Question
Shelly and Carly collect dolls.
The ratio of the number of dolls Shelly owns compared to Carly is 3 : 2.
Shelley owns 12 dolls.
How many dolls does Carly own?
Worked Solution
Ratio 3 : 2
Let x = Number of Carly's dolls
|
|
12x |
= 32 |
|
|
x |
= 32×12 |
|
= 8 |
U2FsdGVkX18nv9o84KzAl37iUe6PsUigBY/tUrKfQGHCtycqO07nCX7yCaTAiEp8MslgX06tNSLc3X0uN0Da61sya8BD3Tq9LjJOUcCw5xGa1rLfU33iZwQH8XO8azBzdiX2G1Uiu7Ip4Km51EaWWSN7oKIvmP40DZFpU6noA1wO8Osyq0O4YcRyaTORSZg50GolbxGZC+7sS3yMJ12xIGoH/hJV4uP63anlPRNVNjUUu9sJRxiCzuzNFj4i3Hsg3j9CGembNk6mEmMM7VwHnT4CSST4sIQzdr90ylhbwRzKb1FPBQsgFsOI0G0LN3rcHWozllePOM8VIWFgvslPejNM9tzw5OqzQS4EcUqf2eFzEFuOEJtScIs1BeuFBsKh/uhuLxOFUEwDcOaWn7/DRUMpoJS5YSFjZntERv4X+50A1hPzFBjT5m0wMujXVedbHS3bF4foufameNIFss3jDGq/tlw7+1AOs/L5DV+ght0qfjgsTYItAxm9IHIOYg3DrODoGExnXYhLW5jXuUGOcZY093r/KgvM4loaMZP/D+87T2MT91lZJDkhDDBXUlDx4Q6doOepGGFHQd0RGdCvHbT+19oRoNcr8a77McfAHfZZt1DD35bhVOVfOuV3eJq80sddx/k35I9uaN+HAL2lyXfORpNN3vdEKVMjHYnn1WDuvERxAwg/YsNCkQjh5LNHV7KNoeDUU6SRXQucIj9GjJlNB4+IbaMfpk3K3Gr4J0LMTHCPiLdEBEC5mEUcHNJtPycMUw8fXX7rFse7GvY5ybLNbJ+95bqtLUBlVks+zuFgHSh3lElGoML0aVxyeWqJEomBWqkakvfIjTjDqD0bvs6l2KmDHs4FGN9hEVPEW44IVJcPc4Vcxptjk8n1WczrefxuC0qrG8l2Thdjjzx9LJSrGCtBfvUqtWVzJrCyQ3HVF9l3msJuqnlcGpat19csRYBgkaMk9d/ZPorvKm5aj6Q9w/3UTwzHeNB9Cv9H3rM5ausbTqq7kMMjSkTBwwhbiMlccIudifmLlW5uQigxqlTuM/X7P5hFGZjVu6sF8F2qg6PIfRDkXZ0qrKyqEujdZThFGiGU+4YGJg9njmN/cJ1keCgJM4NwJqgqiuNEiIIAQYK/hpYO3hA3E60R0TJ2/QLRaoruuKD3Bh+B+CNc2PJS8RMO3q/BsQ2DgO9g0yH4bJeXeJgxh2C9Kykvk5BjgAGAAuXG5cBq7VQPJMXEwSGsIFDFdS0QdUq4G7DA2UPFGrtuAI+bEPPsOA3K8voddbPzPahVkaHnZmlzyVwEToi6yryRtBaaHVRRYKarzH8KUpc8eJCU924PdtlM1CYegrgswoqzx5n1qJWx2Xx5K1pi20mRNCyD9dB0bRrgjM3eK9qTrdWFdKac4PhdimjQoRTMtmSLDjEYuuOG0m1oQ+wju2jinl8Yga1De50W0ldQ/GFRpggcJIcjeMIAyYSCnP52oez0F8K4jFy9gU3Vsm26xZ4j9JNisiDUH5pVND9gLrts1EsPcYBHijZXeqAq6/EUByjT1714ZnkfgcRcGMjbUKMQscaG3mawZw6xxiywIp07eckKeJ9Py52IBEIj+wIBEMlfjDLaXw2zLqunRKE51E5rakb4NmIYG846riuhl5arXDR8PX/7rzJ5PB8P76uipWapUDOpAEOe2tsk6BQJrpwe8diKknrikgFyPuXCRh1zHWF2ugvwuo73DLXfbzmM2TEq8GzZs8njGTsF04j5WB5llh3n40OcHKYLrpv1hPjiPv1D+hhFTvBZoJHLetLy0ONIyQSBSmT2Brh6QJtWiwPaAZA6KQprLQSzYvJX1m+9yF41XGWLuc8hbGfR2qGe1WoEngArtPx/lfhgl5cxuVlxcsjLYPJh7n3oOOixPaXfYM/OMxC9+zge7UmYSaBEI2DBHPlhcdQZdsnps8hOUa6MBJVnCd64X7HrLXwNAtrDeqrc3Dw6+8ZNYm/aAQP0Sl9fYGxPbezDh1vqMnSxh3rmcSazZjH0NEJ4XvsZaLxTzTKKT/mU8kUhaJ2w2pvWsA9JdCAPD/gRXnoTKrlsSZow9pybDghQwU95VE+RJIXxcNEMQmgISDXUuS2nVm+EUdmZl6TyBo7fpflUo6EcAVG+Ix5YFsjVJjdT2icrwRAcJCDz/hyLru+W/Gw38RoaJP77cNElhKwObBoVjj9VPWcdVkV6Zt4eK9WN0Bob48BWxKtYT5HLX9kolinjvKrwcTzyaG3lq8d2U5DsZLx+OXg5+MkAeHd3NeC/NVh/xE4SUlhdOItWn0FeICzhdaI3BeMy8ARDHHT+eb2Ci6L2JssG0WA1lQ6nBQRuN4Zlf1EVtd1vQEyc/1IxoW+kLr/NBvcEDl/tCRlBpCJvg6P7PWSieST1lV7y7eBdi8y2aK5QDGy41zo+mlG3+dkQtJRy9ES5Ni5SGfZbTGBytxjY/n6C+3FFQtaxpFYxkjGvNeV6JNQT7oMnPoM1gz8Oa+1DWPcdo+s43IZo2mo2h2YnOQF4DSFWotjrLEZwqU4jh+yG6YG7fNCqeSAZDDElSjjFdjnKXuXBA307JyC2T4hvAHK2vKJ97VE/NmNI8F2zOcI68bPSbRTo3lR2Wbw2ULKfXgcMrsl5nbGHGtrsTPD1OV1U1QyiDq/wndBmwFViL05m6yWmbWXFKWq+TXoCp1ITPy57NSx8L9Wajw9r2u2H90p1Jr3K07eSNv6jRfkFqYVKC9VLk7IrO1AAPIlpq3zQAxXkQg7PLa/xET501xQ4PQPqv0CtJCNt2uuRzwRy8jNIoseR75A/q8/dDicHiAJeYnvVeaO0n+hf0Y1K+tz7CzGVpyjISEtpAb17Z4ZGnMDOqumRjcEFa4u/+4LYEnpdWiWXUE0zpAuDk+80wzdZf+XDkTf9lWwoHwq0dB0Fp+Ov5yxHSvQBAYjf6xfR042H4JlIDVli8yEX7KBsPSRDoO+BV2t565eF2Moe0k+w5j8LrhKY98AYQPukbUXdkKDjDTTmWDvaSREU5i4e6Oa5eNPwsymAuki1R47ylhE0eAz2WQh9mPcWrrMElcJ/s7IsCpuKdJxoJO/XLSb3sTb4n1/DnT85B2dpN02Vt4LKhvXrlUZq66B6KjGW/WiKnkPnjpYYFeQk0+7YXYFou0j1EpDNsXBQ/UVXUDO3y+Fo/jriLPkTDxwGCAAweDkLRd6jl5SMbXCmQWZVv7X2UbnjZKGSapui5UUz9CfUvwkhmkQ9bOkHsokw6iMzo2+u382jekiI+KasvXQYM2/9d/6VAKevCO6tLzBncOhp3wfTzsRDHuzaCh2gGOv45pZoObg2YKqm7hgzmUqefgePQNUdG3QOXQLOf8SV71XF1AtdUjxUgpkx+azVn2NG+71LF9vdFm/kWVBkS3OFiwVqbhWc+Jh2uxF4z7WVCd+MVzVTqF7youTwKpbjA9LF0r0Jhjwey4Pnt0yh1nwIKYlS3XO7dr6Yij9l3Y0IHYP7TMTcyllYAmdY+pZzBlOI9eFBlUyJ9HavECrcWFTWJy4XdFyy5A/JJrKznIOyZ+DZoBWEpy/6T1flwY+jcfC3OpfWyrSEMFUXSgr2Q2qbp/veTbasIHCU4GEJ9InBQTqXsmesw6AkPzNcDwAe5AHda72cxBcqin/9NFF8JBNJgVobRalehLtBOmR5WYr0qcbH4egN3BabkhU8kMgKNXIa5IfgiP/FKbQtcHWowHQkLQjaYPPclxhGb1BhJLpvkxegnM2fN67KLfE6Rnv7hv/qjF4HiVNROoJnD6O8kV8wLyedmB04QEPED9rB8VC/dYdW59WNVpK6ervT1LjQbN7sS3gKPiVB6VbC1NEq6rvpWVrRhIJAm6M5559aaRJKOm31HYIwfcqadmag4CXrMjMrwX1K3q1er4CwjzBRvD6M3sVNoW6Ioo5Tm3vFmSSlZRbuTccIAXf/OTx00qD0DlqmMZhTqXk3jYJM22iQwjV/GnNSgUgJVv6HX1hReSv+jdFdZSGY3Uq0MbCrHanOWT01AqvIkXMI/7ouTWD/QHfmmR1iVhx5J3n2ZwN5s4yD56GaP5IkdmmRPeyyybnvoy7bSmZ4dTpXBlthtd/J2Aiu8w0XUPDAhBhoMdxdrrpI+3KQRqXIV9uJO/O79aE/zWoeeoPCVVIp7THNh8/ULQ9yUMrzhv9vt/g33MyWI+yqZAPi7vWNKp25LJ7mDnnrsLOXmRcax4nNMZpmoKbw3S4luWEFHuWfeKUlM+C7nJ9XbMtaNc2rW82tdNfSH15ASriPGtZNyUdGHGmBa339SdO7MeuNPoXjCwN1XX8+piV7ql0wub5JfaA/PSunSJ4BvKY7HM5QdsLLC3gxitydRf24RYNXROOgs7RyfQep0a8bgRiPN4iRAvL1yKItmSgA0AOa7favf1wtsZ+BDGzr9YGyZ+eL5ZObe7y7LeYYEOEXBgcPDyFi06c0f+ve7IDMIe6V7PkvhfxUEUEEFVyDJizRRKM8KSazu5qT2uqBQ+d4KsyFGW6gvdO91EtaA8vPvP9pH8JuLdSVY+ns7yunsmmIzxKkFDHA6O0byvPgDEv9Dk/BaXhoizt0elQMQsct3ExppIUTRgqFpKJ2Hw02aT1+c8DSW0NcLzsglqg0O8byX/4yA1vvFeUTu3kuz1DHeSUxapS16zCXFMnP2FETzSJlh2U3XO7binxzb95I2vnIjZiDZkCPoJSHX7mM8dxr03Y8W07Hn2hee68UIgik/u/fp8ygGRYAkOs+gJkLHMSrRLImA7P1lzigRRHfRpr3yrkjzEFbJDvd6Z2dUAjI3MTlHpBsra40d7o3/Z+dAhP7oWRo3eQ/aEmuDalfbbazD6LCSiw4tsVpug7402f8v/rqfsyqrZFmWjHrmjt0oJxBngetxSTETXN7+mD65sNgOuEknZKEaCDeUXjRRPhkTRpcJ4+f3mXfgkMzWllNJl3Kyery3wzXLHbxZ4Zx3BbwKX4rn9n8aMNlxHDx0BHCjoc2EJGDCDeVioHW4bjjzN5KO3hBEMFMkbe7iqHpu6wUdIe91upIxOAnXb5mhcuuUwu90KCqJsW9GB04guBAu2VyR7sxMaXtRinzK7w5/1a0tCK2s5yzX+oFeA88d6ozcwYYe8ROiQ+kzpSGWfPlwemEV0Rpy+GQH78B3WdQ/7j6pCrqBRr/l4uFw3TvQKcbGk9Svi6nAnTj2ldvEVvHj6/bPT3K+TV3b9J8jPhoY2PpjL+KPj6KatD4qAMsKQDX76ZsMKdLxJAtlppTJG8Fzz+aWNdyz1YD8YIMcPNeMQoeIKBEy8olkRiS6dm2uuSx5uipLXAFsedOInPnYJXThqayxwDDb3IdIyW6EBWEtaEQEfCua0nT93st+qWK/ip1jSZCh5eKZ1kscWEbJUYCfSR9AmRR/Kir6u7Am3B3SXACe1+ue6f0ZtDXVQlIq97ld9sp+2HoMUl55RZutLdL9GhxkA3O5xKHwpMEwjAijQb8G9L8HuvDQL2ZdsrZHiFvMty5m3KKGCaPGYvcTtB8c4cD7x7eA5UTtwtsYBo3IssBMtRd0/Q+i7JiTFSL20NCP8yxbn7twJhtmw84/iKPOh5WgDbm/up/ocKySLl1fdga7OXmzHSxQ08c9ylW0FlW08cdpfbRNd87P5xEd7IGpKhLRIq2ds/NiJ3Fxp7S7ATr15mxuYvaMvYVrVi0LTryucyvM0jILj+0ciHfE0VZlBt6FvYAmSgght6MWwWUZCXR6iptz7AtWRYTEtLclZ7o2RlxE8MVbaFakXFUieZQQluLSWKLFS9iYOXa7xOVr5aug9mz1ovGvLmkazIe/F5hnTeihgbx3FjJdD/v8M+Sa4MgBtA5oSB6VLJrK1/xASTPTC6ci//38G+WGdbd6+c4f0iNm1DWe4RM+qBeGs2t6Ph+/LLFbVlFlZySYWNIq0PITJmFL0f3aWz7srAh5K4YARbEMigq8QWh2YC3taL7gyqVhfjC0syS7TqPVU3R/dKsj21KGkI1Jyt8y83nhZ8lgtLUvEmlf/rR1g4nd2IEO252VWwAifK4iCIQhUCut18D31tB2DPpqAimrkV9XMTr1BTO4pw+TpQPZUyw1XvkkV3qKipECecjMtcE3clHvl3aQZid6cN8lWk7KAsVbxav9pzSojcZwpQ0w41EO+QPc6zLaAkEvoqi+KVdpQU0obFkjtLi1DXVbSxeV43jrrZ3BdWRcsCWwTMNW1cxne7e66kg3P2WIf70Adj7G4wfRcFRg6NP07JNCwDtZFE1/h/e9y5tt+LwEz6hvqJ2SwmRAq9xqsVROCm3pQ7r3/LldDYip2C63SY3HWi9NnuGG5wlhwxdkXFIKN5WGnj0qfqS3OfISY6Mu+u9LaRM35z4ZSsEblmD00wBzAPxAwgh8rXWOg95wiaQscDYyIPYOMi544TYzlyJFwpzSOdghBLgmtL7pa7tyxQmGxmyfHtz7vWmcnGbMz8h+vgAyUPnFj2nJmuCbkWMA27syZHgSzZnvepFU6K6A/IB8mtHp+HQSCIafDAILjSfxC0MBplT7pCQMYdb62yuNMXSoXbdFOJk5kUqFZJUH8mNpdbR2Xy+ASQ96LuA+1a8Fi6rMIk2gsPDci24gJmMljSQlr6kJ0ikqLJRmwXeFT7kidu332IleRoR9CQK6YppEdO8IZbcUk3Yp3HO8oB0EdWsfS4OW4Z+VYTaFiPV+1jgj7m0I81NM8oH7xNd/Gi4QypRUkSJJ8J5JVI1TRx9qmsMg1boael7+C9p5QNuZNUGJsspcrULcKv4ZdrnKhLG3r9Sr5+XPzkKMlG2F9qJg21Vwi1NPWhVBX6AM4hOF8ZXk7NwJaSNyPFPx+qBBpLKJdT+VhXtNb0E6s98jo6LsdTxT0nJ5jrF9ib2MJG58YXA9cmWF9xs5rizhzYdsWIswreYSbRHs0risv1jgkKMxozGuoEvershRvziXPw8QIniyAaIcKFjpkX5hXqM6haBAtNfvpgQcqAHe1+yL4tzMpEneoaj0t7sWMz3jLXhSeZO5ZZFE1xjWe/+aXN1mULJjofWm/fpkk21co1VwdbAVE/moMVISzzYGXWKFuEFkYhvoAIncVx4fXLG3cV5j1wVYAc/tMLAt21Ca2MlxjpVMCUmXnt4VOIDwq91eaNwTe2ArbwZUyvj54VkfIBip5OQr0JUJNYt2y4IkXZz0RkIZVBabwaly/a2O6NosB4ekn6jYCgznVHTlxbU0DAO9DysHDPXv15QvGPDk82nGG7r+vQvXhnj+OS+SR934+J+aaCJpPzy/4WLDj4bqhxApVJSbQ6N9vSmcMs/W9h3NxgMNONkLs9S9Zf03REJC5ez5Dx+FPN2UfveNg5a4po/1YOGav3rvxdBgqbFdK8uefXNGtFeM3YZOL5e14kZbcbs3cBvEMexg+GEdeOrlICenyG23HmkOX/Haqpvcg0eXV9MDFl14CHilPv5LI6N/frxXRdUP0s7aNqNydm4SVt+mxBbeIwvwXnJEvs+NX6PIbKmSNFFx5zSV8m1EWEI0Tuy8x6N31KzfAsIakaGXUDmwxoMqy+N/NpAmj34KH5HL/VOdYUgqGpvMOiYym/TAULEvKBNgMJfQZ2So+ql3lygv3EBANSECicooknVY+NmzZyDHb8Imsy7JCSLQhMWTOb9f76zGdqrvYWsWqllSO9aoV7I+MYK/K7xJAt9JnodH2Ai/mrlHh9EL//NFKrHJmciAaQtRgeug8AfOlRDGB3KqCzVLruhthMoIPDlvqhHAxikJ8uE1krkNtMDPXx4n11XT1mAMNmynh0yFYSKQWkgAgmT0UudY57/HgKLWIeyNIJFnyuZ7WSDjQB2O0Jkxfn0shtB0AsPZiDC6xSY1cf5PcLtn5R48F6Z7GkAlGTHbPkFTxONsfLAwZ+1+L3iBDGe3LGf5OARWh+gd1xqzMNenchSbSXkzH3Diiak0V1WKkLK8pEkDnNk5vHu0KAzBZOPJklQxOsmECZ60G9AaarhNFDTN49h/j+9bT+31mteVq7Az7liwl6fzO/ThAR3iBo0PLgDH8gEUbVJO0+WIQ2fW5NLn8UNVh3B/DcKNWK2Hl+8v6nQ8r4yl6jAFMn97H/HbyiGY+qLD+FvfnG+pX00+RcZfOqMhroLpvTmj5X4O4WNnUzqpOg208CVwYFOlWIwvTaU8RbZhGsb821QOvjNNRYeZETAPpwhSEsFLitYbfxGTrATX6WaHjgcOvjIZ91STLEWwMjhL4sX0bIROP5VQli7XMLEuzXr89HT+EDS4NwMwtQDEzsonzRUnnT3AphB88eH693kWiSgMgUSer97Ad0cdeG0pkx/mU4FhK2Av4B66ofMmjTRiPutxiW5oweWV0mq45u7FVPS3hp0uk61dr3rYP8tPqNl8/rRKQiX6PPjxqB6UnH7k48b1naS6pCXkZjO9rElrf6irTMcgfzQqQcbrc6o6WYD+vMcM/JvwLXT5tKZBAyD9x0+Be9nm1gP3PT9IQe+ZNM5aMWqnaVpSfLxvLSCkN7QBqjdob+9xP27DCl8A+jyX6JmyAmWuVwe3+mbjkDz08vFJwZ1Qd/2/yWKo1E6O3/fLIyMgni36Ph9WEqVxVBoO9tneS8TIvOu5TvMU5Z+dXHozokK+fZ/TJQUTNEs0n4WNnmTX0/CzMRImDRiC6zVKbyDivVyiymRXEws7KPhYjr3kJhjjHV2nBJPnUWqRw7UpQujCMDVPJwgK8YT3ffTIUFqy6Q9eKjJZF57S4rK27KHggfZMVhDPhFkYO6eXIqC2VaQ10od+sXBPc8tadogNBbpNcax1AW3P2PVF79psHuS4W/vxJJmsbLao3d0bcXn0FOfM5GPLj+czEzIWvgYLLBVk37R9BmIifBRBou/9Vuv0pzKA0hse2VKxEGHHJ8UkRI4UQw63nwNLLb5HGI+8z+PZ6LZfNFa+KbiBdROLW1i5+c4M7dRR1FaoT6eyEg/tov5Sdimg1svHqNq72vPkneTGUEd/7zo4r5XMGA6BAeJKPCX7R4mtUGb+AK6A8wn1yUuZovc+qx5kIz05Sntbc3IOAMNUQOlrfhf1qV0Ik4nuVVH3xYr68BMNslhYS6L43xJfC8nb2uuVn75Ue6T678kX2fILgaV8K2P/z0emiP3RfSah3AT/nSKWg==
Variant 0
DifficultyLevel
512
Question
Shelly and Carly collect dolls.
The ratio of the number of dolls Shelly owns compared to Carly is 3 : 2.
Shelley owns 12 dolls.
How many dolls does Carly own?
Worked Solution
Ratio 3 : 2
Let x = Number of Carly's dolls
|
|
12x |
= 32 |
|
|
x |
= 32×12 |
|
= 8 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers