU2DipHlinCTH9BXgLv1YBeIePvfqJvdS94lkpxtRg1x1yufONC96Eujtt6nshKWVl9N2RtjRtNrJJADG87mKD0d+yFeT8EhtwSNd7W02knIslRjwZIiwfNzeD4OoLlzEa6PDkuip8EHUGGrUGrxWdY9zJB7fwOlp73m3Y7zIrJBEGPbddx+sKHpAdjA3rRLcNiLuefj5dXMCQt920LVhKsQrxk/a2Tqq/msbZhogMsAa64lDMxXHwCuzYnjgmZo82RXYvQwo7NJGG2FT2AVj2nFROyh97ltDY+51EdVkz5DNpb4hxdbkQZxyC8mVBv4PD8GjJ9IDKvz8bUnCBTLTjqvWFo3OMU1bKEZDUrjbOf6uFVnuMFno8dLYF0mBRYo4d918ESEWXrmsFalii1A70pMVTBWNdHjPix5o2BH9/P+Ub2TayX52f1dDoQDmvOzulAE53nE1QY0SSiqAqiJjw7TJuj/qgwwOwlg7tRgopO+Vy0f2HRIn0OzNRGxgBYyuSdkAj91YW+Ss9PDVxGH05UsB3hlfvRcG/2VgavN+wNT66Tf0VR2tmFUjT5tVJQw0cHsjw5wi5c7Rz7tTjy40+XSRk8FrCcyKyzLMbwbBSVYHfHLZqcMxigSKiqisYokN8wx2U1wbZsROAoLygDEz0TyX4xvHB2kAla1rPM8bwek361sEld0bStLSikp+Al058lJLOEo2UUwAGDQNAgR6+eFqySmh6pBIA2OfN8Ieh7Pbm2UURd17IoZwequtO+fYc0S/yqkkszUHwn9edCC4oqS9iw+gMEr12MjRh2xwzKOPnXkJ7mbvoOTslXDDTAxBlhJYZ4YNuLLEJ3V0uWNANKcO9cmJkYI92/DI/eJg9wgVmePCtV8/6IkzQ63p8PA1q5qSmyaWldBbcGK2HOk9V3d+gzek4YirENlIbmBp5ef9mo7yp+hq3+8+mZ3bckgMXK4iHJ+iNtZ2ezepyLiKSSISer0DVVIWnPpnqHSPQgVbUawynf2xYp4WHWfQ404u0FkOTWSbXYAHqypNo86catcFnq+nPIXmdmsCkiW7ku8lSfoo9Rc0+R6I25QQwUFElgoR+MLb1KAR+8XFLh6VM7LdiP6nj0uNrVe5nYFokoOM0Tpemk9dQWz/v+Vj2EvHohsfYnpY+SI6YTe2qr3nUXEkTe+Ny78BuEuOCku0AT1ihZMmZJ/L0wwq/oe1vbiTK8QkO/n50IJkZC10wVQp27xqRBwraoJVGbpcPT2qiusDUpPXfN5Jsv3cfSYxQmCkUCOe9/1iPGlGliNX/ZglCSzlNQz29HQhkMGggHYj8iZ9CBTCHpzkOw9ni0u+2jNtldhextn71t9KK31XPM2j3CBVTrcaCTVQWPg/Mq9PWIcFrUTrjg+Dg/Y63N0QWmd6vYnnYYDE89ZlYVbaznu+gdtmMDw1z2D98FEvQOipMYe21N1HtAMCSHalXmOUkatJPpS7eGQYWa/fIobzyhb+8GNQslpxRQ8wCChthokNI1Nk9xhkMujZybNzQR0QnweYAXPTBSk37GzGsy4L04VIed03xrghzW3r6UgUejkcCFJFxYwb3YmuIvnByRDnqmoIw/E5BWopruU4Y0/UEzoIUGCibUyoZ86GQGgI4hbz1cs31/NpyIMHmLUFb4YyxiprjQoj59fJzuEtcjKvNG3ph/4uQdJPKEVMVuIOg6c3GAcpNG0JfhM/0XvMTtq9huesCJmIlpPj0gM8OzLJqr0+vgi9PeqjBHbO7JTlZs9nF8D2wIK0I/HbW0mIhOyZPCQYZSEOA6VIK3LgLVUF513UczUaKjvZf/PMwEsfInLtPmMQi6dp3HVwe/LQ36eKnJXA+wGXha75uyh3T1YtWXLRxJO9ustCE88czAV76AbMmGwjP/KyMWeevlCMYa++NOP6YHYaYMF4Spf6z/OsAaN9+Bfvm1a1zZNXQH8nE76SgwjmlvUiCdaI+MsVZ7Aa6aFfOLNXsDazGTSoNut/LmMZYZVQy6DDW9o6cxj/rkv2pFT37TpT3t1ohvdWLm3OcdlZ5bRc0QdkGdrtVA6gLsgu8iqSSvgnclRy1Y0Tzy7y76jXccPp/A+MViXroGG1SDD803LT88XDoG8TkVlJEg5Sm0mMFNCGqokEvQTLx54PXSOlTmfpMrQr/e2snhRkql6jzz5cOkHphKehnoNluRwiqn334pAEXphY+ctnLcJ/6V1sJrb9fhRAhovuKRxUxX3Bq2BP3T+yJDAlGQP/8HfxZr/2A+H4mp31tqh9s6XvtTP9gE5fvfNHOSQpZiNWD/wQN9b1I6tTYpvO3EyLQIRkBhPTFzD1rBxCbKwwzAZOsEk/jiGosSfqgnkXqyxymDeCfHMpzYsdX3TyahywSPflHk79wRpcYT+KclnacRuxczjYMTt8ZNyrnMb7vZFiPhScK/jLS0Hi9Pe7pl4EhU74DtTlgZBeiC2ZEk0CeOrXcjA5Dkrsu3J5bxGmYajzafBto3SdOvLH8aW4EGkElboZ16zKGoD86NiPXeJKQNTiVhTOXIuXIsb+hnsHdhXrXdQU4r8HhkfkQZH16Sub4vyTklidSJ7pQvLaUR/vbju922+ongvV5XafKKFJ8lZb2yPatkgCVyG9uE6CCrIYo8Zcjr8SMZywHg3KEZqPo0DxxKMAFn6xWLDe/1z8c1SW7u/85MaXJVioGXx3qgyEZq0n+7rXrBWxKbzO6FxQJuuwCjDg+BBMmfgeQb+PhVdnA8y71Bm8qzcFS2t5hF+uHLam+r/Co8KGult1bzC4b6ESQ0clfFx86CwZWPGBiuO+031Bv2I/lfuLPXACg5mAcKVaAvk+OLjWOFWGbsGZq7o+cixAsA33V48JlHI2sOUU5A8vtWJqgeTY7jafC4qbgkV93mYS/5NjsUAw2cj+5aE3W3gd1X9YsmGEwtMeS11yX+N6lEq4JDFqECPCDOe47aQ691pcx1zQYqGmXcZPauEjN6NgwD3Do5luTYafVOIkst5oZAW+jRkarQphKhil/++H6Vy7V2nTy+locsMUn6Fq5hu5VhvrdeWFKoXBgev/Hje4T7uXgqMQh1c4KeUhx+77YTUxu3ONL2WBXec6F4wcZR+kv5q71FE0jT3zt3OI90pnxxYQakETUgyPSguzPGGFb1j2CXKumdPWWoyyPLBLG3RqVU6OO/qoEXRIkrBofbo/Lu3LrbNIqfjIoZa7JF18yGaGH+9IJcR2bWyEu83jcmL5EUt2wu5BxSt7rtmShSrR6/3tp21nVCa7b2MRs7SL0b9LZZlX0rfG/FE1dXuxQXGtWrJsrxdFfHe7yZ+31MEDvUBJ7b4Dlcb8Mh/bwXilxPJNuOsCp9KRqeSe5FUZSnqei6E5TaiMhlBMG+byto1Db/LmSeqbi4wGr6vemE0c3B9CzXYzeaQobGekxqoxvN7soBq7r89Gcrhvv6Hx58EKf/sxtKnYtX2NA6M6mh8x6qWn2pReb2JRJ6xwYSvajDYHY6TyLTWCDlsBhLYU1/wfFakQRRGhxFAwKEw9KPBSPOkInNzDHMKkA/hugBymyBvwqGOmvWRrqC/GhZ13a2SPlSNjBbbwcrIJ8zKKYRGk4qO1AXT7kumKr1YfPPgolTvgvQRB4jXB75uTneGC2qtC2qG3My/GhvE3XfOA6RpXNc3jt0/lRhB3YIDDdRil3y4qfkwQxytt/wD+RS+rFjChNg3fnJuSq7vQKJrvwRyqxsFofCchNGHJutXCEB1kRq65L5eBYvkJgCYPjPSkRuy1Yw+FF1rZRu+H+Fz0hOzyXwzL6Z8KJPrHxXMEO2qCvX7mrMWsA9la9KQcyIu+5M5cljsua95H9MRHNm+IwbEYgaG0LQnPnxYdSWphASQApzuj4/Ckx0Baz6JGLhzPFtqIBkwRqRe6LEJaQ/vuqcvgeEM7pPEkG6EXINRa3g+oc5AFAJBV/k03tb1oabHN7WsRIqThf1rdJoTTaetReoHD3NlLPSHtaxCEHFVKW1lktupAxBs/kkxqNR4AknUe2LtUredHZYbAWAP/yBvAH48MULtaqksW1Z/OEKZLRO4tg2kMdoTVEOIxWsABLk1nM7JOmiBlBNyafNPZ+5i1b5B5niw1II0TzGQnQwlTScc2e7gOohAb0so7q42iNI0R73aaFGgI9DGYSIhDzfopVFQt6OZoM8QDptbXAP/3dOfkSAb8NbOeKEAA2Gd7T7ewrG5DBG2GouBqBplke4HCPDluk9z7MCJnQIayfLi9AGp9cDEi9AByHms/F4mfaq0FtNpoylKD6KHvHX8K5o4auCv5tj5kNCWt8mvF91rQCPcytC97iB41ABBa86G9lAePfyLgvCW4I5Yp/etdqUOpHaOOI40XE31IFZTYUCLxlETHrJB+JZIDj43VC1Yi9zhM/Wre2KEFSwZWDkaEtti/cR+I2D3d8fVqsMyWbqOst/3Keu9JMbHZJiwQomz7Hs00RPSBwLINVO/jYcY+hoKeCk7YgEC2fyo/SRrKfJhf53ut4tHogWc8ZS/vaasKOyqKZ3PZ8BnGhte35NLa35DWvnPt+jw7uJlfC4Ro7UAnOLEUu0++azvQpuNH2qu/UKOcX1l9E3HiICdmaobYm5I7uZnjuMJwv+cwRz/e1EDveNIDSTyrNIxJi7CM5DSXNa+gCU7J8EIk7QH/JQAlU7y5U1xf56HfeLCgZuMXmvGcGtttoe7p9S+nBiuy566KE9viBT5Tt8arseeU0XItQhIWxLDDFgsawmxnb8NeqFhIY0WGxpSaD9bQZk5zz3E8N39X0GeWvRsKVxEr9l7Qj/oa/Sex216c288TsH0GUinuccjVC3tUETLEkadWHRVO/DzN2oIrT+rSx8NKRQoJ4lYDvqzKsGkcq18S/evDaaCuHgQRLxq63ofQUxkOToRYdgtXTrs9mxVpjpTdtp8CRjgulVOlFoMJN9PzMD9Oz4OhJucG4nXNR2n5fhqOTSTS4H4P39sv+GAOfTPDyI+G5l3pBDSX0cbCCg6MK+AheWRtKZvDK63phuEmzADhyHsO9crLmv/aOqNzyLv2BnJDFuCNjv/q3ucjTqgXcNjzKMNDYckFU5w/8Vghgxf9rKYr+AqTJYnjUuH7ROVqC7Heg2X1TfrDaXw80WUrdLUuMDvjhMGXeiK6lpShoPilymiikWWpUwymeW8piLSFnc=
Variant 5
DifficultyLevel
672
Question
Rearrange the equation 6y − x − 2 = 0 so that y is the subject.
Which of these correctly gives y as the subject?
Worked Solution
|
|
6y − x − 2 |
= 0 |
6y |
= x + 2 |
y |
= 6x+2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Rearrange the equation $\ 6\large y$ $-$ $\large x$ $-$ 2 = 0 so that $\large y$ is the subject.
Which of these correctly gives $\large y$ as the subject?
|
workedSolution |
| | |
| ------------: | ---------- |
| $\ 6\large y$ $-$ $\large x$ $-$ 2 | \= 0 |
| $6\large y$ | \= $\large x$ $+$ 2 |
| $\large y$ | \= $\dfrac{x+2}{6}$ |
|
correctAnswer | $\large y$ \= $\dfrac{x + 2}{6}$ |
Answers
Is Correct? | Answer |
x | y = 2 − 6x |
x | y = 2 + 6x |
x | y = 6x−2 |
✓ | y = 6x+2 |