Number, NAPX-J4-CA35 SA
U2FsdGVkX1/3Cs21+V6azgC6HQ3y9GfTRTMPPpMYDwdHQkVje3pQqzi3ueOPefGqao51kyQ1WZGiJGMad+UxgToxy0bNcC17P3dKJG+hjOVNSxMSAEkNKbqntkgbdwVFwaS/jPDGw4GiGmLOFLV85Zume1CLCdidBXtrIfqwFe8A/GyyPTRAl4WJAbxi5F24mvMszce7aJAYJ1VlwO56HqUBBKPUsWiI30bT9+AhT4NkxYtDgn2MgzwH2MQCmKEVk/LXQ7hGZ9MByPDDxP/3DdPez2moXziN8ibuKykqs2AfzyzdLhq8jaHudxHlRXqfB5Q0kNQHCZu6kbB6WMw9cFGBV4cjcxW3sxegSBL5JQZQ1jPqSabo9DkQgea69anNeD3FGncSM18FWnBQpRgG/7nemBj7fP6q7e9SITlOSTLvgl2WMBF4a1PGeUc0nspChmwR+ZeH1lSiGPmqkhqbI71KqTL2douRD7GJR+JbNjNaZOyXksUa4+j9IWgwlcPfU1eVS1lELCduf7Wvwf19zic++c/AEqPnCgI5/ejC3hA4HDn45oDXefxs37Yr1ysiweeQ3EJHoMZOGMEGlevsKheZPHcVvr+mR3q4x9+CJXd2kdLmRQOcvFuKXGnWaNTTXOQmF6mBAJ3UnsMl770kq9AOK6WYMYdav8eW9UxRDijU7r/Z5O2zIOqArx3bxhCUdkNitG/FOgmkPATTUKJYFxcRHvbmtjvc1cuq4xTGAUlCf/uFa5qQeVEQdONgQB80ITEbg2jZpatYQdMa/F+Uldy1FlMhwfHMF8v1vu4ao1GkIFkvhWfEWKY7NpO3OPhMbTAL3TtjaDDRlO/2jAiRu4dYFzq+psgTqM3zV/3wYuflx5781Xb25Vw6kUuWzTl6HBgmQBCvx/KHDqxTSiJG0ybedKlLMm1voDtfwcXyH1X8HxrciPq5w6tozVNLPyhcrj56+klJROdOX6htYup8lz8DsudKl3iSsdr5yt97LYwAbF/b0pPRneJa7SUAlmc0GXReO0fEvjCMBOJXpuXWN/nqoP4iJzc6uDc6YNmiVhysDISyaOkyfTFWEiEC2whcw3j/x+9KbFzVwejAbbIYWyWQ0C9UXcQ8lxkl2MzifejYtBJrUUm60ti6XERPwcbzdwx2rgvI2ZoYW/nObf98sPRRRBEZUNU/d0dj4ubO82YSGpaNUbTeikS444i0ogc51Odk4UfHo9BAA4smZTTBMG4Egp4DrWdY+HudUooPUQbmOyjdJpUStDQufC0hQ4yt90YUue40lvvwWgn2Q3IJbeaqgDkFnTxteJ82HE7mMUDzDm4iT6Jed7OtwlR8UPaAWyXSqrZ5rHu20sndleQFdSRkHEU6N/mroxfZmg5Gclw84EVc73aH0ZyMD8X9wiyPpY3nP3BrXnxL4Z7B+1wvyqp8paXXh95Lzm87exUvSLl2JGWPBmf8EQqqZw/vWlEk1lFqFlcaM2KvrhlsvI0KO+cL3tal/A7o0RahF4MJt2tBR25wBbyp3YZp1PHYJ5qpAeNkqtHfqoTk4dP1ktLMmAZwqI1j6d+ZT+jxTM5zHZLghAvBIGM2xt4R28EyLh4a5qngAeffgApXg4juvDAm/m3BL74GJii8DC7TDow/PhRFXcp9dhXmUZB3iecynOdDA1qPLua4M3IDlQ0CGDTzxpkdjUKFzdgLZ3DAb0DckD4/Jxo2iHVOZPxtxhBwUrexajPmaF9IDHRDBGLLWsAuVCBZu0fxDNAmU7f6vp6F0LGiyoB2qb3L1/xUDyWdp+i/gUuam06yQM/FcugjyzEIVY63gJURVjV/H1hQvcSSO5fr9XWeKVQWVjt8ib/H7+p/NAKElK0uNw85mOlT00719u99UICeHewg2pEYhuXmdntUGbwYWRFChVAsc2pfxurnCBNoBZe+YCsaiMB28fp9nUxbDxdVFKn6ULRYWGnU/0yddZrzLID6TdRRkcHeLbimaKO0Jy3xh5NrX9Txf7mmVWSVGIbrsyOs7QRdMC0+gca/h61HeubFMX4MMp3X//X4PWkqnbKG9uPwRAigzOP51bl6zuCh0xbhLkcS7UxLVsMKF5f8bIpfWFdK1XCUdA5cXIWVH+sSmf2ks21PkItWFZIzqlT7eEASHBFJ/84bLNheIyHwcdubm9tbQ6fUXgqEev8x70yjVM+oEjxyFqwWyOP9NN9h1sSW4L3MfdfVsK7uRaOJhzHH4pZVp9BUfQwg0BtpLupCKGoFyhXXPkmgbhEW645fdGHBSr+S35atezJ4F8pE11b3N9W5bJa0ET8fqU/Xky2GYE+AN2IAL6SDjscRMehlXWZjEk6QIJ4RWplXF2LpA/fRCOUI3NNpbV7K6d4oRrOlsdO8lNl9NjRzeFeT5Q8u8X0LXhM2D083S47BYxcVy8Jz8og0WuJqR1GHTfJPNnqyehBdQyaxfuvUVjc8wS1mHLIfhkXIbKYHAqr8gsl00LBr0SJ+uKKIudL71VL6iQsuZN8/bF00aOOVJUdbQr9UUWqfbe7kRbilHPQUVyruIwIcPATpptCO7rpNUUe9OgDb4AroaYYqgdGM/zwMYWU/pMz/IDSImHjDdMmi13yrgOxG/pME1a7c5jnHZjZJEsSJ1dPjjuSAeQ5gztpaj/vlkUoQvGXPZiSV/wxNgvLVVd+SvY6S0sI2BGGnpaWkjQszLT+2mtRiN6ih1S+2H91KpQcoeUJZ/uTn3WWEFwtECMzUxTEYebTjqBhw8zlgFHqVrZV/o/R/3TwNs3g/63VT4dj3a535ONy6J+p04plXEGQwa2R4qpMUi0u4QCJOc5jTjrpOS7jHD2X/MiCw43N7/QO+caRSVeQ32xpaFFfs1lWSTNMRjm/Mj0r5VjaBvh3wHEA9w+EsQO8RJ9v95KQ5B0fR0mJlD1tjlw2MJaLnl/6YwBB9KAhPX24HpnAzYsexiNVhtw5WjIUABlMZXtWwHN1TnVmhUPm4HapCdug6aZc0An34B0G02LdTvKzLQWjIQuVmJ8ffDmBpOd4WkZBYN3JQXVT1z2RFF6G+jQIm3eKwW5UqjLi+YfquL0cgqBD8zZRw0bCMhaav8nAJWeP1IN79XsDNMd42Rb39x0xXdEQWmBph7+CLC2ddJu7xPdTiY82aDKNRVJziPvhS+20GBRkd520XA2dbLLh7EF7kHDRwEf53ayZm0hmWmTDI8WIU6Ktbt/VCrJpjGHOVg1TQrF3SwAsebjJ5LBVsr95XQuJxXYUj5XVz7rgL/ZUFtzPoQLnZCZeMhqTY0SeHzlOUydLB1Rm9Q1//Mp43NuxqAClmU2V+cmgOyOUTosP64aAn1lIlBiYxd1JZTCMT1H3MFLcTYB3Tq7Ivg6KA/ieSuus6eTWn8c4cyUeBx9d9ARwa3z3rgKpzx4X393D5GHqVItmgqeGvoq0SSK1E1uFXV3h0byacvdjdtYF1bW7NL+8QmabbqyR1zuxnO5smTN6ewEq9Hp9pq7SNcRSpg7Pzak5D3awz1dZJIBlNxuEUhqgIlUd0vOVVzgtS6joho7d69WIMUgf8Kwb4gYASkVZ/VXgQRXl+dYZDBM5H/7yXLecGJjRP84V2G4gwfQUsYdcX8tp2U8G1Ud9CcErAWklcTxuhadiwviNZJNM4EEYW5xAkIu/EfbQv3MinFyzJgZW7G1tDB+Hyt5esUec3MfDoLdd59w/TL7vOu85N4hU7JG81IBWcsoZpA1QCl1zZoAlTpa7EE0qQ3UEA8vgOsGXYsJve506M0NVKTuynR4tJAxeSZaZUNDjLHrckdNAwerhQCgc0nyViri2ZRkOIGfyXJQei7NpM/39vt8JXJXhLRvjzcjYhXT1/BrCLE52OOfLAiw5h6iVy6zRm9TeJfpTwEVc22uZ5m6bmK2oYIlCE6du4hQjH/qWzXBzcwohSXEz7Nnm4GuNubRrVzPvb0tqtZzsi3UbzZRXa+HR6QkVCFQF/KPDqi08kV+dieYeXQoiPg+977k7HLRDZt+W1tE3I5Sqmn8Nwis/Quk+CpdekBPbt1R8wVNDLH1QwPDJlIIP83fSZMNlxMXAE9R6n8rypW0PbaruQEJk+F0NN3Hxk4QeVCu65sd6de2KljDMDLTRXYEogTeUTO1ijmmO3g3+qVdm7YpnE4ATaMjCvc8ZifzQMe5DeWA3+DkTb4uyK5iE0LrGVnmqUxLtU1VZ48yuIDnQxTUVJJqSNBOA4qeZ1xfgDiZFpPIxxVhaCIeKv0UtFM7+FTuV4e5N306BYjdKN5Fn8q+yP2iIhhc4dN8c8pvszUvnAs5SsCDryDu5PKeOyATFv+J2prVuoqEfH3PZk+ZrDsWeKQmaU7QYxHOKgxhvM2GiIwmXu5Q7gFXkRNKPlX43rbhg9SIH3qhqdrZmDoG504cd1wXOCnv7PUSqztUudQn1ec+fQ0K9yFnIqnMx6X2MRtiAn5W/qL4DWZaWOp8a26/qL7AyElrSJKVw8dI9N6AbXcaGWM6I9E+ONMgvKj3E8KTIUxPs6HtvlxN4ZGFIsi9jg9Byk56ikVra5RVwxI36yQ4px6SvFpKPdHbBQoviWdt0LqQUjCcQNmLFiQMJaYQdE5CvhSeBj74f261hJ2xmYIPryo+kFuoeGQTr/Ua7LSHKuxmM7AW8dfPBD0TwJW8k0QgT9PqQLYwGIp2Istj+1nxUY8l5RNC8gxHPIQIzh5mjrWfRYhC6m4FJ38YIRRHMa9N7GmDE0ZeWBYATqoPa88ZV0LwG/29iSp1UfAqKiebJjmIJajjZX32O8ERo/dPo/F+tAGTPh2KXYZg78Ut395DfMFdwQ20Nlf4BM5QSJehVbriVEPdSyhnV6nJWH6EsUayups9533/FQdDRJZqQcpAgjq+xlaXJWT8xYEbrWXYbZDX4Rsbwejm77EwpEZo1U7JuNuBOqG9/AUh+UXT8D5kA+AlbMemYEJ4kcwUJiDSfMKDAZCqEOGlp/ypUueppaAA/D0JUlQxVUhgOpDS7Iq3/fHHRL0wRb1wWrkdZRsaJatZJGkRZy2jcFRkiEVBh8E+wRDEZdonzcUC4XtL+bN93eWB+4nvVcZ6wI/UJaux8KPoaQE4jzxqSYDLOml5/6eOAbCWsJxrznbeDSWs18EuMe5tCnLwvzLtxPB6BPKNF8LXYne/YOwB1NNwL5f9nzsRn5oYPddMBI24lTOr/f/J6Z9FPgCQFhyC6WjDrg5PDiet220xQFXX9eHmYh1V08At6JE6XR9osXrHiBQIqSwPdUzLsPHGY8JrITQRVWipqq7sf+aGUR7yAj4MvTeC9kqMuuv5iNaP+09FisyA7ogoqEDWUSQQiW3+WNsz4H/fjYN/6J6c47HjTefv/0Xr28UvnPvONwzwoZxIgzaHYSZHZ4qDhSu/I/fVbm+j9d3vJe0/k/U8i/7sBQPttxA2PY3Q7O2L/j7TnJaUaB7Pq5KU9mV+7OrzI+WO7bEdIK6g1bqN/lHG9vN6JVA0GVaIQgh7aji0M/hBIrilbkYVBmXAmetBUDC0jp/bOSmsFj7KKN6kZOhHr+9mvndNn+ZZqGixDrJl4aG+jBUs1rqsPLSBqJphqCGUEIk5FdaVKTcdGZUNQ58KEk9iAl1L+FWzc7I9yMMgtKe4vYR+Rj0NN1Af4GuHX5BserJo5LDF2MqLpt+CEgiQicKai2IN2iF/qN0YJU0XYj6CPJcDGxy35/oOftVUkViBpfK7eYI7gXFYU8Dt6T/rJ0lpspXGJXzodjaaiFW+SNao4djQinXQAENTWvCf7jpw==
Variant 0
DifficultyLevel
750
Question
The sale price of a second hand car is $4800.
Zilda buys the car for 25% off the sale price.
Zilda has a discount voucher that gives her a further $240 off the sale price.
What percentage of the original price does Zilda pay for the car?
Worked Solution
|
|
Sale price |
= $4800 − (25% × 4800) |
|
= 75% × 4800 |
|
= $3600 |
|
|
Purchase price |
= 3600 − 240 |
|
= $3360 |
∴ Percentage of original price
|
= 48003360×100 |
= 70% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The sale price of a second hand car is $4800.
Zilda buys the car for 25% off the sale price.
Zilda has a discount voucher that gives her a further $240 off the sale price.
What percentage of the original price does Zilda pay for the car? |
workedSolution |
| | |
| --------------------- | -------------- |
| Sale price | \= $4800 − (25% × 4800) |
| | \= 75% × 4800 |
|| \= $3600|
| | |
| --------------------- | -------------- |
| Purchase price | \= 3600 − 240 |
| | \= $3360 |
sm_nogap $\therefore$ Percentage of original price
>>||
|-|
|= $\dfrac{3360}{4800} \times 100$|
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 70 | |
U2FsdGVkX1/RvZACtN6Cvkk1a52T9bmAoWxppGndoqCMaXx/CY3Kxi9/uZWvSoyMs8Vu1Zy5DYRBPUzwY0fnIOnFNHt+Vpz7Hokalv05LmlHmUltZSgHC9Bnv+PTbop/IgaMyhFTvGi1PLjx0KZD0sBqdVZS2Cm2+oAVOqSSyVcbiEqlBdl6JedSeZbbHhEByHHuV6CU/rr5JB14q8LkEern0BLD7hESTBlquc9sVofVAxYko0NebQcJC/R9+p7/rf149cH980sGMpawHdVcCuXiSCgLz7xso5i/DA4SKVl2hVU0TONFwSeGUdhacyqYRATXDoXFlBAd7Z0vbW1W+SrzVDB8mrLmaB9PX590f2Di7ag/7eyxTZZNwHe1gVa+tEp8PSmw8oZDbHcxKuAauDBo4/9KjKWvCoxedD4SZwK1E9vgKueNi8cQ3FQgM5oYMEFYsHmm1uZCkg2+Q3Cua6Kp2ppbO3LQI3RXkg32HrwYEKueYFAEDlWXQsoQcu4Qrp6wnlpg14Il/vBqmtuEsWMJqDJkDt2oFIqpoDYBpsi45XSEZD9TzXrrSq89BR14CSVFqfWCLnRn8W4ij4BMrWf4ODiq8BfkOeux/C5/5OvFBkklPYjgB2NMiKiMNTbhfgUTMcvoPdPTn2YaCP3ZKOTWHUWcpGLVZ4QSu/I4BB2huWTf+4vTFB0G3/QFVhTwY5MndRhoubEAwuutbITVqId+aq+o0zcF2fBidrFK3pkMzJiBOamsSviXsFBO5gE6TtW+FeXGb2IPNWnHs2peBQyc+aX0DukqGXlFW0d0jWAiWMAblxOyjE56uOIgtLsZwwzwisn+Oe0Ty9fnRPnapXRdcj9QHHnKRLK3+YeDyWViO6hZYSUrC9/kmOYvmsg01GMsZroBQa8v43J7Ior9IjvVkcuL7N5wonBzCt9dj2P3pfwc6IBgTj7RhTdCqWoJ4ZAsh77tonuksk3e9Lmf1O7SC9O+tDmFZeVKo/M0RiRSGLh2/N5uIKBvgyDJQ819monPWiBbArUdspcZGTHvA2NhK97IDKdDf4a6GeqAxPhOwdaHw5j62X3zBmmFM7AUHuF6BpOo3ffH2EB29pPTmkvdkKVbkmegWkJDNA+ZdYdkejOKlyM4m7Nh8IVpeeWIeiLCTuvto8BCQ5YugZ+BZtShud0Xo8BwXKloYZneaI4hilIeUiYehYbLBj/7uejncp3sXUTtFl7UppjkJcozEcLVnfRGd30Oxnxe4C033WIWJSBJITmPVUHiz3BigA4EcPZIjiByTLMfbVbO8JAflSGFpYC8UINlqhzmVqSz4G+wdfZekcXKdPh25VA64B2gaZjRNPKHuJzY/fHSKfnVRRD2nDJYCwguRCeanxfepHLCI78iXijbKWWf5yamfEUpvDTAiWxqLlKo7/2mQNnPcetGF2fQKhyoLXJ8eyjVOxN3ikBIkt9se0DQrbK0H2h8wkmRbHv8vwXARelKI1DGjljs2NdeVLZbALl315LqMVpxLtNNJ7EHC//NgTWpscm95fWotET3Tf8QGkrwSh21SbflEWugIPj4WcpeB/Rf/nBi5VTu4K+marz4aZeX2vObVW97B1n+QjZS8t8K4G7LpHMHTrX5EKQkGG818xPPFrPSJHv3/vNf7m7mrGfIJPBefSwV7NqOhBU+Ee+d1gZOjKN3n3B3Qt8ECIS94PjbKALV01UrDiD/YyuMY3m4qWqo29TKSslYW/O1bKSBu6eEUajMY69oqm3AdArx1KBH1CH+w79lNAJkNMB8bIlZMa12N7ibEVewbWpH5A2TtAaUIwJps/6O9pacO9ejzeqlyjIxz4z+GmMyTJ6Kj6Vmw6Etm3VXVYTg5mC9fGYOlj+ieWtQaxMxdEkVIvTpT/2PS85+xocjnUK2T722vTEopSYqLSZh6TQQpoQuY13b8Ofh0Q9mbj6cZyWjMSOmlMazP3tsUXssAOdVYcsUHs/UiPOczs/rhA0OVH+6tcZhbKqecq01UmzAVkIADhxShFJ6Z53X4dXfY/gNEjHriN2jDv9MwU3qFlUbZruYkeXY75PwZ4tkknWwMP6RT3QpnS0OHrcIy4valg3Om8cDb/aZHxYHaI42UqcXO2X4owSO5m5eDMq1tWuP8Nl3WzYy2S68rWyA+eaFqPoyPUjX1TaQ8Y614FIZj/oyEHm2HltOSYLQbmp8RZe2WAhTNX64ZXmY/hI9/o3JSgU/HuNcgLWDsM3O5nLp760b9CvLP59eLGOyA21WIuMOhxs879lShR274yhNETl/tH7TfN2PZ62f8T6BS4aL+B0UXXndjDoFFGt9zDThplRYrGe4hvQglAL7w/9/bV6x1J9K8kyFDBhhkTkHazZaWG2GI1m2OwOF2hWnbqq1xktGpGeQeySiqsdch93HSLvWqLj59v7aHjnV2nhLZWZE+PJTcs9LevOOh1vnrb4IpxDCXIs0WpDFRFCyiSWO+A6/MZmu3dbTql3xRqZM9OVsGEPPzeOlRzRVw4GQf+otH/UQYxeJwR/d8J3ZhoY8xKFTPav8HDOsFPg2z0NigGJIkxjqtONJIZuv2gj61tKVPAmNtrV8kp4cUlCX1F9ENdCgzu9OPR7380QsfFA68uKMIRbweYErjOBFwSKxfquU1CzmeH4BUyz8P2iRyoMGcsCR1aKW+BKUGVpCVhRRDVC4NQHsfxQ+RjpKThbJhAAEZHXvvdmFWuuTPcjnrno/F0NV73jgvRqUlxzVOEEmmdwm4ZwJGEio8Kf+efkNMMtcinfeT1Y1zNgL36Kjkc2qDrVktbFywFJ6RZHfdRY+pK2TzGuLBVHXmYs51ociXXzZ0hhX1BJaMRX4UoUOVzYXcnWVmPF6E/MXdzV6zOBhiIuAoaWOAQC1h6YO+d0nHT4iqJC+P/Hly38dC8ZJfCIomy81GT8JPc0UsoIg3959D8wTvDd1U+ATXMoQdb4qe0TjyEuUH4ZSDpaICrPMSeB1iCY/5h7+9xRR+sOlMnziwPYgE9s/ULN0HRa7Plr1mhcdkOYiH+Nu+KnXDT3LtgsVCv81bcrcNHqfS3vMRyNtr23JM6OVKSpNZ9TbQ/g7tmULbWVPx7GGYRuiC2wyH92wU6ldTR5n+g0cL9BOUBwMEw+YS3wOYzFzDqnBhSj0ATVUluleIHZPys4GvwAEHCipBpHmf3uRd645/bhPS0AkUHr5HQ+Wek44V7/XbiRCSWGIx10UvsNI0P575rp4TNidAPhf5vuHuUCTg3IIk+0CebR+25YLcX1ua25+XayT6HhHELFeFfQe7qG7ScwdBVGgTSgJDpLzZHATNVlRNp7FmVe+L/C519CPl7qVupCNen5t53QYDcvaCbbYN4ZwjSnLMqqQEkX5PEByTKgIw6YG2lYQ1osP+y4pVXyoUjtR+FBwFga5dy6niyk10sjdw89rrZRsnjRRF7QBbqESFv4w/bmpIJcxeQxWClIfdW09ZiLgUz/w6qITT6eHtCuwBqgFs0UZy2shWoqHPR4SIsuAlVdhOI7JFV9+8Q6UXvQBhg8cRi93f2fi/a7/9bv7B8ySWgziYzi7pW7DmKF1jxlCYjHCoQqjzX69FF20rWQA6NlLM/QdpJAtg338igdEWlyf2QMGO9mPnM3ik8R28fOqifdv4xzTZVJwRtfhmSI95dM+BMsbqx+RgJnq2VVtaXAgmWAq7b9u7CGJXfffI9UJ0czyq8AgSoxQqgoUosXmmQxfIq+apUKW44uwt/9rjCd/dLaM0LisscHRgnDaHoL2WuwzePXr4RIyCrXHjW83BU4w3nIStTtKIhiDWLZfIk+p7psJC91HON86AJJR7GYX7baFN2e86brGGOOBdO169/pmc/RRsPvgVJi8hR5iQL3sTzgFkHVMBuCb0iljaHQqm9iXUCi+Crb6WOCJfal9oUCeSM+v+GZgpxf1rE9j3E/34yt32lkvYPb0E/4PBNx3XNE0w/gLPxdgR8562x3Km+/mbXGJi/m1EX64Paji4wXNOVH2PYF0qFHZwJYKzwS04CLfK6M9j9FM1iXKVHOUvoYIsBzn1MQtMevPPNg+MfAQnpY3pUUrNr7NBYs8wkSf4mlWVW6Yp6o/OoZtVYcB915D8nxabcd9ZbEqeh9j+URkDo5aY5/YYC0ZTMdjcG2NzixMPd6ZzuCU01HvMEh/0Fc7bX0SL5VyO0BCUIKhrgS5KcFoaSgWM5aQCRJq0kCY5W6BmbGMyypPx4QAx8nzvuLRP1OzJuwr40vqCvbVx+oIjqmHAgBPB3csKlXQR+m2jP3aEo1S8Jm2Mf7ygM2sdU+hmhDJA8ooDRPGdwEfKxyvdA/EjQfAl047ALurd40qmCuxzICtjhMGDrdLk1FaitR50hfhGn7ABPYn8HTqocgzyWkG2rT/DMikaiJcw7K0DKluOL6tE9+BcjzsfgpBEMyW3EH7LqXMujP8DxhN2us/07sswGSltjDBPs1n3n1zfF1QV99pTD1qUbSV8e5en0BAANIrLu60V7xcHVHNpcGKFE8seStz1I1FYlsBz4Su/zyny78ZfnE+FXrjCT8bA4o5/Xsy4T37b6aHBOhqCz4j3b3bTO71fowFe4wCWGeL70Vak/D3iZ9TOjrtg3fR17Dfo81VRazOzOtfouCH7fR0OPQtFj3qfiosCEY/ngugWt49luopUqm1xyMuln+cvA4NoiXkWV24L+rRzcleFxnVkgg7tJQ4QH8O6VwQ2x4BYPAJrmiujim6yUul/FdJ+FM6fm4bFC7nUiVKRSgDR8GcifQvbTXBLqKZDB4I7tI5OVaz4j6pQ4ciQvnXUgGe1RogdbyfTVAOJS3KRZhfvjArSXusZwA/ELC3fSPSO4PjNsmzKDxIPcD0RmNgpSd35pPTXKnBYvZeEAchcDqZXfuIyArH2hyXIbCsS8k17Wgm4OMb11N82VVzJdXDYyxpVDE1VLxYrJLSdklsn1vQRKJWtSpZvmj4K3Dzz1419fCvtLubGeZjfAbN4m+C/m/iYdkLzHCkKJZUIcX20eb3ytm0zs4pFIjdqA7f6I95k/r/2isHz2drOFVwv2HUgVJw1cpnaFxABx9o3KGYYKd31yBtlpS2A1++2Pz/cW3Dl8FdAgL7LA5xZxCI9OgOXb6lz1tmVq4paJktNjYWPzIKgrt8StF24RNwjFmlO/NUm5ATWYwQe58yJDVt3Uq7TANzESq7mfUsn+TELdw6OWzvfspJDp+CMqy0b/CDwhSKK0P6f0UceB1ogV09iG7mBQ768DQqf0zM781u1UKFUbr7FLwb3Nj5esNy4lPYJh8n4DDHTx4An9zYs6LZ7Z91SxM/FkE6ODwRH5fLRSJ/rmsifqD41jP+TLd4rwk/zf5pmg/O8L9hHW2M55wbiOAzCVRstO/IxKCzOCu9K6Os4WUcVn6hOAv0Jz84vOB/B0rI14eBkGe0gSU4h2edbF1R0HvB0grGNfFCMJH861axYpiJml68Ras4K6L9Jcri6ZfDByFDDDv0wIbFmY3JECCyQb24dSFQ7CGG2cguexne+uMosigcNToUh2iZ0rBjOfYpokOt/vYEQLDK4pS7J+fAcxvvRIQq+wEAkmY8YDw/mxf/Yc7FHYPMmxZ7fD4GjdivsM/Ut4DB0+PC9xp/Z0RS1CKUa7vKtmPWqcVCncC6CzPRL0bJ9LSKYOjMMjhTuN5kdhZNsJD3+hszf58ImvZwECClfo06dPfNrLVuoxu2m2m+1ObPYv9lzSf9Q0c6Oq5gFwR3dfiFdTrQ+7T91Yttp5j/pe2GNYSmtOtM8gemyK2Q7Q+Vrjt2TJAK1pQEUisaoIQ2QURXlbA1qCCVL4FEiwJZPHUrtj19L+E26OJaKk4Ti8iCmoq1fRSC+t8p+U71dr4LIQ22l97yn0dKpWlA2uezuNVQWnP5DSGhC4lblQf5lU/y2CybPJmbw+VwAFh3crMcAR3uL8ZQ7F2MNRabqiTSE/pbGoTuLntR186IZCF1Wq7P0YyyV/BXumPXNUk13J1ZCchQvxh2emHsw7TMN2RlYc6nmTlRs4ePR5fw+J09sXz8KAKUiq7mZcZqMbBu30dJtsQACwAk9M/umxCVZ1kZ3l9h4GeQFoxrNnqfzIrJiXEjKI0OuZNm+edU2z0YIwLhgc+wOeyqRvuY2iZKikBJScekfMtqlPGAFoa7Eg3fIr4Fyde+eTIqwGT0j3F2vf9f
Variant 1
DifficultyLevel
746
Question
The sale price of an electric guitar is $600.
Kerry buys the guitar for 25% off the sale price.
Kerry has a discount voucher that gives her a further $90 off the sale price.
What percentage of the original price does Kerry pay for the guitar?
Worked Solution
|
|
Sale price |
= 600 − (25% × 600) |
|
= 600 − 150 |
|
= $450 |
|
|
Purchase price |
= 450 − 90 |
|
= $360 |
∴ Percentage of original price
|
= 600360×100 |
= 60% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The sale price of an electric guitar is $600.
Kerry buys the guitar for 25% off the sale price.
Kerry has a discount voucher that gives her a further $90 off the sale price.
What percentage of the original price does Kerry pay for the guitar? |
workedSolution |
| | |
| --------------------- | -------------- |
| Sale price | \= 600 − (25% × 600) |
| | \= 600 $-$ 150 |
|| \= $450|
| | |
| --------------------- | -------------- |
| Purchase price | \= 450 − 90 |
| | \= $360 |
sm_nogap $\therefore$ Percentage of original price
>>||
|-|
|= $\dfrac{360}{600} \times 100$|
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |
U2FsdGVkX19vsXiIXmyX/2lJsKYVBj4AYWHsnIE64GSJUJ5l51cJrCJ3Eux90SOZZrDkVIXTMvn7hUbb0LzmPsMtU13uwY1DmMp7XteKnUjiy2fE9nfmesFgVladawaiBbqDL5OJHlUcTiLFNuI95kt40oyMDSwtqi7ljdcmFE9PlYotYTPkBhCuDzlOq4QE38GN10uXdcs7Tt3xKZqz6j90GMSNZtdDgIJ0rObIIZXWvqeSxm4W3VADGORp/o1vCZGI+6v5SzeUW3Xv4tNJK0IUmfH9+NScs+zI+hQhE7gQsL5MfbbWplAvUOgizpwI4mwww9V81mzdsXcq2RG1bTeAG1GlFpTRcA2piRPl0cciZSyIPrnrGNtLgYBASdKkJaHhfx0K7UJZrI1DPacxcxixvd/rTTR+PzlHpNds7BC6G7/1Gge+TuvqL5AP6fgs8k3T/DNFtwYh0C7sTuWVKwf+6AL8D842t4rAhdPok5U2XXBZBuNNmpdFjFFvAD6wKgXyPbQ5fR7otFiqCEyzslH1OS6RSgyxMp/p41qSxnRxSgrd+E4d+DDUeoHDhUGSBg+IqdiIiBGgGv1sd/WDrMXweA+bjZ2o4tcf5TCGg6uFJaGAFRsJCyLhKDhooy1iUpnWT8wP5X/yenGgu32cZR0w2dG/RYp9efxaKb6eoeBOpc8cbZHjKMfPRBLApH97ZATqnRQ2nCcpTBXYhh3K/ccraUePnhGKqlgJF2fMPWOdDOD1Y7tZmP7C7WTt6KkhUUAkyRDHDaBaGbn51tV59gWyOZ8ob6+Z/ZzbAhhHctbZvAH+JCzpGErVZcVTqoVLDVlqe+kfAltVEwewgGtdSyNCh1DkU9zeUqkKeQov+uf9z8MnZuXl2CWZuNxfWQALsm7AYB+c9Pf05LI4V4XSqxaAMM54zrXOFQAKDKI6qkIO9Tq4PTyOuJ1Hp7TeGhRRKLgDvQN3qrZvhBeMtU0K6uyKv2EegdiOilIdxjQvFc5Ip2/J+g72UhK4caNBakwAHwG9XSn5EtpIy6LSXrj16QwBSzAV9PDeIkKPGUUrq75EIOZ5r4HR2/Hyn7C0Q6VLAeILkDUotMTz/c+PMSGde9VzapKQjg0my96TUsnOjWi8kjTYar/SZRMn/KdPYqbf3NS+vXtXKFs22fAPKrUFeKGC5GeP5CBvZtan0msaRugt88HbT42ccW1XseyLUN4VdiHzLPz4I4C0UUzQnSsG1wRsoIIwEIcKVlYAM7xZ0U3d6vyOwsJ7b5CJ9oIcXpMNDi5xayEICmpqm9qZsudpHWUweLJxgK3OevT0yoXUqQY/ARpKa5F53UXPIP3hh50q6+fS4HVc/nz9BBIWOsVHinisXrqyR3xIB40DN5XGLdsuz02gWillSksd2d47tYSGrSjbL688i+A+YNkLmPV727Z9viGDpEaepiL+u0EO/sZdpkt+rwaQ8uTZ3fJrIAv+Rznzi/DG5CIkWyFJ93Fc8g4dvVvEpz4Vx7QxnDpGdbLbfbB19sL9EvB5wJwdL36qQ72/JXxKrTrw88uY14kXQ9YxuWxnJCIkxKRzMkvTl6tqc59HgYygdBd98p9yj9vX7wK4ub2yP1KXypkxl50NUWPF7sycl36/orfBzCSBeFXbhK41Y1JcCQ9KNIjg1nJOqKvkEIIeJvPW/OQ0d/c8n6fJhccbUfKVzhytIVT28foJCJHcB3hTep5XYzsQrgWT9yOk43fN9snFtLfSgYnJd3mGNbrNVLn89V8Tl8iweN4pujR+tVkIbv+nD9hPkL/hSY/eE5EtzcsRwLusq6CowxTV7L+ArNn/Jyk7Scvlo6+lZGz1n4fk+o5aEpyY5e1KR7jPkuVJruGCDtwfXjqV+R2d0IgnJVp1+dphO0uez2Mst78gDpa6gs7tuyWEZJXT0KRYsQdGguWYeKrgAYm9KgPGPsLUbnWAh1rpUMsU7LCabGnlcL/ikkpRGy1CUjsN1wc6Im6jxmVItDfxml+uaxmNd8sFX8XnuQmKHPp48b5JFE0cBETToxqiGpw5XKYdZa9+EaPEf0uX2g9QBdONSOzA+8n0zl2+3MQVZdBB1UD+MOfYgQVlXAG+bsVe5LS1Pxhnseanoon2VHpRuBEoEhw8kHmWO1sKfKMlfGqL2O5p67sxEOLBpNk/aOECaYbdnJBjxttlKtZZymeLXvhlVMgoBYMqJ07bpOcRmS2hQQKTydZW6rnVd8vNEtTNrw3R83rbhBMWcAEx07Syh2lR7lHuVIufzZi/t6xE2VfyHWIMR/hV5w9KghTmOkexqPfPtDo7TGj942oVEERjMrksFxgLXinUdjHg1ypf3SlbdHPo2uqyapYCEL8dIvZoGZd+4TDhCKXL9EDwAK9MHj4C6Gkd6mmPr6BAvzrvc+rAQ2Cggyv9cBdeMWkNgLGOlYCBbps8XSFmVfLWZX2JlWW2/alkn4JTk5tKc84QHs/SzDkibVOl3HnldJX4dHtk0/N9yEae5Yyutq8ejdJT9vgBhPk5N4wnkMfgA3+u0RUiTOZcs9CSImisRqdK4JJdo777cmJTc+GZjXtXm2ZGPdYw3LEkOSk0dEA0SBirYNMYkzc7ar7oXRdrXCdJF196XEhquoYCNSRYEpK0bJ3WjbZqGS20LtL2slqJxRqUynZqdleWPVuu5bnG7vn4YkRQoZzznVXROQBQ0xuQhUrkHa+aWGH0y2eLgkgCqbyxu4c9IrrjZMo8Y9sOuAFDLA681qyTtQR6Xhr5dQkDeRj6UE7ixDwEtCQZx+TRJUPOyswp0ImfhBLdNNRAcOZHc8pkugqf2pxXHVGXaqx8UGuTLEagr2Wc1Lwp+Wne7U/3VAPDDs3cnyh067/rhGxA9XIZpixoF+BqeYSejEpD3cu9nlu82M0m/KJnFbhZXu7is9OX9V9JOhvgLXhHvRMPtF77KqxzdPjnFy4aPj8PLe1p5wSrYiIAGYFRGtVpC4C9Wc2os6Ktzp3bIHxHRFgNDaEmc1GElpI7BMPf/qaZnuvijU1IYzONxnWUDhROhbXDH1nGHLmNZtNBNIdXz9S1aczFKjquGHUulEhtLtCtBgumj9YIXdNylyzfoI22bnTn6whWwWIhxnmDo4ioxzvbeyt8tS2AGoMQNgoBmzRUCtfqyFwEop5Y0ZqUMRQojybqPo4k99SHNLni7T58PxDQIw0h44hPG3Nkju4Ue6KyugXDF0WVfFOy747h6TJn6EoZb4XKWfinn+K/eRLWF5sE5/39//Wr2pt4H29O50kl9jshFl8djAkc+T8clga+q7Shorx3jM3jh96MvsWTUL2O5J09IDqUmxE4WRZpfESJnY4RP3SxFkzfj64rMvJWbpQc7EQPVGkvmOCvlyHUDFhpzrljRBWx4u+rCI0lqWzY65HhPCyPEa3QkNAKM9ZmwILXAkKlklZllJNogDTSlhRQmGx3bCnFnTNfCISz6pXJMHgOpI441yUNXKF0B8Ag/IjIDXM5wZCsbq6mh9K9yUtjUF+CFJ3pWyd2s3byboT1fg2Zei3tcikMg1DLKWm4s/qdwXPz5U7qzfjmS82QmyFOfDz7HauI54dKnhaQOIRTuMZYwRE1AQv/47ZPd1e/noJi0jwQA37qeGhHsTr5au9FcZmo7nl8P/2nE3Lv9yqVQ9u1oPnqPtilpO+OLbgSr4/EQ5YMSmwURQ//DRvRPyYT/EIHGnZmTZeF7P6M7BYGzoQ2buTAQtx/43pBjN5qvRZl89xFzdOsq0CQ6dEHWFXWuqSygVO5DWhzg6VeugBT6dgS45oCmvgdjps0/kZP5qHUiya53ynZmlBrvaiCxfTLpOdN9GyIQEnNLLpdysmobWV8Bc1KlAO1bNoI980zC9eN6/v+Jt9lnT4j9Jm210KY73afGMow4jM1UU9k1lfGO55GK3o5LB/+WujrMyMfJS99AK6XMd4+3YMJJ9Ju0mD6K7w7OOjicYSrjXJE6arC0XW5s2/IhrfasYtNx5EXib4ZwYWjCoiGILQSs+5ABVULJwGzuyC1E9jKyGYzndq6Z9dDFwwU50JEb2zLvl26wgW3I0oAW7q9HxpCLJnBaYUKYZbyrzlc4nrtaLHlNjH8zK3mYleAQH6iJg0DXPcg9HYMr7T+Ayq49Y4E2W29o77D33kekMR2IUv0eeoNFk0N+cRVITkKzmB9BHR1WUtC4z9TUBwhlBMoJdfOcGLcpE0iGkz0DTZ1YJTO5hiSKcPtafjYghUJU1DJuRDmpYln7vLPZRWiDavNBcCi92MIA/hA6zKznUqfKunIuJhaaSDbo1rPfqDMlxYbp5Ord9aMAqNf4N6cT3alwb7eOo4JcpOhOB60vH95xcWg2J8F1ZPi/9vy5dH26jG01Q/Ell6532o/p1whs4AowGVAdhC1xV3WM6fxp1mA+Cp6HXmN2S6qTwgccLU6MXuKE0n3zm3dXYtIQDYFHVlE6rYr6A7HYeR4jnZVuwnK7BffSwfbI1ApdSMnSsH43tGx2L7jt/PD+xz5w6Jvv0QNh4sARKsCP4rrsnhYn7VAbzQHso2D1WMFxHpHn9fUfBaLX+BYn4fEQQb/OD7/yMIw3O4v9yqt4N4hJjB8m93YlV+9GQhy+5ujUeJ9ea9cPF0wXrTe00/LIdk2HrOIkjwNTT6B/FA/0EVaINm/utDv++kW/DmHiXyWvGTDSOu01PYoarYVsCBI2+OTNrK7+Rs7P9/D8+n6NdZSm8jiGHW72TEWj9vASv90/VcfoZXurLdGu69ggqQfzQDvg1eoV4h7kefmeNZVk8FH71LEoe/o9M34R35uaW8RhNinuWoP1qNDa1CTH8SMFGt+Uhk65+zdLX/4SPeDqbh2eur1Ayd7V4QlbwxCWzq/auMyHnsMHieQCUVpIBz28Gka2JLlPil37rJ7VfUj9t+ejunmH7p+IoVm1fVZ/2zcA4WEQJ3tDjcgyfJCXGhkivvktnEKvHLwAjAZJQOSuAeAY/CrweCKafI1GAtyBUC6Roc4VSUw9iUOY1+AGPjf3r4a7Uu+hea2bDOoPGl1fUxM0jWhfzEosRHPMCXvrxpIJcsRSwqYpNgP9lV3cq4WgpTsKaEeuasbdy1FydUrLBlbnY4QV/ykzzB9wAt0alGmS0hzRMda8ZZ+ciBJdk+ApyusUysYlnoc/rMtnWeg7Xzm70W+mistrggWDcqZGCqof7dydYUseA13q0H8Sncy3kq5J8Imnhf0u6T3vZo7PWv6PKbA0/pgTYUGXzj55LIGnbuS+PGNlMbeGLyPnKl57O+oHZf6Wr04u+agPcRzMb2HeAPu8KI3h6d2NMHpSKpqTNBdXXxGJcqNNHvSAS7yIQ1YRTC0fbEJxs4fI3sXL6fifx5+UzVV6hXj6Lqx6LU3ZS+aEQSnqJwg3zu66FsPpuo1PQ5j5I+99M24+8g4omXec4vt46xIZZJCaH79NEbyNaQVqaAkcGtVEkJmu4rFH0zueamQcQjsPSyh0AdKt9yN+opCJgSfXi2Mypfbu1vKycUmytjp4Tmhl+/42uW4IogCkKUABRIhfTWBPVWy1WMS+WzbvWf8HqJ3nGD0j31Hb9bdJBT+MsX0l9BIE5ltDxqoEzkltWLhJL2VkBtLGCLbJoABVwj5oZvb8NJhcATcPUKBK4w9l14obab2YumqY1zNZCEtkX1qX9V6OH/qWEuJNo+qzvnLjOdDe5afSAj1F0W0THWFvNCqhBrnvYWjStEfDzPWkyOeX61HedqZ7TDOPtrfCD68ckwrL3Xs2ps1t8Bc6iZSXTgDHxJo/90KU46/AuprZkC/AJnUvR8o4TkawOmzBU1/FdOiUTj5E3k8cw70U/7bcQ8ablRtsi5erGO/jTpPGkGj1DcJLFYQMzkUtASwyWW2El3KGV7m8oP2ZQQNApUmU/oqIzfLrHfyOtAfm1jQg0U1uBhFD/sFbMh7Y+/TuZbQaxQPs2AZarTEfJ2bPsXlMbhAaltBXCDV54XwbyYbbE9CuGICvxQO5ybrDS93OrbyZKhXnPbGrZJAbuJAwFT18BcZNOLd22R7u+iIgcSL8bzfv6HpL2JhPSAfkP9f7LQtyOrav/3ehyZ7VFgZRpZNW0TwQSCQmTNfcGQEpmL4CYd9ENTKgLDEPdn/jJenqWzVpuz0FJnpbltXsSfuEa5yhA1g7mYWeHDn/ODe6VivoJfwmKMvLedIiupIQ/CJCkN41o8eNQdNPHWirwyNqktAy5PjlIXWGsO1SDLinFhmpVdLw7wVogz8mQ1eTP/kMiZL1BOusiZoaoDuJYwWGzTm5SXvOBILHMH40oGCHT6O0adNsW+qeZxDl94rWvzROgmktuXiqD42cM71xYAg16Ogk8T40Dq2AKt+UWmhXmbEaiR7fPPLp5s58LpOw4Toc3s3nP+SfLq3+I8oD2gr/aZCWk0KhPS7ef+6paDSTHn957nrsKUjJCwZzj8V1QIYBZplIXFvroPr71TdNkaEkxMxP7S7wkcRBz9bPZ/Qc7F5RSIdWJ2x7AvWIDA0LWvPWUEULzAKXqgYSKneb7PDe5tXnFijlA6AnsH4JhF7H2/qVL723/Z5ygP9aVLjVus/2XPlHus2uyN0w0LNgufAOjkw7i/EuUu9fAdfytIWnDjAuZqVg3ya1bGuaM2CbQ2HA6+0Nj+dsXad76jlkmt1iF0ZEg7Dj5whKnC3QP4auGCZ7L/QXKbbML24HCF7N5a0M4Cgbl53KgraoPWvyCYNqaqhCLVzcpFzeTrvW2ao1Swz5H16fJPVkLY1nFmcJMiUuchlOVdVX9hKpuTYBHzFBGDjoZERA5cBYEvEw9748SdyINawEtefMFTG0mCeQccYOK09DKqVvqevaXBpcyi3ng+/rMiDpQ/tt0GUqPzdkLbHx2mZUEwbfJNTEzvLgH8JJkaXQ8+jMMCsfWIoq/Mr5wZizWt5VNktY+d22lihpdPzsKTBERxJSeJaEIY928P1qTuP7S/nEL6uGbjjbx2Ou42Q3oaDrLISjsOVSjqPuxPrSiC6AYT77oGIooVlp0C8aI83GKsRJYZt/LyuK4jPqhXuQ19eyp7nw5sQmqOMrc4ABo8XMRccdhN/aMc1nr2gf9bRKRgyvpCHdYECboyYfk8AJYa4nhkLss88ot9L9v8kVNEMtPgckxc6NPrGRuGk4zQI4JUr45ugpaSYgTIpZJsxAVhwIuSvN/VE7MdRWsUwdbd0q47yQT1CbZWNXuBgML8KZ1k1YnFs90DPLN7WS7/fOI0zpHivsFy3sRog8GD6dA5ww/rYuNFwfQH2N2ELSrMvCt9NIfdb9F20Xq8xoWraUNLIXTmvWF9dkLU7fW48KAOrZAUjSgBuEtqb4DSS2b7YVP9lsP7zKe1VgmIkOh36ULPrC39BWMXdREg3UUedSQSaaowTm26UecY8BHAxNNcYL7Sw0ARMgELJ1/0mLKTFRC56QtUkMcArm1P6PQHZZsBa7aOda/cgbNUJzYhUWD/koA0KWGzsexhrjI5OqRc4EJ9CkD+tZD7nHezNzkAf/06PCC7poJTRKb67N6WFaydkni6OgcAedM6N5CCQt9kwAeEzMxqDxm6VCtWVMNCytteFIG2dA+Wqau4wua1lN2XwiR323J/N/fjlBgaLKcD/RTh1KpQKFZlkrYfNEjF2HLzH1clcWOlomk15e0ysQE5jc4xaIkeXexwTDnrRJNFG8f8bZwtHZwShbefmeraquX8T57s27pYcu0MzokxHtH/2cUvYULMHlDkqiux6c4I+UV4WAr1Xol9rxnWyN2qNP1NVUINgGGAwxlI9wnelx5gxiv7iilvmdU/l2w4tGiX5uefc//6qrotReShZ3igNH2iModY+QcK3Cv4t9KkB9sFc9v9QnLCumhYB56Bw0Xrk+H0uMRr3+Les0z2EbwFkMQ69OJZKaKRm9B4d9+iOP9cg3A7iMPnpWSrjn4abkHmgYYDX2+ma84yirtz4lz7MwNkpagZGxopymlktFGwIQ9Usg6DfZIRdi177ptxxaAfpTkucGzv+RXF6aRmQwrHFM3y2D75ltlcuG2qCScsnVdxADWbXyG5oNK3Wfdgp6ijGqy6BRjm9WFNEo5v9+NHSDUcN3o2zZl8BClaBGnDYXBF/1jO57KCIrHpuSdayoW+sgmYcfZcmusp+ly4m1BsblcKsVeiI5xgfQl1mdttp3zdMxdJsD+v6eV2fEGAMWW41r+33x7fcqofdR76smKsEoiD5i3GFJSgeldsqDOh6OwzHFgSImaCmNs1fdMuQHlWBF9xT2Q5QUAPWs4dLPjcPWIUeUy2gtGcMgU5JYGetHsoBZPL99St4LqvQEtySyjncsAsiopM8s46Wfwa4D1yJzrewYkbcpApscFjW2GcGkI1iDy1FwmhItXgHNXroSVFva5QZ//pTpWRP6M33wxHH62xpwoyl+jkRJRQHORGyP7hAuD2fF26OBSSxQHIKAc1YrQ3aRqj97Ln/L8DMJgDMIqwJtE1KOMeXTQxln2F9m6rmSmBSqyfIn6CJJYOqWmSaGzz368dqhlBRIA+UI18GqSLfjpIXAxcw2UGRBNU40jycrY1RWiyPdtFjsVaS165d5C7Nv1iun47pUwSnaDn7gJelgTUDPE5F4Z55CZWp+7+UkY03mInA5jXlfwpo/m3W20I5NIkh8jDH5iRZPNPHJX0/TKKHJDN3E0yItVwWrCvg8oQiM75VnpC/S/eD0BovI2mHLusEnh6Zvx3kcJrlP8u3/4sPUS6wwmcDdg18NikrgA58dMl5mfX6/O4qeoUBkaGNwF3pUD1dZhkGZ5WRiIy4JEgsnkozuyiz7a9q4JjMFhXThI7wps+2oi3Oz13oaMzSp0gnQkZ9b6gmo6N7Go6X/uPWt05REEiPW8+aZrs5EkkOzBBDb5lE6qsAjpckls1xsEo7ARd+2bD93Rk06XjI3pAw7FEzMsonvoT+8l1GKe1NY/WsaZp3B8aR9yZ7LUdJAWILNdoBqMXwdL7PlHCKV52k2LtLCnywc4VU7DHEaJypvK2JCvejRnRwn3fut0xZu02ElNJF1p6cC0UC9217WnNbbNTEwSLsQ3I0U6bSNnGLCEyMLOi6M48mhL/19BPLc8CHy9YtL3iUE2VJDQz6nbFjtz/CQx0pv/jpZbYFirbOEYvuZS5mM2n3P1eSS/G3a2FVLL+7gOLRYs2k4ZwqsuriKz4wgMJNYRVCBxT9HUWPO2kkD66dy2FAHZO1tynBk77sWLxU6YAeEHVVT2QPF3nXcCzA9ipFujGf+7ZOQywlALDdl8BTCQYV4vFf+pFmQYJDpU8wMePWNB7hREnLf2iunLBcHSM5368itEYVj/HjySonVYEm08ALX1xmf/QR1IvtGrnFRPDE02Ys19h14zQJV03B/fWvo3DbocsY6ePQRNMjsv7OJNGr7sczRFHHXvQxe9mW7fuQBkYuRoOhPEnAfFEaLDKnfSj40wS+K/m3cg56hiA1thGToxr+qQNC0+5P5i1hwPnWcX703RhGXkuCgffHaR8r2/Y5eIvLklVr8RXbasKXB+akpo3f3l0HTcA5vCGFwp6soD3UjbX1Q1Inwg/u6uRff7j05z8C/fD+tFRgOFacLBQKTK/kgV6g3yZN9bkyYmC4FXS4cMNHWIcQg/BeIq0oO5gzuQ2te8geepAbu4C7Pvz+mHxNv7Fr3ZANMvkpM7frNGUFJQG7qZy4shAG/uIKubo8+YhWog72LrfVDymVNrzeKhQauwAJFuyU4WVK8Tk74Hj4F9wQ94utdzgoI7VfDagdB9Y9e08wiixTFYF+Ouj5Pp2x2N7uJ4daGTO+5wulz1q6WAITnhLS3Lgj/msn8ecGl6W+ISGC+m8AGJl5e9ILt/AFL6ySQ4EQseguYC9T57920/7tavym+PiSmpDZ5XryqQBzs85fQuh6OQUcQ22QJunw37Wp+uvGYDoyffcQWDbZEZvvRRxvsCzieudzr7OGshly9wVik6lxM1e+hmr8fzbiGUz9UN7p7o4pM+zV9rs88djllew3BRsCnrkC9i9uWtv6w9NF87u9FuhY9ezIDTSLHzv9oGB1NTFe68d7rllnhNT/SoJyG0ZwUJL6UsIXjfG1yl5FgMr5BhLZBga0EUVr5aoyBmlQh3WlrhHE8PmerVPnu+TMm5Kf7btRK2srp3bBK3FcDIVk0FodAheGHuwx2/+wi+VQH8STMmRTBw1mth8ob8E7LDcX+c5bXZ5AGEYgTWFlZmReLkWaYDUMmpVR257tkG558oyMa8EU8SQAw1jEcMD+62eppL5JwkdNeOMIlSroeHa6A5905xeuJDh6jXdELcZC5rO4ItANaikOQ27LuU3lXK7dBZv+91h0zfRIab+9SnclkO3oS8yFfkgDDIleG7RG8lBkR7HU+3O8ic+BBRgkJx7xI/hhj+Wq0mmU/h/RVl4X815KVzcMllh5mQHiCq9ThQZjCzL7jLCACrQIfA1D12C2FxsjYEYx3SoNkFvKNx4ya2ZkOCzh7EOoM1FVREVDcLXtjp/N3ot5EDMt2cSaVGnn6kaBBuBwmoooBfgH7RZ+c67+B1IVdxIA1lzZicRiVoos/v7mxORvRX190+nyXeOfQbwU33WQQPaV7hGRs6Es+61RN0YSkCo+ZBMi3nIiychjuWtgjfl+Jko7hxRf6RKEij/vsdfwaGRVdsNQfxvq3G0HwSpMD/tkR3FtA+JBJZ5JE6UKFx2SSW9r/pYjcDuQSJqiR+Z76sLmdFPXwZ9Uq4cjdQJrK/nXrRc69v+oiEyih5+wptngJri09IIq9x/1zpIWr6JUEtulhQVied5OZ9nt0V8c49RRlY3FdMZVF4vvLbAh1LtPd3MfBu33liZHCJuuKts45XeJ+Tp6JTUdTm65e8LTT54NePQW5AnI7jlyLtPmVqvcCZovGvOqN6wVG9AdKOJ4/+58dF7uxabgkSQcAqjT/2BlGrD/9HPvZRXrDBXozgK49IqxwTI9joKyrpDN6mf49jPqAf6rJyzDyiPbJo+EI7V6yg==
Variant 2
DifficultyLevel
740
Question
The price of a hamburger is $12.00.
On Tuesday at lunchtime, all customers receive 25% off any order.
Llandra has a discount voucher that gives her an extra $1.80 off.
What percentage of the original hamburger price does Llandra pay?
Worked Solution
|
|
Sale price |
= $12 − (25% × 12) |
|
= 12−3 |
|
= $9.00 |
|
|
Purchase price |
= 9.00 − 1.80 |
|
= $7.20 |
∴ Percentage of original price
|
= 12.007.20×100 |
= 10× 1.206× 1.20×100 |
= 60% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The price of a hamburger is $12.00.
On Tuesday at lunchtime, all customers receive 25% off any order.
Llandra has a discount voucher that gives her an extra $1.80 off.
What percentage of the original hamburger price does Llandra pay? |
workedSolution |
| | |
| --------------------- | -------------- |
| Sale price | \= $12 − (25% × 12) |
| | \= $12 - 3$ |
|| \= $9.00|
| | |
| --------------------- | -------------- |
| Purchase price | \= 9.00 $−$ 1.80 |
| | \= $7.20 |
sm_nogap $\therefore$ Percentage of original price
>>||
|-|
|= $\dfrac{7.20}{12.00} \times 100$|
|= $\dfrac{6 \times\ 1.20}{10 \times\ 1.20} \times 100$|
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |
U2FsdGVkX19HT49nU4XXr3ydu31ph5s8rMaUvgGmkrhF07Ga3gqTZU8wtocALRbRwe+qWQeIL68yPHaSx6Wf0sgEmugJ+xb5xz5wIu/xEvXnaGW5IiikKajIOkqklku/hX54BISbrSD/KGFyK+Vq1maAQm3bRX3ZayRWfpSROIsJwgJ8egBRGlAJSfIusLKKOEp0snV99mMv81U0jvAnwMPCiasmGJ6V9XsAFLVBSpTvv3PYGCbjcmz9cG/3uYqTG+6ZyP3tMoypxxMfjjT17tyMoQc0ENVCsW4JW3p3JXKxeahpl7cg+vjm937WMdAcwy4apIUue1CX/Y8YTZ6eUOHCVmWZTtk6CJIGIMRxMxdhjzlKldu5BubRM+vJLoSMe24cSkPRdAMIIi5p1ZaQeKOXDaATCLqx7o9LlZGJTD7kl0nnvSyvzvRj04Ia88DDRPOQ9W7glL9UmV6PJccodLpX8QkOzLxDGXTWdpPZtAEgAMYcYZR1Bkj5RjZT/1PvFPJDBVoHx6tMud+osUxLR+qnq7JAhLxnXI1HfhKHOtB1Zyfe7QCPUzb1VXVtfkYrHHNMqRpd1WHM0L0rrWOt4UQv2QGkEHPRrgKKzylO+Gag593EDBYfAwlo1ctBWodbPhyCmIASz4EwawdNAYakCtLuaQQOKtmojklZlXZrSS1Oyen+WUnyTFgdBOEbOgtMw01vOPLYp9ot1frDhvT8Ilb4ePV6n4XELt5MdGz9lRxLucXnNXBC5hH84KGyusomK9O5Haea729A8O72k+FrKYImOJxhT3RZ5+kE1oF5wpUuo59C6v2hcUUwBIIndAGMZ4OQHCc5pXef2x2SVp5UmaC79pkovx6xtQjes3yaeROwV53k8nXpb3fpTzucYGvbmFKRJa13mnW/IYjIooYRQHN84OmXXVyyGLkHOqzi0bfUdDRfr0NEdxDZraD1tpz4EOKwg/ctNqzhnf8l9mQdmXANBnQU5i+ygyfDLx7q6f3L/sD6fpZtESz1a+6Hc/cleUcHbJ8Csq/qEoguK5PaezEZvdiw0rMU2yX2oL5tA3TYzFrYC+ONpmry1qZUveNvcS3um90yVrH/e6rUZWsEfOE8WBBfcJoqtexR33AKLArrmYJ5jX7gsWcDD1+0sLeN2PZlxgI8AlfxCRmtcMk94ZST2aAnVBNOm+2AcsF1P2nfej+duPLV8wA8kaUTdz8aMlo1LSnkvh81AxPeiiDdqWmodmq9SQa3/ut+F9swtcOlULQ6ck8BCq3+GJeQiaZBvSbgJTa3G1rsojfhpAuUW04dsOpWYqSExzFq2xToXlyoO6NmXeDbTOyqwSF/Wk9z1m0ud8wHJOz0EOrkzeRqMDKeZFxDnCvhS7AnjEkL9Htmk/NeHbtjc2MaKNySbT960Jfdi+10J3woZ1bl+JtjC31L+DJ3lh8uuDPGycuL3kzzVLx/MeQu9hV1KNT81Oz0sPwuAS9UTGOcyG7gnvbO0gRNPx+ySZp6UrQa6I6PmHQpURpPPHjirYc45AHiGQeMIaVMj0GnyBZJlU8Zthti2r8+ziict08sz3QNYZBoz1tUVEWTzWgQaqAKNWbDX1P1wRlK0KjkNs4sIdmPfBLWoN07GZLTnc7FTGlcoDl0Ea0EZxDK2jJB1OmJuaVn9a/1pO2SFj/A7Zminr1rV8FWeXlf5T+cBxvxGugGtQ5ESivSvnq2MzTbUA4OE3g8fh4sxYKO6thlRBuikc1ICpZM8xFyy1uKfem+hmk75r70hEW6CGqO3LHL9Oir4tKax/ivF8TxQ3q4O+FoX04665QGDIp7UpPAoKt5XZFm87+7HKfhN7ZiJc/XtCYTmXllXb1/BRTtcfLiYY0+jFpNYbQ0Aosfd29pyG2OLdKdVmx2rF2qqeLad2FabScpKI72QzLVVzo+aQiabFzbt90ijN62PgMUaXorgegFfTvU4qQQLcKSYmEDyQc1W9EEbZrlp81nRSn0RnDrC1nr4vJDCNuP/ihxLU66aEVO3q8kgdOjFmY+WpJCLL/Z5PQbPtxR1XMHoqy7soITJnHQe1mDZ9DxHbEpQIsQKviVXMDC79PuOjbkxHKPemrlIht4VSddZvUUGcxnAZbDRCYe22F3Tq+zHS7wBIIBvPcJG4GFxuhfN/65wPaufBWz5VQuHCe0FykqhQ0NvDuplSrxmvk9WuaIQG09wjo+VcyH2RY+q31f8o8Waw/f+o2pzdxbvMaFIrsaVdD5sW6b4uuPV1zb4nawLhTcwJ2Q4occz7nA2ylERkTmxvHM7UtUrsEAc2uUvvHnCBX3251ci2X0oJqV/4ynuxnLut37ygPpNiJj36SVvst7nzNtX+FMVOnM2lDFRlbS1v8Q7/9s2N3bXYiJJQLWLO26QQrCMRtvR2ZsSX0rc7TdCjurZag8Rgon2Ny/FJhwuENl9X9R8J3n57IPBUgxD4159GTRmwVp8FFMaI0WwebpkScFAUo4775/hicnYVsBI+k6o+aU1VZjU45FmAzzoqhZbLXcFDZX3ezfXkohQtxUuRmsKefx4lpkuy488SxdbynBuJhUB+Xz4AfYQxhhjQk33D7FXE6NlZ2A8Ul7jsRnS/JDVnG6VIcA762liyEm/pkV26NDEXRB/HJ7hzAPFRE6I0Rz3SElx6DITFYUMuDaexC/0Z8mGq33mlr47VbZ7niadLtWJxPShNXVVvA3+N/r5x1qQjP79jDFwSKdwjITjqpXojJq52NExjrKAzB//9m5FYe7wlBf/0ePIl8b/9/+joX9iZtkvjimc6ZrczhTl49CFOc30UeNeYhYfIjk1ykpQYNejz828x5oHrCPHjt9Mxy6HG6fXbBzka1VIufs0tuNOtYE1jeYdDrjs+EF87FmqTEnWBTrN5GoLoyBAi4SgUmJHR6jv4J2LeM88cDff59/rDaiTygysVEIifdKK7REkY4swSzsrly3TDY18UhiT6hgfG2/Aqz4N5VnYXEwMeAPk0RXl672F7NU5TMTTLzygYx8SEUlx39ZYPROdPsfUgcy137heBpALDVU0emJRgXaXrk6ENQW+IvvqU7TWtN9hmP1ex5dgOKlwU2DVM80pmxYlvBYj4kYJS0f/j8rXmWGIvWVqb1+sVomNhOqQRDq/YCFMfQsK/MYB7CTocVX9oopBmuJDYKBO3gjlFpWfKF91VlVgl/GJ/Ve1B+7meBBaDOFvPaHbqcmwZ2Z1Ld/DopJ5haHciE2QkVGq//7jJYAUraYT4ELmazJsgYOKcEC1LbBxfNpaGtPSFNoEWVOuvWefeSgDqbtgm+Qlzah/9d7bMkizqEFAxMN5LWiaIizKSuYb9nEeuo3GJSYg4ETGCODYe1XbWMDv6Bpqm+Z8R6I0u6F7FX2N1rGlmvJcbcmHaokQkGVSHWD9bfGaAOI7baCVwvCUZ4f8Z7WEKiBBQJfIWCPEMvj9ilSfRebITUussBhf53AOPO4BohqYQINkRWUligUcDLTxWl9zjseOOwtrpqrdOncTpzjJNRWp4U/L/zCIzYNaxBoRZqpXfArNJo71q9TlkWynYk6wM+H+L0hPnSU46Xq3cWB3sqaCujT/4fYPrfn0dBOVKghKYdkonxUCFFcu+gQPnJbjHDG15IRuB2SDMJFgEUug+hJ8e5RAqXNRhQsOFGu2RwrTw7BuW37QAT87zVtElL13Re8bf6V5m+Mcw16Ny4B7Vb8Hiuh+LiBO4J1bmWxXJ1ucKNVY0rMzn9RyNwQr/5NdU90VaYnzPzPXGNBYIeD6RV9vkYiWxRaki99SR5I4QJBk/zrI+uI7izb/0jzEldMsMTct8Aw/qyjuUzw3U7PYKk2KbLQwnT/ydcV2Atj48NrXF67/QDiJcSl2LfIzUIfCHpQKA7tySUcmiC0ecHP9YFSEwMj/EIqhVZonitOYzlnQ1OEvqE61587qOdNDQ1hNuT7/G1GerCkIAQNHZENdmV85dZhArjKYGBmf6qid8vAxpEU8+V/jrVO9amtdhtLhJdyOJNOCrex468SNMYc7e3raf78FxphJPf9mLL43ql95yHK/qI45hPPvJ2x8888SCrDikDP7BKsd6baaYlHal+wMiduCheC7LtV5S583uDQFcw9iyWXszQafrVzxPj+RUcKEFcgS4tP4BVgHmMmZdyeBZaaAHIICFBOnwMKA5KrV/jhuFqt5WCNjDs+Z/Fpw5BlKkAYwT5D62V1lqWsFAOC9niMrA6gKJyyR0T4LkdQs80SVG7fwGxE/V4WRZLh4APEaCPFLtCM+rDmsrxp0yHsCm4n93doIrVScfgoSdiUwPdKUnKzEz9lKb/pOZ3w+/2ohj+PnToQH9/Tjt5sLuZIKV/o6R/8IVb+6UHMXVVUR1BfY1GKTox8qQYKDoYlFC4+/xYazoh+c3KD4Jq1TG/s3T9tzApwBlqn7XYiCiscuk9009uRKo01j11CC7sk7gloi1xhaB34t4ti6A/o0HxuiLxw/g8yvT34C2wg5kKcvvI4rvkVp4tKPmpm4GIzVDmsSYDT0EpiFTyf3nXGEC1+su3rQoU1/AY2mpMGTx0BeWoL4m8lKKb8lMwppANlejQ4JhCyfdpB1kuUjl50kBHtYhg+qlkxejJFFEFfV8N3JL3miSDhMC4M0uNQ1Q+/IhmYow1+Z6Bf8ZOVgi09BgBVKT8fDYQ1BMpL2k440n5amZ7HWDWdXc9oaIOPzeDIBAD64yybQRGSQCaeClD/fhQnTSsm1S7Uu5OjbB6ozPotzDP1AK/L6Jnd+LbZjC6IH8eSHzmr5tMBfJXf5UpeG4ZvhODbtmIL7zgVv8ymS4Gz2gk2SZRVDpdjgmsYwNXuz8nliqpJN7M3ViNKqVpkCxmzWTHrbG9szPcgz5D31mg4BUPN9ErEeHbV1Rl0jK7/ZPdG5tkTPIIQzyQU+Q0aiJT5ocqkOyGOGxXMaWWM1S6iPkU540RQsDT9HwE1D+0grtJF3kmxmez0rGzeEoxBKwCo3nRaQT/UvBHBf/PURiqNHT/EKEVkYl5P/7z+fsqn1DX3cvI2HjUw32CzL1hV+8ZCo7a99gjZ+YZqwyelNeTq1dsceAEIhVnTxdjqJau65VRAQONsDWuPSY//Yuvw5lJ0B8OdM56f9y6MdVB5/Ue3D7JaxFdkeVpe5IYfjZaLntXXA9W1L/qDzeIop2bdufjENZn38d35k2iW47flKlDYTLvsYb1F2+yH+P32Pke0TVD+c/RtFwbVE4Yyz5EMJsFt0JcdjYxs85QPXE9pkCZG9+ywF12CqmwVs4YoSMYAlTtopY1RC2/AwsPQdcgz/TkiejzjLaPg8ht5wITW4NdFQblOOIKgxsTftKGGGQnZg+vTh60Oyt8oPRXbqHkFDQuD60k4w2MX/nfZ/VD+fGnVQVftf4Bimj6Y27Yz41IyNIE9A/GrP+EIVlesu/ASEdiOLxC2CkguKEejDWiddP63fu+AMT3ataFhd4kESl/os6HrreJsSuj63BcIr/yZvhsHEAeVLRRhkxDPBfnCTywLoTeiSR5Esa7HKh0kJ7U8zKrP5yUyu3oOcevOn/xBfFG3fNA3LE/kswtmpPsnT+FY5L9aVOQs2PUFypsoaqtM6WTz4Kwj33bL/UWbcekySbC/sIXqLLbPNO9ga6s63mQH/4FsJMjdc7gusN4VNORY0lpZmEsU0ETxbU7uxzFEQKmvl3Li5uNg+qk4Zutxph+h6a7M9FiyP507p9oxgSHwrBt+pdt02NxafH7s21n3emRYkYEOQoxkMOVcym/hN4ks+T8KbB48WEgA3VLJ76GrIdZ3QDTYdV0BJ+Kz/ugBqZFPb98hhRCuOKMAy2TH7fhb7MbUcYYvJormArzmVT0Bfl7MORA7UqII1fUAE2YS0aIrAJguEjDazGUIlaQAkfY89bgeWYGJTfdQoopaS1uw4XXQFoYQPZM+apTDtT0RAVTyufYwWJzRbEdH0Ut7jWSWNZLXTuMEa4O8mbF0BJxPnC51KJzyQcqVsDb2V1gQZ3C8iAvXFAtSfCzdrrf+qYXFSJgiZQeM1EbivstNJm8Hkj8lKSKiVWMsHuFqTcd8qMQPkwi4vM9a1i8Ff5B0pnqvjLVzm1ukq6HPNsEftMGMe11Qkl9SxIjFZKs82gU3/b+bd3Jx/Lag/1Y68QpCFSndwbca2hg+6feCcZ5q8vIDDbbOGc2i3wyJsKuvK+/Vfq9paiKL/2slZSXAuq9qUzJAE3VPlN2mhFoTsfxJkg8625es0asFij/yz2Ny3t4VVkZxAiMhtj1DCrWiXWd3hnsT89XDEAMpwR17RPVlM5k8mt/ZnAYpuJPDKWmfd8WwUO05OHwawUdNvwPodtJw50Df35RPJgc2zB/U7TtLmS1fOn0244QfQd8YMsC728cJ/DMvA/xAbc5jAxlwdb7EZAPyFGVxiZ1i1DMy4K930+nSY6BUvJzRLQFl0hPA5DcrVgOZ0xg91QAj/QDXT3quPWoWS/qRD5DqGI2ODwH2lG793p4+ztAZGc2/2dic14nSNtgx7YGsRKnveNjWNfhPInp4rGl9Yz0nmJBZ2JFmxje7OZTf8xxxjIsUopDrfIms0GIqrzhkuTUGuuVODjCqGZPT2QAyDfNnfpPQ5lwx7yRVF0ETHaMOIbYZ+qGrpWfgZYvSvWXLH5ySP7dBJEIU2+t/+bxpOcpt52izeBjJr4aSzZeTL98EEquP25Xv1hLsHMxLWF+89PssFRP5IxV3+4C7Zim1tyb3zsIJsaZkOFXoDO0sl+fGD2+qXOLQArpt57O49vzTVKNJtHzF98DYd2oQ85y299gECo8OyBSuqe8UjeB8Gl3BO58jZnNdlyr+ViCf967sNSsPdoc4Tjf2XFNhpJX+wKr8X1XrcHhpIs0KAC13X/wLn4T0KBKqugbH4fOYbHY28Q8x9+s+kefiGTdPJF+HvWyRe7nc7ucvyoPFnQHX0ml4A6mbU4Ccr0u5QDFAOVcEdTMYD2vsElh1yRfdzicuOHrp8PhdKHNUpY9YLIr8IobCEvfdbWQjXipv8or3tpSyo9ltKE7WUQ+P29baQHvyaJqWvZ6WMp9oLDv6F6q2SSPucskln9HSMKfKakcq/MmeNT0PKQNViHaHnSMCuyF2R7Nn72QpU0z4TpdA53V7nykTaxtZyF4/3nwCUBKjQJLpycksWnWOHO6TVFMr6/ZvAa+NQPbuJ4ESQypTEaiqPsXuxkPEeBAuFZzjF/LMe34cxcmA3JzNqP3GQuHjAQBBGmCxe4yyu2sJhSLJT+jU2JNtd5qiJrOiEf4Lb6ISK0hJNi8mIGAxq6vc6Y1TImXHvxrZWBpqkta6vM8E0E78nGUO+F9ChyLaDRQ1q3BL4r2cCbGri+dAk46AO712Q94laSt+JnXOsBwLGRjru6OrjtSJbn/6sXZvjwTJDRsynBNFIz0cKeFeIoWf/5Ey9XgzkcbPvioKAEoRE1/IswTjXxe4uyJlul7JoQLch7h9EzrQuK5ClIBn2Esjne0fgkvZSUZaD1O+myZA8Wkpf309+dU/A2CSK3Rb9S0PM/BakUAuRBPt5CPZiIkIn8EdtqbUGo5v+7jQ25XjMgUzBBfatc+BSJVJDoCe7RKltWi8YtOvU98J/6bW6p6VnWBwdOzBm95q6UGpHaavxAvM8bqx5wW6zqTudQ6lWYH0Lz91oNyOVgjuOdUaFWu0L1LwK0SHZGyvUKVfiWRygjrAFznKiggfxmSCTS9ylAYTSVB7cZlNztuvPGAXd8rmkQ/+9wRizEpfIsdCEM1uhLgcXffZCysgNCktIuV18OuOav7F8+hyS0BL5GM/l4PpyBdGEj74fjEGgJX48kQvjZSfoLdtO0jnrNwFDw4WvJqi6XuibiaD4aLXK0+qoyaPwKFhBGEXMOiEJN5E0e8mN9tyuIsX68cGotFQ2ocj3ETEySudE7IQCQMRkNMVhJ4PwFq4hUp69IxO1EScEhIZvbjNC876o8lROYQ3BYOT5EVvRstFrBMjjDiUx2v/k4jbhzpLiJwlu1Nmn0a8JtEA5cI1WB1Io1sj/xqc1fowpS0jsVziSw6gbds1KoPDwkfylvRiul5mrx15gxgaPmSM1NkowN+keoBI9ana4DURtpurloGGeF67BeY8lXc7pg/Z8AX5ST8IipGSJ+otmDD7lK0fJ63eICfF3pI9v7FRMi8zkyNYQr7Jmfwth55plgp4lAiSfBnTyyrT7SVN0rXfNvmYHUM6oDzhc18bqm9faiSOQz9J/GWqmL3HGpotdzdRII9XythEZS+y6RRJsnR4HvrqA4Dxb6PTfWhaILwiOQMXTNVK9+JV16Lm/WoyXIpRMlDrGhkIj4ANuUOMFL1wG0sXE6hqc+jrvoG+/mdZbap6+zuM7rmQg/5jpBYqzQHeZ6SvVrjdn18vxtwecvQ1TwOqELCdk6ZsWZUgUcEgneLH+LKCrYgvAd7Hd7KLu+m63HkueJq/WTNm5Qblw3zGSpVFIKIQ76sV3hwxSzjf+qKiTMxuA4VBpm5uOVyYHJRYQXkP40zArGO7CP1HMSwUwymjBgI7PQsTKMy/7FdD0ArovuVFaj5JcyDzmRPeXnCg3IybKyMsTpPrmjB/3KiVh6KYG80kNMVjSa7RR1e9pLr9ukdjPcWwYiH33E4A6RpUW1HB8RArxyPqs3KtFyn+p4vQXycnobZ1vw9UzBRiU9Q9Iq2xI+D9akGpfSTz+R2R0uIua5ODgy0a80+sTqb4SqPWa9UEv4SvJFH4ptWFHieGMYHoag8c0rhYjKeffn/qCtb0tLbXKbWrQxoVIFJA9KaQHZXeDdOJyPs/EZJ84kHAZITzlhbHMRXKBK7uKKEaXO4xVLyHYwH+ufboil04l4EVY7mIVrlIGORxQpOeA9hCFrcFpuf4BX2sgmbzQ50FsZWm2hPnxUSvUMwKQutvBTLQGUyRTjKl5aZPtmo3G1O1prD78aEzCAr6/ZRNb0c9rtQ3GsWRSD3WiF/frZ9q1KorEpPH8PfN2zJV0RmzXqOIpwtlNuFOTsTWAHtig1GCLBGijxjF/8Cl20e3TBjPss/GKjdtnvbtDyrXNEzH+HM+/VrZgqR2+w5Xd9ZN+m/n+hlT8Ub6wWIG05hC7Dk1SbcHRNl/9Rn0hTuaXv8Wcft10SxNpdDiZIUuJOcoeN6D+IhYJkqpXbJovcaCgD15fcF7UyHoy5qqvM3lf9rZxT4ElSTrj3R0TVhWumHplKEeVqGO+FqJRHT/vxGXAL9j5ChTwftY8t/FTSmOKuyIX8ruf+YA3RsxB/6CrPTHKeN+17CH5nAXVtss+wAe4mW5MWPq02UmjohSGTd7LLPcbWsCD+TPzHbUM4Fs3pcSMR2xE5tgwqd5QGDDprfJ4sBCVryguikYsVbqVzsoA7RVfUO5o8QUUk396t0yuHrNZLDzFIt6fUJHZOiFn0qVcram9CNOtLQL4AR/HmC9M4hjFku/e2E/dmrDt3fzXYzHZlVloOCjUNW2WF/K6IX6iLVl46UiNpezQ/GuMwmOgtfmMX4/0Zs4/z5a1oycdyMKYVK+e5esE1wkvpy6D3a/Td+eXF9/ldBOZ6QvWj9RV0R5+pBl6TRLeyWHXh678TSQBfsWO6jBx13rBvfLGYQ/+AUkQ5LXasgoMrzTQzSQsVOneCoVegT8+LzEmIA6SxXghHPZQiJWJWjA7FbDBNKKGZ+X/iJA6FwjwLUV8b4IeH0WqxhUaFZ6gdhOM0Pp9DxwSd89UXNZI0oTn93DZRRrwNQ/JbQGM65GPlhVuq9BgIM2fFd2iuecSxutH7yiV/yddNXWWdWOxb+zb/vm4F5T88EZr5S7fsHD1JeRafzxSwNaxOgMWzYAQLbu2NZeZRVU/uX8edOjjUB5a32Ns0pOeoktAnQDuMg9uOdY2DXzOstd/T8TkoMLeBeKKuGhO4VsNVZK4W0Ar++9oo7/JQ2N0cpC4HaCHz0jJfbs7Bi4LqhUbhvSAQXvCiZ1x0G+QwPbnysoXOJ1KUybLLhW+VBqjgS4Fmg/SZzwOsoipfsDHv5KzB4kiRXpf3nBV8AV5YRATJJ62X5IXI3SXQXfGXJkZ4TipnVKA6aYqrtZCsU5YPEHWM+EjGb7ncmtALZVB/CYfR0sRE2IGw5dgnIz16j4DFQm9xMAumB42f0K0C0gl1vYw26b2iBj7/oze2mF+/GEM91R6mkiCmqz29cY9NkKAxX30CM8o21+GD0A2wlZ+hK1fAPSik51F2xR727ftfsWDuAW0RqpXw==
Variant 3
DifficultyLevel
743
Question
The sale price of a trampoline is $2400.
Bevan buys the trampoline for 25% off the sale price.
Bevan has a store voucher that gives him a further $840 off the sale price.
What percentage of the original price does Bevan pay for the trampoline?
Worked Solution
|
|
Sale price |
= $2400 − (25% × 2400) |
|
= 2400 − 600 |
|
= $1800 |
|
|
Purchase price |
= 1800 − 840 |
|
= $960 |
∴ Percentage of original price
|
= 2400960×100 |
= 10×2404×240×100 |
= 40% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The sale price of a trampoline is $2400.
Bevan buys the trampoline for 25% off the sale price.
Bevan has a store voucher that gives him a further $840 off the sale price.
What percentage of the original price does Bevan pay for the trampoline? |
workedSolution |
| | |
| --------------------- | -------------- |
| Sale price | \= $2400 − (25% × 2400) |
| | \= 2400 $-$ 600 |
|| \= $1800|
| | |
| --------------------- | -------------- |
| Purchase price | \= 1800 $−$ 840 |
| | \= $960 |
sm_nogap $\therefore$ Percentage of original price
>>||
|-|
|= $\dfrac{960}{2400} \times 100$|
|= $\dfrac{4 \times 240}{10 \times 240} \times 100$|
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |
U2FsdGVkX196Rd8Llxo92qdYBkyT7SRtAOBshGk+XeEkm/iUWBgYI3Y3BSC7u/CyQ+KXBCP8dQIlvFTxIkGZB1wgdV1bGGL0hfoMuol/n9X71naIa0mNNLzFabH0oaCzwYll5+STuC1wzxigIA/nn/8Qk4AvZVge/i51a8de819hKL7NHBDPGcmENzCE5C7VrdMrb2Db49YkPxYdsGRmdOwijCL/AWPBh1gleOAI5MyYV9j1dcfBBCfGCzkZ1NEILzuEyYy7Ki8cqSJey8+iffPOITql8E16bf/ZRagau9hvVm8r1xZ4j/P0GJr5q9tN8qgFFduU5K+3sFK8JM1TrfWg6Yf1gyGvx7aTpZ8tQzLjpyUdRt0N/cbzkVZA4MiBC4TMWMbu53gZqt+G/0R6Q9ugpxZjEPOy/KfPy7/CnWKU6/LnVV+bls2cAL4fHjJTO7p5xmGbB4Rq87JMxpBYoWeuJPKHx4apJ/3GOhcn8qyKDwO2bzP0LWnfUcYr2l93t1le9sCkwHoqw+crovD/QTWB9l+rS4R9qbKjVLhKNmTYBwe9VrrBfcJYNDhw5Ph/uyXlVYXo81knecMDEvBH8VZoWlS4WIxV4gJyMbyjMY7t3BfaEDMOYEDY06bBmwHqY9kbSFIywRrNZl3tTWXCgssxlxg+n6CYK8gXBhyR86wYgkWrSsYK+o6inWH5Dz14jtFKCOZ4atN4u9mLYthX1J+x3QUDXknEFY8fmH3iocDBZyPJCFGDLYh1O3bAlMu7rM280222lDeZ/Gtp642ba7xAGa+lVRo8lpeo7Oj2FCj0QvWdlPUuIxBPjDL6V327EXBks37M2aj/8wmWCgdEqfsalGpWs1JN3/kuardxJ3j7aUXavc68lqFbRhq9k2qIM9PPbEmixBRc04idKPqmk0Y+fOnrRkZq34DbK0w9bc4R0bNyj1GuW5Yf8GM3rz11LvBKogOi1GqZUh0cCDStciaOnYiU2ZTaGJLoOjKHfUu0onllgzfnb315b5EU0nwijDd4YYixi6FWeKpx10We0PuEBMGkC10pC4y/hyJpxjcQm4h7sVbj8vvfvc8muWGLJlHhwMW68QSgyCFxps2GRPJaSx/6fBBmkgQEQhR+Q+U0YcebSiF1VRqxxMK5wdI+Y9t41NtIMD3PTBrFyUAd2CfN0ymmumm2BAKkOwClo/CVuVNLaoIUzpI7Hgt3nddSQv1XfZX81Hds76QHMIrF1hXu0cXFCJ6SlOIzpZA5y1PV2GmHYlRmaaFRFVuJ6+WjNhijS6pEU8w+BEcuwL1dr6YAB3hR4jc77wh9NRlE440FjSCaoD+5fncHORksm8taHAsYtAcjORVONoRNfOecYqOuxObcXgEvYwNrYrdq7HUV9toacrPVwCqWg/mtt3OnNPRIU17Nb4CVhx8l1gyTS2sH028M6zT6jx//oYwx8lEy53zji2sskMRqN+AkdgsORhnUidEpzYjoUIb0390iW1Nkggm/4fztKqrFNkYNVJfxAYDzIxjABKEJw82oNNPSo38RHHBme2nnQp+tGtK1AZtWCJrTCKWNc1iVuCUslF86NPxU/aqjAv02nydVZQeTbDlWkYT7HmTE95+7kVDzZybs2AG+BriW0Pg9JfhN9/wDJGSDpI6140/MpQkCWVeR9z76SmqXtcN131NqoFGtdwDYWjbFLWbiqEGJR3AaqGc0eR6vdeNN7WufXimyyrt47hH2vlCn6rVySsnXKfoe6HTx09wCbclQ3RGpXCZZrKdR5KirqKfY6d95pTAyR4FoajH2Qiip0YLYf3rWlJM6++26X1ihOMj2l1YAflygXEIb0+EpRe0zLlixFWJFVFvbLfVGnP3HpNfVfYVNaWdooWa59mihzCma1u557dIZTWH8HW1PHiqNwiAgPMGQxxm6DdsK5FIcIRGZ/zREBZfzJnfHZpqHs1SQYmMtHUFKTD8nLfOwSytd+KUhRV0K7yDHyBGTk9pagTFOqliwal3BzWgDelUPzYaoEhYoNkOxM6KBDwZJUcr4GDMjbpaLIfpJ31GPh8pYZewjLW24q/97C1dLBU/tWoh4YgR3unUUXoD8bt7x5lvZulU0MpvJ0VvZNrG7gjPYxJIyaAZXnPFHwwjD0+olWDxWmSb9anBXOmYqdXSW/GxfZdRcozNRa3NzXiwTFOVHD1RrwAmX9zt13hkuW9jpxQTz8crkzxlDAf08Pk7xi8FUZrMwB6mb7Dq0+H+MF7dzgqaPmkVsvuthN7R6ngJPddoc7HZkpS/HmSzrgsH4wvGgJV/tw8MSmT8acdqxhgkr7NwceC0lryKO7I12WNKORfG9qrXUEdim88SVPW9n2UhvB3sUKQGN2zBB6pDww+i0G+zh5hQgMgs1v/bIQahm3j63Jng6hd26Rwew5Mb23ySj4vrk/Kc2yNFKMZEVvNAzm7G2IHvKgzSPXGloNuTIEjRHkTp8t+SDBkoYUI95uwPpjFHZctuOM1DvczY+UOm8L8szgwbEhLtcG9op57rSugCW4fkevMDI3AA0gh2ckL7Xwn5eD7DQverceoMRVjwmM7F687gb0LTsAofOUML52dZw8DhCqqlhxLehtW3Anh4Ol1c8S5vsYbi2C13DR2BgVtfEjSk5yscxP8uXnE8VsSwPZchEoz0j/5pGJTEbAWr2RALXfv9T9etO3uls+Vj/6eYLuhmbcOiZ0laehNkcynw5SIzhMvzRMi+HXWY0yuRmlBoX6E/2LpsU/+43YRbLczi7F8t9E/nvB3QGwO423KnEE5M5VF/t7oL2eUi/iloGsWdFL88EsjiT2a8Gg2F9bFjkpMwSgEBaQZWIwCn6+IaEohHFEhWy2sPlEKbzsNBzwSDhvOQ6RbUx9qBo1vIRU3Wvgh1aVKvcf0H4avu3jFJishTZYAxukhjni/u6YnKMZwCJbBc8ByCZ617XO9AzuDcKu8O2rqeeOYn3eaoyxlPI/sN6aghU+6OIWAfTX7T1iy/oOlNf2V1EqHXZj4kg8vHW/7EyAAdpFVDdnvBFw0BZgnVyG0JvtNV5TcmHAI76ZpGtgcmjTPM5b50DkxlE+RtuGYq4YBBosEoo51kpadHLndpHy7Vo4ukm9NgFdoHnwt6HjfKU0MT4gvRp4J4vdpE80MIepFy8pKj5KA2krHIx+j8Mksxj7eK9H4pmKP1Zw7A65v6QqqSFrFN/8YYzQtDsyoKll95vCOzlKRaYv7PQoZa+0nqnczY7Kv+c1KGNiVwF8+4+6fLYDlgjZBdDz+WMPvVYxCHLev1jqHBT653fXST2Tsc3/2wY6bVQGJVtWGnWy9EDckWAkuUP72ChT5jt24nuvfGVAjmpvJvDUUwFkfKuPXg7lsUoQvLUV21rgXlsuxla7Z1LwyCdXT75A/iJjxdNm6Uzs7/pU6dNqTGEaERLOOZXrVagHFeivwHnPTrB7m22sGLXIwynFgZBp8hD/7AKbSHwFVLQJyZitpoQnp8E4PrTB9vP4rrQTFD6AseggXoos0P/8f63BrtE5vYv/yTWkoONm8sl3CRazXNIIt2CcF2RRTsz13aQcLl4JIL2VCKBVatR/m2WD461qUzRdxZo5z4EZNUpeXrKnzFIW6EU2FQZ+5FSjmrG3L+qLNBZvmHQQJAOSZTtn9Tvqi3Qrq1WJolrW0wLD0spZBKgo9RPo09w3hUh314DQ77yCa7W3VqwG1yUPTjjcSsR5jCrhx3yDJjnyBmffO2LfwN2BQ2/d/5VvrzBJXydQVo/rHxZ8HEvVBtR6ni58+Ou9Z4NgX046pOTpgudvIj/+SPZmpN2q0KeV4hd3NEmH+AEN3APVA3RlmoSMH0olJJbBYKZe5Fs5mgk8u5f63otm6s4asEY5ing9j/2xLtoMZtom/0pUCQ5ExApI5ontZ9E15B7vCzjjLLRLAWSCqOw2VHF63ySo1fuzqEzsUL0jm4Gr+IfADpe8KBqC7EpJJwzDfCzbRYVFgyW2HKWm3BcNuTd3otC3Vxr+nG/cZweu6BBy2WfAnXfO4Wm8OZS/4sNTdnSGHjj0/hvMv0qDlNvJd5B+aLgZVocR6R8D7d02MCNB4t0uMePSWm2isPo81x3BKhzsRUVGUi8q2EvLaN0w4DHnL9dHJaAxxq3ahotuX2nGTIhO6IO+26fZxg+KBbx2AH0mDnBDlV9s0jmGUxQU4FWmufLu9QktdPQCjble1m9p7W01P+i/92gTTRsLEdCQaTSqduErCyf1pDyBuL0IgDCBzBQKZiFqHJ249Txo28rUnRMqajF12YvSWBZgjlxuJzZ1QRD6TpN/azeFtDq/t0SjnLHeQVi+r1YfYLzBJyN3wMG+z/7UPutcbr2OnsSszYLtIET34v+XULtdfEBkQVPZOOeuRtO9D0Rx10gon2J0Yya+4IXA7nJzPQKv4Y0zMgtdoU3OUStG5eX33VUvoMGZfFdzZtLKBtteiZY2UuWRMM2vjW9OGNyBbwj4pZHHOb2bu0gQYnCgBzlinj9QP8PVDb/A14oeGehm7/otxNp5jexysumDkJS2X6zf8Uv7+yi4bDB8Rv/ZDhOefyePERcayoYuKS9nrtP/vysXlhwAPTw+8mCFxCSWSdBpkvtnthQdQJ/Triu2Ao+XHEVd0EtidLtRnFulixAtYrlzNjUbi8NzGgNu5EnKrVMpeyXB/JeG3GbR9YCTa8Wa91e87dsAfv1rF3ZMbCstEkHziKen16OiyjsUc8H+hqUOZFwjDXm9/o22Tr4pADNvLA9UeHXK69JOA1dpHBGuA2FFWUh7nbcAhmtbwVINqUtfimdXXQJ0qtajmTahaYwGKiySW2AsbxvfRtsB8lzzEZ3/3czeai5alfka1mu+BVAw2CEIXtp2DegdJZKbKLW661f1fF3c9nylAJ9Bq3ZZ4PcmCQrYmlRUPiy+BEgr0heVFHkCT39EymGO8WAd5NmWzSvb/BC8HNsUEHWLvrGrc2uU8EWDFNuFXbte4RVU4ryLz6XAMqAq4Gfb1L9+3mweXrKVFVLCVTQsglmXbJ4xLPeJd405ao2neG3lNMJScpNvI1ljUys4QIURWQRcN90EEZ0W+tSeQPaArBG/3feOUb3IJ96TAyQZiR2aqpTT05Dju9yjylQzzM7PSJKeISvolHIXTQqo/wdpwkf9mFNR6Y87P4LopSqwnGpmnfj2LC7YGXCI4cAain/kP6/tXDPYjv/FQPXYl0CCKpoZZt4UIogq704d4Pz6v4Rmj+D8L9a5F2Kb+tguQ+hcFep/pVrwZPFmqYSa3ImLgGO1Mo/inVNStm9JcWVXrn7h2D2kwgk6Twaa5Geimzs3FWvv8Do7U/ujOtWdYKF7XKMxoH4NgcwhzDyuZXC0jx9P8RG/3I92ljdaIvLmk3gH6gUCuBo7uoWupM+3bgXosZ8JWARdb9eWKOfVWHzlPWX94NUhOgr8EfGrw+EIppsYAEQAevarvfNNBB53N/ax1HT7gs89s2YaZV0pz8Le6GcOeSDUciqfUGtP0mXJxhvuMJD41MVU+p35V4DQn92MtSk5PbJMRD0q4rWA5eIu+TrLYd2uaw/K17PQJU3YAzu/FJD+8ABYRCKSLSdbCKo1f/RqVPl6iJMRheegmAgB+nQkLNOr3kCFSvaDIORj+72Vv7DxafXNoH8EyX3KO6aZQA0bba7v2vL1NbkVw67HEl7Wqfwxq1brHgyRrvNoIHj4pYlFfUsrE3bvcIlPSgOvRHyhDEH4HMTTflNMUCKD+5tO/5GiCv++xpqEo1atFPlWKTBjck6bLsrb0EbLIXn0zknRJvmgzGsVOpQ5vUI+FvRkYi+cgg+MiD2rahlceF5KlNGMvFO3WquSSxgAxnC5YFnq7aVlZPIXAEa5mTh189pLNwSBMvEJrBj+UaBJs3Yq3JpwoTxjBdLTfL0xDDBgULhcXX+pW3OlPDOLfD/NkVzKI30fcLjAgnKMARddFRRKSU0LdnomTP2+Q2fO5PlkU9SiQ0bUSmnxipt4F91dh9TdCB9or/AV2BRl9nAthF81jH0+LQWhY6+r0E8c7ETBfSeWYuZJLk6BRy1P9Q9HA9ceBoLGqu3KnHB+ZUJuwhag9riJrXbZ7KiTzNf3kkXXs9BE2whzM8QglSObxrtzlepVQCcOFD4ctDaNAnWB/hiTtyR5juRbL9IGtr7nP6UmicZcl/B8QqDdK2K+U/0oy8XsTisqGDEY5cuAY/PWukpLot5QAd+o+//zd3JAQ08JoVZCXVBvwCzub+bbpX3dgo8beR/MJkSLEAMgzKEv4+kW9y3p5wuEnC4MhklOHOI5EPS+9e8zK0RZ/TYstKrMtua6Q4C8FBDCCWjvRAbd/XBnzyyy9TopQJupMOAS9wyV2uzvMPYu+MzQStYq5Wv4Q5kzfnYZapnYstdPyMXT5qQdhDPDifpANimxAW3C3OVX7SlHsfZ/CxErkDDaGP+a8BFU7I4M3pos9PXKjpWR7OQiYYRsYbmZOCfIvBY7oJ97xS2e/x4GKQTk7LZN8/3O92K63k4VfYgK4zBLWM1UqVTIsspZRcbCR+6A/Ka1BSByf637kSbhrBYFOhfaqi1QQrrw3HGc0QmlkOFUtaKEaKYqVdUoWePoHhn0dBZJjnD9X4tLWuqc9Zt++FkZtSKxRjd8TOH5UO6ApCftj2hs2z+fGSjj3/HzC5bBTUVu72Pk/AdPVZLiFUCs2xhCo6vq4wJ6ZdLklt3zRciMsPANUohurTc2QE0MTe7OZ1DWVfsN5u+whcSWA6bVwqJmwhDtG+9wevqgJEChdkJqW4TUjumo8m99QtsV9wQ+y3aRbigHyb1ugvVXQODUXamqXlEqD7xVigs2+FWkdhA0MxydFD0JNos0Eq8O9zooouT1+Uv5dU129Vl7wgynpRmLkmVYniXpOxVQb5lWN2K3Y3xm4qSHtmSDbgzjYqgc/006rYEWAWochP1waECFMoyzkGyux+sXWtLCNdx3FLxJ3YMyduc67a2lnQp4dpUjEUqAXHEl9HuykVeAN5Al4gGhgjk6hA19oT+Sq9jfy/IskZ1hLbEfTiScwdfimeRGUzbofeoZEq1wlGH1z+wuCCTCD676QIwBtmFMXSIi2cXFCq5ORCfLEs9gOBo/Q2qyo4orVVtsNtn5MBeGHXjlyvOP/BxIWJi7hmH+vuH4dHoZImNdoZeu8u5ly5Bw+dmHjCJUMmhBRRBHLUuKFH7TdSZLP2+vrTTF6gbLIWPeEd09rM0CwBxNJEzQdlSxGvop86eHNhWrud6PjuVLQrRpXYhAN/ffXCpbONSUM4U6dWw4sR/Jv7C8p4csB6VGc0iXih422T6Du4+7/KDKAwqfMqKcQ+owCDExvVewQOZkh2TX3s4KDDaeYe1Ogk9DpSvzxFMcZR/VLQaVmibrYohJ4oh4c5+X/yMRoPCPu123Cwnfst0ihIyHz8pS5ZRqP9Tg5bQ4O6pnDpSYDp9hGjIaQFXcvNygqv3k7JjiHAEuH22nvsxepJV/pZFAlFICtekLYEdAf3g7HW8y2vvO7WCBdRSUhvFkI0Pl6SMCQo3dte1Sv0KRhAzgIZ9MOJ06TZGNKIBQ4/qm0d1Z8Ljj2yBB1Qqg8grG4gOI40zdRf1gF1BjGUQtsgv7WvTdlQNDU003glN29oluh9FdkQEYXEw+rbrHU8c3wWnBJj/F9zu32YBB0LieyJus4JmP0wCBFn+oYsJAJMQb+hrTcjZwdsupoiPOn0/atmlFptqovsLNLvbjP/iUxPppano8d4xolIyGrVyDboIwe5vVhsbDq9x/5omch30/s/IXpG2BLjg4oW1UChyVbbtYwrVjg+r53f9PkLBeM+b0z1u5PBRLUO+uRc91ATCeUFDBtz9MLOUBCzak7GPeQWk0krA9y/EZSbmLMGS959v2IFLGtvmZQskDAPj5MKfjIgKZbmB8g0zAl+BR+6L9fYHfAQUjVegSKlxSsgdiDOwG84NkQfgWDx7Mo1i/wTXOTl3j4yjG2E+i/DW/wACyjsOnwSrNm/MoUIyK3p0J2oIwhqTU2L0U49d8TuLMxS/H3UqGosHEjs9eELYC/QpUHi/5JyL/ES8APiML359Z9I/rv9V/6Ebwl/70J8SpISado5thoj1vI4I9ELxSFSdUi4wD3WdGt1YeV+B1ln2ntOXYLUUfV4ZZkvUS+aSnhqbdVf9DDALSL6C3vNlihnyv04OSuF6FlDIZLnZNWTK0HHpsloBaymJ5VRsyvTHXIxSgV2Bl79NMdFPAPEya5DQm1WMUgAX5Ae2RBeu5LnSge5BY36GVh3U6Fvb1Oa+sWmlcce4XI6ZFrUcQOx1vJQIW4oAaJFAj0Q2Cq/vtf9yXhTrxTDHaBD0AmVFMZwz9GyRYigYt28TyvuZPZ2JgEFw10uKWDJBd9QCPPo/Guopumq2rsbtzaAu55A8JDvDKrf/uzfem/eBFsE4XhwyQb8G2LNLLuKtlDiRD46fJCEoAQIiOpOVC/LXT5QFYr7KlKfekj4u1Bo2A70h0eDaXdIquQoC4lykRtjdbVHJQC6+QnfgrRYcJ2baRMaXdXUHaE+fiu7QSX/ZuUuGvCdndhq4BSiPlgsrFYuHQCUHQSb2OEsOMXn7XAylAYhITcIE24Bmww3JkQdW4W8IkBeVkVmhWll0tZII1DFmEO4+jyCJvpqy0YCE7JhO9ovHvLI2lozhRtspSvF7W49FaLwZ8fuBZ0NEU2nOg16tU4oOwz14rSpd0GEDsVnBjWIOtWJCHAhVU8qL9Bk/MXmr3x4+HeN1Fi2K7NU3jb4oXx3uudI4D0G/DV9vpYjo0Z6/897F+ci3UUhdVy/JC6GJU23QiSbQP11z2M4ty4L99dF1kpI4p4lhFuKTHrZqLIUKVkelw8kXtZwWpCPC73GnRRxzBytz7/7QIL5+Fteizv0JzSruzKwhuUk7E14cdlc42u0wb7fWXG2zlRsnb/b3hM4eAgL16q8QX84lUTFilcCvoP+LcbMO7aDfYSY63sKIrSwYv8iLDvufMRur0CrcZl9gxPZepua3KqKGT35qXOCMDvdJ6UlS4+8XRPXQmDttMDk+8c/xiuO1LRC2n7SUG1+ObzGh8/sSNg5HvXxWl4eG6g2Hq5/ksmeA2w0zbvQQiLRvolsdqxXmZwbechqeitAZQk36uo0/F8AOg0wEVs6y0eCz0hbNIT0tOJGJRMkk4nCplw0rfGBVpbCG7t50SZmzqsVEIZ7HUfGAzhUn29SjH+T5b6ysZzRL1GlKZW0RCKzuXdyW5mi/GSa5/H76AL4Zi3lZ9S2jCFYuWeC5d8VJGsosJTx/qwys8f2wd55b4bXVwFuWq7jhGotKLEk73aKhZR91QFAkpmvPJwZn2XaO3+1KkP5/cmspdf2MHzF8Tw4HW62Z1YhYWU+4VmXxZsLtkQLZ1Lk4xUiNbaPuzQDE+1l9rD89zZDRo2lY4UqriR7R0nFU94GEBue5qA/8bxTkbFy0QO2VolxqqKss666IknvioeHYyeWz8wZb9Nq6WdXUGaRKohuCf75M1FIoLqGExJoRdxigbka2wnwRVOKlCPEUQwJYmGtpOKDXEiiphuQTpRZHRa3vIM4vhWDSLCO9KwHIWrdQ8PK6WWQHgUBg/IvhjRkWaDsbM0LBNJLfoT28jixeZ82KtA0uJR0C3Sxq+IGFh7MbMrHSkUcq3C9afHkyXpfBSKvha6zPSpxoal7rPg4Ft4+mtZgyADGZ/bMC4MjCC+hEYGpXM/nDn4R9GPKgab7eVpi8WZ/GJCGYjPNcCWltqsrgK7+WWURYetJYzf7GN7MO9gqgbmKk4/79dQkEiaO5b2udQt3Av7J6+U9nV3lBrDnghOo1vZm7gElGb2gIusKubHub4q0EQIGvr97tU/deHwYcmhHHR+31GCqb/8GMPd9iYNXHKprU2LMVMr2CgXTYXNhb3JkVO0rbe5P55b30SaDItptbGpUN6XG/KWzNcXr+78mVhKwdx0GxHhJwvcUoTwfXbXVBIWiR6R4X2FPcj83iZiI4kQD6P4sxuY0AC9OBqSNsW2m9qdyAKvb5a09YGB6LhbMydTpr1UQYmBJwCVJrI34jCSwIrk+feSSKLUV+qxC8vVQf2SU0c5QcAVXeC1PuaMWqy+TTXEH7Bp6jV3gxmEMexLjJPMdFrJADN1Cg2KNPLarRmBPNWE4YT+M2Edagl7e6OzK8Iu3g4sE3w75usinPgy4lWfHGG7wTakynkCbNUnqtO1zdbFiNHsPRThAaKWWcJPMuAya2W29KoseVvLSgZkUlkzAa5yjDQ5lp+sdH+ga2GWicr3l9rC7K32171NhEwLNS2NKihN+Fyx0xk/9lmsIWVx3GvzRG/hNfZMCgGu2Ir0A9H7tbWii2Cnrm8JE1l7YHP8nDlAbLFiUXdB1ZdVrUfU/OM7+myEIbvpgXeiiYbzS5YJRfPhqDjKbtKCHzUfiDCmRLf+k/JLE21ZQPWJTaeFCcwvsZ9CuBF51pXqT+Fw5yPCdsaYmoz2AfhAp3PROZxLyoOLGjkfoVqXai9ipq6m3NGJU5Tj9dRMIXIMZ0OIkDPyUH/8yoiWVoytZWYKhSf6ji0oi5prZKC6kxXQF7RwcfksNiOrhGiT10E7+BJlVqorIKLHUXAmZ8nGYI+DwjQnGEljImIB2No54DmCaEwktsWdnBbRtJbohl7nNutz1cmHEt0vI9KSo+qFZM7MVbcmY/8/g0i9GzR/RlGl6TSxRifq2Q7WVGxdrzgptdOYJbZhB6JNqte+XsEhH7K9A3R4lzdA/MxEZdszJmiujCYrz2KocHbzgXy+rY4gzQfpOSU5l9exIlk013KdH7HShsZmrKJ1QvlKwMgwlxBoNpMnD0IsexFK/f+KRU8XoXwcRuTtGSnsz3Hhnq96hGij22iUCvKp2aTX63qJnpi06meKIABD1dM+nrnp/BYhYr90unTdNaAjuJUZwqe0ZAjqdmlDh7mPdjRnfloFgLVcwr2KbTvCFOHWMaJEAm8/ZG8fe8vP4K5yA75IoJVV2/wzclHXNnXOPzMAkppsPhWJnzBEfRTL7H/ApMXs3j2M9viOagk4pabmkRy82qF33ZK9hiXmqJsA+BROqlLNHhzC5eX9HHF/3sHXdRIi44ZwmGGviAoxON5upAqIci6wq3C/PuTGVWhZDdhH3l7iTqHS1/Hoak0yOTShCZgEGt5wExbFzPA+p8OJ3Wy+lp8iiDvxtb32IxxafK+D45kI2znS4HbF4rTk1P1KgNvqCYYcAWYvO88ko59XGUzSlQrFN2eNHFtXqtXlJu6Vpt4XUMiVsKHCaBNVUyrn/SjoceW8WAWg3AS1EiOANem007zb+t0kW1pb+MqhB21gZ1ps8N0qGrki6xenmgGbypW2uVGRG34a9FaDG/GesxfIQpYcYQmb6KrwurArKpsOFOfBj+zcg/aNz3zo3CdsiW8vjDtxa1gH8mkrB73+2QYG5txE2aUr4u2fMT9aenqQ3mKwTysLa+PBZ5XeOOY/Wn/jc0A6CSeLBE9eo4EnYd65u47LyDnpH53OhTG6b2RY/FOsVTLxZyOtzZd5t2KHbc0MXFDDo9J7nf8dguQKg2ez3B8WZPzcG1HJbaPCffH+g8gmRsotSCVYR1h+55O3LJHD9REEp8ewfD9K+iVftI/nJfZVB3uQ/8P7dcdvFLt1mes/RhBaaXEwp9YATkXXnOdTRN8aZqg5xaPO095wP+0LGoQyScdX/+mvJFBWXYxFrwGwo1EVvDV7tOpjIQ/WhtjzgADtflIjeH2ehRhsO9hjKIjCFKXUU7sJN//Zzz3SRe2W8oh2Lrx0kceZ96iCThLSNZQeaEkfVpdI//HJHQyYltozV5K+2C2KKD8BWvpmfnDTmSnCpBOTVmTFjUMhMSe9F0DKHNLFlitgPm5qwD6r5pdRtJqopGLkmHkHH9pZo6mUCTdF8/QIohKchPmqHKTT7ftXrXeCoKWoKD2H8SD5fZPfyRdgPGcNhrobblQbshNd9X85RMJ6T3XuFBmBpbyxxeHDjutuEj8GpcavlXa9yZli/WyuZisHFo9vje68DZ/4H3r6F5dKWB8oqjArtlI11q
Variant 4
DifficultyLevel
737
Question
The sale price of a Labradoodle puppy is $3500.
The pet store gives Veronica 10% off the sale price.
Veronica has a pet store discount voucher that gives her a further $350 off the sale price.
What percentage of the original price does Veronica pay for the Labradoodle puppy?
Worked Solution
|
|
Sale price |
= $3500 − (10% × 3500) |
|
= 3500 − 350 |
|
= $3150 |
|
|
Purchase price |
= 3150 − 350 |
|
= $2800 |
∴ Percentage of original price
|
= 35002800×100 |
= 5×7004×700×100 |
= 54×100 |
= 80% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The sale price of a Labradoodle puppy is $3500.
The pet store gives Veronica 10% off the sale price.
Veronica has a pet store discount voucher that gives her a further $350 off the sale price.
What percentage of the original price does Veronica pay for the Labradoodle puppy? |
workedSolution |
| | |
| --------------------- | -------------- |
| Sale price | \= $3500 − (10% × 3500) |
| | \= 3500 $-$ 350 |
|| \= $3150|
| | |
| --------------------- | -------------- |
| Purchase price | \= 3150 − 350 |
| | \= $2800 |
sm_nogap $\therefore$ Percentage of original price
>>||
|-|
|= $\dfrac{2800}{3500} \times 100$|
|= $\dfrac{4 \times 700}{5 \times 700} \times 100$|
|= $\dfrac{4}{5} \times 100$|
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 80 | |
U2FsdGVkX1/xcbbVZ4CJq1NrdqnF+PXe4FJ82ItU2iiHuX6df44EoNN15YaqakxWWS0VsCnZsj75G+3iffseTxjDug6gU9mudDcHwhPCBnhTHoUbwFu5/BrJ0MZTiZ0MnST3BZ5/R1g/aD1J/NNdy1sOi+1NDMc0NPdGpc+gwF4jt/E63i4RJsZiQama+GcBVVWO8vXJPZbpQwKJQx4UUSZzADAe35k65LlfxZngTiu+pnDNJQQM5H22oJq3uDt+daIcW5+hDg2sS9dEP5Jfdmsqzj9Te9/7nKvzTYX/BWhbIpGT88Op0RuXg630edrGrBLgKAPQRIqPTL+O31mHo79fhPuOhqMUn7KvgqM+zltOfW8rM9KlLe1YtaHWYSkAw0gulmPPmnR+Sp+6iMJJo9yigelQmh7BGC6IZGw1Hjc2d7viqf2m55eU4k8MZ/jC9X0eu3yrof7rl9s5APkZhxCjCT4E9od/xk8nmvZZ87dGFNohBnUFcUnpYh9v08F9quSrwi54TRa0anOFxhAkhvy1WUWACx/rNpmIZarVYJ8b/XdaWEKOgpR5jxe1zhk5CKXFnh0CchmqAQWFekX7H7K59RDrnUj61fFnPd8hJ9gshIqeVgMvEBbWuVhAzWiu5qydsESsKav4jF/qfeM62ciUdiSqHuC1HyGTTtlxFiEl34p0OWHAqk85zp3dqOu6/7vPIVKsNpFTUfg3M3TzXmHOBjOd7D0Nvukn/HhYfHH1CogGXFWJxe8WYdo9/e/EkXEvoBBUtw3CNnjcTqCgykj6SkbWBXNEuo3QMuWy+8puW4Gd3cTvaG0uiGLR7EGzB7/0DwwznCCuGe3cv6dcyjWwxVFsmkBIlTQ5I/LfDNqVXw+m2kYDl5BRAlV8lSF3CtXxS0+QLZiqJHtaFk3vEzV9F+8X9XVLhL/BNGw4U4o0pfGg+Wqk3GEMbevnQfguoj+0yWevzjib5HslFucnhZ8VK8/LqflxcTd4nNFvzgque24jhzUmQFtR7LmzSsXN55+yHcz2D1yiXLEVjPT2Sx1VyVu+vsvkmV7lPzy/G3Q6ksutAuCNMfum51Uot0I4vNiE7gnT4sh9z69SqrWo4hR90CRrYE8ZQryAfvay8w+cKhGoFIhIfccVEKa1b6RxL9Gr+7fcYecAmdZZSHDBviYwTAq62scxMDcXyMj9bN9SF52fV3fR+2uNN3hwe39Yt65Lp3LA7wqlA9sH/cnLajgKc3Yn4snxDdQYLCM85KlSyCfXX83BPNFJASMlQverHIFhAOeXHgj+z1suJPJTIz1pXjh872LFCB3NnXs784Ck+XN5qxn/lHINCygjLi+Wk6xWXc98GK5IG7p4rzMnOZDJa9vzsmKXHjRLlcDVJ7GVP5v4FTB8dMCe8oQ+ahXF0UpZC3Jf2+wNcIMkyMVEutIkDe12uE7LoL8FjRMSzMTB+49B0F2AkpOOJU8M7zjsiVBhixv+Nq2BCW95a9WbWdtHPpdI8i8wHc0QFpYcKa63bVbLpT0mvl5+ELHOzBQNGngm6dZjKBXzV+oXVOmOq7afTxFLqVHnU/oZg8NgsBe/Fwz5EC7sQM/68Rr3DHsP2iGIec0MbHRJvYWAHoU69y0wpmBBmoT77Qv2IviEqNvLV6+OkR2KBQvoabnPsHlbr/ea0Cr6cc6kCVdzQsd5ZULNKo345RxobyobEGZ4feLjpHYd2EmkCtZUth4ldcjd290GAHoT0plogGjkXyi7u6K7pzZ6ulv/OoCIUx7Vol2eiejPlOmKYO5VLPdbQxBhCJtcZo9P+Jn9perZ8ZX8ig2XrXLRsS05CZW7Bo1y2BKMgZkumrVCIIbPiXvpe2YdEDHaLPeqyAl0G79K9UUz7v4zd7V4dOFFas54qr/MIhlRuIE1FkFav2YYaFj+r82VfVTzZDbuFR5Gr+S2h12tGNFLGtcSPdiioT90pW2F0YrI2JwVQHPakRNlaVN43xfWjR3/ugnHcFSZ20LVdWipCqV7PIlZKj9qIyJoS82k9FEuagWLVHytHSDawFfG5BY3sKmVzuJxrxgnT7kL1tEoITXXVoCi5LXAhxH5oLEPYW4hPB19v/mIbJcedmLXHpEkjLZKKPbwP8Jx7Gzd/m23hsv64eAgdyl9KUFbdD54Djv7F9QEgfcQsTPhdSxlm7t35ipiqnJVfFBBd1DjuZ3touZ55NwJZKxk6/HNr/VwZ71FPIWJPKgKhyKwPyArYpDvFXXouPVfwJ54OQ6eM6sPSNNhEtDgIoBuKsO6X3rVHfwFbY080qyQnhOV2/APCQYfm+D+4fIb8kHAOVlXzNMuW7oJZiXdQ3YD881Mxa7j3N2J1YUGtst1lLzpS4cQcVoGG2IANajowcmfcpa2SXUXufMdJoTaczfLqrlD/yrnPb0RqaPgeS3Hke46zP4YWDv2qxoqtd3UkPK08iW14HSUMA0fQzF+AePfg6O5WYiANhq066DYbNUqZXUFcYPhOKyeKSAJrlQ3ES/uT2zJKuoolNfaQNRp12RAQgBw1s4jph5EtGibMGA7OHjMVeZH4bQGwyzWbWQaHSUqEBv60FGkZIqXoKc3Kv/MGohD/bKSIxNOsEa2KDN81OCHs7UxgjConWmUlaTsisPddPFPy+2TWvtFIsR3ejs5GTYSohORyC81xbNwx2bzgeYTAuqxwh+fLmc2/Se+s9idkTc1GGs287nCqvMwJv+k4hPUK5EM3dSqf+n8WbjDlQrs7Meyr3opMPT0rdpDF0n9yEuKyUdLPzDA9kh7ZAVi4yEB6wJ+wmCLT6yuzlbJSnBbmuLM63wbhU63/cA+DclCyxsXEXoM1kOjqwSeMQub8IkXxmAsABZZnWFKwuP6f8qXpTTnpKUL8JIUlFu4oiakOLF4SI68YsKXzyOyuDv4bniCYKLDiGxl2P60cT02waVw/+kvDDp4G8fWo9bPneHmWU7BmId7TLpSTy+eWkT8l4IP1nfiyyWkJOpcWPRCSOqouE97fP93LDr1lVtN7YnvFnoHo1YgMivGMJsUsZnJY15D9ZMFCeNZjatZA62RNOCp02IZn938h4xZZSHq9geynbBmy/OV0yd0UfNXcW9ECoIKBkbLceF6Mlh/oCYbXcgkBKYNn6SvU4yzCyrw8DbgZ6pq0LbZ454CSoXASjg/tUtYV+SASPeyg4hfFxftP9/gNEHVKmhwPk60ktvewWmB+g7Q0eNOTHiPlYk5Q36MPpSdA0ElSWy32Fal7Dcro7kGNpO6+LiW4J5EQac57oscF+UEFFYQobjk6OtNKgzuJSn3NerM1+PqNA58ckC0Y45TjrHLjbn7J3Ewbvo5yYMKr1CiHAxQWayl0mmcAPzkdSHHfzMxT3UW8Fy6fIe0aVXBxMfEDVL3FD35QQKv2D/W2llyvPRpTrvzhC+C3+arkQeZHmTqINeI8XfqKlCnFi3z/DvSCOqB+ltkPxbIyoK6fWbMq+K+QviH8KloChF74YiSe7xyocdBV+uwr7o2m4Qly3poD1Dg/ZvoiZdaWia83t8GgholC9jlhlfwRD74sXB7ebHeECnzYzaqQpKKdcilbMfKUmflVPMzxp1RDJame+wEEjSDBrZu1pKzQnfc7GxxBP1kHvns1OIbhYFpgP+aOlacK/pTh5aVn/5AYk2NnB/PJy59B0aoWXI+t1HApqQTs33dCddrEpSLFWo/w6Z+Di3x21nZjJ6gD+CeHa81FFtfC/M7Tk3AjPtT7QcbbmOGPGfI4QQ2dEIbPso4h7xGGva6Cd1ehBPaLJRrVNDxHP9OU2aEm8McwKjCvHoikVvu+QSXDo2umt4jcYyRzcHWh4lWKMrsVdz12wU4n7JObQnllk9QXoAaQwx/iY9LeFNuL5rUO/XFC2KTr3p4C5sLvYPVEHIegiTFLRB45u9ZVT+CEqcw1CF70vxrYjKh+3LA/Csnxl95I2aT1ANBbc3AgtnjyARh/+2LR1H81Dm3ueCexd+P6qUMLsfpQ26UEHuI07eFdhTRKOiARtKwPn1szuY0m5Hi3BoajDJ4yL4tVYlYXPDewpc9wJrBO0UeGmP8tex8MJy205RNOwu1xkusU0DpBwemNiIxhQbBBwElJ7pd/O3WOQmWI/aGpLDnd8v0CTnbu/PB7oqRrlI9I87XXjyzZqjsfzhwqtX8Flwal2URE6WV+swLHs2rkLg5pd5mZxTv+oeOzk23ah+UPFhBsY6Z5C3qwE3TlajQZCwvdQolDZg0BQwm2ML2nabRn+CXLJf5WNJwRdBxTQk2tap2uYrTKlBxzJ8MYrwcJBeSM4f+aqq3hSCL9GuDrgBlNvXNYzgGJobo1B+9ihr6nE8SwqXZHgdQBxPhZpxCrkLKIW/718EaTpkt48o5PZF1/ms78wfw5qhXYzLWpVFz6V5ThIM7I1dbtxbrHXFBHvySubXTELUAJClpGVIzUAmU4uXDcpXklrOa0MaX+eLcy/I01d0NTYWta4IFXn0/0BOOowXGNW7V0jaleygPFiLyKwpF5klT8nyMZmS4K6AfMrSOUC53D3NTBcVYAtGm5PltY3SGC1CTumSO9kV+dvYbEJOJqzFDRpUr8NgPVlNV38CJs7p1jTUXrv1WV/l66e7Yb6PmQxIN9U4rDFlllL4t21eXNot90pxyIhIjZafnzrm6KcOnsMDdPLwXDI2+znKGlwFH7+dJk+7aq5Oq2sQi+6RTjIjKwsvZoAJSQGpbtr+ieNNCBEXszz10BsU+MzribRMOu8CZnnty5yfn38ioMNcAEUx3xhE/UZ0qBgGASiRPSq2JWaKZpyKMWwY7rYemrdif5wLuwxEvf21vtxFCz2Fvw0aqni3C6MAvtmRUZEaprUOU5yxhTH1D1eCaggMSqIIzukl2kF5Gm0HbvqvPu+/1GPND5TLWPqUOzbNjA3h4e8ZyWnsQVFW431bC6PWKpqp0i0C7DEvXaJ992tWqhWY6OI9tklbyWefA7mcHBil9c2X2SQcSy6YO6E/wZeX4XcGA0DtWVFZIHS2FeHoVbntSgi0L8/48XGwVRhoia1E8svgojBV07eJUYUcbU95RL2fOgs9qlBAORVjkHe85gU75QHFc5drLkhvmLvfkIwBs3Zdg+K5kud6TTV2ItcgoAmgzW79X/zcdckh7PVrXhIrw27HcCc7k6WxONj19hwgbGP2YJDKyki8UQCtsO1gqUq2QgjERdMYJaQolZhSZ7Gg5rQbLTjh+eYb1JU8aBNrfD5pHSjLmHtKykPNp3AuoirjkrZSs1x46CsqWVQFcljgb9Q1FGpVs1CWjQFMt6KrgKs7lLiN6PZ7OKKYwaACiAGNLS0JpHqse4xaYGZY4yjmMP6f4+t3O53kvCIFsIW6ftcVlS7LPefdUqodaI9vlwuNYj3qnP2enYf63OMCM0bz7oP4GL2yKGrQdBhfwpnz/6dLZiL9P4O1j3BEVMA+HReWhjqsVqJNKwWfeLJkOGpb9LuP+wzi/gP/ucs3PsFj1p61wJVTXwSG+xGy+zFWwaLKPcU01GiEXY8zUeO1eyDKkAwUpyewappsD74F9dt1fy3iUJKB9GljwXjuIf3jrAGGQr2HPMX6imna+CP3/Wbs19OWT+DGGJacFZreLMN6C5pZy7k1xWQp70HDe39WecumEhCdhiMVut1lof5wuuaW/l4VRbCV/B1GA949D18NVnb/ZuyuZZabDsVrjWDIZZv8zZNMo5gJOl1XgYAmFKcclNzVRb8gQVZG6jDkzwkVUcfy76RBhOHPa7T6oiui4hw/aNtF/Q+7RbtmFEigAZbhnj4MS9c8NA+7fRgokTo6/mvhuAYOCohEXQVCFL1UEYBA+tF0xRyJpFtSDOLkXjT+MoPQUAzyA1KOnnnKPNXQqCqgg0QXqZe9BhwHuVL0DKlq4VNkIET2ajXjaj/+CSQtRvo7DRvXkIrBN51w7xGus7Um9rZJs/HUj1nAXotCTZ4Ns4X6RccXZLLyjVm490CRwVno9brVO9YFyNoyPUhzOoZPWEi5TbKYCd+slxBa/dulbeez1ASo6G6+VJ0D3HaZxNibMRv64BoCaLRy5+uZcY3ofbwZkk6yNXEH4r2BLsPWLlqm58Xvkx6ErlM3nSqQOoBVuj0MVr+CIdbqDBTYwSDja/7vJKzqEwj9iIuFo3528ZPmme6lN+6XFCKa9i4wmvjq6k3Z+0og7Alv0+BY2O0KVx5WsAnEB+a3LolzOMtnXgQizdqAXaLyHRgZmW+NiMdNPkyH8FtPJQ0NacYITo/AVS9Ai1u1kDnGJ2t4qEKMbC2Za8hJWbz9ZixmtvDqQRj6MtTBx8p2Nw2hqNMzRQFzAPAee8UZYnJOUNSKTSysx+yJd9BNmJ+WaUfTXXDNQ3HpUjzPwVpgKTqZTl/ZG0uw/IZOakvs8pEIBq22U6mcvgBguh0EDltgnc1tvbeHm3TLzYQABrUKWZVmFQ4Rzx91YFEdJwPlStMWwoRp96NO4htf+IpZoJXMn8cYpFTnej43hkd906tsVp0uIbFTyUxKWe7miAx6eFWxuf8lV+PkrfFx0oSTdNLQaOvuQkBqrgJyCsMQWCjIyImEAx22Ln9X7tPWz9gbpjsFJ0Ah6bucVAc3/wZxV5F4SGHMFXam75RE0npVBVQvvd3ENd6cOtSSgl73EUOg9SeuR5bsJiP7U+fInhemzk2yzvmhlzafOuQi3Fai4QqF7qV2/yGu6nrOnm4q7Dhcpq6yJ9TdvgIPLOSAE8cdk+0rLrekyt7qv2X59MOAo041zd2gUJlvVvvNR0dfUKEEZZPm0UQTExseGvpbx4x6m+7DupWfUxYFLtojZeztmm6Q/HssF/ewMS01OBXvDbvSwaA3YMuexMViKbrmSNhcafGHuAzxxeo5tEBngmjW6pxXVt3ETMI0CtiDmO6Wqv8vyTXTvi23Rzt1Ko6dTCaGOyAIaa3gKP1ytwsdG56aF7V20Dcz7JRBnOGlxytYRNgL8i/Y2hBpgDzKBkWi6wm/Vilz+QZPN5fo8ZQUydvFjyixoCFAyaXxpIcbyunJRkbYF75yu501LuSRczY8KCGDi8m9uITMwiGP3SxJDhnBBYMv0yxtCRihEWEyS53kirqqQvZpVwpu7SDnheAl3jJeHgDxRbsefg5sVPX5p1oOoK3JdAKpGtmPoTo6Qb0B8KeKDgb8CHw/ADZUrjPU4et7xpDTV5VYoNMLYWYpPxnaUF8ZHWLuilnOOCSHMbAPFINoBIedF1gE5QrIxt4AM+vTThjK75mFjcNXmcvKeuZbL/xm8vB29wCBoWaf7w6k/ix8jcJuF9l72iBkq+CUO3HeUPfO0lYchLbyH3JCFs20Iz7XRrvWkM94ljYp5LcAsjqf7ZA3UNBBbHu2tpyv7dVRX98+yF9Ei9/g0h/5FBfnQG+wS9EaYwKDoZ63qaGr4o7xOo0HyU89DOf2xhk4491gg3qZtLgCYCctukP8/0EyFDnL8aKQEc+3AyQY08H135tzaa4T3+0/vrXrPFTSWYGE3f1ySn2F/jXguvV86vbQcp8AQeyIpH2ObvwcQTZtLOM5yWn1Ha/gRYN/o3AfZihhDjDXebzQscEmuaZTx3MGy98d5iO5z6Zn1p2Id8rckryyGa4Nk9t45q52F2ND0IUDUcujljko3eFpEVG68qapXRB0iISu1ixiZyWDXZN/iLZTL+jjDp2DvC/D2uSE9UpYCM22tIRUezELSNXD1BD6pA8NRmbET2bckkcaSoy/Tzq3IHz9AhYiYgj7+LdLU55hCKqCPMudnSnrYdFowNZfZ1tmf0/mf/W1cIoKEwrIyyyuOCm+/K923nTCagWaEVD+HY6/nIFjhfDWl7QGm1k604BweVcIhPK+EoGCkitRcVCW2+4Wsv/CunW2N0Mk1SS7MMvO5nGHB0oceuxywDGVGqkTFVs3iNLrP4eA/zj9r/UiFDfggndru2lZ7YTpNexRu5QXCPkZkm6QBVs59uLRKKrukrX3PTFAMZJtDlzj6fpmllJ7mEwDiyLp0iDNtJzosW/wm2pNQ7MVKTtrEHoOyh0KbTz4Ak+uXPFPWVBg2yENgn9+IfAVVzhJdJJ+bpnGz4VlPSrqyDfLumAw3w2A5bfHs7g7dTVSFZth0IZvUSzeioDZhEDS5iCzn5w4oOvpg3WFwCboY18zZ9MDz1EeQYF8RBxmYMNHFx7krPwnOM401+VVfzL+trCDK/S++DK+NSwZTXdaE6QVI5Z8tjfQfN3KBxrVRG1ZmxlFCpeagfuMohCudehbRSubZOUaicaxqzRLowZL1drTQuCKoV8lfJGRDU+/nWMTcPJgLoaVZl9BKVFrmDXErENoge8wJDSud3V+BwiuO96Oc6m4ArWI9XBPE5jh6dkufjS/aoJABiTrCvCFZ8EDoc2rnV1cTwbfTy+g+6NmL7afa0pkHw7rJN/2wiB8UpGjwu+aN33k7d2yWrSGkGYQqtryJREngOKnv5Zthjx6OJc0x9z2C3NZvUK/89Reh0xkrhhuB8P9x+NLfLQOgq+aXB4/iRLjFupoDVDYqepRzd4q8mh7jRXEBMPPEmlm1PAaiTcW9uHustO8104vgEWO+hdSbQ1OJHjUz4EQ456wh/z1sbPqX4DiHtWDGk7Ylk3nsKemnUSkzolk/dcoq7LSX76atgskx+mmTlp1lB32GMv+0y+WX00IXECG7smlVsPh2eWl92PmGERP8ae8wePe1nZPLgmOOWPI3zBxqIG69heNarY4GaDIdu0qoJCUNlgaEM9vLsnFMBbrF+qo3A4bl9/h+9io1w+JK3fEQW/IJfvCwCkCuzdEhK69fZchFk4BesGit98FYkoYdbo4qBwHU160kH8j2N8JlAFrQ6Kb1ZBJBuKInQdaVnI6YaPbZy6y02bRRT3vECXIqwjDwcDbr4vd1F/l+P+/DEZri61rcdhFsmkQicOixMlUyiGz+2adnNxXUynhxIUDByGDcCBJ2azqYktd5hSsQewnamPAEGlPpqiwDsTIb68pq1OrDPNBEUZ0imGhQstihkISaTHNbXxWxOqCCQzhq015PRPNeW+gP4VFHQJPB2Wp1AfGJxFtJrrTAHSnS8LhyIabIjksGSsqz/Nu8X0rWxeo2km7dB0lZZBUUSCDduDy44fgCsrfcmmyAVUmeLOI6ll0KH53laYSDwVQUAJPUQtJib32bUKCQeBq0KVpEPv7oqxy2i9muDVw5VcQAo+nADS7x2hYdivmZm0ZDwWx3qsb4nDJ85s+7hxUTMuP+KNfpLLOb3OtLW6kjHBJxoow9pl+bkl0OdFaN2CI0OdgLs6zKVd7gmbg3ji9l7iCBvBhRDbmsW2Jrq2u6JwByweaLUdeTy2gVW4bQAozB33RKhiDrWYn373CJUlmCGYET20P4hb84lNvoK6zhdnZ5mJZoyMjN0ZezDHNZRMq8fRKmptCy25A2opuV1GAQONyUfhFaaAje2UKFXsRVaKiU45OyKkBbTkYulJZc1QqppwEP09B7ZbCMZ9S92Zc8V30Sm1W2XrmHzlxabY3W/7wCsbI9ixAoJ7pD1JmViU2uj8oeOqQCW5jx4smZD7ZaDResnreahEWWAQVpmW2UlFI70X+z0E/zWf6vzvc3WuBOMCeIG3APK11FKwuH5KfBj1QkI8TLiJqiYBQuu2L6n0rmP7WVnxm6RhmVCLnTrlZeA9k+QudRho3yz9F4EW0vyAMjsX2FiBtc7GLMsWA/1TEO338Vf2Du/ra1fB7Egf047AOqfm6vZL4XLc+87bZyHZyc3+taTmhXkn6Xdi+DYQPlxCQU8jBJF2xQcZ7UQ0exTocSQMayZi5DVn7mUaIo/WEZ/IMN3AmIoulr649Rr/VhkgPaQ7EfSK6Hy9ocW2uiQ/kOoSmaAjFXM63gVTSJOXhk6NYsS3LUVX+aZE4WIgB7fmO2kNR8IKMo3+xj3yZ8TOnqeW42ryJRxmIG5O8NppaqkKumP1Rguvh1FSV7uac9dLgpqgmPGtoZIJdfuZFBNNJ0Szwmuw/iEzJoDnPHPLBJYNP2ldncq5EooyRLP/40Gp+nKDC7f9mq9bHXM1CmbjOlGsTxyEIOWuO6DGTJYei/t1CJqOv2DCORKWdaoZZLqHwqMZiEq1S4OenKsyNi6yQ4/JgxTerSxCaUwNErLxiPRIYrS175VPQJgCuVaMy/ILjcrKUOoixChxBCtrbm2RAyb6sa636ZRey81BPZNKRYrLIAiLylgUg5bNUzy2AckMqbOuSUqHI6yYznB56PeQPZ6EWPfxWi/Oj+dR0ziFLsqiKsaYm4FGc/rv2cztPLt7gRnrsIXnT7i/oSHfdNMf0ZxjNfI4MFTUeN/CrimEWuJ5lcgp9h0HRtNMLSLWgKu4quKc1fsSRcmVIodUcU9afGildRrAo0LobsQTo/wQ+hl05DA0qy/ULlM2ityia4gda+KY35aJjNrX+vUeZENxlnWj1OClSOCFjHkO9T/MLuKfTm+/Ntk26cu0CZzT8Q1FvA6ECGWkP8Npad6rqqyF8XnlhfhT9kiUBSkPa8CET9VSnaL6+EzFsrQxw1H6WsNWvYctAVlk93P6w624vhvBzXTAiifvgcqzfTl5CnfdVnPvd51Ah23gKo7WNobh4T0uIDCNuoekT9AbxpG4xJZqRXZ1So//L25wYvikBAO/JIkJhH8qo53Fws7gdX5uJzxAAv1W8ZVVFIJru7Il6HnLxH16Jm/FHo8N48QkWVlwsNdxD38if+RTbiVp1Cn+6EeW8OHczYWvfAskNyb2E8UbDIbrpvJ49ERuyKkUXgX0zjxW/O9QSuN78dz27CKSysZJQwGo+Suzg25QvxtjupijPAqAnsxx6fKrXk0LX87Wu0EY8PVV4rh8n8GlUIAPlPDEi3MR/27YDQ8r+ifRSBi3KoEZJUajrc5CMJUlu/QsyT5BfONWhEjaEITqFQhH11/yjNBaluWq+2sYIjU6Yv6T5R/MUgpZuAisY/ZP4Ih/OtZtZY8all2g+OZeQZsp+k4ZyZqmTuApGD7+4shBIPBwvsc6c+rjp4CoQvtTVxrfWslYNus1kEZPkRoaMr99kP+fBi3DlGpOQlzri7Sjsw5nGjZBChTCJ6kqWBrJixq2EnljcgZAl0/yuM4iLiYwlnn8hLjEu2zEm6FCjQCkehvoCWEUweeT3BTp0fSD0Xi4MiZ4TUY4rKzCJSFk+16sYSHrfxoEVf6UjR3WwEkosTm/DkMJcNmrdYLFsYekw5xEXAImuqq83qD87EqcHgOdcONrqhYzGS5hTQ6MR5H8dZEmKk+YkOzIEx8zW8AOnHp1CUbeEmGt3Mohj6IkAEECPlOJhGTaM3l2TClUYOzCUStnpkS9bWYYqbfhvMAQOhA9OydRZP1bqMOpADdQ2FXB30rQvwj5yEHqO19OqPekSbR9b+dDOwoUeBMrNbPtOwdaoU4wV+fsnJaJKfnYeUMee5SHsPBSNfFlFn+f1Hvq93rv1wcu1l8LpDneZIiecs8Ia+CxQxEork+nZhn5EEuYxXNAuTTUpJut5oHTSGZL0wdSU6dJEoXVXW/UZcSq2YoQujzO4fcySIrxLKqYnVWfzyLPOFle0tDV8ot95m8mfO33XyT2GH9UZ6aETGuZc6OXp1bQ4Oa8651tzsT5og93PFSf7XgsszemoPRZ0KzMJCnHPHASY/pQLiMOE3j6C9oxBUZBj6AdrDH6E0zH74zsT1BoNyoyW5apdMkDFBcZa/0qB5BzFS/j30e84S7NZCvFMufb6CnPN/yPqUQoLn/MtWosdXSHgYYFijqgGR1xSpXPa4p90q7Hng9mVHJNH+cNgx3HIczxtiFJRsoNi17n4ie6QKiCe00o2GOH5pWvyIorwpA57lp0mY1w16gK04ZWck+8HG7P+sddFQWswwY24QHdGWvMadVtA7kl+F3zBI2v/xT8U+xDvPIQ61ZGeBAbtHtQL1w0N6dwTH4cgqYc2X
Variant 5
DifficultyLevel
729
Question
The sale price of a parrot is $400.
The pet store gives Albert 25% off the sale price.
Albert has a pet store discount voucher that gives him a further $60 off the sale price.
What percentage of the original price does Albert pay for the parrot?
Worked Solution
|
|
Sale price |
= $400 − (25% × 400) |
|
= 400 − 100 |
|
= $300 |
|
|
Purchase price |
= 300 − 60 |
|
= $240 |
∴ Percentage of original price
|
= 400240×100 |
= 10×406×40×100 |
= 106×100 |
= 60% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The sale price of a parrot is $400.
The pet store gives Albert 25% off the sale price.
Albert has a pet store discount voucher that gives him a further $60 off the sale price.
What percentage of the original price does Albert pay for the parrot? |
workedSolution |
| | |
| --------------------- | -------------- |
| Sale price | \= $400 − (25% × 400) |
| | \= 400 $-$ 100 |
|| \= $300|
| | |
| --------------------- | -------------- |
| Purchase price | \= 300 − 60 |
| | \= $240 |
sm_nogap $\therefore$ Percentage of original price
>>||
|-|
|= $\dfrac{240}{400} \times 100$|
|= $\dfrac{6 \times 40}{10 \times 40} \times 100$|
|= $\dfrac{6}{10} \times 100$|
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |