Probability, NAP_10011
U2FsdGVkX1/C/nfFj7lyyiawP2H9+06oB/qMd3DEk1g+YBDmr9dLyYN7bbCbJx8+ANz26emoUwrxkVpuBsQDjMVUWWB/R89fzAYrC04ZaawD5FBB6q1ztPmglWfWGPOMVH3mB64FrPXMupiylfd3pB5nKauQ6uotJd3R8stC5MQViwIrexXd4E9BLTE440fD/RI4uqS1J4cI4hHUGPzyhFirq+rHaW+S4WrzVLn24eLpYS7nVvW49LheJnRNp2b+ukcgxqOK1T/+P85Nol3a0e8Y3zUMhEFYUBqF4ktKCTFCKFz/cx+v1/UUd3pigrVouFbwq6/TFtzxhtnPmKZWb5k63gOwXiuMZqmmPlCDEwFlG/AHhtFMJRrpT94XLvUC8AgufWtQnPOU3I1B34WkE5oYo/FkuX3xaBL3NjU93EGpZOdMMDcAtSecTN2p1AFdALAE32BUboVdg8RWQzq8e9I4sBHFfdsrK8xaX/LDvkl4Orr1J/hDiNDfcEjX0C/wohwwXf16MCb/DoCm+4F57oZn8zmS2zI23LDlzpYcCKXoo+GzyC1+uVVoKE+86DuwFoI+1OQ1O4M1atZaD6MxUSQaeHmjHE6evwHm5mAyE+eRJ/+H+uaRD61k3dAl8pWlG3u5q1DHDoKNnWZn9PzKB4EYXUHp4dWtgStxVEvkLgSe8ZOFRNV2uy5eX3ASsi6H/K5+ach9spa08serhGyMFJ9FvE/E4jAIjeWXp6uqSPLBdTePhOQkHxyxdBabDI3S2jgfD+Tjq3crHFzYBzdXzw/r8Q6kCA7Np4fHrLy/PHv6pNBrt4B+950U2Yte6TrXini7X1drD/ENdskWaO/1BBF/QTUcwOQcwco9g8RWyRnvz+rtpj+D5TPEEPjViNSYSc13ApZt0SbnM6+J6fw6UreDtgWJoBDvst4U60mBm1GBzB7twFVccRMKWJyWbLCaFYz0TvxKcL3JItYzTcFOJChi1DbHGDiLhcWdjlcZqv5SHZxbyLRVFl0APvUg1ow8Xn+ANJHYjp14OvdfUyK77Rg5nkLAAZGAs0bjt7ySSxE6snUdHZOY+UwvmslJzOTiShFmcDMNDPSpZPv7M12a86hnKzaBncdQHxsfDOqKsGL1pMKwqYsNPOKvw6EydP+7S6r1rjhbMPYqXRbvXlyzo6Ld/jLgymaKc8XznzMDZ2d/ixkDRTSGUBSWmfxgD9bs7Zudp363ciNRJnCo7bQLwM5EnhgkszAKrYZdizA1VEm/pyci7ZJ1DZaRx+eXQPeamBXZFss5UnSYjshkuKBS6dhTC0Klk/QerGZDwvtMWUjV8UHbMzILP2ZDcOdZnDFwMcZctcyrur8SfK21+1hpFTZEnA0phHxcHw+WOFGcFQMplesEvux+rK5ALmCU4P0WwlnKbt2C/1PZPpzsKSlptfBACQpii+jX/jMIQK6IKho2ptTLH1lXeATSPj2gxPoNZxkU8AEYORB52jG05eG6WBOrHZOjVuvrfu6KxxcN+/FDulaCYI3d2QO40yFA76dYEQqGSBSQDwNrH81tYLi06hccijCcwaVaPRNMp52rkp6Ds6mssaHU+hUvCdSvXp2DRql+Ju2mcgy6IB0OJchyqS9/Pi0GO3UXldubcqbBpdCLo9LmqRswjZadeMnYAen1I1PF+PYHWD0BO79qmR7J8jfUuYZSkpBr3+D4O2yjYG7+Xkf45Zesk6FyEjaYwmjU1pjCLy0gAPhwyrfOoSKW7njSJw8fLNCGxy3MVL+cCh5SOlmhQw4ku8U6p+w66P71JYYfKseCmngxyJCw64BJHldsAvnUkwJaH/0BkY+uG4m+8elmQRUGNOSSiRFftjrUVCu4wWV96ENvcE22YrcPmU6qGeJEIiSAQ6/6/8QBVNi0JG9wF8CyH4/17l9/SaEoIPLlf2nAtRoL31qi2VTRRzgNESfGy5yI0GSrN/qv4kZQndYz9ZGgrYQsUEOhbGW7UVXpPnOZg6ege2+u9xkafTKKe1pUC3Jwpl0nvzvubHe7WjTpPxM75heZNfhDIv//4YyNy40OBmiqIUX9XNp8KCYRkk5uWX8OI0YpVbLs/CoefxHBEcGk8E4FQJPmpTTpNPLTQRq8htVpT/1ymPCatiMdMl1sphOjJeqBcRZ72TFQemTHAS+bnB9ewNejk6+bxfWiGmxYNKRpF+LjjpT+1k70NLDygZa9g+cR4S5bazKn6ng4omD2mZ/NTKYsxLvWbOgvDXfRMGg7vp2LKkAdPPEiUi71/ovkTslN4cnYmLmpfEnIVu71rjKf3aAyr0qrPt/FoT076UB3Of7czCAFXFt8t55s2jJuNUKewgvIBq6z7STHef5x7VN+owWpw7CXLPSh8M21h5ZbgXaTfliNe1RyoBKLEIcvcnc5bfYqBgoGPq2Wk3qbml1ExwxnHIN9yROFK4+8MvpUdtOd8RPXKlCV9lufR6NhlJIwKTcFg+LjsUfM8IuHWpWN3ZdT3uYk+OY+jeysW2QhpZYSFTMoFrPtV/cEYT9nYGbCsoPXhBTMZoEnQztQ42EfVemSiWs/rP10cyD5myihxOqvTRewhYUFXD1A9l0qyC2RiP+IBmgJCl/y4F9NPbVBw8BLlmHDK5SQLSiFloHb7HRO+aBrnOWoUQNBOl9YBMS4lhIgelUM/3lAvDAhXjSr4AA59rN7Umxdqqadvwx56ZiK2vIoASCGdBndur2x2qaf7PGG9fyWEIuH07FCxBujhAdnkRdcw2DFNiLu14UHyZSXD+kcfaWGbNGic3K+Am09wzav9Nc980A3UOjXQfzvqtujg8zOrwByOP6wQp36hyOApkhwaAxHYPoe7D14fScGtDge7wjpNDETvwa1Gsznsug1C/KvqJLToEg+J4BIx7n3om/+6tg8pqSAvBOnald+FBpIngoQFr/9GPf2QHRGSnpsGbU9t3XCfipm5kUpn9coEpqQyaVADLMuLJxT62pT2gtcWQutp26RsxVorDO3uCDojf240FwC3AzCD1jTUZptA0/u6L9KxWxL4neq3OOUyfhbBFyQ6JuYEeHRYv00f0dcQjzOT/9bsiywSSqKwQu6Md+3ys7bYIyiGwYlOaVJKBeHGu2/ZP0JPEUcOiGuGn0gcIOuGSEJ8WZovnrnlTGelal0LT19xiikxZ6djPOqt6C6K19Xi2czBNPPK4EWRGOAAVoqHZSo2ayS/xGo+9Obddl9O1Veppc7i+lrOKzdKpHSwPpMfL7Q1Xv6+TGWfGCtwms1PipsuQPLobNCNj/y6rtTQmPgd3JrnzZQRCTawRxnbYN0j6Xo8L2k2TfmP3ualT3oMGcHB2WcQlpBlm8EWFB/VsCpre79UQpB0aA67tGNcA6oMiyGP6rISOFf6S555bS7UW7Y9xeVIgLX896cQV5Z28sUv5xVZBMwXv3Rde+gBLQ0eoj6qEvGsShX/EJAQlf1+yhnMo/7YbqqJCiDycssGVPgWqvuD+ukXoIadjksxVgOEt78voYtS9cya6EaLVtZ8Y3eqHfIgbhrkFeRINRf1TMlunBjOzmBis7zn8LniwVqT/NSNDjbWyTPCbfTQwQRV4Nl+12rdR68F8lb7c38w5TK/L9XCy5QNh4oS7xSbakaCq42NonQG4lgHHmMbPhgo90QG2aDEvC1B2GQp5JWgt59UERX2TCba4QDIHc/nJy2aEdJjpPdrj0Q4wThPW7mxbdtqSfBpukiamUE344YEe6SlUJIfCwmdDZQMjBmEYmibud9x7Y+3BY5zrSF+p2+W3v2fazWRoRKVg3mtsTgGsh0R4PVDTWjNwXEWLschn2C9ukMnyjgU3XKzeK4h6fA8N+dEZrMqib7lUPGVORW6pUwUAihhim99bSlnbHVWGQT3rhmyX58VUaHTQvSUepaUF4wmdfxJF2RRRi/aZENDFqNmYr4y00QTKEdCmenrCjCwDF4I2vc57lBGQ9qT15MUcPc+PGE2aEgTfPOBuMUaSV075jWF17qILsYui45yo+PvT/6P9khGARTohDTa5an47uS1fcD5VngbfXE7WX6fhzSuaJQKtGxolVzBlBz2pIJMrgh0VmkdJmR53htSZvuX1kf/A83DbiG2hc4hwATQ+zXS5Pd5yQudOKjkpRkbqYDGwoTkFE591MkBFvRKYf3M0t9xpkym7UrAR7JAh7Ox+zOdTQXvLMw0k5T4Xzfllvdzq083bbUnUzNyC3vaC7EoecOABJGSRQ0MssBBG3kHv+QjLEM9BQIzpt73KXflKHlUTOOR/h/ZwDVavbiLM2E53f9j/vJxB4df+sUOBA46R4PrZQiHTIC2I5VkVPxlhm3VRKq0yln6OFTmaP4AcsG51xE0tLD77jgkvmheWNBnHaIbr0YkbVmFuARKhU4RoCEth9vwmn+EQ27M2W4ChOpKR11bJl2o28Na9IjllREUjfBEXKsV5ULCuGwpGkW8HXvWcKwJVY4lmDoEmXt9w86ABOdYr2eWVtEKi3ZwqBnjoowkjjvv2D6nbaaQizdB8FPOo3xsw/Vdow7RtoX5+S+SGa1GIwdQ40wUemnbvg19Tr8so9tuosEvQv79uifyrglBM1Pk1QRbeh/hTZgDUisIvCSvNr8iDN+Jp8slItCVhePgfeaHto2A5ZAg8ZBD3unPL+cOSMhvlB1UjCFRuaxYyBEux1Rs2moE/X1jpKYfLS9+JrHBQ0DHszOKPuNjo6WOVcMQXRaPURFfCJD/S/+CA6+PT1SZbQekjjd2TJiobaoTTs6IhTYkWU8pjDNALxpYkDh+Gc5oE3FMFr2X/a+93Hhi+JpiBz3k/uPvcCnrpyMby7bW6LFT/Jyd0ouyC0uI3mfsEczqREs4vuIK/HO
Variant 0
DifficultyLevel
358
Question
These identical coloured discs were in a bag.
Brandon selected one disc.
Which is the colour that is most likely to be selected by Brandon?
Worked Solution
Counting the discs of each type:
5 × 
4 × 
3 × 
Option 4 is incorrect as there are different numbers of each colour.
Therefore,
is most likely.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These identical coloured discs were in a bag.
Brandon selected one disc.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-12-min.svg 220 indent2 vpad
Which is the colour that is most likely to be selected by Brandon?
|
workedSolution | Counting the discs of each type:
>5 $\times$ 
>4 $\times$ 
>3 $\times$ 
>Option 4 is incorrect as there are different numbers of each colour.
Therefore,  is most likely.
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-blue.svg 40 indent vpad |
Answers
Is Correct? | Answer |
x | |
✓ | |
x | |
x | No one colour is more likely than the others. |
U2FsdGVkX1/zXyWyjcbv0M/NMYl3oet0+osLez6VAI1IDVBdEqnjR5wq3luj0igmjYFudUpqduRWJRDAyMfSJjO2g+s4w4teSIxnbs+d0bVcv3r8lDoiHKKiEDQD9L4CJvoHWKkvDjM4s8gPbeejDaO73OLcvneq6mRZDwTW4Xj3EOAX/k8CrDSWcuLyOsjpDl8IHJE+bRkHBLEtWGSU7aGv7ITkKCIt5nE3+StzBCrtQLqLsc0jxILtbSHDJqGi0ZfhHtFUjhGuTLAsjFFJl7ng0KOmAp+/QoWEoj8J0X3hVD4ZBJBsujSu/m9z5sUo0GsaEz3X4720pGDaiKOg7zysl01lzxfKbrMaGqmSPa90dak27tM9V58LA8Gk2uJSBnrN5i7COATafd7bMsi2s08b7/TZlTLoL/5Au/GPSRcukq0GBlJzw7cQtbh3Tj+pwemO7t496UZuyLtZNeOBQxz7tpsMbVFVzuzTf92wi7qnKYy4rzrBB9+KxCh1WPVx2lkvVEiDUx+11wDtxrLuD9wCzpCHtUDNagQbG0LlxpO/yK+CTrJl+oNiCfHehkxdp6sxu398gMEyq8ku3uGwRDkD5oKwGQG8rzzAQbaFPRi39n9NQ3Ijs3Ai1wwAlmFQ2L74/JRtivNh8GeC5zK0zhaLnlW8RgDf0PVTeoEINn8xBDu33pOp0GuQTSGKzIOdfmPnZmHeKHs3PX8P/4FvRv/tNmrIgcpdNTDrjHoBWDeRZdnjT5fluZMJ5dOpTah/CYjeNExZfLR0LYGr19V2SUHB++1z0+AGyVyudaS58I6ojxSVdE9ysv0TKDwKND19/R5ZbTaAdRVBO0vvxYOjrgTajlv+GWQzj0YOa9Vd8fd7WradLI+Ht94fE+dOxBXiqcDMoKusjBo2B8xbW6BjHJBKPoFtexxLaaljdaUR/UWcUDsNOWrOCPu63xjDSoeOVYI5i7TpfQ3I3V6Nxnscq4L0vDWZIWrSZTK8r4KtzQ1oRWWm7HCuT3QOTulp1QfLkFm70VlwIoQW3DVwVLAdmzm8pDqBWrkdotvrpNM07XZSaVokTWHaH/o9+GVn9uqoD2kGY0GtoOdChYK0uuklfCaCLolQfVZVhB70BvDJVFjIw4USyMVhsm2N+U6sq9hd9ZBYwIPBn3JHhSqJIyeuLYJeMFaZdhWKhIM+9qbBzPA0C2SPk8vpJ7Mz5Sai7HPSoclQcMJTV/w5YUh+9ik7W8CywUXvqeDNClmiJ1TU+li/3pAHRWH+9fLhT+gOuzpHkC/4N0DCeS+6x1itnTX8+JlLfanpE0XdegDoIU9quHm9Jzo8JmnbV8zuCDLSN7GdKxWgnY5xrI6ZnI+UJAuI75Gz97wW0oHzv8uxkKqoQw+y/ooCg/C0lX7SCoPERrCbyjV1efyfMgC/PEmnUtKI7JPzMMd4Jt2NdXV2eWjs1VqfjeEnF41GqdlQhGfevt9Er5LpgtwEMni+iJzDWUVDLubFMV/l4FCqaTDfBAujmDVVb1M1EKc6v9U4BmciXXRFCRIwlZwHvCs5EVN21Z4cZd2pgZZa8h8RRhIeGLPcH0PqwZSv7BcIlDgCybbUAIelrmEtVWgJKi6EdLBZUpUJePhyxjFtHoEmJsvsiVFE87KczLW8eKGlwagI31mwY6kRpCI/4OmraHWK9++8C7pTdEx2IlZLvb8/4KZ9fYx0LrA5kfk4OXTEeJ+lOtmNYZzEseLWjSsWZi6qy1nDZVASU3ZQmdAne1tqHjXJlWaFCqo5Vq822EOm1L9DrP2cXLrvEQqUokcCguGFoVSGbxtrbaIjThOaJ1dVZ3oYsEZ33LAqzRR3c4vtNpY/vgwHJc7fiIdVhgLr/CMH8HcXHgwowTLjYOvWyzEE5FQsWEFH0NL7atCrQryzJ/11OUo8GYEQI4j5PL3zeFTJrV69Ficb5yvrC3onILfDddDQiBTD07lVDwZRIKuiUxTH8ieSns9xzqbLJWVAMMdh6kCruLHZlm1g/TaosAKF3Tx5zXr97Kjkt8cezzJOt7KlXJ/K+DrFUB9FvShRm1BVHiVoXc68XTnlIwvdm1kI5JYPhm+xsdljA3KkYRJLW29zBKlWazHmd4dmWhs9Vk8M+OQYxzVKM1oVdNPus2NGSWGutVNBH7uHCboEnjBaHcD3NI02EHzkjW4H4ZRdSnIw98peNpePuQdLmv0wMYaBbiUcorJY/oxuPFciaqfoBFv9Qa2OS7rukpIrckqF/NE+EDSClAqdNfFl55ZSYH0h1merQDzPzc7haY8NGoAoY+ZiUIlfZCnR5/ONspG1A3koV5Fw0juA50c2pCDZRcKFUbsA3IiVMPssdoBDvP6Ya+cmd3BNttagWGdlQzWLer36Wglwk3lEbuYHb+uBo+hTOe9YE5lVR/nuOEu+UgkzbaCaCqw1UsMntfEK6x185/giKr6msrxU+a0jsbejvHiGpmu2PL97wRkv1mCsZDWsB15/bDekoa5lcXZZt/6QtD0NJ7UKM7QoLrqz1eDP/wdI8ViaOLjh/QgwIPksIgXQHgytIiJ5687sFRJpfJ7qslEVEtgjUOfvRVMs6LXCXw5QnM1MRo6aehqZ0oR2reWbmELQdr7HYabtVOoBww6bbuo5NBkzmFjz02ZzGrhVcvwdItuQ5ftg10rNuQijNYHO0w3Q1Kadrb5pS7w2RrihDOq0sCNy1s7lwY2z1VYXmmyjgWlSIP3g63ER3nU318pMwT4tx7eaglUEuhqHMcTvwdmF/SxuD53+GtsHGwXxaDSOspOgWkpW+ZPntK8UIEbcE7axhRRege6nnvUqpaVrVv+xR1YurTHRuRXOVenJHI1SX8qA7SAeM5fowhNj+ZcCLyfbhzA4sxALorrz8wqdxZW2uO7k3qHYPSbUMa6YSLLb1y0+nr3HpILoappl5HG1chA4yPXZ6tS2CedhUJiUdfzBE5JbgHbHBbhPNSkW7ZaVf3TTO1IuyQ9n6CMvhiaCk0RkGP7YrdWhqtQnKjBd2K7MmG2furpcedq4Zmz4rg4A9nbL3fX7ammgizfEFHb9mNJyi/aJ2bRomTn12G/WNFWnhs919PltJ6BvJUPeKPl/EIp5dEhmVKtlAg6SiHeALmU3h9KyFZp5yIzzyV4hixWmz4VmgCDEcL5EmIdrmYxPJEGEdaTCR8CVOfCMIiuRNvOpXwlqBdjkdJUQiKmMCsTgXCm7Wt2j9JcHExQOyHPhJ4InKG2JyShFwzvbbMzz3/F1CIIfGfGtSW6xG8YMdH3kE/nyKK1juyCbSxQfCKrT4DA+9bvIBaH8Li2ESYkJrX7lsNy0fRa509GZoGafyLS2Hf65NDEAa5yd8uB/DiGIuhbRA95O86YBZ4KpWkVVRsY34LrdQ9EirLqil6UCllzDlsPFXpDuk54zb0xfUiFFma+tGFC6OvgJ1YPFfHW+PsSWdVVK33smwMvuCCT+AXHu9ohNVMya/U3cV7P657EVsIaNUIMSoaU0lRn65bhca+RL+/EiXiwePgYIxVM1XU64337MdiCxEUaDLSvdzIVgNs2Kc9SCfwDiiOBw75hs9jyn6OfYhjKc0bW35cYkY7CHO+/EucNlyZfIz14IZtnU1Q4VQ2+fz93KAdN+hLh9UhFcSKeNlZO7HhvwqE2gWVvklNDVvAcr3T9qEqh5eDxENLplbr17iFiDHUTmLpeoOSZ/BrfiTKvejjAn+WhO93iNA8loXnKNQqnhjeTiwE5CvJ4vLNS9NWxSems2J2bJosMxDErDxokPOF3bPiDFWp//oYxwcrDmdURX7+ghBbLzGVY1j/rUQHAToV+khpKqGrDkK21N4OYs85g2kkpKPH0oc7HAEuX9snxk4YaNu9RDDz/Ikx0O2hFHod8VWuof9idZ9GVnvq6fjKnOjTrwYNH3KNQkIZQ6YoaiFoKvzz4VBNXsVnZ17/Mo4hIfRH4WDRoXbizDbLguLKXtHdonBDrLfCjwAOiO1IEuv3l/17/+9WM3kWGAvZHoN0NoGwOwFi7UTJmSRhLXm6ybbKvfiHsjr+kt4Raj6LOcozM2goXcdy4rmek/Yq+c5qAIVNSvqW2XnewFYgM8hx6oq88yO3fS++RTaUqHwHuCIW9jH9TGWvmtEHk+fl9DBydtVWYwDOu5zYCs0OyNSlbxHqn+Qp7W6szQeAbBngrggUJtwwXMpaQ2K6N3/8kWLV7cxNWc7VXCC7BAkqjCmSGnFIjD8j+Yfq2n57UnSMWlwns2dMKMHgTre38syCmQPpBnfnEONf1l3MMkA9gEQJ7znkbrxTPm6FduddDeURvq3f6suYG3AS9LBhRBjp2w+kBzpUKZce1lT9vBKJ3+Zvkxies4uzfIv7kmsXugA9hSwT29nYqMT6eMt9ePqEEzwGCYxnMekrhxB/L35N4NQywPGCaXmE1gfQIG7i7lu1Xc7iipPYNTldozjEOZTCN+Tk0yh3gs1IRNh+Gt1Hjve/8vCWOb+mK0LTFkvTNubBoU/YyZ7bXcCz58DTvz5FviP/6x3rhYsd7FBDpZWEcONlABS+THbd68Jyd70cDPe9i649CsbuGJUrvL8aL+AW4LreQ+bTCvS0st5wFA6Oehz+z7VMwPgNGG2kUezfLAmdsxAtWaW1u6o3BakcpV1gVB9O2CeE4GuOK+jH4d/+YHAvkxu/VM0DZJ0wkeYew9KHTChgp5tH8VeYA4yW9d5UP4ZbgvO4WwPq7zPXZQnkthskdqV6yRtbkTMNQzFVRl8hZ3fR8kOSMMSgEq2d5VmRZPAIFDEvpdsdRxUA1yASZnT6/vgt3Ev+qOMl/sgWu7lVQ4bBLoaVDm+uITq81ABRNF1dMe8enopgTSWoJXz3AK
Variant 1
DifficultyLevel
360
Question
These identical coloured discs were in a bag.
Eli selected one disc.
Which is the colour that is least likely to be selected by Eli?
Worked Solution
Counting the discs of each type:
5 × 
4 × 
3 × 
Option 4 is incorrect as there are different numbers of each colour.
Therefore,
is least likely.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These identical coloured discs were in a bag.
Eli selected one disc.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-12-min.svg 220 indent2 vpad
Which is the colour that is least likely to be selected by Eli?
|
workedSolution | Counting the discs of each type:
>5 $\times$ 
>4 $\times$ 
>3 $\times$ 
>Option 4 is incorrect as there are different numbers of each colour.
Therefore,  is least likely.
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-yellow.svg 40 indent vpad |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | |
x | No one colour is more likely than the others. |
U2FsdGVkX19KRj+gndng35F5kGZqRBb4ydLwhr0qGOlh8qTT2yiXRILQ7YeC1z4ymwFkAhwU5fCQqIrrxOYP7wBI7cMlMRNyhI0DUleYWoiYLbv9e4T3aWzjgsi09dkdw+4ys5cuyc4T2NF9repTZ5joC1QxkvwiR0p28IMShBge7n4HI69z2IYurd4BCoxb2a9oR4QhULqaNznf/a259c+ft4dDqJlHcfeGjaIulOG/B2nDg2buh3D88tphsV+E5Qo6AVRtBpa511T8GZ76v2abuftpdF7zdAhRBWNB2/b/sMis7hlVpttFnpGtD6T+2CVHtIYOY7qz2Uo0ZcSaKxELEClmJFai4wl/5aTDxjSihRcCx8H/9G4XUHyTQca6AMdSbktCtVgZy9Bcj+pApssHiZrn0WeLxesmchdwk0fSiShLZdZgj2NPYptjlJnRNOLZ3Q37QiZtFJWBU6eUW3tSm/idFEbrutVFAeO0E7OzCQdk5xbhJkiYuYJoT5Y+MRuhQ/yWMahoihLGVKBNJnORKx82kkpqBiWybLTPruXYK6w0/D0MNk8Rs1zhElV8sHLtZuO9M/3KfamVg4DXOqtQFwjkYlQAVNZEKy9y94u4tg4qA7m4siMb2G227RXe745HSBHGAm75ucV0NnRU1MHfFgzwJ65IOE5LV0YU4uxQUu0d7fmPoze4sUwP6QpC931/t/GejjNLd1pN3nyicyHKk4vmHQb0pa3SgSyyQrqeutKHCTBfwSx5QGivc0bDFfIShxQFNwNv/duVJHpIaMfsEMwymG686JNCb84JyM0rrC9OSG94QUlus3e7AD7wnKS+tmcWt/pApwQFDNZHs5kIt9wMty8KFhh7Cc+TJbDqMeM0Nqv9CYnIvHvgI3dwBz8Kf73mMu/K5qrgDVmoPVfpyQADQtkTVL7NYu8mdJibmHgMlELT9gnDfhv2pbKgROxyGTWiCB8+jghDALUEYb9cJtkHGVTLuYNA7rL6elCkoW6iqxP1mhIclOcDA+n/LfKZpxh3gsdOAZRoH1M+MsPCDym0fesWHt/48AM+OVNtVJN65716VXOc134TSkXQcSjY/CPchxwgJBz36LHZmoZZVFNbV1Tpyz/ZSNO3TeiLJ7JB0AY3s70KON0RNk6uvLFvoG6ZO6k4lgYOCPWD6wegtxPNHucm/dUaM3vw8mSLrDdoYBXjOdLnPSA0pOKO1r6tfHkZfzqeSo4nWRmw2OWVTkhAHJ4TsJi+omuuFPx8ESUPNrQbqg/OGyawymoR0XLtFoqEXIYC6OG9F09O1nQUbdamkrlqhMFpUwciH/YUS6cFB5Mo906mjvJzs3XF8VhiVISlm2CCGOjJLXnKA0zGtwPy6uN9ZdLJxOfwQranSBjVtOzbB7R7Cel8mpwQVZhOoOapEbpeFo9HqJvJYFVTB7YX5UGGDK85reNhJxOZCaU+EzyihX2ngxdUPvpdKjFCdMD9RJVTN+CPcEcj8+E2m35Q7Gqsi68AX0ObttxdKpR2GEwbG2YKzaNE194Z4ighhWOpnscbnR4y0DINswSntdLVc8RHF91ZAYIZdgFFwo2qc1bYkkrgLl4aDCkTx4yRJ2Rs9waeL6e4bS0kVQNFejlDvGZzpdTgoU59Dc9PlbD1f+K08Eo6aiGwk9pZlFb3kaZmcdTT3RE4GQ7u+VRDbUotTcf0qx/tGRJbLvaWma34WbZZaXCwy2YtOWtuqI2dL11BaM43af3Cd5V4VlicEQw4FRtfABUcR9MPvSzGlhYNIHpVOUSzC0k2C37h85ROWIjCwd975IIaXlulsZD/0CcjHPDsUxQ0+1RSKyLCxyU0ZmYv6BLuKYdweDgvJ/n1W6lUr5Stcw9rpymSxpo4jja5uebzUfYiaZ8UJ/+z5V1lYhqweyROvNT/bnUp+sgnYXxDPFlYbv9G0SYF8NyhbAlf6PYPq6bCOh+63PO4HZez/WmsU5P2+AiVitQxrc7f6CIH7cExed6ye8FY2F5VLaILOIagWTr6DGQRXvmn+L7648lH4y0eWt0glJs0wwH9AjhzFt1k6bILi75ipKwgl0vERqdomwqHMGj78SariEgbLt9BioAwBxT2zKHsYY+FWIQuS4s/zbzY9pJ6GtzxJw2lSrabdO9MmQZqM0Zo9H5S51sgn3wwrp+FWFniG+KZbBCuaVMeyKFMT38czGSre2VyBvlMxoTF7R/2EOLgsTfWDzgpBUMpASkUqYxZta9Wl9IeTATpbHCCNRoDex5lITtaq5t1h3SoXRsgHaIDRLcmv1rNzNKCF/aAd6LDH5lW7AfZcx5ACgby+Ie/pmrjojr61Ft3zE1rC4A+NGNIVxSekF+Yh2OXyoyXLuldvPpruln8aDFrtyqh4IYU89h2SC5RiB6GrbU0l90/4Qsev78i4CjN3ywxxL8z7imwV5AYhW7P7ZUztxwrCYgFeWvL/374Q0qRxr1K3SV18BAAeWTVvq4if0uoalmyba5fubxqj3ozSQFzMxMTPlX92zM0EFSScaQrfOKYN0glZGp4tnfOhFMQf/pdcTqZshNLHtQB35BO0FDawzYWg/EYahMDNUFKoQk3cwk/N9GaOaDsNE+KehcpeuHGHI4I3xtrba8NUcmau2EyeLML6e8uBcltEQFylkjWMj8iT80KxVCHWOMqAJ/Lq5xLFw9WxJXMsWOQhPquegz42FFTDA7oiCD5LL52baJJqmoFgTT+pBOBgrsokXuXGiFksXKIofK7I1R4lJHct7LRD3JSOHzaZ4DasgAnaj6YvGUP8n4SkhK8AicOp7HsBl05Uz9CfBesnYAorpKpIhhKXkmN5SX7UD9DV/MqSjgyDTLBqeYteWQD9G0Brx+g/OZun/0kOOW7sVb5r2QF5jrhfohXnm1fdaVtVlTLb3yq/1bztIcOLmcEYfgzxcF6J8/y/S1gJzBiuuKkvv8fSXJFO1YAIsO4f7rlnuXridnqOQ+YhpipoRMRSXYUtSxQxJUr+5eBqKpxmr5T9qdnhY2mZdERmHaISomdo60kyx6yrGvalxDkXCybu3Y8n7J4uZpilzkhzDamNAZG0w3eD20Dmgz5e5kheRiRWpFciMB4mM8QYeWoFfG9NjZG+qtTRlnFFs/vapCD/pCXXXis18XuSjUQP2om7oWmgYLyRhgQmyyRJ26PMpvwwhqFeFSRntOY8epdUjPQd+kJ3IFqhYmHVMPnVacIwyyI3z13SxnkdxGkM60mkrZKJ1b9Yl1+ALPsFRK/cvzosUD/j+O8CNFkLcN6kelyLUFMAjAoT0RVZG8nrpY2KWXsIeCTa25cADyttXaiOyKPopPA4hwh/H0AV1uTat5fPaDmcaD58YZSiLAinvHi+YZMQjwFGN235cMZUmcsddrFjL0FxJvlDyjju7pThTfahiNZgM4jj+7/MyPL/qs1OjuMmucS9dsjTdj3oPqWjQs0PYqIHXeklO6g9JxYRZ39DoCh0mCyqJT83narUAfUgJVGYfHidCflqnxGr+zIAnTUX4FcxN/ocWAmaRyaBzOiWUTppO2N1pPTkfiBD2AE883xM/dlCNpFm2yXJTjCzFbBtvWwDPgKUeHKVhddi38m65Nc+XTc/Q8yy+8CKnZYl1UXICZ7oFsVyKx4Bf9DfqJi3kXIdh/frg47OIauq29wVnOf0Afwo/XqYSCK19NYdv0R8Vfoq3kZ3r0+EpM3tig8Fm/AmppcJAaQQCZFu6Lt+WNQm96W7e4POGpd25/LgCbmbtV2Y3IfuyMDwBX068WtLcwxJ2va7JVuZ3Qzn1pKkg7U6Dd3qsiuvenBhrvWeFeBkJYPIUhHGZSsFIroGKJyFEnSxZvD8geBDzMwqjv8wvhfmdxqryY+VUtPxoLm1AR5z+8sxoek6JDZl25L0lhtA8G38G85jdX8Y0xbDRpbcSJKpH1uvL0e2S8UO1p4ik0o7mGzWcW7bR2fnSFehBSMinA9MQL3RpGHj+h4nbYL0lpUZoRdjnda9UdtoXCi2DqFA588s7+0rXg6D69fMFfKdkwoLtKk1wGSZ4PLbWPOfG2a2qoOScF8yUNGSp6F6yqnpP0k0ZfA5TGVE72aFL1AlpDXbHGEzje5zElyXhJxaFdnyW5om7LJAhO8Zoy52PLQpqdHk7uos6Kybgud/TQMC80lc3/oGOLOREnwDxh0Ql+GL4VN6uhePJykf6W4mbb3DVz8kzwugJrUA0zMqAKwnrSuWEqNeV03qXqBLRd11hYSY6RWRoHPYR3mwmQbPL1d9oblAvCf5L+qAUAxIKvL5EHRcRUhFaUXJcApc0pJGZEKd0+nZACRh5B8tw+FIHkTmRhP5503ZplKdPaIGZfNt2hOTOhZRJOm6tVtrmJ4mKP4dI6w5KZRaOcJfr1ycygwlC8F6u55bTMwSjCvbRE+GNdgCkB1uSEv6cVVHOlAwYVMtcQSdNwiEjpscndf9T93CSeemJrpQ068W6KraMUcFPS43SL0Izz5oN3iA3hQ+SWJoxKSmuCupaf6OufAbd2/Rmk8wBSXx4/7biKaPg8jxDxc3i6VI0wlwZgLGzJ7o94PPmdjI+H+wPQrvkxYCR8pikyc3zF7nJyx5LxwBUJVt3IMqvZqtLpOhwz1sSMCzoaQvnvdbRPYMpLhwe8dLS48bkwXXSMjCVVfnAyetR4CtzmlR8Lh29TQvGwX/qtbuP4TMAOjHWHS39ptzxGMi43k6q2eFn+sLoIDGKHJ4sSkKIuE3RkAj9ZfqG9AaZu7IFxStvMJa65bLJKR9EBHT+vPn1OZ8jIdxKpX9MJFpYeI9bp4U+7+uax+NvAtcPOavKmPy86OWVguuNMcM0r7VB2lc+9LkdJ7LzxfSmoqdsGzH8wSfbAX/GyHmTVDO0CQCsSaWOMAkMJA5JgBhpqCIFvakKFPjUJDkB89CH4SaHn+7TWYqQYapR59QbR2Lyf0x+dPJXPO1Y5e9F/Ujw/PjY4DGiiKYDQOaog1AWVY78+zKXr46L867XPPIwsqInc+gHNdbnQJfLMODKKf/m6BH6W9F4fEBAqX1xZVH/4o6upd3PnZo9oizsjxHz5YK7CSsFp1od+6TiRfXPFaGJN0xHRp9cNNRMvk2DpG2rRPIXfqikXMHB9t1IdGVAYCDqjCixDv7O+fby1pRVO5qvsJJ6ZC0kovBc0F4mym5wUQ/rx5vbx47F/JkdxFP4V/2DIGpBxDzZUbh865TC9KGyhu7Jkqe388QyKfoDtOZx4uC+OX/cLEsrMp25m1Yb4LLPtvkqD0wzCtp5BAcH4Mv9haQXCvECNl7AUi/SHz6m+Y2GI2rQbF5YBEOXwkrqa30Hmt7e/jcW+QL5Mxmn2WK/qmJ7lq8kjL19wSjo70wGEZBlCnl7RxOK6cLuXo7lW6GT6FJBXRM0elusjhN5UZcnL2CrBaovwgNOGkPlQlbUED1L/glyuC1FyMMIQZlO4G+Gl85m3YkGTIdqLL5V06YR6fxS1BPYG7dVxkyXCb3gZc86vjYXP2oh1TXt9czkSBG/vBJPybr4dMqsjsM/4Q942aDVFte9OpLqJDEdAnH218gLjKFGzyzIFoi+iL9G73IJ/Z1ohkObKs8DsDpSqeL7pGU0Jbhb/cYS+dbZpuzJY+Co1i8TylZU7yMNAv30M21ogpYeSGcp75JEyZfNZ7mPshphHORJocxhZ3oZiAigesyGna95KX5II6ykFLH81bdBFoC/Db/fY70+ucMEe/xrcC++sWY24T4lADDvMOO4SdzQG4uSlaHkn6FXRsTRzWbGIeTo6jODiV5gIz75XeIv105dkP+ulJG9qizJaa2ZSZ305yGUkCqYTpuXcT8TiIv9mimSqUAhjsRV19rnuclLeOi3NjBYvF3S9BTpyVs+tkNuELyRz16VodnbSMfmbsnwJbowfH1vQ0dq0YlxRp/kGzug8Hbt7jgO5p1YLFwVforMEauvlqOz/Dfq5vRAvUqeVsXkGc/I47wPNcb/ZFlNKTqe0/+4SWTB1+C0EY/wiXSxV4rBwRmJRkQNejOQjx0FiQU2DpAKgHujcA5GoZYY8t++HE+TtPK1LE3ADzIu0bl5Xm1fFEGiaou7Z5Yq+i8CoLCxBwcng+4cWbaBGpLX4aWDbTugolPuprCVstvfMhlOB9I8TlWOB6DlYGC+YrjcIANs92wriZby2DP9RcMrWUXH6AmbV8NMxX3Tu6W8kuLIlUYocAD2JeB61tOHXlM8wD5XLBkELK2vCCaHfh0VokN+RzmdSme3M4ntLbo/W91/qEXTSyEsbc2n6mXF5o/R6MiED/QSEM2CdTyHtxuJXtMG7VXE2x/eWMbUeAUOVV1Szix+UjF+pjxW2Guov5UFkyoFLTzuYtXMW9weYpJdWvdAytDDnRe0y+kymk011Ndtw8TWDT2NHtC7aO9HwQm1AKZViK697w22jV139iYl6yArqf79F2uxnBMVW8oYb65SNaiGMDcKkqSbeGgIBn1NEjuFSj/aJJPzxdQlOkQC6lS2LQOiK5GsXGMknnEfintyboPx3EnCFS+PHBylbagAl773tBVvEUW0yxizjtIT/pXfaqrXwecmmwUSvkSvDWp3ex3ux4QGbF+HQHEEjHiH5orCw8nXqJvVC2EurZYnQ5KgMFzP29sjK3BHzxjDJrRSX3QtUa7WyfrrF+ycPKjmtPxnOE39KQDjd6RzVSgyQWtOV/vGMRzNCl0Dlxzhi/8aEm9cU8K7UBX9utpgk2psyLKR3yhnxR3pAZVYOwDeE9quTJVLVUUQ8OggEwBt8fHRjJdDl6/1W4q39fxMUma/PWNmaAqBGWkXL/Qk/jSVJKZXEjQR9I5W2oXUsP9ZHajVylkT05SnM7VFep2TzjxFpKgOGFTYthF4SuXRntNMOJ2XttuQHT8dQ7dz7twTfqfsqIHL8ZFd/+a4SL1wqZoW2YEKixza2blky43Z7eRR6oB6iV+WkzISRywyAtaLCBiDBOBaTyRUp8YXlPIjAIGtOs/MApFUMVPe9Zb+//MarEs46Qs7oLzapVLORvSKN2pEYpEQpkeUde7WcZDcCQ1exL+GAlKI0K4GXGiHRQ6h+fM79vdAUd3ffI4dbUPeocKK9+8HdQulUT1K6nvMELWcBXzgWiu+CtdluoOD1MWq2/ZXkng7w5CADUd62Psh035x8mHNjUG58YgI5hoAkrIP/0heccWSpoKc6reVRpAThGr2/DU/okIgt2u/IulpnKgF3o6+vt/ajzMzOHRorId/6Odrc3TfO3TYNL3Gglxl2zp/+1jJCyUNkywPBBxQ8EqqjXVBb573Ls+mpAcAwjnylnTUhLjer1bzFKTKASfv47BaF1/hnEVlb3BJyQWRM1+Rr+qC2K+YLv5OZ6GUqYWA5ncHDUk1ox5MH9rCcpormSwEI07l1QMYxS7hn1ozD0yFGSbZxy0OHk7cM7Q3P5YWHgwXUDWeko6HTf2MBc5OqRF2LD96ls8pWDzzafZ97pP0pMPbuS570vcalvSkWqrp8Ck5kx9I4QMJiEGaJmrRZ3t6cMI+Ni3B4zc0GN235qpE80Dnzp+DhRDg2gw4paIhQKVgjj/dFQmW5/DdSDScxKCmdlfxw/Kk21SwrFNA8UQ45Q4MsYSm4VIojqtKv9bwukKm8L9m2o0AmJUJJj54IBDzfaQ0TJx05Kde26cVfAKSXeuCeOOhDIbY0wUQhB1yuUzQgGGuO9yHdEr5VJ5wcoOYwvghR/+9XSVqmgiEVH8SSkWF5AIPcl49j53RED4kiNrBJ/tLMnqkDmNF56ypOAzBJ8hEWxW8BzHjAf6UaGTfmZYXZuQgz+U+6qLz69LIxBp9I+I1qsz+SNQEzAdY8X4zfeux37pUm8N2O8b20XitVn833oJJeSG4ipWSRwYx4ezQUY+N4CaQfoORvu5xgBT1jGUxLgfJZtmwaKl9s8Zme7dxqwbHxsI9ohUNuXbJdYnVPVq1LczINO4T6hFUXNjmj8HZRqw3xlyD/mCa47gI5Axnn96ofD+OnM4OKQZ7fOmk70fFHFrxIu9IyGL+Kg1Dre+/OcGjGaDquouXlDGRZGB0BDWCOJV0xD40SfM1ArAmeXW3ja+9+ivjFHnr18VpTa1sCCY00Al0jeeGyI5RoqRc4yWsWocyRAZFb5XejZ6wVT4jNPJcavCDv9mmvJsclwFrXnvpoACXlPso1kOnqhVi9W7Y+dC+BEWH9NKF116g6lHATGWak6nh8JK2kFzzJgNgmS10I0Kq7aOQcyUjZJypF/5f46ZcRi3Lt9hDWlwJKL4yMaGZZ1c6UiYxi4AL7jdTOi8ulq1aVoHlbqYOu+V3UtTeSbN2/qGD89PxdJ5BFsh3+wT6YACNYpU1o3Bmifyw09pCZkyAPcoovsTW0fo6crUTLfjubXOwlHpZhCtIdUoQAGvoUtXjFFxi3VKfPG0ImCFKJnauvEIMulX6m4Z1Yv45fJkN1B7v0VlIoZn0TJrKWnrBUgv7kiVsHeqzVvHfGQ1/NQwwm55hy+KWtWebfHJ+fnQt82GQiGlsJo4DVtLISISKA2FLo7/MlPuyCHmwhFUdgGker1lrgqA6D2HAUN5XI+MlQM0iqZJ5xdyxdR1AjYEvbdwmdtUhpX/aMoTQhp+23hxGoBWqK35Pq5regk1p05VTV7B39L0p9M4JcKblZdqNvp0VSnQp8hHr8fV+AM7GVywIaHMPFpTUJW
Variant 2
DifficultyLevel
363
Question
These identical numbered discs were in a bag.
Livvy selected one disc.
What is the chance that the disc Livvy selected is an even number?
Worked Solution
Counting the discs of each type:
Even Numbers:
3 ×
4 × 
1 ×
2 × 
Total number of even numbers is 10.
Odd Numbers:
3 ×
2 × 
3 ×
2 × 
Total number of odd numbers is 10.
Therefore, the chance that an odd number is selected is even.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These identical numbered discs were in a bag.
Livvy selected one disc.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-numbered-20.svg 220 indent2 vpad
What is the chance that the disc Livvy selected is an even number?
|
workedSolution | Counting the discs of each type:
>Even Numbers:
>3 $\times$ 
>4 $\times$ 
>1 $\times$ 
>2 $\times$ 
>>Total number of even numbers is 10.
>Odd Numbers:
>3 $\times$ 
>2 $\times$ 
>3 $\times$ 
>2 $\times$ 
>>Total number of odd numbers is 10.
>Therefore, the chance that an odd number is selected is {{correctAnswer}}. |
correctAnswer | |
Answers
U2FsdGVkX18ZZeYQf3lFZg3gGI1nUO3/cVSHqdBSVsU3lT8M54Pa7h+tlyhid5oLwaJTYgWhk8iy3RDlZZRsVuBI1vtemysgnStOjY8abA2J42JtHiG1UFQt23/nkd+Ts/FN/LJ+xrQacpUh4v8meEZeqTXPMI5NrQq4iciKHWC810yT5P5IurV3RfaX6UBDKvx+Vxs+rZhpzjmMfGQT5zy7j4POCivVFvLpex9ks1MUehebXXNVqdnoNmF3m5/qQ8z83sUtT1TIEuN0iT3lOCrtJbEDCsk8GMp93hr5BuMZZK5mPMEE27Yxmy9tR5dlb23x2vvfQHWyZBcsM8Y934A//NpBLgl15dCGWar04S1drjd2LN0G8yNZAjrwJed8bpTyarHHaBIK8GSd/ZG85oD1iJDi4oXSg/QzTunxMfYL4vtKKIqhgVznOiieXnHor2O1Aq2ykn+3X/UtC0P7l15/fDaGXVPAUQl/ctPwG71sdHcet6Wr5YxucoYqwq4SeBCRmND0dBKi+bm+DjXWJW0CcZaFVuosGaMapiYXPwwJCci/cDUW0gG53vdPMnFVjD6d1CGvZqBrbxIyvNoeSWGw2zy4CPebenC3QGkR0+1n3Y+B5l5nuHe/QN61gDXSi72Dxhsl9P5wZa2fIC7pv8NkNNB/X9+MTKoVHkfvMisZLBCYLNInDPuDvCj6H1HvEwEIjZja9X5xETCS2zMiP3+InxxO38MZBXh1VWZMBmdcLzqmMaqgQIPe34Ez7nPFSxQv/uVPVyobyz7568RvX/WMQmDSWt8F1hhVzEEu9LS/8wBzBNADKerTPrbuOx1hvRtO48O5Mv8I6xDvWeFvul91RuS7Ymqh9S+nEzzZAHBHsweNHVb3pDPOvNJBTbqRuGO0kX3AiMELrBqhpB+eAwVDHZO/peDJp5/ZeQJmQcylGfmRSN6cMr+IpxG+yjTuk7gKnpI9348kNMFk+LtMojXsM5DSu4ZKSIDHO82PDy6U4BOxoSC5smdkAV0mqDRwuU6AxJeORGjhhycKc4jU8xIZhG9zWBI1NQI6icX0uhNudSYLKt/iAPivIqg6LQQhDq8iQ9Mrbq40+NuRtOVqd9AKO7k3Zq5Q/oChsQSEfF+XRqlCKyg1FFD1HP5Wewso2lPpl8KlmtYF2HBORjunWFFMbu+K0uPZC5B8AwSOnCl3640wfJXXYlD7WxGH3waw/9LhDxmvt8CchRGSqinXDsN/jPojsD08ZJRlE/J6gHRp/3Ub5Dk1MSxsjWrCBq0KN20IvcX1j/hPdeFUYKIPwjx7rKZGHjgKMacZ9l9PUcTRIdktQczkRkCNakKUTnRm9/cvnAvIoSFWJVQggZJHHphh9PdAWHn+v+ksPr+UlcEdrqdD89EOPMglXyTec8PrVdmo7AgqqACs9KwjtQwf06hLfr+rdTuiZ76qt6UhhIctPB1Lb0bvloezZM9iDaFc2v8xhr8LvsJuYgQ9IcnKE8N2x+83XWD1En6MNUcXQzEjIbjEUIq/u7S9YLwJYz3BFkjMPjPyepwBFby0/+P9oIIi5tQQSjrPEZ87NdAXL86j++Lt0Oz2VG+LHjHeFKSye+UIyh/99T+0dFSMvCuhltpn734VFEG3v7I0S9dE44TngBvISRBIWem9yNZZ7yK/S/KCSrP9QuGltHw+la1/wOeLBTzce2mQw47L7RTB/srvduRTHtbVHtQ7iFaBxUiLvxkT9sL2PrK8bwAdAtTsa1Q3ID6rh7yMHsgKng8TVKY0iKQx0Sjy5LEuqY2A+RAxEAvwLlIyKxP43ArngVBk1i/b/PfedAIzhjEKF7hsKHQD9cZFIr+zAyPzJJruStzXwNjSC2PSGySeQ9gQJcrPxAuHu9ZQV+vcZTkAQq1MsCeoVx82UW7MQTEscWHTajTNbyEP8XaSvWKCDz/qrVsyX+4mQLIqcUXT/x3Im384ropqMcdAiMo90/oi8BdMdPQEhSNHliMKbdgyU9H+Csf3KHUqKts3bTZR1U2CSUZkb30CWlVurUa4YrjHWugU7DmJ+LvYNJswXxPOdsZZE1t+L7DZy3bKBYwchFAXeEpXLDvIQ1E+IgepSddFRLZJBcVrkW+cmacayL986B386a1RQgl7WqqqtLWf06dCBpj4APGEVufyWaUNgD+ClhR3qRl3xMy8hN/Dv1lowwnn93mMQavsIPvCTuQAZI2Gf3mCypPgKro/95xM3mKTrYstQ8xgZm6Tgmy3UsiUf5pcW4EyY9UwB1xs1zpDLZlhCXuG2aH4VLRvgwQ+P3aB5nJT0PrAB6n43+Kuy19Dexj5MbgiIeUCok05ifPKSR52ZMLu8sCCAaYU620blEi17YcHsxuEj7vxT74Mo6c9FnpHSnd7izpqOqhlhdzA8zOXt2z1agZgahz7AYCBMLFEJFJ80mphGGe6CDxMRsOHS4Gw/Q5IGjgWMawYpxwkqSn4cFfr3L27ILexksNw8MRGon9BoO4fCwt/NeucR5g5Fp+BU3uJJuNbf33iTquHqV+zl/e6qPZyNMG0YvMDiylI3RbJ4VHHWVApF8pxLUZBroxFAeXqoGba91vJQwp7VcAV9ttov2lQHQ1JycXsoXEWx0NmzOaCa3xYo18ZGnTwdV+AZSoe/NTP3eyLLHHe1N57asfjAvs7ZCK0VAHlYrHl/nMmq/1iCHQOBsvRN28KvA87Pq7tzjwZLhlDipmmZmw0OUqJvkpNkqmGY5Uwei5aIfgEallnzqM2yD/PYWDhB+fActBj3MYjX70SHe05nTJh702T+fzC15tyMGqXk+sSL2ngfBriJ+z7MqZ3b769XsmTqHctxixtlkEAzBn3Bt3MzKJv3h9dt2L/uXI30Y6Th5rs1xGH/EWrSLFos/LLdXyi0k+nRAitDw5RiJtzbaVuQM0hpa71hWRNZM1qfudL40uRXmGfLYLaabptaL7NGMo83pscFZsYi9+F1tps4R+xoGZZ2JOh//UpKSCpgcccHXgXO425BVQg81Kgdgi1GuZ2xUkZaMwa2tGQ8Elz67+E+C6SdhYfUDDKlHK7XLKCgk4NL47ywNnSyxWqxCgEtZElnWqCpGdfMMBmMnnHHhF6Gkxfd86Qmi3Qs21Feb5I80jovImnAc28Ch7hpvhaUOBqEpW8P3xmd1D0wSz3UEmHtm3ZrlNo+uoowBHZdrhyQxp0w9RIHj4tItmtfYV/O4Rv0AVOT21H24Q+fBJm/tzh1G8VLYlt2zTnEV856jD8lPPJfu/Oh1zDu2H7TlUF+xIzcG+wh0p3mlAJ8vf66RKJCVgWfW65XL/h4f3WzfAQJNSQzEHHje01yQTEr55IrshyXGVUcTyt3kq3q/kGtBSGaz8Pa/wLPJ3MDL7qkZYqjw0wR2cbp2YAjKXG5n/DXA+zKlttCol7/JnjzmCg2tKLp8Y6ucPPzNFt/frlUABYWthFmm5nUTCAuAMFpT8rdgBhwB4OKQbKboBM3IzTzMyHmCydmgdIWMpyWLxq7d1pXoyWGrA/xX33O4tazhKz+WPnmfYh8YEQp7z2lQ+ra2I4wD4AVY0Ox4BrSBiUHBw7+toI9+lwyNYEbNit+wD/qe3ONcx6A+nHpd0shu6fTxIihnvsnAdUFAicgnh0owDNs5dpj5PbKz6tgdS0Gadb+saafvW7/j+UKyWjuvFN2z/r4gZlXRp+P4bPC0KngCY3fmv5b6AYX1fUvZPTrTZ2gnbaGi+s01+obyaDmLnoLczyfC3LYxUi5lKAuynNSCxLAU7jMt4joOZUHwdhJ9gSF5ZY34wxyzpwU1oZSB9IFOQs47/ZRldrqd28u/MTGBzL/LfowyS4Vpi24GjET56GRYgptS+2/fWmS2lEoOBtYKjrsifgiSXqWJtyhoP/ERg3+vWWbaTxU3At+UNu1L0+FsyVb//XXkMX5+yeY122U7TMxxF9axW/5JVPp0+gp9DxHBM7VtiPQuqf4sU0RagimleNgFhgq1PzjGBGyzu6bjR0LYBjaMefXrtxSZOlabfkR8T+xwpx9wdgnXddHGydXUCe3FLCQWvU7xtsbYAG8YMSJj7M3JnjQ5M0d/EGrVmkCTtWWge11hNBK0qMXQWzKXwNRFI8HuGr4OsbohlMPPSETJqu66WrgIrpI9/Ew/ovOSSO8RgdQ92tZjst93Ee4pTLPtqbg2nmnceDqRtC2gyXDgpMUf4ZC0vrsfyIxvZ0mYqvE+ICtXk+6NEyrFWh7mDj2itZQ0PdMdcn9xEvmdl3Fed7w9ny5mxcdacTjj6bCIkyNc4hY9A9TihgXcIk77jRnGNfqeAmyM40Hul8bUrKRa1ux7/xW6SMkrNJtwRLEs/Xc3UHmmWKAop0BX0MlECZPSlrP8r8lTrFxi+gM7loN3qlHzJPqcAcHYgzkZSfa4+WbTPULxrR3fss65tuKhLX9UMzRHkO+lDwGDMFCyV++pgf9WfArfqlUfICIGGzP9a58pyRttLSDgZy8cvWGb1DUog4cEy7Rjh2T+akSd0FJts6XjrPU8Z6tJJQ8hQPUTK/ayhjp/Pu5nCrICVuNkqvJl70XUWYnABFSejb7sHrnJMX0qP9Qwaqfr1woA95dttIHewdlMVPIsgmj7JOd4RzHv5p3zEdDL6BQmQWv/DYCDkQizr1VRruDAKpHxQXbsqmp1jQkjJZiiWm73dRPCYkdwzY+lm73zx79k0CiiKHaJ7f1Ke7qUCz8GtyoTGSZhZQEjl6pdapKBbgQgTw19C/b1hVImY157gyUcD3Fng0NlVXCuUXFVbpxFZIp0n+9EX7ftYKuaJGRPZ11yhZu9kmUmUFz+2imZe4p+Rxnl4T5XOpQWaHWiwWul3QwRKeM4p/rSuLQmLHH6bvZalBJ1vGySXlnnewOwZcO+a3VWoaWu9fBlCwlT9W6uCGNs2sWMEbdgoGWCD7GbEIyo8xrKtBFbAB7CQIm1gS7nOndWtxVUYXinD4LjDvcU6cH4ed5tOatlnJAyjX6cl/krCutF7N6id84rd0h8ORZPlcECwlRp7GKR52onjjRA1NXBuOwqw+TNok2ar1rr5lbHlBLTNJBQNWMGt6rAPfmBYlwZeV70vyn6nmYCnWBAGk6f8jl4CSqXkkUDDrRwvmrCH8IhtUN3U0Dyndvo0hEKm63pRfYuvhaeSFlXcuQI+ng25+PqYtYodiIDzNeGV0IAduWcdqbo7mguptsUrSL384EVnF0Hnm9L4el1vEp4XV5NMSimUs740KRsA6qim4XNdMJyohtKDXxfwXVmv715GpOpOVHx/bgzrfSSjy82fgtCAS3MGp9zNREw04opijt2jyPGu7Z529xst4MMTmkQjtPRABXHmZkWYEEPF+g5AZsF5pwujC5LBUJHDBc7y7vK1ygD+oeNBVEtRv7Xb0trzbf6uRTk4a7yHQ6DsP1q9gXEl8uwbj8MvgPXIw3SYL8XVTNsr4KWexGnJ4Gnok9l00jIx9VmANBWFjxMw/f5Myyj+dpO5cCHDQbUGvolanB73yAkpEDObHF57yK6Sq2mW2fxiP/y1Nc2cM+JQy5B/q9TlP9QBzLK1YHi5rS8ejpY4AmCTPVykKHzwxB4al008sJUxK7aTsURnsLMasnVoVTcCEQtfqRwwW1W5XWQm0JZgQUBXiplnEixHVSS7BjANsXfUNadFmXjhqDi06f8oZVg6LxZBznHDCcMtpP+COJaJClTBHcXWx4LI6N6cx5HDBf18+3CWLPgbx25vVaoXeIJimpFnd+1AxpwapAwkIm/c+C6scGZX35r/d1p4Sopcd/wbgTtyyfldVD3uUqxr0ZqdLRy1KHsb7Fbdbn6XTyW75oyjLfRkp68OvfHDwW05H86//WUjs1KuqHwAvJQr8G6AFqDsbQtZXAXPJq3O1Ue1kzPK+/8qRpeBCNzS7KrCo1h+un9lsTyJuy7QAX2XEBxod7p8UX2eiMpZwCzoV7Tzm2WJ3Bpd5piYdb0skAXIgQBpdtaaF2fG8mT9S4LXuz2W3lz+orZp75mxAPpldSUslJmCC/Hu7HZpidEEMt2gN7Bz/p8fjAGRXw/r9TMQ8/DjMQjyDAJGC+Eq4iPc68lndA72b1cSILv57knAzQVoNbfHOEyTcK9J+xENdV7Y6a/y5sWUdFZTGErADYWoiX5ZenCuvHLqDvNg60t+SWWyKJUBQisoq1iruIy6qNyp+mN0FlCcTU8NnGtzDJB5j3Si4MqPYoNlImK8iaECFVKv++vIZ5vjT58yz8sVopSbe/+0VswFf37qjvYac8M02/i/CuJ+7tEy268EKGuURDZlueCYHxDIB+Ui+DHhBC1572+s/TmG5vrDM3pAurRo3PuSazvFYKwwx8EBoTHkgjE8Zls8Oj+t/PdNrVGazac/Lq3PGeAy+VbUd2Bj2bn0uMobsTX5mi6bSdT1JCkKR14d+735LZPZuGLU/5grgX6sEzP/0tORrHWhjhp+Q3N3zwE81Vp8uePD+Hh1olE2o1406//h+AZW4pnYDrfrsM9hvNtfJeFQoK7RqYUdc37iLzmwaPCiNaJgo3BiOMNNCMMNk7AZSEGb0ltBTZeuS/NyikKmV736TtBOK36JqYUfHr9qrtfxXtVYXG7OHeatidUKLdvL6oBfgxw87sqTA7YVGoe1svghZDYdN8SM58fHEwuafutLEYa0hdUfMier9YaSudDhEu6TJw7V1dYR2h/Ktx4eaQshoezPBip13WQJaUU561AM1hk0FHc5kzu55YaTltuU3ESTDX9mh5BBk2+Ur4gfuFIsuHs7U99iZ+W/T15K4su3qVOU48m+Dcu00lQL7sVZSpHO+5u7zYC47lYcZLa92RWl0/jSsth1Dgfl5b8uU0ADOLT7HsJ1HRCEF346EHRFt20Ufhz2QMYbis9fL1e5AD9PprGO851M+sx4gsnoVhYJUkpJFNqy7DREdgAbwq8kySQjHSAQ4J89vY2T6Dd0nqseh9uoGDKTYc7Md03b3yZq4885ZZTlS+u+dDiWYFnGz8qqAS1Nk6p+8VoG44usqdU+cjkw2dgIW0dtRPEoErEsf9WYQPyflx/qoQ7tQlRaMGTac8uHCLncyQzi1w3eNAgYtXFiima6x/XaAoPrcncfR4rddqznaDvGJdvPGz8sGi53qEdbTQ278wCjN69+xpOP5qDuSWFLN8tR5WNG0XGBM0FYdcDB6YB8kB/Ij3QGSwfEOEpOd7MEF0kYkwUOhegBXiSuLpngaehT1Yx15F+GWic1s9Ral7HiElEFN3XeRalL54rFUpn0SloyxvAKyrJYbegEgvLKJvfiS+sg4nsYbP95V4CzeAEjU5SpFjV3d015Xudo1pYpqaz1af9qDcRjcu7dMkt8enbtWrXpGIPVAnYwZN2CMNpM+TteSHppdXAwr/bsrS/kqnXLXFBlS5N13KmzcbgHyzZ+wTxfh+QNsZ/jWcZQKxqpUBaGt5fljONU7xUV8TLUFiRAGpHl1E1KqatIJeS2Syws0Ech29l/27WNn+yJMwPqtnYcmDNFskYbc6whbH8icXEbKQ7FScElCOPytg+9QjTxc2/Yn0gbStxDwWi3NGVDZVJDD/fGHt7SUjD6Wwt2mHgCGGGtymaEqeBK6WqZzinE7G94OhZcEZy2SkpZWkkPXl8hAAgh2eEhR860S+P0Jfay106aG/WTN3ZppKZ/MnHpV2yuyrIlQzjcz2sTmMUWGmzOr+pBDfNDDr33r+hpIqsQy48cLr82Rj2yp/XdjebHZOVr+ECypGOef31zB64BuLhcxXiMLNOlVZkde+jmUezm9IBsjF5iYUdxqJmrSg+RDoFiex5vX4J+rURD8YgoRtrX7kJOqLm+xNAT2HdidEJPNuaw2vJxhyVZC8i63qkl0vChehKNmrmbL76qKLzBnAdmWaHComPZc7QS8E9CkHCC03Ff4yMuxJintd7wMVivV3hRbRkw84Tp5pLEA5t4t/AIOy2o0s8D4qBaWgSlBE2i9olnPTtMH7lx3d6JfoTpWO/bElRx3EixUuGedtRmISE1uJuSaxe49AEEBu/vHil6QYp2xkahde81PnsAtZ2nl2PJOx6Nl6ZsC9SjOIe5TGjRdTSO/2TiS0gmOd7iC+PTkAfbnJ7c7vSmzaX0yKg9/xg3L3CDSQwoJ/fvCpB13ZvTTrwgyE7CX8dxMMp3ayKE8F/ALsTVVXqCec9rLArYbHXHIiQ2iQD013ULI2sp3vwPr2gHU56Dsiwrr5ViBL/mrE2IdUIXC+7pZmdbfFZFzmll8koSRf+zhf2XTReu1GoDmhxqWLQegXSJHcnysCZVZ93xFytvTsy835H3KF0LfGNGReoln2Cw7E5G7JyNwhO/FpSI3x5wIrsmPXF8xP143p3Cpc+gIUy5PJhXF2fq4br6F/geAwdexHTbSZsgB1p2UxZirS9XQIxRJ5fkEbyuo8ahGntmI0A2TwyyAcUc5e0Y/71ZOBPiX3jMo7KfmIYaCUFK9wF+dbhZv34zJFlbrLI1OfbXhyLCqFZAuvur1EiTzezHzvwPezlY6AiI4UohrzE/HNawFkuU1SV04QCbNvx4NcdOGdvWY67kcP+gmlnocLDzMiDGh7M8we+eV44sxXEW2qfd95S7ATxiS0LNyOxj9IdpwyfsGx9OMp5bftgYtNqX6OYdG0g==
Variant 3
DifficultyLevel
365
Question
These identical numbered discs were in a bag.
Manni selected one disc.
What is the chance that the disc Manni selected is an odd number?
Worked Solution
Counting the discs of each type:
Even Numbers:
3 ×
4 × 
1 ×
2 × 
Total number of even numbers is 10.
Odd Numbers:
3 ×
2 × 
3 ×
2 × 
Total number of odd numbers is 10.
Therefore, the chance that an odd number is selected is even.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These identical numbered discs were in a bag.
Manni selected one disc.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-numbered-20.svg 220 indent2 vpad
What is the chance that the disc Manni selected is an odd number? |
workedSolution | Counting the discs of each type:
>Even Numbers:
>3 $\times$ 
>4 $\times$ 
>1 $\times$ 
>2 $\times$ 
>>Total number of even numbers is 10.
>Odd Numbers:
>3 $\times$ 
>2 $\times$ 
>3 $\times$ 
>2 $\times$ 
>>Total number of odd numbers is 10.
>Therefore, the chance that an odd number is selected is {{correctAnswer}}. |
correctAnswer | |
Answers
U2FsdGVkX1+pvBiwnKEm3iIMizPu3ciOb3hchSdb7ljbEBYh/PAOoWGt2+prXX6lDjGKMjthuUbL/SzDcrZQfOb6dlsi5Zw4t8ULg6HTbV34DbNLRRNFJKwkimb4A4TN4Z5vN1dNSxIqf17JrqjCUBOUz7TEv+7w391MXsrGjmaQYH7dvO+cHGNgQ5BgZj5HL8PcwtuD2I+CmAvVi/pHf1LEXqATccDUk7K+CdoXuWzSwgILvY82r5s0EZqCoeP59LypMoqgk9QvLdYTc/vQFOhk8529KM+GcGjwDZIskv9T8mzgGfrDJAqNLuGyVC8fQ4dP9atmGJuJv5/s4JvJPesu+kUHyuAHcs7+pwVtbfnI5FbgbM/CbrZrzKzXjeHqd5uqUK24InIg1os/kcXxAUQhm/WInkjVNIUtljRUNl9iRtbt/B05x8mQdh2xhtg1m1fathq2nKwLiBZFTWSCNCaZcOTwTURPLw7/ljfgmpolgPLRdHsNS1Rm/td3Hn5Drv5xzhCM2VMBDfckJEqSFB3TaUY9iOOT5NeXeq35btFOpztF+CYhqdx0jG+ilX1AGS17Vr71p+XgO4akfIUMh5Sy+7v+kUE23ryfgZAi4tex1QN4Yc0tPqqm5Iq35S9MU0RMbDOSNUDkVMohGcRIxGJjVjQyYzusdn0DLuLyChP7YNnwM5Pa2/NCW3+erY6rZ9wmP6tUL7YC5d6+3ss09+flc7p0pJQAods16HlWc5U7A1RT7nyA8lWVsXilixCVWfAfniCwpYp8TGZ6A3xK4EXcGcXzBvp0/jRRRD5R54fJspRyHH7CboqpCIxtF+BvOtZBhMk7jYft7HwkthlsnLjo90JrVofnxkMVO7M93o/vXq/bzVYmFfKc7QX/OELojcYVigbVQsHoNiC+c2RA8pPgfyPh3USXDu2VBuS5fE7gWr/hjXYSvfzesL6Kkv91TICzmbxxKK/I7beyjfVDjsilg1wFZYKGvAPBw3+xKNlnXfjsBMoz8zDvWpQ2LRpvH4o+JJJEYb7unj/arcgf1ooZtUZb2JsaEp82cWGR/zaYjpQWr27sKCQr8u7sA6Y+eWMtmbvr1SwWrlu1M/HNwQoh01Qy7om4qdYT/V20Y+U7bmCKtYyYOxMacc94SzuwO2rpzuy9MFeGyuz6657WVKjlPTzkdC2fqkmsD0Ee+wa8l9HXHY1Y5meCYZI0OgpE76Iqi0j0Z4KampfyiBTI2nlRN7+q19l9p1NmL98PLMxlqqY4fJOUu1cDeuh6pBMdYL/FwgiGpKSkHm55ui0vLQYm+pTp11Hp2+ZoaNuvIl9/D4AKoqyy8YpLUaK+lGTDggQD8yZc3joVtf+pTlSdh6h7I779y1mHuyY6H6GdhhyRYTCPOEl5GuYlVuYzlEPOLj+Uy2dJgeFAGeYr3kW9MEDoqAsGKtqTK/F6VfDdzxRQuirfF7NUuQc6FxLV26vjlTV7NvsyISsWPHcdrdix6chSik8jVZ82kxOtedAdJ7YjnbeeAQqPh1micL0gVK533Up+fmQFb5FGz28dkM7R5w2LoJxZSRypdkPRQaIL4o4B+KFUY4/W/PNW7ZbQvzoRLW00gIcUOb9mSlykAM/XdzmEg0/Wwql+vHyKrsT6Mg8ufGbZKl2AhVwRgyILMexNmCtC1TH7yBglud5irQ+cwKTrI7T4MDZF3Qpgm255Qf0sslOO0ZTw0wQGHLfJ0YWilVvbyj+SKRT2SXH9vv7RE29EDHLxgv9iIObjuNSt66xL9aPYDQgvvCjhGS6sbfHbqyCyzpir9TniE0y9O2d5cEjnvMIgGIhD/HYYINn1kGHaTCPaxceYrg3e2zwZEU9KI6UtQyKCkKsV0QKHUu6FX5EBHh7QodjDIUF+Rwn7CB72lHgcO/hqcdyiBq6n2vM1kXpRXXjZkpUNYjTn+Xfpttq0eJrS+aom34udHiYt+A9UnuITxUZBr1OusNXLk4giVH6a4j1AsPzbYSt+GIE9ZobvcKpdo2grJGsTDnlZ8ZG6qkK3ICESy4ZSx80EkMZAYsHV7h92MpXAHWrOg/r3a/zuqU8RlT55JYD0cHwRzE8Q0iltJLy/MvNGroftAFAUMM2LHrZl0X0ZkDewadSg4+OfiKhsf8jzX8awj5oTjU5NJyjqB3HBAYF3OdqIb4GXlWZz4zxD3xkQKX0IQSGHIPjkRWRvasxsOxODokD0ymLorznXrIDxvlVLMEvMbmTna3K66BPrQGe89VjPc/sQwsaak//0F6mqAhe6kM0pSey5Zz6tt/Ny8ItJwHbdX2MeN5Y9TwDHgDactaggPF0kJVSxh1PfhrNw60L5/+kxYJQvKMR73XhmVVNoKIJy3kxUpN6s02bI+lHTETXFrvmiTtWik/M39ynu13fKabwwhNyVOHBCiIVBOezEuNVh9DBih9tZWKfWG+347orqlugoewuUvcTRsqMKgsjezn7Er2c6RhcNp2EeyMkinaTuhBYBFaZGCvocRQ9CY1RDqkSIi8bkiaVHAFDnBwJTrcslAaUJ6t4Vw70Ij64e2MsyP3f+JNV6OUK3PiwX5OHwYQpFUXsK1l+qGmiSmAmGCwB3IlwSuOAIHTOHuCgak8B35vIFyhuWrxi8bVaYuBI5ZKvE6pUJbLzKgVLNIL2TVSmgVC77bdD5CyjVe1frrebjNWxDny7ICjcR2pQORL/UWasr4ajJ+DoCYo7SbcRPUfn50f0RkXmCvew32fjTguUW2tSiQOt8VvZJ4hmO2pyKbbt6UOryvyoG+6SMXaypbIo8G1DmYuX+PWDack5WyJtv7/VzM6Fs9U6eUSqQ5kExfw/z8n/LM+3JrAq3s9sfStYQD3LJtcXGN+AAK6c7Q2ZRVescGoOjfZVmknEqn+bcxLBWTfZ+P4C3Y/vxm1WcAT6dlRW4jX2LFBQGz+F1AwjhgibS3NFbbjPtWIDVMiaidVjt5A==
Variant 4
DifficultyLevel
367
Question
These identical numbered discs were in a bag.
Gay selected one disc.
What is the chance that the disc Gay selected had a 7 on it?
Worked Solution
The discs have the following numbers:
Therefore, the chance that a disc with a 7 on it is selected is impossible.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These identical numbered discs were in a bag.
Gay selected one disc.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-numbered-20.svg 220 indent2 vpad
What is the chance that the disc Gay selected had a 7 on it? |
workedSolution | The discs have the following numbers:
>> 






>There are no discs with a 7 on them
Therefore, the chance that a disc with a 7 on it is selected is {{correctAnswer}}. |
correctAnswer | |
Answers
U2FsdGVkX1/vIB82jIGijxdAGbVpfcrQNL1akSf/y90ex4+KQjr9RGkVLPTDtmDtN6fGECPZSD6zyqs52sLtcQx9rzv6wzsKweQtLti1bdJBloi9yLaAVEMl3LLowj2CFUwH0iDuPzpRWc4MKxL/8gl9uyRtSjL3/w8v0QU/ouYtKss8aHw/X68ehjm1hvYnoMiMdekyZFlOc/CT7yyNV4b1ueXqaMPuUYX3OE9Spu7mH8c+FORZeWW6stsQ5GXiBKhZScKPZejkbvzAj4yTgm/JUHcxyWpg9TPmBJSnra2NQwoQFTmc0CtWDRHhIkn8vvGvnpJDBQqxr9/tBimb8Pz9pP6siNkGpiYX/ROeFzPalwQeqlc/RjFe/2fPIdm8Q24nK0Wket09hQHj4fuFUCsnJB+wFLbCrRCxYFRu8wxZMA/AncMea9iuXv4UG7+mAM4xw/12oN27nieAoJG46EtRuv5Mfogt3/nlDUpdTX7bOPeNP3jeae+v0a+c21pP5keE8tcC0rrsh+2mTwGvBj3Zye31g7wmNesuaQh+J6CHqZ8q0dKq1e+F0UHbMzCaGtOwum4cu7uamo+WNLnaWHOnW1DEG3VG6vyR0QdIGaVfd9FCfUdMFvVxcLDJBptzdlJJxJAQDYhv5OBqsp8rBbf7KEN0Ay7f9RpMNKxj8p+7mXXuGrMGAYhofyD+Ly03St1uzooYVfVzKehzm6IXHVvDjE3LNT/EFv4utFU/qrYu7YAJ0v2rHdTS1aaIrfbUUiHTRUFsCEfcR+en9BqPv3eTOWlhok+qj2QuL8KzcDBeDrIjS+cTTN4o72QkKd5vxazY9vvlZdQhIY+HI3DOte2Df79tsb5BzJHPh6Q2rmC2nb/7q/eyYp7tZwTcROO5jrHjocGhCr4oVAMqiKKc/L8rnrNEQD7ASx40ykCR2i5Q1IUyMiPvSJ9Q6wI9iPYB1K8r1gfEv0+0cNxZf/eOgVkCtklPcb61zAS2JgTm2lEOZJVuccuQzLXczESpj7/8F0C1aH9VJrvhDZoJRtRIkqhwWDJMoc2hPf3lFuvzlwqpU7Z1E5zJdinonv2tSNifzNxsBhtElB+X8hhXQFHNCOxx1dcYuHLQ1bKX/r7lXwShgbyGy5quUMUIvVUgYTdG30mzSgBQS1NHHmxmp8aXgs0uTcfi82YeKPHqYYEIkMimFizw5su7G6NUE3TkJXByf1Sj8qrRL0UXd6lpHgpVSAbDRi32jOP7LTiwDvGZbThsItL9gWv0/QQMcMPmmhi6jn9YXEjYylqsF6rMpaIL1WL8hawKHh9MEvoGZ+sZ//pvpfblnMlcM68U5gYzzD4ObHOQ0lNdBhj42+QvqvMHZ8i4jva4lpXN2JSkbnUJO/NJbXozIMBHehXPSsnZoQ1OjsQG/6Mn62msyS3z2GL7DGyTC6TTgJ2Mzi9BpVAocdArZR6r98/D6PM+AIJt1IyR22+VT5dAqAi64m7NpLqUg0roSpz/alMZVNmf5Y7ITPcnwOwAUvR2mFXp7Wi60uLnF7doIuYq2/q2Yfit94tFqhce3phUkOdt3vNuxl9MAdxmc7+VYyDLTFX4QsE91oIg+Z0wbMAXGoOAW5Ixu0f6xuBkIhG0JvbpiexoApygmFEeIMQQpi4TrZRg79/7MnPeOgERZor50TcM+V+a9CKhRMsF933n62f29wOQDQaat3VAXQrmXgn/BJQdM3ruPPDPO4IVFBUcGU64KeJZdBWXbA3pbvK727pEldlrcokEwKewN0vSJFAmFnyUwwvuEDfLb5TALM0syDJizBkRSY1rjTOPXG8c2PmCx9QKgaXAJ8J0pe5c6/Nes+FxoQk1DcWdZz5RYelE/tLwVfZ53xLbuw5lRrvfjKhZVmz3sLv6Vhm2yTm4HQ4t6ePjnFmXObhrHMNz/9PYPOlC0lR9UHbZPIZdUEeSn4L5jXgQomtRcx4iacpJUpZhov04gYo7K5iYNSKoL+vVfpC93zWvSOiaX4eDYjMCfV5wyItMGA8giu/l6N9i4wJPYFA0RA7CkInN6e8JslHkjW1v4srVw1pf8eD/KUxU+c9NLvx9TlG+rmtprKpxeq4rLbABIxMoY67W+80M3pKhksGxwGvImBGksK/NqIqRM52vgUfNWS8/h9ghZmE8GdQk6f5PPaNiDSPHjmS8hp/+kSPYLyAmPx8MCA4y+JlwnfvaUTsWuQdqVyL45WSmcUeUw1Z05pOO8nfCxIdKkVdzzd6wnb7vxEwI8+YSxw1lkV5Xc1X/66RTDe+QBYrPgwaHhzzm6V3UMJkxiZ3LYw/UW18I1AGu/nE2ySk5myUikuU9IWWzLSdeZauNMViMkdtTurBx2lY8sKDe8yL++iCQJZlyIqsV5WGTCaI0BD6SDbLrgm0v3byYRGRx9oc+aBUD3aVDuuU7crNf0hN39mbPm9pKz1RBUSbQFwD9ywEubBx01Nl3Tmlikb1BwvahDcd/zmG3lQKIHqYZnbAOo/HyFAK4jaoPIxRKVU9G6TFI/KVPXdJrAM4Pp/K+Uhr4nDsbdqW9U5Bh6omfbi/FixYLLfJ3eF+zQlJ62+Bhsao08lg7wDCUgZB5/pQdakp8Dw1sNmlyPvrN8d+UtNsFcuXmpVEg8tbCu+ps1eJ3tX2YwO3XMhKCEmYhSuGrtIO1m9YWRLMaWaZgMKT6BvjPYrLOSsQ39usYpR+upBcr+NYNJ0RDNKQVakwLs9K3slgWJPezqgsYNT1G9cglp4f/McrwJidcaNzocxCBk2vIsHq6R6NL6s++ISdLH2rlVYQJKEeKgjG4oap9X/rT+RU6nBe2hUIV5b0fLCuhjosBgD808mB8xKsj7zvdB4bzMijRRPR/vOYubaB/2JJ2
Variant 5
DifficultyLevel
369
Question
These identical numbered discs were in a bag.
Julio selected one disc.
What is the chance that the disc Julio selected is a number less than 10?
Worked Solution
All the discs have numbers less than ten.
Therefore, the chance of a number being selected that is less than 10 is certain.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These identical numbered discs were in a bag.
Julio selected one disc.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/discs-numbered-20.svg 220 indent2 vpad
What is the chance that the disc Julio selected is a number less than 10? |
workedSolution | All the discs have numbers less than ten.
>> 






Therefore, the chance of a number being selected that is less than 10 is {{{correctAnswer}}}. |
correctAnswer | |
Answers