20058
Question
The quarterly cost (C) of {{sport}} is ${{cost1}} for each session (S) plus a fixed fee of ${{cost2}}.
This can be expressed by the formula
C=cost1S+cost2
If {{name}} pays ${{total}} for {{sport}} in a quarter, how many training sessions did she attend?
Worked Solution
Substitute values into formula:
|
|
{{total}} |
= {{cost1}}S + {{cost2}} |
{{cost1}}S |
= {{cost3}} |
S |
= {{cost3}} ÷ {{cost1}} |
|
= {{correctAnswer}} |
U2FsdGVkX19hC750xf0fe8x4rR6/ANx/ukuUvln/cg3BONr7bjxdrGkjcJPSgqM7pZcnq+TMIgTOpdWf/5Et+2a0HN2Tzu1vK/R40aAD0+GhsQCa8Bt3YjciUdhSNFmrEwqGu43v3y0uzQAkRmp3bQ479tCVC8sJoxc/Y3NfwGdDkOSWGoNFe0GD7E+NSDzArlrKd0FJTO5KNBD80QR7owETW1rAVkPVf8Frk5U1PW24ioC4TL42sIuYba6gDfjBnMeVXHKaUdIWTVdkstZOO3+wgRsOcQKhM6cnAMIIqMJI6OUnYDgudVIG8ga3XPAQeZFGkaFxzpxSiBq8eJM3xpQL0HCmloSXclEmbfI2MQlv12gdUqLerwRBlXW+YtGFRyDIBQa0hDsc/+uoETXpMwzsVuflNyeJ7l4Ew1lskSQdfvBTa3bRZ1sBzy034WuBFEm0JOE6u1nL4UytvEiEE794fhRVVlSoGer7/TIg5Agyg6tdvPI/UDosvGu1e4CuNP5yT/PiNGcm782aFrRhmXMNbJ/vE6ktFcH+3inwdisG5mM4WcaH+qTPiSAl0tU3sShZeBcwnPROstlolN8DGxMO6W7t+BReH6+r/UJ+bpj8W0NJmqfxe9Dg11wUxPhte55tiUUTSTuRZSSfbBCjwU2XFAeqGYEjZ3InOPVSRsfg75xu1DPRvWZXO/hymFxWywwSpS/kAN1dokRJberfpiyahkhZxidSU4UnFAM/+hC3tqZA1iw8UCMk3drx5Zu8542w8Dj2JLpbcJ4pirlMpZ7bTIUU3WU42/V3O2HWC2J6X9zRryVbK0cjolpM+vQPzJBB+frLhM7JSdkukOs1QCPNeTkMagSrWcNzkBycN0C6bFRYF0f4v2S+EI5XIVa62qcIEqTVjrHQZ83tfcHR3CsE9kOJ/EgAOPWsAJSTMKX2X2Qc8aW2QG8MP/CvM1duBlkbYZAcNv+P+1goYWqDD3Iihf3JTne52q7ixkOMosw0UR7UoBUOitwR4l597c/YU9gcSdYENxjViZ3O17vCUteGVM2oqQdSuVR04ioNK+6zMXExz0L59D95sy88qeRAblzAKN8L2062z2Z1i5p2Vq5Hcio09pM5Hdm24j1xJWmZVO2yXjrgVh6zlTYJ8RYa4qixJmDa/J/OUTDBfMbWaS2jgsdOxEgDUKO7WoL4mOIet3MHAhH2Yanp8nHVgv/Ok9t8VB3Q/KEMsvJQkEo8QbznzcNF6Coaf5/fmwnVisA2Sw79x0MQTORqiAoJAtUalzvc9bC4Dcc5fNKh9/9poSFfbkApeVIP6QorRfNbyqHhvtTX0Xl7IRBharvET3IuGV5s2lL8nKLRcByiHPeAkxgmwsvWVm4Ht66yWfAlaUhBMMwRZh4rSVs02HjP/QoCEzKsdQcfzilLJYrJFJImDb2QJJsiZxkRR226UmhYaXS/i5yfAOF3aL6yoNiUwz7sd0mU5xpKVyk81a5Tm02Roee+onM/9g2AAkSTX6pQUGgkAsDuowjFrlfm5h0HDcRFwmKWQiQgI/BqiVZFKUHszPkEzux/z9eMU0Sg8Wx9t6PeEvhOkW5V4xh64VxT39MGedRWxS8IVn0c6jjbUYYYvgrxpIn5FyIIN9f0JNJ4sj7xRuXtJ3hUXrof4v0PMGK6rUTc5khxBrG5gBJ3M1iGLJlcPI77KJRxUpzT8WJKz7Qrav7hp42t2zK/GD094j61osWLSQTNlr9esq9n51sc5LZM/RYuMqUokZrBi3nkTP3Ue+e/RcmvEmbgC4Yu/v1CnyVDeMY8FZrnvAZj/O1TPQneO9nq3UE3dHld80jlwyFKdK+WJtDrdNJqY46pHsdByXbftwjQCeiZkx/NzEQGA7gk7fBYZi1NmZI61SPGeenmQl3MmmbxrsfOUWLLyN8/J4ogsYmHrGIw0moAb6GyYRwbiLj0Fy7KvCIAa/XE6NaYcgptPKsaHkW9sq4fkLmvkPRVMmAuWO31k/X9rO79RsoJ5LAKHH0cIUwl8FbJKWGJtvCjK2+YSVGz2ASUHJB2B9+u/41I9nMQ3HnIUpOUwJyYq0sNWpO5i2xoQD5u7PDNrMw/X9EF/jj72Uw7cFV5SoBCH3g7DcdVfx3V1Vv36Klg1nr36ctMzkvNApQeLnc1kSaxr7bTf/dRhORd4CSAwNx8RnD54pUXI3vIAA9aYZLMGrHtGEVNJqpRUh5moLEfU2FdmYhAGqy+pAh79q/bFqHdIjvNBPmVwShnWUnDr4y+WAgHt7qiS5Vw6cYSrAcVYXo8TsKXn8pl5x7WQVZcjXBklL1uchE1EJUsJAFno7qPoIRGq7ttq95D4aVjt6Kd+a/TJE3J3ujw3A1TnQ8AP8It3n6gQdr/kaHBfaPl4kTOhCbbmSSLLKMtuWOOfQZmkvhGTti27Uo3ZkPEEYuTaHhntIueFrKecn57K5+R0Y/7Z/uqciGEHGMG+5yUYNLJWQygMtgju7zDjNJLIMyLL2JDrRegKcdPXzp2DaqmAYuZmSvdBMF1HtoDadg05uPbTeCtYoaJFSP8mQFSgFJlgm6SyX1OxX2oT5n4EeU6xsJQmZYVlO09jA+InwVTf6vnZu/pHwZPiFRZDL2C76McGGRLyGqkJuqCSRxiHy6ORJvlAawoAB7E5V16FlDXmG5GjH84Mk1T5vGI+m2+XEu0XD9ipQT/b4M8//mPIrmCFZzYe4Mlvp3pn6sH9LvvItKp2l0jjXOa06fyqf7JqNG2GFJPucCU1VURgUTBi7DS0sULJQu7wcV7vFsu5/WNg9wHrwtopDEZwLeclWOTdx55ycSAU/aZqT1q0a2gLbxTlxSVbgsyUbeaZIG8oYMOJ5zlZlhyQn816QizEl8Mfst9XJbk0ZRN0oJPS5m20jhhfXmo0VIDgOWZWtXWaZMFx+BFXLDrNw8nRLDg/HHze12DUTSkNkuBaw/UlegbZvxzdpOEZtvtNPLLw5drEqhWCwFsWYGodCIDmqVzLhqiB/JQuAyiL5x55DxUApUdQHFrmoO4e/ixt3P7NyIq5ieGLy5mziylqxdgiNKhHbZuczWo9WNUnlnSEM/ZGlJ2I55mzUfE4UBV8KvN3AHJblkYOxqjWUuGmKQhojy27BMJEqkdiJl1BxnScqn5hOniJkb0GIae2vxYG2tUTDeuOVL4sFF7zoMPZDsSUW9kD7GFmTgehwW5sM8h8LmOkBz+EY2IJg9ekq/jBWQhSXcdTHUmbZM7E18E5XFtk59JFMJYbYB8EmBUaSxIIlD/TypNoqDDO2f69MvGirAWemW9sdpe6zb0AKnv96fQLFzeNms+3xe07RrqH+7RHbHIhlzulh4sBqAxWJwhFfePw/O5F3gFlqa8QJuStrtYUFo9bgXQiBCxFs1k2vITbiJ7Z10rnyWg9iflwh+mCu6UPkBQYhVW2Y3nNpZ29FnmZ6lU+ZxBJ1Yo6U9c9oN1pE19RPx+IervaT/Z0OHKoTPxMtci1rTM59Nq7JhHQtmfmU+qx3Fjqpzlrqpcz0NQG1R3NrDMVPJehWCB8rEAPyJo82hriNcS47Ie1Q3K4wvC2ukfI7S4qF2TsbsqjtWKyrcmMTgc5t7BrT1lDHVTYMB8FT8Bcn0xcKWMofkpv7ZxO04L8LPs35rhw/TehjiCK29gjlzeb6opxuorQH4ktVRHNe664CmOnR4xbU5PbPdfHWHD/QaqUUvPg/m5HvKJKT1xjT7I3aHIzB849kKxUj4JZ5+7hKyatElfVld2i/0gYXiuo1dKEASxJUCA1hFE4LH7Q3hH0bJpyhfPrnhDoP9dd/qlag9SSNaeJquOFgofXp+qtaGYib1wP2Lwy7JTcPtvKvQOrVW8RavH+LUBS+u4zRh9enqT1nmjB0LTtKLKNKVe8ez7/wHnxgVLJHeaH7XvAA3H7+9ZpVl79Yow37QcmJrdRpCLCr9JAW1D2wugxTN8h6EYx8eid70E3fVqpszNJJ8lJZ0Q3uRQ1GmmAkB4qO+dGHhxRUzU21xP7oY22gdtA6mCDGoHVJdF+PF3dGl4vIaD+cTuiqbMaEwmJZ7JoDjEuMW1eaXDWixSs4jcLiP+LSOD8s2EMwPZ+wiIueWS/WTKk3XxAPPvGHRV6GuN+7mzsMxL7UdBKVprWkROF6bi0+2nTT8RWA6qm1ebv75MmguTmYZa0ZQ8rUrVDi6ODucqzQhz0vR1FTONqZ6mvTnmUJHkutjl6qt8MlpgJzz47oj2pr1Dq7lJOPIUdaHKwT+X31yTit9rvaeMWleiQlyRTZWGo2XUQ9rm1QDBbbBJkhv2j8PrYj7YFbOf3wyp/Rek9YzekjovpwBNp2uN2RD8w2f662REEg3RZ18LtWUYpnNNKkgrZKuW6FDA/3k5d5N0lPksISbNklFzL1FyZ08bjqvYUksh8BBl9mSgaWHfhWYrNJUEPgiQ4qboHD03cuhRfZc2nnabyo+zzvmKIyCLYULiyys8j3dqpw2w7S7AyHn/aVOLCO4PZ28I+ZD7c4pY3THZrT831qrbWU+6FQjk1mulPWivLIYoFewK9jT/ahff4goErwG1Qg9iyMkXBalZjVxUGBNKNPCqRC/bpu0WXA4XxxvsCSvCbTIi5jVLBU4Qr/lQP4wBGkEmnP/km3DV23V/Togy6F5pdn1UDuWYNZ1E90RfQx2l/SJPi2u8PcXATcj5SZ8B5Fpl9cUJ39H6xLNpbUXffsJHm/B66tmOnA7poYO0DlqsdzCgtuJr3H6tFcdmoGPsisI4GUQZSNbVken7s/G+wiGjA+wug0myeJoZMuLI+T9Yit1OkeGmMtzk4GeVdHTibCzjB2HzlynOy6TpJ224W1UehDwLx3JGbDQEgw7XKrTyTIjy28vG+suRetx1vI6BH7Wv7SIUjXxslzc+gcIQavIIlHnKLKQjaJaSKl7h/2SD6/Oj5IcNYPNqbBPRuOFe1tnuAfKLPhGadyz+I/NI/4HCxBQXj50vu0LUpGIR2c5miRo+a6BbJJvoDrv6dIN/x1CGazWDj6ekbRsC6aN5x+6FxqcaeThyh3N1fFIk1sl8lQCZcWk0V19cGl9vZWjbsfmFM+6Da9y5pk44aT3hoG/6bgF+mr0rtrbW0tvOGxtoAWtkqV/GtXoMP0RduNlheKaEx0XzuOhyZ/jIaYZucnPR8Iw9WBQy2oq5dlVP2BgRzH5CBaWgXdZosSkiW8uUgks2UHhxkdwPplQ6tOLMUybd9k0unJ8GKjasdvPn6/WHom7msGGBkHJp5WpN6grpsieB4iQpUgL7dKlqqqQEJo+vWNTf6VNWwUkZHmIn6WnC6FOFMVACfhwBLJ9tLoIANtxPo+1Mi+dIjCOrmYL8BvTBOg+l2XpX8o/uduMl26r5wyEiiCR2SB1go5kHiCAC+z5De2g58nQ9OZp2mTq8Ks4yD8LuXqukXORKTcV/wzlSCaXGMf6CYOL1K91SbqXvmk9T+yqXwCMnpqkKQXWsxOW2r9XpE+W5c5pweAGah4CK13I+bzocTgu2ohoeUi1q3x5dF0LEdpRENozBA2z5zfrZJxbBxdoc8TRgKL5vo+pmFTojAQNZMqpzM/4GuYBKjeM0h4qfVvP+Q3CgGbTx9wGjU8uOIxij+jkxzuZoYbPNEXcWohS9IaI/BYPeObmhEzvt9vx7DqjtVAPA3F7J2tN19cd0ZeCvm6R+uTaEDqrugWCYqzae+EVysrt6NhrDylp/GsddKBwOag0fOf/NCm0u9VrGi8uPzTDkFDxU9MPc14n8EXrEbHmCGyH7ObJq73Ggs8fXGWC+m1lfBzVpon2+5U9nB5Lq40+czrGig6Ot5nFYZfxCZRTDT+cBf+10xaJNhvLuS1hko4dBmcnvdyp106NNNqCInPNx7O4c+B0ZjRFwY6UrineIOw6BGBhXWKSxIk9fBV5zd15c+1F7e7omxhCDIxcpbQT9G3CZ8z3ZUFxUOvS51CEs+oZIMwizqGytCfggtqA3gdAK+Q8cAr8a9ho+hHcI9GuwryDJT0tgDLD7RU5iD63nuvbudaCHaQs2EdDF8MAMOHw+tkHLEe6w8zwVU+UuXaVf6mWrz54pvEvQj7PMI4XdkzmgZKhoFDEUaoBq+IxyFNjnXnXWkcy2mzVK2U974iS/Ab9Zz2GQlVeVTwgjsp4RH3DooTO9/rQEvINV2rYlOX46Vi6x9gwqxMd6sbUzV131MldZ94pVFfbgKBdMA5QIlFqi4AULncI3arb1j+jJdOuyR40kB/uggcJmVA+YKgqYJHWIAm64xmkG265LZddGBCZPFkMfIcRdXnoS9WzjuS6U5mmeQQg2KauSx/HcqhROOl4utQeD/hqj07kMcPKvQVr2SAB00BElqamLKk04KXlDzr9fZahLKK9sqUvDNpVjFUs92jfgDOF30p/Ic11YQZTu739e4tj5YdKHGS00Lw+jLqnFOtSskEBq59ryUVNmQu5OMcQFrFaZwng5rdco8aDYF4mQyDhOADWCUuinZgcxkEgaagrL85xmqB30w8JLTYEddjy1eaWJN0li1UC/6aVTdgKna4QQWQl4OyFUZJxtYAYB7aCKis1APXy2bAwosaLEnl0fDUIzmjr3xvr1ZR7eamCgF6ii5BJ8nEWhpEaMS59aFmpH2iNj5lCqCyhRtOWaaAcb+5ayAE2DJ2HzDE82caFWb5u8I4keoBERyf9pYm+kjstYYiL99rzCa9Q7Gm7F5R3USiI3XPFR5Y5K4b6fJi1y3C1Yj8OhrobGpEcvRJ3g2nTw7FCfXk/CUB8kofTE0Bz49RGGYPL1WqUziTYcsAj/kkDynyqACxJ3cyJJymln0a//AAQGNgRobDRUPnUcDiuBbQOxmThaJsN0jLnN3j6xCT3utJ50MNjiYH2hNgItCrPDoX/ct+FM3BKYcBmsVWaCX7bTQlqje3CC6C1UlNj/EfLB0N6XCFiLSK5H51HCC2nzg10a/jXuMRBU3iNWe1ExFp62m8Lz0jE7neTzZCAvMKcGp0raHmGctqFWd/bD9Wr/xHSzFvOoJZ7y2LindayIaUoumI7HyQBiYLpAexNhFaabSTn4nxlQzDfFSVIuRIv/U1Ij7VhZk8C9Cj3kZR8jO9xP/v5s0u0ChvEDgK0Z9yruYK04imn4oLryFrzNX5SkxqOK5yxNnT2tpJDt2W1+grvQcOZ7gFcEFpXNHtit42Yz6a8iPzl6DT4MpEsbAj8WaqfFbCsYxoaoInRYPgrPdHMFqxCZmenrS3OKcw5gLGA5LUCOF1pEquhCh89jaaIFOIPB3IxGhApV8RiQ8c6AHZMHc1h0c/N+3ggPeJh59cq5UUXxgw9eTyTDU4wEifhFFVDt9JWi6SdV6O/KcBIbgyL2Q1FfU29lmzTYojhHfJygmbxPmPF30TRHnyNCmkKvbpZqRWIChShRjoP1y5CKLrh15n8RjDHRsSnORSoVkaYzi/V0SXkhTS8Wz+SZydj+Apbca+LLhVC0tc/+ofv11aknBW4E346EmI788IatnzcpnO1CuxUbB9SJEBY15SSEUK2I6BzBlkFoGVR/7h96QcLIbF+c8AfO189tjolDX2v6N8CrrtztJVJ4+6p7YdRNJ4nFoEzO1ReJZ4ntnxspeSVJtKCT73MJS3tz2s/lFrrmew/7BqV7NhXa6F9Vm0XhJD5ixIAu5L10ui09ix420CMzPtdDLw5t2I1h6Zv9UuKnjpsbYgcJbE18j7VZJ1ykJE2xky2X0RTlAYO3LQoPVyrqTx6Q3H7dxLiTQDSsBmqriY5ZoQuXo6/i7z4=
Variant 0
DifficultyLevel
577
Question
The quarterly cost (C) of swimming squad training is $5 for each session (S) plus a fixed fee of $10.
This can be expressed by the formula
C=5S+10
If Hannah pays $190 for swimming squad training in a quarter, how many training sessions did she attend?
Worked Solution
Substitute values into formula:
|
|
190 |
= 5S + 10 |
5S |
= 180 |
S |
= 180 ÷ 5 |
|
= 36 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
sport | |
cost1 | |
cost2 | |
name | |
total | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX19OKlP23+Jbd/eQH0fzvPrcF4/X4h8yxYUkwESBIa7ixcpPRF2nd1YLHmJF9UK+c6uiYecrxQIUGVWu4H8m5xvm/hVb/iSMPV+If1/xGlJJZIr8G5y2pUgcCJJbMUDIZ/1/LryKl3ZQyhNk3uKXuFADbT81NhwowZjGqq97hsXZ0l7eoUMzSuvs7psJ46/zClboNqvUaTIV4qhqBbWWk6fRBgmZJmd8IsJH9StYQZYZprYBU0oML0yuTM01Pmw4BFbTuawLFybYLvnbR4ySjJURgaBSdzqMvf+wS3+uC2Ub4JcSqTgn2gZTxnWcwpF9zJly75f+KXIwkSQXmn6cDwU27LujCHG3/Jsp6aQLIjpo/ANV59lOb1bDvh9AkRDUz9n0ZNi76mu+lj4UcNtAWGc7GvoprN+GC4XprLiRM2ZSi5iyPZX8LdVPmnyXgW7IJVm1HyHwcST2mdKqTDGkz/KWcSMA6y8+JAHOZQqReqGPm9dUbA66dxlYMB/8o5xRQQDdFRbCJGRTlVGiN/cIrp+cPFEMIcIkq/TwMshDh1cf0H80n/7OQM5tsJwYt9oOZCxTRYFddbB5VqQwfhNMv4FBTD0JbVK1wrLdRKgDyIaIyyD6FdM1RXgYaAKaapgRU6oesol3YsJx9zN8YbJdlw27HqaKdDpJ94xN/on+8nRbrTrMeIegTz1XmUGQhiKXPB6NV6HxfRAh7H9bIiOhL7aKYn5flZIuI8Q/SRw+KJE0W1dQdZfjudw6V+3l4tlDzs6BBUQl8j8js3nL31bPifafhdRTTQnXxfryMMu0O0/tp9gOK31QM+Bwgy271HRT5DolyEEn6tNuNMK7QmYpXKTjx83pPTMvA73tfs136h3We9LKc7s6iWCVk/RwQW5jmaXMfVL1IWOHTTua860UKup/VROOFd42q0xoOPiTTXTZgrVBcHZ410WDIrhj/fQqWVVLobqkqohkHyj6OrgSlGf5vS8mT5LxJu1R+CHupm8u6Caux8j61JOAUoCg8kU2urwNR6w55i93cuGUnGnF6mHoTLu6Yphu7k/bkRbOteM6Z2AU5IaMbB06xItdd/O2rFOGwV3O7JrRUnp+3CeRSWOAhqD+rA3gBpdHbt3SZO7bFJLYsdp4PK4RKLoc4MpTnNDMnVe1S/2PLF7b0BRuwAMq2AIS848Mjg47CYpEWpZfCS2xTEDagVXu6mfP3k4lRbiqGx5xY7hBWMrrtdlvlniWwzAPkUunGqI6trqyBLaS+WU5vTT65+/o6vk0+mReUKEaKtjWhOHtlGemo/2J6oOs4/TouDMJYdEA0Rqg32L7lvNWb6VLTjv5MNEyKkkQRARt+fg1A16dvozZxwYxaYmNYUzz2yvwDRqgVabU+jnMfW8+HIkWMcAHQOQ66YeyfdnTEwyypx0znhdW5BmQiKRVXAA1TAckYKBlKCHnQYxj6HyIduZ+34HzN5T2DKgiCxGxOrn2jWTcMz44CfOpls81WjmzylTO/sGpFwtVC/R/ocI0ox9ybBgpqkMcVy6aLaNAFIDkjh+wXX4oaAbinLIJhfVtKyC36mdiLzey7cTosIwU+FWddMeKHuMrcOC4Yb/Y7MsfdQxscZOLPMchyU1sRhEMHLmeSVFjhsyp+PAZGoUdWTX9MwDEnxM+aBORSqWw73bcy1iUGwJt9UX388vARlJCcS5VhTt45UC4oEl5beIAtK8kunJ5rq5o4biMyNsYsrnXEW1d8esOhOecxzvlyeMC+qStWocjq0mLlNiJhR7OFyQCToGd551PEQm9w7SwheH0w42M6yAWBMjGnRjlePbjS7Wtp3O535EebviKv3xXnLQl6vdrc921KkZ6Unhzuj+lwbEUb1befythci/ZP5gwPtQgWdn20CNTRtyVy/52xDg/Csho4FhcrsxqJqJhI5v2Mg/AwEnh9ymMkEGl4sH1ZbVdw837HdP/RIq6i+9cFvaL7vqFhbATApj9MjY4Y33S1CAMWI0cX2yyYfyoPOt7cJ6SZyP4KfuLSPmsEYOo8qazjsMylENxAuv95VJJlu0qISz6LJyGeGbxYsmccoPNsPGrqgP+YTD1/TXZz6HyUeu/eJF9cZZUN0E2+b7qQF8ryOjcMhytF8DsySEmvR7JZgdvVx/MNeGy4Bzc8FQQ4hKjHESBocgSP/9UEQYGoCCnCXGP8k714mRObJ0n2CVBipqMY8CxjeOOYtO2kp7exugWVeZOtijHNgB14oSjjSeLlkpgfAT8riwAAqhrn1mmdM0nVqV6KkEKaXlRZ02AAKsR060/8rkGUBNs7z6F4Plzqf4eCjlWHDQ2GWullI1P6CNyMGNaGfiQMpH2efcHXx80CarPrePm7YXWo+ctU8Vra5TJ/SzWGG6Ki8WjKuXOX/k09hNwZdBzSz6tN+9jAxxmgJTL9RUE3Fpeq2Bh1o68232ecfTi3dv55OOgJBfTBGuL3pZU6ATgP9gne0Qgmi2emXzOezhkP6wVP9Bq7pZvll7cW3snAuxAhwUwootsPyKZvX+8TuYsxtljZtzUSpxJp34AXZhkDTGDxUinga2pI/g9/Xjdf0Tgu37fpT6pxV8IH9RnNGgO/3lE3JuHdDNKCS5axiEbdX2BGajX66RCnhdd87InpCgqWyXsT8Lz1I1icYoO2RYy1gYLXY1vjeVv4ZYuYnZRCUDHUUMBRjiHEPoji/FL8Uk+NIlSc0kD33+NleRf7Tjjh/0cyvpVJ93lXAptptjk+LE2pgjomBv89FCCj18zbFSMIZET3A78H/Q+zYdhQ6qTjXcxzN1wzkVIgoqFAvhZLe9MIxE3u+Gw/syc7emk1wRP6UxXvwd5/DYqbz8W3kyXZVqfSaFwrKVVzOdEVBWqwH2X5V4BaNTEYS01aGKRu46o7bWiIaIWwWc0e6DFxU3/fHZyAkOfSdV0rBw7dNmg/s4Q/RoD2FXkRigeKn7E/7Qe6MEoZt+7xicb7PumTprkgxe6f6+CkkZ79VLoiz4+iuayKVtobXUO3OvBbRUcdemauFPpCXtQqmunw8NSAw4FIyc3IUu9jw0UeaIyGROPSTG3N82ZZ+Xtr5g5YkpkRl1iL69qAa72yuAcJbbE5WRPMXzoqgHRYTguVijFqGSNIxBQy7VJSLK77dMDmLF8RbVbGOL9oAhDtKhWZ9LEO9m87RnydrcfIeaUJh6eJqXu9DEDiIjZ81vf+AzQBt+VnoKqfu1deRMMTNLNo8Vi4WoNYUh4pvZ4iz/gl6ecGDm46D+syp9YfZVmxzLmINt8TafXJaKZ2XQhs9d1t6MDpHdg6zQrg6ytl1dr9Ql+xMlmDOMNXxeTt8mRP0vcgC6C9eNvY/34JMNDcUg+2Kjib8Cjqpd/DcHBYOS8OWAeWl9Xn9D4zGYBqD26u0EUfjUhlvEtM9TtuHlZtqBMEN4Q9NbjrdrV4chKo04nvCw8DF2BEOMlh310uUKv940RtGY6AHBfdR5p7yUrs3ARX9Sf2Ty9JhH0/0mjrhBEY5/nH0mrZ4KtF7VGJgPo6KwkyU44uweGljS0fVqJ5719YBRdKa1mlvpzcQLWm4iYiJ/czwd32oIPjvPbnzoROBSbfXOqvYMBxU3VXcfvmv9FxyN3GDz5Asyz/meSGytZmZrWICX+3E+Av/BugP/tJaZskmh6X1yLyCVqMcREYWQrkJpmDCI/s5wPCZCaPVaIZmqOKr6kRnVHtNZhvlIwPfqOf1pI7nh1zhik8aG5zkTjSfOCCr0MHd40cL0ha8RwKt4rg1GVPFDdBHW8siUfcHP2jwUsbDsNvOOH0ezsl2TbzzsGC5XEYsavlXPLQPr0o/qMoCohhVBjW2PptJlJyffQt9oOCQKKAbDo7cpEFvvLSiWjft9wIU5y+V5/c609jrUqYxEq2A5qlnFvxUZYcUi02vVtoMX/VIpkWBM1WT8dfr8h6FXNy/Qk6egknsv5H5PFpPL6sSy4rvnWheZAFf1yRbCdrZZS64YlgYSWgFYRg0rgLZueQMEIjNVQWIHUmGZzNAq9hRWBpXvyY7Vq5Yvjj7JbeoRaFo3mjPjOf575/OWHZOKp0h7gQIVw3VO8J3bwah2/ueT8kasvemb2ijHrNK5iGseed02nGDQ392szlWCBF9RT9lGCeYXA3F7w/pbzZ4z6mq38fFx01gGpYXkOC23sxH/dI+A72w/3WQ3n5hdc0fDzfAfM5tUD/0B1klSHLOYYHAtX/blKndgwRhAIxxH2KNqKOZxNz6RrsSlCnXultHou07Flwv/FlDLp7WtGHyiuXlBH8OzFYPvIG5R7wiT80SZRQOOTpIDF+wkyP/pQN8zoIBLvz0cyYmwmtu2SGp9w8zqc+Iz7Vfy2QDRqXH+gx7j/4U2wSaMQJoNFacXHVKfW/xPD8bBEBmiluy5vzBNPDqTVj7zbjK0HavEyHsE+Gy8Vg5CFBaJs+TQLNlhmzoJFyrr1rvE84tC8BXfEJz19yth37XMTMYpOkZ+gXow5mvMM0F23HQ2gDC7I2qKfsG58WnT9xxPfl9nLQPQvkJybe8njucgrc0rAhfGebvKhWShiJaDFxiT95CXAZvjBaY2Gg881n2cH0b9thPJSEeNhf8DKZqc19j3jJpSg/zdw/qX56c+dkYQNJXglaF64MYeedL4njhBuvjzlcg0CL5aUx8X1UTU9Ih+OCtne68UARc3jS1PuPu2h4EQV+onitJEMWcZvP2ESjo/HNx7m/ZluNHefEeZZovmGeSse0KDzgwycDEL9GmZRp9lTZHVH7UT/B4l7kVz9vniyMdBwQhg22ROT4UicdNrhcNhLZtjDu93Una2CS6PFQkCpM8nP8qipHayrDfncmAwB/+cSqFkjd3ByG1VtYIAnINGkwQ8b2qxwUY9TSZw6GdoEmth6XoH6ce+92Xn0kLO1k9FIzHnGyupYZk6AicCFllplxK7PPgIJ+CL9OnAIqMRN4UoEkoQCIs9lHhQH401BQE13LZEJi4vP4B0TUJDUA9b4K4SumiRIVWDTKXnjryI0d7iC8icC7qgK8qyEmPOLfBcIQgYLM520EOKtBAquN5nKEOExTwSAJ8IhdGyvy3EAH/j0eEeOPTEVHHmrgTbf50Hz4tuKY/pLNzQlupG/y+wYGKiz/uMIy4C3aaOgyLHyeqYDBgYQwQ47UL2hbxMLn9HnMed7j0l0ljTvUJooOiBZqZK1GA+WfK3g4WZDYV3y5l01YKxFB2O2rfA1+RwnfIBUiX4xOfqHIEuNqmyHKUcsUCTTBDnaF/irpUZGL+O8uHTFOti8v++lCwG/+ZzPijwKocKb+a6noGLKVsMqxOR27P/7g21C01GMkmU2yrcXnt8Qu2f2dJahED6n2gKBZWfdMnhVEh6UBVEwYUm35zowkSZcUf89yn6kK9IccvJwMRDVpbm8gX8FIV8sev2Gd3aJD/WwQAvLXZPVDoh0nDen5VuiVf/G7wm7YVaY6R6wZUF5TH/cGTXTKG9xy7ko7SySdgWPGq6vdkO11Ax1qfSzAhsYuBOUOyoeVyH9S2cmc2EZMY3kNhbhJRQErdZuZTqHVUN5/D201CyGDoRjz4t4ou6NJJc2hNWSYgsnqz/4BnmXzNTOsRpkLRIb/PhudSt8H7jFq6TDIt9x9X/i4w5H2//eJK2+MSvHoe98nZ6eCvzO11dbawnP0f3KVvO5pexiwFON0L0iewCcFjFy70T5Bffa+d+KJy2LYWI3+uvaRGLLMBwne0tUicF1UVBO8u+V4x+AVyxlSlPs0DbDh7pJD57SCKt1OodXTAX5d2/hqKF9iE8Ck3TTTC5tjkG0Oa2h2I7W6JIc1WFmqYPftAVfxhoeDSV5pemDFx6V6vPqEBL87xTBK4M8g9OJjbgMZkVQNOC6jlb/mXeyEdaBrBZlfZmiazPmzAUgJdGO90BM5elGEqjiIjKj7li6oC/0T+xIewnztAzXhxDFB2fjRJRro+c7zwCJqyb4l/biY+cGNnCf8j1nPuPMTaCcBuiOe2yvnGXEacCwHZntqyRDSRnj1mN0DRR0+4jCzI4/ObSxlgOBBUcYosdNRgW/1XWJbhNSDE/OdwfBVEPLqdX9NZmHYvhjvwgjN+OtxZ03j4D6vmqaehKtJ7276OCNMTgDQ5yCr49xANsiM5E8OYcYx6JvRGaBoc9bzChUxq6P/5UGW3KYqwI0URefAC5S9wLfvkSXmsm78Slir3AxteUn0avoyrAxbQDUnx6UdZGs2dOx76BNjAesudqvdJF3dxddUVl4sk8lEMCySXp7Pm2SjjvjSu5lwi9mDJzoOKt7uU+SFI7yM835+6qVMD3kyFrFd8FSGgg6aw1a8YrIEf+XCrY1cXzyEmlwm9+FeigSfLRi5a4EQ5FeUN6bhvAQ/XEyqlmYjvAs15FLuyW5eGybJMy+QQA99fkseocJD+3bFO5JJl7qVs26d/qdLeCSgeffW9wN14O4PGVjNcVD72bO2vebW/5bzK/CdE6zVgEpYU6XBxSQ/OTJT3VDMVLWZ/J9Vw1QUK5B95pGDahTFjDdr2sEhdDBbqds4eOy825c3La/S5WFsqIO9cfK3S2Cj9IZSRXEJHvDSEejKIlcg1cXsICw7y4raW58+KrED0VYLUdlN28Uxj+Z7eb8kuNwbNz1zOKXT4rWfnvGX2C7IoUOlUv9rlG6RfdAFFLIHH1h4fGqFAh2AlwdRJDHEw2JbKBSGMFc8usowG73c7tMHfuBiC9r8DvOP16jHCGGKFBot6bx5frPWAEyS1P7qdQimS52Gzts/lM9CrmbWasd3pyKR+LPT7Nd+mMUCFGNGwtM+H/Ncns+/2aCG23Ey2m+suNHMPSRPzl7VL0lLQFe6UZKhZsLPkquD+vkLmJD6LK7MwqibhfgFNCObTULnwwGIhP+0CsOZ+L2lC2MVMPYVRVjYr0l2M9QI/u2A2iNpKn/F9M+E+w1uxxBfGdDSjpU1Z6nrUgGCB1H/m5D0ErAE0kMk5lops7nl6QdgGhVMoY7dPxszqHx0lZU6iTETEeNZEhuoFU2cIExwa1KSQExmM5+35YOjW+mKKbu7aB+JL5SyFrJEYZ4hRw5oHBIoBNRyivYkko4FOXQ0HDA3RLULvivd3Xi2pAP2KuuZOIa1boW1tWC2AJ5Mj71hP3AcnrcMXBZh7CCcE0nboLivQS9riSPPIMFQUsznldpH10fBQtbLq9jLH8yIPmAHmzGDDIZHkVmY1X3S0VdE20YYn2YToqKBOTiprrNe6nNqZe/Om2QJ1Sv1eoJs5X9NzOhSbLrL69eAEJyv9kZXvXLFnmBUVMXRS4I3e+mR7dNLZk4PndkYpzQYdAd9iuwCjZ6jlHHKVle/h2wMLCDPrry0v/uFy5+puAk3eAHgLZ3n98kSn7cNcfX/FfHby3ZuTA+uvZ6fq8dJZgMdQOZ4NjtrayeZqdQaOnVODiKG0jzmfgvvHW8T+HE5EGPYnLpCEg1kwP9jGqYkn9TLOZOhBOxJxNKR2JW6D1WeXI8BXHg1agZmkL/h6gDwoKr9B2G9fnfP3irjMTIb5h9GTjbuw9pUvnYmGIBKhAqROnjiyMNutesUW8B54QIarithqHUA7Jne2Rrc/FYaG46kJ3A6Kea4cWHaKVU4lm727fZ/Lx+zr1+aMEM43Dd6Nn+irVtYa+SfbwSWHbyVrfVaEZlqylMHvLaXFp2nDvU6MkSPHhljVax0FoTDLwR7e2WxeonL6rPglV9+nd/7x4BFyGpoGC07FA73FDE3QqUjQ==
Variant 1
DifficultyLevel
577
Question
The quarterly cost (C) of tennis training is $4 for each session (S) plus a fixed fee of $20.
This can be expressed by the formula
C=4S+20
If Anna pays $140 for tennis training in a quarter, how many training sessions did she attend?
Worked Solution
Substitute values into formula:
|
|
140 |
= 4S + 20 |
4S |
= 120 |
S |
= 120 ÷ 4 |
|
= 30 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
sport | |
cost1 | |
cost2 | |
name | |
total | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX1/JRnb0B/qxHT72sD8VjoymBkgoA5p5mnqVu3yBNFZYG9lfwvPsM9/cWyeZU1l7HvKyr3/vr7QnVAIuUyyjm++1LGKfGRC1gsrepSNxl059Tx78yXJQ37ydiAi5KIGOTkAzh4FamSbLtFWz0iQ5j3E58n05hzW1YDJYZAizo/KxzlZerMTjPaVmNMm4+UlWEoiQQ8//F7s14JWRlaRYAKydmTZy12F2PhQ3INExCqscPPVKVJj/qB9II9krox7LRQ/z5bKQYjSwmMGMOAh3yTSXJzWMv+hrhlCsGRtkvUDz6SsyZsPBQP9DoJhbKeA5Mx1mPIgitvjhZdv6vX6rEI7AA6Tq+OawQ+gmm+TNL27mOxpcoih9EFjGzMPgVJ5o/24zwgW73Q4AM56ys0ju81bsD0AWwg6CaDVtNiSguY92lnV/LEFg3ecWCOUv+F9X7i3rBN+xmkroYJMowzlTwpuEqhgIPW9DqETuth0aoQA7IRGEn+iyAxcOXfHM86ez0m8eZ7SG2U1uE1VlHutTgUlgkj8qSro7y3xeCVjbGyMqx8vdvCNOMjPx5iLMMe2GZWCxrL2hQiym18kDBETKik8F5eAjh3b2hwUq8afrrZGRJL+KjYvkMZ4xh0RlCrOnLSfwIXtRRJiMVKWNN/XYxMMA2rWbLd8BUvkxpkajGufohe3ccfrnNxUx1/VmDU8azUMngmddfWaL9NdFcX45hakz+nKwCJXlWuvz/HGhs87+32iKPgvXDjwMvXjYEqfkxKbgEmuzhH3RRceUWb72W3CywQhiuMsoTwWOqII6LHFJfHDFCzK3dJYFqLZ0AMMyCCJsbRakrY1tf5LGgjHqFYIwPJuL15ZrAJgZdNppGl8X/37HzCnE7biKjbT9w+5EdPPg1lInyYF/x669zDMXDKj1I/ukRsaB8Bu40TLVPySKFf9tmQPKjXG0z0DrZC1CdPUbCKPEvpMt7lbaMqdUs1eoMocLR22U6K3RIdM5t55s9g924B+Hb2K1PgBLrnOsAB2qErsF5O21X69fgUVr+Bw8E1g2t4fVm6Uuzf/ZZSyqjhOObaFaA60PP6/Ohs4B0GpTtF8jZKnTqV/Fl2tGOBDnavSYlnGuE4s+MCrfVP2j1K1FHXqlWRL3uj7DXguZjdP75hxeTvExRq0Zui0nk8bR6cVHE+joEIHes2Ooz8Bx9R5MUtkUhWUXYYsIYKpuhK+mcjhvKhV1Hp0T+JF1eObIWPmBa9D86eUErhJrhyi5RJ6gomlSDi08hyOpwsrCjhP4U9M1z4PwvxrsCp1eClpxCE+8W1r7Yw45IJiozJTe7mRPRA0YS108rAo5GEwQVopkvQ37k9QQIBa+6oqk0n3RbpWkzMmrlfXp1UP1b+KH6sJQgb8uLGTRmUyn0MmTMKEs3C438AlxExwjGzL4SVVIJAnNPTHt3yEKJZ/R8Ili0ksyWn724EDxelIUb2htMuMhXwrYRHFjAn1/isOzqCJ4Lw1Fz8CmizexAL9LGLgii8u/RnA8iFtG/XOxRKcCV5sxtBnVWDVNysyRQhzDGYFwqKnsL9nZiKCpZtG6lfxQT0ATEsPyIX/2cPJkjfdesu7t665+xwoKqcd78FAYPHB8czTNwXK51rJ+MDTa1WwcpOVDMdhWGPvbcK1g5lt48HdLwKNjWNCLm7NsOBiCSTfiQN36hGouoUYelE3BJrMafMlGuZqUc+nlruQTD9q5EABYXkEC8RF/1V6ddrl+4JVuhvM1LDxgGNlMSNEjAVq2OX8DuP3PAXe6Iqe9B6E9hEWrQLK8/76BkpUX8TzTn2cJXf1qCgbVpQbn6YLc91++izWhBsibYdT5EPN+DuRqxbbeGkBlkuIXN9lvB4sEPkDYtwCelzLOa5Ss7jJ6atjSSTyQytFqNA+A7zvoPqP9CbcTWqEurUFLMCahCFazwD0ISmss5aUTm3G2suCPpjnWRKQ8QhDSQFMZWXMrX2GfkXQV67fFIfl6CsgpMkN9kbFc/xIL7x0XTdmdreHvlSzVZ2ltbSR2bl5slLu0qdL64Is5akaSD6zaVEXX6/oHBqhqppu3883SryWHP4hxoAynW05goEGiOV8f+HB/u0MaDRioF1RcAqaeYL3H+XpucK3BOI6mbse/Z4SfWeUPf5VrIVRy9Cs/asM8KImqk+Fr+qCr9vcjMh4n9mq47SSuhhkKMJIHVx7M1f0nT/QtvSd4IZ8qH5Ehz2T4wA5QO6of9obdXuRXMzJJuir8i1HZepbQvyVC+O5LKxkqdf9vWHmur3KdJNyzps+y/k4I6zWnvJ8xhqET06hdV818VtfhznOcExjG57ER8Hg0DBXMT3TDkyVogP6q59u/3wT4s8p43UwXQ1NxjlnXEXEpvr/ev5wc9xyOPsQ1nfpZ/QK2hq739a7wzO9chtN4ouOMIYJt3HqQNrbbYoEmyZWN4rQakCvMs7gNfvJ1SC1ts/NeIKBKci+4Wn1rAN7cNciW73/2yFfuIa8fopg+yvUDmgASNh922Pa57Hjr6OB9e1Xo/1LiZHow065kd3X0o/Z8tLkdbmhQrAQgUuhC+piL2iNXH/uhS+yfbPp8xaVYxqO/w03dEqH7uzWwFNSDkF6fuhpfhP/XPOTzqQmVqCAtd7wwIWDkty3EEr3NZ80yUgJ2SyOLgkYjFxchDMnmZDWDQcgAmySdCLaAS7VgI1SvwUSoHPvzyxMvCVXAuboJO28JUBFvA479tDGAA/UCWae/En98B9oK96SVwwHKXqaVXHilO/c6HnoY09UzBoP2OWCJ4lg6+ZjBZqWlabl5m2fgLTFSx4Rdn/tE3K3SKOkpAas+VxRmcUELhQfLW4yNa9mUxYOVZNm9Ka+n+MEGrSmawTarI6HY7NySC/tbiZDE4BM/1VP5dPHzkoqd1f0EV6fZyKXXXTVjAZeVE+6WLegL89ltBGUIK0y8S9rV8d+ffRMznrqlZ0LEMMeCZXCFyxfnhSPAovvK4FzQ+FTf/QypPs8g8lRX3WrqEm98CKxTmnNQdxSinWdLYy/9Jkdhi6lt1He9MhadAkrAQzu8n6D/4x9PhxyDcZhFWErv7RnMqKnlBiOP0o0K34T0d/Zp438eL8y9QJcW/7rRQ1/DMjoYJFqQ7k7aWAtyBIV7oSXYBg9jUWIqobluVhcszNKWwh+Aho+Qz4vcO8cDICSj24KhZuEgJfEg3e7YgldyU/R4p3/LdQ83i1iRPGsw1wRAr6A5AEO8HFk7ANjSTaNlWDgBVIl61c0H51/rbo8xECK6I9XkqrjQzxnlfwOfrxVDw+5nyf3bMfPGIsI00P9DxMmyvFp7W02ShHKPvE9ADFzhf2yXobGmMtW8PVex2BRnikLzF6gq3fJ8mgLecY64mbrGhCGjGBosKmp86B/lS9g2hF9RBnYTXxwMR/Zhz72AivvWAVKfdlZ7l8RoMRKtJjYwlfoYIyCi/M/+74XoHbSZKbcMpxVIGdW1I3RZ+1h96QUCfM1G8y7LUPcj9qv9ceVQ/InRt7UspoRZWayBU3dg6EMECcK4CBgbIhDpt+RxI/JYuapWvoDtEulLohnt14Ta7jQlrZCyLMEXtEVMXtUE8J5ywUjWMk4Hp47Fy8vg4o1woOgQUIxi0vdpj7I5Fu10RJv0Ry59VKJIXyv6GSmTgnSXsM9XSoqrMC9CNQNq+UwBuVD7LYJE5qMNcHVIwsH0nDcgUto+aAiWxOGmJM/9szFeMyqW+KkGFz9nqZ2zXIXEw3ta14Yp+egWGD2HqHTjcFJhXm2B3In+PwoFEUFuOh3Oz3djvgfImAXQCf3buKdIHapwuawhA9Hq3oornecL0q286l0JZfzuGUtQnpykiKFluEpic7P0/jv9PasuPWOadeeTJT2zszJHPVdGJ3H7S4xOo/IV2bJT4FOfg1GXzWZ1KR7LWw5UWRlsB+qv7gTxNDzf7iAwBrjE+MbZuwLysNyypIHHUgghaYyF3LmTOAHSD6p6d1qQdo3U+XsMiIHU5ZIOIxLoGFHIRL4NLk7JpgRh9x94ENG6ucnWSvvfjezsd4en7nP0pXVJP8RBCPeSoe2zeWGAha8bQX6ToKITYBbaHctpbpHr/z3VHu7b2jjmd+bMzm4GzNfhGcDnKA5flULEqh0FbAuPS0n6A/gNkrhBvf7vLSSbHQw8LL+ltpOATVahEngC3fLyzDq4tjn45R2ce6Yj5DvyIuCF6LRDjhNSe0wX7nrKI2pdXl8iVdCkehlPExKaKmuBbEpncgGsc84sE6QKvoHKpPY9a7Ih1VIJ6gIpi2D09fvKOTEz5g5kzmgOf6KTUGekZlWOtVhUzRpYRtWvVp55jD1qvdVORGYGOd06IClu5jw2ogJICK/ZKbcgqUowXKii4D2IiR9IBLLXqQfS+MzPxzzkzvJXInjPfSZJyuSFIjEBAX2t8mIZ2eE8Tfg4E9uc5RKdR7F7XzT3l3fL7m9ZNLJmqfBkKovuhWs4eJd8KgS6Hs/lNDGkOR9P+Nd9sXFgMLzguCLY1hZwFsW8Bi+N5Bg13pyyHQlH0lHMyWZKlaVVwo39CXT9OCtnGOhN99rFTb7AN5AecIQNGLw2uwuESXz9Ei3kktGY5oPyqSTixkDNbp6TLCjNKn1vuZ7vkNSAamVDqKhrZhwAJFZY8MYb+222bhLoGCV1sa9HA6p9EnVOm5gutrmn+3Yhm4cYkAC1dE7/vy2Uirbkg6/pJp5CjLWN/LEcmDZD2hcry/ax/YlhacPe6LdEgoWYhJ3REznEhbB7HCjrNOSrUSSrACsrjM1i9APmTDOm+vlXILvONq6YouTZBCK31UpaQWFUsZOlM+OxDdJ1K+AZHnL3SlN35njrUciaGRs0rtir9tGNqmn/0dQn2YEo+CvomNZccMJBP5cl6RMjtwAcJWV9oC8T2I71BRhXZ7A0GEK1JpCVF5ZoNQ/Wvx4SBQqZawxMUp9jK/aaiDKGyy3PIDe5T2xGPy/dB1O0t4obf9DSXWJd8dqVnBAT8pkfNhmVccADDyWC9AZjryvrBDxIVBeQjEmlXj2LRJ600pXS+THOEYH5ikqFkMREIQiy0USrt1jwgi6Rx1OC9oXqrY8DiYgeJ/MND86Ye3TEgvwyMcCIOweyh+ZzZxC2oqyqV9loHWhJgPn5ANYlpoubF6xUgd2DJFT55kiAHDgd205gRYluRPmSofH5argqr+1mBV8IVXzE/C3Igtg9UHIUELlZoZgYzw0DhPVNhJ6L3Nh3X+7XEMRePxtBxPYE0HvvNbgpng+yYyT6cfeImYZoMN8eq7AqgayRTfvynP/a4qbJ78OEA9M3KbBXEp0JCWOW6P3xeYHn0sJL3V6zpu73hHZbB2A9pgAUsXTBhYSOG/6U97+i+xSAdQ9xDcCtDUjwFQthjxWreJn+hs9uM0jvaX20POpgn7vUiXQi7Aop5eZ64r4Vc/Q71UClLImcTMaM9hEJlXHUP6oJtQhhpS+PXSsXwbc2he7ZjEZaj4+/q04/AbZXYt81VP8a8XIbSPwBaQjVmyTNhhJkK6L3D3tl6FqxXq2OHSKJ8fPaJ/lmqdgxWXXuxzRODKcxvSQDRDRsaGq2b7LB789ExiA405VggJI4fly2M8p7yN9URSfI5K/wUpIq/JotUl7SouQM8sB0DG3JxvACfTHjadsfeQJ/x8k5t/cpiSGeMVcSAWc6bEfWKdHRmD6X3E5Oi38eNnvyw9xirwlVr2LxxR4e6xT0ghBZhC8qgD5ULm0oTaDCg2c7ZktADWfk70JHCPm6aL4EElh/reO4SI2Jt8PI9L6GDlezsKsGWqNCja/dOiBV3ksYLzkeJjCPRtwwhxZwjLCtSd+ytFYAmKaKTZzDaOMoxkS6ZG5YpsgfLKSRFI96H5iFdWs3z5IoTqIlsus/IpbyRkK9BX6+zBIDfnPEhiwAbvn9paiwV7YFP2Nrhy5Q3+nG1KAgcLhYONmKNzLbYC6t+HGI3mgznnVp/0fc9osNREUOofH8JjTvhxiU/0rvE7nmNhGBkfc9W1iTTBvl9ZVa+VxsxTvOQRLlA2KEEybe1ppu0zHvgKZwrH0IHp/eYg18gaE5oxz/SozX9wyKvr9mzOCBxBw+xSQWI0KuGsFjHz07x7V+gJdLtW0GC+9R0CrONdKyko/yZb2h/CGIc7vNO4n2oa09zJzZjk66IYJZE1aOhyIwmWo7yvjMgQExQc8IU/RlbpPuhWukZznjCi1GmjOLmeWeDTkqXzdrp9bBKjNsOmh+2QccixfeHOL81b6lTVXkPiv81bz56JpP9wfrxBIuiKtQTjtLxD79TsF/wDUBVuRDxoCRdXNcQ52cmFY5sI4q8xmZUNtakZ+rH8O1PHfnzdeEjDwYQQK8XMbPbG8Cyqm0PJ+ePBUXFIxH1zF78aTPeYZZo79sZU6hUu8fnA7Z1yW2Afwqk3DY6oc5xNzQBmu+FkvD0FzfXSKVx3I5ejVAuBD52PaTqc0qEj5U9zW4A4mYkeTsVDIdgYRmZQHgicwzLt2uw4ax6IJvBCtdMTL5V3QjJW02aL9AmFGQXsdtGZ6nr60HdTWie6OlP30HBEOQFgQQDoLSO9D35cp43GGOfoJakVPBo2qFd4KI5KOMrYnin5i/O+0+yd9NDgLdxT7Khk0CIL+qDXIZG9OvV7fokoQxGDLudRvu0rQIqftIccnRjB9+kRsAFkjOmv9grNJBJm640N7wrrE2O/TF4GdK3dTl61EFZyli2UFDrnHtbiTofcfjDli1V1Jp0A3ZbElyBngHU/JIOlVrIHsuobQjPTCyE9V1lyyND1eBXB8yJHLaVFJwa1T+KRtwIOmSzZ8cKLqDrHVvVd1M088KYmWyyU8AcCeH683Y5amKPmjikHcUVqwZ4KoMLb2A8AgmlXVAS3bnNTHQ6wXO+IXFBb9x8AgT9HbNLIZpIIfbHgglsc9M8yFPLSzCIXgS4m/MjKdzc2QdStiwRep8xyL9LeC5Kk+8YnI5gCAdgZDhHq1ODJXc8cqbi1J5XZuuR1cey989o1YnN3rZI1Fnkf37vsMhQKbWZcyoxQFQNSwBYBIXoRM/uK/n84lGUijzHPjE0WZe7DiRoX+yg1c90aoFAC55NBeESpksNLp+/yQHgmkW8dVepagTthuotDL+Cc0XQMu1pCX9x+G8sh7mweHHcNvXBjLeM8dypSM6ZPdeGtthOentDyc4AlA62TkV1Q1CPc+czMoToD3AQ/X1fW2hDAufVkHnExlhU26NXoK54FBJrxGlrGD/nybgFmym781c9FS4BbNqyD5ZW0P19AUQiwY23IvG+MJ7MbTFsi34t6U5wvYS6+sBoGKKdJEIAfRyzQWo1RqPCUpjMe8o2N8wunZsCJOqgw7UQ7DSSq2dR7Vl5ZFvtLWpipnhr6jFnTyxNYNm7DJs/rhVEb9fmIyl2diNyxBI8xc+fO50vGgQqzuox1Waywx5uwtQdzZnqj+Qoz+sUJtjb8Ngte4GJe7lMeoa3UEFwE5OP7rB5zCm+C7JnYM+AEt15U0oVq4fsfl0813rAnU/jm7q6Oi9l/AUyxxsx9yLLeBJx1Ea4Cj7L1iHVHFg9g+mzV21RbSxPVGi2v6Q3ai7AH79G2Et/nCFGb9SEC71Npg5rYtBxv6teKeOaqUnaRbdvP1Vyz/EA+iEHRupDYbN32q/CSZrmOEFHG21ufYnzUHnceoTDbgIsvXUQoKC/uBimbdPPLrJsyvTPtTgfgZ2RhJXWjeO8LfB+1VHJ9f5U0tz5Q==
Variant 2
DifficultyLevel
577
Question
The quarterly cost (C) of sprint training is $4 for each session (S) plus a fixed fee of $30.
This can be expressed by the formula
C=4S+30
If Michelle pays $190 for sprint training in a quarter, how many training sessions did she attend?
Worked Solution
Substitute values into formula:
|
|
190 |
= 4S + 30 |
4S |
= 160 |
S |
= 160 ÷ 4 |
|
= 40 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
sport | |
cost1 | |
cost2 | |
name | |
total | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX19ZDWLuFWxImyFEBfJ8rQpx4DVEFsxQgYILU4tvSCpl8NexPvde3BcZ0SfDSS5n2K+NQTeL0PMx65xTrNMoEoyyVoLFxbtfA9LR1QwGphPzz0gvpQnBkmCErVXQWiOGtgdSM/uRpBBrx1SOT6XRY+c33GKtITPHtQKS93gCHcmg8Y3TDI1YIBfMNTarhRN/ZfuT25s61HJcgLy1HLpxp28Z4WoeR3KkDYb8t377wRptJjeojqa/+qH0zy4T92iSPSq3TMr0njFnBoMtsHYTsP/xkqA1vGdxSrWF69tG8ZpKO0grZgVgbMTGUuXES7xpHkKTm8Y8QnB0ph4V1qhcQHIptqeJSHX6mPbgxeOLbz2UNLRNpqYUMiuHTwzt5+77EVntAucIizNTElwgGZt5zA6Kjglj4fXkH/actyZYlTU+7B9Sak6zJuDLuUSrKIn48V4mcTpqCpYQsJBx10uI5QLUmW/W75tmZhOGW5Ge3dOhQQ1qsYcUvui3Z9xfX/E/FSpqguCyz0RJ8eMWjKqvGjY6TvGIIdxExlQ+pPkuhCW/AYTGTsDS6f+ZmLUCzdufc8pbhPVDBlBjzoJlKXD6Hm0MQJeel5gY5xXIpVME36Nuvmzsqet9Yw9+Dql+zL90dt/XKmZPHn+1Tytom8PHKF9t0YnA2rPRvz3502JKPWcuqIpH3l5W6bDEaR2znXt/kv7nOABFsocPohynk0PtjVWMgoYRWDEYcWbtN8sE7Xuq4rGWXIuQCepmzSfvU3SKPIHxAgSqx0nNKchzHO0plZCdbKUCKDwFiNT70eBCzqYSW4TurfM/lWwjmwIoREROL/mBi2lc/ARq4F2JzNKB+UQTU09bEvJhUX5c3+RB5vaaj0MxX4x/ZAtC4SyiXXyTTP0rvZBi34OKaFVYuUVm5VPrPG+GOHCjh2Km/SdUAXiCdNlbZkYk8iGzHpcIDRMGUONg9Tk5LomEXrGNDjO4q/PNi+QOB3+m7nxg672gtAGlJZKK2UEYWzzCLxAHZ/LmSmzAuLqETrk0yiJeQKrpGhMLIdZgFlhaOBYs8yI/m/ypBq6cR71CYUukOgWTQOubHXMogDteg8t/5XHMbl+SXvusmH5EdiIi6KtrjhDUo+UdXw9xk1qYOtkr7TYo/K/Jto/CAQYjxqE7AlW35KOOpxNUcAuApWagzAsCNu3+XkxNNa6ZlYt+fS1bBY6qXMBBN7qHplT3HGxokUgo3XV/mXF+czV2lH7Vq1Lsr6ElQs9xXkqY+my0FMPhjVP1kX/MMIN8opUFGdj516S/iViIdJq1eTAekDlYRD6fe58aYwsakZeOhIPi52oZr/MsEyTpmOK1zlF7U0lXw9b1UqajIkHE/6qVVGmV48Jo3YaUpe8tVxjV5uFYpdcORiNr5ZExTiaFhO3WGeJ0ru9wwQQH6yt2zMLZFwnoaW6N+/hFDVfVi39cTKYwMd/YqrjsYtSjgQFkEJ+kWp+8B9LqVwlNTx92N7bFZ8L+WsW81zlI8608g+lfFlrHdPuKgvXE4pwl+KYjnDhUFbIMUwBxxapmccWqu8oBm1EEz6wqaldWc8EvW0Jfeq0BnjhwKV725GsTdw7ZTX0BKExXXkdJzS3sebJZdOPz49YjRd8BQZBxpncFPlMv/GJb8Zh10XmGyl4cA10+mFvIX5gUfLUs7lD++GpcdgKl70XSbLlkFz4RQUf/MKI9BT00BzNRnFhn/oxRqkEtH9DJmmB9FjfEFS7tTFMRn4rZR6UqYZ3srbaHx4Aor69cFDOIZN4OMNkvlsBIFkTV77I1kW4nJ7hCLNZBBUKj2kcRCcqInXTqM396+gwiQ6dNoYllnIMaUMxsv2Z4zdWI298pWosk8dal9lfO2y/kvlxr9W5G+xlz1erTH9j9xRkpaXC08jLj0TvzhbTk4GxlcNTG5Hu2ibYosh7ZpP9Lig86ALHDTSS+vGsAKzaL5+rhA4d5HZn3KCZpF3Iu6d8Xqfmhg4IdTJoHe01rOsAigb1m9vNb5KSUafbrFtxjEcqsXEvC1S7Q6w4GaaJbsGuXYffF7N6p/eN9ua7uJ+LcWi67EO4cRWlnnuLMyH/wnTSaW1xrgePY2ErT+TuxIgFUv6gsQJc2aReSwjGW3agVdYogadQVaWgk9u4EG1mzyFIxFGd21WhXkIkEvqfX2xhYyvjS2roFr0NDSYCL3yysI+EAj8D9j8Gm6kQH6YoTNFLB+UDJFRiC5frWVQiU/uVpvIJpAyPxzlTmAcXv9pue0apX7bvk/GXuZcX5TtwnlBe9SILplP9knfGLP70FjHwAg8JX04oXkAlDMUdz48a0xEgMY4hRRc9dbnKi/HwoTUY1+l8u0PJTIhDdbRJt/3ox8PXMGWX4TrWqx4BDtBTSwSjO+dlitJJekYMCHRa3NthU+9vWWssCqu/TS4J9Yv3OCcqx5I/Uly19IlOGrkOfRBBv6SVpIJpW1Qe0Yj/RwuwuzACN8WBbafMnItbFAG7cyYCk2ijNtJUZQ8iIsM0jg9/YiypkMj1ZIzVZqyCkdYAsHZBwtU+cF96SvltkRme0FTRbg1PQ8rh1wnlrMy72KkEeeEpHyt906V0tvVCst0EcYxKWy6M8wgso0qgmw65n4tbPcEEc0Ow4OKhqwT6yhW63Rm3Y7AqnJiCMoHgU+EEvsnt+JlWt22jSiOHiSdcFxhbfmGsunTXbqgp4jzjf8iP24A+5bz0u6rcUqpNMf9Ek4mmMVkvyWiqupvBDQkLOZR2G8iNNX4tHFkFHDesSdJMmWeZnMG+QDxpqJZry5yDT+LDbv8bulPq8dvf064JWaSbxCGb1E7EZZ/JjS5uQyAF5GavfQA5Orq3cV3zVlTi7iTncInT0KSnKdub9HKxSnlEieNsK40XUeCOG3yKS7XEHHulOIG1AZ/HpwXYj4z6rpzz9K/BhtrDHg+nrvhBOKwHoQwHEjw03qFmDjEZzS+feuzH7I4IJtEZ7C+Lo3GIp4na95EGlYPwQeFjByEH5CjZchxJc82ADRwM0hX6OYHdgTspYXVvfKmeeRCgG8npbPv6tC4nwOwHLK9iQgGHcagR+iGRjWQyPSj6lC4Nr6k+chsukEPmR0s/wpN/R1xFjs8BfIRmtaR0sDjQgg6/bfoQIRjVV44KsmJDWj4LkqsGVMEr2XLj6d9Lcnhi852Rfmk5WklhEkZgE1FHl3CZNxovJ0JMetwjjMl4HelDf0JEoTJVHHu0DexQ5wt/4Nii/SEbA4XTfczkNdaEy5N4hlRYrB7B+zxhzt0sZN4MTmwLqIz32qBzRhDHVNL4++Jfx1TXRFE8U2JqowavW+DLuzz07RJ002roa0fCYT6VTJig/ANzpxSe20fuXVRSp1v4/jeBAJxTUT6pNGLjnS5IARcaJZzpOYOTwTbSv7tZ9eGtv7RUKUScZROG97g0QnJlxL7S1nsHho/CgKE3YhcyjfSvUISjEAfyuJkJI6fS+D0ajPeUAw8jr3rVO2il5jcSxSMpSDDMcFfk653HuihQDt6twvr4+rryZMoD3UP9g0BCYBuJFALBTAbUwpVoQg+tUJMrOIDvDKpkJjh8B4+CKeslqLuS4pCYw7dbdlR24+T1ofjD03XGZsQ6Y0ttXkmTz0L0IIZ8frbVVQMeSkJ9MAJclp4rQ+CnjUhTL1iINIDaGTNWIMibq+Fm8FShHdDq2b7DzIQAg88YUSVjpPU+HEIwFPYs/VhHWM8bVIky/HWScuzSh3iyp/wuu1hGK2UC0fMEoNCiXRuHk5f8ZFZTMeCkhNvKPTkdDJAY8+Y84c2yOa8+7RnF2B2jBeVaF0XMTxZYYHGq8JNzYTUCsqghDPL3LJ8FCvXr+txOauXMAUR3ezhgVcEySyA2fFZeQkF59mKWOzTNtR21KPWfUYiRqtYLuMfFeFbVLeJ64RETnQsGH+3DuJdW2HUTKYdVvAkYddXIFto0a4ZHRRz8OxTVp2+9dWSNZv2DnA5hRuJPf+WYAB3keAUG3bgXDrDNzW3Sci9gdPBsFc6RbSWR5qVNlOhwQA98pLFSwPhjJy/1FCBCkK8tiJmPFuv1C+F6or7YRkA59IQa4D7Rr+7u6wMoNRe+Afg1cSGbPFV1rSC6iVK2WEqjfE8GCv2ZlxTIZGAcUN0uYYMcSB2QkZ7vKUWxKiydxUqNuh+8C/OamLqtjsMFDAJXthjEf4aRPEyJRNJLfhofgOlRjEEE0LnbhYQkztgl2ydK15nhm5SeB+OGAXXX5VeWUpo1UA+cwLKqjhJa0eXWoGev9IUFmfSyYTIzGbB8PiSmLwH8AULt3Ps8tQacEsaDr9nQJWbw3IZhs6hP0OCkJpvxxgq0mU15Hx2sIue8be/ooIFmwXFyspbnafq3O/PU90ZU2UHld2d2tqp0xiLSiVD/q41Ki65vTXiyWC0v561752lQzdfb94JIfZm+ASUDLXffmnVtc/ZSqOO4MMZzHt5uPqmRXqmVXJGj1VSXZRcYjfg5XrC30nPriOvTm7THGur/xyuc69i9zP6q95SUIY7974MSkPngZqfJ7HdgFXNpqG6xhpV1+OG778Ee7KQ0wTwSo6dcGw/XFwkwbzi+ClHpU/kf7mMb6KiRRTHQDk+eLiOxZvDBCQgHMUBDfcSMzpPB5jXn9dDV4li8cqcSPSctMHWtWDYr+7FSYk63/CqmP91HVfJTDcIW9u/m3AbLC0xHx098FLEagHj1TDq8aBZRxvEXUKA1r0xY2/xOhlpdfwGqQofMheRDYD3EEtq7fJY26rK1/VfE7hl6L12fNft8D0QfaMvYLJY5bvXYQhYY2zwto/qjGLMYenYAMzMoApDfFzK6jCUAezVisylY1e/5MEiglEHzAhBoVvuREFzkKl+x8je4hOqvjRtDOFo3G+CmROVn5nACoQXGdAs8xVet1uMnUk3hjs10hYWUuTWgRep9rzNkPrnwMRPhdAm36HXN75uwbdUOZatoLIRH4VoDaagQ6VZ/frYhqZcBEvGp13DJ5k98WvUL9+Ps9DczegdtGNaTZUE0yo5F8K8GbjpLPJC+MoGizHPg6IwHHYcghPmk3uPUVoDkO4xamP2rDTVTidQgG9SsY+6TJddtLMdOzpKDuSNKySO1tN6CNXxYG1J0eDmk1dyfJ9aeOxeIM23zvrj6XPZFIEDwQytPZ7g9qB8zH2pLBpqweEjj1JeAPGvs0c24CAEKK5/pSvzveh6TQnhlWQpewD3of0xmaI5xBdPh2+NiWgfWlkWqeMC4jJfIRvEPMFbUUOvBx0wxnhx4Btnz5YLy67IKpn/1PV/V0dBEAG26SSDH8jUIwKFoCGrogLv/MN1IK1PcJisqnoc+Bn93U+/sfEXWFENVpUW5Bnc3a3rsbVtDsvAm1Y826VtKUrem93pWbHpPdAYL/8yqbXoRjS4R7+U7Tih5LEaixq6/wOmQBcPDbG0tbVYz+KOLNs/PU4uGl5Qlv3K8lFEW3lUkLLPwKZpqJtVJuxedzqKPVka1j+2/39+AebxVrNDlwFXbTZvc34uJziewG0BC7IcO5b1IEM7lw6ARDCTKZi5wPCwcYLPJuYzT0LLn6KtoE7YYCMrqSl4Snh7ZuTvHVPmIGtEnZsVCoURuWZ3rLCCwxaacPgvRLDoAlrJUNZF7Z5Xe7AzV169kh3DzM0NOHaxtHaTkEBKX9kVuGjMkORgFecGIIyzoRE90p3BJq7z4bR5AfNZiWWMBUl4qym+8+Z0sBwhb76tNz6J0gpQXl5unBOceyX7aIJ6BEOmnMJD6HuUE0ihUJIO+yKlxNdE9zvU/8Y2R7U1veXCqEeQZr/302yeED8WnJkPGWjgBm5PUE/ZPov1bgu+z2l2JOHELTKXF8sCRy2LiBR08GRX7XneWPUobgLEgEA5BRUL8c7zUPMMpTTd3Tt7JSv4gUhIMi5OKbqMW0vnni33V7cVnPD77c39jMlkVbplxa196fHKn/M7IiOy730duoUnr+aNu2zu5cVC5SMGLXTLJFM2LWDBz/rbB+FDtrws5KeOW1zZwcYNwN5wmtbzy8NZtsiVAKVoSAjZ64RcJxuLCZi2HfgpHQaECl/tuVDfn7jSbfKUuW/7WXKynCHkfG3ga9rQImm5xGuuT9GFeq7DO3BBm6Xfdwuj4HgBYZmnDDjc6OE3MQH2wpVQH94gBc3CK7np5XIymGXmn/iWkf3QXuTfR9rgfcmSa7IEMmQ31ZVR56XU7fr89JRkKVf9amgjAiR35HMi71+KJf2kRZ9Hw4fCjOKo54kBkbHGJnLrCeYg7VgIkLFnz2nZqN84psWGuLoLo8vi8eUJNgqT01+mX7ebDMv/RImkdJlw7dVSdpzldSoaizfR7ATD1j6ElsGxz2xcNdhg/As2oqVc5uPeA7Jg7Hw7JP4AOMmtqKR587qB/4KjqwDw/5VWgi6nw8sqxFBdSuZ1e245Mp+LrC5hYuuCPFihESpOkBF9XHARzatHVtodOcuKXdvMkzC36HQfY7L7zHdwRIkhannr+LZgQjxpZ2plQzdPFhlUaHDalXa7sDI7kktgl869UlHtEUOZJVLgWBKB9CvV0d/mvVtn6satfpRtOVRg5sHyQdWHiOcF4tP57uhth1Bj2EiDS+HCR/fAwBwTUdoW6PCXd51mAbI42PXzXRTPUDNtKBjBVIYW/mKYJtc3I09Gb3a95E9vuWlL6E56uW3ulUtOINw24S53tJ3D32BYxj+wNw+2MBczlCZoqt/wPbzrJkwJPZ4E+aHH8sBfnQJENXfYxKbfWfa5GpgZNz3n/iynHowJFqO/TIxC3KztnVszY3e1mJdwJdUrj+t04+1hnRYV0OkJsNLCFuEb4fmxIMK0YZKFvYTxWCuOhjaN05L0Y77PTCmocpq2J3OC5CAkJM1RWy4UJ5EcAMFRus3qkSQWFebPT0jjaiVf2BjuSBGxdNZwEGIgUDXHYElI4cSMQrls0rPKeHIrRpwpDv5WLsaLJOETEbuW/RYRNATeWVPIkEHWlcq/8QzDjgUg5ZnjogzTSeSsxAuVuG1xbmWEpSpS8XIJFe901lNT7CUL1kR79fW6Qa2n4fdlYF3n65BLOQi1ZgSLH7Yy1w2FAPIEpwlbZNSkOinjbqSRonZ4EGn9aBVqIoMarwDPTZTupphfPJC8o5MV0QSoUEXGLglWhd9MOZ0E6YLotvQOhNnwd0OtTx9Qg4nN11MKplhOvJpcz4axpIRtEL2UoCRW8WR9pOAecTvSxSijT58SlMYQP2ugGOrO2izY2xjDL2BRcfOPBLVRWrYV/1B2A8ehZ/JgzNBBjdzEAJH8bh1D4hRPMn0GoImI2vlFN2+FuMmw/Ja2wjNxt4SO60p4EsScRvCYUWT5c6yGwkB2vNg5HWvcJq8y22wr+ENXyMrhYXMVUwouTVYdDklw72ADh4gJ6y/5hnIkMhgq7ngfrSEJNvh3+Jp5LOKPCYaRF4hwTvuAmqAmoeKGlEfK/2ym+AQxs2lFR+QiskXeyno5IvhtTHRw4NrUJJv7d9lx6zweFUQ8Ll8kiz4X2I8xVWJFcYgBq3w/zo5MS6dX8cmi5on5zUG62pGixTXTaGmN0riioHBCVGnBhM9iHAn8edyu63aqIYLlvpTzeMh9s3Q61zkCQZZ3Z6MuGbm7yCOaK420ehLc2ietMFF/dTT4q3Mqjz9VkzSDCrWqqtEqCMJu4pheafEA1LIOmbLP43KzteuBHH1POSX+yp/49qYZ/2jS1lQ/hLmfUAXMTuew4aVlXK2A==
Variant 3
DifficultyLevel
577
Question
The quarterly cost (C) of hockey training is $5 for each session (S) plus a fixed fee of $10.
This can be expressed by the formula
C=5S+10
If Miley pays $160 for hockey training in a quarter, how many training sessions did she attend?
Worked Solution
Substitute values into formula:
|
|
160 |
= 5S + 10 |
5S |
= 150 |
S |
= 150 ÷ 5 |
|
= 30 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
sport | |
cost1 | |
cost2 | |
name | |
total | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX1/hapHU0Y5/Eg4Ji/WPQLG2X6SrOIB0frYMQkSfMJfqzMAJ7tr36SaFh4mhAY1225LMKUwCywy3ZVcts7xthoRn8xmhR8Itp7ciD61UMZCYINicGJSGp514LvXRv0BmHHiVQ5iwf3Azjwi+Vl55r7oB1va9LSMW7a3WpptV+ycAmWdGhPvZXfvrheoZwrpPZxZgWlXBjYX7bnECowBMSFiR2TIxO+XabOQvFkHX4nDYDWDjPJfIQkxrlwnvpY/KDE6L5M/ET1AoCCNiFQ3wAo9YBsX5tO7veedgtCtoRgB/YwEI3wP5dRDLykkY3fw09dzD2eOZtx6HqugBvP6bMpghyvl7UpHLGmft5sNkneSAYAhWHh4XksrUQLrelxMJhtEc3LVoXw/Hd9MOal9JijZIc5398wutifL5p+Mtv5d1l+c1TX2XZ/YtXFGfV9EFNsiOWRgTaNoL0LHTvmD+bpQLn5sgAoGv7frXzO0iBZpYUqmOc4XPi6y0odzQA521esSInpMiSQdxS68InY7AntkhJ3ov24esZnLk4lzKqZHHBWuaZZ5x20IRHUUIvOuXOqM8OaKOgYT3ubup9DODIFKAQ3CFFBFF1btaXvMLolkshfPd5sVXiJ1tgwCqn1o0NBs3LPiA81QwxeyoXyE0CmQhull8iK+NDj/YnDuP6r6wgPpEN6+if3lCQ7vRhs3gIjjnlF51Y58/3F9GtPqjuYGE7eYfpcDC3MzWgDS3NI1o74KrZf08tnZF7tG6GMHIYhEwLjMMKUnYPhgmnx0whnPR2QDSEdjfywHW29WQr/bdOMGtEV4ZCCfCvtq2yEcvINVkiH/IhVEuShi3d8gtzB378hbHMAMLSniHEPbfUTF1FwXAz6V2a5A5KpTlw9v2DMJOzzpKfX7AdZreP5j6OiZWtKqSV8cXOj4Al9OPVmmHZAJuThEg0eimyUNAn7ai/Ft2zMW2w92q/GiXy2HH5xK7yAn6Q2CmVeg+r7lCcdgV8oHBW76wDRA9za186pAin0cTw8LfFbildNlUsfQBjqCTJNJ5WDXYfog3Y9V8eLqEW1LouubJ2rhHseebPCs/0AanfK0Ulj/EG0FJVEeLlwWXfHkF0A8bkxRKkoOS5ET4EhQgAtZUZmbB+7oqLN4GZE034muNF44gP8sDkv2OAShV252H288TYP63DiS0qbFZQDADPCLZSaDT+cQsTJCzQzYe+JkGCpO32BpwmpkbSBr0cHtIFJthlzgpIu+DHri4OgYHxFoox13MrXfnaP5kGNN3nbnNtj2R0/mi1vi3hs9RzONS6YZxf9O8EiGsFp1JdeNU2DA5iALNMtGRaGhyyNfBo0tReQ9pIx745Gw585uZ6SIm6Fl60DlQX2+WxUix4KqfMPFO7LRs0t4p+b2xiaOUQ1O4a0skjiScExq5ABmlcXuzebL1u04/ZCGqQM0829jGlrFNHPh8UdQ0a5gjpceE1ILqzLPm4c8OmKE1Z+KcrJQ8X8ya4/L3hSHNsrglrQia7+SamFSkH9dheQnsi4Ux0wQxhlrnVtYVl+jHXSP7UR6YOGfeptHnE2uEF+hYl2VEDK+9iKH7rNlexwSP7ZMsWr9dK4rCru1TntSF/4fgBByrG7H0niPqssheTQO/IXZBeSS30xTtzNi0sWL98OZ5Ar8kiasqoIu1sAZi9zq5BTKpg35LwnHUXexFsKx85+bS8zw9jSnx3PAM8MBuTHvvSryk0WexsY5+Bkup/Y9L2xN42sS3CpDsYuNsM3V8u9tet0D/L53t+Y1o6sAfKeaxWig/YXX35p3ue558rO1vODlEFO7wpx6tEEQ5BuGsdsIewyL4FYqCo9/QZaiAjPlEKQoStp9TWYK7g03xEEqHulhAzQX/TAxVjSLBji3ZDQXOR4htm1Rl5dwZBY7m7fw7Gig3Vm0KMBvmp8STaOcBbxoG4EowIH0cCQjDgkvySq5pyQV8PTxOfAV/aKvTJBlp223E1Wq2pzPlS1LA9XbO97Qwnq3biKmhLpWuwi53kXEdna4VAEf3bDPL3k38BYZDyAO2X1ll0PB8pJVe2dZYlwUC6/xu9oeVjWfIWfTNnIPDpTK6KQqYj9OYfvkzyzf7ZXkzoaK2sV/Cgizgdbxh/JvabzmytaQ+9/0vVOV/XUbgndHICuuQoQ0S6xqDAaDnq1qaxoR1O71H3ojLbxelPB3qlgagu9EATnFbI1yza8Hrqrgv6oWh2+VHXKhF0QsB4skfZvYAdF3hlDQW5owxR65Tfwb4nkpjsDks2E+wlS+Do+B/T71xnOnvIsER4ZQfRY2sBLvsdMlwwTPRf3vqEqbBcRBDrAIQ90vCksmEnPZE3+KW7nRnZqqcerC4dGJvTC8uZItVTI0IWnBkJSUzUjQ+R8uYseNxkGfZFcq9VeFoS/NsrhPN8QFE7rNQ7atIjFMoQAkkqFLKxZgH9BX3Q21AneMaaSNpBvwN6g++ObqsfnEqK//RUqrJscdxHRRONWiDCcO+FZYdutsLH7pW8VxwyLXMkjZVT1aFN9bPEdeaE9enycf3lOuKSGYyZa5BIcCr5lwWEF+hceGBg5VECmc2Q7UUKEN6OvEQm2lGtB8PBTW1at/tGb2uocNcbkGsoE9pPRmtjmnlzxFgVog8xBE2GiW3zZJRzO3bguYP5C+e6pY890SRDDIo+glKTeDEDIHv9YN+UxGQFec2OAVja25up16PFL8awQGczp98IH38IUHqvhn0hEreKKUvEMcC5HQdMWTy0RLWdPrUS3c8ofRcXThBTWh019vdRD2vYIIVXpSXkVFbOFtP5tspSgeDpz6VPjwonplO30gf90EQ9RIuNn2bjsYPvTqilox5+AVp+u6BgypzGVi8gxKp/ql7oHrkVPWliKJHLd4tt+tG3opFRPdAQ/2ZdNjUSbzaR04FllaDcdVUJjMOPbNL8ETM3TujLfPEbE2CVMgb2PIuaRkW8ly/ZvTvMAmFX1/efFMiH0tnQ/Rph7TBNb+Q+fj/MtB8nzpIcnz5KD2TrR6t7hDpeh9qlWxfdto/51lUQbO1dQoILYWKGbjOJyrXYYOYc2HF/kuefEPqJPJaR4rzWvmr0Tv52jNQcUmUPtVjONSQt364uTxnDmWj2jEF1yXBZuYV5E88p2wOyZmAjx1OEmhzHBCmx3XcHEy2SsG1ZMpNqZeahFqzRBP0CWGUCyBUvK00ZRVRYz7PyHnNnSV2e/K+tpk0l52K5QvXB3dUOqH/Q6ovdk2A0cQ7BC410Eld83/SE5d24LiJOIB4tmLl3XuMde3Fn+hNMx0Uvi40J5UJTsZUoR/V6uD7aCEmKw7BgQIggTvp7v9V00XWxw1WeovPgJUIZGQDNW3epBAtTcUN/5qpos9uZX/6GuLWaUt+j3dGTPCrHOHisevfw15oQNoLLViGLiUPPeqeV/CVKKJ1TauJ+glL7WbZuJVQa58Qh1UTV4Hpo9GwMIpyecsMRYMEk6P042iayJOaFRvktkDPQ5TvZz6dnIgW5UvOmhwwlJd1h5tMObApjwCwqfm1jTKdhct7hsBGuK3U1bw1Rb+RmJbrMCN4LvS3adP5ePvBaAAKj8h89RzZo4EN384vyhJyem5huAt0UZjhbicL2E4cK6Q6rxZCNzXWqdRuwejdyq+y/HqV7kThszfRvnzSAQ0wq+kkZ+/ZhWDoZrGw8RZ6GdDDcK/75GPdmGTfgOBESIdZA0C4rLnrEh5h0TmbzLmAE61DSbpllT1Kdwv0YJb9G+TibE0vAewAbm8V6cLt08oe7qnyG1gaeD2ole2Ag2MNWJ9R1Q3wBqH6mS1ijPCHYtiH5+AK/2gl05dWE6Hi5DLM9g1jiad15XRSSlP4WD04ow2IOHnzpsb1K4V6P7VCCdwrdxfLc2uU+V1HBCfrUMDfc7Q22sQ+WNXMDRWelRKkSeBWif3GAlDiRw+wLcrytNU+XO5il0grMk/yzvjSZgRgz1DhJInpthGjQ/wcI2ndkkcFjpwbY9YFGUBouZgXT1EAqfM/xozEkZz6siKh77Ssr2lbLil8CiIdA3u1E63D863R+MmPw9dPrqKgdZx03JT0eVkcB6264HUeRTHQwhfWhNFIp+mV1G9zLcckPMLhP0dz4Xd5UcGf1JN6ZH5EFAKdegyGBg7atLzRvu74YuudZp2EL8xfzCvvaDitKUCgsmXALgupKtp4xETtSSw9AnruS4RipqDqvm6l7A9ayckkAeP9WIs+1TWwzioSFI5s0ZNjt4GhN+1qOkSimL4wzCuXcNcYtmnL3zACO8995/hOGmzHkahy4GI0W267zT6n/c3HLtTSzDXC5fpFBl7KCEydELyinWM5sTKtO3ybvVuNQEw8rMtQRoqH5rxs3UQ7Yyo6RpUTcJS66P3JzMd3A9aQASJnruaFm95vuSGD9eFm1raILjhRbED2RNZYkBnqnVrYcFJzmU5JBkTiEYLixxED3mS7njFu+M6TR4UW8f9beK92x46WF3wFIV5nskskS9ysg0m6IEGqVKou+/vmNw6NppsV7bf8m1Ml62IQOw98k/gGCHD+3uy88b7P71P/O1QAT5vcsJJOboPxf3HawnvGkb/PmrZP0p3oHj0LnNDYDdLPP3fb4vZ4TirPmDrBJHK6UDcUFt5Z8FWj7IgkFWDgDEJnGYZEIbHfHgqfsNEgBZ96h65HMImRRDgEjjfVU+tEho5V/PRWqHz2vrqGfewtHHAB991nqDLqmXDv1E6H6ViM6EyISTg39PfqhK98dwWwq+an2+OK56cwUlLm8krQOMMtFNjFjYfAAPKemtkHQzSByW3mGvt+6TQzcMQga6ov7hs+cptct4OqliGvEPq+1HiOIYV2BoOwquV4xJACkoRyBiRv/PslCexqiIV+55q15qZyq8aps7+u3KrH0iFK9OMj57cKEASkO2Q9IGSM8jiNjm4oG+4thDLVtLXFXfnFdHcjC/ZUxktx6hY12O5dGYluGj+UtGkaqft96hfnvkbXKtHtf9uWkAfabnu/OuqxNbgZgeM3BzWTgxOzC9sVE3s6InQwfTuDXpilDo9JhJhBTiVokasIhATPw+1YafADC6bw4Cd8dPHUaFAkoeSoX+p0/4O+bI5ux8Eqiij+nRrBGrZAVnexSyMyIIHOIUVlhBQ22GI4YCBUpkoY2P0wrFplv+M9qyA1gigcV4M53pKpWLe/ylNogeMMAWRKuekud1gIDMiXu2POOPIFrAiNf3e7wwiE6I9/rFlGJIlcR4g5PrMpH5cRDR1CjA8FuLyHxlizxAtN+pYPJmn4yw6KcFZL4erC4CRHgRxhycxgErfXIB13sx9YzzKjBOFtT5Z+BUpV1N6aZW3kwQLrvAcnOP7t+prr5f9kgr1CjzZXetP6c2v2v+f8z03Df4LiiRA1yCvqugiaL5eFNyg6JmjG+IGqEs/FPojuKcVeBF5Y/uyFQbYrR2VsSDUyJV3rLLgD/1jVwytenY4Hd/xFLRD/Lc/KtzD1CP+ND8zipWlXZwMYO4oPIVPgKCerhuBZZYPu0JUke7ZjGrnUNZirv4zN3nnDfO8AWUhczALyj80BjsagCZUkzMTqK3F6nEuA4p0+TIa+233SIwzcAFgNkQ4FC+WpSW88BXSNCvH4OnxHqUMtoVSgM31aOf3C9HoS/la5Y8EGN7L3aRh1BQ9svFtTxuFJ6n5f22aYwGraHAHxqLVFPlmdHBqJtDEm3VmYZkQaxdSqrLEWP3i6G5b7YfE1+q4w/xn2sbkKozQP5eYBH35p+GCSD5Bv8jlrdug3FjJryxt2cX7ZDovoomlySmglEEculJuLs4d274EclD9I1GKzH4U3laWddPDuUqgNjkFIFD4gZrgbV1nOr6WkfryJKFSU1U2NgJg5a5owy1BYGds9wM2oh3O4bSKPwii0S5TJPKBu6aTuEiz/Sa5GVdOzq26CEIrmuPUltfAG+UXZM3PdSAt6hbavP+DNuhu3mdM/2eYaAHf+7bb2vuDI715hCr4VGyYNK6aHq5FCkPea3RihiCElv3TQk+zEx50JrAo+T+kmz9qkXhiIcyKMlydBH0XkTzUoNJWT1mORgBsAtMqDuFnRxH4m/Cl/r/tRxFVjDwiUvDPkqP6aqX0T0uFHDNgSKAIQNzGgqomAsdZ1wJowTGtB0P+N31IH3DvwwnWFbQNhfG4HusUCHK/eotH4Nq7A+DFmkW0Ctz9CX5WJZOU9vrPt8sncujZgmH3ozDirf4uvVKqPDpAT+BfmHmqfFEW51ACs3X64+ZPBkFSl673v4mfkskIbFITWkoaS/F+w2CZc/auySFnslUEH/HtqBNnQJsy3YiewgWS38Gy0X0qVeW7dleAbkGE9ChXhw0fk5t+rFgD9tWPBsHQEnoaITiEoYEYPUlaA6uXciI8maXP5ogxO/7blMJqlyKlnlXlxJsftEs6SmSUDrn0KSkdqtN9aKapkNaFUGOXJT/Ci7+SQYUEvjW8YMqOdC6c2SJ9e5KStanoYZPu8+w3jFQcNiRzjPbT+qfjXNWazPPSHJ0aQ3uB3ohPghezwxtkwUKvWpdJSxXlQt4D2re3ZwNUCIW2q8ElRuDc9dRUxU3yKQaDFCE/v+q0oparugIE4JjS2pQzjZcRrZU/FCh2IS1hFzXNuAon4XrWFXkEwVdkxE9LTWSueNzTMjzUui8/1nm/qmdYt/gBpKUVY2PQ0/TeMoHKn22AVsE/BCeEfZ/D7dq7le1542XQSbADzTX6S9HYGKRnwfIlLAb8N9OcP87/tgVPV064G9xPLtg77iNF59dRpcI0Lk88Bq5JOzO5UMlfHGcMQQh7QapSSkxtkvge5x3MdCNKKbrST9i+OOsbBe8sVRNGjrBNbOtFnWB59mnJmdxHwqCr8AQ1/mhnCuWLTQbnuSWZaBZ7VB4CQnwHtGQDyGPL7UXnCd2bvz1Y56kc37R+x0Pr4HvwxDlY8CDg7XbOe4yMfare13s4biK+sN4LoWqcZbAj7VYopzln3HxF5+uWoKI6YglpoOie7kRpicNSqDt9nSvKZLT9GRSq+Iszb4JKz0jIGZd0DlE2/Ck6I+zgB9DI6Gu12lUkWQJuFWnZG9KtOkRSGfSoQc72Xug8Jok0zxCt98WEVZMMxtNOI+mcKlsPLr1WMV8NKo5GnPPdXSY17iyKm8SO/pD3zkyMMd1Ds8A2d4pVb6adwb4DWHFA8yIM8hsCox8/0PEXa+lLU6+bLkocymWzCZjRgzURBfZqWc6Tu2Hb32whrNJMbuQxMzbhOjBwjGRqhKHV2DVJyzv/fzFIVn5brhFyrQceHn6oM9i8hkYjfhTyiPXejsCegfLAxa2F44mqxppzGAQ9m+ZYAg/6xSZy9MHakMsvoDNE6KKZGbAqeKG5PW4HaT8s71Jx2Zu4G2Oe15bEFu35PHznZXJQBGsBEPgICb3t/g7ELDF+nCmJm/VYPIfL0SLCnqhU4w4Suq+UF3QTaoJL5iKDt/CgN2BUqxKD7heHc+wojMynvio0CIOTDpk4LcfoIKGl2WOVOJBy9h6IMyHSeNZMmdraDgCdpheOfzC0b7r3Z42vrJl78r1z1BWLMwGeC+bL2HM9iKaBU+zaaXis73wIeVATBtrJne5HtbQ+LU20BipEFlGj6otIeBrxji/7MtK4Fhis2oQ5154AYL8c1erQ6axnE2kDIR+AKH9MNaBmg4ZHeIUQ4bWKp71Rhbpusd6wgRKx22oLOoCZKBN/+dAOrS1or5WAaZ8+rYJ57RQ==
Variant 4
DifficultyLevel
577
Question
The quarterly cost (C) of squash training is $4 for each session (S) plus a fixed fee of $40.
This can be expressed by the formula
C=4S+40
If Rachel pays $180 for squash training in a quarter, how many training sessions did she attend?
Worked Solution
Substitute values into formula:
|
|
180 |
= 4S + 40 |
4S |
= 140 |
S |
= 140 ÷ 4 |
|
= 35 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
sport | |
cost1 | |
cost2 | |
name | |
total | |
cost3 | |
correctAnswer | |
Answers