20057
Question
The shaded {{shape1}} has an area of {{area}} cm2.
{{image}}
What is the volume of the {{shape2}} prism?
Worked Solution
|
|
Volume |
= Area of Face × Height |
|
= {{area}} × {{face}} |
|
= {{correctAnswer}} |
U2FsdGVkX1+zE1RBTwwUx1Hj9M8f5Kgld4gJjQ+DTGXSbQIVq/CzRGBiuw+dwptAPHn2EzDzZ3hnEcOHVqpk3t9KN9dK570jRUdljqjF0XH8YiS1usx5lgqYzi8HgLwmh2/MSNp/pN1Wkl/OkS3FO77f9NrIf2fdxW1NE3qGNNeum9GWJWet6fr0PoR7uOZ03gsrAqmwSTm6RL/q6rdPVn0taywmB49QfhH/MXDkvEirUqjqcD48SnyZRoE05ubkryorVBwg0EzzOfxH0tYp8/sE/NcdU9iOSyH3Wqso8mWPB6ADRXk//F/LbH/5knDBzR+WGg87QdNRcjtXHHqLR14L1guY/uUeCX2QuKA70wCMnxX8zOHJp9QzhvhP6L9sBzNpnO/TwSRpeuSHxkcs7vF9fYGdIxbkjtdtXTxIWnJGt6nuGWRotQw9MM+W0JB6Sxwt5lI4+1hCJBkGMAhGlP7dW4J8EPAdXJGx61pjMiUqG8wo5Spab30q8k/XdDIgExP3R8biBpIjXRnGcyEJH1L2j4UgQ/Wuhzs0nv0uinEFjPZNxBvypYRlLEKpHMlnCxay6vnvBffbhMI5ipPEl0012S91tjbRfvOSrqvYPAn9M6kYcO4hE3+xKMrI0WjuMzSw//+EHzHomVKBGJFxCEdnQZFpkDSk1DntQB15HnDgnWRxf545iWYWPP8tzmuUPVTVXoQjXuS4GpfKb50roOd7f3IcCB44pPSkUdJaHBXOB7jb+/HpfqkCCzgvcuRjIh2a+nvDlzciimtHXiic/7dFcUFSzE8vzqoiGN9IjEvC4n/yyHGMx/jXw4VT2v9lvMaT8/bBiojYWR6443wEKkbmVDwQCPHln8PsmuQRzl16sI1P4qqRTsZiNnMIWE59DS7yJpD9TrUurTCSlakNuSoemr85ppR0QktkU0vhQZh+GACyteaM4AQ/wvuff+VU/+IGzuHCO+Cb+9PSzphLLy7l94fQrYM2KTusMhA7xzqaDMY8L05BgT+hm1Y9s4CVbNgG+bvtMJ60XpfKrPzu7nsxmV8Cb7472gXoopofKImpM9y+V8cqAyHPBY8R7FHEN2SjZq3WUUmpeFTB6rK8xTf/pjEQPCTEM+f6lLu/6le+xODOWvT3Cup1SfZfx7l3wKoDFuUaja0wJJ69OtxT7J3v5N8w7jVAdvIJMJ/rkmaJOq+yMvAo31biO3Wgz+haiicg19f4VqkXYpoJfdxEzl5INvUim6MshQi/tg4un/8h+ICaXe/IKHd8eGnNVqAGEpkY3OWCgkQODwHodCVucHN+Clm8sf3662k+W5ucSRzm1iZyJ7TMmUx4IoapB7NBCBVpJkcnpaPPc7R5HpKCDToSMigtcaW7QIULZqWlcwxOLWfz8je8M42Ate7kdG1LhH4C2nacmU6ZCpRnF2ueuX/MJH0h1VZb6hZa2iRVbpDLejDSCTIR0ua0JzkiWpkCOYvOvREyjWteoJe9miNbVQHRocoDSE6Mf9BplKsSkrcRp9sg8yiliZDvFIbnsKe/DHerDcT15MTHcCCImpbzO32FHGHp4W1gzZlC4HgYyY/Uw6U/TURnLvHarrC+o/uPYL1JoGfXBkFqn9WTKtfqiY21m3WZontBu7vKolYfUgmWmfcufmYhxx6m/835W/oZXN0C7qLtOQz0b9unfS/6E5LuTAp4YO6S+k1MoRf3bNiCWHbygY7a9D+3Om/pN1sTlJCjRrKBtjwjoloYJndZj8JvkNdy5H3l1tdIw3nhdAcmAZtIcIaTSrAmiy/rWKM0cWRxbSNb5se7/oaJvpzrtPs4OfHAORMtTWmuJ7LEZp8msYlWKMImQc3T+0Pnh97hXgsZH10jZaxPUXVyimkfcJ9LIZKOl9S0Wp6yQ3pU9jniuR7IgTUJK1ARoJEN6wt9BwLKAf+zCaPsndskNonhoeCiCV3puQRZC/j0fovxk5yOMkoSlOl1xxyGUeqYuT9gat0Wg3WcgerOsscBFRREYuGFjgSHcXR7r6Wp83CCXXEv+r2CHHzv6XNTKTRWPsB3+4mpAOuSpdFkIXjxv2kIKsm3yeakA7EvjZclDgHnpfrInQLlwMA5PZeImdNQBh5ab+n3TOnE1qm03NVrbu55u89q8wEVBl4Ypn0eMYX2s+ZMTYsT8/ifJV9eP7CSKeEV2CPTWm5dXC00rbKyvXOXh941gUu2LwP0XFDcP3d7U4mPbYMknbepNxQo1K1ZHW1u859CFZHFkxG4uN29N74CzT1W3X8pvO6TQGIZ9wk1+n7Rd2W2luZc4hZfOy3F9VtxNMMAQysNGaXFXRY457He380LUBBdxo3e4SMu1/ivPYTwFjsOmSlNUqesWn8CXF0qVbcQW82Iih110yT6EYE6E5E70avCOQsVMynG6X6V3nUqxqrszpjWH5J/Y/R3HAjpNuf2pxwu0oZOj1VBydnBc0vlii8POIhGXSSsuzuZbULN219BY5HVBPhyT6Lky5v5/SnRXVeas/9j2Cv6MVbsnL4wGPlrdJW6ZUIih+GGXy5B8WsB2EH8vAWQG47CYyaz2z7+O/IojcqeC3sW/iKEOdTristXg8hsgNIZSsqIMaZxGCDk4oOE5DzOxpqdhMvbeiaKHA4iCUA1dCsZimWhcLMsaTWfgj1/vzY6skOXWZlAAsCZYJW6E9jLeUX+gmHFoRDi/PLFiqipRK8pR7CKrPvMpvJhYY/cRtFgbw1snYyRGdl44QUcbSDflG9uYwrelVURGRkB2jxxfJCkVLzDScsCPLCX0x8fiWb5LA++ndHpPjPiadifmVgFiUDWXhmQO9WHUM7x3VbNd0HjLPc0SHWN6d1s/O2rh+7m3mau5yfEMvhpggSGgFJgek38AXN6pwh+7dkGnjcZA502jg0ORS9lSdYxD50r9feFdWvowYe6HYf6Rja3tVwlqXG0/RozJVsud9TOb+XvU3yLovb8IrPxYdV9Z4yqQpCOGfFUNxaRFzPE/9e8/Yfn5O+LDLc9rUrmoOlNRG80GeUvM4kIzLYPHpF/9C+fyrjLjgSc58E0J0lUPKqhp2waY30VPKWlNY6AH3UAFZ4USrWpMjmkDRB1tZVo9jp0p+C5llPuPXEIpwLVC5ciOTxkQZnIYbEGcFbHbwqxJ050M1geJ/62MjRYlxsnvFDHWUAYn//cmCpjo5NBRg2y5vBNufUbKZLBOn+Vff4GWnqwJoDCa2/QUeCt4EWazIVoIK6Wn5p9w/EPxVSAnQXEu2VbnqCSXDsmz7NtdHkR5CTyp+g2Zrl2yT6scLWw44iDF5dOeHxZMzeKUzl3Ph7V+gQ+R/DnvFOv6EfRwd/KHuhR0KHafRDWgIOCev0tdQU7dgst9XRc3JiW94dvEGzYGJ0X+CbllYzOJfwMizMqUhUkcklUwe3WFoPT/i2Ue8Fsql7dHZduLAWLkXqzJBt+ABJY4hYApIOSDXqcQiI+hGIkovyxxKggHIXafqIBElNA+R3XV1FRsvvL7H2XSoKyL2sPH2OU1tSxZQG+XK1ui/K9zmuQ6wINVNi/0D7DX5/IGP0n5/A5fsZ0EoZUR0C7obBxrNHhJXBcuxbg9AitDV3d3qPpnqR3B+JAGH7/pvoqu1uVWusfrKW1jIRry2WjBZOvHIn9Vuor6bl1LZg8jg0AJK5q8Qx0fTI2RwmRfklBKk6jRI0jFeU2pfOTxsy7rft9GxfNkJXhDSumfwSrdBC6EVVVmzJDhusNLJcH7MwsaoiWcwLZv0swU58rgNnFfQvo2uFycBDhhybw5CrBy+O5Z22ocABVyXnk6fXjucAfmYMIXePfPEBTAdAeFqMIbG+AS1QSGSnLjxrHYIBEgoNOmM/EqM2ddltkLijIWu7ofgTZZ7P0XkKDVzZAutGjJx4MR5tbnkVSJnCPa2OIS19sWcixe00ZFE/rKt1ur6BvvrwZXvbrFa2E/XuGR0LaanqTL7Es1vZnr+IO030HRj6ldMxnG5pO4YWJmIyRUegnqOAExRUrwX5Xf0QTu+YVxOmOz4aWjH3C0PHZ4CXSDNyKvTsUe3wMJCU33BsVxJW0ryUOeyILsjZ8zqKICUZKXwDuKV/9WWWuVOz3qcweOtHyW3C4vxJzHvlsLN5UNCbPHjC+WX6SYXUimGTzp3TmPy3LOgdtluka80yfQ7VkBT5X+TFJO08AkftBcNstMMmyP8AjB8iyNjGbzSsXsM4XAnvxbn3MHXiT6a6W2PCIJox8EOv7dnD9jskiFlwdZvZXeCa6vA7QOVTRqmOwON+9hf2fp3ujotFZ3B12QetnSkeZqILNlBDFfzMV2O4nVbyQC9uRcgy4N7k3zyvzpC1J7TVi/S+JfOvOH4+oBEeAVGkq9OYMoTVFL4suqfi/hTMl2uVoUKv7gRXZLaJMOC29UQ3ufAvy2EDO8Zg1DQfgQawz+nkhLCx3L5P9IkfaazKeEK4zNhEXEaUOH3iMS6lHL86x9xO0IczBVpkB230wPvYUPEaf0gwtWswJgi7YDni2Oq2bslg0SD2I8Gk2EMMKBGoLleSiz92I8OWoFWpby5TOivQzv5lLK2uI5krKQ/7mzLvRwr/sfzcWaGJzEOejX+SBnnS91DlPy/FS5CA6y0wn51Gud8+xxvCOswbVItBcdFIfAG8LF/Cve2dbFY8AaiKudbmDtl1/hZd6gU1HzVK7HlZaJoA3FQPmlEOsK40X0WD60HSxMacLLAZMfnG5YYsB559gSaXQvMqAAmNU7Nywd2wt3cV93Pne0GiPCpmDtrGley9BVBW4zuTCfayzq5bRhkpb0M7903vAE7sEzI+JiRbSMFwK4jCrttTnsQC0bwtye6ski7QpOht0FLTgUcoyejWWNmWyNyXxYKJDYwNX7uwGkk/nsXCV7ixpkOg/+OEFijDTLlX7lhZwcaNM+lyGmpssLcgSgskplnSmCC/fJGefvDtfu7QIXES43eCb4NhKJ24FYJyiMTQBFmL+29yRphCpkHgdhcGmDYViNhHKDJ+/156N3tm3v89GhAcPAE2VJqyg7iKfQDzZo0U9PiScPgr/uBRxq/OR404Ww9DGiaJfWqrOdqjW/Y0YzJqHqqq1VQ4ZMC/bwi6l3UDuhCqvUaj4Od8hUBR3APL0Psl8RgPXWLVWnWT91Os6u85StssWLquO2gZovj6oTVvvIDq+vwQSpPH3vz/umbUdUUmPLgfvO2DMPm8jRKliU+FJwSjoh3kHK8uW0CgHQrHkKg2Ylspxr/bQNJuRcZtRd9+wrdx4uRvsCflxzCCfL8r+WBaHZZ8xbs4AQ9aIgsyPD7m/G3qrF+59VNYBtj1I2P3TgYxuzGVM6i3AS1bm+lpAuoTAnSjFIg2Hs2fEkFzsrGKETanFxe9qBYiApHldH1fr9XYP83cxQXPLpRTaDYsL6Ul1l2S7Ikr/6zu42Gnwi6VORLVHhPH6j6aoy+73tISmTRfpvCckpiSZFioF1EleCgrr3wFKT/3Yewn7+umZhiH1bGeLzfk/S03fwlJ74vvNfwDLjsFDBj8E7L2B21XUG5NakX1jgAmjCRfZJx4GRgfVtUU2skVz/iHxd1ccxPnYeUt0Z1ZKAYQEGRWn0SRhPwbSFHGhf8fls4AmeTf+vxFFLqay9ERJkuIFGc89LsoGkYk1B2Y1xvc1bzWTLzYFkp8ktSikoRFX9wtOO6G867ve9KZhvR1u1Pla++CV3KKb7DcMRru+QZKlVFhRBDZdMdGDuf67WcaMcCcGXmUyDBISCfMDjc57gYPyQ423g9SxoXnYe6pFNRDB4xxjqrs7jYvvYnCQuEM85iHmainXk/BUgpnzBwZfyjgWpYIaNnj2TpiBLteB5ebEWECZnSW5Q2OBDl69OxzHSe8/uNBCX5o0rNCsvlKc7JynNmjL6jJCitvsEeqGQ4A1ZNNoN2OAw6o9uPaM9ajOyQWR4DhfTXeX+BpnGY2hOh7gEMzFj/0htBlaj78zZzMJdHAvHAXliv4qS/j8c2YWAer2ni8lyaQiq4oE7ctTIzf1eQJWyDjZr9ZreSb5Vhmu1JrZX5/Six8Cd7l5ydwZpcMbamPn592heCtp8fhSsxhhxDoKDQ1+V+PBOs0NH5LNlDOv4I1Sbl+CLt8ziBBJYh07X4LZ5dEGlZ/6gLRaw5EB8F+cNSVJPBRLsDekOZxrUr2T9bGah1W7wCVCv+RqRYHIJYAKWfT5BYifH+f0JqF7M1HzznrPIu24sXwH7hIb7kZfym/+fvUSxBLGl4mB9cHH/vucG4C09Vlm8wnSkWgy8v8rahbrMAwbKBVrmh3YREUmoIzKFpmdLt+jHMTq68hMGJgHiNQLJR3lHeKlONta2MFccQJndtH0TeE8BMuPtJDMXJ9kUYFPrQrIZmXQJeDCKsnOsEoEitD5dFInB4FqCtPPzZ/PrlyXnZYodNtM1kMWFGUS8J9DS5bg1TkEfp9E+kgylSdSK4bMzNEhdCSr22jCIl3zf53PqpjWbqkCt8oiJxjvrEZs8hXRz0UaFr4TbWBduLPdNEf9xyWFLutyJM6gJD5A/LYtkq3A/GmE2aX18jTtpOyRY5fLK6zjOfsU6vijA94wFPGcBezPu7WGR+EMsjUMNAFe47lAg6PxdStQzo55UHx4GmNOPY5npNN69b2VzChBbK2gIBQGnENROA5YkeEn5MP2N0OvapG1w5vjXT5iMzto9Z6MEb8zhJvVmqUOYuNy8QkXRgjfYjM4wt5Fy4Aqr/2gJ3JtwdBtLzXk1wu3G7E53Toa/Y7gqpRQLk58o61P2bgK45UFTSU3AeLcOyzW54UN0emSrcY2MjndU6S5r8pgpNPjx4lZgTSi6UI7mjjQ1VdnefIWL7Ii3AnccoIRRUXqsT0C0yBsi7wvpN1iJPSd1n0ye+rO5ljGXEKFSnrpWCUkPMdRm9rZlVKLPCU37SvMatxeQlJETm3vQEHLSbvs8Ja5vY2U/Q5ZR/zhOVd3bDBpXHlKWlOtJ8IwJfe9HZQ4CYp4sZvToUIL/jjP9cF6VRtmccaOzSTxG+XXnLWZEWmbZ6J9oAhFTeTgCfVXwkwSMdeN207tQ7cyKYlBHGmAGTuCB8xaadf8VHAC4mgFasF+9vvZgcRX5QccldXB4tbenn2ITiL9FaoiwpFy5A5gkj5TvhhIBY0yCK//zVKc5W6Y1qWnSleDbRHWPRA81OMuh9/fkah7xcURmr9c4Scc2EthNlViCbq/qjTbxWDp/aWR5/I0JVV0mscnPq8SEOFLCNVLdmY0YUcox0F8wSHB0cbTW6DoBH5HS+clOTRuWJNBjBiuPYRM3iIvwNXhlj8tocMLfTu/M0qZzF6NQsMA39N+2C7RB58VKS715zrxNBVmDUo/iHPrU0zOG4EZurPg0z+VekqlEAS0YGnyFmqbPxNiiGKZvcdnjYt4KwBF8wD/X4BPX7RXQysTifJc90Q24C6bsT+zX1hmBLCh3Jn8SvyRN6BDtdANMOT3/JsWs8Wq8MHsCVaHS/rmjvr9i3nTUjXepeyM0yrBGEwha7t5/Qv6d2+HMWGXDttEXSbt1+8uns8YiiqQ7vgkbq63DDrqa4JOK2jbUOwFcBCgqYA3mpi/YDhdYRWkkFJQlYUoqVN1PWzHibnOQzcdTsysSPOm436oD/LtHeLhVKCD6beUbGDFCXZI5PxilgmSE+cVT6vH+EDaGGTPCHKaw1ZbMD6MrjoKvNl1DJCPL9dsMH2qgSgkOPM9Jcw5NgKEkhhK4ZnCTnwpkdTKbkbyCNuPayi0tXQ0Fbqyf7QEAFlUOQU6hhHsc/iIvIUoR83x5pU1U0z7RN7tme2fBcrkbP3RWSff3ojr1wXVP8SVvtLqB3m4w+dkDTZiTO0Oq8GhbQjiChzY34qoW0fI89eCN1TeK6MRrBAiMH363XujHjsQXO3OThoBcbH+Lda8RFFVih68OFuGW5oGZ8665hCG/OKZdi6JhpgH8EpOlV5rYH1eaI2a0CDpjfqnXI7BSDin8d/AOjHLAOTYCfaTQeqI9fPH9d3ZcdG5JXqkS+LEQ4vFSVVcDMDbj3WZx/ofZ0y6N+KOM6BrJzN8w9Cy1JXUXMr42Tg5dVwy4u0DdZhOGCVUwxXQjRup1kBrrNI6JEFJXDs1he5TiZUMQZTbEOYtIZ9qzb6uhZCq6pZajtSH4rA0XWDp6XuwU/Lw9Foqew74rw7RMREKDv8JV5hEfDEh3ETYay1uzTODwTXUtAHcDdrD/1PxaAc37BKzEd46+gocuqpGlhOYWDiTnm66JskrURBXZBK2Rj+EG9M7xVQK+sm4La3fj6SujDqoDoa2LrzIsKq+UbhiP/ak832NTOtGDA2gedBTSvXingWeBrOldKNw5CYy7webb5eCpXW/JX/3kHlWmKYqO2GsBhsx5SoKd8CoD8MWiAoKfRtB9YJ/jX58yMMnQ5WrO0/NkoK667XUxYWvy3phj//2bQD6H2CgRrUGmVnp8pMK8hK8k/KEqKcvBxbanJQaIKv568GWC77FtnXmdxSGs5fbV1rz/ny+ezPot4Vf60fbZSj15oig4H4ATqISMquYDcYH3EUqYy8J5Tg6pFCK6WKTrFlPRBcSJ/PZI7GdvP2RXnnpgmR/gSBtUQjZ1wgf7R43Rt1ih0aABk85mE12oxaNTecG7gRojdFwmoqO2vS6UVtXpT6UHc1WfkZ0snetEuF9QaY+GI/qd+N8MhjHWM/Nz+5Bci925Bjg0UkloGpaI1F6dadGql0kSBWIRRKc/nMCAz7RbiIBAZie0Al0VbYHllfmyGjfJJ6Xg9EYRrkIf9joVA+Lq8SZt1GzGomAQjcjxmUJY2qpoRrJy5kN4ZYgHPc8lIrq0uzXau+YWfHBCKnuP6GNNUCicj03xAI957t2h2RJD6vLT/8tMoLxm+M1TiOMrDPCy2Acui07+n2zciwVSXv70jk0y6Its6sriR0qfOTCfiEW3AgBpLbHPEa/pwwkJ638uvBLWe+aFGDl2nQ0ctBAnGQKP2x3iZjn8BHSoPb9ogE5NjJ6tEhDWyL/nCmfSXR0EuuLbKw8u+/glhbSei73xbZJO2gfKtVOR/PXXdRHVjJkhZfYWiDENJ71cifSyZhpzw6qufK2oE5ye0DQEvMFQLuHNeBpSxcSF2VAsrOV63E8iumqEgNumE7CpxH/TYi0jgefxnl9okF96Qrrgv2P/CvfUv/6/+y7Cg8n06lApAns0FPr/vthIwzLZUyf4FQ60Ppo6NkyZW9CSEI0OgDOm3KTONby6e5AOKGir3M9AW7dEWVEZNFxM199JwYpNSeCu+Oz7fiOr73CUEcVov/1RKrpPNEjRhYUfALxE1lzqCcF1duuZ6QuyHQNesCeE/1BQJbURV4FSAzMEmgOQ8YTrS5EJgJ1e5ZxW+/Wy1JbasnzPJr5ttHwP0C9HQ8txZM2qzzq8qP2Lol1CYbWphF7Ty25slEMl0JPVWrcR7E79AnFOG6gJzNWGBeQvcnVGhIz3y87EtJqf0jfEd00BV7yrkyj0HEZ45yg6L1l4gSACqcheCg7bPE9TDn54e1keBeEMSvf2JEsiIaasHZ1PuGK1r1D13HZCb9iTScVstvhps8HCHmHas1dEwoNpPXacntDQyOteXsYxLVWQPBD9tD+swa6ByAMnZUC4s1LnK8tqmjeFStKsGfo3pJHVENvhzNRFS1AA73FJQ/j6qHDFn67p4KPKoIdLEYESu3gWe0mdwqxZQohEkhxGCKJxLdq5g4TnlYiaZtjDbKn4r8MslfE8pBRKfStAou99D5jXN4P+96tC16BsxyRoByyagZmUFmNu5H+aFgP/jB8hoEhcXawKkg7C/34o3LxeHF3GLzpbbGuu//68xRutBUrL7ZJHlNMXeVgMPZmmuRbUqmAwPXzzxj9EDqMmDbF98mieAgqIZ8UsBKsNOA7OtSfKbS/H/ANjFwLsYfoRRCeLCy8c965PSVkUHubja/ewti+x1NE7TKhkQFXKU1Z/KtVc4bSWAxFdfQf+qq+o0WPyd4sQO8Dubgei5Qod3T04KtTHmDiCXpf4kKs3dWB5vmbXxFbS1KDuvFrXFpiy2RyzJVLSSaibbATjXN1meeFtnk33qHG+HBwy114KHLPhY0C+GywLrAHX4GnXf2UVdX1s7PifL6LFP8mHp1JEG4cD2EGmS3vRmAL9njoS1Zqbw2ln5eChv6mbn8hvijyH2bdFjnauZp6e5M9NhXnQNDXB6uejNIjsFIOY4M7vSgBhmLY3EkIdILpn2hnMF8jbgsxihYzW5g6f3obezFAV6jWjlqM6IkonEmLvVZk0RhBFHdjFXAmMzfdMsyTrdc+ORfFubgP9MriwKd3NaY2HyMwj9PkjJJGs3IMKSlMB2cSOgsC
Variant 0
DifficultyLevel
523
Question
The shaded rectangle has an area of 25 cm2.
What is the volume of the rectangular prism?
Worked Solution
|
|
Volume |
= Area of Face × Height |
|
= 25 × 8 |
|
= 200 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shape1 | |
area | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/VAR5Q17.svg 222 indent3 vpad |
shape2 | |
face | |
correctAnswer | |
Answers
U2FsdGVkX1/UWscfZRtrArwmcdNw1G2k93ELAszhQUjI+c+ZuTs8ovRqeO//4+qDXigEAXPkFPVPnLpzHlTAMifgkB9YcE4CXHsC75lvHvJLGHrFMOosx+Ro6HQlHM/pCun8Dg4vmmtSwrV+wxBAzOf0kZH90QpMWWoZQFXAuwtjLxXtIY/okHbE2pKYvEb2oL1Dc2Y5tCIZAXZXM5dMaTPF8HpgjCXR6HcW0Gs4maUjbzSz5CCVL0BbSslSu/7QJGEIiW2/w/1baVc2lOm63r3pyPbUghFieXkv48TZK5YCeQuvFhg8PG7B4OAPKL0sgaEjyfMQBVt7zdcVXaTuuSJja8pe2sxE1JmsMSGJxAOT6U069o33vE/XerWtLVyX4LM9IC2F3isn4v3P9zmNTzS0x3xkvadO2nqnYxkCDFVGF3rhdqtQusmKjnulCQd8dQICJlhDJDjEgY1MhZL2+kPEODEiqLgxoEQZupSX7XPufM99p/vqtjTsR5p+ReJCSR0ejE6vGTZwJFK2H93GQlPfckRdXYN4t5yiid9lXtD+ii7xheJXDu6mDpv+FA4BN7Ln+McBsdxFoYl3jusw557C/wgm09a0vPBGatlbZvThWc8Ao6pjOMvTKk9IgKtSRsnYVe8Kw9HtlCsk47NaRe59e5+64fI72lJltSJooXp6NCYpxo8vNVxp/+SKx/XpJy6yJn7p4+elpXOKr9lXxWJtNOORCJQz89PVGs/3Ye24CU5CzUFICayCgnjWyS4lFVMLaf4TTSpMqoe+I/epTTOgTcut9O/bcaly1YQF0uH4C96Whzjc+wXVKx7D+g1GlWyOwgq8AogDw4bqoP0q/uNc+kVZVy0p1qMIYnDyawc8chH8B5srvfv/IImloGH4CyBdITPUm9cRN8u+5ONsrj9upk7bN5t/n9dVBz0qXtkmLqsyglboo77T6bHORzRQmMFAhwfg9GHlAWHG/judUF/o9pMdazLTi1IIIfs+tSiWh9lVQ8Ty8M7bmN2igYMICbEHMBQH6nwUFa4Elj7oJjl1VhZ1gQbspVoxapj3Pa/HELTq8qrLWMqKEYHK/MIxbDrOHaQswwODUou0r7JU8iwr1iQ6xjKdRVdbQWIETe7EWRcIqCvhXBXAbu8kJOeP3kVYSoeD8wImvJ1TKDEqrX9xzYPPQP6CNDeK+jmq0Oq/en6Gp2VETGQPKcKosmtCQgd8aGiyyfvxUB8TNjjJbem37EwwmoKrQY/0puP9JkNnBbxTHaVcCYKL7/aZn4mbzuPDZYHoi0nZWjFUr/D8mUa7UMzslnbPsmifMf3qis/l290PZK7qJdlYoAIfO2vuZV+USyR3YH8rLG4JcNGuoSGQVOZfcFXAE5WTmUOfRlHFwM2uDU1wlft9r5qnUa0GYgjY7OLEW3ZiiSat28t7K8dWvE01cqEwzEdy9JmIGlGgJcUqnm2uXuh4RmtHpLx7UbIaj9HYXVM4kYCWLd+HGaIJKH9T2asA3LV4JGHmlKDzk2HOemuy0thcWr3Iuojx2SHyMXKdICDwPj64EgVu+E7oSOSR9BNMhTSImq8WCdk0sCq9jwIILHLi0aYF7hohUCp9z3SYYm0TEFasnwj5nV8n/nDaoeNGqaW6+LkcHdWKjOEbx7kQcfPS0aS3hIXmurY1FxcyuQSUjhyh9k2K0PJHkve1ixdZFSmVoaMHZugKXXAggAAGR/vmZR4ksyMaIN502QhMO74oN2h0egwkTT6rlw5jC95V+aEoZZvHImqzDHXuIOoEJJOwLjT2zkwqAfHBl/bm5AhySVkMe53ZxctGOEjZ3PPZvsN7Yj2HcnO8eavH+r0CyozyqD/FcCoVAYFA0vLQd71+3HLT4Okj/d6qG6TSVOyLUMK+sE76O0kRPFyUrRJetRJ/uY8826rtB/thZXbfmDdeSig4Q7ApzUj7NOJPfnq9+UeHU4rn4D0i2ca2iMKTo/vl4jjo0ozutoY3T1e8peMaNSWPr4Kxmyt1BI46O36xctrVndL6MilEV0+x0o1YcZ3Nt1xuCMNtfj0BBzUobSOU1mgQObN3ZoT4gM7o0AAFkFGl5tyx34PQLgCboPpXQQgz1aFtzWWRALkxWOgjR+ROiANNvkJHfGFz49vn/PvN3rtLYG9Y47+syztLd+Qn9fTIBPf1AoCtseiECdrezjlhTUQwc68+eeKpfUg1rPpVHXOnWxM5+UA2niJbnA8TuGA5M9rpSWuSce7S+LZ0yTTCd3A23dXOiRiGiI5IoU0Vr8qHai0M8dMT7fcoRVeiOfiaqVtqS5lYH8VFDuUPlbhBcgikIfOVB2cX8HMuDJc2HO7q2QNbWyrd8G9nZGJjQWATvfU2Rs06V8S9KK2sHDhxXz2mz5X5foOjgVXRR1vtnyQDeG+pgDjuUWUBlRAPHuj9YDoFrEsgLml7Epl/dlSiEagTVYbLO8GBGrsAjN9Yx66Mo/zOrl46Eyyna0MoU0spmKDq4KkvjS9TqTokig++nHx0R5FoSMVNjuMs+pWWwKXQgqRuOQki8xUhngK94OwSOLedwcUn/eDw3pFpyX54AMtH1vXBr6rJDMfZOpSL+QfgJn9DxfJ5dV0cBBP4m1p11EWBIDIrz9/Mi4S1k21siBIh/mUrjPMHejTAPKfzjUnnQWY/jrpw/C+kVqO1i48EpXOTLglTp9gK1zSSarq8xuJHz3sTi50PvFoT90Rzv1OZS4FqoN84ZEQzwNv0eKaFWFtCPRZiNnV7QLNwvBAErbTlbixlBBA6x5w1Sw3PdFlCmcRM8zqgf0hHxk15aakkWnsBTUNMOEJfdD1kwuSIELibgmV/MbWfKgxXsA4rI6BcDJ1UIKrLMp0KMof19krZMuhx2N0wZyMih7Td2SSUtQ561NC7ipSCRLxuB1JYitCB2LLc6B7G9wuEOSz8FkmeEvxLfcB7mbn5FVJUJM1jK2ho0/8X3YMzc/LMAWfs6q2Z8iWhoedw3TbRmst6ZfTEfmP0iM7oOwNKyVK1CxBDS3B3XlHi9NrBkgRWCoW/9Mcr2SWi3tDpUy2ZVRTgczpwY2R0bRsSVvZMLhHCGnp6jbgEFP8MQsD0kU1Zn/1effXSQwp2xQUR4oBVVx0TPbrdlN/SrjQid99pDy72nzM0R5sJuufH1pmUji3KZggG+7IYLwC1HP8ba4IQEtnZY6MJ1BRgH2VQf9HVRNJsWGuhPBxCzEeMvQC5pm/F2fVlu2F6/jxvDWUIbb5ffjxVXAPlZ6kEcRNrHCU2Dr4WoQhyYj05Lem/k5zjMFqC8HdQhz5ZGqrxCJEpM5K+1FN31yo1Ok+qbikAD2E06MkiRrCuIgipCFRZYXvAMjyPxKnbm7XhztrFHG4b6mbfk8BN7z7/KjLQjCSVas/7cgkMVOcpB0rcZ/FfzlzNylGitpJjd89AXqkkZkGDR6nnMY5krX96RfDyjUxH8TNjppX8ojJCBVOLhsJUKKsHD2Gaj/KB33zJ9h7pK9O2rSXrkSbJHIuKrL17P+divlEqUgzgmt2UbnwuElXINO2JjlJYdBCzAP/1BmdJ1f9QpQoUjhUUWvPPQru0Ev3yuVnULFEoJ1M3vomSZppoaOe2jNP8U3VGvI+FWOIx8pheybEz4XBQh0WoDMFpeEq4ZuzRjrWXwBwtcpF+1ViemuayYqiGGRhiyfogKkBYnWz4nwYoOdi9zD2Bce7DtvZmj4ET0DDd+T68jljXd/9YhNTbWCOgjfFrxcks95clg2zKS3EAbG9tmGQfMTQLLUj6DMY81pSId8wPxIW4cLwfGlF4v6ZCaDObyQa2IUnLCsTpeGxU69SU0WU8juHoHu7WC7ZksrW80hRPFb1B82PbLjYxJVw+Va+dU+QbTfltLdy3t2gR1+GjSrCXvkyI+pJzWkmmQ0ndIZm+xqCONAlDMFXkC8Q4fhzYZT1OPid0Jnx1K+H4ai3GWWVr4AAQpe1iNDm4GBRchhl3AoiFGksKWlNWjsfMJLoH5irasx6u79UNC75JbeaEPH2RPuSU+meTfuefZ9IW9D9LExjUdXh1rX1O2Bb+EBqA3rfGY/5uRLTHLI44a0TC3SY8KBTBWaoivlWMk05aOYSdYCdmG/4T5IjnStSMXEPaMxnClfO30PS2+uAyAFExLaX7Yw/q4YbXkhOo/UYhbK6niIBv6Zbv/igd/JEa0XIbLwiQiaQd6lw+KSuFRUM5WXj5fvpoSdIFTMPC1g3UmvbgKARJ9+93/pXOLWGI2vt6hbvCMzJIjiZ5XJWNoUxZCSZ049UdtQewoRqCkNagq7rXyUTFpV4kRR/zO+G7lz7pUieJbcYXg/D68vNkwcxORS8Sv+WT+m3lzTOJd+Ea+DlgPjUn/FGz28Qvvd/sA5vnHN9hspaubc5DKXTfM98xo7EIhh9SrNo+DXGSoLKz97JB7uGux8TMisYtJ0koKmWijtFLM0/62FEQngeL5ETZLULl5a5TeMs7mRIw6vr8yS73MgL5i56gDNkFyRm3baWy19rvGw3NfVmMIQsG+6cIlVKHUW/zGE6WVRiLD9julNL7sLOWBy7Zv90nYoCvjFCb87W1HRP2/UtDbmjgp/N6YV7eIt6L4i6UnnprUNt1K94tGJZien37Q7qkrw4buTJc+/ui9BiYLZ3Gx0tL95oDrNRD7v3UOPNhO6y4EW3iWTvwQ52RBfGKTmxZINkkJS0yPMP//nudpkn+WFGQbJJ849yPMQ5vP07MZ6ZZxantM5M2bPTIUhVAt0Nb1gFmHGVx/hHOx0AyrpSdo4YUSDMlDJ4ApvBlCQvVTojHo2Az4u+BLQqTod4BIZ4gqEA/1rdX7+lDTJy4mr85hmDh1Kq/5evGRNIo4bfQZJNL+Lh2+G7I3XMYJMF0orK52C1VVXO8Pu9gIuM/0oqitORLrUU0FSDt2eeeSwHO96FgIziYzxqwUecnONGyo/trtYcmnEhIxls0+rb/uGoxWwXj+IjjvQLzGGq0l6j+C6HpUt9iQW5/Cu4WVq5Onj9bhmnb7ErZNPmKSmnEt02NA3Edb3NFa7PyDK5Kk0spaGnu9o5j1SHCaR7LClK1/cXstNdxKRVwb3SatpRWUAXG5q0Q3LQEjVpU9q/C0nK1YB7rsDwqhxMI6pz59iZjyJU6hNHifH2E7uQQPdaXFM6YwWhuA4xvjhPXvRnA+Bp5/wBxJeLbBCofa136q05ezyYGdrhJbKH7XL13Fcnc6xZLDAGlhFCDwXTbpy2GnUdmsfOI/kujRKiajTSNEDT3RK/5dycKkcgK77rIkQ+vEeCNDO1GerJL65SJvKVvDnLSqXRV4jSYQZr7ko04rab8K/Wxdbi5gNkZqdYnmpfhDZTqhDHuIUSpCIMV3ne3ijNDOVAoFt00y5oOzP2Bz8nlb/hw13mSkUycNX9CFqlQAgsNAEyimiCBqjf3ybBfnj9uYDI1P8+RLUNLT6mE5syyd89N1hR4zpKCZlJ5VEJ+SrjgpuOt026OBYMuLmKDNmxYX9EnNJ3z/XQwtXpOmGCQgS53HUAWsLH+bQOjDFL+iRXMCXSUH935YscR4b8S0g5JHKpNyLE4d56ZVcCPRdLnV9MFKKtJ8uSzq8pXAiG70g55OupmoxdQOrJRdGxy/Z7qopt2sy2aqY63mFMepBdyNP2r+svwRgLLWSNT1nn8K1nJyG9jsvDiO5b+tPcRbVDd7P976MOdHhll0Hngl+lBuUTm3fzLEKP4SJCwSDaIbpKfLflIcBX52UMPgt5nb+30QmzVJrl43CaCqSKFaxP5P4fbYdD0KGQ0VRq25N2Vhe9aVNE8gKCHbK/CxspE7rPFGYEelvQC4SauneMPjCvkxKTZA90dRdyQkcSbtYYCqDUU/H3j0Ua4UAnPY401Rtfzh0EC7NXGyKf0o1dxvzM0aO964TYyq32v0MdzBbKK3NlKd++G+AatgNqpypMZVZcp5jOOmjGf8Spawxz727XYykRNX2HdjyWybOzE3wPKov0hVZccjUITS0BI9PSpuhqiwhlUOMLdbTGS6/hrw7d/bxipBYRGweER9t6L2yRfCes0mgvig2sndIgVHRb92ITOJh1MuaESKeY7fkQrNejriC/SJ0jbbon/icFqFFAheXEjjee2vy0JpxhxBTMwRyJZadSpr5DXtQa+78qKDI4yK2bjCFFdxOP/WaKO/6ZWSMzc6o26RU9Yhu5v7/HUsVHuTrITd/SWOfySeLW5HucdQ948PzjrMBRH4PxKkB5BjxjjrgFzvHsZOw++vvRz3HwxTBQzn3aesHSC0WXyGcc340nbcr1rfQfAvqcmivdWirmI8HmSQChRRxFjvyBs72f91++JmthtobghsWFjCD2I5cx56JO3uli7YohxT9AzZAxRR2/TO0aRYPRs9D19whv2owOQ6X27Xd9gISQF0oIKdKTNtiaSJb4IgHveufyLy1XX/C0E7WqyllsveJ7HiBAza5gF+/uA6gwzTYKL2E2Y2EbtfmVA8pa587En4f+5hS4sWOrNRg/7N9VIPwN1mWuJnDDLgHWnHX7PD//hZakBJJTEf+hZOtjfHAx4W6XO04D1m2F62RsMcfXynCUsrt0QlkxclXE5KMWxFrqtddcnq7Qb5jGMsBriJQDbhycAcbk4fSYeAWUSz2BQCvaSXhUPF0HbL0wdvsjgraCojIsTTy3b/TQJOJ2qcUkIPjJSWiDcZrd94MfU4LmQlYrqTx8InwwIEzJTLskIxvQYrQWyISDFu4JwFql1sa/M2B4/+BtRWw9Vn6fr+j+jpmcclUmUdcXrcb/+nMFdkc1M777AHXX2s+NjiaL3FUJejh050HFg7R2Da2yWJL6wlhijAekrVW2q+NJxPUBOEoGUnebw/Ru2sP5Ouxprm05avxrYKcicWWkJokWrDAB70jb2pDznheFXJau01P+2s73CbTa7+g1U4cLr8ifgsXhWYhaY/cMr/Nu6RtPiTVh/Uw105ePRZLx81WPof3IcwxfGFmSujXATx+cBAGbP6I+zHnAOJU7D+o7g8j/gKkJpE6jq5tRf2yaDjh/SJv+2r0vrZmFJWk3sdD9OzrUAZjeXi3lOOOJho/vTKpc7xDOf1n8waRlwVv4xd04eQQyNkIIObMJ2q+nGAgpI4wsO6B0DGcLSwkv4fp4HXEQgMBwnKP+goA2zJOtja1dTccFLrFrXyM29TU4poPR10C2huy2SW+TyuvXWvr+e9fWIjCz3AeWf0KmTGX14A9jCv7BRtnXZCAHVlIsah9saC8QGVZwfaSGvY1k/5ytP6r07HdTGnnNsHHaCV4bpTIHk32NtbCH86W7jLIRYvMN0p4f2S5Yr8UAmdgm5QdTdstAMJUhD7a2LyxqarGAZ9nUo5KKDmwunoOlc11BoNTLlA+BdIZUcLAd0Evezb3Vzi/KVNnzvcUbAzLb3YkjkWZtgT4V3tZduShSByLrH2ac+MnGgt+NQm0z+KoxcShQ/qn9ieuLyFKzby6vcYPGKmmnX0hrg35I7onxp9eK/QfymP0t4IZN9humaaLMogzAWzm2SdFWyRYjZIuCobpxOik5kPPBMFW+RxYj8yohcKdkaOi+eWDBm1w047FH8ca/T2AwvLW91aSDGpWyDvbxJNc+cJiixnDDq3wtM80TfXe+4wPwZN1MRfSmS65PoAMmiALIUBfAy8E1/I19rIe+KSdBpfkLMYlrMH5aWV8ohvDjTxrVn6fs2kwf9h9ILqYUf1NmhCIqKvsSPNQK5A5QjqKvxxuR8DiTKaP06VP1FHhc7rA5EJiXq54t+PQjPJY3K7L9PtX5W0KeY+n4J1nu1NMTlxbFW2BbJveUZoTyKxpxndPdE45/L0bnq8c75DPKyKc1/xcfVncMZOhZVp7qly/K33204EctmiYK17X6oymbi0zNgnaHGj0+WKgbImxVNx66EwEO7DR42zXSxn6MtXUCGWsa+aI76/M5xVs7hEEW2NypPUykKvkrxWejh3KEm125ULXLZKypp6j8op3YiCI7sup+KQuGeFeX9T4mBOeSg2gK3erCQTStmZm2xzrOZCjkXkuITB0r/o8WoP+QrR7ubGOMedDRSVlK3AJ7DM/gZpfPvlTLG174PqPl6pA74cRTlW2udY0sejKaIgYx469D0ssLv/ca2PzuTrSqq7C1T0vjX8+dpA4dmiCsYZPhneINrZ91X9VxbZj7+r5wDvuLCDSU184DMbX3jmixVLW6dLPDoKNPWnA6ZGbUJ0L5+ylOJyVCyqy//YlmH2ICvjfv6sHaA7DfI1yKcG0Nvni634wxJ9R4yRwmq8QTFWOskkKo68Li0Zxeg3em1GiFjeC1MDK7drLEaaLN5//URRO4PlWM38jUHqnx0X9ElqANt5LBnmevWRu9bkLTM+uvfGeT083N1DOldxHSifJ+4XPxKTiu3pPBjhgKG8pEcqyIv3Pxlq3l0ioPDJQVv30dp+InfwrDcbH9rJg0iT1pu2lJVPzj8AQWYANE4uqEfPAv64zJfy0wSbPLLJM70bl+r2rHgTMTy+Q8c1U5jDAl3o0WZodrFN7p0asJyKJ4vjawfcS1xjFDm2x143xf3b094wjHr3P4m7DyM3fVvnZVlrdwUJ77OTmUlQ+8OKMK/qlyIn3f6CtJoSty3JFoOKmBH2ClrnoRzFskQlk9a85kUz9qQKU7m0hoD2cas9Fmu8NzSElRkaRNWSfJVfgUzB8Bd7NUxR0OSAnkxKJ984KBoYcYoToEMvgaBBjXoSQ8+WJ62IcDy7jsiK4uP+T5mwmgjmkBxV8dkb7vNEE6ufB+6Yr1LtjO+OVk3G9QegskQPljfYiG4dBpHVEiWhC2wbB3ll2/lJX5IUGVDAaIv2kBMONE0nV6pIerPBFF9hvX6lS+4P+nVzbjSW2POTxrcntam4LBUerAbLaDJH3BcDpRbcm7RFlhVTqK14FGGrxeAKaJqLn9rYQ6ofLc78bZ7xiJOzw3UDjXmj00xlqzQ9Mub0SqN2Z8sw79cmmruElFVt4K1OPAkAc/qF76AELTfIxJFpvSklApBP9BAXfjfZLfbtXpyh00g2X7MOq51QOzLllEE7Vl4cFgfq4mXgY8N//77M9KLpyNuZNtC6qgZI6uS1uE2UTlL3bNdL9BZYJxL2waPgSkXSR4Ypsvn1XELxnGOuV6OlQdr+bLa+uemjzvsRnujUmr+ovFMikxrEBIAsl/UhTeZCWC+iHJuTOGWKuVKbItXZuwPWs9gxKLL3zUkkQkm+Fcw0+9xrq1SuD7eeqCxY4O7lR68vsSVTwb+H+juHzWnTvyncL9UoiDEOq8xRZjLBiBnusHBlkz18gnpXFH/VrVKbDqa7rozm4K1eNpG7GeXQUbvgYbr8KnjuCxJ2g8LDFW7mZi14/+HWpEoP3CalvSdwryWiRwfyYf+/fKva46ifUTdMI7EuVyzVdi2LliizyVww9LHKr3Me4xOJCqbheZCkOQSU1DsmSVzgodqcqkQGau6YE/+mxpN/i4WEjFudi3IjlAid63VqoEhMX284u5a+TYYt3syHgkYy/ZWCPc1uiGLvTmHkcbJxGtCfB8lxt0VaSUTxEFeQmeE5Q48uA5QwQXHE8gZIftLtXr6yJxEiu0g0SdH28kzXtxav8COScGTwHD6frZz8jehOWmiWjE/lQu6pnH83uhxUBsDDL6cuYsOpm+9hNRlc87YOVkCdU9kY1fj0FR5izfQBU9EK1a29hbA4HnHIT1sQQl8XY+YTiYWMS2hflq4Ic96SnK0uXAV38YB8TI2oOKqCGSW9xcAcZouIGyeslCdQg4HW6YBbCtWjB6evh/h/CHAtnmjTUZm7S6kmMitJeY1hm9ewemBed3x7eG75vMgI3Cjs6iwE/HQHy3EgSGSlqul5PQYcg6ZRJcEn6MhpGLLJoWQNohcF4SM3Iojjwz+NS16OSnEkHne+88HG+/88JczuCJJGcPUGRnJfT3WrJFDGbbjqP8G8xFfPFlSqFCcVUo/hX6N3Z0SOhgqWNvE7MelCGrhwJUZe+4WDpemr3aDaKTBsf7GnxkuzW2w5pyVboNks3PDzTGSH3dliq1C11QygsnRjtXqVL+6t/UTA8kwjZLv7MM7iOi9Btu8ozsPhh3naP3iJ+NMy74liv/36g9enRBMxNp2kJVYI6yrtrOmL1m+axIZ07yD5BtXHWYds/9AF9woIHQY+0CGJDmw+JJ8RvOHBAg3Tfv+cRN1tMRNggPlgpslpRxTlSp96JrHepJKGZ+Jpipj2IQPWXVSDUkfbfKD8tJnpEiRnMybfUDE75WCEHCHKhcUymtZh2cVN+oO5/yqa3ek208c3u536DmYp2CtDepoey9/fWuyps69X2rJJUatBMDjHWFB7oVs
Variant 1
DifficultyLevel
523
Question
The shaded rectangle has an area of 60 cm2.
What is the volume of the rectangular prism?
Worked Solution
|
|
Volume |
= Area of Face × Height |
|
= 60 × 4 |
|
= 240 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shape1 | |
area | |
shape2 | |
face | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/VAR2Q17.svg 120 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1+UPrLZKvt9Afao5yKJP1iD8ed3woOP5NR/Bgvdx//2AoN1RsQtLIVVrWMGa0+gkd9IuBbRt6dmQziz3uo+sTdNanS7XGUKpTFZNv9wy7TWWhN9oJ55AzFDKsOvQMsWtq1iYj+Kov0jWe016lQpB7tCVk0+x/4qGDSVvjbjyQ/8TWRxgOsrI7V3lLvsZNU3iSwWOcj8JtIO9At911eNqLxmkL8zOSs3DFehFzfGfe/pYC8Vca8l8JAX2kF98/7F8kFZDUXgrDnNinE6/AZl77P5k5p/VRBTwv+M57lxVdH/5SsKmyIg+489/nZNjk/eVcAGdg6fcHAl9Sy8sK0cVdWiFKqOMXM69c6UNI1/wETzDmnrNTvjRMQDQmrSf33xbdPN38qodqVenZA6Qrt2azvnntC9s85P6nGxIeIG3ejQ7U20Ey/HitWNQ5tRhVdOxQ2tB95Tpc3TlGlYjb+8A7rCS+kuosYK9kgOnDVg777qT40ejyYtzQ1QyV77OCV/VbXRDZCHilWczqESvvdiOpdpYpuxVMFO7l2xqDM6Ia5NuAD8xWAu+pgebxCmlx32izy6bnBThNS0JS+zo95pVGW/lBwcLGfVIIfK5oV5teZzeoWFUhAEmsNuuGQMj4+ObYzbHlj+SgiY2UKMjqskEnR2kADuRZGI0fJ8bH1TMFhIpQCZwZxBuxNqszjTeiOpzxGAeF8lBqiIJj6t+w7GVs1km2JQO3TTyu3zsvDDt3RlUXSpkAwtMV8lobsaJIHrIAhLKc0Y0eVcYL86VriyzNbCSIwELXTTimQ0yrypZqbm1oV6B4MqU+V4FeokvZzlASZkABlQYOpdJy9iUx7HgiJzZn/Yxevei2/E40DqbzihWpsVqbaMm20m4MTseQZx6MLDGqt0sIsz0nDIroY60IBWjerL50v4jgw8Nn47L7LmYAm1WUlXqyvgin8WTp1ocme8EvRpFf8Lz0L10McXy0X1+LNU3yqK6Pna1K1CdiPfwnyBNh+8NjDnPFe6n16gUTYY90bKeXrXrxHqcphNiD7LafekJqoE7ecLgviaiY6tYKzKrbELYthY9FaztYYRdLRkLd2xgoFCSWOstw44ToZ+85ZdDTmnejsH2SoYJmCtcncNZDGA2J4jwDM1st35eZzWAU1UWmft2Gl9rwuReejvmM6q5VJHcVf7SxC+Qo8tZt/boi0WZf+fH6n9gfiR76z5qdr8a+IuiF5ulWXT5fbQ05Esj3E6goUZJ1EHRA0qEFt3lyLbe/dNNO8g0R7y1w062Lf8Br/EMAuvF3yOR5R/lRaFvlyBVKST74Iw9WHPLhWrm1i9N84OtnadLiAqQIJ54CjLGrPuyvs/tMeaGPNTSlqF30+8vqj9HNL4ymTgagV/PTfAAmbJBfK3kko47MQB4oUWqrJFVdl18hBcp8o1NZ3Hz/FN6TcAsZpyrNZjU2mmcTct4y0EXWXSwrcvLpSZJ+szk6XLiK2wMmhJFve5drESW8VilF++8x4+p8YkxE+WVJx0onB/EZoUqwcs2kUWmSZDnbfjdzGBUh7+0qcQZU6LD87A2Vrn3YUryalz6sl6Yfzd1ZfTyGNfCjM8dbUmeqibq9oqgSwMmNKb7RYduhizHmuSNjxMhlrWbRGOU61dRVU/yghrxMKh9h3hZPPjbKN7WbEVo1HzX94K2RqYS1Ad6PN67c+Dl3gfljuH/tb5S2H4lDOcDsSg6QpWhmFEad5RdIOowuUd7jJ1W5LUr9sVI9vj6ANavR2cF1X6QSrj3eMJsr6bp9Cq+vHuLpDrG/Wyuhgk7AyQP20a8+w10fKVKd1zNQaeB3sA0EhQshXUvGhIWdIXSglnoiWa0VkudHj3bMtMt5gBwsWRrac1n126iaery5xVKxdV84ud6Eqnrz7DIfeCZ506+w5SiTBwXR1CAQyHoek0KfHnanpzU1PhXjltOO7B9x5NaTtaXqUbnmqBkfcWUwlI0tuYS3sEvIMAnTiACwHe1YAeMfHiHMt2DX51657Xck2cB4NRyoVfoL6lBnGFCFsF1yXsWsA2O54V0kE7IaKWbrW7ylqXc8SHWlGxaYx9R3Dkyaqge38rvHP3eqA+LbJll714LjXoe74F+I+aj/S/AUnzlmesKNdUa/sxooyx46pm+Qaml0kts36gWLNHJo40fhLcGXUzsRCHbJESD9rsG8SiQEKtWNHjEHSwgiz6y8FfgqrKo8YEGps7aMJO8sr321J5D/RwxXstCxPUMZ9YyavZjArFtf9qCuf4H++0QkQF+4L2zU4MG8JUhKdv3xRqikOML/YeOT+g8Xxp/swO+eqeX4Mpz5RTWnsWalXpZKIfRlvrOVueU8Sqr63V0PcgFrpUz0buu8LS9nTctj3XzAM3SLOxLOEwtasSgm7d6zBa6AlUXYZ4o+Him0Mvj0cf3v8zdw0abnOpL/WF8YimJPY2+Poh6JLGm24MO4aykTXCViBe6TTitHPKOh1IBlRC8u1RtSHZAyaQ1Uenyj+aRJTg4OVlE7jBbYlEXnp0DRMI0y8ETvdTI2o5sXNezY8vnsNN3Yclxd2AIm7x8KCtZEq7fzPVERCPY94LLYOEw/1ecvFk106twmGmOcO94onsh7qN4GHd5uVj9Gotxg71CwSueZfpckO6Gx9I2qCQpx5wj9524Q8OvXd58t54ccmBFw5eSAsfFr8AueWgwegM5BFRbxSgsJOM5TnJkxvJoaRfVNas0UG0UMBddUdoa1INq2JYDIVUsiicDZRQrdUxsWw+CS9jHRfNSe0WC52z0FQ6wMx5OepHkN8L2aVh+BDqoIm9BYTu3bPn5oOxLhREUcBQFBOZsVxXfVY78LiydnlbPhw5KYAqc4EKB3n51Sw9v6Wt75w2mTbSSsJrxUb4hx2ry95JLEAIwcKsu83D4PT0hhWxAahcIvNa2kGjRtKPwZcuSVIwhj9uKV+Aitcd+eHCuNJGjDcCQ+q5OF4uU8h2SYnx/1s4ckcdgwWM/vO+q7ASrx+YZ+QBR1ei/vz5MV1OjOGHJYQ8jDGFRzjjcu1FjP4A9nDzWxoHvM97B+oWo4u4hw6axupbxQo0wQ1Pd5D4VpXmfs3kE8vE2wemI8aMdxdJympWBga7YXubu8NxfKb6orAmzRSkRt5xrxW2GELxlGnSnQ4ZkaN5LfWOV4JeOM9ykCXkX16kNsGI5FeVmqjNsmzxO4YBUfnGv1AkA5g03yxVjaA0CtO4UDDtZpfmzapcNjO964RLj8ST0r4BVTXJU2WWijbIzqC68ShLHfyfugzSbkb6KwOn7uasoqQrPfqRETPHyDUlTHOjhEavryTdI5Ssii5MNeokXBr8b87jwqzEU0zCkQLzm3DPby/FsDnFD3l+JqdPHZshCxDw03ehSz9ytIJM/WD0aZeM6gKTxQZzeIqpr3irDqML7qvXKYuV9mcB7nqEn+AtyYWAxzZU2lcQMlnpkJ4u61wtfNBBjIsIzNcNPilKQ/7zSxEBO2gVzBTNrwiub7M5RezI15tLgAY4vvOxjyhSVcHwt24koKHZedoYSSiHcIE5k9MqxD1hgC/w12GPmbsfo95iefA9bl2SekfQl58hDTHuzeK2I70okZVthWi2ShG5fcmxmqQ/be8Rva8aiUw+mVNFKcY71KvjP7q0w88thwmwo6cn29U8qfo3MxUQ5h7VXTBX9uzavWR4e6P1TpPlv+8piiFcYGLqou/G3nhk04ho1j3+2awr8oS5CPlDRx/g8QUwbG053vWTDfsoQJKd9fbBcx3uoEph5dXou6KpjL+VrqFYrnJtWn/J/dvOu6HgwemFdPFr0qDDNEaHU9po7uvv2C2Kd/pGI229sesOH99VR9YJiPesMtepQn5HtIhu2qNfFwPvx9ocwEYlg140UP8uajB4YwDdoUHugPodgBqrAsQ2ST1B5c3i+AruoZVyQ6Yu//kJ1uIfKPbYRz4pCtZH7aQCJI3h96QtwdhzaCmCIOYSG4v4RBEv62tPVxORKFBWrASujSFSa3nhPWDR6N6WuP3mNELszaNm3HwDYnSv371eEQ9QwYEewO5dcpjuAbRnPeNwco2XjiZli9b6WfIbIJvEI1S2yoB2ZM4wyXIpUmRamEAVj9PB3Ls5sHAc/tGvhbw39R3jDn9WC8Wi5j1U3K2VU+1fvnT3XpEYbgGdaZrTm5mxvHD+bQOMRQGoyxEj1hVvyHpXreDC/F7Ee2Wd20CBeIAAjG6ZsnNVLWd6AhBrs1tbz3Wy6nbrnNNQ0xJSWvtcFyTF4tTKJ4GN/AU3EJ830MW0IOohjpNivltVyLRka+qaE4gm2d82Dnw5Ec8Y9LbNBXQ5+aSwA5pNLoeMo6/VQKEgyfMAJaQmvaKEQWJxy1yxzCGmY4Ln59cB3IuTIfWESxNVB2aBisOs5MB9M0exGGJLnUi4mkjN7gzCbGDa21bsSPwP2aEV1XJ0w+WTO5Mraj/XSJBuB6+GwIZivQ32bPWaF15GSJI/qs5/gZCs+Q+6BUX0p5v5Ok2HXL1Ka+7TeeoReZbd1yawx+bgaHqGbjF0z/SVbcWUF7sBjdgBTgeM75IxW/ydXjucbuWpPq/Y6J0/qXFEPNmU1xUR1jAbck3Bxo2qJZm/nrL0CCaV54Ea1YIv1BGMaFr0Ei3PAGW/uCjtuYhYoqlehCAN5903aMyXZlaWhMDC43Yivqt7gfliwfghJvNbox6ykgGu2FVlVsclVy7PfFv9bUsvcO1KDYJqv4w266+0WJpnFi4l6KiSohvHhjHonn9GymAjZ4iTx/J5Yli8yonzeYuz/z1OkWi9CURHmF8zLHtb/KH0SUrcMZM+c9fB4cZyl2ifX6bFJMkzHbGS8sBvXLO7iyzassRGfoRsjb6PLK9xrD2cii7VW9UJl0WMeUyryBOrDt9SPsrRcG8RmJcMfBT67aBdA5moMbFT/afDRpTsaD6fH5+PE7ZaVBvai3BnUAYemyFinzsIoKztpKgcjlEKuH8BGJflCdrIB4zXJ9PONPfcGl/+EScg0l4mgdvqcsoEgLCnGJWoizgrG+ehHrNYB8tjRo0ggRlMxZpDYzRCxStsYGaBGTBH0T6LJkiXNZO7/Krx5Gj1PIVJcbWD0txUbXQhtiPS2Z64jiZQN3AefEomqBdmx3bKKZALlH8XRQNK4FJGdoEhnJnY+BCcPOSVyRe/XlizkE9CiwrQ/XXo6sEKJvi0OxwBB6yzM40AGFxBxC8I8dtSKtKRpxTP+5gIGgIIgtSnWp1knFLDTcX1p7AfR+GVitfdgwXBIaK2YRXe+8tsTnBjSDOaZujTUX/SUVgMcnjKg8e3Hv/KTZ4zbtVF9NZRTTPsVcY9gPBxGU4wisETobsEEwFWT1fu2Lwcc/fNxS+ud8KwUWVAbrA+IqcsvgWcqWWM358mV1R98LeHdafi/29VQGutynhgrU44ZAWle2COejrzJ2WVV9gXw62QY3LqrXeb9HX96IeeNYogoJr7BQW6KwYp9YgNcITn5WGR2KYTk6b0mn5+pCWXYdbwA6K22FMe+74+MMQQrThAwRoP+65HZduHw8w22wpr7tqs/5YADUNAnYyB1EvZHt1ukRoRiV/Du7QKWlvAuJFR2TsVTQ1eDNwZmAZV2Gh9Jx/hLa+6TnQdkqao3KHksqe4xmGB9WobTdXymMLpX7Mh5HSuSQvI5nQzFzxSWwXMBejx7q4nu46xv/nA5e3n2xLohdoOK0jxw02g/wLL0YWqelxnz4H/HCdpbeie9POb7PG1RdUfvPSnjFVDELd6ljvFHHZl771UtgPpgHNT6kl1dAX/fMDoac1ecGjxLwkGTmw7kDENNohTKznEkbr1IHXOmJBnD+xd8+c3jvAoVm0VWrQy8xW8rYw5gEiq8JRy+3/23VOp7DZDivO3VkxM8jUEqd8V3rAW4LcaqHorYg/qB9kkjtAz1e+I28qT5Pn9wKYeLOG+VRtXnSs3dvn6mqfgNS+N9m7pGx2nn9KUthu16rfDNOIGu3nG29VjsyMWaR4ODJ4TueGDVWi44p+n5qQQMPyyMk+J0H6tbnEIxJaYyNkXxIvFVa3pXeS1rH4yOenLYRZIxA6WAYtah/BJbxttJRKuzKtavhR5zm6b2VwnmqYvIdkfoKtd4OHQK0+8OaJI2VX8ZukLXMK+YdfGCacAZYosGdHlIRVbPWevmNmrwGZh7RdaciKlvEv07pRGRiquk/7WqiawttQ+nWWtCSDnqJTyK7UtEFj+sVdhAlL5Do1P1j799Q1AoEGkagy5+9ghtl1Lr5QdXL2ZwkJYMNCFWX8aMmLDd9BK3vlTsmNZW+4ksGeNxW+aW3mvRlRUO+owcQaFVjXnHm+v3v4BDeY1YCxb0VYLdpgVT+UMz/K/zZITbc2McKFElUdXLqjd2xjx4wus3/nSaMIxQnwRBz7f6MBPskBDSuxybrt95jytcUdjf+F0R1CCXR4xvdKYHV2AWq/qT1+YjY3gsxS+W89hG/E13KaFMURhHrAhHt3cm36azDgdaeYH2nKFqzl+sjpOoF5xf4ptrqyHuJrqb7f0o79mU0DgL+qNQH0xP9XR2UKcaOPD4UNnmTw8k30znRwgAh4PUraEVomlHmqv59iutUrRvIBtjTmKoum0CZfGGlVJeE1QraFaipwArA0tAFFOL9GjmjB3xUNGqeC55SkBwM+HzYxq2cDwPcK6MYe3dZmSG4aLSMNBzM1nqgiKHOK4JW3mXEDUQgDcjXVF/yVBzVeQSxGztfKdfkeeOczW6CX5+v4UBDXnqVDKBlxmpNy7OSidsLybibXshBaP7+1YZCY35BzQVEOwxgBqZM8GHm5IZSssG8FYyeEIcNU42yVRh9/VlLBfThqfVJ/NVt6t3ZpNskVVGX5h3pNbi9WDAr8i0NXejYoP3ycaLtmdx6atgcNkB8hUcLcMCj10Nb018mgW8H6QiVnuNxyR5QdXOhg1V7UXH7twVyvRnepzAHfbuzk3yoUgWSeoWPOi3NM2tJ2jx2fpM7vhlGD9VMGye176qW5X9zR+mnXOnb9VwCqiUOW0vXHtt99sNOh6AVyf9BeeHDPUL5Ie7yj2ZG+jMIyMpQsoIzG0tEiT83+tpeX2aVoCnjbML1amZOJD2tEjoiStbZG0NdDG6obG1Tf4kNWDCRP0myV3Qgr/bkOTW1yLgQKrWeWCC69FkXiXLOdD96Bnb4wcXBzuESAHTBFld3XCMJMlfD3bZjaRBLqHH+B9UP4q+v4Q9gGgfWLzVv1lZZHqnpJlxb9UXe4u03sGRcjLThgi+u0frvLZruljDw4dXgSWGjhGLl2yR1vs+0ZbWAY6fulRJr9B+lPUlXjMYrubXWaZN8TDDEvXJh6opRaokLKOKkyAIY4lGf2CvEburOvLWsD6IZD4g114eIQaKl9m8i0m6amSvBKUuxGEDKQRgmucT90OqqXrqxM/5Et2V+BTa80LxfXGzAjyBQwYcE/OhnmcJINmKKsB/Yy+WPQg/sLd94oYm4DGO9dU1ofEMPkcQGTapFkPE7f4FCiwHBpB+XPuUEoL2pPhQ/HDw0E5wgHXC1yE4jMPl1kVu1Qt9uw9pCMkqhsaIwWOMnFlgaD0+7PRAG4EL85uhG+e79Ld2nsf5NVtNNe4db2M17daYB+ou9K7L6L7IoXU+SHKYSBnhgyGkBtcfyXBsNHFnbPwSRumVuD+eYOfoAzXdO6e9wr2tjVQ8vpcSyhlpM4vk441ug5blESTj3Bx4oicKw2nmyByur/zJ2OglEmkiiA18PhaSR8gM8zJTWSvEwwB1Vg0MsO7lqc10rwymCN9u760imHyCkmSDhVK5iUwx8z86iCLPPzhcIj4fCQGbc5pZEp/KgB646Qe2qRPuCnyw/heV0XlS606z/J/s/zpy3C67MX5zzrunP3GYQ+K2FqX1z0CtHVLhDF/OqXAPq0kVeT0Rzcb7SMq1BQ2AVoD5QkFwMTMeD4Q4hWCX6ph/IxG8SP6uW61NALsTVpsgR2qKmi9PiHNiAmzne88xbc++IqfuZm2kn9KjgG5Y6+7DHtqB3Qk8cn6v+MVrw4b3E2Tn7gAYHi2CpC19wvj2MRrCUwkDB3TvUebqeOMeV9y6li2xkK1jRiVFCmRDrPUI/A90oSDkbxR3h3+zFpvIjUf8PYGxjfX32orJPZllHj9sKVOLr4LcIH17zV+s68BPFjKb+aCHxX0j4XzMhfW+Tbrhb2pjGusC4MRNgx8D+/e2FUu7BMf8c+kBdPD+6RWVaGAbR3OUkJQobdFy7RKJQWeiVmOh3xUlvaXG6LipNiVVFl9L6/GOw1EBz8tL6xb0lkPb0Pssla2P9R69D9hKQLd84BVYpzWSS4240jowEUGjQk1d4oL/s+lWMIoqcaTu1pC92UvitVwPxm64x9yu/O/HU4nuhfhBVNSc5StwV45UxsVmGpry+RfN193PKTTaT6mPCySaiQ4CSeOe51NYnH1XAWJoo3bnGhPtnyeSKUNHqAvRxeYWB8kL4397Q/EPOjx7gtm5BSBL80PYX5T4X0Im9crmNgsG5uCsQgNdbx4TFqb4CHpu4K6u27x50aiO5LRBV1jdJzkj2ZT/JRZffMy2qLXrmeS4OzLfKJtEBMhRyAmnT8dnTuFx3eP78l7CtafBSiLBMMxet5bsvzXG+CCGX6FKQ16VjDLOkS3MexI3HBo9GkWeCVvSxMcduNdwaJGGKHMi3RDWBotJnkk2zdrYKJxh80g106qU1x9UcQGQ6xQXfyQMZqD90OsLY81PQzaSiHiVmntkCepF/TttjS33+XWVZ5pntU+u1NOGyol6gmTQzuVhDvAFqu8utVrrU0JhaO13EH2IytGVev+EHeYPz0cXmfD4NZeLbSKafiTRsQsJjgId3DZfge5euLbFB89RxGFo8ub3Qxq5z6gPDr/lNcxAkMXaLYUZKopA+B6HG1UDM4wjFAdbLunSGLWNugBc2eKWLaSd0K5okfrvneZcr52ptNTlu/jTcghbN2lR35SQTWhb1RJeubWvmton+B9WX8cFWED7uEHmKTCeulyBUtztCAVord032NuyDrwYAvoDmwRILybVVfarF13Sd5L98boMR3aq135/ldZJ2GlFfal5eelWF9YsSTM9s64lPhzwnZ87cHo7Y7eiXFDWCgVwD/fZ24XJzhOkOeh1ALf+s25cf8vXkzIVCNSW6RMbXJncokd1YdnYZ+LMBdHvc8vXJ2A0aSClDEhDOg5DAbnYnJsso2mst7Vj0gwz1jIG70u/4OmeaF5Ys+T1A28HGGAAX3axUdXSCgQNij73Fl+slZNCKr0kxaPegDiGb9gZb8QS5erf+2/qc+BUW3jfqDHhOwx7p/h4vRglW0zhSNFeTgy/NyarkaUfY1i5D+P5aRHVnLCWC1ROYnfzd40GmQbUXxD7lMkVpGU0FBacG5sEf6Be8W/89ULO04Ue0qvh9vtOGAuTzBkN4ppy6QkM2w/EpNIO/ebFQNeJN0AHLiFURSLVMDN+etV/KCZjXH96/UF7EnfBRti6PqYBPji/QWcIszU9oqKI2DTsOYva65HIXe/Ysho6nTNsXYrR9Pax015v5Ps8ZmRB6+i0OZBmgAqpYyNv/8QKOU9njmce0peB+iAbe/bG4a6OzdyVUjKTKZEuJpTytbxizqOEmOv2e+G0fcvTdB4HWka/d3MNyt1WhIVET4SI9XOsWFUPVsTCGAOAD11wM4A1J5uxJygUmxUezLDbVkhYJOOwyNSQQ2tTJ7/0gjkQuYGFkaX63lbBwool+22rh/prAFJY7Jd7hhlTAv3SiZNSK5x6QsGipsgnIvFVFenUh0pgCANB6WWi32fqRPUCiQYfxM8BmenUEvkwHY2+if/1xzwo7WKlaVmOUhmIVANp2SrvB1GdIqNTSqbnjxP1OFr6I6lt4BkYMsOtJp9lPEpRoWtke7a7JshhhPpDOuLev6rpvuE9njg6jALZ9u6IYJz6eytwb1Z5+KGSoSy5lIGQDmSPn2U4w/GNK/R+FWfEiyHAXUMzwPcl5d6sUCOtFF+AlXcSz0BihdOVC9z3CqYJxM4I3i4LuaR4ydE7GJTx3iOxT3Q1Xf+ovIoTusuwrQ2iW4yWxNAfGFkrUln4vz7XdRcuRB9Rh9MN73ZFirdL0X9wIr1PWnyoWmea5w0TBDaGfNnVfoc2yaJrBOAE1QqbV5Y7asb1OZEjjmKkf1v34AvAP7KCg2CbRpvTVLQufMMYuy6Eoup9uUu/WOZ7X/rsWi0n9huTIBLY6MgS1fpfhhtOHB5Po8Jw5Hs7UYKm3QmDNLpQ3mOsPomK7Pwqb4Rly/8ZAojSTy15/V/3SI7ic9hyPX6hbDyWJVyvMw7+dnckrWjLk+J
Variant 2
DifficultyLevel
523
Question
The shaded triangle has an area of 80 cm2.
What is the volume of the triangular prism?
Worked Solution
|
|
Volume |
= Area of Face × Height |
|
= 80 × 5 |
|
= 400 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shape1 | |
area | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/VAR3Q17.svg 221 indent3 vpad |
shape2 | |
face | |
correctAnswer | |
Answers
U2FsdGVkX1+uGAIJL8EDjGE8bvDeYe09r+mXvby1cARmXFrg5MjGJz4+3LWJV2j9uzzfPOgvFrFk3qLbRHygZihaC2Oogy2FOdIC5D/cwAsM53w9YvmIawPfYbBsEAkfO0Qez8pJ3sqXL4jb8jua9WfK3i3CMBs9P/jCnEHsA4GszHh2iCHcBTn3UaS5HIQ3oiDNF8nFqqfbTQrbtWGzuLTcxpLUuBPMGuJ8W7kQlJMLDkVFk6D073e4cn50dCi7hthBYxvXGPyB0DA4DAjf4gj/HF9qbAaXSVuVv6COtpfnU8PIX33yXIumIPrhJ/bHZpK6DyYD8PuaZLYxVdrmZGYHoVuEmygrF9dIWgyZJ7ibsj7JVqvXYs91MlV/IOSav51+RfFvTdK0Fc2XUY+39O8RRSJalKkF9XuJZsUlHfLzUjBm73iGJsebfQMSM9AlzMxknr7KU1VJvavmWjaFuUPItQJBpDBeuSE+iU0Biwb60De3YlWQdua6y4mi96GY16ibeB4ItCjrQcwEOaRAyk/ib1hoeDPzBm8dywxe2l05NnKwUEssMk++Ct1Iy/Y8H2WkWH4MzEIJOE1JWPZrqzVYl2bIhpGmjt1XA/VNPpkogopNscSWCOqVoQUJPOHhpObEcXoVv+5syd5ILuazN9M9sFn7mlJq9+rdC1fquT0ZX8dmdsFT42/HKL6ayGYq3gx6256Dp1l0IU29XXhHmJ5Dty7PBUfUw/dpe7YQDIO0/msGEFhNe9Bjl1VfX4mxjU/aPbR/VvTIeCDcZfum6k2j5qn653yfm6b0q20XLa5WSgURiLJQZLrCN9NouZxBwWxU9gWc5z2HZmXyQ6irUwyGvfukeWW0Hlv9x/ixHXah55zisS64LpKIbfkmGWAfj3nOrO7U/eoqx6ETuFpJAITQKMre3WFuzdeB345sU5attCEFcdtjL5AmkuBo8mBMHyvEK8cYVOs2nYMEIyBBIV/MAYBlseN3zDgM/hKTZeelDxqvStKbI3L/RV5jm99p4ZkpXnLa1eqtOs/KH5SMhu5hmqrtdDUenGbWbZQ7I8Y3cGmRaurrl+u1cD4au3Y55ro8en2CzsynNz9ziQoQHjzr7weJ8i+rhf8Ooq2khutYTzjmsLLo0Cj78aikKH8p/etKaPwNGKOreVBtAJmo+6aXBq+bYUKlLMdniv3Ho5xmiwxbkokhfPpvPEEUYujTqvpTvDHu/KfXvWh7Uj0JospCYeT6mfGceNgKmzGyMQJAAdF0ZVtDTWS0Xi8JKWjokcXZoQIrtHhS22eT9FRjUr4QwyHW9K6t8hEfVmTV467MREiV2Df4TpUzSNdd7SpWroiKDgz0CKeuaxQAjrEaP1ud10F7vfOdm3U4ZQkTNKM4tmT2g2o4/R3GVlJqG6/pL2jjI0Wyk2tfz98DdUp+XmYkvGUu9jge7ddyKOMXqtD7tsEuoiBXPsFnq7rwGaP2L2+unaFp3As8sVQ4IomkrpHWo/0KLfo0YQyV+7LGVYHego8mVzBtx8aC/NQavAaWgPk7M3L12IbbW5oDaLWslI7KnDakdNK46/dJjktdBLZPTpcwc4OkTf77wWrRzkIVLPlFKF7Bywm7sSd9M+VisAU3Os2dqTheoKsSJZVjqip7uYs5f6AgsVOldwwSbhpo7vi2qEe6j07qng0Flmd3mrPfroEN8OXy3QY8psIha+a/FVgFRz/o/mZR51V3bjglf7GzYU8xhJgstIZjlkpWfg6Sv2Bh7jjYWtoRpydFiZBOpcxOaDLmrODJa/M5xh8isN/snfJrBl58qa79NNhmkzqrY1xWkivqKEjmXos9ZE9qeRWSJc7xAn3ygnFKOWzsYL0p54JRrMWLDPT5xQW15krLe1jJ9Qb7exyvOMpwBUA/H+ANCnVuxuwlVTzkMaVxQ1st+p8HVaZvetiaTnGf3x4jj3LeEFixYNwzN++/CZPDUjRaNhf/BFhXlJXrwoVQ9y4Zihmz87V/tK98Tm34hMC7u9cWO/l4iuBsVzKTK23xk0VCPVXXLJSJ6pqvuIjwjjJjtsDlgmqTVXLaEkgd83h+p1G42+ZExdT8h8ND1Qc32db3m3hn15MoygW6ONd5tBmyNJDQtotpo0WBNQ5B5cmULnEVUH1yiXn5GL9xQXCeOHCFh4Pwb+qL/b61gP6pPV/Vk4un2177WMzhAWeUQMwQLG0vUg+cP+up+Bsc5zziMEHJHKz1Xg4g9k4gidXnpI6Ti+DDms+y+8lpDvYy88TYkCprHnfmg6tF2L/TcoVrfgLgGG48Ub85Gmj6VXPCfoaYag57J9oaVpGaCPEe5AqERBRe6BAp9xtamwuluHhOq3wWAK0AkyNNNcCfzE7uRhxesYQFWCWSCwrlRg6ZWWYuHTVwPn+LNT1UblYOZMu+EEm1uP027Nk60J0YA9rj+Yzob7ZjSaVAzRxlAv8DTJ0bbBn12FfitJuQGV7f1EIMcUrpvrqxIJWmsYjo392JmaGRB0oINzpW9P3TgvCJZ9PjVSRogCoL2FlLo1TiwIuOpu8Lp4IiynqBGujTyCVFGNVLFLs/ZZe/1H7H85UrKVbbVp3YD6j0n2aE2lltROvePn+YkTdGfDg9TINOhACoyQOw1mqp/ks8kaJ20IKcPwcSZZ856XUktbAsC7gDfOh8JTnY2Z9BHNFtsB1rQUFlmh9sJg+PWT57zsfv5T4m05urNvuvjVVnpLkykymCCBb3Deulr5HHwCeCHDREkdwP6KiDdYyaOuhr5ruHb5UR0ePwIq+19FRWF9rEDaMRdNJpXoTtl0s6HxlQ+mJThgUJYDf1X0JwtHn3pzZYj/s6epVrqDdfiRJkR/CAC9zU6NwxKO/Iz6KmWUTbRFH/cWd7v/rLJR7ro9lidZdtQbrac32VqPCx87+oKe4LorZqyG2//VlK6ZbVi6N/m4jR1eJboScYSQ5W5+o99TA5le3XJezZ8UfRD6QjVkZMxUmDKw51uDyEDDMhHW1q2cRixMG5t12iZgPcCAlyRA6CTIckIcO7nKOd5QsWkMbbg8rNrj8Xz2kRnCSuGBsfyBNh//ZmX8jrSg60YlMW4N6hNJRs+XP0h86u+uECBA5F5EKjrsqCmpZM30KUjMBWyiFNySmw1AbukWN7S2CJjd9+XbnjGC38XOgzbqbFfjx0BXLFiJt3pCMkdhS2Yi8e96T3nWpwxXF2mlWfoJYgt0PmU0+Z6USjo0FeljWV4Fbvkve53np49IkI0HC0puk70VeJRaqG1WOwmArljpqF0aC6cOrL44YN6trPkx/leALfBEjauOQl16AComG0xM3E16uRp7WBl1VHTsWRHSUqX8wihWWwiP9nTbNuS2mVWcwWVKo4wXxzil+c2sF0thHRst65kf8FhLUXhPF+hcFh4LoaOVM0qzIn8HXCTQAnmC/U5fyM429lj4+PcAdcfEkybdVdAMHevizd/du/CDuSri+60flPudx3ZSfqyppxKoJIxz709EEVfS9KqpILGPotCmKyNlFZi5creIzZCGQotTnAr5yx9cUMFxTAJqsjZPIi1/xSq3u56VlO6tYT0f2tBR0SZmpkNgSzRLMFFW2oOo+4H93QbwaqkhipWqI4Qd9w1YSIjoI8yyVOCg4eGimlg1O6+OA0F3pQat+htyN0CO44sPoAXpmi5djzPNr9hvUMmLnIENtMAW/yDM13uNNjtD/t4i4fO+U4ATuJPNKmGfSd+r2i3SB2mYnMBhKEh3lTShEEP2ndlUU4ICpMWX6Ru1Oa+3emGca6usLi7iLhhwcefdwcwvx+hw35wsDx+Rek/gYT1UsQ2teWe0N555HoukRjShmquE2fkIakkYnowy6G5gUQiXtdLhe3AKl9jnrxWbopSL900ArzGGKLV57Hp2lKs0T2BmK47ELG2frFfXfz/83757Pam/V1T90ZEl7xzUVnRChmb64a7OYMBwIhGs8d6ivFM6d2Uqs2+SsrhmG9wcwPsiWy65c3ESsc5Sco0ykP8J0LPAoxO7SASRSyfKM/Pc5B3V7cnuRIDjNiGTDIQcmdZ9NFnRYSK6M42Gxg3KVcGhpXLx2nQqS+90zX4IhDAjcBTaoovNBPsZ3pImKhEzzW3FUtZ6YT13B5K0xqr4HeSUYuN9nnesuJPWDiU7pK6rlsVUxVbDYJ2v5KDQH20RlJXR5Zpkv+9OVmfSOjMEM2vVV8wNoV0wNfUtuDPQ+mfmpSReZcG3CQbM6R1w9kwHwjjmYq8gtPL+5oNC96Xrpcfzx/Jj3pMOldpbYBe2ZJLXF4SLHQp/YxvES/SghhUBTjlq1I2Aj7QrvBrgYYMdyZB8SoQ/mlAnH2ozjnlLpbc7UUQNy1NJfcK2iCKV8y5y7UC45me0p36NJAXBnOtdK1x95rGTkTCRbYLMgGmr3yQcgJG0sDvqKjdLEJqzSqVzadDQLrrBCqq/GV5CGLkxOR05kPA88Ircxq/fCuyqE9cLWlmMAsyZwq83IiO9OADkU+U8G9lOoSxADhDufhJYbdyZdUK5QKqMDp035cWG1hexMw8y6jBrO9o5kont1jkSoli7GIuMU0INXuY40ASWoGRnhuo1uNBh7eEDkDOzFqjr4CWYc2khcN+P0jugVFtqoOs+Vpqr59+QGeuqj12AdmjsVi8yU9tUJ3/51PV5ucU3VSG+b2NU5uFCN15aHtI2pjKk5A/LWIQDxSqe81wKNYsjKgycVA4APL6/us6LiGABNI4iEhHawbBSFhXk9kyJBOnSkYFwe0Og4h+IHz/KbsfmTxcJSPX9unsCUs32A15/EUOYdbWTWdL/Cb3ryNDiOar+BCn3SJ1s2aQADt0Iqwf/w0Scs2sYUd2Cpn7Gc89SDbqBzkfYavVDonK5cgjnFQW/Z2sMJaAIGESqT5gEIgOVV7efA+zp6GZ2TCbvTeL9m6y+6/AiYFyIptRyzSgTuatEdfe0sMAMIPj/2QzsEgVNVSlWGVDdXg3ReNSbXaLsZCXatAuUY9UHdjBkVhiLHVOEG93g3buuVq/4lfLlpTBJWqj1MopHpThdcsniQCvsKHWXpZCCXDNatJ7C1LrRgcUzBCJnWn3f2CBLsWrR7F7+DIg3TSIZ3mdS3W6ZbTPWc6DvvsP+riBVsJMvBOhi77xIGmEwlOciuBkN3oGqCx2X8/NhF7RMRyMDAje1c9tzDidOEQc7y0y49bxSvxZ1zH0XN3uwsyOu1Hg4wdtQ00uWsYgpG+AIcvkmmCmGDdGtsz4Se535Kd9cVX+7DUF+xJromOtGajD9aEGLa7e11QKIoveboyiHuVpF6HWFQBSIdwE6Z/yCuDBWWUMpiJz1XeqzuyqnCPk6lQss3sQY1zxS1MkSm01pfhxDvNJfms1m4/tXTJIovO4WFOcAow7EEC8C2z7ThRVg9Sl0MJfa02Zrk5Ye6Y8jhx+SQ0wlk2I1QEC6dT4O7OfD1n8c51dv19Ff83GHG3XH4tKmcnsWTH9Ogw0lIELMEndrncMrbuC31lfJWmXEuSrwnfctTYs3I6zHdBu6FhQTmbYHltEM2unZ+qeId4tIbRaQT5zTpH/7xL2/7XDGy8a9xGTZpsfWZ63Jm2ff/VBh59Otx3TvMT1O8ovSt1biHE2QT5w9mO0MHy2Rt8TP38cApd2MULsKds9IYPHDHO6VbU3WzgTCfVtLBLmra0rcFFDltypdhgzYG6MWv9eKATsete0M7vhdGTD1USBg5LjGCmUeE99uXXFEBbOenThHM5YFQupfinnOwvRlYVUnWl/bsMUsD4YXq0Lb6fhSyLpzcLUwFeMre9a6wMk15+mRq3jU/ml9Xqh7jr59TjHwhA6eyJcTb16YYGh6ey3fNP6j1yqAJgSdNITeZM+DcK/sb2VvSz6Fcw1y0s4UNAIJ3VKTdo5LX/1lvRMgjBD/ZvoNeCQmPIzQBJvO+TfETLfNGnfcgeJyaG/ExQ9ijvB8Sc/w7UkkkkVl8njlRq24SvZtJUwEJbygUu73zuRzXguwGGadOKGOPlwCot7+YVMa4TYvqZvJAp8fKiCBmIVFcgSKu558HzRTK5d8W9VF/h7e3OXeoALQb1rjoXbmat3Jv6j6vvHo12ROxb/8RPHWggA3FSi/ZSVdb3g/D101T8bCSxS0SYioAkZ+IjQ/+m7je7KKLuLALkqkFtFivfWJb0nIxISnhZgO/olLRP3l8t/d8ID4l/IlOErSXUldxW1sowCoopmrMp3/MqOeQrJcg3NzNuvJEdm15qQbrBWLZjLkqa+CbWukXghICmUlFHByg3/giJHwVRvau3UCD/s3LMoCG8eof9U0z5fjr29G1ier4GKqqjwJpDHHz7G6SDvH//sDQ24JO6Fop3HMVyPKVw18YOqH9UJR01qWWAJ4hqpbJWRnonSJrKu+t3fO2UE6qMja1POXOfOoD3Zdr+q+qwZP9AeAJHt8GqU53+kE8frvmeYTqeB0HKYtlO147x9VfnxY+GD3+JkSAaRViR5//2OmgbbjCO3zxHG3qAzFKiPAAcyKx0ss2CGwjuV26gejMkFPblpH5ji4sE1ka4AQp3HSD5SLczqNlf4WOeGqwlg35lUlnioQ6uukd44Xcq1T0432imNHRhgNOCuHfGJt7gjFBphkqH9MYdgXOpjYYnrLhAyZuF0XelKuPds9807RlqWX//0f5sU+GKOl8QOhYi8UkXWCn9sVZEAO/UalBwL09PPe3/IIA9n7EdebDFMJJSNWeElsw55LEWd1QmvVRH9BUwBzxKu6KQ0q+Pr04KPbnsvmlEer1NCekMImfFivyH/pJ2Fk+1hTW7q/dvX1LDydi1PIbaAJ5oMmoD4XIoycjDVKhvXfwgELeHyM/eGuHTPJchYD4HLLwnw9y0FS2gxCkVEinYpDLa0fNCv4WfNFic2YYmNQ8XhKAQKkpmZ3J3UEQqDJqdBPloHsmC9wBKTmx0HP21fp6kc3QxhNAZcIwSr2E/ebVn/p38vZzmlKhpeeuIDWkEQjV/wkT4fXCC7tm9QjYvXNFxZ95nmabYh3mg8Ltg74ZNCqsG9ViW5LSXmSYhasjXO50DJPuqUWQhnV5Z4RSe8nlpYW+WvkHozpqKU/cwtoWMja9wSIMfrURwRBHkfarhA/hKMkRzhUzsdiMXzB9HFdsAZ3k2F0tap+H+hAUPuoql90st9bJT8UgD8AeLiwXGNmFd4ANi21omBLvoSIWwssPRpBffc5A9yQrHkkiFxFF8nH9UtAziii7or1UMv9njJICNi7cBsdxg1SizdkTsNdaJICDXeTe9kypVeRGhyPEjSDS7P186QRYcwbJV7sBvN4G/R0Kgf4/neiOSEEDGBHuLtPm2xAZkK5QTNA64hnb5CJaXGt/rmo7i4PBUUoto4BEZ65/foUJ3wwoobrnZkVakkQvPJTyj8hBOX7no9p/ttwYCqsrG1ncS/Bn7MyRe+By/7dpKoevLd8cIA91onKtEzNePeDb0Tw5xt9aRrfL+sP/6ZkpUT6texFa+paGOtE/pN1tK5GByAvNEEbFVj6hYC6xDB3Uf4cZnW4XR8JyClpJRCMH2oRkXV9TLgXhqsEYsripLy9yUcLSe36QgHHfNF/RKhwPyaYENBCkt1ilKQXphf/cH51lf+iOESkT+stYEXDUkEDokOm4iPgj+iU/bkbFEErE16tM6Jxgn5yzsC6uHwZbFe2C9oLHvUpu1b7kY92+/lMvSzxAeCTnPursRP9/Cn9w35lxC4cI48gU4tTmgcVZzvGTqEMeE/uGqvXdMJF8XROfVq3etDKzmdkcU1S7B/Kml8i2d7tIvGa4XUvbX5TAZtCqfHk93t0W1xIXn8rNH8C9e972bkWZaiCZdBp99GRkS0PEopTIFHwhTSwpdxvx3fLfzuldKsJailjt3fK02QWn0EXqzP4/8gNsIpta8iFxlbCqsc3wkTAiv1KegNas8z24W7Kd0powRFZ6Liye2/6ttLQYsSHred5gvg3+u67zAOwdAP6GdkRzlePGEUZjlxnCf43iY3aqa0H4aG8WbexuXwqDcvhWmAmMNc4ukDGbQGu82ZtQOJHrUBdcwAll9kluPM4ui4MjkrncofYgtHO/3G3CgeDP8e10bd0DN6w8otqv8SU905TA5UcE2NKTGOvaYOe8tGRKupeB7n6n/iWpTXR/NM8ByDQHP7H9yJ/M+XzDqvc6xY0Z4Z8KY7sXyA9eEvrYYPJPNQKiavUwodCxIQuyAf+VNn3KvO4SB2a5l/ehCNxSN4yIG8NqaZeMK/1UUaFRxW07KgL9A00ZzQ7IWVvPxuCXBfDwskVbNnrpQ35FhgSjE7ykRVwqzUDsWr23BFkMXozUaRjpB6J0S87iIvOBohdZLNmB5PmGigs1af+yqqKwmcoHmOvFcL+dgQftp8i9u6Y4zV5xAvoIxnPpBqY2aIfThHBUIU5i2inZ6WC7Vv7PEXbyX5mtwqKV78wH8eRFfs/+Y7BKVbx3lW/Zvk9noWKguIpije9NToDLCefHzEG44y7tgc26XPu5DnJFIuAr3zbVKgiTAuMWcLVG45Z/N33/xI8pR/WoRBFQperZiuxXbqz9V0TCnDNrrrzkyfYJXRexn+Um/DCuXj8WhUZleMICyNotxlmQscRZ5ggATnPhtiu8/6b/QwQCTfeQh1VW/Yr46FIrXzF0QQyDHKs+QH1FmobfvnRUyyFiFS+7xUaU6kZee8ZqWQ0CXTK9GomR8qpqnhy9gB/gC5D+GAo7EhqKktgJlEaGiB/i+0z8g0/IRI8iyL3DvNOI1s1PbpbHt19GniA0Kp5LND++THBhOdBr3SrqN7aiZrv98L9fdI8ewjL8v7A8Pc4as08119UPrjl0JD6cnZXUUATa3keiyP9ADgathzLLClTyaBg8MjIs8uu+voKdhSWqobmyGj2r2lhFelkswRttTQKi0zl+ym/C8lvDdGdlOud6qkuguTW94zImuuei6kaqMFlKl9BEBJcDidcBRoIzku7pgJfewLpo7jxOBwdOiIq+d7Md+9HQtNRGtnHibFvALkej4oKMZiG8yb+ml4HeRHShK9maExKxldW8bEBv+ixrwIv+3dIxH0We3+d7J9rkloatsCHY2OCrYXQpvOuDwdWaiIapzGd1pJ5eUNYZoo+hxzqrC72i0OYc2o9U+4VdiYh4mQsjV7ewQ7KtrCyNtatV2rHKzVvk5IoXprQpLGu/InKb6YbzgC9eTiPeYKM5n3m5oiu2FwGg5pP2CJDHe+lykhVUoZIR4zzjmeJ0BjXCUQu/ec0B5EN+5dsvrXWpmjV9iQKd2mcUEO/PHb2RppPTwk87BDrsd7EpTPi1oXnCqYkvgWRCZYbfwFSz23ZR1csVuv2lneOqGIDlDtRnRiwtroCSAS6UMfBvPSKtgta7ZvXvrnAA12cT2lGnPfN+o7snXSVxYU9Q8VHYGoJNgUz5yDdw+j6HUkw6vmdYee4WKDMh8svPkCOBx2i6TDVa3sITGeuQDxs2XmDSoqsQ1BTwfPUuozxm0qzeax+rDWdCOLplIIN63ZXNZ6J2FG/QWbG0lFpdVzPSPPjoLVpxjka4Zht3AnB0OWCAmFEB01IUukdn0xRd/n0AJ9KkF7IKjCm3LJWdbD7LKH005uDbDI1wVVYQG/AZ16gu1Fxb0vUM2selvuiLlO9L7Ng81d8I1B7OWK2ssy4Ky0jII32W549+z7RN3eWleyqFwV7Cc7zCRyJiEIuRbkqlOf3n+iX2IgbF1AWwt43mGcRDanDncTPgfAq3/8wOzMz8senuM+EQmyHsjWvUnbfS956ct8/fYZq3Y8Y29MRyuJX3KBpu+AvHbSbBBpOHrV3e+k2M8+AIjcQTDRspQdiqMNq0CZf3z55y+lL0dF4McKH5rcteUv/u+8Nn8634RpWGP0vvhz5kMAaj8+CI1yD4EVjbA7IO+4jVCVgVSqNaH3lcftXjC9KlZq/ASArNViNrg9bi5ER9fO/9ML9MoVy52LoMgdSf//xhIMAoy3Kv2kDzcRP7aV97K4jpsSxEcFrTk0eY/y0prY91umbS5ymrNwH4qcXkesc05MT3vFvletoGx9+E/qePa/a/9M1IAcGPObsq1qIe7+TAabJWt65lfPfpJZzud+wOxu7vADurrveP15CsEKBTBGIu6HQnZE+FF8gXXEhlQNDtHjDL235sTLaFqbbQsH6xDJASzX0ufQmDvdoBVkthjdgwmIhMsdJQHkkwVrxEgoxwy7vMFygFwArlugiZdlLPgK/LwAD8LPcbgeWqJ2kigXnqsw1Gvk5rnpRws1NZpsEdZlWwP/gBBo2Va45pXTESgGyv72gHn7JpSpj4KHU+ov7Y0Cni4xdH9cR5n2weVfcX+FauusYKqlzx7
Variant 3
DifficultyLevel
523
Question
The shaded triangle has an area of 40 cm2.
What is the volume of the triangular prism?
Worked Solution
|
|
Volume |
= Area of Face × Height |
|
= 40 × 3 |
|
= 120 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shape1 | |
area | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/VAR4Q17.svg 120 indent3 vpad |
shape2 | |
face | |
correctAnswer | |
Answers
U2FsdGVkX18JGWfTlaDEvSCPtipRq6LRxQKAvcg7ln22RVLY+ak1xNAZsFCONLCTeqXV2qvPVEkiMqyKHAdlNgbsRJZkwMOl78PPhWflsaojSFLEnwBU8X6x9MjDdswruY0+bgGrCxymXpc5o1bj5/XqIvXlPbl9nrcuNpQfp1OY5sBT6A84kOiI0PoL48MTrYHGo76/0coVEdgvOvfNjrzig7dkytecKzBh44pGlckOV4GX//l8bSQpKX4V2/u+gfEBqWEC5a8mZQZ+jYk/RDQfc4ULrV2ZXd+t4owMyM4bekdbsdtK0LuZo6ku8GH/e4pfKE89HZV2aboxUwosM9YkRs8BilWkfJv7VvE9N5Uce9eq96SfuJnlz2ZBntFf2nvnxi58lnAN4Vpo0P+VAiv4V36WhTzKTDI8pp+wvVdzJD9zOGUNZtAXSfIGXhBaCAT8Y1hvAbg0HzjfammclI9utHbE6d5ZedUr+7kT5wqfnG76kD73BRPM7+uVqhJ+1j7uEp2QLPvql48N8/Y3zaFIUuTdyq9gkpWjGYUpcoRR2IxtsRe6btl7G2fsWTsanZdJt/q5X81JA7s9mDuUyLsTQh1bUoGAOzqoNJt4PJySWpN+UHlS2rVC3APO2Uc6Jj0YOY66JViijkc1uZqQq6JEIi/AJpYFEuGSSlQZG3KwWZc1RrNwNcuIBhUh4C2hIs7GqF8YZItDFdLWC283KaRlK5ebDt3vtecjg266f+ZrW5orcxVwGONhEIQlQ+CSOON6+4zjGjbKZRlBiT5Nee+AoLcwcp0P24srGad+1yzbhWw9Ko9xNSDw87dlVv64WFneFVA1IXDjSjeXxwvJmGcVSxwob2eDaEh3vr6NlJjKWV7uxVmcqvAokeBjuPffhiwZw3HGXDUt1l9tpPeDCocIcVzSwGsfY5+bJO+HEBxXa6uFarpX1k/exCDhEAoFA5pYc+HtQEPGH4J95D++ICDuwR6TpkFJbkUxS/NGybM7TADMFgx3xG2yMqfQcE0s4J8KecG6IvNLdV86ZY9AhAV4msv0Nows49Y7dZjN/pNstw1QPMMKLYafI6s60QAWeI4xFK8uJ5S25zPQ4PnOExk7z7gDHQLsaTL03n00xpZ4A7+VBD4dj3x7v4z/d++/numA18+fU7RlcRdWShsp9a85ZSNoLeOZop/Vhn5N54mz2jMiViIPeYXgVXY2VCkZEpg4Or4fC/66O6/ywgyyvwMXsRCgs2AkGMGaDjIdWqW+8BMB7O8sRutPhDCT/ss2UkJCBd/PQnNvMhVinY/9F6gZHpDmED6tzntbZ1cWW8wFaqm/lxpIUFkhtCaaX29cJBRCR927W+YVSitEf6Vx/sGs9KTUMq1vwsENy/YV+8cO8eExLa0EZ2RShrWf5HMFD97DuML8LD/7Ffc5GjGeSIcDJa+6DWCMhmfLBa+xSygUWqgiPnmguqixs9G9T1bl0y5zT6dICV9wBxjqg5DwuwY1EdZ6Z3NHOfv33bJHwxEDIlLyvD9WLO/bklLTGuAVgR0FNpnp/o674l2H5BBP7TRX1SX8ZqQPnToq45VYHmXOL1Y1WVHedzmW8Hgb9niVbnaAmD6DI4OIEexM0O/zOuv+43n1jTMIZq3bmawHmEGPSIP9zbYmDK+EMORJhTUNWnrRNkBX+bxndhTF9WwoHUF6I04RNTPgViZfG5CH6M3Ig3G9ZO+tZVYTMBFk3+MrncCANOU3G35aIgftireG1qOTVrSjUkdnrT2t53EP/RrZpAElFUBpk94t5E2zS4XLXKvvHu38wEGLlt6m1xfiYqbipAjPirgjnT4b0iud/GMJsS85pFOsHTHL22Z2jgA4E0w81GKKTHhdDOJZTSe9hB02tDYykW3F3stzyRxkoxioY5b+EZ21iO/N21n6cbWaFLjrd69wK1cRGUcglvvNyLrMHzuopY6HQ+0oDtQStxj5FkMvvEXGGSc4XbNMAImsGyQgjZeAmw6XpUIiQhtmHJQZ3Ougr8MWfjNCRJ7yefw7g3jqymjMDjlyt/pEvjHiYtKHyU1E7tTodxz9UbjulVzLUrmCWVFmogvJdqfbvxHW+zBDAP6uiDNSJjmmZTSb1eLieJ+/5THipXGlvgcxq7+UAA6Z9AqclbecTbf69ou/ZbOVqTYHKYzjcqonGke67VTvxW7nDpmb12LZ7aw59W8wTTivA/c1lMylkquUz83y5dF58S1QTG3B3NbMko/TtFmCNih1XtXL6XR9hRJN87Tg6qSv4Su9XwcILNDpBg4L3X9Rr+VmaxhH/SAsErYb345DYNCwmwo6uZmY6XE0vqB32/LGMpnv6/LrSyebJY328CeR5aBvWc0ZEtpr1vw6mE1R7I1wneFxG7BQQT8/XBzJ6Q9GfeB/verXPxaKXEgbsg1Wx4vpGBx5VjUWu74owNkVqG0ERXbrdPjOZOfm3utHHFfdsXgg/1vMP0NA8YcVLWO3bnEM95VVsJzfQoNWAifVSinPfWls5Ie4vdiO13sHch9Rr5HWB+Ogj5Q89Rz2FUF1ZhYc4PSY//PRJx3/vjslNn3GRIvJtQr+wAZAGHuaJEiJX2z/fPKzYAwfYciQ40HZpDn2Wc/PZsuQfl3AB+UWL0F5VoXsXBvsDy73LCBd3KEaXLSwpJnwMUwrM+GdtdGhfgqu6rtOf0fy2mcNnhAhCl4pBlXmElpEKgrKy59bxws2Qfo8a0ihYY4+3nZGlVdGuk5Yt6nvtuT5HGUTD4hAT/WEmTHlIttZK/Rf5M9GvLt3lYrnFIeZcZ+ggZDxU2GdR6wAsrk++jurx1iMIaQvL17ffsh9uSj9jzZWTTwRvr39ao5KP5bPFpsQuOC19vkuvU4Y71JZDC+PsljFpm/0nrJw/cX+RPl9H3smh+cQLj0gSNNuqZlC5b0HKThZoiBFXZtcKrZQ5hzMUvar3TfTnEHzpTA4XllTGSFDJYF74beIKlxL6FnsslTwa6NLbZUmpUF1oVB4yPVkiOaqTaAJilay+Lk5fa7CcA6OeuP6HvGUV1RCTMPOF5AbYy9RG57holU/HFwUpd19eXWGPWlQ3asTI4kh8TLAAeRQPoqPPDEvVRXdisVJN4Yhv2bXBYMxVPD0HegVoC4JCC6XDpvmeLBU7pSh2MTvDqEUlNn1uRGafjk05O+lS6rOS7uELtYBEImJXdwDrUsubXNSrHFbIPKD1T7Haa00ETKU1+ZnNicufskLdIROfOknPdzpcqpMQwcOkX0/tvIBVQrXrImHzlzClkJDjH5ZmNkiICvuOgZLi1GiD6XEVq5PqxpE/QbuchAV/lVQ8o4HcRBu5ziPJ7roogY3eHp/47NROmybNA3HtuhiDNDZdxzyhwCNmirI8/Wbr/OKiuYIqffT29Tkb+6702HSj5GjuhOa6AgKd/I0zxzJwUwMh16O6gtjPvkUELisyoqXrq9besBZwRh3K5hxa7FxZ7zk81TbdIAjfWzdIi1Ev/oqwG14zMeY7njOBOc71evAYIAnP6XJj5Mb6AH46ORStGglcDONgqnBXVqIcLMKtHCI/eWiRlNvGIUIntC42bwWu6XzoHV39oLd0yY5H1w7Ju8FCL/PI0kiQO3eVc6/N6XW6RGh5Z3wssXpIm24D+BeXBX59LVjDPfjZ6cszRvGwsoIGhqlyLZMO4Lj6MfnVaUJz399gt0NjBQ2g7QGSug04YUybM0PUU55vk0MChYV2YnB1vvn3HRSmSEg4nYU8tk1DE7+XQ9lombxhW6fiFV3EhAdo4CfmChOF+ILm3jQd0Zd9u+sUSMjjwsqzjq09NZtJiwjDO6FOGHVI3K7z7CtI6QczIniHQpT2a4jTDL1zVLq3r2SPTCnM/3lj3sU5v5+fYEVWH2rexXRDzx3vBxRmr6wFAgW23AfWHkU0AwBpKqojyR0MidQvEvId0yhKO/a2mLjdoEblg0c9wE3YJ5qzRosnQSkWDkcS3kD6/9eHp0ZGD1gdGv72bLl2+QU4Quhk4MW3Vh8XBeV/41KwmyAiyN+933hW6X4/jHjvlnebYGHQBgES1nBxJVuR7oahjgH3BYhwLkyrEbJjJfbr5C3tK0ZsbpIVxBUJOAjOZ95FNA7Q4gTzh6eLD/MUiEVahj+qnQVC65eaERIM5KA68AYnmqiyw9oQEDgDGLpUy2JLlDhqhV9C5HigWl8YYGFTDFMkUF6q02tKJFLs/4l4jnW7c6X3/rO/bSuubsKSty/euop+4eLg3B5PyKORHm8zk/YqxELMPfRIjxvQSJfmtlEF5+3JYWl4T0Cr4zNL215yK90qAQitqKHQElGREImhhpxjCugDD3nOZgkj1lEjVdngAFdGmY4qKMN1P+p/Pz7OiqzMEpXhPoGIFVrZZhfn+/i0nk3uyV68eIxQdV0PJ633nc75JE3BOnh/HxC/groObKplNB4WagLzjgCZa72bmhr0wXQqLkojLlSiN4XxHwmL9QRWtdQuUEfqGI4KN/OYDSNtLh+Mc9MpcRGEM6XRm8omV05AmHIa/+JofiKYAnDP6bnKifnDJn6pWqz7FLnlF+Ac7PN4cfplpHQPbVirvi9r1hHjCCnlA+EsM09NigTdTnKt3G+4waOxtI4CX7B6cF/4QfrXB9C6ExarJzb9BipNRljnOtYgaDggjjRDwdBNLF2pnl1pAV/+s36HpS7402S1ZOXJraJ6dfSdTywQ17hq2L+VeAzUamgfMVFxou9uOTyN5VyDwZ8lK8/iAkzVw7tY6hT28eLxARpIa/T1gMWZFF5XQmAZqNi6+/6yGmwM/ZIJLkTdIjGVvbvt7163jj4TZZW8wA/TShfQeG7fcq9+SJVpZUwEil9ZLFPNZ2/7JPl3zO+PVuSeV81kbyAoOwdcfYnPUIiK0r9pSOf1JyDG89DoBfTKGSVyK3SQCaZfe4TFwAAZZaWgHYduC8sMLrZHitq0HlPtpippYgKjCmPe+m9/OmhWJWt8E8mr7oXwm5t6Oy5VL/e8PeQOOdMggDq+w11zE+Za6GyVLdwHAWzofLCuogkjyERdk3Z3JKUn1NMyb771rNcqAZUfCZy1uNUC3vvNUNmfLXskkZ45NA+ksfI8UU93Fnj6GYAiH0jfEvBlefs4eN74U1o1wCNv0es8Sjx5ZED5nkWY1b3B8iiVNdaJ4tgsRsFE78Z1/39OP9E7B7whqVy5ggiz7IszxGvaNLsyuB62P8Qx/gC4aaaPS5xFyiyyqNXBBSmOpzVjC2R8woIKuTpZ/N5XoUH/v4DYHegYBqVT9E8YMjSd4QtarzX286Y6Y5BUGUSW9bV2yJmc75r6OUei0nBXkk5/Upnaxj/8Df9SD8I4wPScbxy40mg27xTtgEkf7e6EB73CZJ/1j7nOPDHwnzjwmmFqZgiEyh668DxtEK0onhJg2VeVHZZtWQuBHBQBu5myWvR5HMTkA7YByVfIG26yXtMiMS9V26TmDxW3kZvgRg+sqHCiQkjtyjkbkBJpfOmMIqaURid6kvZW3IoPuweohKk1iGWkjYlIr3mLn8Ns8L7aUkAbSEK773kkVTrDDdwolEOzPl9iyb1WzrwRabm9CPT5V76yu7igxdViYEzD61bN+rpY70K88mRXLcbsU1fagsMtlJsTuXgM0L3CS5BX4JL04MWLdglnup+1Oz9RDqjzJMn01OwdtmU0+NxKCZ4+WCwbYjdCL9o7ZO6ozf/pUtWNnNtbRiMIiFSCnFlCfNDzE7RaxNKnbBkVSXm2i9CGuPSFJhSkcPC89WMd0KyScQo2HKrk1f/mgKBMwua2EBwTysEe9kOXTKsubHPznZE9O+DfoOUUivVpUEyUCkMc1JQrumFLJD3Vn0k58xolkqmyI2Ci680JGRVCycowVnur6tQpMDaS7iZAGby54Yb01rlMSQOmSlv4/nwrEXS6mWDj1slzbTIbvErZHoFKTZ3JAzHNsO1K5uOg+RFLCVkruwGpMiOlbroVzwt2gHWVesRk2XRde7+nw0gGU5XA+TR+JMqBeF0jdpqv/mohxrtgIbkn7Y/bYvcJMC0ocPCjJax+uSNZR2Xf+vs7vx1kavsVqXeg5LzONAO8kAOVUBKfsxTNMHHIlxwhpd7QkP0j4k5Yopj9O77ETJ7kqKI3iGo2XXMCUT4iLIo+78X4XxzZ3yOqT5aTnqhVUKZGpW8fdk4Pf9qCX12G7jRWVb58aYp4hqnSe9/mhlYwc90YWng8BfsGk3o9ERcA5wJv1VKDlGc2IxCi6uM+fj5tSsXz06K/0kk5OR0i74+HJ2IivoMQ4vVgesm11IRaHIzySxvgm4nDeFgsxWZH1eQTepDPUAT1B+T3wlomFbzouXVuDzwdo00hYjNotQb0aDFACeiYLHYoOD/bKLKxuuhDHIzZJ2MbP2wIG5nmFGdqNbUXq9nYKqA+ztN5ZH1oQA4T8XyOqmy2PAbF0gBzwyH+GlcQzfXiPW22anbQcN9AR7GGIfLed+yOHL2f1AR/+zN2LEbKWAgvEdd8cy3Mbottq2xJI+dmup9HL+96mSF8CcLd0FFR8qSt+BhlJlULAivWpbTcnFQ6STszg8r6OWMYyatW6sE/NEiBPSIgRzPOQpm7xTFNJKSkvmKTeE5HzqKEAjVLngEzXFhT+9aPddBILzxzW7PrK/Em4Q5TxUfWsGCmZOBdsz3IICVCqnZuY+5sUDuF1qcYIYFu6LS0h6bYz9QWM6sis1D7yF7Qb6KizPLUB+K416cqT9sFkw4YN4VDypV+lurcYXdZQ4QIsUL/0GnqM93p5Ko11BypEtPzty4Q3eJJEok0Yuu210n8JQIrznT1NZO4pRHHmhowY5ufznmya5s1uMZOXRmCcgt51Wg3Bea3tn9iQBpp11oZgVoNyFvIpdrnHAvz752eIiTG9d1KsRFCTykPyM5pBIVjbp+qiOKC8GSSoBpI5MrJqj6c/pJnovExtco2QxhCW789q/0Ju8IvheZldxo4PgGxnHLlSdrMI47/aQxQEh49nBa/DBV0pvHxdQLhgc/dmmlqHMW2Mhn5OLuFXcbzaj5f2crgXmP93OkCoKMiouZ8fmHlB0+uP3ih8EI55az268ntMNYEmSzulMHJp0NegXiOmPw+l+gT0keJCLWO2N9QgIisJbOnR52CUbccFbiw9I6sB6zc1VclYqEbuHTixe+DtqhTy7nPPBfrRC3WVW/bRTeYeqI5xmEBRbtZtmLiV2Jq6FOGwutlFFnbdJRr/kbv8XKZps2PXk+estx7MYHOMjksG/rpODwDORhf3nPR3SPaAGy4zwat67FnvAlghqgYXAb57bZWyqmdEmIFsWxUKuZp91n6E5QZBiJuZ13zEn5WQPMOCmbrZ/4ka3njnf0DD0FKh1MCr9uFDh+hb6sdQ8M/3EmxSP9vI5eCuhMKXfcOWmYevP0DW0wKpK0CLPxhQlXACoerJKey5Vg2rqHng/zhyycbD7in9yT18umwUyxM+IcNOy+9rXMjQjVCMZoXUBo5mZUruNsUKJV4cpDs7gyNy6BNx5NTLiiU7glCeZ03xw8eVdEuwO6O5prSp1g0PEmG8Q+r5/D5vFwzK5T6/FtTO6igeclUlWVP8QkuzN+sEJP5moFPrqAx4TDOYXR17eTn5sE28caDRqW0039nNHU2CGo2xRzJB9d3/389g3OZty3Pq351tBo1H/fKU3SvYcW81zzLJ+jeT7FyIV7vlCeTFHsh3z9PnnqK2A75fXXpjkeKkreIpB1xwdKOeL3aHCkthuNT78CReE+CtyWsVqacLuE1/BrKCAA+6oHw82/89Qa4fvaZINDZ2LHjp2cYUPD8w6pgQozValPD4YFh6Ucgu9PRiCB94iNNwp9lg1jxEU73iDoQYQ6C8hzEDew74nO3NfJdg6vab44egTt2I72+aNCmto/OGvWiLUItQNJ7og1LjwQY9MyoPReqt3U+DHz8Pguw2eU5ca8zlnD9AguV6EIlEG7jazRbL1hJ+0zHPpvm7JPzQWn/B71336JWVxM9xtPrAyby3ZuZ5K1OeZi60508DomX9Acb28beOdYp4m13gloL73Tt+UiHZCswFfnWzaY13T/WY2l+dEWin7GAoe42d91UwAb8jxuBuF6m/a6VW0tTSsCr+NT6hY9xMeumF4Nl4DY4hYq+pjiSMnJyyjK2RfQ+ywXjHZIipFGhyZpxN+IPHcBSVLBZScHIltbo3Qy+WZRNxTmxHxpZf+J7eLZofU59divp7fwdXisA9GAgjJB4aOo9EURPd8VxpB0EHq5lQWeCUULIiCaGknfAf9d8OVLCO2bBPRIPRlVQ3jwQsz7Z5DMx4cK8Vb0nzohAglwfGoDNKBb7DbkKKdyd4qgxK4cCFth1gRwBmDqalLnzx7ldOGsl/N9Ya4MUy8qJnCoYMmdqhK75kmsLqBf/lUCNQG21trNlystWhFvIXLtt7CVGRabbphW7zXROUdnHP23D5/SiD/T+ZGbvUWYeLrsd/dj+33jpWhubTGlNJoGuHbP245I7XDe/aNlsLbYAJfgbuNuJx8+PfiLPm5rWdA/4oBVqBxwvb+hrFe7Lo7bgoYEIx9IQHmvjU2HyKzPD9cW6oi9EAMe84q+jydtsqX9rOHJTztvD5IX0NrM9YsXIm/yoVjpOJ3aVlbNvl3FU4JJK3uw5eVQvg3KfJPj+vVBOH4gzbTpiynKcNGH4B7l5yPhad1cOVCZ44nDVUyVL0NwbgeXKOyOFOrk07fmY3TlkotN6xFj+vFwTapp8h0TNxc6gWkHwDH41JeHv3SJo6GxkmAjRmWkM+nFhdcGpJiXGZqiVDHjzlCI26VnT6rpLADHLxRCqsYjJng5LjTvG8W66sjE8HwDsT9D1RFKiDx/kSZgiiGX2umSYAWKowJElbci8blPAu7bDEm8tKTLTNyvJ73czNvMkhfd5ySEYvj4bzdMYV9QX62YWtz55sNSqDPhX9fA/m7wwTXyEebWI2PAldl3BFef6e5liCFTHXdjnH3t/4hWm7KlVE98IrJYySXQvXOuJzf6oeNjmY1M7Xps6rGJ2TNRYhRuYSHBZXb6YnhtHI8JXBmiBVSkSJ1VJrvXsvsvnhOuJA0Yxnntcz+UiB4i+aqBrRNv+W0A1Vahd0B+XEDbFsID2Frv2yUPlk3B/nVP+19eoc2OHLpM/8RolFg+16+nMmVS1PIo+Y8IpVg4oYqplZpJdRuRIOQZK9yDbaNwnoXTJaxhYrr1VYzG8bYky+5OnY0DAg84IA1OxBTvbCJblLPGotNZPDUEaEU9T/lF/86JQifNvJDDXXhEqLdDJaP838VK1DJXypigyfyrAlpoqIqg+piRGDnB8cqPHJUvC6KZiehdTeTUb3ac85PS+jjoFzTwiMDwbI0VEVasip6DWUL+L+h6L7JgRIMnDOOGVuQDUoBGvpkpziUoSSczqiFYboidJcjhzNzUKaULvpssD7cxyxEWeA40rZfPxQLQ1a9daVa6p7UBrhl/eUZxstiW40yP3uyPbyJ+oyKHmA5ny6Dn2t9lUB2zJRfOjhhPezo9lobm9qAxRlxAeNTNdVlLrKCtLaICln8oy3bJdHqLMzrUXMg7bZ8/slKoU7a0SNH/pgO41r+e3Se2rsZYwnV1SNQILlbMI0mbtWmzF1tYdccBk5S38sqaMNA+zf0Od3uRI9A3PuiZ+lyNgvmM5izp5Q3mqHpBNQV9feDcQaKK6kXcMZD8UD2myJvGbvwlsg6RdnBn9UFHs12yulRVwfXqlTY18zQD05ZWcZeaMKiXE3yPP8a5GoU76m438Jq54zyyukZ3ihOwxsZO0zZOaxYRNryym4TDZaWWD2mSyOGrl67+VMulHt1Nd2QXzCN9t78WGubV8/G5DzIVYespi333+xg4bFjxMu8I0SpPWj8gGDH4rs32/bOS52n2mIdVbhI7JrJq+qiIT8Lmhja+cXs9fn5Qa76qd//XOpl0KUR68odVZXJ/a2PviEtARLW/3zQxfG1gUDh9Mf4tQjexzWP/vhsXBU7T0K46qF1DPfyU6J54HQcv1sD/nfbYqJT+aEr8T+RrrGKA4SrtAdjY5nBwUeAjSL5mNtfdBK0/rRV2gBCtN101JSUJ9/YYOOLuG1awHxKSeCm5a96TyEOyA9GMVzfyDTPvv4gH/RtIwa66D4yznZbYXvYxdjc/MBSJ+817QORJrfpavMWEtLdMdrL1Y+OTInw3cxp9nVD+F7KsreRIBR21uSMAfUT8zoMd07U7qWJO8L5QkQajGu03hMwXG1n14wIhPa6RXUSPJkEYbHtYe9vnfG+YRGuV4U+RMbfyGw7cgiwmYtbL3Bsiz8di3YBvC1zKs6uMPqzIENn66yxBSzaOGeZs2c/advVRWufpmkOG
Variant 4
DifficultyLevel
523
Question
The shaded rectangle has an area of 40 cm2.
What is the volume of the rectangular prism?
Worked Solution
|
|
Volume |
= Area of Face × Height |
|
= 40 × 8 |
|
= 320 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shape1 | |
area | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/VAR1Q17.svg 220 indent3 vpad |
shape2 | |
face | |
correctAnswer | |
Answers