30240
Question
{{name1}} has {{objects1}}.
He gives {{frac}} of them to his {{name2}}.
How many {{objects2}} does {{who}}
Worked Solution
U2FsdGVkX1/xAcWUhicWeYkD3tflGDnM9Hsx3mNXv+sNa6H3nViyqLo4LaO1mA9RdSePbRlXfSqvqyjezZU1BZw44bfoiSf4qaywU34x0VVX/uvyqHP9653GRaWxMOMqQrM71ccGvgAa98qqRM9VRlWTNaViI7B52AlSHqaZfPrwfCTfDYZzFGFCrvKAogZ25mQ3q5CvhBMmZED+xMn1i7Ol28znEFQhciTVg2hiTq5ZfwxtsFJhyNIEhzcdXrRKKQAdrzoKtLmAit3tfqoaxapxezgjHh4s7UiN/aQByZlMIu2izmwW6/wcOFlpZTAlT+hXGI5ArV+oTUM3c+zMBPqVNMmrU2Ll0cHfMCgLcuePbc9X7g2jBHX69DIVAxSw4C3m2zNjAsgHRPUbq61fBJJuzPUXCiHKNnRnPtwY2ViR4SyAgZ1o5iRllJJv0WV1N/fQtC2cPm2RqqmP+faPIw9SSyY4U2tj/pKFOrl7A6VQNY28T/FKhEDtANg+vh4tsKdUOeskw/gYJ+cwoctNh2vRRFT5r8+llLeiCgaFE/566VxREpfKLD+OOThfGNX5PvHclV/+yqkeIejP9OTH841S3ruGQo4vz9Vnt7e8plqSWTIbdI8ZP3Cn/JxmIOdBadXl6tOp0mWzdwekfePZdorvZ86MCBXcymXA6h01C5q+OTnDatDuKfWif8Gv0nizI8kvYNShV8yz8Bk972bS0RJ4T4xE2oKgdUMq5mIUx1NQQ88UsXb/x30muXwGD/HjdzmkmbbMxQqwNUD8T4AE3IVV4Qt9MerRDbZe2RCBVmannHZltixlZwdr28syuceErU4mNDUcDP77UHp/O9TiHon0KqDtXENTgj5tqLiZLRtntb+Jttla97Zix6zzKHj/Jay41i3u7zem+8hN7kqdlkCLMLUOxnsOUAdVr6BuwukbYhijxK8Zj1c9VKu2B8VGahqdysNRJnR/MHH+63CL7Tucy/KPLsXg6ODeJzCjP0jYXk9DTfMUGpGTimu542ywFa0noIcx+GpXONfmFA0/ZjwYB0hv0/HSt9DNxk5tRsi8BI17SG2sqm3g1JJS2yMG93kr+gBPMEkBnUgid38kaDsVVcRai2laADHPDe9zQJtrnO9GFPdUu33EiYEY/wTzo8m1bzwNhn13z/FbK0/nYaAq4jL5+kWG4Haw5mJpPoZhUgANLqydZZwSEGi0rvVchK/IlbSTMC4EjigJBvS+ObrMh3o0ujk8iTEaCqCot2RPUn8/RqJsoyM5Wu+8MjUDaw0+6F7kr7vKSDG3+3fAiFA1vOg1jOMlQ2NNuAKFNS7pxh5M9qRyWMdtC30xSXl2ZiijfEW4m/j3ui70e/znIn8MskFncsxf8YSmyC5pa+aBJWSMyF3tINIBOmloEDnCHtkZMuKWlMvZq7RP1XQlbGcPT5Sv5OGz2wQtYuX8zSHjnCpHGw8l29w9Sd2P9DMynx6dvjhW5st7nL2thxH0QpHyfdQyVQbj+op+g8r8tT0qTeyIcuq0gZkqn1DIfo47ORFT84upM/VEetWdxtrHo6VDMzm37zUt7yt8NSZ5Yk810i7rTUqufTk0MmheN+FUstAGpN0AaRDIz8UxdmSD/GssaskPC542kJp09eA137BYzto9vTfaGRAcT5GkKI+pz9tpC3KVQYgOIMWLw8whnJPxSrcSpX//gIaqK8kS7x9mkBgOLWcZ+8e1t6ZVdeyWIUzcE8qTdSfNOzPbdYuy6Neg2hRPHm1KvpIlwBK0wzZ9q/p4YHIbB5DZmZrj2wMFKZHt1Sa5mRMN3Q3dJ5bz3xq4gfgy7/20OTLXBniAE7tldVz9D4XYPrDSOz+Cipv1HrH34t+qrQr1zvUnKSWQIQ9ne66suBq1Ij7Cw/NVLvt8ZZ6bBNvoVQJopWQygW03G37YzMnGkjTqYk1ian+fbpDv5e5mawpeROft8iDuMZnJ3FkaSrI574U00v9flklOMNj8rMhr7guJJ+39KWp3/MBJNXx5vCeknVxygq6q+iaFAKvirrAcaGyLxrVSvo4lKX0kOvTUTODi1epJFXwjhHpj2cBIeBhPQYguBK3wg9+UfoXTwOks6Wpa73hn7b/iv9OO7eEsgiR25idY1kI1y6tL7jHri/Ue5l6Y+C5dFK6Ge5FloioUqOa3Ggc9WS+/IhV3aQC/eRZYqM1gdwFWV4u1dEKVFJXgyAOFJ3MB/un6imyTyiD8F45MVQ8fprjEYuFSK34EhdN0zMpvEauTh5bcgSHgWiTFXGP2eJRJgFyCNelsIe/jnXkCM86WZdQhFSvOSMb/mfZWOsUubb9lKUPQ4FxJDfyu9yomBxQci8wIKaZVExS5cS6ehVp/hVIEVstFITD7peOJDKlzMi/MU2luka3tqpPXMsFZjfhQYZNbvxof2+YsraP5sXo7ceHXXd43gf11hEC4eBYxrBofiQViuziWl0JTI2eWrUsmzmXZ1doqdOexDNbC4s6Awmh+4NdH1Z97vOkdUJNuJl7nL8Dh6GjS8ZQkHTXM1kyQ605j6bijZpBTpy2wn0J6Ew4FVuni9jm+GqlCwguE0kRf0/zRYDoREQuaEX0A7UNmDiKzixUqmufwWfK+DQGCeK9+qzr5H27tECrrcqTGQ6m44MkidbVwWDQSqftsCW3A8Z3+/7+q1+Olf0/uPU6bjiImlOQ95732Yzf2gj0dgM2VglqiCKxYdCcSn5UfvZJmntZXPb7Q4jTCsiOTmK7F7Qz4Hc/f0/GBjB++rTSC8aKoKrbGHMIT3sYAycUiUqf5H+hwLNvGyk1wXxH/pNFW9QmN41tDrJ3qkppnXQO0A4DTdQd70EEUsoMUBODVm5QVZbALGNbLkKUd5i3E36sksOD/4wc7YxKzabtoslIM/lCA/V6XzFCazIjwzNchr5ISUJsap2BsQDRdQzquqFOEvu8lJLzeRh/BTPalt18s2/8BR8NDJz3wYrHb+ddjiaAbR3WeCegvFyDSicZLWCg4sJbTMS0I1l2CTZPOgz/48SRObFEb4XA1sOYYVxismxOeAE9XiX2GgCDkwC1bEs1KVxI/s5eI3NzJEc0yM1xQkI7DaE/wrg7VhyghNt86Dsrk7vGq3FUbUIxX/v5efzumT9sJsheM66WhQGFFCFI2woWHakQRF4It5q0KpEwS9axffaT/x+eo4/hn/ksge3pglqEIySYGG4vEAZC3il4bUhd6DLJ+Ci0vlrViHuF5MZtCuHFNIhbLpelVhaYyWynfSPxVWda3mWRp+yznUUzh+EthwOaa/A8S66wVkHPz4vJo23byq367SvRQxCs0cXNXGffr/nh60keljXtiIn7N6mz1G9HBdTtw/bW4idunYY8r+hCx2CtwwxK1XS8kkGmwZgQx7MR8h9siSe9SIAtSQR6oNPWxryoowH/YcQw7sef3MLpXZiU1hce3bd2do41cTaOfiTaauYVIIofoIwTgOys9ON1dsvPeXM+H5PG4IpPpw/YD1yh5nBx5XXACNhELsyk/1P+aRwa7hAvnw1z1paFOcn8PwD84IPltCpPCLeZYVsW5KdkJFUd6o2m/DyjbHzTzF9/I8OvSV9Y8Lb4LpA9g8pM5ko+5E5mSPbMA6jYC/pOVyXl+gGS8m9xRLFj+FQfW95OF1Ec4GC2rdSz2ltWLOzMGOPPOhmCRybSLJTgRmWllUwvdoObhxdzCzZZLavfq135Fp4+NiOlsIb6bB3DV0Uasjq6G1sNlsin1tD4Tzfy6Y0GjTCGFzejELlKU+hO41E6csviGxoYG1VL8UqZ0UqW9lB6ii1NCoWFe+ORhPcl7x3PKgo+JxejmTpboeeONi7qXQ+ZZH2MXPuRjXc0n06JiKSdBBXUraEvUAWrLD4V4rQlH6T0OnIp3wtWjhPBSXmG8du4pO5YlGnZRJPQQAZDpJRKzulPxSTblHWt7W2175Kem3YgKYLCn1meD5yG5/ygevi87oJM4IAqfklco8OEwLOI0wa7uYA93cvMocw9CT2sNw+b9bYuD9E/QYz8FNwlqSQC1VETlmOCpMfKX7pBS/YbPsZwCptEkuMXG+3IuaRmpjFpjupgPIuSMggvstkF3Fxli5HU4LD0Wx/HXnPYTlDLViEcfAR1MqYAWjJaHMBD59fLByXePaIxdeKMuUAq+VknrvuaW+l422KvqeNLU9sm+8laNHBTBy/FrR6G6283LhOjiWqDbgPb1tif1lVumUKuPnytvDPj1Lv6MeaAqBvgxL0zPQ2p0tpPx24Ljf2Bhfmq9Js5FBrIx3kJmUYYkKdvygIGfF8Q4hifuBKkNHkzXDpmM31ZH26xDKkak1syhfeYmw1s8zG6J92mkWVYjWLwG94DI/X8cWgu4bO2qiXNdEJ1FwxYzHbfnUjBDrJIs3bWfmh9ahGFoP8lHZs5JAvstYnyAd++vLF+59+DjpZffHN2cAFd12R4CVjLwlpGqai6eMsc8x+dOVVp9tHPN2ewJz34uxohCw7aBVHtXUDqqi6BKiEu+xIKoGDFc82vDz4zGQltpmU8PaFC3Pl5djCjWE3swAvRnO/ZsOaklCyzcPGIJhWzYMOfJbMIcoaDs4THpHGSIS202kqxVsN3Cm48cJPu/6oonHPjNbJcyRlixZLioDhmvNiNdU++bmqph8EgV78WbASsUep88kRyYJ2498Yx99c3jCEHUWO3kNoDSXMMONu4DBb7qi0zdkx1/BKQ183/Wl7nXUw/+yd/qgCAq3RjYjO6dMkl5/mbz/+I2ylgYwze1qBTQEVafLN1BSgXpXMn7ze6qJYIb/zRdL4wHGvSWvE9saTBH4jKFsN8BDuKTzh4/40FcUMpGzpTwDnCKRGOHrQ4L4yksEaGazmsngxNEvy4TohlUZxVsc1ySi104QrhRCVDe+A95S2iv5F2mmrb2pJudRURuXXBC7G99+VQzieuYTMW31xSOKXJNGY4gXDyL0DKVXJ22QryefPcW16RX/ytErw398DqGB7M5Vj+D5dPDFiiXKHfrvJrgwZiYGPh938SAMRErYPrHfpZntFXUFgBWta2Pe5Eqy9zyOdI6pQjp0TE5cAGOmGywHFRME6f6aAZ2t1hxhC90B6Ag83k5pLrw255Ge4spd6J2QI7E90GwZ4b4lujicA0dsaLYl1jTgb5lLfaUitpm0S+LzJhQwAxjd1FGLX3waGWFbu1RoU8IvivRSH6VqfZI4M2RCL/7Q7X5lY03JoTTFnUPK4E0QMI1fFY7U+K5/AZrZ8f51DaFqXT0lUImAF+Nrjr3XmvtdmrGu/X/p/gq+P9oGzzBvuea/NgbIncsigeDHWf6FUfR89s+ZGIl676RL4V+lhZHgHUVFOuK3PLDnG6xYv7wpYOnueRrk/t1oeAdnpoNeXUoOuNIHLqH30/XQHg+yW3L/Lmj0CUC1ghZ8rmMu3EEChh4LmZ/YlQisuf8Gxb1uRWEgYomIonmCGYvcipM/GSEhIR1YeOrJDXuWYhI1KJfOnmGCZorKBR8wbxOAEq+XHPwwLdwyaadH2gO37ZtmMU+7c83SAvv7aeNRWmNrkwS84VO+zFITVELCUo8AainjnT3ydWNLrcCLGYTH9ql/4q/i1uUk4chqf5H/szWV+/XlY84w/y4KjRpblErGhNjd+xNCwgfY859lcDviTHN5S7VZ7jNHksghldMAWafKlJumhtXTIzP5Q/9MST3261WsOoYwkqYn/kyJJwXJML5Yeq1I4AuH40MGkz3X4SxLREdVhWuYzeQkqumGYxjGN8JpWnUPAifjvdWygpC7WJGz28ayGh8ZHs5iddw6pf1FcP2ddVnEcxdP/f9B7eY8fTZluWFPaNQ5dtXgWN6GEM8ovo49OtZPXknyw7FhF55xzdy1IyfxN6gXYTZya4gMyR7jtoDYQHyWfUSXa3j7/9aUH+JP1qss+e/Xcy+63in/I4188xnCfoL2/b35Y3YZsQQwHIyP4vB8L/H3Nly0yuRFYfdQT3jzO1gLJVfsDtbqrb9Uux1MAILAYVQ25+uY8mE1mKR2if/A8wTl1dYiKWTF+v7MbUYnqKUYm4fqkgLkP6Ca79bcuP/3qPD3XmjREO020sGGDCW7wx2JkVJoupZnOxzY8SfoqLtzM4rZJ+elbAiShQRNoc5F/qQB6baR2zEe8aSN+sMKU0Pd9f+ugzVSzqYb0kHGcaarAkUFKZej2+1AbrK2wrmamQmt9KujgUYgAE0lqLZC05JfGHnADaUyD9PlKWnkzfeoUxyZiZvZchnL2voijvr6nDa2a1ai0qmXHZ/QsvAwgk/cZ+WzXPEiP6acqAME2MS1yrhM2UH8Fji0hnH2mm6FSloGNoty6ItSe7OlDko1+p+b+Qzj82icDzk75/vQXcJtOafYgkZYkKbFV1zBheENpmaPoFTAE7mgtMxfQgQY0+6X3YQU6Gt7cwoJHjNP/EA4I/cQFslJ2/h/aRuXAE9ufGMLsWJpXx6vLY1th0sW07ippQngPwmOsAMHfVx+YJGwR2uRyJ36GBO7B72j5ootlozU8h7JhVNeWcr5HyZ4l6mkxepUwDiitg7bk94Rg2wpug2VrdQwRE2vyUcKsLcwLYdEcovVvfzhMZkyREl3iqlPcNPFZl6L9q7h08/GxRP/cS1+wH7y/34wIjPdvu6vNC6Apr00eTJKJhh/D++XKH1RhnouJaTkjIZp39VlrYGR2hrq9i82JM63he8f0hXI1m9tAmwxNyaq+QsdMBTz1izN6NojEzG4KphA9BgP+CiMA28ykGlIyqzwe4B5ODqgQuphZmvJQnAGL9EWCZh264bWX4V+wgKU6rRXvKkL4FkOsl2di5wxsSF5IxD1dVFWw9eeA75/hfhM7HKEOJylg+oHtL6fQ9qkcuJm4P5XY0c/ktBdi3ghB2o7Vjy5fmoyythFf2Godn2m9jm65JVDIbIDk9OqQDj2txqW4zVoKQvVDtqD37Fm84Cw6inmzZXJy2NcEfJLNyGrq+xHaekbuWgRBwPS3OB6bQ9bFLwyaHYku7o5hC/cIxfbLhVAIb75CJhlozeNywMybqs4L+hIlAxXacP0bznIBenD1ffEa2x82CWBmRk9aAQDOwW5KnNrDmjxO5zLhQ3qP7n4a1apnNT8EkThh5T+z1Mo8ugi1Hu2QHE84VkeXInqT5kiZggGn7xRJYcWsK8GZQY0cfjOR7450shet2GFtRjwTpsTqHFwnUouudou253tgUq9QYox2s/vlsv138PKBTHNFWPKCO8lG+Oo284Lymn/u1zYrdjGf/JJhXrNZcuJ8DS1clI/yZ3SJOP8immRD64qgf4AnHk2VUgSgNpoFKDf/CvqJZ8ShiLESpD7KMHOViT/J3EAHdVsBwaZBqaMwXXEyCjcyaz0rnYX3o/phrCigCHMh+jZvml51rEHvkzTMKiLiWJ4KeWAk5O2qp6gHpsa72V1/kmVxQjKgCrdAEYuPE6Nyzc7ie6GT1J2yiTI77iEmTeVlzDt3bzjgporU5TS8rShbjoCfY6S4SJkg3UTivgErjh4r0tUt8k3CeL0JswBUsUzDpZ8logj/e+tZ/IzBmtcFIiAJS6jtiz6Gw0O3vBBxYVx17lgu2VBqzpOyvbV5QsMlT116OpfWlH7y4zQeP3wDFIu8BvaYz+tGdV+C0mmeOcSriPzAM9TDf1f8gmgZEKj4ijPmmVXCONEUxSqHRnWQCuBFPr53ofB7Nx/FVO6qdb+casnhg6N3ewb74RL5XXTP5yhoFP4aeTANg9RUwgonAtevsxemWz0+sFH8oNbP9Yw2kNEkwHwihd91aJSzPK
Variant 0
DifficultyLevel
462
Question
Peter has 16 marbles.
He gives 41 of them to his friend Roger.
How many marbles does Peter have left?
Worked Solution
41×16=4
|
|
∴Marbles left |
= 16 − 4 |
|
= 12 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
objects1 | |
frac | |
name2 | |
objects2 | |
who | |
working | $\dfrac{1}{4} \times 16 = 4$
|||
|-:|-|
|$\therefore \text{Marbles left}$|= 16 $-$ 4|
||= 12|
|
correctAnswer | |
Answers
U2FsdGVkX1/v8A68JExQOEtA1pGiBn9o8Tj+JUHcftm0GNaDOJoSAmwZTUR6Cc8jl/hj/a0Egdz8LJx4Z1B0tnEKEcjH/c8wKoW8TgqqPB787hBaDp1dEJm1KYsBvPaDsjpLpbmeEnKHgylixf2nZap7vrLdZahU/q2VXmfTMRSUlYyfNhFY9ez5spbsFoXEj63oJRnT3z2PkwTKeN9cJu2tXIj9QGC5N58jXlq0MGX6tkRiTQy34/fcaVgUDV8WgMQFwLks/n4NdtNfRAbMfB4Lw3xQ+DqeTFU6mWbOZjsgmi2xdLr41yUBHc+RrkA6ewXZwfG8dWZ2zVhtMc2hu2gL/J+QSTdN+Y3RBzi4pmOW/7rShMFhyb8OBxymxDbLIB0EQR+KgknzrxU+P05YYnB1eR5cME3hzDjzOze8H9YitdjPCuo+2p4AKPvOgXEmVYCXql6MHIOuw1Ep80iHiS7duQLhICx3//jy59OkgfIYfgnDNVZYQRvceEHhQCYaiTFQqwUYXWX+dbXbxbscgr/NIvAT8rAM3gpmEswvw2whogSMt0PzW0hI5qPdXxhlz2djkeWcjYDdc/fbDjcKVUZA3eKJAQnBocRXKx//X5C1McWEyAlj2MOCUX6mHvAbunXKhGU9U8A/2Q2TJ+6O7/h6Uv0VwVU9XrnFouOw0uqzSRcRxr+Ks6XKl1h8rZR6PvtTt+qS7b8C2u1rICxAPa81xq6KQyJ9yjN/QjSTPrO2mkFySv76wvLPsXb5Y9LbQMccYl5XlXcL8rO7d2XSUjtJaJ6lqhJNz9UYtwT001KtTxfmWLYLFczL/am1c7l86CfwSouvmMHK9LZ72TIKP3ROJjKCtD9Xe4mU/wZUMbh7Qh+TINrTE1jehGmTvyJlA/eqtYA//Ms2mQXdIIKCj8ZMtB2hhLZT0U4y3TunZnoRNcuYRgnAeM4FcZSFoqmrOOSIDt3zV3rneajF21CXLeabqt4mYImBg8tXxtoQNl0mFeI/8UAWsttTW58995da28gxpCtLdbquM9T/zn4dV4cLt4QbHhg3FLGjrUjj53T5tAmg4bBQaIq7uTSl0t/MO2PWkOqfxEvibdMN4abKisVoEgaotROAt9drxdwhxyCQB9EOF88WIaSQ/NYO+5SbP5Ik3evd3YLSl0j2xnz37gpQyaTLs3ckX+eIJ+EqzMPIWbwKvQE9Vka8us6qY7qmG0UBrGbcn1TMo/UKzA0PheM8stxioe/ZZBOxMz4zkHhueToGaugB3EKrDqqiK2AviGtvj6QI3ViaPNWgJP6VtrhFRw1GQc+Eds6jG6cqGTzem+Di6EnvoHtZ59+CmXPxscdncnUly6xU/EqpCDAI2p0Az3RUQ0eeeHiRjf1B6iM+1RGWJqvr3y8HLl3dI3/6URGlrmNWjNF0yMWRiLhNALwzQxlq/2CCYHfzEcV3kzjI/GOaGLdpqcBi3PPyuKyGPTqVny3yOQMiKN/kZI8bzFMBSbmaciK5Tlknk9LOJlFBaHMGpB0P4glKz3m0KXQ2RS/oEqt0S/MiJ7jSqH+ryGaD0AsWz4n+wpubVUuv1osxOhSocortr8TY0O2vlppsZR37+793gMorwrS1XXdmcKDYKEE/VZJ6YPSPjXVA1bnSCaeLp21hzH62IWlL9cI8pmJEptp/eweKSS2mM5lDVvtaMidi5yg4V2XkSJFMoH5+QOrL/7QwNBs2wl6PhlwuUshNeCYJFrzGvQHJnRQRwwkk0FWgIb2OFZapuGlvyke48PRKXjyriTTfKd9qrN/1tby2oCbJn/hTqHzCtdwFQol6NRtKOUY3EMM0KIk6xWI+JeIIn91DI1ynLWKDIU/xddEZPhahip5iMRECrP3jLeOpZ4ZtmWTsxECdIcMLLqI8PMtaKaW416nMvbq1BVJes62zKL4YWStmjizs7AeHt7+6EW2EkwpbZ5rDzA3eVbs9bOdrwfmky7ziQQfWQZbty4BLxpqjAoicc7HQ1cLqj377tRNLDGbHnAIRD3gJOcDmdHFs/toiLPjDqEly8tnvjS4VRVcbJLQlfSkE3vub2WbKRMR4p5T4v+9bJ/tLhY5O1rYFf8vFczhPu3YOvAIFQ8t4NRAeALeRU1Rzl+Z7YfU4jipe54V32ocMywbfjf1k6h4P7+ygtNwvjmg9OAJ47VSCrjbqyrAADCH9u9xH/vBYJpzjn1Yxla2dtY4jrifPN044cc71zYYpseY3JAB2sw9qNH6By3LHysdn6JnMH4Y4tKuOYb2LrmDyUCd02I9C1BTQqSX6jkQ2sOdtPk78VpEKzsY5l5Dm4DddrL51mI0/xBEnc37eQYArY8tySjti9KwpzsxkS7A/r6XtmD6/Y5CUVPX2cZpJw35n2aRwHRtSrP4S9Z7ASWejVi6krvo9VkgrpFXnhfTXFdWHiLgv8lKzRtYWBqb/ngNqn3xIJZaRi96YWVzQv8fS4OSVWDRzusChxZhICYLElWrXNQOkUzPGzB9l1zved1NSqQW4Ov8PIoXEcBAuhcu5m64uxsW5gmyqUNo8oGLo4yfzGEdGPkufKZH16aRihsWoM9DAjjPWThztSl3TzBhJNHt2cieupObHDrnnxWpBqEwJl3JuFh6NRZGFzA25Q/d0vIi6UFUXf8rNWF4QauVNTt2UFEmR+DcQYaoMspR7ohpWTEoGUxoufwM3VkP55bBKAubZd8qfU2sSN/UQHUmpjAvvXwkZt+6UhwEAjcXplHLspUwPcQkPFefzJPPCfKzQvUj39Nqj2WVk1E/vSw+B5dqTD+gwx3pt7sDhKonTu3r1qEw2iUwdpT+zRNK6qeQc42mCYVPlRlCh+qQcGMYqdGtDfXlTRkmH0RfsAYctq1SK8RQyBLnwtUjYIPvX7fcl2FfjPlu/wBCY9QbxFEGD7o9dOP5L29nUDYk7nTFP7a3lnDmZHY+E7MIjm85gClhwkdUkSo1Jv904uHog58oAzLoMRgDzVb3esUNVxAEManFC+p8fiDj4aHnnRlKKKyP2k9lEWCOhSWlCi1kPMKBDZE72SzWCATViFOcdZOVZUZZPNMSvw6WYkmFY/PhJPwG4sRUEkAzjFJL09ZTCt8jM5mg12eYUq5BhasyNzsHGaiOV0IsNwTIXxDiE7coolPzKsbuShaGJH5dLsYbtAWbnbKbKOPeyGIAV7D30Sg1aBlHTzWG96Vv2Nalw0ItZ75QGIQTRvTkUG4+28YVXdF8NtxVsTvyrqiuUXI0c2WT+zR/2snAEnLamvuJheIIZ6p6DjG1/4HNEu5t4nfKPN5YqtUdNJYBmP1R+WIxtF1fSIaqBS3C+99TpysHeNSLApEM/az0Mlw0gwX4CEjl3qS0tgxsKrJPtZx3lyS9AExj9hFvm5hCivPZZIBGx+nBCSFwUEtQgoVy8W79Nc2ag1b5kDwiR+64MvOSULVbyEhHUg+clVEI/Oo2Xue9HdxOLmWlECKKFq7vkEhlG00tClya0QOYQo/8Jo6cF1TJDzIXqPGrpfZ4MmyN2uhOrfjUwKeBz/Z1fpnBz00hVdOPHsmvCqe2ppi/M7UL4zvJKJTPbFPPiLdxlSAPl1/rqQStgYd4eVRdwt0m5ErmQeDemZ+pyfea8JufIdNQZIcEAWSUhLlU5YBp8kuLSEO0au//m/7Px0Y2GDVJKzDhWxT+8G5b0dXzkqHhU6fKcKCvIlLjX+suC/NyJkHBs4yh1Rto0+3pQUWqZW3wukqPa58PHRXUkWE417bEYGXd3DO1cufoJ168q7SZ/hEJJ9ByE+cvYG8oi12BOzq/CcbcUiJ8z1q5yB1J/ybX24fow5Y6gStk0CbVLJRYDIrtNAhH6SdEpka9B5+IwhM4iMFGqCPkHHUEUxiF6RSfe9svXC2ARwEUCKoTBOIzRItnD5KLLm0/NtOugzXdxpz/SRBHANcu2PXIg5lvafRVyID3l/MXdRegeYupNLvhcb4QmXi8oaaF2TW6kQ56Xw14bmCN5bUSjXceb0Q1bd9Vgf7dKz7NY/6RKilLAIAGob9LvZs1TKFksWEZscTn6JSAGp/CUs6l4dZj+Sb8SBWTNx+R4ImAismGGpbeyUjiHCIaqqUNRwYjytnYdipGA09Df5SsAmJGoHLLMekoDC8KbTrtKyaPtJKYJjvp9TnNVHAHrnZZNHSVBVtT5ysueTHdLeEJJx/WPdleNkqp0c1G11ciIHoHZ9SN8FfujxTXpiCTm+zdmDsVyMKwYRrVJ9NNqe0JHUvo0ZChKl4furW2i8Dh+iNZm5SdKmw7FWNFLBcJp2K3WcCmqzhQ4OjV4h7O23CM7TjwajAt2NnJLQtYDJi5b9P2V7Jbkiu9Y/lqdpdo06jb6h8S+7abVQp1zuYW2iD7I+GyGjA0kydE2fq0EctpDSN/exVsMr/m9HgyaSgIPWc+ezk65PMfN0odwY59UJ66ke+qHXJ5Cs04h4eA5it0CnYI4asd5qrfadagajDPZ6O63A8tLShqAh3Nj0bUActV37VM0DnBeoxDZ29zGmWttoo6bl3Xx3uY1dN73bHHg15m0kjsgd85/r/DsjusNPqd5QoDOgO7BALYBX5ucwcFpBviKu52FCsHX99eYCAqHgUhsNT8lmEWkxO4dBxIjaUrtynGbnw/3CnBZ/63p+tZe4B+U2FlDNJsyWblmrnrLy7qXFS33WXDSg3wbDalicFO8F6HZtzo/7+Hwxxlazj8GaNenDXPB18cbMguIQtTFHz88hBpXTeS53T0k888ILC6eGFWH0lEJh8JcLF3HnUaGUbgm6/LrUQu4QJf9FpkoNP7ajzq/QKeh5NzvJigl2CTcitA95T7if6D1JXuqlVnTTsZIEOOjbXbJSOovcMLr12OknlDhz3DvI7xtFtDpVFrsNK0Led/kHuWV+nTj2sQQ0Sg1Sg3mq/1fOV05d6x+IlKdtPynJv8cWeRi5UrfRuKr+Ai0nm+tjprrt5yIOVmz070Sw/J8kQ82J1VY2Wmzge68D1V5reSUlK1W1EEGOSKELC1wMGRu3SJvC7+TgJpIVCuG7rU98bh9K4JWmfJDOr9kg9ebUKNpT4YojXBpGhMA3bxaBw0kWzGYQpfD1MJ48h8I9Jt9GVtOJgPVXNfg021NGd0JTIUmBq2ue6bc+WclIkZpKdNbwc3LuUelXiiSr0kiK7rlwDM9ULc14CMteFfgDdRu5MT5tzMxNXfhLMUzRgNRy0Vg2kzW+SD5KWBnzNdHqSAJoFA1NiQdyoeGsSqyqVpTPJ/E9KdWJZfZf7SkpFOWt2Cj5TEO3jj9XY6hXXo9yBiRS47NK7YwudGP5m0Gv10WU3yul/DQcbxT6SNDg+HIYaWrKSvUwvdUZiJcKwffcmPj76mTrJP+2MyN3AAM9EuTu9jbQoPcmcoasAuaQYHiHE9JsLT6joAlVdpGolZOHvD1YbA0tUMqlQaLmJR9HzBv39JfoOlD4OX4Hoyb1B1Hu5P31d0aD0RuJDx/fkLrct2yhwll6jyjdbEqThHmZ+QcpM7vrg8gIgRnDJQxAxBU4gUZoG1W/JkirLrTt+UtxMkWCvyNc37fpr4ygeZ6rdIzKY/NNZe1HfoRheefBkKYXMZ9QVLGu8PT7xzyClHky8IESUWnwY5pCAK5kCnEEicB07aUJVam+GHriVqSWu3JsvnwImOtawe9tlchweGJEvmUdiAp9yIz8wogi80gIC+QwaTcAAIyA3U2EDDPBHrcT85TEzedarOAXvPy608U0QJrqNLazHP9Bx6l8Pm9COwW6tdblUmuQoBftVlk9e3gQECcSrB/tVSCa61+gehUODSI/ldcbuTYPHlqmOdPr3tFpxNFBsO9okn63sGpqlfYS2TSgYAzcSWxTFNkhFz4SrML3xaCov5vft0u8ktQjb1trI8vpPWYxCLf9UCMyVuRkzsaT67ri4FU69jyTnXj+9H8MS4/a8f5HQQAAMurvB1B3Rd7v3akViwNqwE+tBLmFmeaWJoNPc/zvAC89uUhfL0rhqp0M89pTfnRJvzIyE6+HqW2pLU+3+vgxTO1sAQYV/78z8fCZhssdtgpFqYpBxtkhIRmLMkVVBe/ZfxwxfFJHwmMjxJMsfZ7mByiA5CeZouOYwoRV737Aglje90wty7xKgvvJ6qNcIvKB6GmWYzgyBf6gwIQCyRn8pkhsKvYUsAk9zdfuUsRTkSh/lvJWOm+Eram+whhNQ1dYH73JvvHWFTeKZElw72tgiYQHu2F3jqECDUQOroh5MYcjFOfG787FmwYeHGR+i7f9IHFjs2WzGC3YibN8l1ims8gcBTvY4+CKo8hx4W1is9bc1Z3LMs5g7NE0U3CHJLNGnR9NSggDjNFBXCGXWg+gqrYMiRzfSIui8zTMcamGXcgB9jY52TT/sIRkXoQqC3B85t+ECu1/Z/RyYopIcAMCS36w/zxJCKaLVHl60uv6BDtPU/iMprDSqpUP0r91DYtOxUAJFG7m8e0dHAb9Xv14Geleiya69drfQocqD8MoEjSYiHX55TAv1Cyf5kwsJozQovR+HC7oxb0r6uUhMYf2mPdpN9MUjjBqUP1QKUmGN2cJEQS6iXNWFdtzD7/kYr5rdzwV6g/0tQTIsnqt/oH/QgMnwpBieXL+dctjGD7/oqPcScjSUnmycPj3L02X/mdtkMmE+1OFmD78rXen6J3/n1XlSK6MDCBfLCyXyObmqtF88HN7ZOo7jemYDVYlk6BuxxGsU2BwVoVQUPXPrPklrTrN3b9VMVb5+tB0TdTI3nRSHPHJffiA3FGsO9reIAyJrbFTEZnVo2Sel0ADwDTCJeP3UHAsfzq7SXG0Mr/TwU9evGnJbow1TqY6Ryz3K2q0hGGH0VWLJuuidtM11SlOaEW2K+MgnA/wbzCkynp4bUP41slm13nitXsagvE
Variant 1
DifficultyLevel
462
Question
Andrew has caught 12 fish.
He gives 31 of them to his friend Kelly.
How many fish does Kelly receive?
Worked Solution
31×12=4
∴Kelly has 4 fish
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
objects1 | |
frac | |
name2 | |
objects2 | |
who | |
working | $\dfrac{1}{3} \times12 = 4$
$\therefore \text{Kelly has 4 fish}$
|
correctAnswer | |
Answers
U2FsdGVkX1+xocjqjd8JNDEOqeYdVZRFpTqMd8uoiQqo2/hzXjrCQ+1qbWolx1rNBpT+s5tDfOL5LtiuNElc3FJwykqj1pHXMEdIATX7whIozANyw8KamJG/gJMekEbUvu2ojVK7itoW2t3VnsBWm6NQPkjUbcktFV4RBlInOVIgdsYcgh61+c6aD8hAom+Wk6rfV5OccArLI/hB1+PP2jqsJRqlcRT+9MASfUDxAumW8p9+OX/c6ASH6AawacQSxoFizAyKFybP18Qnd4v4dCF2/v7c32hg349gNDpLlU6g3kZzintinbQu+1FIHLVvZE473QSahpT3PeYJtLMGgmpj26Z6NLhjn5I8bgkaH9uuCSCr/yu1adudsa99pQ6PN4Yyw4RSoHWUWFwyt//myV+2Ke604hM9zWYIR0iW/WUrzaSMOpcfwk63mE8S+3l+6WZrBVWd/bXe4+kb8fo0tMO/JX3FiTIi6K9l3kk7v1ekxUDd3yf2EdT4hiTPDT5BbZO2pb5QkpoEzSQ3Jc7a9ImzNdJ3N/S8Y8F76MoSQFEkff+2o57svL33V+a7nfFuJvj1Hp089MltekCUTNqKe4aVi8s0lOqdj/FJudo3Qe7RstbNjJu9yjh10EyeKJEdONxYeQaHIxu5Cr6c4tJx93tt8SOtksF3HDuDZquGl3u0yBrYEYJEC9N6AKylZit4wuonUZBUtLgp1Nz3VKNwIbYxFiYX3W7yTR0S1TP7MBPhjABU45MHuiGwvKOlpj2BBVBn0l9WsE1Lluw/Y1je3vNcqXE3TykSA9pg4iP27ghaCF73fh+f4TishFnysDPKfc/UY4qWxpa6iRqYBkC/zmd49HGlUab2Kxf2q8T8X28KxB9IwOfVJwu3dekgU5J/sylmc5lxyg3GufJoxJv2/LvZtjPchJfS9S2NyqkydqEuSTnS589uuQPYF0Dz4Z4F6NC39uYvkcQ77zBJrdXDhZWD4tdj0WF+HAywaovBrIpcRUwBahlmrfwqHEqoJ2/VYTK72VC4g0wBfmZWB0rDO2cYhkdLqncunkUjHYYnoOiYGGQri42y0k3FmHZHuRah7KWoFs08FW5oRAKaF+kehGLkHPVUtC6ayxBttrcTWfI1G0GNzTdaqQxx9UHbnaEqAi65Xxmb5z//vUJ9zEKCavFD79FMGtO5k9/RTgaF1cBe4ds/Ulvl4y9OMv24+I6cu3JvuIlmtUjF7aPN8HDBdAApr1XZQv2zeyw3ejF90WoSRaa0xutdPTS840v34jBuDg1xdIkIhwfmNUju2Z7gOK7t7UUDGPptdRf8PQtZmSE6DNcZCc+68E2rR+2QoG/NneddY6xn/+u4wCqqsdam/7tvnDcVB68tPrkuQWh0CKpAGRwSErC8bDO+B08vmWrNM6tpWhbQDP6oAdwvOTQw6EEZMSu8BRBZqnIn5K6raM/4DoPu+UsvsyBr+nbUkRyPOkBC3l3C1vCexKZ3p7qnz/SRgjx3x9758Ep7/i3g69j+ao5ZIfOrE0RH8Ku0oe3N0pAPyCIazv03iRjsMGL8BUDRUh8KHlPogdNp2F95m3r8MmLx0g2i7DJFAN8YFmrPwxj4udete6Yzh4uNyxbShlA68jRst96fz7XSIp7xTHA/kJKreAkn9FIyhzrX8nuh9TEvND36wB6o2Tl5IF9MTZNLnBQViHGIg0saYNfgUcGer3k+aTNUoQAvqoyi15Y8GuXrBw+X8HWgLpMZ11wNIRzVGWoM4IqPu1JngtuDWgeNXcdL9x2vXiS8GSu0/KiEgMVGJNkCqQH5cW2GIu4HScZ0JDWM0aFPqQ/cdXD1l8382EjW5QqXd3s++i3JkH0+RnVWudJxwzG2bakIsjHCuMx8L4vyL9l3gCMriRCxMga8KTkVYhBlGcxF/Y7UUMEcocV7yLIOjg7HXM+oL1Rw16h711K8HyU781DYNpW3f3jLDeJ5VXE4OCRUHgsv4xoqTJeXF5XxQvHxiUyspi3DF7qOciz0j29ho1I1ngVN7xwNFzn13KJXjEcv//Omq9/nbOMTmfqbyb2E+YBbmJnfygsYVi5D/2atktC1jsjE9zrEe97Mn3UaRBZ3nQkn4KJKtLRLgO92x9uQlkwhLH5PXe1iz1S5sDW1KJ0lOhG+h2PrH8FCvlC3jQt2DWzFScoRxP8qEpKoTWdQRbJ+XmihMC9I0Ccs0DJK7omCtY7aLwKGXanrM/mfILBo/krGGs388M5LimtE/C/auuZNF/Vq/U/QRXS9LISsFijxNmpGvLIvfQirJRfSWTASeFoB3DZyzddOe3I8YCd4KOYn4G5VoIBBSRVE7yaqztIFuq0XJFv6/FNMRYhwL2NveKwgVdOMf0nXvhvSAVN1kra3pDu7cw9B0Ud6KSOQzLeyokgeU5MdbCdYCdnnl77qEt5Uf5GR3JnnWijcHDQk0gGGeS4EnMwXr4cHo/xGSYphSZOaENA6vnZsl7H5lARZxBuPJHqrXW6MUbbmgurXpnkzIby82WOlu3FeEfu3E9cMLOai4e2k+6fXocFdrjf7T7pLNnqJtCvRSfTBEQcgPBMV4ipTP3kB+g1+i+GTPsGlKJ7lFnn28Mt6WBPKk2dtzUoBGJzZFY7itzEw8IHSoUlhT0OJeYt4tx+vduM9X3z85i2hUH6zgtirQvOGK6w8T9PBSUBnixqbb19BkzWgfmrPmRshNbNZnXpV38Ib6q51UI0lyy7THKBEuIqd++gYZnDh2up/PcBnonMIgujUvtFNLNXjglWO9Lex58tvbGc4mRrYYep9PwoMQkLK0beXnf6GVAqOO6w5tgx/ZenJcSvbFzuSOOBmrfPLY4iDgn6dcgSccx7MAo7pHquau/NMcl+1DOcIAiJqE57/+CWC5bNUJGV867ljC0MAPodCn5JHKf/HGvg0nhPoV5A2HQKNtuvJLzCkvFk8m5E9Z/gcxIfnrEGriai47qURsP6f9QatXouoGXBIdfDpUybKuqe15VgNZrcrJmt4t7VWCcqc12k+fvL5Ka8LAIIDInIE4RZPk/Lc6q8C7Zt3et825Ilrujf4I0DbLh2frAAptdVSNptEklUfUIe/1keGSIR5CgzI0QcE0pGL25nVMLfeGS9LAP8uS2n2mTL9z1UR/Z1Rg6C7EAnSwbCdMvdzthFuzcoGKm15M/UYaGi4ATtzf8Pn6Rq80HBE4VYfe0YwdSI1DqyuC4IN85rkGIQ+QZSC8Vw1cTUZAs0S1JrkwpdgMqu6Mi2yrM5nW9WOHLjNnlDXTWyHfc26TuN/509OVvhNJrKzbqBXt0wlZvlHLNfw7BIN+6C2VtkEk7tguCGW/mzbyjAykHCTEzWfexx0gDjuoQU8Xyq079psy+p80v6axa5L3jeyTRS3SFLgxsPoK2tFNamSMzrsQgCXjuKumPCFH16t7xSipttXSGRQXOSGExZCqd7KpzCojqEuZl866HCVgXheuMfHDyw5ivY2Fq0NoCR6qNs7HdCGJzgqaPZGC9Oa7jSkkdh0G3DP3lisGJlpY0u0Q2tHsbTar3t652tDvb2W+Pulo/izIGIPgd6OKIaofwKvrp2JlwRYWLZuenoVfgQXQdcgz/fDu89QIM3B+zs2k7A6qkxSXUgst5tuFrCM3gyOvJZXbuu4wDBLACC9zSml3Zu2ENly2g/sQY8JiV/ce69XMlQYTSvnNNsOAOCtNfLgLIothfvSuilZnx/qxtzG9XtEAvegAeCe516WZFzE+fdAWWWJ2gDyRPkW6HrniHUAUMNl6UPod7Q3USZ9mk2RJKxJWRITj3mXBncYzKSMHxykI2euxJSIfUrl8RfevgAhGGQ5hORncgXlvE86yDlHl40B7zYU0X27zMRMvFaXunRbsOZgtBspuYgjvwWixw1p3WpjwqbFppV/bTKHDGTXuJuVxPD7roK62ZZnESVsZa+LN70Ig3RzeqSFH32perbAbmreROkZ1tqU5AIdZmi2iECo/yJiO/kXFcCukodA9d+64TFCnFi5fvYL77m30QJY/XCaOMenbVUPSjxD7B6/ilCrtgUwrOf3aZBEdYx8OKLEyr0drJ1NvSCidy4KrnNLR1wQTFzHmdn6lwJB98LYUL5HB0G0n4vod6f1SqsdYvqmihfgKEDhi8ul6vkqF4WVQ5jMTRNeAw7aNDUc6o/Y3NbXMyY78SN3v/yIjKhfWbf6irpnIGYnqpOJrHZ2nBSt3kRYAB+f9rXMliuIG9cVSdLZv5nzBQBv8HYABKl/cpqiINets3bKB5Ip/iFSUFbmBFE0T0M60sPvF7X9AnP1Nra8MfIeLxqrb61iInedcIRIxHhqsRqV4bVj8CKgWYr9FqiESq3m6j6+RyEvIK5U7mclHo/P9jam+vsqHnKuMpNJg1WPJ743kHdAP+x6Va2wi8aTEnVLhyiLDiQEt2StNuM41UWkQMSKdQI8tcHayzQEvGLmisESpPfy+R+2oke96vEMZ6t5hkxEn1Zsf7O3v9nkEJ6pfUJ5X6HDyV1vg8BWhlXjkaPvqx+JKYYNJkFrijfg/cjc9UNcCHQHmjsGLPFCBE39xxDRwAvBRb4XThR8ijVnDQfsPjrtqSkPjQPeCJTPoewXQFJqkhh453JS2odIjM3r+OXUQrgX9ibZ9dPu2ThDWMhqw6ApYLVn5KdLGywJKnOX3rYs2HGIV58KF0jp4lJfEDKrOw569dV5563OOUzRQbJaz+Pfl8uoz76dOXfpz0tCHMEvceEUDHtEpAZ1T9gJ+KJVpEz++6Xrn7Nrf+Zk1Tpb4b46OOjL+x4Z3E14dSZ69rzSIzYDN3UP2onA/kSWuAW1wufAUzf9k2fSr6qEyzkU0K4oosApBouZ10qCZpho21Pyi/SYGvrNPYHcq4Errbu8RQSS5JZ9QiyrCUwawcYw7fuSU9/aXqdDwpw4C1ccIuAL/NjQYFW/RKyUiZDzYKEi4UODU+572siLUrLfTKCF/hR+zMz6FKlgyPa1j3uw1iFW0YP3mwsMw4Lyi4CtoqDCPgGLWinfvC16bH6eNU1uweozVZm1W+0YEf0d8VGc6m97FM6Jvh3g+7IdBN1iWxpP33ehss/MPEnbrP0VatAdUTYi0jD27c6DdcLTYdhvyp9F1jaXDclQ6c156bsDJ0YGOwLEQG5J/pNo3eI4J4XxTXz3XqWnTz7mUVhv2y9zZ4edLsrpIaZaCuYEE4nA05Hq4FMhKPTa+00JHw3IhAvDjOjeqYW1VazuDdbYSCPJl+kTrCYb76AJrKfamAu4c0E/RYYd3BCgBjtvxW59sVX2bIHFotmBk4Qf5GGzNKj67+UMtUJZw/ULLhgdka28isB9JUIziR7kbOCxoXhnj9Kr4xZ53eqvjTIrcNTv0nGKtwUfDh2edzL8llL719isdcYR+yPShRGIKFFaDKL/pCL6aH40FbIIFCWhO0s3jDq9PsJeYiJtQ1Z5aj50mLLhHgYT0YN3oteHg00ceh9Ud4POaIBJhhdtvWuEvWdi2PFOaAgBUiGOvu1FbcycrZxXySjpvyQzhVf+emLkUDGNb6Jb/GNp+zVReJ6PelPyYK6/i2owj/niJhNJ/A333BO9G3GaL7o5dqsUP16SaPMoignfJES096iP8+q1a54PFdYOjXnUDZDXaBWBjK+RDyTiMbtz266TwcxcLKhjrSU+1+UafmTWY5/88PkK+RDekEXIBJAj5N0/Rtdu+FUKmOQxcyJpYUPuPgwuj+f5fof39lVpnaNIZXnnVh7+s2pnLqnLkgKexABPFL9fKBpjRPg3B/h24PtvJ8wNhMPSUW1xdj2QwhTPOSD97DgJtTPQdBwZzf1mKwQWvl/yiI1XJ04ISPlOQvSNMHeiBKl2r+EnTra3Yzg6W7b6dEkkVuBWryEce+X3lHaMqL4LVHb+O57xTeHbjd9thfF2rdYkX9OnBHaekb0vwSpIvTseULCqRD6Bc/mYEHAfpCVODUHy1pd3tZCO1WDgEyJ4OfP6oOnvrbzoRmwGlVbcu+jwiRxAxQ/kXaL2akKBG8H4Wl7jLihqMqYS79lar5rNYwcqvQO8WlHcAVHV+oAPx8RqYYjbJJ1CTzkg5gFvcy56qxwYNECKmPWWx3Xc6P5mHx5A3gWXsPJG+sozk+QNp7VRjigBXnUqH6oskSlR6WwO5m+/uxlPEMWUXqbVlQJiWOP+a39Y0HA1yzre1jnI1jccZ6xCJT8e/HQT02SEkE1Nn5R39QQWsC9ykgSyCvfkA2g6iV1FydvkSq9CBzsTpkjQcCy/9dj4DFuQveHNTOuLnozBg0ByIFx5ugoCvtYWbH4PeiiQdl1sd0LMvN4fwAxILkgQwWIye5LMGFFszGMvQYQzkEZ70jwzmV2QvRgKHzHUCyitmJflZ9p9GE4yG4093l6CkrJWi5JsaAY0+eGJDs5JwWFTloCUpRKABwEmpQ8rZqap7+aqKV9yR1Mhkka6s8YH3Y/uR0xP9NyAI2oPahQX0bXVglPX2QPFuD93vNteR6Vvrx5QuC9hOeP3crDN3zOplfXJfrqw2dwRbpkL0GRO1IzNBWKoeCEFcO7/4iFDM747XgYKLahhypo/Ekb0fGifn7EMl022oMNrCYsXzeThcq47n4qhOhH1588OVc4IwusWPh+n5nAhsIm7M0ysXx0bskPNzJbH+5rYlq9KM8uTP00ck3ITNBTompkC5/SsgcBaRImzzNlIg0EcslYTEOcYHASSNNHfKzlukBC7tHKxtRlNdMiLMvEqxEBuzIcfhMPMJrlS3LiG1XAF+x7a7/8TLWDTOC9FbH6AVRmCxAPdnHe7yPiFX1c1LrulrFRPFo9HuTrukIVqT96n7NQz76/FHnkfM1xN7/zGR/hLBV0++A6I8WgdmgCd+krRgxiyL/oj0HHzICoYGke8QDfe/SPO
Variant 2
DifficultyLevel
462
Question
Eli has 24 goldfish.
He gives 41 of them to his brother Zac.
How many goldfish does Zac get from Eli?
Worked Solution
41×24=6
∴Zac gets 6 goldfish
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
objects1 | |
frac | |
name2 | |
objects2 | |
who | |
working | $\dfrac{1}{4} \times 24 =6$
$\therefore \text{Zac gets 6 goldfish}$ |
correctAnswer | |
Answers
U2FsdGVkX1/BzuWNbO+thlN7cEy3g3ofvcVCzvJVI8welBwjlG/YKpwkSqK4HCUzCYvOoBtc3UtARXUxLrsLGD8H3Xeh/nxWBgobBmPowp3R4RxMJTNSxWZ0q+eJ1ARFvj6rljX7aY7TPwcPoYfO0ddfFU0bKKjkwdRK5TbXMd4oHg++aDD218h4NrE1kh8nXm3+8uZ2+PUqQFOcUsExnYQN2FPw0Ex4JcsfaJDavmYMQpuGTxuDI10D2QTUjX/WVtjsDz7+jdqhLLG0IHRSs8CK6sr2gC8TD7hJ675RpVwrWGlsh3vxHWOzhje5PCSInfXt8HRw/WSzkiwLSjvbfHKX7se1TnjuKJl7kdLvhPw8yjLJZYDqwfl5dPAqjKg2vJV88G3HpdYRBYrVYF7JRnEQ7nE6JYxOj4W+AxjVUWJ698XgoEL3wQ5vS08IrokHI2y4sWGkNFyTjEQdflnhYqTqyP5a3GcmVjCL4UNHeax/4vn9Zo6CZb5PTCMwAQ/iv1llOQACjiZxjKHN0OfmuTcI+hhC540hdpkVpuHFYl9zLJdfjCjbIFGCt1Hve9RVNBm6Xgs02YZD+s16Ooku4PadE5V7zVECtXNgddg6a4I1OBX7rBMTdartQQUcCXCUgjv6yEduhcxFD8zjvUxGBbJ2VfkMxMZaoEIBvrxKp8VvO/joVikvs4bbkn/THpw/OpNzmCxJQQoaCIVZvrVDdoKR/Q4Urh/+xKTncmgCyAWWNsfPrDetB/4IkjpWzu/hsD6h9kcm8br1nDmTmqTSG+POvxIlLi6VHCrP+79ZtyYEv8wxz45QYdNfHQyI73QsOkELbb7B2VA+YvMEc/hiyEObMFZP9h0O8whjDc0BM80tw+SFKRn2b4vM1AKNnkeZK6fglkDh8fFyz2p+u5DPEKa3/+Ngmrvz7WQ6x+yOO9YC+VXWagumo04MlW5dUu6INy5vQm6hJjyrheNacFkCjpLIdAt1TtxzrT8SCiDhNUjFtgw14iQzt4kWRK1zadtzrIsaU4gLYyCBzNxTIkEEkOTOEKh1rnsQZesNMc9kVVWGnojEWzOGXQcJ1Ln5umIScenWi4oKi+YGfGPwUhxumnplRaXdHNVTDYZr59Y3ig09Y90t3gwe3w8WxdXwRlLjHFIcANnALKt/929zr9kAnxyNFpkp3eg5I84xBfpVKRPssprFCdLTeO75VmE7XIXZQWBRJVh0cElC1lBSf/gIzkaD/DcZW8OkrPvcc95Xid65XD/EPG0fcYwFvgWsx0Fehb0MEfnoHIQIcO/j77Rm5ZYOP1v5LV8j3IKpAhi4dWEjFkTVg7zO8FsLFo/ziGo94+QEITOn8TF0SDtuuz+pCdolE/X9l+zMx3WqOrzYBoNMTxJi1+1QoYHwz+mqze5s9NJ5RFPofajifKvmbF9Sj5uR+ORABNw6HBU+wAjg1ATx5337RQUKezHE3Ygvfon3MeQEJ6VGRfE4lEDfG+IiiYTl/EFO/YIijjNYXW6VWzdW8skcu5rlvX/dwXXBnlvZ7EkdFAoexd2oXK3MrPPE3xal9Y+zFkm5z9sSxx6gU4x9xk+qwLPK4hTb1FRIHxk8TeTGdKXxV+kcM7IWNxnmUfaa/xagLkAJs3RvBR7B50fWbl+pJL8y2zQSjztTYjsdxFuJjVo4re5BVtIoYCx5ZBjllPOYyKl8cxfafjF48cRXJxN68a3oiyKAGzAgY/CtQbL3NzT6g/NqFWwk4t16WREi2YlJcKQ2f82HiHP7Vx6jRFiT+f506mPzglQ9BMXeyjAidecgMPsfKzzt0MkMleYtinPtphVr0m9DPHeTKEB9/5nJtMyY3+XtuSebyK+nFepxtgWCxqHSYPmtXiRSpsZ08k3vHjfxISFOhvhCIrWA+wrkz3JNS3PtOdVpbWt+eCgxE0/85h6DfXDUMiOjyyy1BQJbLeav1Sf9j5J9vaYcXL24vedNkHyghPzTJ4SDFblHKw8cljujGUt1jJkwfAB0CgOCu9KOf48lsUJdyKIWRXjDQofCLWVXKq3OIY9vofPs8h/9iDr5mHksDGbROsqu3HQNYCQ9AGsZQvAxKB/vm9Y+kfhWeFzmX0eqHPN3d0Q/nkN+DTl4tmws95aBvKsAVl7FUzi9ArHadVdQ08QDd7jt+2fIL2a5ZKmPX7mDe4HnO+XJ3KcV4xWM4nRQ5WsS1N9x0ukiUyl9kMfqR5mooTYCQEO3gPlN7YmPlxNYhsz1rpf2PW1bYNIBjDNnueb/CiyQvgXrR7Vu5AIUqinbgU/LWO8+KDUyzjOIJM13v3Fju6uj3jgloM4OQ4DUrpZ123LRCGqcZttTcAULtUs3C4qkwFRv0dY2skoRH8akRZge5ji8Yi8qKMDOXYL0R0ECelFUzKWv+JlCMxDSZPOtqVge4KLl9bVPfvj7o8VZvLWAavyGwxtD4Fssgbqxd+/B4IodIL5lbZxtyjE6H6V+flc8AND5pCupRLKxaiB4oBxUBcgqOEUdkk0KbYTx6b2FqUrn3+lM5gpE7RV4OOjbo55fEyyxVmKMRoybQeTh+cR5gtwzyKlQhyNXB4xO/hvcv4Fv1NtGWN45h3wBGag9z/8J34kg8tLcxJVtri1nAaN7FJifUN8IQtBG+lhLF+IEHc0HiWV9Kd/FEKYlDkAlKPMeUBOqTnhItu7geCipLWWd+gO6ujss9RhN5iy1Hd3/9wFSh28CulborkhE4fSbrVofgy2yahDhq1+Wdhibj5fCJmxFF3ih+MSg1CfJomFzSCslXTJDXb+ifBGlD05lYeGwmo6OnZGc8iRR7kMeM9bmSdVgj0W0ESfeQeRtxYEEZYaFQxHtEaxKorSawxKWm+8F+LZAWHZ0GstytTMCg98fHGprf1RK4+EWuDvGzKKhFEI3KDDQQhsxtewSvUXc5IlUukuJHtjTIU5/kewve3RUchF4d9Xg+cegaNfkAID0+QOjIOJBYo8AjMK+O6TYpU6oK1KujczYjHmPfC7kzgXO1LvzUpb7TbWD7AZsi8hxGfo14UbbYY0sCZft3RlP6osS7EGWVe6Bj0j6DTdxHkxUAXQHBZ0xyiqtjDBVbB2JiMu5QFmP3L3/QnztHHQ0KI+xY+a1+GrPMIKPONShwNJc8ptdurh41VLYAg31FxhqbVW44001E6PJmg7DULLwkJa26J/+PV1FVOB7b6E2oC8LPL1LPxl1ylfBRztTF1LO0W3JxJWEKwcpT05XN7mOj7fJt8XjUhD2hd3orkMxU9x74pvAQd73q/eOD9zqT02NqF44uzx3dOkqtjcnTeJzrSk7DxzH7fnHGcfdp/95oQIdTPVdCSZzocj0tYyMU9RgqO0hSj7YNiumDUnuqquTu2MYyQ6LSE8yQ9v8K0bqT4Nh8MfiZE36yzRO4reu2hhyMM6JMbosRtGvdzuhuvaqoAjRb95GY//VlD2m39tPlwlNG1GaDSnnd6ldT+NYaJmZg4wZm0JO13ZaP2DTtg1t7sYOnOwZk5sHF7EVGFs+X35VRI9jPh/UHLaYN907ZkEz+gP8q0ZM4HxXV4tE7R2KndIq2Y6mFj8yWQvXhrFxQacmhMZN8eVoXRt+FM/Y2DpG9SG9X6f4Nyt3gb2GSkGYyswIT+FUWgntz6pHlM6BeHIQVayRCylrTGkt165NzgB8N43WQBnEOqzcq90nAgAFznNwk5WiPHka4PAN6jW6mB5+7br0NBtZIpVwrCV0bTiHbtdafQ4joff1OC0iovsBdpjQRVldL5F+P3O33j6gyNwy/edu3MX83v0YjYxrx6km7NNth8vAssqGqtJpZ3GwbGien0PWA9R9srEfJlWbi73sXkJ5gTPOUnFnM97z8vdOManJ0NEZPu6zxgxR3Pp2eNe33dx2anONuBXNeIC2maPhw+g7Hc5o8lTa5OwTooiv0wP+pUcXmlMQKwdYDKbUHve4gFhGDmWjF59FBV2vB5y9S2nd6Sd7MFoob0KrI/nLe6kXlkgbZwApndZxMTngj35Pr4qi+U+rEvxEWRY1VygkpWAgu+JF+c8clxM711JGoSrW88fhQTiOCuQFIXgQAjo06s96emWMpM8wlYQjSKNJb3gGYWiQATrFlGEkF670NXGrR9q0XzP6KqdWGvhGBMYMX2iXW7Q5sEwW4s5AyfTMhK77GespVxlbVfyxVqfTFxkFEE+wmPEO6bp6MHupA3W59S+HZyB6CuuFM6Bnsjk43DdebauRZc0Sgmed9EghyXjsX3Tz8DcTgiCNk1Jky1LO7x67rFiP/mrEPVhPQuw7qno+i5YQKXmqzaQx21PSLzs8Bcf+vDX/CfuuJ+G4FHOECDYQh0EMukNOOOrvOYLVUnkjeJrpKOYnCEiST5c0Arkrtp2cGfuwd4ydYanpxYtN63bZ8wBkopzwkS1vhXvfQ3iw4wddC2pjSutbgnBRoGBWZHGogLtTYN+PgDbmN3IG2dpAUgg/j2zBZifgVDcKOQV+Nxjg679ak3u4DGvAkRjLmUHSijuUM3Ga3LAJuUA6JCerm60zQELeaaKPM6gWmnkzKi2/hiqTFs545lIvOpJoeiCaVQG1SHJWrlYm6x7affen6qxt+T4osuoFo+1590eHfUjEIiOjZUBLgrcy8WG4zKhF3c1MPZSoXLNnL7ifCkNmsxF+Mw54SdR4ue6kGTHGlsysnn/XvBeGhuyS9qqAXWiIM/NV0pPoyDeoovFvimYLv0xHT1ZWsl3ClvRF4wsVepwrxFMzrndCi6yGYqCai33OyZAO+saNCFLAtb4Kh+LUxXNLW16/yZ1iAhwY4mVhFXSsehMCi8W70QvzUFoX9eeUuzeSG7RL9OqWrJyatHiwz/aPm9oBWOYO/DMU5xLCUT2uTVUpwZ5KDzVdeEIlX0FAfYI0eYtTLBbRFeJZWA2FRvA9d1E0kZBKviB2V9oR88ewm+WXDU2+UKPUgEyiXTo8w9KU0jS3sE0zk7kXTH3H5ZYsuAEFtiN7TO9uj2G65WPepK4tMUqoGVTbmaZP4JgNX/61NsTlCc7DzEZs5M/cQDxDVDHgzZZaYzOmle6ABXQEKXMi3QQ0EhajEz7p9xI7jaU0i6uLkvjq2GOO2laiTWw7hEkDbRTpmLDzZ8qopyqFsPnqTcPpSUMT1AhLGFR4qy91Bb7nQ3eH7beKcTg4ID5wSmVCVz66uwD+KZCWJ62smwgvQ+GuPY8cuX5CTOPFAc85dN4dc5pQJgcxFtb151doBm8jJCVYxOVoKs4/mr2VixfOsELbWR1QCwEBBpMy93N8m659Qr7jQNXnSlw5wS0uTl4+LxKK13Gnyl//fOqNbNTMqjniiiavfsPjd4OgE49WrE4vBBuzTFqPQ89czimJxY3W4SThfOKX1g1wbNte75BKaCPtpxKjUPqdGGlmjIHjMsD4+vxpFXw3OzPsBCensF+vYKrCfkvnRiNHiqku7VOWrDpxwQrMysx+kl1RaGQYo9tedm3NQhcmQNNgV9DpppuY5TJUhxSsPYgMrRHhkWx2JdWPGI5M0UZLzQsT+cv7bab7Qm5nPmgZbx11vHlkNxltKLIe8mVhq7OKAn9HFVt4ByrkKWXIFO9CrVQ0OKhUN8tJkxKs6O1RDbyonE0EoKB9J41OmLEBayWDN1XA4cW+/o3ajaBTsDACKWAAKvvcL4XfJF28vFnV5GHC+pvS0/lIXJOF2VKpgGcd0NSPBWBhXVmwcvcajXTkD77nrEkxS2acCUGsX36KNkIDz/XHszAhQ7anK5D7qtswRZ8ajuak/ItJyXdYdYc5P9RZRoUQEwqyKOTnnK6zLA4RXqEqe0Sp0wRTPbE9kMaRMq/xae41LO/RLWT8Nh7uVY3NVDmucI1/4RlAK8g5sHA+3uL+dArLcuQ1HCwxK1iIg2B9Au52+V+8q3fQRGi6/Ydi/pkn4qnIRMlV7ql3UqwGrYfjDtZ4ui7yttOT/BSuss+nqDyC0mdmfmRkdFKi8Ad7ysKL7DuMX+tEHOVrIxCfmSxDLBProIfSqcUlaZSvxrdc6RN6s97E8iP5SPlgR3+4GMwpXSVpDs3ZtbJFJ90AbsEhqEyn0Up2ZhG2vyzjXJzzGfdCx5Jxbv+iVRjrkNiVumgs/tt4mjPNM8vRIR5mmaIbNprvsvVm5GrYMs/bBHMZDKm6wB/G32zGp0NpSTVYxzHycxrX3QsMDDhZvcXHWAPcE7rHscJnfMBzrtPOi6zgk5lWZ9ROT+GwJ3s82M7hk72qBErNLvefIGHNMa3JfeKaPkclDc6UuBXX4VZNhvwlhKqJD8OzL3S7LKzGWvzq3LSm1CMPJFmhKsGIUboB1U1k4dDr7FNq6zdtmuNiXm095uJHPPFNtco7xIpZjqkhs5UGzCd7Hglrx+tBCCq/x7dSUKHR1Ej7+JUH1bjxmww41hSKyCBJG5whgrtEGgR9ooqwNQQe9D1M6vYasOjJUtCFffQEFrrmguxE9JVLk1T7+lqpDBnyhEg70MZN/32URMk+KFWQmQTySaz9e9vSm56da2BGU6Vd4w2E2PU4z/GwV/nvgidHGRlinTzPyISpGkGyJ+2R2DfkaIGXvoo6FU67YFtXU+KcZYZZL4r6qZrmW9RhzUUcz+SL5dWZs6PaQsUFWHpn5GH/m2Ud+NpeAKJ3vIFdNWfzTAwEM7yNcXw2ZEHzE9m8taXBClAWIkdCFpSEjcGxcqG5qi/KHU2H9JTc37zW15+FvMJ9WZPPu5BgYj0jkDn+93BqiZchDGnp52u8rgHc3h6OZIkg5U/3NUKs77Ai1AjQzSI6D2Bhx5FWtgrN574tuhRO/FvcoIOv8cNIcTyfV58zGdT1UfYO0ht2WMkQp1W7BIh2MQ5jwDfVIoWtEwAOHFJ63zQoZCoao9Y6fHcx8vxFgEBuVuFBgRDmfBbAeh5Qa6rXM3Epur1KdU/I7w8UCjQyemHMBNRLfKIpN9YCcgDhWguyDZNR3u0uVF4An1XRthhVroVVb1DYP+yh/Bd3lb95CEUiY8tiO24czpn1lWgSDf1qtLEsKoQMvSUOPBtHywfWPObzdPoHPCgqd3yG/rivDC/ngA0+7zAuaAL9+b6kK/tXeonh+pLLIE0FmrJWequLJliu35oAgwtPI4NV8PtOfwu5UozBaZByO0X8HT4uNPilZunOTk34smfAr8cN+G27T08itbaTzsXyyiAODWasOUvuQieOxjY068UUb8WkSD+edEDdmjQINDYJSg+Zp8KGqUYJmiElrDunzvK3zx4l8ipZOjNalFUYgqfaUS9nGZPK7CEgF8LGOJjT/WljFYQ7n7ANiUXWx9cqH2ceGFZghyo3sOFlmzmx8UkuksQbHNnCAEQXNKDRl9Qrqcf1vxSz6gy5o9ASkI5dU9DsWYt8lYpAfzGt/I3r2cpJdZedWu6YM6oBLqpIHYRSdSrDvbfuSC8WCEowK4/suj4bY3Savhh9CWdoZ2l+bEnAL9LgcrIQg6eFFtMdzExF+WEzr1Yhb6pO2w8YPJTy/MnE7khDCe8+Nwu/w2YpMVT1HsfOz8LBSAicSn6wC28e58ARiDyCqsNppLPVXYfpJj85mYzp5+tS6Oiysg9NUlAMS+F8Acv4bXTrcFWBKlrz5a48fhDn5+gkZxhGa4WwYmIZ+XzG780i5jc1XSl8F5vo1E7wsyGkQh9rND1FRblJrSiiw7/ViIBAqqYji87pzu7ldCMBJEVxxlbHyyfvOnJ8qIGBz1k6ZfJtv6gNOoYuDLmUrijXNTB2wxpjdDNF9Hj5eriHE01Kg4kLq+iEs+V9jW0cWNXm8bdw2WES80cYQgObaKdoGfABbkApsYVUivKBHg==
Variant 3
DifficultyLevel
462
Question
Callen has 21 one-dollar coins.
He gives 31 of them to his friend Mia.
How many one-dollar coins does Calllen have left?
Worked Solution
31×21=7
|
|
∴Coins left |
= 21 − 7 |
|
= 14 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
objects1 | |
frac | |
name2 | |
objects2 | |
who | |
working | $\dfrac{1}{3} \times 21 = 7$
|||
|-:|-|
|$\therefore \text{Coins left}$|= 21 $-$ 7|
||= 14|
|
correctAnswer | |
Answers
U2FsdGVkX1950CUKmDs7cEzpKuh0veqNwX7Kor2pVixJckZ4otA786XFyshg6A2LNgLXweV8IsMC7/fIp7vJxLtjoqiBpfXSEoFFTGxLVG1LPt11xyPDY4oWV5GOSgAPEkt86iEFNpnqwbNrQvRQTs+xhpm159TdaMVoXfryegcQudelHQK+439s3lFXLN/rj8L+9+NKajk8R2DEUAJbdiSHYTNLD47YbkYl5gaHSXJ1h7KYqwM0P5C3nEiygFHBpOIR/O50YInNfEf7WwwZZpzKIrRTBc+eVpfCBnyBcYUmd4W9nXmJcIJp3KCXqfIxcgFIGk31O2/kPNJPqoyAfT2LPvNYRtMZTqTj7BYs49QO1YKQtm9JC2qAnL6yLHIyMByQSTaOVdlswzMhOB+LmFmGwbcXAUouEC8bKb/I2f/HS3n54Ofkz2EYiB1hkPYT5r45X4boUDbu81gvQPq/C9SLy9elvxXx2NkbYSrsLKHtn+mbn4SZ6GfWlyhTzxkkAqKvXABL51fLsyXtpEk0ou+7apud+BoK20IRE/kbAkmGkZevVnGb3H/y6gyJCg6NmDYqNqoMWDGQKdq4jHOf5TeiVW+53tFjSXjZysia7lFilJ1z51KvxFSR2TUAIY0unzc5v8deO5FdZNwPlpYqPbkLJI2uK7LFwWqi7UJk2J6ODhGp7iMUyNx09iGwBKWCc87aj/2DcowKgEEMnyQ8Y09do1EZA5vPHe3PJ7R9ds0wKL9CodxL94M6dKVDn5k7XTS8jcuGlQo+mQL8hKKqPOX0Kr2H16T/lZiSv8Zw37Rl9v3q6KgpzHGd8bksIgDtM2L6B2v/WMR70M05BR0GQ1+skuwHkT6QfBog/9OoH54kO8UoZAT9f1evG/Xd/PT0nTYQ19la3vkSx0qJwDbW4fBdteuYiK3nmgAwmTKDHKiTV51p+0krtDu75+Fq/X+qAlvTMcD7TRAvJ7db36orrOj50LmkuLeDsCVrMPQcm30Z4NzqmZ9qqFPXWUQ8JnGSP/++Tu4AV8Yw5TuOpBUjYl2MpsM5fUdGlMIlEVz4VewqAMHTXwFfWwdWTYvxdzS1HLPLypcR184IEHw7mClYgjrrDAxNc/FK7SkmH77RFc0fWZCBbtUkvarFTO5z0quyJqTv7yncyykSKs+i8JylZ5Pq4oOprziHrdFweU48zD2Tc693kzyKWe5vYPgxDxqjARb19IJBS3e9wBCmOR58K/yda8r8gWUyTZygG87RTev/QwPg5MPLNfLlG2q730SsmFO62TY5Sw2uDpKOnYWjmsrzBLe1Hh9pcFXlOafBvXmKUQrFHEusVhzqunhzrHQIIRR26VFmtFQuqJn+DGuSUiKZ80ZTGtTfuT6lnPu/5z2UTX2hX1+D1z5ZJmqsxnk+mQreYhsOXRz47dQ9YCZtEE7A6fwf1MOQGJz0RoiHb7SJUiCcKyJuH4LC9w3erajrkhZfw9hAobOPXVLNI25iwjBM+4DS+iAGjXh129lyBk9V1sICl0c9NFVl0wOBkxaAAZDKDn9qG6zrFljN0MK6KSJBFh6zOLMXSPsD2Gr0QX4RtgqUtdPRXcAP8Hd/iuZ1ekhsxbXWCjx32IA+WfFuSOa3HtNrGelAFtbvjHamxpVMr1n0zBl6nuzsI6757TWEsMpZc/XuEZvzdIMtW/tjhEPOuWOXGhE1Hu/OxjpJY1x/L0JSJtSDkQUVYOv2xT1MtC50h7EC7CjN9fUSXd49bC4FpMHDaS00NgAHW2vERaBL5odIUh7J5zS1lve6k/ARne5lSSFZzUyhTJD+veMxMEuFkxFgx28woW4zXCSbobUeYwMp5OWHFgtdCdMF3RK+GuDMJvXVH/fHIvT6yfhPTzeJ9k/TyakT9ayE4BZj7jDaMLqnPIzERiORkDYEmgZnq1IfBQfWc5yHYPFtoZxy716gpzEOASSs0EO8a6PHSWl8JwEuMLYa77wikBtHcS7kTeV5zFzxjaYxGYfPyNMGQsMoZsTkpuwzWG9q3sAzlubtYJ977mEcvxN38UzBp6iXP6fTEfxyCAebPZSSom+Cpeto9nLy9fejZHrUsUUc2d3Qq9yefmlL1F3QL2IXkGxv9Ok6Cqwxt+51f9bbr8XdVhQFetsEx5Q/vHJc/za1jYGbdImxICIesb13pAcqM6t4lPqMAZbtwzap9qGo+Ja7KVzfU29qfAwIMaH48oIGaJ0vRa7j+x122dxeMaFejztsv+UUtYNexReElgmzkavVEfxlFO1TYJ7c5CdUphNkWYaDbqj+Ibi/TojlmVWTOMwDLG0OvKoDTOe18vVKnnv5Byq5DkoLpQffPvxSjCZiSrWL+N59NhkeQTOH/ENjUxXsHS3WpuTEsLMWUzZxv0zLMX/80omInzRqeNnsWlsq0dJsoRjeY7Wy7UQy5RNQkb4B9BhydOO2rfhdtPA5o7oSvtgSanvmUnoPGgdjQonrFqvHQBiyiMaVP8cEFMLXBNM/1uZFkhqzNtGdwSeBVQrurgzjZtXpmYQQBFr095JYRtEHsKodPmVaiLxFVOANLjbisfR10XKg059TOUKGNEnhht5/H+8bZGTyWEf76qJltAVGjrEs/zg68ydgs/8ahS/HaeOMzDjbEJ22fmf25W376wj/wpS65WRDN4VTEmFkPqlbRkBr7GnpoBpek35cHs0ajm+6l5w2ZEcDOQT3+uWxUfjGMVxg9Pe3K79JnVTzx0bmQk9O4Xecjwv1VK1Ip2+EnMyNeDuK5z2ucQwWS9oy93oKOJDoLxuFOu9N8QreaiTkokxFxVPUTT2b89B+qKfkqjjvs+U3yVzybex57JJ5HpXZpKj+zC3QEOyKoen11JL1EyVnJrogL8KmTafmaV/tBFlTGcJuyrwTIGE7nR06XaAqZfZvG8PfYzLHrI2MwRvyHLnmipuIvogjqH0rf5qmMeF/fwkXNxDW0Ut71D+NepDqMSoVRp4HPdw3PlIQ8Y63LiuyprqGpQlsxtcboQdgAaZoPNsOhbCgiNiRqeV6CDqmDn0MGsVIpG00p3HmC8KAylLnWVVTmn1fbhyuUJmE6KcDeT8xjFX1BaJdjubDjEtDECxF/PY2uUA5/oKKd4fXViiZV9cJfppgreuMb9aWymAkWuxAy69czsRHe8UfAc5JbkEUpMRYvdebJq6SrQLEmjRQGc9nsndhEyNIoB/gnj5yHbcY/0keX/aKFA4YKBkmvR66y2xgWvYV2uSCgQm7n6yLjNdTo+wMZi0BdDaEbbwpDpoLbyChERojbSIKryZG+x8LteBwqKMDQ3wq/nb6btjcwC9s1j6wVLhAhHHL+mPGs/Dw9wPCONuhfBCXgDAS5rrQLHMUhC3ASAPZ0aXJ1+Zp9DxS3CmLGgjnMht0oG+wxAKbhMaA5ZGi1spe8jYiD1uC/08Sbxa0leVRlHhii3M24BSksWw0ie73EQCPsLNN0aGfcbyV3ERB9eqnLx7ufV0JXN6PPYL4tEPUD9pBix8dVy/DSy0CDCYnJ5386NQWkTKU7tZxxGqfE631FBywCtwZhNtktlwGU1jU/gxGjWZlGgPuhTMhi5FILn9fR8XqLVXzEPXwXY/s37HOxgWAc60uraXLpdgu8dHxKh+SBMp9aHrIp7cqDA6R6mi+mHvKldtvwsrEO2UPX3T7RyOHe2UQobaT2aL74SODX9xeL3eLgx6gYHhEjMlHxB87+mm1LZ5ExC2yE3dAWZkuzhVteQJ1Jhs9iqywlreYlGgP5gqcsxbYkMs2I05hRzpcuxWxoToGg+JYzUzv4qobf6jjESRH15tZQ5FyvQN44jAqsZQjyiXNjuO40YqIGUOZKmbm3BKf1YKRRgaz98oKAszUcfv6jEbfl17XkeEE+88wFFlbDeQY5JZMs9cwxMABq29h1uH9pzg8+fFeULNET103vOLAGdYK3NXPCoEoXXbUOxRiUfs0YI2EmD8je45NZzn3M8ATF7VTJwWpl9RGVOiCF1G/zUDK/eAH/9/ne6r8qfjV0/+KomfAsX1H9wBI+Nc4ha4eqLLcy55k/yYrB6G6Yy8o6PZTjYn+n4O2Tfez1wwD916N21KU5NwoKU3DvEBvr3UCCLKMT67LPZqDtTgN89h5xhbsTMJr59QKskqmXOcNKvbQnKgeR0zkLYzZySYfHPn3/reqqndq16Z5+CEXAuF36BfRVqvcN6TMZSL3PKFyYG9mLtXRs/yE6RMUetcISfC02E6ndrOOjmi+n/VeCHHHF8xCOvfSSP6TWwQz0RvSzzHG1pcCUUBenq3XPIsEMy1ZX5vfUYIkPa08ozaLPEA61aTW6gv1BRi5LOS2dvUNuTG2ESBG6nf34xi8WDrofZ7Kf1iPojTvX7pW7JqIZuC8dQZ+2+dsRljyCIt2ijk53sd0qL3Xruu4u597cVZv3JdWOmo6Y8HErR8cw65omsodbpGn7srxUq1xVWYCU0+6wz/yGG9KoQtPo476YBRmbJyG4KCi7a1UvXSVtsb0DtwHxVHbFJYT9VzfPy4DZ+VjB6u1ONYc255scsdohosNdaq4BVFi/8Ahu1x2LP5q6zPirXQL963DJgE3tT2eEgcK5GlaTtN1m1zLDkGuIxyuWLczA7v6ldULEX63HRmYCIEqd52/6CvZLuML6IoXGHrTO1AL87xJGp7+eyGBbu1SfsvAWX+xPzUDKi+MKiSlpgwmw9AHvToQyAQm6FhrXtzZMDRJFc4DQDbL24yNfE2w7i9Iv9aFcePVmaRjKH/uMPYFkkRP5T7EMmMXKb5+s+zX9FqCN/6f8pTAlxXqHbREZEduuc/oqLtSwHG4AzeEASqA/FmvyUe5AX+eq1NlwIwnU5MyYgZYXAtqLlKQT+GLOXD4ONrYb3d81neIll/WJy1WqDxRbdBDk3oFViHw/6z6iQ06sDToXlG8R8j0BYgJmq1KLNKuTvIWsEU81KuPsJs+cx2Ib+1iNJJzijhOa+zPXKKMjhzxzFl744cdOtmaB/xYIkUv3kBmWxgUkdHv16sy45r3dYq00FVaeJX+6gEyYvGZsJaBULtbc1MDHIIJabAlOQy9QF9a2tofFzPDun97yfKvyklYbTNCMXTy5bLIzlb83AXkM8y1pi+mkGrytuDdBeXwczrXkLFBVdWmyreW3B/IlNkVv6x23WPQd4BA77dma14/xpln3ECajgWeiEkJBqNpLTDWmUcEkCzp+oeL4bxUXqE49QB24UWYwW33vzTqHaaaVKXy2u8TIJ3zoyDorLQdPBONlH355V4ExsIhRxlI4N7m03nbh6snjd/5PFvgdAhjEUNq6yt2wVsJLVJa4NIUc1jUrkudEWBGRr28tn5/K9Zj9PKvmWJ23iJeqKT0mYo0tjpGvNUwef/dHdvNpLLFIA7sG3GmmRLkI7FqCpyO5dB1LqPEUAzEXXhZ+ZBKSj9zYKT9QE/R6tMwJl5wxITbMmwv4mYFzp+G+LkyFagtdhMSdnyrkmTalaHIYXVQmkrbbzIDg29CvnQ97z0Enk4pKPhtBLAIvbZDpGYNNWbCr6szfM/RuGZM8B4MVygjyZx2+IWzyevVrKAK8Tc5rI/bvW76LhnkDSOd+bJsgaDFiUk01+3okfaI8v6zDyh4Iv2rnAGXLmbz3nGGMswCQ4YQGsFxyb2iwiPeEYCPQSNV/KLwZqam57GwPu9weZhp4j2Gnbqpf6x0yAdw0vTmAl0iNAe5qFLlzZH2aRYs8adN9KIGeF1Div8JaHTY+el5sb1U3t+nlKM1xrszfsLD6t61OzglnRYHaE0h2EKnl1O7C1GU0GoypbcWOxV6YSjdNIAo9mYqO4SEJ914v0rglRlcd0ssSbgWJasJ6XFQDnIl4JA3wgz+69t4FD54CsIZxm8a8OKW8x0NsVyFy15W6gEnFfcKn0RrpF43gCeHfYBGoyw5HM15HL2MnFQG53x4rcpRGMk+4+Diu9CIcZeMy/2/zsw8Ux6zajdsM/FltH0rL71IOJaQ4KLXF2bRPaJqvMAPOkOglLQFUVLwemQEbrLbHipZiL82URTpV5feuEO+4PyivM2Sor54XhY5lAEw7k1FosD6+OIsPJp2Oa3GaCPzbtdP8MQOIodWyFuibhhTB40gi1RTQ28lMK3eW6DWnCoayP4hjTtPsfv5NdoSAaMf88Az+4e1KP4uUUYgN8YB0n0ua6DlBPGZyxJkNCydiJst8KEmnXDZO8XmKAzzZAAnb4lcHA/2powSpkdhu0+vxsCYkjB5K4AQpxXPVUKJowsTN5sG4vH0xYXQCTYAyExoNlO01vZ5Pxbk4FmuQNJfN8frnTJyQm/WM3wJKATs8e6wEEpjQPWWqVKRoIlZ+ez2v8Cr4Mr2wf4c5S+uy6TCZ29XChPh1aNHtmecInRY1l3r7SQdQLM1L/W9G4yy+rDdKk6d2exyw7tIy1syM6UepEgcSE/UZef3S5JhQj0qBoN/wjalMKZay/zfMv7ctWs72l7wkP9jD3v+N/9BIE7bAz/97njYXN14ovJZhaAxGFCK/I8sm1abugAdFaoWYYieN8egGlbaVp6TuS3fPScgwwpQ1rhVc+FbN7M+O8RIaGj2M7EGIg0L30eediRFLgrT/RXJH6y4Ds0PNePrnS7uc7WBek7eZPWv9qE1JHkhM6RqzQdkCfV8DEyeRsou+7OTHjfB5l3W0CMSB5XgJmRCetXTgmkV6H9tOGdHx10RFaD2A/xRoT5MP3LJc01rtSQaYWJ2rZXw4WXF6HIkBifN6d9ylSksIQEl+APiExyEV0X7ujUnqXR2IO0loi2+8GmOcw1AgrkXcb3FebREer+sTT25izSvjq/DSX3/6mUTSdtadFUonmRYEGJbmtGWcJxuBzAMKmDt77j75H5eCHwC3xO5WygmYZPGmcVda4PAloTaRHUCLA7J1SDcNIKPuTGeYos/mt/mBmbq4PyPbEYKR8J3YBDwYQRnlgjgqMN0iymsKS0Cxshe1EoAfyMLbFIUxJyBm3Z271Q+ssjNm7+4uagqRp0o8usUzu7GJi1n8K3Q3lP75fU2JqJgUC7U8wOshIX5ehObgYRFintqG5T57v0s8ZvqkT1aBBW7QOGc4nclGYvhIGGAKJkp9kAnty7eLPWtDfi6/CBZB2SNvdozFoHNNi6CuYbFdBVFqNAPouhFTARNSKdhn4KYAOD8bB4e+T4f9ytKo8I9A1lYogSe8/AuVi3LPQqVP1v/aL7d3M8Nv5U+9gOUwZKVmI7o5/Fp0oaFbDgyz+Wj0/NltS3/3W9sEumWS/wdhBiroIcBByNbfpUC8dgw2ADoGXRSptDwrKZ43qQNqpOaQOoapbFbAqGRt9M5/TIBZBoagkXw6IrxyeGM7OXjt/YqI/Dm//7cMpxvYFrsCu3IL0FvdbZyE88tFz7BuiNMAyshNIUv8X3x/KZXzKOZUj3UC2AbMN2dU5iMviS0a1bXVVi0XPFzLo8L11okeHq/GZWLPMdKbymFsxcdYudljfKgMOTSYaX0HeFet9KS9LJWrgl+ACQJf6jzWpziqEzRBGfhXcxTfORG5a1KT72BQwK8PawWcsZVLWcacBrAVCBczIW2qWOw8/yMOEup2XgR/LDWSx9ytfs18YmEfnbNd4j7q4skIxMRNyeWWScjDHFuogRqKzX02KgoIL9MXDY55QwpwlJfFH1T5tow1HtXb0ooI2pqrbIJFJTpzI7qe+JaznVrZ1OWMyOt3pokLnWpAFR2jySWDAVR7EncWENfQLCM8S3bb/w1j+owgV22WIY074Zaf6WXD9iqAQ3vCIegnKCQCto1trGhyRwzvI0+
Variant 4
DifficultyLevel
462
Question
Lindon has 18 pencils.
He gives 31 of them to his sister Molly.
How many pencils does Lindon have left?
Worked Solution
31×18=6
|
|
∴Pencils left |
= 18 − 6 |
|
= 12 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
objects1 | |
frac | |
name2 | |
objects2 | |
who | |
working | $\dfrac{1}{3} \times 18 = 6$
|||
|-:|-|
|$\therefore \text{Pencils left}$|= 18 $-$ 6|
||= 12|
|
correctAnswer | |
Answers
U2FsdGVkX18yJ+JdA/yN502JiFwDmjdYkghT+hxAeEyotbQ46Ep5qngTkHH6mp6soMql9veQgsq+iD0teHyIhgOSg7qZRjoc8l/NhgSZVDElz91v0aGoOIjPSgwD/ztsLoet8yBdhSZXRwFlAjvYLY5jwzdFFUau1PmoggbLSw/dW0A7oPuwHrcw0LGtcY4wZx3a3CO4vN7ybVYhQy5vTAVPijUxe+ZYR+nPtqcsNXN4z6gcnbjXoIY8Hx3+xpbRD7x5GRi4QyoPE22jLMgiuVV61s2Ok/cY1T1xSQmlRe9A+leaAH2g844hTpE7uxuGYpcV0QhlQtzqFfCsF1q4SzCdPDCpavTF/udYhfQHZVPVW4VfBCk9d8z2Ijk/Ct4BNagCF+pKJDcsw+N8XRLRVmb5g1lPekpXCiB8TnQ2Jw7hIHeAYVC5tqmQZX+19l3wf9XFtE6On35fqujTAlGOSfj1UzvpBCZJVQOjrP5E8K9oAQUWnUg9lQlBNVvt+WB7zpCnNmimrw1G3EoNQWZheRd7qXDtYTE69YoBUY3FBKtzanERxJ6mhBs5dFR3ZCujZjFX47FU08g1qSVF/DqO8RlmdStd7B7BIxCg41ggn953d2uDLh/ZTGzzfvcAqDGkRYEHstoRpOYoqhW80RHgEMJOj1TMP6Ym4LPGri/owXn8mhxecT3OVh/c6Qy93rqHnQ3xLsYvPkN5WegY+wV0RuC7Klvki2pwScjjaYpM2VuPLIB0HvDF9/B6F15MQZSrvv7dC0WuriF/gaopVD9FcgMIOZRNQr+K8xv5eJJCQtwAS0sOVBNpVMXJnSi+lXqsct4ngr7NQBQv+EZLdWUtzEbrW4KAXne5YOCJdWWPV1s1dK7HGvEaxpOZyPOcp4jCO0guBKD9JykzcKG4ISz2fG6Qqr9rjehf5LrkaPF794+0c2xZGYp2QRsvTW77TGx0OKDDkF6YQIGsyb1Ls7T9qiA1JGNjUg67HFA3HXYb7DtP0MZDV9fZSfwM7l68O8sO6Gs0pxxpwSKG+VP8lpeSKUAP+gaagi8p+jcWzFFXuz0dEy1VnLQHBgX6Q2OZi2HdScwkuoTVdAdjcv7ip9X7r3fRPGpo6S13L9t3HFUT47+wUii39j1H4JP4fOgAUsaSinxlRgSa/YejnsdXtf2bisdDvz44NYP50rwr62OJJCWlzfJ4K5QE7LuAaMVkjlzlkOkJK5UJNtKqMsUlGRfMvWLP+p58+4IAee+rCrgGVAlxgUilpLfbjdT3VxZXbe9uDoWU7YOc5DuQ/qIIuHYvfSaD+o7iZyq10Yq11Yph/OfNSqMMYwMKtieQ5lQla1XVDh2rGnOgpItgHaqSKKQ/pmNNxbUsvZ2lkncGjtBR3zn0Jr4Jj6v6lucXc1uAXAsDr+1UQgbKHd2uX0x7vS2m47XUwHJ8irhq14AeRzd2kHjwnzaTGMXipzLae0xc+WdbCEPBRFUtnDBJrmdIqgk/tPLB9/Jab+h88ukI0vT0wu+uxSPTc4cVBXJDTlbf0GZxwz8hXWbwYKIJjGukCFE4VAYuUFUtz+CeOij4IUXlkmurBrsvtZ9uMiZ17F45LMCWhuqB1o5vVFGIdq0YhcSXYy/4c75M0v2X+zkVUu0fRXbe4NhA4oJD5FQSPAGxNpc3ymjIBUUkUGIijUuhxI0Fb2VpqQGBwv7znKBNGgdqIZYk2PEAjL9D5ldGmLkC9WknAdO/xISPcy1htumYrxydL9IBdBnz4asz1ZQAQv+MYtqpck/cFH4ATVZlhgfRVxIFf9MWBun5GfxxqfJkQ+GUFGW0zEMOnHZWWq8mp7eV1R1hVNhUOUgU1gdvAuFOXmiO02ny85s5AsdhwJ01DIUs0mb3iZ7lelAO8McnWLc8zPJ6vqBEHmcCbbr5nKC5V9uWIr3+mw60Fmu8QUqgAfiAgnRYgziK9KdmXSb02agQpQ0+P/8F4LmWVdwwYse06YY/uLfFUp3e3Y5S6xG7SERWh31ZF3P+dpw3XoCNMkOgElvsa/WVQBkKAcbanH/gsquGQrL80EKghFoyD1RDpcooYtcAu0NkJ0CljJI5z9gBBOwNSk6OZUIRdmn5x1NKuyMLrak4wC9sIPEl9KR1dmluqB/dKrbI+ybYB++h7yEAl52MzMCa3t8Y0ro9TksOHZ7eDHGqZN6ScLmQavIKvemsaxyPrOBtmdwy8nOZKlVSGL+9HGIPyn63lTKEYzpbacQl9O0zv1MFWIx70ggXpv9r99s3vGI1f5e8mgme99V369lLCuGD6jwUI0Mkd0SsVrafZQ5YqXZxeuvGgyREbmpQFQlYgpfQZRd1P1pdy1L8FKfl1Q87Xr8hcg3TI+C9CoTzJvt4b/lciRYQ0mrMK0BCZbp2vJ4PL6nU/5aLCEkSxSM3wyysb6rpHh+51anhJXksh7WuaJ/VSuBlLoSXvl16AbomyzPexZfObFXob/0W1XEjsFE473zZmjwBrsD0k7T8zpvMNW65xfmFNfpSSwqI/O5bNpReUZESNq18CRAaPhdjZnaZyso8xt0Ju6AWEMnzspP+4LwqOveSULzeUmuHWsupkCrKteh1yzT5RsAiMeUhBfLUjCqEUbnrJDeskHxP1FbkXR6h5YWI2b0DfKfN5ptHlau3Ke/kgFZQxPr5ocOWq50+1aElOlT5pVN6RULxo+b5JiBy4C2mwTkQrWetWXaX01rQ5Ddplugqcg8GPSRwUHbD40jRCfJJT2gZAzXyziz26+Emad6RwGchjv4osJC5Q2PzizJOfnYPVtYqk4MTAZgvPJBWRjnd/FmSXNwWE7U2SKuB4Pq8mKULzdz1DarZl5t0b396WRVMULDCv3Yr59OXOM2Lr1QBtlVo8MjlVyp0Q9Twb8bQ3c97ebf1X93dZ3IeoCCEo47ndjEVLgfnhOPE2kjrzUfrmX1cQ27RPIjo+dfF72u+bw71HQ9c/kyUCNCkE0gOE/qTbeQ13o9gNtqndfGYTK+XuNnFWOHFlMBcgKPd/iGENBKWYFkhZyoOPwVSb1ttOyX/zIivLmtIdWNiU/mYyb670KMlnmUhW6yTN6nwkudGDoGbvaUvz7cNP+5uyz+fYKQ0n2knx+MxnLBdV0AJfT5f52pe4fN6w4TEc7KJIVNbsvuV6wiLFkL68t3CaGmflwqcUBfS1yyaqDTHo7U5aaDGvvuTms8n0emXFoZrt91zMWIAoqPMxU1H9efQTCleaTMKdeYRb/t6oC/FH8mTFoaHMcp9d4AnSpMwOsbwhdGEbJTkq1RJVSaTDQOxnZAIhDgxcRekN5P2+UasbR8m4cEtWwOmzf4730Pkw+bEXC7vV4M8l2Jjg1zpZBiutlAstvw4UcFH1iL8hKjJRy5iGa1JWhefQfJ/5FpxTTFOTl0ymEsorxS97/szJAeocnxlyWA5PmiESnO0ASipofRtMMrgMnU3zrIt1BwT4cK1NrT4RMvvymevunlxGSXEtVGvy8kWpOoYwwgtD+KxlPR5JVRdyNntVDy6vExZRfeEXBy0WU0wqkQPcuHo6zG1sEAqsavMIgte44V50+KjSbhmUN1/0f/duZc2izZnVk8rVgbCXVnxlzCj3CDBqgKFgMpdRKRdHPOUcyrCgKa3aRUnHiVf5p0MvTIEoELU5m4pmEVTiDDDX3RON0odoKZCuryreDUOuRXpvySUNzkqW8/jIaa/vk3Q82hrzZgwSSwwZq2tRhONb7Sa6aAmZOduhfjSHMCEUP6GxP5+8UDSA106LN68ykAE/1uh5Bu/t6Yu+N18F0pElsIO4GAre91YL9nzZGsjcfXE8LkBDlm99kRxxz4Pc9vdkLC1O9N0mnsdRPDRTE0rDtB816p2cNCD4EPXji8wMtg3RicxcR53nGfxHeP1q0F1i+Bz3pXk0FhhiA2kzxJcbwNkyvEYbrM4Sz2dZWqFdZlXAUg45H04F3DKjWRiLl9yPUDMO7PDjLxXsoVhl2URs2QK8iA24ptqphBYWLsOgWJsZbZ6wxe87hwb/7YT0FO8hsOCsY+D6foIOKSW4Bv/URH+D3Teibeerz9CyOTMh6n5AzVnGWnf9ELLz7zpd5I3tIDAJY8MHrQu6Cazcd1S0hP5t4knAXhvY6GVYdvN1KlfhGM4nLW/v+bTgt0RYT8CMOqRD1E/dlTR3pgwWIWBlS7T4YyQ28wVvblt/hm62eE+mDN2X9K/Ii9Hm7z+KRuSw6RGYdWvfJQTjBnGhBKHadTL+EMV95eBTGCYhE4J7YZ8c+Cvc0yPAuVz8m5Je7EQa6qOvzMwqnhMe/i5PbpNSMMfO9zPYN6l4KbJtRkTUkyVUoqEst/HTTVJ0B6EzevaJLYvP9439Pd3vbdZG2we+jK4D9msydLoDJkp7EBKjN5Ad6UKthUrYvcICCc5eAafFqtkjhj7UOli/K29uJbErZfKIu+N6mw0ejuNfgMaMmubT+fL1UpCFBh3B96Lrr/I9siNtMmx7iQSIR2mnd/SS2rf1ufy58glo2WhgpGOch+FUBfS5WT/nda7B+tRBvMPW7p2lnFqWGjYSkIKb590od4ZsHGgJX8Ee021bFRugdTdziGRTJELC8dTguPlkSTO3KbXCbkNAWP4R4bSYPv2uAO9Sj8LPa9QsrXjHt7y4BhRWWm3f01Jd+OU3SvHFqV5KAjNR7WJiKHATdwVDhxZ0glkHOREfWkQUnJYgfxy2dT1KtqE0bi/dloBYThqeX93ImKKtQv5BTswh0tyfV4smpd7PE89pQywIeLou30YfZwBNvVT8CV0K59aWUz60QWz4RUbbTvnzZdxs6h3PJZ9vvKcoNdNBL4xcJGIif2d5CtC+nV+uhr/6QeS7bFhRppnVEEI/glbg4kDvIbK7dgDv8ShArHdmo7bC4LO9eF6wgUa6BmOWdH4V8kn+7WWbdL0Ft0ug7Yso44+qYeU/xWyXfq62QCJeis9DFF/qU+edG1KFuYr/bEnvgdrmtnpGgc1/Mk8VqdvVMv5X8hQutpfbSN9qEGIy3hitTdhWliQkJUCQHtpN4nXWRF1DGjt5KSGQTLIgohqIWiHgs/IM/x8z+4HSnQAyKqpGbJ3p72dRNlZwO2sKb21lHFlmOCcMJxSSeQfcgfLgdodiUFWZ7fuYmLUfINK53KQB1lHZd+ch1vJcaPBAYO7MbvhFHo3IHuWFqxiRNwbOK/U5xeHkJ2Ox31utna/3XP1W/KooQwbyHBj3hZYNq9NCo6xWu1oPSSAxSM6KlzZG/6+i8mH+nt5oOduOYKQKebjdAAPIjlALjXtnmqPBxzGfBVwMI+Ou0uuoSez1EjaKn0jZPc0hl1qtBtUB1PlPy1tA8HsqEVuuZcQIKT1t7QkTl2y+XAR05LzD+3l1qad6nU2OL6h+hhU/N8i9s0fvXtiWyfYPcgcp1bA9qqmS5i8jEcQ9V+C631rVoA/RefMy11fKpiNZCmB/5sRi3J806/DGWE0ZM8sgoyWwjFjtuA7K2lXGuLjAfm26NZIBuTnVttQwMgHywmyKrsgPF3EvFporeWOkTtpxok4YeEGCDdgaELl+1wibZ66kCMoAvuMarxfi4/oryu+gEpq1hoNA2e3zndevLN57F4aMnncFZjDSfv0gGsC8ewrLXZ5HH+oZFQNBkC+TRSR7JGCDSUn9epE5xEpOR6JMsdfBM9LlrEsldwVjf4ZBt5veDpkmCvXGSkLlbdfRdbFbzsMy7f+XJ9oikv34aFg81JdyONRtJbLRXdHuGjyqdXAkTDs56B14/TilyhQAKpwEvo7l4OlZ3caXPTt/80FIfbXPEmo95C3UYEzlt/ezoRcbgzK8P/gimKQzfp5jw45qKgsJFMQO2z5tdVrdr0jiKbtQ4pc+ZuiRfidjWtygjfTa0usawCGwbf91z2YQcbeO5BaI2cX9xBfIY0dUWaGsJDyNqTG2rbiTghFmPseohYemJ1qoTin9JoL8KG3/+2+FXWsq3e78le2KMdybWK/pUCfD08qhIzt25oEGYsAR4TXk3V71QBQhmKr6IC5wxo0vlAAFI56ClBj7bqt8Euch536GFCqQVK6oNtD4LfJnFMTHOGkG9BoGXFlb3hW5kZVFm04H4pk+cBgeo1ZBELBjKS29vnY3s+c05ixfsYGjc5mDB0syJkgBIqROPwjqAFdXe96Ob/4MT9pdeeb7zEhSutf/4oTLr5ES4reyQ7dJmrLtKIB64HS0ITVB5F/DjVc7ZkVzSTjk1geZ2IsNatXI3yrij8KubwQN3Tu1wYMw27KO9OGPDLXHvO4GsmphUZubnXASZKfA90wcmN0/3n2hGdjCqrg2NGprM172cb0Qi80nWD6yA85CpAH23dt02yGiA4GmLJn98ZlFNbP2g6PInxcs2sjIEfE7hnn9sv/GQZWDUFC3PHTQlYU8tYMpaf9+P8Icx5Pv4D/MqPe4Z2Hj8FVPcPyohDF6Q+A86lfoiGTFCvXvCYu2NgSvdf6PcQWniKe/czx+I2dnM9oR7Dmjp6JTfQ=
Variant 5
DifficultyLevel
462
Question
Ali has 15 lollipops.
He gives 31 of them to his sister Domi.
How many lollipops does his sister Domi get?
Worked Solution
31×15=5
∴ Domi gets 5 lollipops.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
objects1 | |
frac | |
name2 | |
objects2 | |
who | |
working | $\dfrac{1}{3} \times 15 = 5$
$\therefore$ Domi gets 5 lollipops. |
correctAnswer | |
Answers