20084
Question
{{name}} scores an average of {{avg1}} {{type}} in his first three {{game}} games.
{{question}} does he need to get in his next game to increase his average to {{avg2}}?
Worked Solution
Average = {{avg2}} after 4 games
|
|
Total {{type}} |
= {{avg2}} × 4 |
|
= {{total1}} |
|
|
{{type2}} after 3 games |
= {{avg1}} × 3 |
|
= {{total2}} |
|
|
∴ {{type2}} required in 4th game |
= {{total1}} − {{total2}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX18SmCtb3Dj8XhZKJY7EMpsFhL+bWz867u3G8t2O2LaNKDsGsNOfVYDi0sLYoU7i6kKgBCIP/74sfsoSvC2vszWzdLGmDLAcLiVtN/42QJe76blsYItO50NU25v6UVL6Swa7SJgVKeCQbbJw4JuHLu/bcIMrVyc7MhlSBHyNXYZj75MtyxwHxkIQmJERvcgHAjRbeZxOuuxvw51kgdmyBKZJsoQeTHit78Db7UgSZi/qRLLOsqmqvoJY0tiGPsdp7eQTg+SCMnphWM0VVmoP52Ppj8Pg0nYN3+o4m8VTG4f/zuQ8rwvjxvnT2Ar3G96uv4ioTOnaUReECmMOi8R7H+UN7V13INhSWewd0tAA9teuejINjl0a5HKMpV2d6cn5fTnMvKg5s45W9UeT2lz27X3k/WZ8RckJdKBuyay6Nez7+SyX5y/DrAtA5kLPJq1OK1TdXHik1ys5NnrNpB6A3sxG6X+7yXb0ia8xj2pYpsaiLBMGMRtftp1iDBSOIbJymhcvN4VybWHSBCz6To+ddLNnVDs9/AuTuGJ8WsjsDEg7DRwI+vuT+UCLrgvCgHJaXnWrYiuj6I6e4g1ItvJwLF2p/AutJX3svTEXwlY5/OFXxgLVVAVdqc83yfSjY7vIWq8jg3mIt+rZJO2XRvDEORZDr+aDiiMKWw8NnhblpzdUVjmiXLWCwWSwXse0KjmSBjnd+MPFXUesIf0KZCY6VVPMqqd+ASlVLjw7lBQOOVR1iy52Cd4Ve4ZCqMQraSreCqviGD6GNYQw3wPmFyM88Du6myZHoUZWIPBWx6XZuMcb37JM3MlxmxWbUTn3YIVXNFuB+RK1HLa4b1U+OQ0lkMQ5d4UlhKgT0Imy3z5skx6MieNsC594TybR3WFrrlrlPf20P2CpfZrYDVGtPJYEGPyjPPTdzZaz93kf1YYwIeyLqq47aSPJim+I1NnOnk3ZfFwQ3gOVrD/DguCS3kMKf16h6udcXybIV3LDRr4DhIEyEnN6A0zOp/1oYNUs2YoLsesMJzZ49fZKYRfG77S3IZyLHLb1eRYt4Sr/U1vsNuLvkkDdEKy1zOF8gwT4f/2RVs9nMrDTWhxBSTB2XfVtX00NJ8VsDRvGjyBTy7g/0fpbcgRynJP5iVUtW1mQTgswk9WS637Ms/p0/fTjHkcnKBU7xGweQHWy3FZGJH8GHm0TScX+jgRZq51sVoBVJUFPWqzjZN+6pS2JMHOIXpQv4IryHSLbryzkGqHH3zQzqov7zkCURN2TToStmf9cutxqKDdBKmHBxz7j42WBWbiWd6Ch8hExSo/ftZ/dCZj95K6+ref7wzwV+qGTz2XRFzPtGzGLPLnHtA95kMaX3Fg8lHT/ZIGMO/6Wt1SiSYDcO+s4pFYVk97gCEi+GuGrcGaJYqDceCEWG8EhO5x8LjJvUB/2FFaGshnOqC0dBnBAdZ3zzhWcdJ791sxPJ3gQEj4qZz8W7GYRC9cVpfm19MoYSU2PUVaSROnNL7IseMiyQqvlkauE95rvvlNYz05eTEKgU/N8YwR4VupXxniyvWnx23jTEENm26V4IeuXnTPI9PzE9T9Hm+yOyxW896JmjVF3/+cnAAGfC87pNE7QagkVpuDyV9ypMVAOopfEYEGiwGnydwwuXqdeRML2yuzLTIiWbsSZb4gg/WXJg6j1HpgTByoEkimOAnBcr0xiObfk78MAlET2bc8PlgHFCk4OhZgdlcmAlGbTjhRiaUjopjdpsy4euhdGQ6J8Vja3jYoiy/0QWKa8Qv1oFoQx/X8hLjLLR8znSX/WM1mg/0/FXbIbTV7oYxtKP3jzBcJdH3hiJt04fVQCjIpCBV8OZLG6N1hLEO3fbLYnlEYSSYS3wsPthg/U+2tPUdJnQSPy+084gX/uXIKATr3WHocJ4GwpOtINhrA0hk0RX6G8KTLuzS1nnADHg8Ablk22IK1gLYUL3KTlyiAOMuTrFaYYpnn0snX9gCXETySOId+O5X/aEMI4Lg7mChWTUtXPKJUQTpL5mToaP5ck0TTS2ZG5y5PspoTiyilSKEawY41OVo6RME8+E20zkZawfVup+NubmKzkqwZXGWkwFR5h3nR4TbXSoX20F1tmf+qxgxxA7EpkpeWb7Zi5+ZDVctndaZ3pAZKjSk0HtinP8IGdNRh3VjcmijTlQNGD0bxRDitD0QYBafhk20dojE2OVlvfVjgqsxaMhU7VpGUMDi84lcciDv+NzkYa4kcjN1VQmib+kQFoxnH531Yr78WkRU1usewEc4CBvb66Ov74f0TOQ4JrRXPhExwEBK/DpQrJTSUP6UhP6TUYkTeS39KvW/T0IsRGVUMBIaTFjydVR96QVw0cMN2uS0f1vJK1BPQmzl3eTqDjuKxCPi9hDPyOEmZiX/LF/5lPlH6dShDOBrCIeLC49+8el08AeRm836AXRLixA3v4/wWklm4dJmlmJ6CGulhfSbOyT2K3TYYpQIHnqwfPBinUmf3Cab1NLC0q2UqCM/sjsXn7jttarlwRzn6vuV8HL0uY57IBZR5fDb4BlDFto3+eBc+Z+mCeffBWU9tMC8Z1thDLcRQC3/cmfeoOFAbF2/F7pgSVybKQJCDGkX9I2gTjc/aaAaFO15I5fP+voLtyzAkIAv04/ioaDRsIlh1ncPNUZo/3pe3H5XZ9j4pHlZ7QyFRZllhCqfAywfJsuTmEyl9HLYsrK/sndLBYFhMTn51Du2pW4MB58XNl/HhZf7tMpbUU+eYPoLxwzmsHcZZeVLerMoqgV3ltOQu4PhF/W0BMYjq/7mcs1Lc5h7wJf1UaObCDMfDzzEcPu+WqPoCE0tcxbA+lfAqDF20q9hB9jesCF9nmemU/8YRzhzeV/r+Mvwgm9evJ4ojulvkL/e15BjzaUa8QpOyEekZhwa6sCydJy7SBkQi1LY6uGc+ZXJoAFanvWoZKr7IIofH35vdx+p/NHiwvuN2QMs+b0qBwwp/lMaDdOXqlJ/pm0UPx+Ae6xxlPRmH0MR8/CPF6FjPc4lFJrOGmNg9URGrQt4QarYG8yylYWfAXIeeaqvnb7daRk5IxRm6uIPw8fjRvwQHk37ViruNDVvoJjL5nCJ1xf4oCn0m/h9YJIhkedQTefiM5vKafPqZcdAsjM8URrpbpkXNSEisvdHbwo8cPjXKG0JNhU2mDzqeYs1LbK4DBhTyUMPLftGoWOAg3a0/6gWTeTYYZsgtufGbeD2Mjcbq9X0Y0uyIE18WDoBfDqpgZ475jIl/HXg6PM4mgFIKfoHdKasgYJEP/ooRvn3qleOmkZEESUbRBNKIWe21qDUE9JqqDbz3GJE3XgBacvHK+eYsLlQmazxySX9sVHae0aIDStHU2o0/2N5GxUsRzLRv3yFsPW8+HG9ce1zRbw8SAhC0z0efZci9SonnOx2rQ1RmZ6UZjF5AG09Lu0WicMfP+hJbiaxz5NfmZzVkOMgdnP5j4j6b5aMjhfdaTU+EKMbgjLHnuOLgDwRGT2fhiNZmqWKhJ6HZ3nTNviL7VkUjP0egc/seAHUA5t0M6w+fvS+Qd+zrpLS7sp/G56tguAooAYoHWglomLTP97qvLw/TFNFswxzYdnMTBr6VSAfPCTNT0ScDeFcoUD609QK1D5W3KzvmDDhcbczn0ZCPvnvWIg1UxFZFjs2OHI3qLNqqy43uIu0fro0DM4Z1rv8KXFumGHmVRGkNSd64aAYKMuVLb2jlE0YJVQsMdwoalXaZeT/Xm70MQh2MzXX01N57e1yeZICpYSH0i3AZ0vw0iZmsH1XXV77l2GfmTcHHX+TKSyEPkkRD36jU7A1HLR1GCqsKhUx+7jTZ2c4Twv/6M/7Dc+nL1QWGtYc5eKh8F5i013cLNFeUwLs0lXYB7GqLshyyUsxV7JqeyQPzxGGhgcW7mnvHh3PgAAwhxj+iUn/4xjCLHEjFYw6sB1HfyF5k4YYuNTpN4WEK/1LiFoLqhJ4SkAAsuyL42P+eyE2rCN494JyKq+RhTXU803aGW4wGVk16MYIQKoxbKTnJjafzYEVZ4cn5Dp6h6MCfEeDfuV8iK9b7OW7RwdPCwWByEIV5qJTqOEDECMBsv+XSCCWtdfnLIZjPNRfleSTjzSulanefrGFB6O7dUlnzHMHNQMj+tYMxO0KhPQ0bJFwHOvFJ+U3w/DFucLGJ1UWxG/abIFQzZK7fl3XuL3j7v42hf8QEZVIoWDLp833BYheduXKml1t7UuNEj/Z/F++0sX5mmOzDv2drABML0cexSQQ37g925om0AmuRSnpz6V8tZhz1tisuFK426JIKUxVEGcIc5ydWytBYLMyehW6pk61WqBNH+RMs5wMt7IXvSuPKsKUKzUfCSHSbTn17EijYSzoLJb9lu7UHcCqs62dwXY1IAFLxiWuCTkDSjLD7Jg85aDyY7KlnR2oHlQmoyOqEEf0H5aZ800DU0/1COJmQBXGvr/HQ002CLD+r6Abw1sBE2TWb4t6b/KgYoPg9wVFgSXEFm6WsLJSk71b6WS2Sc660PcSipBNwUCVVf4XISS8RNwpKsIcGoW/K8XHxhkAGhk1PVkrfnnl2174xjSX5ecih6zqcYrDjJLoeoRbh4t8S28LoX0xszyjKGNFBQ3gcqne7NQh+1fIm7iCnxNm0JMugZ5yvpbP7u
Variant 0
DifficultyLevel
628
Question
Stan scores an average of 40 runs in his first three cricket games.
What score does he need to get in his next game to increase his average to 45?
Worked Solution
Average = 45 after 4 games
|
|
Total runs |
= 45 × 4 |
|
= 180 |
|
|
Runs after 3 games |
= 40 × 3 |
|
= 120 |
|
|
∴ Runs required in 4th game |
= 180 − 120 |
|
= 60 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
avg1 | |
type | |
game | |
question | |
avg2 | |
total1 | |
total2 | |
type2 | |
correctAnswer | |
Answers
U2FsdGVkX18Sj5k2eAnAbAgKOEKT5aqX3irW2tU1a6F27tb5pQRK7C1UUWTn6q0TDuKhi9WChufEz8aqrItu+5n1AuS760wgaxNILyR2vc0GrLSS2QD83nTWi7AvY1Qo25zdd5bGubKk/n4M7zcTZdmjhokPRjrYeU1MkkDTJhc+ErN8BFtPiPivYr63n4A9QZRJbhtiNXh+36s+a/2/qWtfdqCsZD4Tl9+s4fL+XnWBlFgeJSQTx7vuQOqhJGcpD/qER+SJYCKu2q6TPmU+ux7uDV4FsTH8XxMlq0kCdQE12YKQn2+1d4zyu/yCFGGmD9OznDerbvSLc9Ye2FFsQ8Tmn6+0sWqAwziOZTf/X+cjHJAJ+/Ltjq9WFYev3h5Gp03zHlqbY24qKfZB2WxvujsSfW5m6Hxw8gXUdJbt9+m13OjjOVdlrqp72Ulai/TXr5dCL6l/2kpN1njk+/EAHb3caAEYrkdKDSXh+nhNtkF4Mk9McWWTZdtbz7g/ImbXBGIAPW8sV+QRjgMLHcWmFTR2EKOjhpoLdfptaO2VqyAeHa5b8tiwPHsN1pwgnGaN7CYWZahlDfJr+PwKrVBKbPa4tCzAnsQswPDBq1jxe1nLtCzjVmhJtt+di8kUSO2tRGHWfiVha/AyzEY70yKfZvKswf4mYnJARRmhVrrg8F9i9XRu0T3eNrAyuYZk2GeTdxGmF/ukUIXrTLc1oOqqDI3R0taM0+cvTIxPQvYkSdKO8oYqK1aGzrIy7AvSLpViC/sAYXCDBAb4N+mgGlrn24htOpjB1f2Z9YjqIpHqu45ioxlElW/+BcP2fKjZQWB1stuBJcWz4UQu6m+Iw0R4UFwXgEuh+VXadFzfzF5Qmf2qK5CCozV9lbT3/nNP5h7MyjUaarLGzd+OBL5p5KhhocZDRckvRhlIEGOqo3zyj0UH6IdPHxaNJ/u0gqQz47I3H3OB7mPB7YUm3OWYg8BHqnn1sCKD+GSgbA+fjROLsJhCYDrOnK+Z169WLOuR4PoWqO6qmg5KzjgcY3IT+uB3pm0HrBkxGaO72fDfwX2ueIpNe0jOqpAv1kOaZZG68UJHSPptI2FcHfQ0bCQpF8XYLgl0ZDmZBsgnxRZOA3zavlqhs+d++uRVKrmZnsCyCdd5MIdkk/UVqafabD8kKhL8QS9TFHg9+SfJpX90157Y7zn/uQpIoP94Fq16xxaae6MB6dCOOfCZ8maGxVOqmznfTv3U+mwG217IVlFHPeFegPxtIF5GYHlmUgHUhmRU1EA5ZnFNEb7poLha4LaPPQX8qGd/bkwZgcU+vXM8blO1ZcWlnMyX1b4FP5E3ycaCS82ieUkdxsa/u2n0cZ8TrBNfGJEgB/RcWCsExqfHmYVwtXkbuIXzp8Fb7/xBMivUTD4j3LnMm2LKa04hA2XEE+FdWAo8rzA654dlP3TKM/P3v4q2URyaDXib9OaWDgNuvdAyN0E3IcgUQtzNjcygCJEAGNKDYnPcGPSq2vlMe8cN+7lLaeAKSbB8NJEAJz1Jlxekf7ERDxAuYUy4QqXeOHJJaLo+OH9Ge5EWF8vYGcy7fXBU3bCE0ExnFRYB+zTcWSZWoZLuTx8nHpETU1twffTccx3NrsBBzOD1n0XKKOsH34xJdRKpTYtYNFDxTJjzggcc1i6asZuOJdPSLp5vhA7i0BTlANSGCmtduFNOp48UdA3GV06YeE1BYCt/aCJvyzV4pDWIGcwtwnWmnXrEL9q3w5AwzUZ09kKkYMgBIkQ7sTP+ZscjD7Lvq/e13RNV0xkdMkR88uFV8D6Efo7CQjUrOBCpLpn69G5uPwPPh7NExDRB/gqrFcSFl3Lw1frHapTUDgv4bkCWIiLVJwNtu3p8ldXHdhLmOv8m5XVA4065bb2LchzPDmNYRGj3Qnupbji8P/T+uEGzZDKxKIEB3JScwElwPoE6JkKImiQVRbHjU0cyUSBjNdaY9TS8vYruX+oS3n+8WQV4CFOPK4ox+2T0dF8fOx7Z0mye8YrfwdfIwL3fugwrWnRrL190Z9i71sIVCSXpXRIi0tZm9jggx6B9l050gtE1PNOzJgBNFg+dgI4vGDcl9yMZD7mUfMRi+bQtd0N2OkAxo5RWo/WM1tbil/DB/48pFAdhVMyvnyJKXPzEH+U/5LQpAauJKgPrNdDjr9Tr5jgpxOheIZqAyICJGH29Lhk5MQJ/g601F7mNfeZdBEkg7F5HCS5ml6NS5XNihqy4GfLrCFs0ZFYxgcnDxzKqJKdJAnHcYE4S93bdsyLUPr7/V/6TKifBOhDJieN4SvbJAtVcA9i1pcUUmRiHeCbGTP9qejyX5wsHWcUQJev98t0LfoCmsJpYYhePKaja15BGa6kK1P4FAS/+PKHPWmaYWXD4CmyM5vpAbgXPq7yee0Jl1aSecvg2hCgoUslOuUT2BlJnBhF8nIDO4Z5WV/jYsfEO9e99YoA0wiE8hNpUZn1seYcFYMl9nSSnkBB9u9in/aks658tRNKH8zdPzKekdFFlj8wGxXYMU3djuzAG45X5ocjZSiCujhgPcooPHjqVuwjoQvEuk9rE/NaGWUS7BQWvglA7fJ3hPiR7IdvAqKZ3/cerQc2q42DN5IyOkeZvi+vm91GAw00YzHij5Y1seW1xz6nqAZUiDau3uYTrT1RrT2Sbk6wPlp6USC28QRzicmtu/Sx0jwoT8x6ZnxZ296uzFbW5e9Pr6mWyAdIYXFmkc3BQ2jgSoZosljFJVuiWi1Uwqa6O0WabRIMR8525YIc4hZmHC4KOv9G3UD+MQtI5bqo4BEI3Sw5b1WhMd4wwz5iNg8SZVgDncFLarXjAkYezeacGAHDkLL6RDr8VF5srkJvQnpwdjl6jaCowTbQAaMqzJbUX7HUDNXglSDZlgFQmUxB8WlYgE9ASmiGWgksEmc8n9AHnt02vEbT+KsLzOGXWxIfnMtmtXLhG4SgKiGAkpSRTG92T26k51hdYMrs4A1XimXUatyxF/TIVqc7VuRE0NvI/x8+UUcw2dSsrspF5+u5lqMh9vDqDj7kKTn7gekZm+AXsp9ERLXajO35oawOYR9VJ7NDCw9615udikWmsYV/yF6LEKxmMEXtyXJ8Qlphh9fDCEpbkTKI7dYiOfzZuJqWJ5ijt01MS7KK8419sqczlZK4awVvjyB54A4oDPWQUPXxpKgbI4Q0/ih+cCNTG154TpRNubek9d+gmR4ryqqxnnNz5+FJ2HZ3bgt7jVfc2v3hUEEfC0rhaQznJJ+hcVh81LCxAXSdEB6tSMG6X0vWVg3r72pIvi/FKzyeOML91ATwwUyOs74Fbe3gGulTmoB8tUtWVeLLAD9nCy5F/qg5jBN1g+hFouDB30KTWnf/Ep8ceKnIUoo+fDqAKNI3BlE/adD+wdxuDeY1eeoFQWyHzULH76MzW1QxNFqsMV67V8MgUOYCe7ys2hwqkzKNXnDxP1XS3f+NEQHmJmMpOMvUzQAXr0JdE2ETeIpF7x6Gvy7pGZ5GS32UTG1276HHmY1r/DSYQZn6NkK8a6lCcAkRLIQKkpEkVQc2heLELcXhZKC/JpturB33WSuF+at+1z89jqPVm5ZivFlK33E4U3vHa9hRnnpUVAozdlvkv75XwXfB9R+eQCWGL3YGN4tawq/ZmE5UI4R8FylH8VCTpkCcx1GBAfvqgnh5uFn+Nc5IAphI+9hfhmOz8S0VoY91Rh7x5PsF8GXR4B7l+zrHYy0bvmwFkdHRtIXLSWhoncE+wBk3LDhn51vjI12wAKu1q8WWs/N2AIhe54RsNT/Fw3e9ya3NdFICvoL68kS0MUt53pbyWeD2doOLvZMJry8UmcNU/sLlEjKbAnrEW0HxYs6Y0kTA2JdKgffJrUTxNMCogkLHBS5jR91li1oiMFDxPCITO0HqGuiWycLQ8lPd8OjnuwSmjeDn/4n/OfW4kZXttRJ5lMjYg0tnIJHAxCMjCFfi0p7GomUeqqYaucQPuN76a8hH3/xbE8gDNrYvsV+ZW1itzh+T1OpCi729dt+b8o3x8wO865mQ7ZxrMocNXAz4Qf5fDUHoNtMoxJbjWiLbDsWAvWNFHiAryi40/QMg5c94CEpjrTDOku+OSQjcyqGrlTE7vHvdq2jqeR5qNubBg1vpxFROV/Zy+n1iDXvh1iPjqHCNKTGRDApvN3LutAFXCd7JF+FBbCCsJDnnvgBdAgnKDzMNOe4K3Rs30fwLHbksUyV9RRXAzkBLgj1FoNnT/zbQFQ1R54NccSz2w76Hy9UoPLCOrVGhKBYgvPqmVt7Kgptaom9yqM5bRJAihmXT8I87cR+b6vKaB4ad/CtqZyBcQYkJCc3PQI5azkq2/5EsSjnP6NTALYmELwJslpwYoduZpUInEw6vEZNuSBCq0W10W1zjoLkoBhSuGupjyvnLuBBLqA4wua4lR+396r1yovnKLyCrXviSviYC8S68TZwUPVOCLMNlkPC7mRzkXaA+z6ea1ar24tFaueQpzU50pR0BlhjOdk/3c6wOuu+QCzrlVZ4/lBVRNz8YcxWYxo8ABwR0ioQ5dAeMLuYpV0NxNX8ija+kS62c3a5PAlc/GDcp65FjkyqN0zBSfrU43YT1xCSBVmAaz1bWT3YyGpM5d2Ua9ftIzHgFRmpD40k3GH7wdoRvsL/INiimResXqqMNCJkj7TK8gBA==
Variant 1
DifficultyLevel
628
Question
Luc scores an average of 34 points in his first three basketball games.
How many points does he need to get in his next game to increase his average to 36?
Worked Solution
Average = 36 after 4 games
|
|
Total points |
= 36 × 4 |
|
= 144 |
|
|
Points after 3 games |
= 34 × 3 |
|
= 102 |
|
|
∴ Points required in 4th game |
= 144 − 102 |
|
= 42 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
avg1 | |
type | |
game | |
question | |
avg2 | |
total1 | |
total2 | |
type2 | |
correctAnswer | |
Answers
U2FsdGVkX18rxuzgtyNtFPdukhOgmxQzIsAjQjOZ5Vt/8ivcBkhhmzn6gbOQQpwrC7zCie7awp4ut1rbJUnC0bl6hERtVw9M9DNoqpldsQDOLrIjAxvyeotrHrz6kkFdZgp8+sqiIaWu2HDaA2rQws+GkZKGV6J+LJvv3GRmal0DmVdYtvKL0aZE/U7i+nRIyUj/WRTP47SgpHXsZHyhPFwoveU3zixQ+SrcIxBUC1eCtLKtGBk0EN1megKMVejTRlQKJMXDjR12I0IyCQ41ep+ofTfeB3ODMVt2T5Y4WOJp7t455wdAnOUgvhBXEAAkyERyTyo1SP+EZ5y+yAbif0PAD+Srwx8Hyzth3YtkRAQHpBEJFX9J7Uk34VKelhB8FS3RCANBMFaS+b5ovZLiUuQE/zKfQJ/kRA0EmxgFqWprhh4Qv7nItn5XATcqGw6kqWjj22VDhDh/WVuBlmuEmwIrx9L0zGbL8vV38kSqQFWulFk2xoWDC86jzv6cIhL28cOXFynBfdt61ciHB6VXgiIZwJbxrghz94tUAXu7r3n1YgtMc27CPdfOZYOeCdnUf3Xd/wtGNpPtvK8YX9/H27lkEKfzInmNoda5TCaPXY5liAnTGnc7pUkYZVZPx8LPab1u6xTINPLSTU+vRJXre59AAllY9lwn/OPti7bu+pyK6TEp35i+V3ypin7N6dhVR5lmqIdhjY+C0Xi7qkdERnI1TtdIYXj0kBkm7ScqreK5YPG8MA6o9TetYTTG1gFlkZ/PA2lNdqh2hXfbojsR+bd+7aLfv26dfMXMgeD3mr5evZH76kY7WZhCgqR4njAiSZZrro66Ub0kgqepQhhe33WZrjHjwJ4WNBlzpWnGfUtrw9yVv5XCmcdYbwnzkz47gmNCUm7FmaWndeZlQIsM/qE+Qhf9I0Piz1PaJKnEvHgK9v8ugNzPi8ZW3vqh8IpwuLXxGi/r+IrKNGCsML/9F7ifz8sQj3F6NJlpJb7fp8peHDI1l9bhtuOvdQ/hpu+qotY5KI2CXv93qxq7EDv+St23RSRDYbDe8zQBFg7WxngA8LQtFigqUlF89RyzcpZWprWgkmqWSfSh10NHXiImOko8SxhgKahDAXeg8yR//T3iZgGIHy5USGzzBlegmoEum7AgvmJlwfrd785fMxhioYZZKaB9FHp7jZpMKIlMizlAI9C1mT2ild4QPrPwOY5UluPvKRPRq4nzP2MviN5e9tDe0RyF9nMhm1J8Cte1TRmx1bTWzzfwd4a1Uu4BURnYWAzBZM4QE/ulC68z/FLpBycCxm8hKWPwzylJnOKtyRrApGoDOoesOtskYq4x/02pkmoNrJlKF/BABsCnVy811C+ukph5f87k9MDAEuMoiJ/z/Ka4xnPyw0NxDIa974hyQfLIk4vUO/qVDXPzHukY3Gva7tGTv8tfgnZ7QDBQF75ojGUcfOuxbslSWnWRg6r3wlS5bIQKnY0cX/7db6bwRq6kclqiGLRG5s/+g8j4c4/0KXrmzn5JCI33Nj8LyDGoES5x55LG1h44Y4h9nH5BH/hyvY9+AbOqgrsmEpSoXD3SMl2MBNZTss3mcF6EbK/aMfwpyGqWWKa9bYMXnZHCijnU0KeHfJ6spBMK09ZAqWVY1dckVkRG3YsfL9VKRTHQC3S4GjQLbGfSNu+QiPj8ZzhTQfKY0QiHDVewmkcITOGe7ZacTPycD+ifXH1XOV67y9I9ReeYRzc+ooelK8YsjJ3QvdBPceRDpGkceILG2/nmP9TNljUsK3bNkoElcCYMHLslzXsdwrEifhz6Z6I7d2Lmq48Z1YH2OZCx+dBtmHAPoReBIiNAq7dd4FVnyF30hDzriTW8vJwN0DyPMR5vaewvw7+UklK9ccjeLKHwzGLUrGJJ7cPPKnNLQedh692aEcSAUwd/jq5nR+oQ3ngfDs4Rnab3WPWufR6TGb5OGZxPYsoKDqcb75MSLJqY/QKvpOGPpWd/vvjprmHg4hMaanW/966rlczde1CSq1Ke3C8v2WUtcf3AdThhSCwEpqGY5U9GvbkeFkOvHW5TjYQiPH6dlwTaE3oq//QDxx+OZ96SIJL4bfVgsnD3N+0yQNePhR7U6dm2bgAFm69RqaELCd203ClQMQgSrjaVWYHik7Fx8JhkKuhbyToA4rw5oSLYnpb2NT5A7N9MxJgm24SBtc82bv/X29xnQEST3UVaGF23vZLPyojBTeO2CV4bcw12VD5BolpctFc0bDc5ZMMbzsOFwd4+fvveIirjjnjEU34jFSnmHaGRckV3AT3IJj+/T71DiWnzLBQmXZPzUjIMT4A+tqQYz9HrJMvcnlWYdP6BkaewtK5zu88vyFo7wEbhCf2mja++I706JyqKr7qkCl0FYxdwzk7Smp5Hs/Vzbt0hAhmbpncKVOI6aWjZOAUlOOhxx1KhIf99i/1ATpv5YDc83QULruZbVYHhUQfubN29/VIKrAa9//GH+Jeb5DGDi9FTFqLIRSbnt8SfUPDo1YYF0U8CQpzxRfy85kxuIdR/GYSKhZo2zQrhuj2uIp65cPHegqk4+fV1vIV6SnJ/N2jnOpQmkLt4qj79y5VA4InIsdzEFv6D77/bHDETJknZmG2Utjx3iYSp0V+E1J/0zd4onH6lqQr7cBbeXs3t2OIY20SPM88PeB/jZvPOujtH64/lOrR1EgKdojJV6ZH8U0At7duSuXb8i5EBMobXFm/z3JX109l7UtNbZwAdQ07hxiea2Og1lieggL9T0pI6KxmTOjbzqjOU1blBjzqNThLdhm7kTQyHwX6wC6FHfGIZfkprgCGEH/XFbZBNO19ED/boIizdYyNpi1Zzl1voirQcGk70aMxoQq212grtn8GNb5mUVtj5D/4r+1+ik7GLMNRkxtvOtbfP84dI0Z6CflvKi44/9ooqIx82xwftGJTD2B9lZs0Nfo0NpQRxsv/FbuNfVM33nOKlRZcwcbz2b2IFE0r8qR7mcaBLNTUqiLgaq8shmr8ol/a2hszZpiETFy7MCB7GcFBz+CWTHcm0zxfUhEZ9ZEm2d/0G7Vp091wIzOlNTqseSlKbYC9MPng+3O2cTT4eFGjtsBUYssejj7IRQvb54WghqUeKYNJL8h+7h8rF0JagDlK30q+nUlsKRyRVrnG9Sb3R2qf9b32KBtQu/SeG75jqjLMv883XEtDBss8bnLIxjHEjIFGk5dtT7xmPxylmaIY7r5USHV1+EQ2/MxmUDRYPrkVe7wTzCgen1PDDN/9h8DkLXsZx2qYdC7sauwHoHzSDh/kBp5y8py4I+lPIRKzIllSKeA66LZ+czjQzJDm4m8Khj61MtnO+xU/Zcor39If4kAVgBIaZuT0Y1E6HqVcXNEhs8x6U+vaj1JkGdFIVpHbjorwOeoGb8nZduP/xAHinH1dX7FMI7QLPRU/Nl7sTBILDubI+RCB6ZB8mQBDSXmXcldraL1omshknjZAy6XymQJKvqgpb4fIOWjv75Jc4yZqNdfGaNcvAu201ioD+//4txkrc3lFNmCkrc/qF3d8crem4cP4EgKFggv6lDsVomiEmmbbs6y5Pq1w/MJraBJiNw1Aj/obegs+rR/sCV0Qcenpo9U0YabHsfQj6TpEzFSk9W75S6t9w/i4tCk/sVcLxOv7q1H+6EruBXBf8ENTVcoOPMC/RvJGZS+ttXOcyy7OHCX+dBPO21ooQQNkXCRveJAVMzTOq1qLOSu9gFWjDfEiMmfWbWvppkUECsdxmah3tegGvTH3SFT+cCyuUSsPtFVGUgU0DZgLs2MdC6P5gfWQ/ozxPHnU1/JqQVYNsiyST+eXvimLOtb5AnMMBJL1/0ricuzvoK5d+hjEVghovDdak246aka9hBbJVMlL9YN2IqtMs7IG4igZdEQgrRl3LyRvWw/2qAn58kVaNmkQk4RWoqlECI6TUBmKpUgJHOpvZGaOKKzNgBmWGjOTc9fVFmYU2DMUPu8EHM6rnWwcyM9pZvLgka94sjHSfsMIHl8F7gfT4lJHozV/ZAYVoYUI0YwHt162Vm1b225EiEt9wFbBn8ShjwQoB40YdSuLdHeePGo0NQumIJ3yLBN9No0o51KBzwnCTYnDkWBhn+4JfyWBDeUZHvw5CHPAb/uieGfsqc68eIQJ8XfSBZ4tCiAQ81/xy55rtcoD35ww9E1fwSUdQPMtiur4tdLA37eU6OYn7prBGg0vtl+nKfcgx7QDULciW7pHlsuKgJTz/ZUT2U7PrAyyPRRgrxb0hXxuO5XViO7yttWN+90exY+zlF7ddXvkzPoHNX935+ezo1F/Uv2Jn+KlOru/vcbJXntkZIt3WPbyi85dXmUK+QyEVZjN0MQ0LufFjkr2YjlaHC/+WKNdOLEDcZ9yEp4JqyBhgnO4nPEY6VMxzAidULkvmGCI1dS4LlD3Uif2wbZjXy4SaSlPPIG6zMSB/VUoWlXMFIazL558etIT1nCenGiUdGkAHDkvmW5t5tnjq3OZlA6XAIMQJ0AOt5jD379kOKL6O7fwcUTpf8idd8pvYNtTTX/nwFkkXt2/Zv44y7ctySGaAai2rs1bX31u94Gqer4f/Wd0po48ubS714znFLA6nJEoHN5w+L6CiQF8CaTtl5dpLkBQNfkgSwd0+hUCTIU+yZZSSSK2r8jrN
Variant 2
DifficultyLevel
628
Question
Don scores an average of 60 runs in his first three cricket games.
What score does he need to get in his next game to increase his average to 66?
Worked Solution
Average = 66 after 4 games
|
|
Total runs |
= 66 × 4 |
|
= 264 |
|
|
Runs after 3 games |
= 60 × 3 |
|
= 180 |
|
|
∴ Runs required in 4th game |
= 264 − 180 |
|
= 84 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
avg1 | |
type | |
game | |
question | |
avg2 | |
total1 | |
total2 | |
type2 | |
correctAnswer | |
Answers
U2FsdGVkX1+JVBKtP0BytjKfkQ8tsRV6l5XG8gmlQO5k5UlROLU5K+fn4tkXIBjZl8dH+La553L2YxPbLlby+5pvSnHu/dS7C7T8GKj1//f0SqmyrkMwL+FYPcYGpLptr//WIr+RfUJGU1V9nC5yqBub/cwN9K5g4BiVtwBd2kVcNVKUjqKGrrELRli9dDhkEXoA5qTt0q8g9Gy3SmrjCkgfMp2EEHTPFtm8vvg5QHiEl2m1nig0JDhIAeT2OWhNb+nKRm+B7/uRZsBjtHyFDV0z04SuRY+wT3PuzPfOGuQSU/ppXuop1nr+kI12CXqW7hVrOBkxb6jK06DZ6cHYOhmK3WFAU66ZjSTLNeXXrRfXDK+fQF4WfdFh+7jlblZ89Ffn0zqYBJinSpUsTyfjNqk9fbjYOR6t6pS2C3gfd4FMGunbO71M7HhrSlR0mJKbzoTTcg7bpGOSPpVWkWOWYOCI/JcCMwTzgedrT5ZnUgGxu+wRNTVrJE62M/mcyDIkb95zHp41gHaawHJ/S56l7HTLPl6wSr5CXaZiP2WSTybtWupDKPxuFjR1HshSQkQPQvp2rDBphgSjDZY2DLjaC2d5vA10+4j90eLInxzzkjUES7oLxixt+BVMkY47gGQRUfytDCc73p0+hwYnGD6OQHNQZOpKarV8HikD+TCZbNuGtTO1AJxq9oC/1P/YZpYB2pWTpbCor9t2p53WsyFPZ7TVk6f0mav6xvmPghNF9HaOuXta4lSVTKZRVCNxvxGHlD2zGHSWVdR1v8PQ+TNQOAP93q1hFfKwwsOY6HEmQGgdupB4EQw2yANixgUrtQ71/f8QmOlXai2d70lspNvXE5T5O5cZjqTR5He5K7JUNu4lF3Z9M1pHsS7+MFxY3PTm8kGqStmjKmATX8vbbVOsfDgzrwqJAsSaIMniEFsYdu90bjNKdZiqD2wIBnb1wBWG5f7WDCZ0il1mw2a+M0ClBLXZC5H8svbulfMdmL5hRNfivV2KSGtVFXsbW+MJTstpAhi989m4C33WCgrgQUrVb2F8l08p/mBGb1R54c1SibtKt1bhzcBVTeDG6viGoh9QIqkHYDIe2E3x1Gyv0V92RZGWGIrnOZmifo576mo8lZ639MRZCMRBSajIMfPby4VtBPAJ1L5zWJFRAlcX9GCdzHzhpS3velFC1X/mps+b6I0WFsCboi2mSVPoWndW3zNGp7KrZ4yg7G787u0f7esHpg1Be1Tj7498nXAvUnvZO1z8ghYg298HS78uqc+spUTDpMjnKrFnXGh2WS54KiilD8f2oNThPnCOJGWnrt1LBgwzI7Pe7aaUpxoaVP9tS6JvyXWtyiwZnXQ9ys01VXbKlxyXU4kyB55XJMckfP/9K6tQWlLZVP1c/un5cOmTSEijbKJRlirnRK6o0nguthhnC7kFc6fP25T/NTz7zqp1jHN4K7eTiSbwxFqv+OZKSX2JwWYHI9eCFB4t4FL45+3e/8IU/HCA9+RKkSbblGERmyIIqeQ6LyO/vgWiSH4s3eJAehvUKyxqn2+ShROppinOwTx1sYtg+SEyq9VoRM+TvVh16+K7n/rvrk7R4YcUabuCyKYRfsxn4JMx3YFxnm83TeOTmvzFhzAcbYnguwzjQPAsFSkNM9bc+RiSq/HOzBLoEcZFRPdpnYxK8RUHLfH1gKFsQgtct8OJyQQebO9pqasR3QYRlF4uv+MIMFG972P45IVHnHeZn+M+bj8icQkwzU4Vwpmec2U8jLE/o/352jsk/pH12CaZn7eShSu+l8geJmq65d09RCkmB7+jXVn6s9stROJMgurqlaKs7KE+dgwBvWy6D85OsVDJG8gNoF/DOHUZx33TL+wcA0Lz6T4jCw6opQgLPVBuMCgkwradqfm640iw+oIPfZEHSHdzNm6BXwpooDzl27+EmKi3WVJS4qQTvYjiAeHzTQmawjgjacZQ32MZca/4a8S9czxm+BI7w8Mwr93GUjEL4SZ4Oq2Er178V1OAZP3RNoQPDkQu6k1qDQ+TNsrFkT7nLKv7tk/05X7+XJ8TlC0tzs5Wtbqu96gUShmRWmUZHvfkU0xWfRuAD+ToD0Z/m4qGgE7SzaGrN1/L3GHc6Heuo6vvZL+dw7SOOdLmmFG8IfnxqZGobrXN45PkZhVU4+5irp9Ps3wloueZooPoTS3VxOIYRFz0SOhP2CS460zlH2qWl0Up80J66kYu4cT2U6wEJehl/zbkGSsTn5/s9TViKGeN4IEOyxVq0mFdoEw3YchOt6hTuv6rXV4x+fKMiGnx9z4daV0zlCtLSzy90gNDznvaANJA8AHorRSnCDx3kZLwoXg6n3fm7lrJEd6cGEVXjVbOKUbVj3WQWBC1ya9SHGYhV4pUP3e76kjU+m2uLjgz20KTokIZGDxnCHPk7yxFAgX0gmfVJic7gntCrTl9h3cZBP7htjFgOexOac0SYnLmyDHPJaHWSrdrtntbPM78106fZhMK7pZwiK26iWly1/nToQMnW6NNVDKgnaKiiZkmsRsDkIz20t0keZNfeZkdxm50eaqJYNjVtntO8ALg7bhqMpypJ63Y71VuAUpCzs80KMXXcq++lwGse3D87052zxNqsb+rpm4nG8KagdSxUfmLQ3q21bvddGHoiFf7L2VdH0L6+r8dNTuF0YTMBkRtmMBU+k5pgsQP1nNuQlSLkMfqdDI77uLEoA3qCcJUcodyHymwV7dLvzD9X/9oc594Cea6iNo6zw5tUgGVKLUr9jQVyHfeborGwmadzv1gxu1vVd8vuZkZ/mq66dXXwWA1tvmZKeanxZUSModj50kCGFr8lkM8VzlXaUY/wW6ahBGVGwSG9rNEv1BP5G/4OBNXFcZaUm0/IYHlSW/wIry5Js3GewCkOtCWeNvi7lU4N4gQTEXjX971GzPW6vVQ/sBNGCOtfD9bN2HgQg8L/omy3AWosYkWY4FMzpMftDxcD73x2QRYq6xsyU5EA68cSqzT2H5pOGW2RKkRTn66Y7m+bxCHoh0BEhUiYb36Vspl1grasEJioqPschdG28T8sThfr3efkpARfpZPIBh8wH0zJ6TNL2CcRwTXcdkPpCAWHQ1R1ZrxzaZQryIZL/I2i+iRbm6uPymvlmAECEu036EZnpcwg9o1slfxiGxmuUJSiXpg1Sv6jQnkffryHTfRe1AnZk9BkPJB9e1xpp8N/W72QiARCZhZoOkrv+1sQ3NxE9Bi31u8Z214Ur5vWoSpmy9Mzfs1NECadcxBgU4wE2BSyWb/3O6mdhqwjLIC7v2zdLcY6JKvQI69B7wMfUgVQ1EfcO7V9Ns3o7pFbq7ltaZ7gbWDvU2FSnfwoQezH6ESDmJNPxRPe4b/ZzJRvfVkaDK6nXdTU6PmFnR/51LxgegADS4X9oseq2eLAGtBTX5+/byM5FyzHzRCfs89hEZRdQqFpO8CUhqBHwfalshl6CO3FHYBSXDjRcxp60enRQ5adIEnC/6F++xPrSdw2S2G+6en6cV4BOggg8oiEpYhSOYPHvgZggPpXr+sRLhNzLCl+o/dqtfn8ydlbqNdx8s/4DQjXkzL8Ew1SI9SnOSLgC4FadG/YFWzsqTilmc53wdFVterkHoLKcjNv1mV6sXS79uu/5pnpjuSS10ZF093m/wUd82nIXyGeuL2a/LuYAHyTNz3fT13AoDNkcNn2E8vili7jgbziUfHP9hW2RI7THXONUYf9D2n6Q8UW7sBrtHlcqvLhnkdQi5pyhv8qLVAbg9t3D1yafIl5Ino2GXK9m8kSgGxUmGCc454raBJhNrD/MZqoi5bQhYrjUlz1UwTb7RWWFgSYNWKX9empuMffJb44MyvEob8sWMHd+T1RqXEYlrqIYYY4SLZQhicfzzAyw+wZ3L+7BHyOZr+c5C8U2jSHt44TIRNVcyw8G0E9HX20zeYO/oV7M4eTcCFVWfX1UV3dUydaXcLDVyfeyfWrsBbDMHJDMQUoSnhaGtS+eo65XnPaZg3oQg9s0yWLklKLwaqBuVkk7A6GlQjmc2UWPYkrXeGaJJU5T3nmYLoYX8yQUgAKti8BN7m0PMcTvTOSgMM/XjQ1a6RWMGsYFEfoBrLahKuxLxRxN6bubVhe8Lngnu7tT6t6s+jGC168VxejkdDPfRbMnchZZiiy84QnjMSktTqT2WY2Fp+L+zl5HKrGbADtDJgTdwsdjQ5imWLnzIsPfFAvJjZGCfuBEkrpHZULYagVUue1swzEjLH/InW+OkdeQv1GGEJhgCRGwOK+frr99SrGtFG4csLTpyYWe8VMcJDc6NerTO4p0EZ5t7vp51HovInkdDEbPdqbNIi/W6TRgMkE8Pl950Pi7AMzSTf2SiFKugHFeAX3gVsrfJk2sGF6FGS5eTYuirXtlDWyzO8MhdGvIzDrXKNqNlD8Hl9C0IyMIdWcazi5OCM+dNlvF4b8CW/ms3psL9DUzYoUOuFna0875KQb2tViCQFWOvpeJPNI8FNOsiaEZ0fo9q2mpDqcOg0EA8FvEKfz8iRCafZcrmkf2NaMaG83pnacrHXVB5qaUEM8iTP6u2490806YgllvoruTgmur1bT8D/dPwNpjxrWIhjoJFDLHNS2OVHhb3RExTWYYWfRBt72vfQf+MWC7JauLGMoSByo8nsOBwtfWWtBaV5YlVURCu8xHPsdcRFkR0nYQ==
Variant 3
DifficultyLevel
628
Question
Lebron scores an average of 28 points in his first three basketball games.
How many points does he need to get in his next game to increase his average to 31?
Worked Solution
Average = 31 after 4 games
|
|
Total points |
= 31 × 4 |
|
= 124 |
|
|
Points after 3 games |
= 28 × 3 |
|
= 84 |
|
|
∴ Points required in 4th game |
= 124 − 84 |
|
= 40 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
avg1 | |
type | |
game | |
question | |
avg2 | |
total1 | |
total2 | |
type2 | |
correctAnswer | |
Answers
U2FsdGVkX19YxETn7VutKwcITeLs6+LKYzDXjO25PWd57fE9hXz8kIoNDBeD6+25OJHcSO60oAnq2B1kpG2gIalfZVZUJt3GrkbfMspBSsFsQV1WR7Q+zrwL4hn5TpKDMOMuM0Hl2tVNggCbz1oC/seug6qV+xFf1xmsnGL/r4G1xm6VsrenpHLMDG0KccU0RPyDv2XLh42SLKZtdKRInyrxbE/YbiyQ22ZAVSzz5fQHRgngfCt+rqcwWmgHb5H9AnepOK9we1C1twcj/7XRkE7Umm4MHABWnYwU+CNlbEcHkssPcLEHZ88uRh1YifYLa56S2bmBFHGC+kDodzN/AQ+EFnA6Gx9HphSB/BLa73MEzTqPQwn/Ys2ojPl3z2tgogcPtMu/8/BEuahR0/YisisYq5XMXbDXPGCZPGB5qBV7yKpDl8k+hEhXr7L1VvJ/DJARkCIGGL5g9eNzAY0HhZxwL8EWrX6YitSWxRRNcNwzEvfI6Gw/UgXm7NMKYx9fhDbpAu1tkD9vaMosx73fobY91gM5y/Y0J1AAI7+TyaGX3fyV1aOy2B6zGgdEtvKdzP7EJfjnnbSgLq+PtxDjRoRne9a4q6nD4trXw0j4CeWicd2Sr4dY3vXrA2TPy8xIcl848AS+/WGQudkbnEwEZ1/mY+LyKzUsVW56Lw4MzhoIWF9mGCUb7qNJd2Ock5f6nxYotZ6M231pE6i5I7XzSL1InpVk6Y45+CJDZa1By4190rmYa+mMDnXqpJvDgOyl7sa5hdew3V5vae6A7kQAEtkn5gzYGwO/G0lB8IlSuTwD0ORzc2zsyjtpurTTwvrmzwHfTXw7ghF6n1MZWH8qVICYIFFx8U5rK/pMrLSlz6rWuKR7Uy87sEPUmMjb1KGzIDtDnlnMO6CR5CsV4FAypX+ntuEZTOnk5d1Rv/RI90ShgxX4DLInnr07SM+UW9OP+hSSQd/vriomjhdqd+r7GPRVsNrpIyvSMe2HU2d3jCjVMz0AVveLJbuo9t29hrpUuqgvBE5rfxAbHkYNwDa/8f4wYbu75Ed30E2gm2ePu8S0ZSxQlCVaDsxSSv+CEo7eWiiGKk9lX8p4SzsxQqiupSI94eK5ygFkVJrod9/Sekjd1jiw//pEnjnj5wnEotuU0r6HjiVGOwN7BmzbJmcNFZjl+70v53MBI3vXu6JvHJ5xX0RUkSXXbErJNMBXFtWkWETv7EH+bMr1yJ60lt5xzceaggcLk6yHsHf1+eXRyDNS0d579X3u4lLV3TX99OHBTkLt8cDKsFlQq8IFT213bhnUrdVhz9VqS1fhL8tZjGVMe8b5X9CPg8axQF2nrwfq7O8gFFqkSPXhIa5BcMk07NIlDZooafE6mqIBOKPwJHtZ7dc7kaeJFc+NAsxLW5MaNIWTmr+kinWJDWsSy5JteNsdNpwGjXi7tLjnXqCLTV+KPylMDq15TS5MfqB8/xXM+3zL3XwgG1zzgxbCAjeUjtf5T5mFaM5H73QpyJivgYR6FjDGuWbxUDYO4pJIrcSgHF4A2CrGOpIVXa0VxszcG4ajxaR/fTdqta6UNh55MBAoSq697J2MshOP/WXgkPgusEeRk7z5QjKm3wpc8yrSbasxjgKrwkyc/+enmJZx+hoFE29c2N/OkvS7nPmOOY4INihdFGU/vp1hbqKJcETE7EGh+FAfsDsMdprgDj3cFqukLN8RwJ43RPS8HzLlXMlDIZH+bm8H2tFz4tS4eHrAzFgfa4QKJV+pTuOKbOgt/rW9WsyEBcJ2a0rqZO26SGPq0pKtgMxgH06o5VG5MxE+5OVMri/C8Z8RjRkeRjqM427+U8675QH+ezl9kWUSpwLd7C4yxuIC9pzNdnWV+bBymz55sm4oEisVo8rKytXZbyO+IeXmyAv1e0eEcQ0cpjM0Wqk4cZn+76TsZ4RNJrGQgpdDP5yN+4idFILOXFHid3wrUryaBQNaBilzyZF1XBDSlblemwq07/ReXokJ1ZnEGcDKpaw2EsTYtDWtOgfWkFVviGMiB0NZtTVwDiNBUHVXoTvHIf67qAos2uO9KHeox3iONU/phu/fhPVR2OW2hhyzCPJ4v26RWSYV5wzNe4EZ0CHkVOICm6+caLRDyjHguGKV8802Jn+hkPfybWHJFInIAEF2R+9yo8axPU3KojVQx20M1i0vSPS66kpm2ascAMd8rNPKdy/i5zPw/m/L7qbxJvpCZoKexgc+c91QfsRiQ5WAki4NmsjgHrdV8Yui2uER2+dSehg6Z56WIz8MZSNPdzHNliOnfRd3e/CXRcIve6rcwxptABWnnYNbPBFL47HBE8TxMRDKHnbzf4YX5bM09az2IGWHXceoFkHFg7vsXCU/c/DVCcswxQgwiYOAQCljSpPydEjQgugqlnqwGY3Ef+ZVjUnSOrnXdg8cr0uF88OseXr3AyUNnEIPJfn6rck1B8Qf9OlVLs0o+owbH3ZZ171EM+8Iir3Z5V2t26bYmhIOUuTIDmP/MLG8bMe1Yu4XLueQBq5+J89FLxZAVg0DNuZTcwzHqAtbqoks8O1U75LQ5/Nh4byH/kWTbqM3PDbWBfqE0tEnCp6zqk/mA7JWBCq/CbR7r3WRcAO+jfxe/ThYY2etmnn+BeHKBqlyWXDdzoQB9blqHvR7/TTOhEWae0mhiiRHmdBsqq1WRBNo0oQi/QHfZJQTcMNtR541LCRQqqjZ1w2gDTioKPKy6cftqyVM4WIrjpWnGK1TvHqlB59HnmABUdT/Dto9ZnHU5UWYBsvAc6R258ta5m9+TLkrFHrbiaJMuOgzORu1qLo1209lDjKwserAErdhawCOYzXYzl8lycsg0RyzTEwtF6o9Hv1Ze7kGH8SGGPJ0yXKX1X/9R25x9rZUZb3hVc62ZWGCS7SwV+ov2mWPT7jySVzDIimD6kCoxq2km6YOTvvUYaPXR7bjsJDyI0KVEDxQvcos0AzDTHfIyggrbjdw3mnMLsT3hpx9SIXJLHGTUkFuenLea+IOIv3F80NLsUUTELcPK+l6qm4bIsQqbfhOXDvpqQI/Tyss3KaNNT9zZ4hv0UcbNKyKSnu7FrivuEYqg6sSmghGWdS7AyqO59FEn+MiNOFJ3IY1gDfnegODeQSPdPbBE+JhQr5KLboy4AwbBFX668MFSaoHhdAjc5Mnmy5XN3O+FksBv0bzrHTcyMC1j2GvAhHrIlsMKHFzUla/PqLacuxnnFs0vZQdAe8pEHWg5VL1qHugGZSgrcWxGyg8tk/8XoM4PWiSlRBEEEcaxYQTPU341s4sHB1EhdwCDI0Z5L0/Lc9kHwoj20XS0vtiZU49O+e+FSRYHSV1zn56sPxxvCuOXBl6AEuYysJ/9KDKJ6jax+HHIChKoNDi+iKKgGSAQVoPC8e5j49YHSKhpGyJzXvRirXsQEbe7orlFcIHfOkxTyJuxob6+a2LheICfvTLjX5zQUz24wES40YZCDRGdEMpOJ9acLP7Z/1+1xt7S3xZNI2QNahtv0YjM2ASqAMwnQhcbAMKsYSQ0ishI/2vD/qJvUmHObKEGs4vcTOFUH17Nr9p1x159V0zgZrsQG9pK2oIUMFuqOH2asNO2/n6d+V4NCgfwDCFxMKfgarRU4zBGJkK746hr/lzFWkTk+nMWzpzMYV0zOWeQw6K4Ou9s1Upjs9aMjl8SqkGsEQu8jsRm0tREU3EfJjwEPW7Qg8FEu3V1PL8DMoLgK1IRSga3qV3/KbYtSGMpCcVKMKyOR6S4rUARJpr7eJj9YgMNFsqse1jDZ1yaZylnt8oGuq5YjeWsxjxDKP5UBWPThBfwPat4cOlKDo0VN4IScVWi7ZqqHx/Cwppfy27aHqMZtbYNjkRq0IcZQknZSsS4po5LYkmWZwP0Ra6AnNO0G/ryyRtku+HogJpCADW5RWNV/smzfVH9uesjKZva2XIRnodvZ9ShTfG98kSn1XrlHndcrU2YBfcANppotG6UEOHmL+gNL3k7hYLNkShAPTZmkgDzYkD5Mif6lkDxpzZWzvEz6IvZQwljKwmvGKMjHexTnix0+FNmNcgJx/GJVnbb3taeREzd4bGIvm7YZ6jRWdas29ID3ja7+uHjNCyrrjnum3rXZtib1THwQeo7TE3DgKzdX+q3JQ1T55fRxr4V5Vq6In/VxQrmkzspBdLGGKM26XuSAOy3QYA2fayYuHjJ5dI/ZWVEvxtR0MnX5fvnSdQlp9BOhnETWwieqS3R0/xSxXcPDWUwZRsR2hMMpI8OQzqg19QB4T9SW16v/cnZ3s9DwjtNUfq3RndwUn3n/aoQfDV7e0R4QL1o+uys0uHQOJ212l/cp08StPMJAt5y1MZv2U8+kvudSBEBaw5rI0sBkcfH+kpF5MezeP5vBR2DnWSgAeWCf2y2LMvOmv60zGB4KMegE9GNaYe0+pOgRtzm7wIJB8AtvO6H0W9YP66efS/wPUpIoIUwkTQAnRendpq58T6fBy3LQI4dgl0ro3IDi1Nq3mTyVjgumfptX7903AMGOz3r93vcIYi37lJtEtiEJA0uzVZZij5i9vypbH6sOfTazYowPaXZL9nxC0t1xNxoy7vyeOKUsLz0DpOnfzgP98se6Au+TeDwXx+c4lZ2vuPy5H5xSxC4zm1FSQT2AoIDWU0wpsS+Gcw14ZUf+cM2mBsjGEJE2jEulgKCamiiQ==
Variant 4
DifficultyLevel
628
Question
Steve scores an average of 64 runs in his first three cricket games.
What score does he need to get in his next game to increase his average to 70?
Worked Solution
Average = 70 after 4 games
|
|
Total runs |
= 70 × 4 |
|
= 280 |
|
|
Runs after 3 games |
= 64 × 3 |
|
= 192 |
|
|
∴ Runs required in 4th game |
= 280 − 192 |
|
= 88 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
avg1 | |
type | |
game | |
question | |
avg2 | |
total1 | |
total2 | |
type2 | |
correctAnswer | |
Answers