50150
U2FsdGVkX19TS61g6m2e1qPw/gR3aLm3gwR7Fqsks0zv+2P6yyzndNQ7beTkbeAqRKyhOLONz1GhY/xc3UIyLf/ssmvdnFGuNfFeaPw7mkw5OhB0A5KCDMpmWMzFBKYFJuEHSUOqHmS+4iSV7ToKjPNj4gjsyKFSHt6i/lQvjhlhkmZt3MzuubaTMIYI5Uoelmu9mSyJu90ZrnzkESpo7W4KS01G5Vc0TgkPYGG0MqjeX090zArwHjN0UXxLZU8br6Oprpxcv5Lf2q7Yi6pTM/y4Ee640C/LeCGSShme5FhC14vrJdNhw26lDtayUIXhhDmtdaUPgX3XG23iRlQJXDusubGAyDPuQfbqRaE9j982t9HhpvnAO581oD/Mta7Q3IVp+FunI/fPeH2DFkbPwb/xUaviUHYX9h5BEJBRsUjWuGmZGpu16uHctSQGqKcvMLZm8604fN9s21Mbfg0L7uM82PldkGKuyz7tCfEc2zsUMN8cb1r2vKPxiJ87oaBXTyXw13tza57KRmECMdednGDYnpakovdPjSE+IV5rSLd93kqTbmeA+N+hU/1vbc5FotuXp8YZWO8OER6xBkzSVL9QoDMTsTjJJAWzFeHmKP+uFYSDwcyUWJXdqwbaG7d6OypRN+WXW4PsViz/TYye7nO1/W2Cu2OePQ0mT9RI+JAKmQ1lQObevV0GSAM/Dil8FdQtdocd3bRW6jrZhoBHkLFe8Zr32JSR9E0eNz5FJWlphY0O/EGncxcdsJMY348dtR4+na8AmCqDzunIb+oQf19vhehgthxAneLIPA+cC8B05736coMVg4cBUYscHbaFeTRB4X0n66eaOO2YMWynaR239LT7g2hP3XhIAYaqkeYhrH+IdAyowNZ1Xwr99ajX7/ZvdYZO+Q17V6Q2rBi66xQL3PEe+P9npDRWwo2dNeQtlFYyBKPj+MkYRRT5q0NWRc1Hb/IL/4RhHZMM/ESTzv0xGNgwhnuUwg6z8MB7IaTLvBe/APS+6sbItjcBfKIZJ/TULlZHNeYyXdmuCqWoianYDGcdHC09jv5Z2WMdfG6bJr1EWC7YE6XfDc6Bht+051vM6JGl8h3fXx2Xux2qbs2AATLnoXm/1o0AG27YJJMJu5Tu2fLEkK013lgAdAq7HZHp4AQ3WqMdvodrE9Wl1RJ98nPQmSM76S3/KLHL04kGzGiAHl0ELs+CSPNf9H5H+gduw7MGVAMa7L4uCi/AulEbr0KfNUa1W17FUFT7rNOPjf4CoGeH8cU63hPQKkMytD/5b8URsFtxKhIfKTUQFNIStAox/HP8hrqbIJXQMXsdeIgHGFChhg6B9nYv6xA6rao2eurdf0+In/tiLTJaElysoWuh+8pHj0ejnutdFcv37w/cCZeDjEBUVvF1oAUjvgAbr0B1ZzObH9mT8Dc2ZIJwYB9vhSy50AAzoc8+ffdBFnKe7w3+p7oQrRhB41gRe1Wogx1syY91v2PXDE7/Lowkt9tfHW6IaQhFa8d+dpD0jmj4b7WVguoM8hPwIrGnRrrp7grcLiPbiwUKYy9HAzKN0s3OyR1sMpG7j58GGShii9nYO21DsO/nl5V8v1kiFjJKRmGQ4jHYEVzP6PcshFIlX9aKzL5UEcFmFoEm8SC9rEIEzEoXSooF/IKQ8iZKUDoTvXd9Z5bVYmWQVQpPhIKEvQXJljYoIiaO75b/ayjZjRz6VZaUkRCknHNMlK625yYfqVB2ShpYjp0CgSXwbj+4Ur5qAAIRsGvdNN++TomWMDOdDHU6/mCDUAvnXy9y0qpJ33pqnX4nImhuQpsYy8i/3BN0CE89tk9ODb4nMZn+oRpsxCeyPCReUTcIdmSDut+Ek11z9mZCNxuc+Mmbn1grQ/cSNM9FNve7a0KBxe++YD4m045JG66UlbrxGv4uc9WU47C+HdCrmpbGkGX/C9uv7EP1+SM3S/h99x+X0Y84j8DTvxq4G6gI77E2D+4A0GxsB/uxlyKzsKwOXP13R8laIr2umTvbJTRQ8y2VRzOc88P03S8K6xEOLSAPw6BmG7xR7OwSSF0ituQy1wrHoPcDM5ds/apF1MU7Ar12Gj47gIJ2zRZTMuDasJcxTccEBXLGpLIkzH5IK20Ke3IS5qusg6NnQt/OPiKuF07mO2dkx8xwcZddjXz73PDB2nc2Z4OCoFDF+N17GexK3341m8XDFexC+71wrOeffeBBasHCdDlAdJnpfJxvh+x0oFGegUat8cpRS4pi7TctrV6wwE3tGvvg+ZyvJtdeq7Qi+wFWEWkfBZluA7UwLf9dan5BK+/8ftNinouZYUql6P1kARJovJAPkh/eFT9JX3QatrlRUjaXiYmEPqxmRARzrCFsBPj8zqsS+yoAVLooj0Zb278TKaFO1yWj6G6xRUUDeKfKjbZVq8nabhP7wDlqBGlsDYMzuSQEtG9SwOkr1qLcpB+2/+ri9RzkKpRPiNtrf+OsoQ1Vv+TPNoY1YKnDYfd1xEQAoUpqg+NB8cBRGQ3CjmZ4l/JSm8UU0qRqp13KgUhgGIy60ExFoN3m+nTBzeTkRzn3JPvqZEqwtZse8K+s7mR+54zlUd0nGCfuHgNkW2xOJ9EWRG2IKsyV4euw4wvRW/PrsFUGKJUmbuXYVKCJF17ZYBmtzvMXvtvxZpnR2ppLfoAgvWGnFwi0tVP2I5+opJiazu1FhdA/ynL1C9vkaJIQtQKXLqawNQzjVrimwmaAtoFOVW+fw4Z5Kv1aeehGc1uUjUv3w2dbelKbFObxlGUlB8E88C3Zp1N9qcfjqHFbfmq0rk+zWO64uLz5TpVE6MRVy+MjidhWrWA3f5o7wv2sIkYVPCZqpzWYR9Rua/4mAl+YvQe8nw+koBZUq7w/3TBrtD9nd0TfVNHgvz1Kt7hQibnu8Bwi3wL1K2G6fkomqz9UlIbaF+L2aNYJmsqfrUD5O3xqICuGnPgTKKljq8IQZak9jPJ5TLZRh7nrZE3YG3BCLW/tb9ORQJ44h4tVtqxHfE2lOe/C8WgF7wOEkHPSrQupsYJW1hnYtagE6Ky7Yg1guMGXUNpxOrYtwUNvDRJcEPxUN8wmNegVPf0SQWskdvk4p9Xct2w0DivRR1q6nowG0WNtkiiEfEOTa2Q81Ow6Pcux3z8OaywF9E/5urBkEUnXZKP9VkCAaEMW2J4uvL7KO8rPAihi1XoZUDGq2cUHLkxj8V/uGpYalviifZso39oMi2ht9rZQrBxojQHHxPdlqzfXT1zJcCfg7KXzS/vdpeBQ0Z5LZYJZaqoahzSBimyQxzKLnwZ9UlyeFVNLElkyp9vTDR224gvWNjd44p3ffZNgzdZTVpUErDUvpfKAQTN4sLUkTu+8yb5qqrc5afoZtRtH0IMzANCZwoaCdcUL3XXIMO/4WxejZBflXsIInQdBrboQ7IKO7rNOHIb32SXE6LCd5KPsGu3oC3ZzAGIHYYN5q+NKnIA1s4fslAUxqZfx3RTe5UMJibeo98MXGTekqJiDWfJm/lzwprpW6edBukMxOhDvhaGfznc7WWbZlie4w/1TP0YheQF2sYu4ZH/AUZTyMICtqUP+fA50brxOlWnZpMrPTKOZT3MrcvkjAmNymxvEXFFh7Q9X6WgSXxZLINkkSl8MV7vjntUDQSY8wtVqYxZHvQ+9RxLLvET28/ND1f//VC/oP3J+yeweRXKJYZVKKSP3QBLVhUYeGQY/PdkXRPIFZZr6v2HC9fmWYzZjtfwaH3pNAe9tO5qre1jmN7EMUOc+G+RXwlWd0uiu25mz7vMTJfuUmGU9bYP/9qqIZaEjeiWw/mEQ9jwl/fNPwmX0gvWdgL6/r/dHqk4tYi+3uip3hfikk/A/UEaR8IFZITrmwrw3Tbv4egdnYBXhHUEpkVo403vlC2ClIQryx5cWTwhBmgrPAxce6zSzOchvgJb1ksrYPmQ2tN5IYr1lvkAwzPFG9P7NvevoCiNfvJ2SRgTAuL71Ij0mnmyx1Lnu87lgY4mCnqrnaohNk0IclheuCBgiQfgVVq6CtwNtAKxTGlNIu7Bq9WlVsGs9KoZsq3Yx3ui7RYtwPKG5WzyZU9OMjiYlvJLZaYbnbFpkSgVXcTkUYiFpeweqF5xlv7aOU0WJpXOeqG5Ylh6NZuz3PnNvedotf0kBsdAD9fbynqrs4uHjUu9pHijPxOVUESzO2qhnT4GzQhTI1weZaccpb5cBu4qj811Iq64vqPWEmrXae5phZ6SizaoqtcJC5X5aAgrDyhKCPTnd317eKN8SmLrYyJ4plFpwmqmkwS6Bieuk5B27cqlZJrLnMoVL9VAe4i6cv7AXER5PH5AQ6WmId4qMiQZtaIo4h7mCv0LXMisWjgEZV8MTzGMLEZ2weLW7rbsKTb1c7q/jGHulazcbs6nilF5aYqYYavfKA+TcNWVAhwspbmP2W5f2PCy0pWuKyD+DPowINt2IqVgCSZOjNiKIhEyENc7vFbnAEjeH+3oEPflSuxbgd9qMr7cr5q5coVrEVu4+Oers9yJ4pTAMuOWUAAkpLNs9Y50XViA0iJkaANrsc1YmCeSjhw4fZAcGdiKFizByPcC4F2sXPYRyJxcovl1IiGQD54fTSpVbUsSdZtOHW19pWQ5lU4FipF+my/J2DQWb5qmSNmNCFKtUV+7kneiG0xKpr0OpmWPZyW0HwLOvVJQCyUL0nLK84EnWKw3UntU1vyZtRw9xLx49u2RLMJq78buu5OXwr7iGxjjoXTkXPty1Gu1lleNjuyz9Sv/cPmHP4oq+M913EjKj/XHVOcl0ZXAYU0DsK4k+DxNbpLMkLryqXisHcinaTDM7Bytn56KUXMAH2yizg8YAT5ZYt8btINL/oQlpCPoSC7bJ70vD51vMW1F+SLYBOYm1a4PqCgVeiRgVy48dKbMHDo+DLXVRCbaGgPWb638GSP+VRUxcKqtqbwPqRsJWZ0/mBKbIeeJev0ur54aQSpnwQtL3K0XoZZUR6W7BgRlytKrCN5ujbnzOt2QEXZkKXD58Wl0wLCfWT6aSFgLkNVFWpfE1OACY57twZYV/5x2yKsTgJqwMqSrVbycSoCFoFcGbGBZkVFP2j94KN0vjHpPseMrKgu+8YNk6FrWs6ZRDh+7PQ6F4KIWKh/FNm/b3HdVZTcMGL6RABvHlhF7JbWhsZ0ZVjQCCNcMchXwNbAnFeyBF9m4h4Ad0QFOkJ8PecTdGTjwHxTD3fu7XKtu9xePnfcZ9xfDKsZ7qgFL7qmcuaA3qashaIV2mwltYCEilN5L1UgYMF8JAJIOzESk/QIlO0n35kc8ksDZ41HzUYZCQAG1ulViQs93YzWm4w/AR48RfPeXKg4RE4/06FVoYXyhMMA6uMtQGqBKYuu2t/bUTQaLgmgWahbs2yXdbtNYq4YZoZe2gTxPXcwFpUD4y0ygSIaalZiBtK/Cy+w9Ur7op9+wHS+cwa3X0iikigKgirbLsW9K02gxUPt4THIq7n0TLHzcFoxnNyCNIprL/RcbmPffLS0lHSfzXWK8gYTqL1vqFTIyNKa17KQHzmRSgUEO3mgAWlJ8lOB6ylGU6sAFuRkprwPk3bGlZXQVhuySmgnx5VP0wbvxODAf2+GeONEwmBe7PtFdJwfHjkR8Cmu/P+GYBSx7h11JKBmP+Kvul3YHG1Y3qiJWc6rZS+SQZ3gYtqw4n2GW+PBR9jcp++zdU3YTFT5fEOxYZ1LCbpfUCiSwEQ2qXeLuTkMVhBwmsjsQoRZ0REU3/gdH6Xb7Dw4dQP9RTzJZH84Oy7n54IMU/CCauIJRno3Y+cRUH2c+jdgpuCFU1yHFbMLOXyfq8+ED/606vW213kvJFRjtGHMezxOAo0o6SEHBkz/I/5sm+SSc1JAQYbGaJ5nmo5Bbg6kfeARPCB3ddHOdePicBaZs22t2hhj4I2ByCa2bF7dcLr3lsNKgDLSCg3qWyzwxMCAkDl2wQIAoPOMSypg8H4X3FgJFxSI4P7fC8/wenKeUJjIgvFyuUMPAa3A04WltnPl3a7pkyvfFpA1AF7ebiO3w/LI01Fk+8oKQKi6TN9cPvCRS4BBUQ129aKFP62QwTFzXn/rh05JmR+1MTz+Kn32ZedqHr9GNfP99JkQX+czjHblVy1vh+etPTpDCqcHXGeb57rFT6/DnTFx/c/iW4HgJ3Ja6R0n5cUjMiR0MXm9vCRgRUpVsn96lPybV6f8mrm0KPnjLIOQa8sBd1jkvL4bZseEAaQ/oDE3mQFvDG5ilWoE7Z1Lx5SNNu+sMevvOqFeU/iVHjB8aSJCfRojf+l8H+zt89sUURZKC8cUQyofYQ//e3NErgfjidMOWy/Vuo3utFijj+Acf9AbOUhUKpB6wxVCG/JVhako+DUzhYPYE=
Variant 0
DifficultyLevel
527
Question
At the start of school, every child chooses one sport.
The table shows how many children chose each sport.
|
Rugby |
Swimming |
AFL |
Tennis |
Girls |
40 |
35 |
15 |
30 |
Boys |
20 |
55 |
25 |
10 |
Select the statement that is true.
Worked Solution
By trial and error, consider option 3:
Total girls = 40 + 35 + 15 + 30 = 120
|
|
41×120 |
= 30 |
∴ One quarter of the girls chose tennis.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
At the start of school, every child chooses one sport.
The table shows how many children chose each sport.
>>| | Rugby | Swimming |AFL| Tennis|
|:-:|:-:|:-:|:-:|:-:|
| Girls | 40| 35|15|30|
| Boys| 20| 55|25|10|
Select the statement that is true.
|
workedSolution | By trial and error, consider option 3:
Total girls = 40 + 35 + 15 + 30 = 120
| | |
| --------------------: | -------------- |
| $\dfrac{1}{4} \times 120$ | = 30 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | One quarter of the girls chose tennis. |
Answers
Is Correct? | Answer |
x | In total, 100 children chose swimming. |
x | Less than half the boys chose swimming. |
✓ | One quarter of the girls chose tennis. |
x | The same number of boys and girls are at the school. |
U2FsdGVkX1/ZRf93pIrbkZg3bfBE9SnjW17+4hGJiuOfD5ZbafR6oPeT777khiTHuffZby/XIZXRXMgNsd4+FZGhwU8VY7Db9gWnUkqkwxGOgZw6klZoif0RWb75aVaDPHGihKs+jzpv/UqHhIx2aS4OvToc91StnYFvro5B9eVm3zMxfxu+SYzd8RmtYB30/JGI6EXRfMzPp1Pa2RRlyQh4K1csKGArjYd7V/fuCG3aX9KQJYz+LkKsJRq0Edyw+5EfxB8LIGdqT+Qvvdbiws+Kru2F3hgwZ//h/HxCzVuZsbun4dJ4cICqlSEMAD68/lVgW1Ulu5KPx5QvhKi79k9rF7ea5NV0yApoaBSl33LVbsgn+PRi+x/hi6RVo4+ynGQ9YSTOsexboQQQLY7WrsQDmvTsGLTO25cOtpOeGDCB2asfvPM8bEjjMbHjL11W94ccT1fWjCLPJTrJzRmawfSVQK9Edz8dGLKeWcZIIlgq314HpFpfJYJLT956SAEnkaouC6goUR3Sr578ZXWKUSyuIzW3fV0oUQJ7Bl1twToXWmh/z9dRlpTcYXlhk7tabwZS8QDHUCF5KDlVYJicfh7eAIsgrm09PB9uhg1QSSihQ3TlAOjLnjqspnixIVEYIa/aVUo5weJF6pG4lQv6abHc8CzTlI3tBMik4cK9jN4GtGP2c09ao5ssOH23TXRnrsM2nPrIMI/XHXsdlIdD0vJ2aoE0OOijTDq/sC302pJneDXVCBKcBKR2PMsneE/L3fMK0xoqjybxBUQpeEwvC0gisiZ30VK2uj9ww9VZ2iLRI32azPOfAv/KpTCks52asBtoPHoEJl9tq95j0cqqRwHRdy09OII8kGuvBWxG31iCLnyU4ushbNgnnQX+C2G2v8UH66HnQ4bnCGtu3hBgssMlwKovuR3Y6dGvjWl78nGvWDvMO2jKu1/PX3wg8lScaXuJArN4EQH2o9vaG9jMNWXFzSHSMu31ddK2yCFx3c3h3J9o2UQWJK6m6s7x+0sj9cb6D9znvPatgj8zLtKCG3ZSiT0/BuBxgoFQuv79r+NKo23jMI+Y6ILNszS+xYH8pXfbdmwuhVToS6QK6j4hYHaJJ1lsynSeEgACS7YbaGPKsRrL0OhCeFbvdLab+qD4Tqe320S5e+NU+YKjn5gta4D1x/2pahIiymcN27ANi4EeuS32Ehu1bFinJTS35fO1jx3vRVql1O6c6Kq1neaqoC7hBedaBcqIJHLKkg5Bp85O5vImiPGIWB+feaKHJqb/wGDnzHoAzpPNUVCsBVetgcoq19FOkn9ubMKqDWntUpDkt95O4x4eysCq5TEPDuMSgGI5J9dDJrhX630WseVwQmKMpzOD4EIPe1ebG4aFQo7jfO0wGzRAsVAOzN71jNBW18cqvu2eXM5w+gweAT3PlTohXyyX1OiFBImHy67c3uNzjX3mX78M1Mc0FQk/r1CPJ0uUn3OsCpl7kVe9cUSmaq7oOmzZb/wdp47FMYLbBiMgRm6EMl5udY8TdUATSs6P5BVn544G8nx9prIcWKFVKPH00zyEjQx0O4OlBhaeObHzF0CK2LQNwLd2doNNDR2/vpGaVt86oVeZj6d2cWTfUJTdlBoCvTtnM0C5+LST1gfnFFfFcdiXdX5KKzUBsyp5uctPujeLt9IqqJj6pXxHauBlnaW0ZcM1xuSbiKxs+HQ7J4FIZWWM0S4E01NSjZC2+2TCu6hrJ+hZfG0V19zP7cNs94ItfCdnYXpSgPjqlk2SeMcp63Aawp4RHq+A7jaI2beDokTCQNAVCJvmL5jFsGdsN60tT+i+KK2TOkoppAKLOoBAh+ZI2OZbkW4j2mSVUiBHiy2t9ccIaY44BzFo654nif7g4A202j6ntkD8r1yUjx5iUIj8Oz/oQAjlNT4Ganjzh5BNlMQDKZRJcsTedhZAH8VY8ksRdMFigl1esecSSv/lnx00Wnb4+rwLUCsltufYG8FV8MXK1W7w35NOGHbmdMcg3/siltuNOw36bww8oUoq3BW3rQMXWAZUG/kFRwEUO1zhYY/FkjIL26GK0c/R2s1dsRa1Vx2oA7oXVPJ83t2hSTR5vZb+XUMf/vAIPh/ynnlE0Rj5H78tb47cGrYCnUQJN5Yxaho/PsS/pPMDhwuijzT9UNhxAf3dobW0pRsQseLlSiyN+fMydhMS1xsDqU8ia1MHiLY3vGDcCcB9DjltUccKbTvc9esQwFNwokRAKkojcqUxCS6CSXNgKSXJwDeXIMEguBgMo4GLlIBL4hjCM0SJNUdO3RU4QzK1c+AshQ5qigYY3ZHkK1rxFApU721fXp/tUVIyrr6oTCDamtZWaC8qSn9osEcYwbn8MRGKVUfJTgZZLVOsR4f5JjvXgfK9CD/cLI5T+WEaVBo8CiecaihnK0m7EthtVBNQSKIOV8d/8vtMIN4ZTV7vXOR0v8u8YEA9XmtzKpX5VRhuxizxnHEDwUdVm8WqAKgUVmGKm2NWj+1onLoUpckjNpZieNVbE36VercglKSLdubQTBUgZqP4eyteSLTHICrzhmbeg9wgr0AKA3baUjs2PLffSvQxws/2D/AMQTE3VxcH4+Q7BOMEff9vQvhp7vJdSeL7DCssBuyleJZ6V2D8zAl1it5PTZAeOqJ2O24ZX7bKqNv1af7Hdq1L5BQZ1FF/I6R6Y/3wURBdIbm9RLu/AkHZlgbDU4yGe6j/R8k2+Gjv9k08helXBW8vzVzyPZRripvYd9bexpE4IXVdtdzVJ3MsFzLQGFofNfzS+xtmC34SxAtch0w0LgAv2N/9zJHJkNC+7YttuLpBl20ekmCFND9n7sZndK+VoP3oeKMoMWUMYxOTwMe5eHNuKpfTh6g/qfiOw1d1725jLtOf8z8CUtm5JctqEGtqMYiUitlW91PqBKC1vvIqTzPa+tvfAIz1OfDGUoYuJoTsdFsFNPXg0qwF8ilsCRDKhgPePAVEgyy/Sq5cT4/U5P7eq7CPLGsvpvYSqQEaK4y/TBw48+pljIv0zDkZknwzy/aY7qSb2Iq54nVTQFH9qlj01jtPIR5OZ6DGfpDIuhbrPivGZQXz5Zs5SpbSdP0QEdd3ymvfLKslJgsf8iu73X/bleDlhfbOMcSA2D+7agePRwyVUFiS5izxohIaUT+/+QFvs84EdcYbmNllZir2geelY7hP7nncT451RfFjoJeNLE7YCUTsVbKDBRJF1/LEIa9B9BhD5nVmuUM++DkWZi2vGwsQdi5O6YstfhZk88xb2sxWVr/YTthSbBtSOpomgRxphPsakyR8UzfNhSIRzw2I6OmmY/kBLgeaSd37cyN+frvZCtQOATojdDLTAF345Ruru+IOHOOn5WCtUjEXIAUlmLk//o1s7sofizobnnNQjFoEtxHNXNUUeXDSdvlW19z6uZeodprfPVtIMMR/czA2Zf3Q5SV0qm8ArGww5JNE8224AYB7CKXrPKEe57p7i9DHr+Ss/WI9McuiAUU1LRPD0BmZ8eI92xcYE/AiuU68O4zVEGl0k+LpovQLKi49ztv2UQlgA8ZC1ZADr2HVDjJ4KXEeZubS34UAIQgG8IYwil6f0meJLdPL+B2fjjp2tsyK68W6msGuzFkvEv0g8ZvE0dSfkBl1h8JT3zCbXwU12ZPZHnMuEaIQZlDvRpSKJfrI7jq0eoFAqQQ2lbdmIiVET0OCgjpxQzdP8kPi7u7opJX2UWoBokGNSH8UKeIpzr3y8+QBYAl1EvohKCHKGrWPKnfQLpKoqX3UH1rFAVfXt5ne7k6oVgg7bAeuuplRYqBklaKA7XmyQQ7lJbyXZFjrMlX6Jw+w4jpjII9b25qwkgxBX4mAGcmfFqsC+bX7ZlF0esYv/s6lSW4seYvK5bOhcdHWaZP+X/ay9TqN0Mum4cpC9aUq5SS+zZMuFrS0ZcebTYHM4NtKPlvXny6WKsFo0qc1cjNI
Variant 1
DifficultyLevel
529
Question
At the start of the cricket season, every player chooses one specialty to practice.
The table shows how many players chose each specialty.
|
Bowling |
Out Field |
Slips |
Batting |
Females |
10 |
12 |
17 |
21 |
Males |
22 |
8 |
15 |
25 |
Select the statement that is true.
Worked Solution
By trial and error, consider option 2:
Total females = 10 + 12 + 17 + 21 = 60
Half females = 30
Females bowling or batting = 10 + 21 = 31
∴ More than half the females chose either bowling or batting.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
At the start of the cricket season, every player chooses one specialty to practice.
The table shows how many players chose each specialty.
>>| | Bowling | Out Field |Slips| Batting|
|:-:|:-:|:-:|:-:|:-:|
| Females | 10| 12|17|21|
| Males| 22| 8|15|25|
Select the statement that is true.
|
workedSolution | By trial and error, consider option 2:
Total females = 10 + 12 + 17 + 21 = 60
Half females = 30
Females bowling or batting = 10 + 21 = 31
$\therefore$ {{{correctAnswer}}} |
correctAnswer | More than half the females chose either bowling or batting. |
Answers
Is Correct? | Answer |
x | There are more females playing than males. |
✓ | More than half the females chose either bowling or batting. |
x | Half the males chose either slips or batting. |
x | The same number of males and females are playing cricket. |
U2FsdGVkX18bKb0SJopd0/uFvKqmRFdAVmowK5Ef85fWiaoQSaJAuot8xn+CfftEtfbBbTY3SRURjtxw6osLZieuzLJWlBSNuwIJBa+9TXF6hiGNEzB3MgyANtuzURsdbtsK3sg2Vx6u+qFnx0K3RrFR4XsLvgT7vNnj1evoz8AXA2jGE68B0LPEdPaf+k1JQLZKbxZZJa6s2YZ0ObIUmxLnPf2V7LafZy+YEo+x39yVUUw3SHsNw4LaE6lGnLGNNePKD4gprLEMqFW3tLqR9HpdpxYBdrBa47IC2DXkD3lHAGl7Q7JgMBB03OYSJTk6+WhBNBXbbaYmbMdy6sOP5nuliCDuKCBv6/3eSvO3iSdFCU0mbcuzScHpxqNGevrBC+vTlIJrRUG4jSIKgKndbhvh5MyX60GU9tkcV9gTlFYsQAFUPLrkyo0c3DoXZrdbjDwjwxl0hFjJ7uyj4pFhh6O+KqGEzAa+RAFSsO+LFzy9fmxFSJxRKStq+OEb/Vqmdep/Lkr74WzlKsZWcDNMI8ZfjEL6WVwPOU2nQDitbe5GIgcurCs/qITRobFV4ea5MTz//xbM3T4Imcfxu9fOpacHC81U8eU3api8codxniVkqAxEMlwQk5wKR1iA5LrLuHNX6tONpo5ogXFivYlP6l7ApExFi2hbUyYiUZVZ4KZiL+jxjZ5fpMKf1QGBNCuwU908PxFb9sfMPYH1d0/F7Q5NgjTG3KmIBCZ+u9xN+7LZdsnpJP4C6pKsVA5TXG7UfzXdeK1jJ26+hANmvUUY7has60ceFvNyGMXnFWRCdm+dEXynWmhzYlKGa6o8srSdb42A3uZbp+jmKR7+UvslAoTmXVIeNwCOWzr9yb4zHQMgRPYay0Y1bPX5xeRb9ZXtSllrCvOnl7cRlmgIIsdxEJDCiEA+Uu0l7y21hAPuQJmhaJ/DHdGBcU0RxFJUQEqeisLoK6raRe4Tv4S3bqvgvVCf9B+XqJf7o7DVEhZzTyqs8oIbC0/+W7qPrYsdBYitZpx5SsjveSCwECsmdrW/jT+AhZtwNnJwcI0UIHY1jfXfuNEJRTFH/wWag9bhmGuOg364oPUoSIHRlSAjx/CAJyqr4ZKKhVDoA3m1lQUOgaRnMTTjZ0ksxW32lpm+PMbYKEoyNNVQxgA1rbmTlTQRFmRLHwp+mQ0X34EflUzWVoDoAQOxtQXQVKvr7cTF3Gh7vz5ADg5XYRa20SUCsXr8Dpg37TQkp2In/1cH1SmDSCn0BDfKYGoDXIkrm5Rn2qwabJLsZXWC5NaUwagduF63acT71ZL8A8oLbs1CH28fhnwTvYZP4iU3028dxTZG3utsgLqCz/jBpqeoejabX+JKwQ6b5fCH9NYJcqino75CT8nIjD6vL3Me/gCi6MtYN29qV8R5AH8lLWVY7T+O3XlJvChk6EbdQ7Vz5IGo7WcaIuexP5RZAfnm6d1dtKT2fbF+44/gD3qq7HR2m0qukl/MojuRYUwoM3W8RqlJB6BrDO6uZdFpNwGS5T0T+thbhY/KBpIW9mh1dFuz5CHbBja0e/aneChLyKVIwVAWS3H2HA6fSmQ26ZJkxG1PY8YOae4/LwCg+Q0vTgjxhW6BbAWRBKp1STaxpGdjb5sMVU1BThvW1mzg8liX+m6+2STKzbb/TtuFTU9gi4UqDSRz/1/ftyO7G/T3EjdLEuSDhawlnzhFreY/ocmUPQtyktIgiuTlQHRZSsH0/+FzuFxQY8xMGU6QtshGu/9aJrEadXKbV634t3Apua/z36m0xqZsDbvRWPrjuz69isaTEErpnF/euEbMco9nD4XM6Vp2sLvqhVMBBdy98GhudECddNEFOKxUybNyyfYhpwv5FGbS2zyltNSH0ZYW+3WCA8trBFZXa+n6fmEwx8D88BpYbDxAGCdnoWYwH3YKuVYL7tZmQVljOql29yWryBXi6O8h+q52PT4QThwqX0pF5mhWvldVzjnjdfZxazViEHDdplEqN5gHko6/UFJbBr/EOtSnf5p5EJyFMTJv1DPSAt2EPuYWsIfxtXA5j7eoqXHFYqoxJUXtfOqCT5uhHBQ7f4XPRnjI/OUT6jawqIxQSpbSJy7soTxKdS8yHmBeO+DwUqsjoa7nL2wdpja24/uOhswsLFAwafmkPs/EU3sGpOg7K1bsCjL9Y5j6/EnL3ONjoKQ1539S1uBHkaLGs8MjhQGvW6CHQDFoF474wpfuv7RGwaLI/osStkiVD3zCcz6tic/lJFb+SRAQKtB1waIXfr5SDQsCux3zG7GIcvbumRn+3cWcANKb8t8YvVqDtNM8exep23cVtTk5NIKlJ0arUv+fsajo/LFIDdHp+Sno5nl+tybUEF9XaI2z8cQdbFfg2+H+bbMIpN5J+gNTjPTnVc7NDiVxq4uA1JvPOiQLSeb7DT5jQUIpp6CHaFRWG0b9XqNhId2lKipJXOjvQkAK4gzGnAtnNnhbDArennKzc28v2P2bNgO3BiIiv6WEjLXk9vN1RJyZCiQ40g3LOw5nGXuoW9s24dM1iJsnyPphvmm8Sgvyd5SFK7JZ9EV+jGvs6F8oe9katUUmx3gu5UVE39af/imqG22I0Ogru/1sYeg4gkh69R6PL8FLcCy+PXQYKmlnCgfN60tPnV8WrJl4ZrOciBxaIlvHjEA2DUgYZDmbeEERAtO6xa7o7Emu9HAanLOYa8K9Qi/aX2/qLtDffk5cq+HG90vaEGaFQe+xHhchh8/jv4ID4Z24fLPvJhY1oD5UzJ9K/ng68Je/5ABPHvCY/dPbBlFn9qTPuFFN+Jl6Q9SfHhp786x4DQG8BvHOkFdfHJOGyt2l2S9aSNZDpcO1Fow17VH8oftGpNh14AwJzHKQlQC9Cz6u+KQ1qQqDmqczHzVDnARCtvOd2Qt5Vi75Gw9jJCiwTOHVMQMSp0KVnQp5lewhfrvDkm1y5oaFUEQUcCtJXnE7fNVVUHsyHAQeCqp3fNjhjH5/fpyvZQM8l/jIaA/C6OXaF7iwvvD80WCSlOSV9AVWh7m/AOOEu5LJnQUZzQ6ROnqRjhCICKFkcV1uusbMp9vx6chzKy5J7LfsHtudT+0wynwoVOuquLFBkxgOZR7n37sD/4loFdgrKuJF/UHDj7GiLZRrFzh2RE02FSGCm8QdIwhQmgE/6xHHwrmylZA3xivDprK38fDlMZfDn49QyWq5MYp0X+6aqi6b5+x4dvmekQ/B+5EatmkqP6T3ccDvA3IBwiDMTAKJ8Xwfv7hcpdfnajeRCsM3HXZOtTe8EN6EYSZu3skx0YVSpNJcy4IGdi/M7GPQr3+hRHdPOyJ3uHRanP+DzGyrTSyYh4mAnmT24SseDyqlrH1Tv//+pulmcweQF6Z8ytVLLbpTIMgQW238LJZ5dqo/1xrtJmTSpN4xXprYTM86TKPnWIFNMadycTW5uyI5LgwISRccx6OazDDj6WvKYcLKvac1XbtrUp7Iy9exrtr8zkRvWTr6QU3iSB1jQGpcNAwILGjCVIEvotVylvMKruk3ignEmDxHl+rL0zXL9EbcXlGCyq0Xv9zzfsPEGizW3mwxZo59BRAgjNSaPJDBtxutUxggfC18W27SDYrRuGad7L8g7VTA6AwzN1cDZYFAfEMyCNkEhZ39MKkgK8m+4VOSu3WsijkGY+ZHNcWbIn2Iqw0RMgcAjECHcpFUuEEj/tHQHHD0v+udIXY292j1DquaGW16up2Vjt/NMqRf9aIuIUFm4V3OuVZaPqCTC8llqFCiA1Zyd7LldMy10/V9zs1GLOyeIv61K5cSwwNVrY0kB3A5BcrzdmwxhOQOX6ogwDOU/wsz3XriJg/9gxvGIcZfjvB3EGdmfNwTIL4JsdoVDCKmEm3zmty91V/FO0IUeFXzAOhCGqAVAcqpXsgog/x2oU/+g5qf6KcQhrIYclOeRSRM/1f2bVeF1TNVZY8QO1WOdcNTwSq9P6ywOoD7pjOs4pNoBbzxSeVcvpG6ngAA1nX8oDBjYqvjuV7XM/gGAvPtnuciC6UTDzt5AZPLdBaI9s+DNClgvi+gpbRtQGMBWHEa8W8fQEQFpZw211N4kaADNdMsfaZunvVD7lXMHpuSvvSh1QbxE95KBJnZ0JcpTm7F+kSefcC8Tc0ZpveVwtBRv7sFZGWDSX+s3n8IE+qSDAuxPOL7RnDYB9Ah+ZGM2XN2XsfNdTEaP2bmqYDJJfflJaz38o7wHEl91guVXXrAIJFqZ6WwlbRdFCOZB5UA1in3/qaWH4K+J/1Ao6PcTtgsxIRM62P+ouqj9B9IUDBGugbbSacmKobwufa/2Pz47ElG5o1tGkpCdKWMdFjme5iZi6QHwdZDTx8lee77Y753jkeWEdcyRF1jDxF99jLDoDsJodxTJc8/YnwpkY7I9UWrHMV/dsXWacMgJwnW4zMx8h/gecZwf0tHtV8jZsz4h6R9ycTi4lSyT3vcyyYO1I7Hhb8gRgFWUUZJ73ueVSU6sR9jCXpYXg3n0bISLZroNuyyEY+Wq/6IikuMjTkhzgVvPh8r71jqli44ZknRs6DmKjB+RPWVaEzzoxFpeGXy+xlW1Oy52MEwz3yLbtzVt1ombm52IrxEY2qM9w8UaxIU57NdkZUjvOZkVGuQDHB1FDfoknXj8fj0inZoNyoE4BR54oQ7XJ7aoCuUGIdhzWrymMIH46pgd1SDGd7fuC6J6Ghn8JXjOitN4XyCBR3w0/gOGkimqB/S/aA27uk6kAfHKIMyhuETgDDIFKxHM4ZND5vIiMIqpHiCwflH7vkzI0PqSeAP/ZOaddEIz+HBHaf1s08rhqwswwqVoscA1ccgzRue0PL+lxyoxjsu5hLIWxaQEBqJpCpqWAYoXytOiRHUIZU0MaFI44RZP7fOMEo1Q2vHqrafVX8aRba+DJJAKQK/oNDm4FyKAG8g/LXopHFEnQ8/IClZZvcGml8If3mwgDA7JCttbSmUKefPPk+HUEsEs06O5FWP2a5Pvm31B4Dl22vYP1G6SXz1MBLDgdM0qhvohpl3k6ChOJz7ovyzNZTMPLIMytvOrLUxN59x9mhTupLX7IprzxGhjAyPnPPoX98hbJslEIqyMcWuB2+UIwEEcPy1qutjHtVw5lsD7Q1wmEkaFgTVwStm0RKmifa8yQgqP1A+xeuExya3tYcz/2Qrcii+55UUpKnX9ktYWSyNGN+BymYdWjQvknyfDwMde48gpQm16Ux9GYKFLi/o0WlXBIBBd6W/HuzDGsIO6QOdUFsjcoZ6wAK5S9A5PEwU+P4kwiYXBWEV6tLXGf8t3UMiwTj+qnKI2FjHp5DqmPA2K8cZ5SzHFzvS/9744N8rfC9wUgJwkK0mHncSFYZiaKwe9WlnVca1m27XpqOppDKmA9FLHHydigtiP3McKNZwMm1GZSvBdPhreoqdv7Mau9ZVH5IIO0RrBoVvY/BRL0vgw+Q6HFBmvXzkm3hS8hnsaNy4H4Sf5oW1K/i4a2afnzolVpfJ4WNIGF591B1M7SToFndFzRYWV3RNg0eC5I68FYc3oZxDLmxcZsFrdYD+SDdJARqIFG/flrL2aVezTV6clfih0k1bxH3g4QJJAbdnBqCERXPrZKclH759ytX/LLqZLgpCm0wlmyN/vDiBH5Srfet1GRhJtxBW2SePXg148s9df/ZVR+VzTkslakxffrBJOHannSKDNXj1+hEwZNOEIxN+FQHMTF8fUtZ23pCwUz1uE3/iGpwTOTiyPzUa4fq/dJA+PRI9/44qeoPHZ9g03YI7iwESmLXdq5lWZNOGEHs4rQNv1sNLnni+17BjSFpavSKEymgMhN8PRvWaEdF/DhWlLGCQXMwCW03aI8kD2GblwAuyESBHeQe8FMqo5am/D81u9AaW1JYwSOzMx3gKD3pOfLqXIvHDpLLxphPDS7A0GhqdY0N96M4UwNVxmsqg8A99zjY2krcKKqPhwLBnqftqJYSEgOS36jcvhx473ThX+1+UG5RWM1Ufvq9EiHDso/EixiH/uvp2BJbccJPkV65NI9s7AIlIWe5akY9b3UEsas+6oUNKlgZyFHOmDf1yuuiyK2nvRWyFPawG4d41F92Zkx6R81pTcp1GHr6ss7pP3LcblGVxBdQTK0JlOA2HHQxzrR00GjcbD+uI8Mrl/zsk1CLrWdsRXsDHSTPm078ZKxUeY0Xbm4idpFKBPyqsuD13Wn/KAnwflC7VtOOTaM/VKuIzjMCXZC4bW79hyhjQdq6BsIVfb8s4ysXgamsxTZ87kKyQ3BWVsS0bVbWZu20gaPx3/8akJEDKkxyE/HhrJzrYBjCRa0ykKqnX7xjGBfC99Z0gW5BW3TWlUTGH/b3NMSos9Uu8KiH1Hy2G5ORvSUdAhtbq0KIMXNt3124+PgI6vUfwoIhpBjB/PmYxywvdSakX9kenS5o443Hk2IZQSbFES6E=
Variant 2
DifficultyLevel
531
Question
At the school canteen, every child chooses one lunch option.
The table shows how many children chose each lunch.
|
Salad Bowl |
Sandwich |
Wrap |
Fruit Salad Bowl |
Girls |
15 |
21 |
10 |
14 |
Boys |
12 |
25 |
15 |
20 |
Select the statement that is true.
Worked Solution
By trial and error, consider option 4:
Total boys = 12 + 25 + 15 + 20 = 72
|
|
61×72 |
= 12 |
∴ One sixth of the boys chose the salad bowl.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
At the school canteen, every child chooses one lunch option.
The table shows how many children chose each lunch.
>>| | Salad Bowl | Sandwich |Wrap| Fruit Salad Bowl|
|:-:|:-:|:-:|:-:|:-:|
| Girls | 15| 21|10|14|
| Boys| 12| 25|15|20|
Select the statement that is true.
|
workedSolution | By trial and error, consider option 4:
Total boys = 12 + 25 + 15 + 20 = 72
| | |
| --------------------: | -------------- |
| $\dfrac{1}{6} \times 72$ | = 12 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | One sixth of the boys chose the salad bowl. |
Answers
Is Correct? | Answer |
x | The same number of boys and girls ordered lunch from the canteen. |
x | One quarter of the girls and a quarter of the boys chose the salad bowl. |
x | One third of the boys chose the wrap. |
✓ | One sixth of the boys chose the salad bowl. |
U2FsdGVkX1/mLKUXWVjKL+FilzOPOXL4FtnwNOAxy+BY82ZhMFq4rFrHWuiOfl5oowajBZAZZAozrHEu/KaqaFvi6WXxUD2DNMTCrN1hr2H4TK5aSVHzk2Rp9GAaIz9sWp0+dQkhZPyW9wa9UbwltUyx4oh4nWJvQCQd7FeEsmGhXuOydM3KxMtziq3WcVWtCJXZZLfDpXD+Tx4CcMa2NwEQe0VD1Luf78QgNCvvbWO9rwuX2Al18ncxkbbxh/Eu3lMOnrCRYUEQftCF6KE7zJibcIp9m6P3kXpbYi0eY8SJiemPNJBok1q0zLFlO6+spMHIrEGIyBQXNJJQIUhIeKOZiAdl91D6+dcO0BR9SIuCisW8iW5KqsbzDnoXPRCboDahgOdW3ONThtc39o6/WF9jWi12arNV/xkjhfITqqzmeoBbzetGH2Xl2e8Lm+u/WNir00nTMCkc9pzy1EEjC9fmxSTqrTzLDdCrjip0g9hgDpGsoXY10CVnbr+aYHd7gqgMtzNoIlLM1FrBKHZXAOfS2XF/yWiQVvZIOhFhoX575CCJgtDukHUlhUSCjcKFxN8yal9GTFS1vqoVyVORLjpfcjZ8OGGXAaYq0po2FzpJLiOduzSEwsl6LaLVKMEC8cWyPI2oHSOrQTQN6KIhMagclEDT+P2RkbB6evB5l8OSpiCNDqIE7yBE4wgcKlHC6FF1u1d+fyi+cmbE5slyrR7v7trl6V7rxvD3+7etrTZl0rZVLcm7FS8FdwM4yopuhnii1L9GQ4/7eC4ErhN9nDfRQgpNSAEPgm+bZPjmMbCMqswVbc+Y8KAoRcqPdlgoKqndplegHS5rd1WWRFsq7Ml6MW9z3WhuT5moT7xW/S0bhTMsRcNBLJ7XBDvTYzVzD6OLBVIAqbcAnECaKNoa0K+W7NSeVjjdXHDjJsRGMAPsz2H58Tpxzk4AnMHwxdE4DMZAS8fthLvRz1BpX+4fmDU0fEplYT87yGZWXpKhrw6j6oZGm/QaZo8ixJVoFfd29P0dsKDiCUVwW2YuJ2kVY31JBHZA0vo0RQ2vYz+xhLtJ5DiOK5HuKz8UeLY+dJWsoXzV859mNyNd4KgCm4a0/37TbLCvslVvzxFeAFpvocPPvFI32tjzvFT0rHcxsvcFQKjU8HZUEhV8Po/AROHJo8IwDBYqzOnuY2rgk+npWgLDvoEbH6WRRc9ffv0tup8w/mhF4zzK7H5Ys8bdoGcMRwZ30klPy+W48f2sJj3+XpG5i6a9E6Bfij5BrtFRReH4H71cROtRO+DXw9zze9M6EPQIcZdbcaf9/nGriHfFHPJfYLQgyB5HFLhusb+yF0iyjy05k2xHHpgl07qc3lIakTPIs8yWqDS+luWgjGweWoB6HRsGpTCJvlqWEE6ALtskusm3A7rwlP2xPbf28znVxrTrFdRbkIJ60kd/v+pepKMs2+xwzLB6NHZbL+MMax8Unn6NbIfKDzXbogkTyAU739X6c2ADwU7ft3epb/fPsA1F9VCK68aGUTwAPGzhqozO2LYYIVoCvPKeI7ySHOog20+K4nkWwGa3/0gz+eJq1N3Y8DcXmyPyKJ9HI7Pa+7L3+nhjjysz8ofXty0uUkV1LGdG6kAjVXvFcyhnTQFeSvET99s9eLd5p9E3XXTUcx7QCRRhmlpvr7d8yS3qvPgHMmz8CgmKz9MtRoBAqO75DPYSPeL7lHAH5rtH7LfSQnmwaS8vyRA/RRrGCdiqukwL6htLioY15mO9CHGnf9FaCo8wg255pTMB3AI2P6aQ/CG7ive4sWQ4qkLlThNXh0S08RcnYXfGYekwq7kOAUNi4iSaGK8eleVAUt0pIwCbDFX1c8Tjww6bAoqAcObj4Pro+Q7p1SvG4DPwwbYuosZ6oR4M4H0XamEOQsI8oo9YIhX5UW/aaQkUbvnmJjY1yDTKUPEq1VYrlnTpaIUhwwQ3UiZagbkHb7n2xGAIIfr+XU5ta14QBw+s0xWGGaozeQRI+8dSvEoGATRUSdI0ppbW8zOvFKqZEsXfwy+sgbb8Ws27oxLWBvDHR7c4JJJ3b4x3eYa1ieY2dEWAztZmuh/awvzxQbdcML3XTMYj6RV7DlyuKT3wMTqFZhn/WbSzbkdhEyMUwtIh6nHSUgsIwEKPcTTQ8Fh2zC0avXNsH3+Y82aEt6ZCtBklRikPecFxehxwoCF/Vpm3+kV8jCmvKF6usIX9tqb05ukV1oxxQ5CuccAFGrHeln3FvLuq27JThdZzxnl2PEZSG2DVOtRcyu6O7dlobHsdzhqVhr9SahC21OPZe9o1H4oNTy1T38zApUpICCcEfFtLgtPPz2NEM3ku34FfViiSukmpBRFBW6IpsWKO9zH/0A/suIyATxLOo4h89+TzXhzs6eRX557oe9EwuhI34Xt1BUZAXVJsTUjp5aqNEJBzya4EW+YWj8C/YVHzl7LHHxiB3/LaUfCPE0JwZIVY6Qbk9sConq+ORzL1B2xo+nEx0L5Ix5T0Ti/OtK0zKBVUW2kpbKrjLOPO+/YEl0LaLvFgCX8kBqyWIZz4tBIv2Fl8sLuLDCzVBd6MtR6hyV4ORsPhpJBmoEjFtjTn+tYPe2s8MSUATYDhh6aQbKcCThTdVZZUbBzzThLysjG55yN5PN4WQYRcjf15feVuo5VmXbTBBel5Noq45HAUsKAZv/i0VQCuBO6uJI0RxqL4YGPdK00w3FHL7EKlV0D/LHSUkTQkHcYJSU8KPjm4uAIcJPTyH+gVg0UrWSwAqCFeaRuOd5RVxR8Vh37q/cCS7KX+MrO1LY+JB6L6rz1hLzbIHBiQ1FHNankImrCR2xr9g9YeKjJT0U6oVaQlr9VuaZsqGFyW4N52DO9uORo7SFqwyFOA++nAffZRx6wa8RUUS0OPhwwGJegd27//vct70PI2UtlyMLsrcpbQaVDsMH0SSszwXNAYIQAjWB8nYxLgJrkXzAcq7BC3McshlDhZmXZUZa0G9Pnlj6qOfC4bt/HjMF5itYz6JL69qrWIiZPk1t6ojCYoX7e6FTQsg5isAittJzwiPuyQed6eCzLuVNCafTEwqCGZukTOnMoGt0dP1aUxL2rjk5x17/RGHewB5vlxLvxd+oZZhovK25aTcFTa3OEPC0GF6tA07eOPKIO/pQtIrkTmiGg9UjxKwAL8vqAlkyPEFxilWv7QSJk5b+JBSetoPKiogInx4m5H3UQYX575mxZ/Q47Q8yzz1HB77tncAxARJhbRTHFel/zxWmUvOkhURwZnjHyGLQP/RpQ7i8o4nMZE/oHUvHvYauBrkyPJJZgSnW5IoX587frjSCq35ioCbauYAQno6JP5iN8I8ZNAcPxDXHEG4mmeYht5FFVDOCGQD8LklfgTEO0IOU+8ULNwnSDaV+x+x8nBt6JXBKyf3sbkhoCTIhx5nT1Zk4F10Llddy3TAp0ZfM5scPB67gNrC2uON6ZyN+MO4CB27oBV1ScJhm8I7hUxmTSZjRxBhwFNmU3MTLAWfQ6+rmF7bDtqOHFXIQzoqQbhrX7WUJ3pdZ6smgO9Li/azgofHt0ocNCO4xz9U2Rq4fMPvNEW1btdNXb6ZGdSlo9GNxKmKD5/3oa8v/M1eZ0lPzb5vn4qr6vLHjRgGJpVGtv95C+A+/7uAp0uD9YU9KZ5iR89198r5fXPAcCHYCUwO55jTQ0EZ4CRsGgb3qRYXsvh0gJeiLTwA8bhB+yZM41wzqfm5zwXUdU/ABBx3YJeE2nj5CojByhFKRXHebGAjA34i62iZvzsdYEOCNkZ5EEN/Fdmpnoh5zWYi2fnJyAh1atQwk4/CcdWpKMrFYewobD3cga8A+4PsTk0jtWyY3xC36Z/u7/u/s/j3/655sxsZDrUJxjYOWyS3G9MOex68OQKA8iEVnwqBGcRifWKjf5c5buplaJsPiuRDJEcx/AKOfy5cibs8++0MmwTWi1tZV5c/d+wvqk64CinfEW+g9DWmFBg53au77iaufiv+0e3uqccH31RqF2bfeDEimFfN6WOvcptmZyQzWxFg44eaOx4VkKesTsHY8x1hI1cO3BSvg0831Gpgs1+hjRoF28DKlqr8oYCyfvyjYK2X7qNvarCP6SVPP9xb1KW7BVCRqaV5nk7PX/d14KbuBuEQwMZ3gMAyZQBZRoCa/+iI9ncqDDea5xx4WjVT82y57V4tp/ibIeoG74wL/pMTUS7raNWkn4nQqHY0F9iITmu/fV+DH3OHc+5JjcUdumkI1ECxGbotM9/EoKeIYzZ0KN+acykzV2bzVTzDg+FQl9ahWed+qTKQv3bb74NcAsQBaW1kkowFcIVCHdJC3zH+ehzyPt8+OECibTa6Bv8vAMgkgDJCnxSXWEF566cVbv59DHkPGkzJPj2mLZd9Llt5Y7o+curBHkco2T6gDVXxqB1NYxgsaackIxGTH5w+WR4HuZJsPFRfFhHO/3LhHbT9RjzXtA/e7J1/5npk3u1bM3typagDxoOgTrdS02cjbx2Sp6EW0WjJl4A74WANv+wfiLh1jhDm/9VgDIyYvUN+vKrbaJecPabrMWwASAa2J6oRsiDLvdRm8w3YuUj0roQVA09KUQwCivBXbUlLURf+WukWszL2lJUc6e9rdZZ/cG+JuYNHRwfo7p2TnaF7OzJaO9M1vxn26rZshVcwrSgYjHItuU3/2EmTQC04LyAVhUGgjBZ3XCOXbWxXTWWK13bKHNR730QLbYXY5dfak9h4ajPzL+YUJyCE9GA7WntxNcuXvlV/yserZ0TaxjHRJOmbX8vZSqeqSsSk4Stc2o/bKA8uZLkd5cn2FlnphlV3xuRG5uo4EoY80842f2gRGwGb9U90SrtcE9QTlvlLGxVdkw7l+9wDBpT0nXHwXUdOzK/uRj980MMhiimNt0QG+A2aNI1fY5BnnjOTqRUIOCEdx9PLBUWKxArtSj2qGGPMOVRrlyWuayZAM6Lj5d2YYhvBRXxv0HFpOEOw0C2+mdrkkgkO3T9GDJ/WvC7wWvwse5RJ4BW6/fKRDZbCrEGYBq4iDlKV40O/zjiITVJuT5u9rlPpRg+bDfbc5ZV/RTXOotV6UZT6vDMyWNz4zupsRFqH/3wj7VVu4Tcr2ApKOX8oT2+nJOnGhGTeMXMK9OsXYzzllwt/1ghWxPqzCjYPlgCsiARJVBP95z0TdaS5zIKRtuVX74bqgn65FFgVN1Xqj2Zgkk+72BT6YYcI8A2roAv3HeitC+onru8OQboyeGkUSWsQ4HD8Tdgv+sLrhLthZMonv+QX6c6/S3EEFOXSosWEBPqgD+O+udIoGOoqzZ/QYBNnmTboBIVCcsiiChQhABYIyKmvkn2MqfIUJYeNG6VIe0uIJ092rnWZweLillVySUAQzHmLBEp7oxPfWEkeHWC5V8mcpXDkGe9bX6Wot2fPaDKSstchNEzfbDBEmxc3YwYiwp48HRg89WT0PnkiXeOMPtTzvRTZZwmEzEhr/bXJPvDLgTqc5TGhA9r1g74IDPNW134o8WVpRc1YIsSMCtzZpZfm1PQOt9R0xsYsEXiQ1aj/hpz8nx54FQs49aLoVJkyXc3cABOQZzRkdDUx6eXKSj4iH+LCtVteL4xe68UB+DoJ8nscThQoh03rRGdcmh2r1UYY0oakIavMWuAmyDchIDCh9Kf2nh/1bniiuoTN9+NJKjVC/ttCmA0Nx1ZnU2Ns6Uc+6dIaDjhtdliKoHDhb9ss1Iw+9Sc9LBn1lmY5cYaAglFbE4oSlm7v21XLQmGLjn0lX9TlVxBzLvtI+N05yYMGpyOYqXrowBZ+K9pX0DMFgJZfvRsIztO2vdg+5brrX+OsatIMbbKPMEx9rq4nAo7LkU5rEzrEBMlhyKkQlbG/96ItUm3DR5GDYPGqyNTouYj10lHeLhhKBUZqmlF+pjvK7aXwaQQs6vg1ZScTXeTZtNaj2eR6EEr5ZDgLS8BvZG5ySc6NYCNrOm4UgzL+r2ScXU46um4/AGdrg3lgB/rs8iBPkLP+gBy/aSsR9LKiKV58rWdQo4RJYgkHSfaj90iYCNDZF+JnuOkdTDAxqyOipMhwZHs/F9l29hP+bArtoIGlHOSwa5skCcNE3pR58TjkVwrppgtpX60xT0GVodVltZuLlnrmHDj46Pexsya2+a3SZPjg0z8A/yhms46vWN9bk4b6l5txq6s0AkAlJ6cUJYr2AQxpHxT0q+yERNweaLiYzNmdYPytGlYwxHtSt1254id1QPTMmnupnxs+jP/PseZmC55XQfhrvm0FQxXSBEVSSxX4XGyMZ7TJSBnkJ+3Ln9sIAw9HnMrDvk/RNfF43rWwfJaA04edHBJR7zS2EtpqvyxyySQXVCmL+cuN8KyHGLsFu7J85r0VUImgdM4ENcnyu4ms1nNg4D2OgvKC22KP5rCf8AsXLImuqn9lh3CU31APzh0sa+jBIkUPA51JojWysCKVObxA/GTVnqHYlOE2VXmz8H9lGs+Ko8QSG0oFybPzwTjz/WEIhQid/wIhgYlRYZAmQf5258CTk4xI1ZEIPZpVZU4dNe8leYaeetgBcnT2k9/lm2rMsacPJ3Trqb7P7Pd5hklLvNIxPqQhU94vatyGAColNeXxVzuRUPYhIqrAkGujtguPMZoHFClafsfg3U8e2A/LfdSlhoBKE9u2XutJbp61Y3pmLmfEtDrW6cqbniVQh2Eck6pQfS6ejym5/OUQGbDsvoWf8Au+MYUOt05bB24sSOI2LuYNVj46m3csZBZgy752KgFfk3YlF3bVcgd1wJfQfa5443NEvFyDICN+3pIrXGznl8In14sVdmg5ui9hrJkAZ9UgzyLlCYa2BZJhh6066ETrK3zUeH1IBBCVDbjfZnORcuXnAnKsoYtZP2SLmNxKosCZrB/IMXZJg7RPCKpsw5sBrg0Nctq00f0cStC3ET6Mj8NKFHvHEnalx8kiTj3E+N3vXjmtkZxJF7HbpxHGplCtFN0O7PCXZerdjN2F9rT+ceGQAwPxPPbGH5aYvK3Uw0tgReo51BlOx2bWcK07bvl8d7ChX5i48TRvMzoxGXBt1YHFB9r/MTq1LMMsUxqquxSzoRosJgpPIaKj6+XeEPGZjWlVvIvOfFCg8i0Tx7r0qfmicfQ7GPMeIuNJMf5ECaf0OvJlDc4db5qjf4rcSDAaTrrhFmFi/62Ho4ihR7TB960PKzeOrIrdWWHKeskqXyGZBoZOLlPptWmVlv66l0njGsV8z9jZcYYQdao7mcgenCbJvMQNZYRkc5gaq2LzBp68D+GFWbCrYWnwbtUe1O/42kz+jLWLYx+Bjo7wj/KeWWgAUl8TXseXWxji6j2iHuc7OFAIIqYKDUJKAlKyPUiRcHec2QI8WGdR9epxr1FmHWmHQ/P3/SiqX8WZB26anQegMWYqU4I6KXDEHdDuzPcSBw1Ggnhm+iVQLIDaZgFEZATVw+kuOEQCT1dLPi03NPL58GhFabcNwSFRjZSHIGFjGpb/zOLfWhV9cCbiidVvyuX7HXfuc28vTvQW0XcVC+GNXHDjltIL2ETQEeSUHRf92TkUfePjuegCL5Fm1J5CYU5ZdJ3XrNPCO2LIBLTtI12TnVMnlEbOm6r8+9exN+Eft5xTVF+0HfvrweniyNJS+oICdu2cwE00tD8TVslpDqfV1SJMiG/1w5IDqyNRfj0M+r8USxYl7Tk2kPjR98HnffFXq+ar5MaENSOutucpaX64vTf7KELGsJS6CmTmpIMhsJotGbln50RWwrj04pf5JogNTsvDYamd3UzMN7C0LRqXndy6ACZV3snJ74rsUwwYvIq5dzMtVDjd7kbHrDcCmnpkaBA9VBZz31Rylao6Fg5rexexCFWf5GSSE5hBsmPZguRQ/9fYwOgcYZ74y2ARGbsFraSznjac0H0oalt5j4xq9FIHlNEfaxVPPaeLBilaXaG6RTJTtcyi43FdQ7uL0zq6iPvPH3BlFWg5EsMK/W7VMv10JKkC8WyVdl7cFf1Jh4tpR5iMd46/+ocw5Ww+mQuos71pyKWdywQLLwRDCOQQVOzhZJD/QlU8Pm3NKhf8kUwqIMUDubyytZ+6LjSnnswBIHLJU9c1WRCvjXsfs3swWAX26iEEXWrk/piP1910w1pkK+u+N5v6Ek+DCR9qm1Mwb0raC6oC7fsphn8J39FEEWtdDLt8hAuTdGHRr98hK6Y0n1WoQ+aE1OsVjEkbLH46oWZzZL42edq+SM8vNRM47PsVoxIyyffgtN4geT8IC8J8u9eK4hGK/C+TjnQPI89c9viL1bvVcfm9S3vp+TVcGPtkPArqBxPNWVF5YOvaIXhneBQ0qQ7I6ykmQaYBjsq0Hs9De7uZBloiK36W1vui8JcDuaFFRsbBPrjBCNNRkmRNxUp+KFaNecVJcLD0YztUt0Xl2L5fFcwTJKapeS5v7N3T5v0a/VD66NBIzprOPsqIpoKputm5jaH1l1xfpEEyqWKOCOaCtQikkX+CgNGByaxpiR2uj7wmAWPusS5jaYnEG0tHWwGoDTCWX5wQ0Im/wDioN+00uaeAIhBHW+LYMpjLneLLXr4PN0wGLTOr0IioNXOxice+OiV4h9wZZR1R0/sE1Dld7JNUx3JhFDgjvtKGEojLUmCz4kihcLzlVEmV7rk8RuM0W+B3alNhVmNcI7mYMlEUr/cBRige8iW4Tc0s6wYyPCzjVmJBVNrLZGAozenK6iwjy5NsWmZyiU8SdoTgU9t1aqAKze5LsR95ag2Z+9O28hxy7c1eRK2pK45lZ+Av3HqSWwhAm7vcphax9zSSP/zNYbxc1zt56APu+i2Xj3Lw4uy1aSg/4nEliD7Ka/3gaqqGTQ14n7jGg50OPwjK0K4tFGgO9ni2qzbKDmgHIEYAzbYfaOKQxrIZ36cF9yMWOskcXfis1Q94L37QDAyvKehZpzVgCrY8rwoLluD4sdc+QbYjhOtXKZ9E854jG/gYIq7rO3ABmsqVEzT4mCtL+tNF6c5glohfg1zyg5AUcmuvM9I9Q7WTCbNqVeRYN2lkC2nxVjFJz5QXvNYtrymCqMoV+tazTRVt15SDU1eJDhc3wVxC4GrcWNJx0TifGVK0AaU8rhcgnfdXGJhe4FTjCO9zXNxcj3SeMlrxGW74uKErKpLF28sdU8+xPmsWl/9JbVkXkpUWG/EWXzkfWU2K2wSKV07BLb8BEAiw2n/ahfb9koQTdtEJ7T9/egrsm8ALPcfsBCInQWU61vqsAR/LS9rKQWMktElwnZPM7Ny7LoZvzv7yS0fqSGaJl+Hjlx1v7Av9Lk4T1OyjkVGbZAQozXtVhcgbKgLzT/wttEbXNEOxny0pJgnbva7e5iGfujnK4oRMCqAOE4fEBfZQjTLZf2e7DL0is/fzq07a2+MnhY9MfiG6VWX0z2cxPGnNbQgh+ydKGpSnaTTMu+Wd5RZ56xVMiIq9V4p6frgxUj6mLj3qtRe7QQJI3id9S6dPhTXbIoueobrgRfQb1lzSfs6zmyJhBGAboZXtKxe0KI4dPnmuAVEKcyFJo8htUTG/IKLsx977pBaDLb/rcgQpfn2ANxh5tmxUJmaOOqhiJeVqg6+Wr95L7WmMZwQQh4BL9uxiOenqmha/sozlW3tp42lCNKzAVs4XxqAiMmz4Z/3AllVhaSBiXdNt3F+XkbQVyx1wXuuzisyOMQPLSriMGivTpkwVE96EJLUfRHHy7YNvNUCIg5C3rOsQlFkqqymF+yva8+QrFocTWbQaQFzcv9NF7L54vpv28WuRaxGq0sOllxYXI6j8dTfL+pNL3jMmWZJRt5hjhrpsalB9dfVAQTp33PiV3YxUZdlty0wjJgTBAxvvqEwnJd8
Variant 3
DifficultyLevel
533
Question
At the start of Year 8, every child chooses one language.
The table shows how many children chose each language.
|
Spanish |
German |
French |
Japanese |
Girls |
21 |
16 |
23 |
24 |
Boys |
22 |
21 |
16 |
21 |
Select the statement that is true.
Worked Solution
By trial and error, consider option 1:
Total girls = 21 + 16 + 23 + 24 = 84
41 × girls = 21 ⇒ 43=3×21=63
German + French + Japanese = 16 + 23 + 24 = 63
∴ Three quarters of the girls study either German, French or Japanese.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
At the start of Year 8, every child chooses one language.
The table shows how many children chose each language.
>>| | Spanish| German |French| Japanese|
|:-:|:-:|:-:|:-:|:-:|
| Girls | 21| 16|23|24|
| Boys| 22| 21|16|21|
Select the statement that is true.
|
workedSolution | By trial and error, consider option 1:
Total girls = 21 + 16 + 23 + 24 = 84
$\dfrac{1}{4}\ \times$ girls = 21 $\Rightarrow$ $\dfrac{3}{4} = 3 \times 21 = 63$
German + French + Japanese = 16 + 23 + 24 = 63
$\therefore$ {{{correctAnswer}}} |
correctAnswer | Three quarters of the girls study either German, French or Japanese. |
Answers
Is Correct? | Answer |
✓ | Three quarters of the girls study either German, French or Japanese. |
x | Less than half the boys study Spanish or German. |
x | The same fraction of boys study French as the girls studying Japanese |
x | The same number of boys and girls were in Year 8. |
U2FsdGVkX1/LdlptvQCFpDSTqngyBQ7Uiqw+598NfEE0CYyYsjOVOLCnK7Rb4uJGlFVMPQTWDfiOzjSyvPG3m2Lt9f90zd10otR2LXeYjtsOi6/MH6ELoYLafAqMzGyDLEMTL6/DuwL4iYJfsINNa9kG3NOl3fSjOyUKX+tmB2msmWLbM+g1IHRVcOxuVMK2bzgx9mqihR72du3CWeE+dFqWM311r+8P17pvlh5U6Z3eOfMhP2JsNQsXN9GW95xecZ4YhzovMKqCSKx8jUHlghJ5XhbKc9165UkPDBabKqKTKRkVBcShZqK5Wp+xtgj/cScINofARdhmTKzMin63WBa/0i9hFuKk4ko/G6ks0GT46b4YrCRurcgLBdz8hS6aA1RIzFiK9iy/ml6UmSClV05/JU28D9LcMz0RvannEXe2ETy2c0cnn3J+x3ahRqoNDlDag7J9ymT5GIJLNGs2mI8mcR3NOfYhp8iKyeyEpCv2bxLKmOWRIo9L+//oA3bgVXNkjGsHXseiyiqu+j2sHL/BmU3Dv7ZNNVSyKYo+k2qBvRtAv2pkamDBirKiQImQpTwY6wA0VEQsxUf+tj9aHK/RL0//bytcl0oKyGq9DR709sJzZT3AjLRbxFWFbxO5SHxNSnKq6ocfwA+v7onYSfcMVynaqg8oFb1kAWRUDtP0n/HpK8m02WTUd3I6yLG4H4UJ6y761FB9FwhY1XAlnuWuNtpM4h64PHg3yRj3H/3iiBw9eaxv+OFfhjer4BdGhBj8yEFEjfkf6WsNpxnG4A15L1rJvVwEqtpeDsnnyOm82MyhHB191egF2f4BzbZqb6V/fNCfgl7jO4VuWr5oTy2XQw7KUqKmmzo1KQame1h1r12dCWNPYPBWToQAj+dfeIloogzHHDH/XukBuRd3maEvBW+G5Oq76rwdwgJEXwL3m52KVQVyfTYOjVRZ0Hv8ynzfmIMBWY9eHQk4fuy6MeTSnDSwKiD9tL4R2R30mjlQI6L+LLzulB1p55w31SNEOy/NFCycq1koFbzhbkaOEpx/TFS5xpAS0on33n0HOUvmryQrNGx5RG2EZb2PGGdO8EiwYV2VqyT2VYZfgPnR59fwd7RpGw5oE6jk8x+p+MiFygF0c12pliaNXKtJnERfghIcKt6aDSYp35aC7roZmcBGqp9LdAzAysMkCyp72Wg5uUFA8lGTCWE3/sNVao0O+A7eYfUJ4bOzKZGVDquYD3LZeoR2gK8gMR0kFDSiNi8+FydKgOKnFFNnZK232vqijh3p8d3oiTsnNewouNjhTCrrPc1TNRXF7vqvV6NxQEhdgPmhKx9H6H3g8Pxn7dOrTkXNvOQB5D8WZ4zkv0qJdrZUPwIisPQ4FIPRxs4LKF345k9e8VDrTqx4vmelFuCJoYB0OZ5kS7A8l8oe+ZJIQ0PXcAiTSr6VQlKiN55vZIaduhUgArUNdHZuD6e4txuFMV3h+O3iL6Fy1LaucpLYTg5GQYX1Vx2dXgMoAILDVFgk1wXkemSUfjnW5CJTI8Kp9sVNVsKgcIOUWzebVQE8vkBism9r6rfz+EV9CHzG8+CQse+D+jphusDE429aUdZP5o+pouqQptA48yetmHmSdrmmd0J3GbHAhZw8mDpUQ+a6M9kGm3LALoFXzgSCxNEywcmYgIMTrPgNObO4fHFaUfNBZtA4yXiatDsu6HvdfBrgZYlnRR9Pt4pGlLdWM3yMze+BlqpBqql0PUBVBJzBmpqqV8OLvzQQNLz5C9xKySvW+vxOHtvauw6zh6ATEGY2arKv2Ef1gfFnKnM+jkfU603c3fNsJe0Q1xSF8l86uv/uEFnnaelK7+vsE571Sa6H+FgMbflsyXVZ06ci6eyj+h+B7vgAqvTkkiBFI2X79swYEPGrrryP2i6MCfbxX6ai8753EeZMMfuTxQNvRd9HTKxu6kb56CIAwBFQqefCdfTBG5p4cFaFNHlpbByW7LzIV2jIa87KIoxeGB4e4rseHG3NFJRqtuXmaoycTvw6ZsZ0daF/xqL4oTcsngFE7VQcomMfKLGbGCLIl4MCWZZ/x++csmBXXLSUef7Lq5aK3SjJt85yu0iM3EOqSlfQ82yCyXT83h7c5dNpUi3Sv6S/48z1wfaIq5sPFtdtcXuVHV0Ib+GZHaMJOpuv0qFwEmR7bb1EmbkQLWrf0tp0WG5VQ8VrksH26tHz6frmtcmpZ6Vlzc1oItg7Vd43NMhd6sDSogNjrx3s+v2e/s1REH9rUFm0X8dKkCagNYZRmhaDsLLilswBYk9chfXeA+ADQ17C5jX8oYl58IosR6mxJQIDn9wCyxTdg0npVgBWxx6AQ/5c5beLkki80E76wRTVm3rOLp2OSm8Xo3WkLxBtPzglnEn7vUkvhg+iT+0zgcgshAyiQwBONP2PvyEa3wTctXesJRShkBnYEJ9OZIyOGhha1RznihbuZ0Q0d7wSNurKrHCyqLnxEHIzjtV5PBOTtYxyaE7JycjnpDCBn4z0mB19ghV8XLbFqekmnJUHUKcCwmUeM+Zrmsrj2ea26BF0dsYckhrG3xAQAgZdlugSGVGkVlEdG3p76n0HopoiLkrlYkc6nBlGDZgVQhxrSZQ6Xz5IbAbSPgbKhnS/UAqLb+N39hVhiusDKYY2Ny/C5h9ZBLAlmlIF/avbTbEUM4qt6ozBE95sj2iRkGtLdP31IEg30r7ckdTGEQhuI/2zHEPQ/nR2eCBZZGrW59I5nBWlhW76T23X9TpBr9UO1FWjnOQ7dj06n39C0OxFmQARwYxBF4dvureRnvVYQ+zf9W0TksupMQIxpqnJBOdJX0BOIHvyQiHBWMtVILf7aaDZo29vRu10jrJQbO5fWBXHxwyeC0hW14l2FY+nJsrL+aznt7BT/3XEL9M2r/rlX9aFQXk42E9vnFnI4djHonCwmLIA5VLpLmAsV/iUzqZzlv+UhydW6h2BNHIvNFutqQjJLTr+kuEQxbZf+hVp4eOfaHAB7rPv4VDiEOKeZSgHhT7gKFlq4BuxFgUXNLhLRsmdGarAHQOBKYUPWd/Sg76LWdz+e6gzaWlLApCaKxNwjHeXTYb93RLdvAZCQX6l6ZTkWwe7Wk9qFkykyQjbwwnIh/N+pdJ1WNae+2h0DAnYFKIDS86U+HOQrT3Z/wCVpnX3RIJwdjjJNIMiJIlN8tl6ZtSami0VvFZ2O6880w11pe2jiqjjwRwIOk7MfTBQ/AwUHT3cd7oT10AeYouOclqz6ENv4DRXOY3r+lEih058k8xrIm7KnXF/Wabz+NvutDFk72fEWhLNob7uju2SgIEXoubAJL0C+a2ZFUAgoHKig/9X06d2BxWr1ju4xwk4edJ2cz/4MQ1fkuPfiOTk6tIx55Nh/+okU/CQukmyX1PvHF8g+N0Lt9WI/6IJcRW5ArlXwQSo2vYPdaRU29p+ZDcp9MMeI2/DXZs7UK/e+T7QoTLvNGvv61g3aKgDizKuCd9Bo2heAKWvrx3HC1klLGbulGe6lUIfy5UalbFpU4CFfH1khXtly7Roaf0pyqNACxFHjb19e0hxxZlR05z+t68Gbni8M81hNJ03QSTMGicX6Y6KBIEnOOsMmbQSDGiAXgJyj89VwPCExNJCaGd0qjiusS/ag2c5FnMLuaTxBok0O8uYWHjC39OJKq/C5JPR6vgXJouDTJwvpjteDGYKg6u7zW0xw5+87+1Y8xHlh+JPQetnjCGthPN+wY81rilebAYTxq2FI37DVO7tszNz7qHeGDkfXs9tuxZFjOevzET6CGcR4ZLTt+q8eOgUtPDK1DCk3Dds7cOh+r7rXaClRQa4/cqrjoZqoMIQPHefH6TPcb681bl+FK1zf85Ax2MtEwPSmcZivLfIjYGv2mVS7qfb1Cqt1oJf4c+5WIRCApYvKZGnDOAgprCOWGxu4xJqB7PniCTWuAETqfFjjaDF0ODD5O6L/DVUSnWTCnB0EpEBXDVKGUnDV0OMSLqH20lQLiWR+y2yitUoLxg9wtMov8hF3R5Rifmj4RQXqGJeADKwzm7Qx3oYHoxrlumbtq1jcxKiSBaKL/aDWQfpaHdTjUYo3aY/RPoLmlUshpoHZzrlrTZCwHWZz6fzOPcfCYcusJbn9hDkuGN2R6oFTbNADYbwfLK3/yjPYfyDkJ4awHOEYez/MXF1lV44E0qPJENOZsoqcoPWEl0=
Variant 4
DifficultyLevel
525
Question
At a children's party, each child can choose one pizza flavour.
The table shows how many children chose each type of pizza.
|
Cheese |
Margarita |
Pepperoni |
Hawaiian |
Girls |
9 |
6 |
5 |
4 |
Boys |
8 |
4 |
10 |
2 |
Select the statement that is true.
Worked Solution
By trial and error, consider option 2:
|
|
|
Total girls |
= 9 + 6 + 5 + 4 |
= 24 |
Total boys |
= 8 + 4 + 10 + 2 |
= 24 |
∴ The same number of girls and boys attended the party.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
At a children's party, each child can choose one pizza flavour.
The table shows how many children chose each type of pizza.
>>| | Cheese| Margarita |Pepperoni| Hawaiian|
|:-:|:-:|:-:|:-:|:-:|
| Girls | 9| 6|5|4|
| Boys| 8| 4|10|2|
Select the statement that is true.
|
workedSolution | By trial and error, consider option 2:
| | | |
| --------------------: | -------------- | -------------- |
| Total girls| = 9 + 6 + 5 + 4 | = 24 |
| Total boys| = 8 + 4 + 10 + 2| = 24 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | The same number of girls and boys attended the party. |
Answers
Is Correct? | Answer |
x | More boys chose Cheese or Margarita than girls. |
✓ | The same number of girls and boys attended the party. |
x | Half the number of girls chose either Margarita or Pepperoni. |
x | One quarter of the boys chose Cheese. |
U2FsdGVkX1/7x0T9HUD1gciRHTnlp1YUbS3/7zmyyWFw6AC5OvTihHSLdioK/jvELhjbqHyFuanuo+LOd7HtCU1GgDbHgsKNu/gvm6OHWkqPs69IXjZVr7sx72tBGasymQX7/26faiOTN9qNWERF+8LM4ef/+URaEhXhq/g2XGjbFmyYJB26YnrSAOWen+NslWVzE66OXgbSPqGd5KKir4O+aazg9bZa1/ARIPbT64rSfNQeHSwRJ7zR7P26na1MFZRda4Xozlo+kQAe2bP7b9JTVh6b4QLWo3T03FZtdQ3U3hH9acbyMC5pySUysrFbjwXAhN7ZSDpaGKje8/cYdXJIiUKcXD0Q8/63qO5L1gQ5i/3TcceTvrhFh6sld+5lT+P3VTKi8ocQ5hX9boMeWKXPDedcgsE7w2kBMpzI3LLhhPC4gFR8v5VZdoh1GKGBt3f93cP1cNgmsMzzUrEwQ1CyxDrq8sIMdOqwt3lpIZYTSzFsqy4J8CMYgn2jf2EKFmsaeG84C3LhVF+PVoBA2ssarxymiEKv4X5lQyUadB/sJ7jb4kPmxbfA2ndSVvPFYnOU/3aR06y3JO97UnSFiq449HYeEb9egIvbcFmanTHygJOGwq7ryS6lZ3Wm7/h5ZWlYBiBDrW7k5S/Z9/TLUJzR0+cm5eAqNzxLIfvIIiVEjMIwwMqjF+O3UUJTh9LtolbzLazV5/QjGY2P+yYRH3S0ta+ltASBLLmk5+gM4iyGYUk+uplA70EZd1KDZt9wewFR0LOs3zbUTX2vO+AXmqdyu2T8PKTqE/2yeIH3y34K9vS9emdu2qC4ZHGS1sD1M7nHc4og6ZUqhqk682H1zMtQERfvaz7Jvehfb0+BPb76avFzmA655N6/l8xwWKfJKqWNSqYuvdhOp4alstbKqgxK8GpfBA2/Wn1GD8ADf2naI1XPzqDkKEMYIE3nVWRgdHPo11IzL4ppmNi5j8/Yl8rzEmjyc4si09TYNOTTsHEj07NGLxiECtS3Ybk8zWrLK5GssKqHpnStDAJOhD5Sm9hKNo8YnqjK7YexQe50m2e7LLJUodUR3yoSe95uoP60rqBKF9s6w+8xjMpd9DRK3AeYsCnfucAQKSvy+sYHKpQGY6C4g0HJ5xJ5YO2Rgk5EiiM62+KX7VJbEBIjg2GHUHHtdOupZI5nqdMjgjuu65v6AHhcnauyIYYfweH6sWcBn22XgCB0XqX9qPyVxfGDDFNjC1/7LH4Gy9R+5EKkvZI7MuuUng0qgFLtv9MJ88OEaUqTsrGU7kXfiy2mIT9ZiQjtnV0NktkCCeDa+x2i3GInTHz79mATXucMnLqR2seBDo4lgyDmgEQSgvqgkUZgrnW/XnXXdnP0dS+gh24HF+oeHegYajKCKgD+AMqngz7SwUCJ1P+s+/H7aqm4mYo/fk2Sd7Lmuf8DmgvXcDej8Defy+YX0ijDfanzWFo191p13ZeHKoJASRhrkKJnPzwnJj3d8cGN0CeHpsdA2Au2A/cF3B+kApYxkOZzbuw5Xpb1nVMvKvoeiUZk9q9JdDVZ1/VBhjYmgwZsr++LQjJvdTviX8v70vpA6OfKdbvEsTLp7Fw8ewhsQMkOjDGuCZAgLRhwoUr5FONmd3LCC85EdPLJf0OD88qzKR0sSDhyTesdxsGuzRxZd5NN4r62wIETpq6xvo1oJNbdZDTsfiJjuMEdbwPFP0yVIofCDVIZ5AlMtl8CN8aT/TWdYq2H8Ukd7J8tUK4E7C/3DJQh+yuerElox7JZ6NdWMvGt0k+14ZyquToUMW1ABy4JqH5HKb0Wy/nxsC7ZRyoPXz2Gu3xYkzKc1vvrsrJFFcfIhTOHFthp0sEllsQdeVQtIHS7Ts9ETnmLAwOHMNTm5oZoT+eVg2xUbZ52aha09PmeKWxy0eENrbTSPq2tdnR0jeQOSwddaQty2fOW3YbZHJ2/ctaCNuwuQeLXFvqLNDvWxTVT0cSQxjbj3nVhgOTIPnjy5W8P2NNICKOYIwl1pFr6cxjvR9dEwoFqBZWecXdi5o6RocnF+SFLJS+UBXWDbVIp40afs+CNznuxyWgUBrnViYi2dadghilRxhO23bt7OBolNW9m+kjFWaFanU58GGDlZaYqORw1yePI4hlOVjuQCGMrUQQImSt2skzm4JtdCTieIjlGMCG5Ryx0U6AheylzHgJ70jfa46MViCs3Ej40GSGR609wPzSTdqnSLlO6TiLLbYvQm8StAVSaAthNSUv29Ca0hjU7o+ntqKL+Igrhw+hS7he0Eoms3RT6Z6hYTjAOnpjHW39Vzi+VQIS1ISSeqDKNCieYd2wlEXxss7GHnlEm5pYHOg7UoMnE7OPt+edBIWbP4DkLZSXWpYTbGIHnXxTJWQJ+newbTvf3JEpbGXqw+StONkbLwGQ8RvU3QrfGADyby0ThTuuIpNhFd5rH3VCRNVaGKWNkhmcnrMPRBv21ymehwLwuHdWarMOQj11Cb+9XVxLqgJRYQEY1lB/+Ro2MqfWQWKi4OE78vubLly0WG3+NDIMyVAppZMS/0lhi95KKd+J/vMfNg6YEfSAB0hB9fVluu5x7yFNozDIEWWT9CfTogtpqg6z/8q2RBJvAfmEtF4IDCp4uQash5cut7OhSDZkg0bFVJNx46JyoLGSPAQmLvzPnMqCFSwdf6rqOy1QaxeE7tl8eS1VE2u4UoD9xr1P3y+97oS2iPxze+YAzWR082x1mzISvnHskqzga2oWDOfvQdcOQIKiCi3aNfxIr9Sgtc6/Db+N+GGNwPT9SDrFFuAtTNzgOaDCYZzU2bd4Xs8hGFjgDp2e2hDiMfgFQmUIDpW481rQdxaAXUCqKqwgDYML2JXxGF0BkbFVqcRjALwYgUUvCdiryBEXxzyzACK1U+AgjqyXDMeXxOxFNlpfcBP4PTGlTIoq8fcyB8oqt3rK4CU7/ZlIMjeOuqyEpTUZGG0TYE5YEvxBO5c4zvQTCHb2BIUo/zQ2hXWeWdtcEtKltHFNMwBkyoih8koDbqr5PdgYDdB11cVc/84tXUHUxv6vtnajtdVcYzsWHnEaTsIYXLe/tFwVnxh6XsKcASI0qMqQbc7igUHzVERvLt1o9hJPz5tBYuXF0qcWE2EtoU47jFZ7fyFRkou7HOWHxCCySYj9YZgTqwxABTue0nI+WB7FhDgTeTMPO/EAT06BlW4k4FgcjgBmG6XA9w0qtLq6ETwrm4Z13w4oKyvKkNkU2FqsZrN1bnoDjkUnZZh4kl32qSArRAhtn7hIclPTSs27YaiRzq9SDg/wVAwrbNWgbJLgYCmg8lYCou9jC66jaNeE6r0YjR1j/mlh7jU4Kb8XiJqayqHxHZLq8a1So4FiOn5QnTk2VLyX6LoLbsVw8Uh0NqK+CXc6kDdnT4BijrW5OIgsM/dSMfAws0Mmt9P7fv9EJ7lq33I8nyuQbvV7gkkEC+KklZeDQDM+G2+Ht3b3XeHc1W85SfhkQWOvOlqrVoI3ZhCxp9Yfzn8qSYnKjnyFGLr2999a3ugJRtLSBaxk8p9c3chOXBZL9NAY7QOnLJBhe5Ab0mV9j1EQBpkaZgPJcgleUuvUC3KjbYmLl3vKs5nZcvDVBtUMiMf/X0LMV9tAOxUnE+s2vJsRrUdkPiYhRfbk/HmXUuy/HBQ2LINB3kkEECQigrV8/EnyzVK8qlGJnX1GTEUYcb/Kg0pHGFAvTRLa62Swf+sQfZi8PmDgG/d0JVDzZL2TqRIoOevEcu7uGlsWOLeyUJ2Ksa9WY/lnybrpcrrj+Kql1T1tErR2n0Yx2MCBe4BrnpPFfbuIao05I/uouuEUU3pwkrazfsrgJGtrU/6ws/1NvCd1T1LZYm7Za8jfw15rWui1xDaN11Z4OCT0EZ5pIqV/2h3z3z6Ggx2X3zfcgmHGQxjn9HX+1isVcXNBKWkmWV3ee9eYZxwHccHWtcjs2JF+r+18+8WYmlRkoFVThZXqe3YoMxspyXSTm3umkfyCQwHhyCwT7SaYp3Z3n5K3G7Nbdvd57456sagHS6AE6Q9R45RtHpJMzMIi/ueAac+b7JEZQvwBUQoICOdZe2yS8L20BTZx5XHNmr8WX/yk7dSMdLWOai8GaG1WjdVkJnN0RMosSCykURz0cP8/+bIz4LUm0weM4bu1xQUowgassxA8jcn5jTQrFoM6wbLWGU2IfxqJIrpgrQI20C4p0HH710DoDn+IVDUSMqwzQOAdpOJwtDseC65kN08guEqE4SNXh6sKMZWz4xDgaifbUyQw3dqZM8FaNpW+Eqjl+Uy1s865R+pbzijspWuO8i/XJtLWsX7HKW3ytxvVqaO+De8nZZypJIjA84anK2WaUDmPJl6Wdcotw8hV8dzjMopDR2DG+gEHkTuDn7CirSKIJlex+DiofE2HGaoa/VZHQ5yPCe1SYQ30nxTxCny3H/fVCQ5wmV5VQscKHbLRRanHkGCAxCjPcrMnuMXWtGoVdVi1IljiIvbljuHaZaHe7r93OhIGOnwr7qTC0KSoJC0y/21W789IZRX26QOhmbxTBReA5d3A2qSizv/+7MRFoeor+aDgAvXe4Wf2HXz/sP0F0NjAW/Yg/Z9Fmu5QuTGN/2xAGzTjEPIuzZz4vK35tQS9UElUfXCJNMcgeqsEueiSYkoUTUnAhSYX6V5eL9fZmSGj/pz8jvOy5lJP+pNVVyrRU4eX9b9+KwAkfl5aY+I7CqEdjU5TBu+8ELZ9suFmxwKOklwbwtmh3HEdjqNMDtaIPzvOAzVsFWnQ5EWf37W5lGYV9mzdn7UHLwUP77/hRJkSeH+Ws27UQ/QJRakfnsr+HYFTBdv6nCDtqiJXmb9YgWTMy5J3UhJxsAKrd+QVrbmjQaklZoC0KQ6rd9svLzxtdN2HiuVCOQccUzjOEpCrgmszjbwZaPSpqHalxmfltmt2x1BItFRmABiD1UAshPwGQP/hPv6OAbZd7/hgh0AVCYphfzyUHOqFxXftU1W/0cJBAyb1Dy4O7GULjDlZ4zfktrQ5vO9dUPY+cjk8XERfwS+N5WpcgpWCjodkdCddVpkxdQuqY0jXDxoaBTotubdgN1IRQz81F7eeddtLgqFNkZfR6eWN8gdkpljKspkhYEGTQvvcjJhXyzocZzgE5Q1p0DhmnQrziXbG+27GW+pLX2Ogb8azxkS75Sr1ZJpY99+8Stk4LWVNxtijbRX8eYGCYNG3P0ltzFo/AY/iSkm11fF4nhYXrzhJq6rOiDMoYVr73B8vIyw2aAiY4Xx9Adz0YHWWBIVVKUT67iJz+pi36sv1y839xmW298SAIK3mHtMnGHYnDaWWoMYcvMEUq3eHPtIs42KdXApUgPN3rcHVxJACSVYv7Oc8ur4YM5I1goW1ckPzW8NQUGl4HvSdcdRamyCs5mwf4ico6YboXveW+3Iej1s2SNBfN0PFOLwFIosiK/70xqP5ipSeIhlzvZd2tuww62BEB9U4X8VQrLX427AR6AHvr9M4pYeDacX9KX93wtpDn0akIJ9V5HxbqBXw5nIFkKLzNRfqf7sS3kIqvWHkEm9mhUDzoU1fTgqj944P00I5zdQvO8ihC2wBXgaUt7yBEUEC+Mn65z7idemTGRY5Cg+TFj5nahGHOX7hrufex2C11h9ZQKD2mJF7lCnfneJf2/y0I9Ffka9Qee0Rr7orkwpGcZgjU9aoi99G+aTItD12Osr8O91VDE6iZr4P1WXeQB2edefjVM9Hqrh1zeBQsqHxvoSqXGLalUY/9vH4WOpunCM373c0yy+qy9uzm3iXaDxGoOANJsTucLRb+Kp4W5BsRZq/uYJSII6uzXMbC89RS26YlzdyYBJO2GSoypUD5EAoGvLoQprB/UnU32YI2y5Z1XdOnY5GZUmZMR2Q7qilarVHtQyaXsX8acpuX9MNL0y22nM57OltAoRzmm1OZc/XRU1HBC7/oT7am6GQhM7MkYsiRp3S4D71cQiI3kw/v1GxcXMlU5KkeMQ2LqF6m0lJhrgnnkzu3EQaQRitY5k6q+78qg9AZ9DmWrRrY2Igb8nzInnkO5ncJA+izOdUcWo/5ltn/zXYj54W3DV/sBAfZTXyjIBHLLS99Y+xCymvWdEpfdkyMOcEYAqCtZ0nt5Pku8CIexuxLVvmXgzQ01NA93Tb99tiXlcjWj2w7PZSYRYhw7vksO8I1919WPq6yuVJC5pM3v+Ez83LQ9R/zUib4WX4JSzQu6LUskDDaxPze5WJFTHDmk1+eUIdXFm3d7tT9wfSNqYbKk2luhz6HxVLrEkiywmlPrcuHRsbsLsI4QZuMQVql9ePqTElAt2TwwRWxG4rn8YeYvZ1oXl6hBgV4ZNXQEhkkeD4WGvRRx2/NzrDh000t5yYAsld8QLK7vhe59epLlZN7rVWT1as6z64ca7VrUTEviSlJV/seFMq41QUBpcLHyTm/ZV8cUlVK0axyS/fd0n4Zx1sisV2MWRAVpCQRerWdGgfQlT6WX6LokzJGPDz1JgRUBkE9MOXnOOaZ/RkLo0c4ISd6Hu3yo0DUMQnChLLzPMT6ajzhsFvpihC5Hos08Nd41+NZ9HjnBeY7C2PVGvntram74QlYi0PuUyH/SC9fw/N04RVLhM3moO/ap5iAfRITgXd+JXl73TMjHPbVP+PeUrsXRYVkrXakKUZt1ZRhuyt5qRtlx2f3z6FPl0ao7y1fZDnNKaRoEBIxzRgq8KKUkVEb/kTGmYa0hW1D3hnyF41YMGJdduGjzyvc/uqJGE9vJOc+svjKOhNtd2j1vK9q/IlkTYwfwFWXCZJ1oaMDsv4bIJu5xyix1BNT89ILJ3SX0jZmCR7zzn4YviGirO8qaD+dy8aoPOqK8KZv+P2IXj1XC4/b89/jWq1kglhubUck9elhGzfiYI62V3camLKYePcXSuPFaMUiVEzli6PEOxGyWsCWPmHg/l0co4hqEA0x5SQJU/SZoe5vInk13HwEq+LX2GRwG+os+/uz30FNvsWJ6hIrMhem4y7MRzor15E9iCCQJvP0Y65sW6k/JzpoPFrxSKfWB//AzosTsEqSP370N2yrfeADUbdC8kJlOFUld269Eb0vBGMJx4Ti6KMYiAEvqlioaN3aO5iq+/2nLBbpVuWKwEM4EeC95V6H4oBWQIlpJKhNu4hCbMYI3WLpGV377NcnYwUFR/W4FIkyOZLOIlu6DsI3Ca3B8FJP5SdiaA+rYcgepkulHtH6R+nrgl44N0E2+Ai9kdDJ9frv9eYryvbPU7nvJ6iW4oIMDNSx/GZnAx/scNcO3/ZwJOO9paQD3iPyvOdrhia8dVEVaNEh9hgMwhMYfrsJkDIpbNoXL1j5Uz7/GFLcNLny+8DRNL6zhzLzM6PIMd6mDw8qiNrp9wnsjWmQ+hNCdseoOzH048kde/K9FFzGaIFZOmUhkv2QqDlN6BVFjpnGPsH7OSCe5RhZHNWRUIcBWR3zcpuc/HEOIfx93cK9oG9m/JAmtTK6+d4wt8tUk8dKvDe22SWXBo3jDblFFrEKEXvytdMkJ5PUzI+RXCovxZ0mP3F3p7yjm/9FKh6xWyXaFx3HlzrRdGNYWKuMsi0G3+MjpukZOWZszBh9cgsmyAmTDKoORwX8qFJoeYLzRfxo6NxO/SwI8iVZehAt7JP3ESeTSgcDV/vWFqvq6Ht6HyUq8Meueagz0MN4LRQibl+ZA/3k3yGtMUKdIgPQnk4eaY240Yo+iFq56Wdv41aru5HIDc0DES1enbvCZafyMcW6iX2MffWP+yH8WoJIwaVvX9LtzDfmcEl48/9bzSQD17e574do0cRKW8R2PoTrU58Oa767cfgw/OrRnTdnXIHmmrWM5ISrqe7w18Fd7UUIAqtHEqkqgvwT6Utxr0xgrGYWULQ8/gTYmJEGTat3pUzMZaqFjiU8ZtTN7VUCziN239w4cnpjtvBxr961CfIJubTzBCYaThBohO3f8+pgitT4y+NJWiQaFuBIMJ/Rgu8f57IvVHJ/AoCnfl6WFhDu2jqG6gyl9uB7S73lcDKDpCEY/VN7DbMLWrGlRK1BxDxB1dyQznFs+asD8cirzrTlU3wQnZTLMsv+lY+QH3TIC2iHMvx1NoqZOCxTPbBjWL2Mxtqi4YsYxXvDwNmAw+GHY8o0vtt2f+N8+A3aFVT0sai6Y1BCxdIY4uTy/+xHzCM3EQj1N6ShsQ47UZC5ReDXbJm9vYX9YbZsfXhVkxypIe6pjARGCn+SQu42rXQXnRiHV5QCT3vGfzPFL9WPyDWzwvQ2GgI/7/7E43cbvPgv2SYFp/fVJlKfcQQfBsA+xEO9xriAOzG34HbCoVqBFZLVLeVFrK8OCG3xR9cyUFzLL34ULTFFd1ljNGyX6rzMoA0PK/3Tt1ICW+0eErZcGf1ZPCNk437Y4NxCjPzC21rDhl8ukinRO5cR7Ce7EYpfLu7CybQ5ljzgj2cSYd1jiL2iSVzAc1vlTXN7acyUtbOOCL25f6P+12jp6I8Fd+y9DfssH2lYTkhmgCbp0Mcyl4CDyZLK7Jiveo0OuZUaJWifuP7nk44t2lFS9/rmA3HMctCUu2TTKmj+tKUvlZ6KRAjC6Rz2jKX92lmcm9fD9rOKAoYkCN5lek5dP8tSjqgNTQQLOewMd8Y4J0c0j/nU9agngvct6AltZJo7AhfPseM5xLEqhH5TqTKDOS57nbXnRlNKOQAR7jc00dma0X8foHf84tBI+tjiiSH0/K8wUK7UbSuxMONMWcirPTD+Mmpa1N5LjI/3D6zlBXXZe0GdmlNMoC9cq0d0HEGB5V6XkB/t7BDnWqv/xkQ4Wp89IKJLMpA0go0IG0Vqzuxj+xbrpqI7+1k7VE69oYrkI7bMlxPtgLQ3o/m+lpsTOjL9z78twjuS76wSJRv1VUeC+rZmayMqr0KxjbtNf98cC50wLx7H0Y7kboK/yIdpZ2omya10l404xaJR5Vb9coiKw9z78EPZ4mwQwnHgm2zRq+bi0JaxKG5fBbEIqZvE8tgyHZz7aOoXHEQY90jCqUbRIf3xbxHt0OCUXPmyIEuho5hFIW3Zhb3w0EdRlKzttuaPmLmy0XHq54Kk0v1PNVLzJhfMKMbOQQx3winGOg0TF5+l+vzw5m/pdN6FAE6VLi5CnGmmTkExX/l2X0a1xkvks6hKLhyY6dxoFHXTbZXF0INXAgaSBoyyTI1K3ES9RPhe2EOTZ5f8NWUZ+g6jtoQOSz1fpUlcadof5obHZn6jothO+8h7HBxqAf0mbWqs22KhTzI1t3y9UYoH9l5MAm5cwggwQhKYsyqSx8xBDzlWFXQz1SA7plBELhGmyNru+0KG6yM1OGi+NBhiRGTfzZZz1KZQo3Sqd2ckEZdAO4f03RRpiSR/YtaILj88RbqAxJPaiSMBaOrnFa+bWmiyd//OZB6EcUQUBCpvja1sRBdWk3JNDVEE304lblrBAXJQwv6CNCqHwG5nJsD6BHK1GfpMD7qk7P9NTpa7UYsMgdyUXfsq+9l2bYQPxYW5vSt0TKqQlsYeOdz3n3DlFHPa82BiUHMWg7i0nBUWIUvI2qb17yWk1IEuYqnj701LhzSwrU7xSI9hl3+CeNRGGKWzwqPn/SdkHSxi4AjX2TnAzYvwINn30AvDP0/1vXk/h2Ao7YOJiBtVU08x2Y3YDSmWE3xmoFLq/qJKicqlW/0W0NpYxCPVzvB01QAj5nKorE8nbBTBCVB2wBnenzP7saT5UUCTWPYWfD1sDhSLDG1mpCoIZ8WfOtZv4uJ43c5WOY3dP/xIFIe8tBeDzLtNr5N1zk+kKhK91KeH6i3E690HSfsewgVnjlpz7rBiNG5LOuiTUU8lGmf4chdSvY4WhthydrlUSjxmI2xmQ0ETxDReWIxS5NuqHuyvfkPS0A2kxepm+Tecs/OA6CVbDSZC4VsYvmUkkSvVEcf0f/9CJt7mCDAzyfpAy+vJneceYDNMqiuz0Yn+cMggJ/G8Wy8TUhmfMqt4HOqpqTS40+4VVVZopbrgoH2bov6OxBhUWk7X/XIi5ku/t7InGYCLZ43D96oCpaJ2n57qjFUjbCZjdEE/bLZNVT99hg6MniLdNRUaRuQPZvaS6YeaUD34WtiedMUeha5b3t/TKhNSLi8aDPwdkm1rWjWSCB4GgAJRaUPq6Fji1f8CKiCX/R6Fx0X75XungvxXDt3Ye01qgrYGaJY1+86ybFOEiB1pS1jBXzCdlCw4tQ731XI0RY4yfKFhx2UgCJ/n8HgrYZxrCeNQiE3U5SmYPw4pX70dvCbHBEW2WXT8fbSsbB58/vkcRXZTdnECnJcXSYWvQ2MjRMf4gsHYbf+tYDmAIfOesItH6pcaZjUoRnI0/o0+hwqOUWLOX1PQsXahojzplDzBPatovKtJuR4bBYnLO4s7SpSp/ImXUKez7Nld6fqFcMuxGGILgo8Sp+mQtDCpsimZnmwbavQen3TUQ+nbfYnAqhpGVI82mWL6Cov0/ykSHFaLJb8s4xOgzvPJu6Mxr/dMMxbcchbwqX7AkH3lbZi+0+klBUvsRgmE5maLiFRnEed7W4ZllWgxTNJqhjqqMVXgZSAgB5JVrIzrx2/5xFd5YtCy7pSTgImfgVdNmkWZ9Chzy21OAi9DL+3JJ8vfqLYOEL7esfcUP0/gbwFT4Zt/q1YlPLH+eh4aJ60+Xf9S1Tqxs2GLj/fCzrdwK6966EyEKWjiy36sj0wSCslKYd4+NbbPz3+MYWcplxXVl+5TKqcmBV84v4b46zkyrViiHatOF0LW1xMEkoxGjAzGf3G5zTXRxglfiZZSFYPEY0nY2RZAfhXxdFLeN9Hpr2UwHL73zTZDqeHSgzu/xO+m8ryUcVEL5FtRsOpsNRYqqCiJAMH1IVLUBCcJ7LS8Jl73H7QQPzHgGe1luUNd7/EKMt2Nz3dVvSLXPv8fL6HfBMfbsto647ctGDy4o9svS2YDaK5q8lAw/zR7bIbHq86yQM7gK1zhUVK24nxjmm/gcIbIrjr+kpZM9o2DVcOpP50f9M2EOnRurbBwihydx/0QkQRxIdVYwJ0u5lC9ydA3g9dtuzGT8xjR4XbSuU3iPUtqHNF2ejsALSK7Bq4uOy1HKDs6LM9vQMTuspLcdJXUD5eKl3nBdCQGccdPELaXVh3ANfRQ/BLuqFPOxTj2GfVSP2jFTdoFQBLoX8411z3M6mYCnUoiehuieRct7JzWfdBYJvf9ijPQFa12r/vUTe/f6w+eUQhgpyqZfUD5LCRc4VLuxZiu2uzZq/FCdKPkVGS0JAl3olv7E2OpK229OLzgPX7JF1lh0bzwbcuLxldPOCtvPQ+gUAbFgI6Vlc9N25ZQSHY8MohcVDbPGSVoUjwmfpWDVTqra6SBVC57JACE2MOLsOEeJeMNh9wxRdThZZyCaCQsEImtCBQ88NGggH2Y0/nggUMA0lJo7T4kbHz/PV0ayZp7VBqi32Mg+FTWRSXIMoa2wn2R/So2GVPbb/p8T34wzsBEiy6JlnHFe0SOLh/MhdZhzvrH3fWmU6+Dz3aDyHQHg3OoOicJ5YLs8iVYER9iqbNaEnsRBe/d6oBEtCfOmi+A+b3aFylNMp25hXm/vlCXgO3T5troKcwxFagqJab98X6x9+2nxCaIM3sQqeuhUFdXnq/mvsX+cGEvnML65uXovr3u0O39OSMmKPpJI0QoKU5bGxhm/a7V9tTDAZUAjUeo5iocLRvUCmr8xhdnA63hNK7ADLGeI7hZ6RbRQXSVfjVA1b25RGUI5lmSlClGYLCqcy6Oos06PIUVZDEHaMijMXN5OuFHSNlIiOddtODEea9YZLhS54pmAQNM4kuf7OplyeSydAY98UT6/rQQGznxet3Zhd0/fWdhff2revEtMND0dC5zsrRnex9dFeVgcnrhkjUCdNuk/IdA36OA0PnUutX4DDDkspbg96XbRnh8Eyg78Ve46XcmcAPedpDF9nVATG+AjbKUnHcf+2/k26Fl6SYI+hICDU2sOsElhjQtI7ZtZUbuOK3fxzzKFHve1DRqmKLmNkRJkcmXLVIiMWLUuwn2BM+OwWiX/ZpvctIR4NP7ME35+NWOCjoTnAEWYra3N4GoltoE3hkexZ8JLns2hynfwTCFjVBmG9hax+hfoJB9OJ/Kfy7LFQ3oAFPwvJzs+9CaFAhYrtRo3yW73bsC9TkqYXFNEC7kceX50bjJAco12Tpspj0u6npxnjRXS18nJWGTkCDHUwsAGlZDBJOI5wmuxsrAWcwZ/sxPh5FzKwsgnmxA/7kPvtElsdB4jznLz4y0dpGnKTux1WxEbI2/IgkEP0yK7sH/kOz6HU9QvuuW6igROLvAna5cbdr1hqanMY0R0JwjizA3ZO5U6hLrCkxu9bBsRhc6xHnRTgsWB2X4QSYtKdyz/Y0MgudIrYf0VloXzSWWenArdfHPg28+y8hJussibxm0Ta5ySJpuYnX7+vwA6jZxXq9OiaNt2VMOQ5gzey5IN7R3u2MwEgWSjsl49fAVxKMFONpShmqg2q3WZpNmoQsU1511ug8/L3wxy0l7LYkGLKeh35pA/0YDRKa4QrqYz7QMEE9jOqCwiJhwyQOyx5SdnkmtAAVM5vvBieLE0RJOIF5vHVAcILkN2jt7XeBWm8IYc/r5GejxSTxi3jBr5eBLoCWLdmNcnaC6hDGlaj7VS2WtasoerFn6oPRLQAjX5PswI8ZAIKCI7zCJteeFr8+c0F2SMZJTkYzYELQIXVERYvQ/arsKqHbmH7i4QQ5MVK4zA3gj0/X9qrGldmQSYRMAT01wpEbWeAnS3jsUEZS2SDLWMtw0ZzRMiRDfpNp3LBLTv6ZRiqsv16oBUBeDL6HPcYji8sXiECAodnWrGOsnk+B2sHmPs+ZMKddhd8G5nslOyzXKv8VxeTWZ/2UGlweYNHbQC6LAVxkEUWQJcA5Ng+4zdA+t/4yv4LnNLNpZkE6HjjJNmckXjql+Yhv4owPggfjhntusWoCwBF8DLpSG3IKVcPwHzjjYEgAsDk8RqEmcNe1Fgot7HHSEomX0p4n7f3FSJ/U7ImVdzv0qevPZVJTQaSgeeeQ9fpaGrOEYyvZOXZ2DkiNer2DHjGnL1SmRKLFLHPs3Ij9aTUYCA1W09qrTdvKVdsSru3Y7n3ArfA0BDmU6nciBFBRlO3MYfwANA1i3U1a7N8vz0aRVnkIi2Gpzg9rqfSBsoXwwUTBS7PuNLeWrPjpqluoJA9bJi/QdRWbTXuEITqvp6fN0YYaSqJGKkTivehcbQu8Q/kO80uALk4YdUvQGh+v8pPaKVMohDYIa7xEzfxrICa5WpMl0HBspYzrRqsY0Jp6S1t8rb1BuKXzxxAG/YChIs308imWoS+6+1XYwvSSTwajDpjQYx9wX03cc9lrU0igqszd3o64rvUUJSc6cSRDfPWCckpdWwnr+roxdwpRlrfw2xyOI8kax8V+H8LPNjz6Hl2QUX6jwGdKkZvIuDvd7nhjErSJtouN40XaYbGnsnO0Mn+EGvYUHzmSIDVCmIEQX3PFIt5CrVzJGXm/yWxieHvi3/+Qtq5ktah0ev9okaiCCrzq4dPP4R45vC2Q6j8oY5aGouSNDHkMEnh1bXKy0ShmASrJbby3tHgQL3UVU0j/7Xp2aGaPTbno8Cxb7rvSsmb2lw70dOnNFpvGTwQHa58hYrNBW5sWCpoNwi6hcav4PUi5am1Ggz8GDNoyIrQPSZbuGh/22ec6yqAcS2XRrZTyGkpoK2tyUhqxVg0jyjS3OdppI7Y1MPdfuZCSd00wTUajcHSIfzoOAT6J49fHI3wU9XEIBRMDxwv0diLnnvaBtM7TR05nYi9fAqz2F+ymIjsRV1SqO4saJAGjiMTcUrdwVkVyQPTnrRaspJhd3C2blXlukRYB4mQh1vPdhEC8uAijYR7/TDeRKY20ohwVtOw3MnjKCXg8t0RiRgdSOOrXGKEoC1P3Y6qZ+byLmTcIMoFnOym/9M0CXVXUj3ro6QJxY5+A/sIssVjqX9Jsy0UCs1ykY/8Ll02Tm2w6jA/5ry1paF/oNu0EBHAHKJyuu0pPKt+GdSfXBoUYau/cLR7QzTAQnOLMx6cjZ/pj/hAWNke0qOsd4O5n5Ffj0MfLqdkDCOlAOfgTMez9kxf45erKF2a2Cu9ckj/3bs8kuf3B4DD+n5t0px1N5aQ84WUqV03nYY1fZfjvrGrtZRgeS8k5T83IRwkdygAkoYeEqxUVbjR+PIL58K2c7E6TCTJfO0qZvrqlJtaT9NJgsajyPxho0Ji6MHtnOmgPuUaMcrpWfO0XmJS45Rlzk5x3OywFKp2q+d8aSJJRAciBRLr6d3k2zhSC6dlbi8fzNu4ZUIDgyOj7gjrNU098KWAGmWR+oVhGPWn4EsdwV67VqHE4BfKtwnQy4cmPIOvUmgEmaU9Cbp4suUlWrtzfIAxOT7qPyGrP2gxLcNaguwqxZ5bC38MHKIPnw6zJ0RJHb2zj+XIAloZq9KGwUFFdnqPM0M0MpkOfn23xrghG5TMG6NK1tEz9GS6UoaF+1j8uLJCs2Nff0aXG/U+V5dB7Zf5hHvcI9lStrXZl41j2rnWaUR1d1Ri5qdXP4F4v562qW5lL0XU1RLolpO3eM8rFlwWsZ2NTVUpd5sHUtAWuZ8IQlxi2FY32NP8wQ6aQu4HuusJfNyMRHM+zOUhxyJ7qJo7OVW/45eZr/e/AXoWTqpSUzIIglfWnph5PtEQK5ktzf18ZtRCxFxoDBSfm+s9zj854aQAvIvTUDPqTBhSc+jf2NNFz2pIAzyWoyEIZBhfKxHid76BS8y90TgfgAFieGlRoYqQ0J+gqP256USRo/qK1MCllGkcrvx5j0cQ78Y83CkGHwexbS1pquIb+CuuVhVXqtM3Qdgs3ebTNiE83mF02QeCesmMwNnunJ8vum8IrID10uqQEhDGV18i3VoyQnyTv5gJqXCgfGjwvGMmB1LsdadyhrFp0FX55TlmGmPbDSF3TNU3Ea5dHArdOFJyOZGb6DzZDqatrLYoh6PngYc5B5s36rT5cP1ZXbbvqKViVXUE78nrMqPZxPzaIBwAMAxmTSW7W5Fdt2wVJJUy97W88BofhydWUHxLBS5Z6YrQuVCELIsbWmo4eMlfqfVIrcpUQjfAmw1TUC3PJbIbLK2xu+W6wBRMKQr9UylZKmDQMfIhpTDps2IDnXE1tEN4kqEUglvEJBTLTeKly5DeO0FntA4yWlugkAoZmjGtuxhNypqrfuofbSpNZBnun4Nc64Egw7hKyMhEa7I9L67W7Stv9IDYnS/5E+notfSurGb1Y/retoMn9OttWzI7a0Xd3cH9BK4pgvfJLxnTBV/5fRFqh80lh/IiHzWGp/1p5QTNrYs1RgReVQPlybfd2BMnSqQgcDI/JXz520Svcl0S3dhB1T4UymPmO4zjIbIiWpxIdxGafvxZw2eUTX/Xr7t8SQal/HnlUd65WmebkuuQvlLwgs6ivWFz7i
Variant 5
DifficultyLevel
537
Question
At the start of athletics training, every child chooses one field event.
The table shows how many children chose each field event.
|
Shotput |
Discus |
Long Jump |
High Jump |
8 Year Olds |
12 |
16 |
10 |
18 |
9 Year Olds |
15 |
14 |
24 |
17 |
Select the statement that is true.
Worked Solution
By trial and error, consider option 3:
Total 8 Year olds = 12 + 16 + 10 + 18 = 56
8 Year olds choosing discus = 5616 = 72
Total 9 Year olds = 15 + 14 + 24 + 17 = 70
9 Year olds choosing discus = 7014 = 51
Since 51 < 72,
∴ A smaller fraction of total 9 year olds chose discus versus the same fraction of total 8 year olds that chose it.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
At the start of athletics training, every child chooses one field event.
The table shows how many children chose each field event.
>>| | Shotput| Discus |Long Jump| High Jump|
|:-:|:-:|:-:|:-:|:-:|
| 8 Year Olds | 12| 16|10|18|
| 9 Year Olds| 15| 14|24|17|
Select the statement that is true.
|
workedSolution | By trial and error, consider option 3:
Total 8 Year olds = 12 + 16 + 10 + 18 = 56
8 Year olds choosing discus = $\dfrac{16}{56}$ = $\dfrac{2}{7}$
Total 9 Year olds = 15 + 14 + 24 + 17 = 70
9 Year olds choosing discus = $\dfrac{14}{70}$ = $\dfrac{1}{5}$
Since $\dfrac{1}{5}$ < $\dfrac{2}{7}$,
$\therefore$ {{{correctAnswer}}} |
correctAnswer | A smaller fraction of total 9 year olds chose discus versus the same fraction of total 8 year olds that chose it. |
Answers
Is Correct? | Answer |
x | More than half the 9 year olds chose shotput or high jump. |
x | Less than one quarter of the 8 year olds chose discus. |
✓ | A smaller fraction of total 9 year olds chose discus versus the same fraction of total 8 year olds that chose it. |
x | The same number of 8 year olds and 9 year olds were choosing field events. |