Number, NAP_30234
Question
Express ${{val1}} as a percentage of ${{val2}}.
Worked Solution
|
val7val1=val3 |
val4val1=val5 |
val2val1=val6 |
Multiply the ratio by 100 to get the percentage
|
val6×100=val3 |
U2FsdGVkX19hwltabhc/i8U4GcHXnkluvCkHJAQJ3ZeSIvFo9ity4VgZi3an7nTlgIdMU2X4+xp/0HyVLMgdwaJoZ2TBMBHeVzfNxWywQWVpd5KHWW1Lv7EkdRfpQSNJMXlHZ9JmBzBFNpSC3H3jaqCVCFZnjQ+onfrE8YpmR9GSHtVIZQhNWtbPkYvZPNcyeLyNCjpg7zH07O9pw/68hNGbavwMdwDTQu5Cfv1Cj50QjlosmHJl6Rr2znXMg8IUlGu+L5p9Fv0C+Xpe5kX+0Uib8sfpeIA8KovKDzk6dkkr3084JrK7woyTjRk4LVf6o8EprUVz3xZHAR5cd/TlBr5VcxqB4pVCg6OwdW3VhH5oEBHE0i+jnxsRUVBhlobFY9lmhZiH2FpmbfJiSSi/W/g9jtV1/9Gep7WI4bjD/UQz80if4RxqYOdWyi8ceJP1RX8A5/akr6cU8SZHhqOacgDfyO+NEY7s4oQn2/NwTC09Md3cwq154KJW3vMoFuQ5xFjcFT9YG01rPQi4frXIhf879cJBhn96OnobfeB0gqV8948FUoniwO23hla1UDOK6/3IhmNb+h338xtCLfxHd4c0crn3QNJaOjvH/XFM1q+ryV2DhWnlPp6nNlDfY+WDlOCSTCLGSAPLPasPCPTtv2P2jdNx3mJdN1i3N0Xskrvdz8KnNSZfPu7AEy0Kn59itRQWlPhIQT0f07/rahNybx+o2vLmRtoLYj38e0/Igz5yfR4M4Tbowg+MQGRNtW56XFXb0ySDRL1wEFc8CqczDVcERoSqjdgU7Z0Bv00SHZL+scDhznfNR6T27ZuTR8LKc3iAezIHRsniY7q57maD+UxtbrrscJX7HQhCsW93fd8eX7r/QJvdHXdmGjHhK2LvHOCGYp8Ck36HzNNs/SCOWf7rhQPTQBBgJCMQ41nARHVfgwVqLQaEDQZmiuCVAWBXrDLPf4Ff7xYGqjFuGmNbyqHc4FRgajaRSVJ/qR/1iYFFB9S5wcIKsRysF7WLYd/jfw9GAW857uuDbhG89fv1724KtFITfm8TaswZxUOFJ9sikuPxBHZuE/tdEB0S9T9TY53DPD/gyvaGWOfyNJKfZ/WYNlS0n3RnUGLMCsR7/jD/sbyLOZiE0EyHwCuRohRdGlCoBK9ghhrLHAymhbgXgKxtOnC6hA+eW48rv56Pm/i8YxeUHSOHRMv/cZf/Tt5TK4BXHuzDwY5uQ790G2FoRNBhhx7fVcRkDpk1Pl+bBWVFskczwynBwY0PGJpaziDDWTYvdVS4KTyrnDv3exCLpeiTIMoyHHkTVovAgMzh0RYxNSqYR7MrP/JcONzIXcX6k26vg43/Q/6pbSoy5HgmX9ydSj1UB9B22eJEIIkhoHXOoukcg4ySOyyQeFSypwB7H3lYuZktCYuxEeTY/rxRkFhaPOqthmoOAfABs6EeL8nQmnG5A5vOBLLGHxqhjTyJPe95lVXKHFfFkwky77OfGdpJeyrjMKd4QjYo8dApjPG/dgvcwOhBbeZh3eojtgZNBOzUdErUJK9Sjl60UrFVNWoVotwpy0d8B0g3eYfhTMEewwq6xKuGveRfkMbJdPnj8/myHIhC7EAYcM/aXODAxQBTXvjFANj/PntngThTLFZ3dZ7jMDB0sLr4r77mUHYtVITVKTVq9ODYNB5YUJ34Lbv+no3OnGXVJA3wenVZTn1NvEbEBGjXI3+AVI/lgPo3cDkRoaTSqwcUr2EEzX65lfdf9oIZSNDTxSUHranLTKvQBbLjV37KkrEDQscwygL8S5d5fJGBKOI52rA4s+4RfJg0P04+fdNa6gs1xktcji+klGPm5YwGnxPqZM/P00mAhdjE6SFdoRf2tLNcIqv5ngfFEnrteSe0AMwEviA2ZD5+UsTzQGqDyflrGguPYFdF71LqjioaDlklMA7X/ZpcjHHLqfM6B72iajqjvvzfOUXB7mTm0u+VOtAtusfcUWhTPLp93/gi+Aqop4tOal+T7slQssgVWvUGM/myDYEuS9j7mCSpCDk+6e++mWCLRDU3fylmQl91RMXmLagYYYnBXTZdoyBDakFUuT2M5BKNQpfn6WLyFCjK4GZppdrLS7TziOSQDGuajibh8hKwwSZ1NsAGwqfykRKSRfevW6Zt+6WWDZA4gU22KxpZhTqj19Cd2D8cE2gD7pIZsSe5NZ3vr2bcBqPin4T12+LYMcwm5TAAcZOobDnamSrCDfFKQKT35wjxlg/NuiqTZ4vMtbfaBDArVUfN9nKX6a9U2QWsR85VtaXyoRtETFNU44VVy1UtCBUsxNSolOOHNJYP1ne7eQqMfyNlgOgSFkH7yd9GnGlrYlbPhw021L172TC8RzB8Q3z6W2L10IBYQXtsN4zAJAkgP7OKeLNScr7haos1hkYS8VozXN773VqwRdP9pU3J+g3fwA4AbaMdnPPmY1Y/KiUzJkt0cIZEesJCuCSgT9XvB1x71b1uuYoPu+1DEMv28/Pt+TeFeltO7WCf5AUJPLY5JZmdgqCkiIvPi11e5XRZxwHYMKnQ2dDD/Z1ZSHQxSsolAkaJ+iBLRNRvv/pLy2IJsjOw23ic2TRA/QPxtmmLSRoV5jSURZiebhnMJeds50CdxKzs+LeN7IqkJw6Viwaxg90aDIN3mc016qpifG3TOjcqBIYkM6IR/1EJH3o0JGglLLifRg1luHB8ZNzSfXngKtUxCykOJeyyvF7WrOSjSqS2acVARueb7MfT523M4BMY117TNVJbdxMhI6ivcL4REYKfZd5ThVmNwaSozO0ZvGvLwn6ZnTIwVhae863HevV6IVRJBC+rzt8WD0gPmYJSKTUqBzwALrs7+zYDoe2IXK+S+B+ytN5TjHyDJ+uZfFOVrfzY5LLYoB/botZ5hI2ULq/HJU+wQgPKLEtAFyTUjs0JVdv1sXTbMSOW+s1/pPmShIrFoURYBEVAHa8P9Xc/P2Z+E2XMu6dpcWVj3syeGsDTCxSyCTWm66e6llXdnJrQlihLVq6TsbD3ogVwenuOqztwC4jimoRr3Z7gyWc9smgi4QOldjg8852Uj/yCKCAHhSQkPtdUaYWguVidtg7ld8T1MPvd5NzHKIqnzCAVb631sd3JI2kFFGWJFWmFUcQZbyCVZ758cO8sO7NHft7Ed31YB7LoVxFR5ta1iXgICGfAHRlTsXOZ3NSU9/Sd4JP3AOLey+uFHLF6G/PiLFOmTVcfx+6PpXDaSfw8XxgXFgo+9UFQvnd41CMHzgutTxRg0EDExzeAYRzjAqLg17pw+B8o1GWkFNcHI3lUZKbM+8DO9VYsYdInc6rTjMQDZKJlrtfInG7OCByAD20dl/TDa4amOSYvJmAy1skT8d20Uwh23YqfHJ9VXQGFV4GG1Wc+3LOgEwW1iNnsFmoN1yVIYUwGPBBtDU5QtUv7lf5aJ2ZfuBzGZHO34MRO+pAtMR6YOS7EO/Uxmx+OtgoYI6kBqm8zVsXd3Hv4XZJ/j80ZT7APjNg16P+tzrkNMdnRM9Z84ffoz4A80kcBgd9OJkjV/1WuSIiAQbMaVWspGgobqbT3MlZpRreGuZYdSvDMl9UalK4vVkW6QcfD6hru6NMC61a15m4fNtx2jySR1JVbeKn9r1EElHRMqwCpEamj9elIqf7gbgW7N7bbD9PnlvFfucCbPWCCkJ+2t8pnWBA3LYiGgZzcKpCYqUs9vpbc32ZJQQVnuRiX5Jd0XZz2Ln1kOyRCXRFk8eSBoRbS7pMkw3MfqVpARNe61Ut+Buqqpo9o44Zm8pclapSvkZSh4Jm8t7s0w7sXDllqTKIGySJ/Gs/A282C8yNDtX4nI1mKHqKMdco7x0C5XUAISq9T68wlgE8xoCn9Yz0klmxNDrDBFMdlaxbXkOOz/6uHr6AcHnUuRniOuHJTrfVhCkIl27E52SrleldpTkJ0ihsZ62CR1oAdjqVlI3EMxssGQhF7gmjmoSy1gf0amLyfa31nf2gC07K8paoFy0P9VDCIowRaaoPspJbW/dYT9D7lLmB/r4RxZ3oCYwhKRRF55rnbF2lODFKS0dMNd4/F7spBR26CCXeXbjvTx1/zZu1c/aSYh0fwu5qT/8wOx+S43YVlNXzEntMnuERKiswhKFwPYjKgx+SpY6t8xXnUmnqbN9D5kmtca5QBp2N/a7DN/123Yw6B1Ee4Of6JOoEtZWCc7zOymhTzgSUu96beoKbAxDv9mG+ZcXXeVhGGxETp/bS2UmklP+u7wi9P5YxIqKESCEx1YkNojNOgT3BIgUJMpMfr/7YbQcBbyTEKIjhX8+kZmaFKFvk/J3Mouuu62ZL9ZqbQJ1UNrxiebVPthz5mztQXAj49IB7eK1GogBoSVgJR0RZia6PEFPkN4gP+XD4Nzx0OCcbIrRWu9uWHhCyuuIp3R8AxVbFFxxFVcrtiP1i8I0DnCRPTROczN21dWBlNx+5VWC6fH89jHey0G9AgnkYjxPlJs8G9kn31NEM5IGfli231CdB7m9z54EPfGq6T0r0GonRTAU8RNoyYzO2Bct/uzEF+NQvHFvRmBtxNJneV1A6XewVKSt1fQXQ3svY4jmmNdjiVstLeJdw4XtnC6ThUXgwhy+F91gsHSkTVEZYzZ5bE/DoyErdSTy8qGFLgtYb8It0WqgJ3fhSP69P81A80ETpKiqjEciP1A2/VTkBzxrJq6+RsdzlD44uYaa9yDhHV8/qtlx8fYCtSdWOnFiNWXUr7jnYtP63f6xO3M4xtu+E/OTooByQ1L7N5PCfXeAOj2xUrsO8WyhZjYfoSvQ4b80Yo2CwsRwprF0QEC7Rmnx7KkR/KXsd0PSe1pRl+uIrsmsZNYrjIHO904TLnQHzKH3i6aPf67iDx6zfzQM4Ik2RMkFd2OYi7N6Q9c0FhIYxwW2oKf+vKp0xRo3ODD08LvfyCBG0i32zPvJMqpCPLKU9iqEz/+GwjW4+lxDrRDoss8Q0PgIC35Uok68OkVT7clxkeF6ienpJAx6a/hWgNBitKBLAqxR2Ot6zRiqT8XhsqLwrPNOay9d3hSVkKgQ0UKymqgp8e3iP4wmHbU5sinaDZb9/QyvZVd2gRdevbrgi0W3JbbCwCu2OS4jybcDILbbbbeQJdUcdwaHxTHhP0PHWj0pKUcf2hCZ+ncm3ZpnfE912+9owe+SGvk+JtCgWh9PkwiFD9U40/AoaCG6j/C0Z7a0jSp+CVhKxw2sjIToewu1rYGZoNi0XBidjexBgzp5mjv76G58sbd/lDTDx6LVOxPBWnonFqUo+BQiS52/MvnITiCGvMuifOH4w2bBWKG9BmdiM+bmsn8o0Wqk3U5L+hTuxXeRu7/63Qo+lrrpUc9xSUMudf4B2eb7CMptcNdBeCjPISQsQ4IfLVw7xrhH3ykKmPBjQhRlH/D7zVK0l+Q24WrtB96wpysG0pPE9Tbrk+ZEkmGrqZwRSY6mC8D0Kaz3dRqPHw2+z4qkMNyfiDS0VWbeze0eqzeVkrgTR8iZz/B0ED93hk8eKmkpYl2PQtJXyqnO10nK6wwEwbZrfu52im5eusnzDns4HiulT0kk0jmgkJkYZ+4GR9Fwc3huw+VYvL2HsGSMJ5WbDRMD1DSuEP0ZGwUXn9ymZmBD6GvRJmcb42KEEBQ/RivlIaWViEOiXF452D8t8rEwBcUrZn5LlH87gmFEZigyrA12wwDtLXb0UCHuwDhzjlrC+lojo1m1qFGnK9gliPouGoeD8VfQr7rJdPqAMZg2jdGRy4FKDBze0zb7o5oh+6eSg9eKVA74L+vJ2GaHWgIZ3/HW/gsdzNabyGn5qoiM3QubQYZya9/wKsq3nvq3KNifFsrmPc6QHlyxpMR0pgpOs5t5ddEaSQ8ZO8XelT/FVu83ArpQdhV7KnlRgoXKQEuOEK1DwyNQFVc6UdqTYtUtamfOqcfJpQPAVFoRRCxmLeJjDtTKS0nCgbSNkL2FFuAdh8IwQsohj/r1BqQpux19B6z0pV54Ue2T9EKm9r9TpjyGsysCETlK36/8CdVHk24Ap5PyKtyxpIAMzB0Cblogz8AHXY7aOJ7g0asyfMBPv1d/uwvUfxcOsYN1bDgy0oe7y3cLsenLZmmx87n2tR5BuN1bRYGOT0QzeFZ735CteLNgXrUqXZ0ptuNxAcWjcrG51xWdPb7/0eTHSpdjyUYod2lpbcKfj0bgPI0U1AMSSW1iXTKxElWIlTihezu9fFS0zqB1b945shWaqjJ+grkePlWSY8ePA9Tcu3t7XMoThlGV0PqVKUym8cVV58KVlYqGr/FxKIgOM0sADbKjnCO0yY3sK8NL595VWXu5ac9wW+D6VrVfBOAfFrnuapccLLQvhMr7g+uQTjv1QDfSs/37a8chg7gGPfH/ORZyrzw2GTlc7mg1QIm3ALNU0nIMxWIlz6LQw0hm2/UwxxJik+FF+1INl0Qy540D6svriPqk2qVBz45NuXRmg8hw6KHbXYYrz5iRbhgl2oc33BwIrKSTWBxPBMfLLUDV+2/uYzsETXzhQmQrwRuD2gHQYjn280luGgIwXczWi4B2mUqA7yHCzq8nG5KFZfVcDbK+dXQPfHTvdOHNTIKO/idhrYPvR3SPJ67UaeX1OX+gi9+5dhwVWMLX8lw7uxdJe0anpY4tyRHHtDQHIorurcKOZU2EoiJVIyxsvgy6dGo49dmb5SrVRF61kDoFdb5Lsq61jIiHaAKUR8RUtRQKpwFyFwFAU/tDnU4c5/JvQfoEq8q3X24bN4nljPV0oGoIhhT9NS7kCJtAz1rQI/vlB0beHYL+gZQb8j5OjxtT0FH/+WsgzbwGkyTJM1fmxGRjIyRVemuJJgZDfgndnKNi1kX/pTAvvj8RpGXnfjY45ucIh+Xi1sngtUXMIimbhzj1mJc4rzsYlDUrKPla73snBuXBVsXUV9Xi/xMmPM6zxlXzErrJSZuoSJVVvgUvQHY3gPvBX2xwVJIo86TSWBXsE5M6SRks9UBTPM4Siqa3US4hFdrK7JXtCoh9DhUqThwMaHcAZ6mwXX6RhHjqyZyZVVBXK5UJSLwPbkqMQSTdtPVEyO/tHMmD1G2VntWpsOQ/wRFlCz1ThOs1gVfp2XOpZTL9H4Kws0m2K9C9Ufj1Qqjth7IZfKfHKl6R5dB0St6PgAv0rTlYsrPgxfcVfmcLdtSpU4jQY2Ui+TezWkjrl9HyQ9lBb6s0LEpfc37gc5zPfar+yuwgZendwzxCeDEbU9bEclil7nAgOazdRlUYxAwXz/nl+P8GHhINwGFw3Y26lFWJ6CSO/vfPIMuuq6UrtSM1fIHq2hlHFAkGvd1JPnyRBlQhU2wP+2Uv884AYwarFV3fuOkZy+4lxPWc04cNe+YlI7u4LjjdYtroaFgzg8djdBGE73drLqp65SLcuqikSYvwEtzzPhbjpL7nXAr5LtVx2dLO/ZZBCRmo0/367dNEy2L07uzAj7DT0SU0czowGZuNfQLca69FyHyLnri6hF/PgtQM0i5MFKEuHKX5ItiU1755zO+X6M23Oc3rODRrkB5txQjzEgQfau9/xahZ4WsmmzkDsFvbx800KsUNW5y0XqWJD7eBEAxyAd1fh5jmSkKkbfjK6uzPr9W6gHPu9YEO72Ca4HsSj9RwprOqaITloC+pYXw4n9uccwp3JGR0HGdNtEXfIwtOOo9x186hkFGsxTGrIaMZYw77OHXVWVIDf3ke9Eqy3Pgit/Ia/YjmkS6ZtJyoTdkxKN7VpR1Y3bahQF03CWuCG8hbIJ2EZA8I6AqtyKRI1pIKewuRGTyWHso5Eb0oe/BBQEzMZl0SsqHLrPNPL/kDDgs/3ayiXTiFY1isCt2dY8ZDx337A+Bb26hFViW6/rooK3ZTH7W+qwCM5x7qftA3rbDVLkdtwDZvm5EKAhoLe6M7Hhqut0veVXXV200U/vJH9y6z6kyYaU9MQ7JWFrDU9KwJs40SqERTFymCShiNORYokbB4Z17W4K5Cn7y5a+a/jKZ/QB6N8Ke3LCWf4Slk49He37CWjHi8mFAlpGc7IanPjmWXtVVduHZP9R6PrWwF6nvRapfQnoxkeBR/Jp/fPFyuRK9lxl3jN22IsL8+O4ibsW6J3j/4ePqVKlnMXoHxO87gN1K0JO997ACnCbo/BzvPj3t2ZzWnjB6TFBHxTzf+a118ZLPZ8He0LLBiKaYs5DKeN/GhnvoJkxDUVtUsf37xQW0Cwmjhtv40YO+19GhIM5OSWdihz8Y2R3XIbQpl3LVGW+rznD3VTkHi/87hBHp50kK6AGmFyvkRnqv321mwOyoQx0WLSgPoYRZIGHqUJvK4TAPed/ZHVtyNgorDBowJZZdjPc91rUdNC/qD7eqttyr7a+mTH7VAobKm8m3yARpA0ocdJkYnf8U5jwaP0Pau1OWf6yy8Mpa8kSvW1N1y9iqgo+7RjQXAZJXiOuhV/0L2k6aSXd0w5C+OkFtJUEOXa0FsIfH8I5CIeHENavtgEXrXEfKOC6K8IqM2175Fo49XuJxFi25pzLDDCcDb+NET9PNVQp0O/xRMgLQ4CkE2jmUpUe66zW5/Sf0aYDXgE58ZDmrlT6H3kF+RDZuTopgcgiymz8bErzDzb/HtNemAzETfYo+fQyGOsG3XtsgVnjpHBx9zmo2fPgilm/devnnEPpsDevEnsI39lo+suwXFGvmndpOsNPpom/qouk2m4Z6wXdQg2xerQf3lIvWvqqPwioBQ0+5rABKV+lVzW6+25SHWEyByo8z27O1s42VivKZphDWrAYs28mrQtt3SRy1GyNqKGqF8NL/AsDjPVIyKNo9Th2q35Uy2Es0R7PgmDJi7ckZ/5EUFzWfAnCuJpnpN277khlvPKOD1DCEMhJSWXWtvteIWZ2NPCJD+ZEIj7gTm7qdJaM8JS/VmG7yv7OwLwItlSjAiq79e5sCS8eRLymTxgd/HenrSsmMF01e92AUR3AhM7SZ2J+QLzSx32XxAbhB6amySTH4c2KRTvxyI/sDnmmVwAQ/Yzr4VmxmqKpDewPEAekpNQERsqDhsjhh6Y+bQDYOOu35hhqMICUqQ5Md9p3As7OCH8T1S+Rvlk9luTAYPKBRyxJtbElIxhICn0sGiwCjIRgvxKI/+lgxbB8e2zvtkZcMQgDlJCGz3+Oqvc8DVwX9Jd/VtDchUcdl0n/718nwwHNW6QGFRg8wVOw4HFH+tDD1F/K4lzzIxb9i9T3wrjEDLCrqFesqbcfHHjM357JVsfTBDDoczJT6sSy20bh4dUqhEQ1dXadzyGsh8tABhFY/u15IS1Vw/8MzKwxTWKqcenT7eXh7vBN/qSrhPTOm4yA17npGxLzwIPL/mGBgNbt6EqqUSYXTpbdVpWLpjvBzh6/2EHB97ODsz2VQZLv0RS6N5GaL32GnKFbRmDCpQcTId1Yf4hseZFxyMONXvVRpEF3oYwrdMpZEVXSiQZtnsu62muBxVkIGjrtlhfalMY/auIor+ZAmpBlKF7E+hqaMJV6+KuGL+SGjUwos8cWmOckdZqQzJWRkQ7N3itXLcvNqWO6dEmstcoY13HIGT7sCSEoBgS88XK9OREGF47kx8GVbbXl5Rek0/XHGz5cjn9k0YdSrjPeJ9OfhPzXE4bZ1Qv/oFikoNzJ5fjlonOus9vAaAoUtJogfSjp2pSAJA4CwOfGx8alV441AzsznuIS/ogJ74eP9krnfv0eQ0RlTAIiPhOzvDK5mRqX7440cvuoV2JhCVx5xU3UO6S7wLBsl2zn5fijIcYIvLvrsdtPlH5e+mxsPyQRKbkW3gggoYWLYUdYUmpmmOMH5ht7iPVPOM6Ze6hGaYmtpuUkT5cdsWPZQao8uO8dyH5kZitLj2RPs7nW8uEH+MR0SESBV/LiTGzWe1uXGsRV/u2O91Yowu7BCPcVn7Rz490voCbfyWXsASSU6JCGsd3g8bbHwKWtFPyRxhf5tIuDV26wxcRyvQveXA4sKvCmbyS9pKU3xDJVgou/A2pJQHl+H0hAsHXJ/+GvjqVWiK98T7lwPY3J575deIH1VELDYGaRcgJmmxtUzs0wRgcxSBXiB4jSbgnfI6u6ve8kt3tQ/VByLROy/JaEtu1zo0EzWErtZNdpAus8nyPYNiZFKPg85HHBBotbxXau8r/MlGNkdntcRrKTISLotzM1An/3ERYcLcPCcixmSvh0tkfvAIss+uHFHYST18wpqE71Anglk6UQsF3qukX3aAKJf0gtbMnsecMDVazJaVB/mqy/bFF2FxPrlnfqHUOnVMGLh8Zff/DdOR4g+L/0paA2ChoAJSW79z4vgcobD0iFJsgZcdLficQyn7iwmX5P6fMDckXrS5tkEy4n13ma6zzUwIQK/LvNAKfpPSXnQvDpk6i+B6HsbCCLcei0Nb10KGuaQ1V2kqQ6RtdJgkeOH97YvZUsrRLLSz9Gkv79Kcd9Ac+YrBzEW1rnIeNWI7p0A2gqTtSKyFOt9Z3NQFc1gFkfJ8jhRK5+8XJIDNrrnn9UCLK5OQuA+2yBhCy+e+GcTIL8CibR9h+nlz59Tb/ca8SID0kbcpicSjT64Pzvv8Ge/tLMT2zkHIL1WoNUso8h6NyIUWSGDYyesP7o0PAqYUE+DzRvEb25PNYKMmjJemNR5e3gCKyIPIOsj3nv3KNMHxB+MoUuTTN1Xg30TykxIU5VrufuYxcshZEZR7DTFj4M5wYdTWF1mjhuwpCBhQZsAzYcahOgiVg=
Variant 0
DifficultyLevel
530
Question
Express $20 as a percentage of $500.
Worked Solution
|
520=4 |
5020=0.4 |
50020=0.04 |
Multiply the ratio by 100 to get the percentage
|
0.04×100=4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
val3 | |
val4 | |
val5 | |
val6 | |
val7 | |
correctAnswer | |
Answers
U2FsdGVkX1+NXfUMx7vv8ynfbhWwcxKRnrmd/DcmXuZZHFEbhhb8nDplFPJNi+jWg0Lh1phz3HBdTibA8MxGhMYSfTOQV8FFoS3kQAe0NR5a8kSUIKQ8+UE6F8HAUpuxDitjKjwVof7V23CR3kDwGGXuf4RLUEYRHw1f/EOKMVCtlSKCERs1ZEXz36Vli2CLVS+G+rU2nSS4seK1fBgNtj6WLLh4Ipj7T1jYWkXB/LrFi4JVqQ8VL9gcMa5WidsU7a8CeXbuPQtCrBd+7O+OVHMcD76YkrN453fwnKfSMqMaVUiOcFK52nJyNSq5muAgbRr7oOdeDqZ4Cm9AF9l25oxgF528jZJrQ5B41Wz9af3uXGRL/gqYIXLgBOhaykvjb1xnDF8P/B1J7JRFetrNtuxRLzcrL3uAfv7iFk/XI6y7DxPpnR3CIX0nUrmHwb9HWmtQhrjN9QcnPfYpnsYZy+dF4tUCeCPjbKkNL9gLvgpUHp26UoPOEUbTVOTaJR6YGWaV5xYtA+Ayzcz7D/h42WFcXh4bkoepkeH9yzY3uFh4EOZeepqooPCIvshCZP65L4mcVupxcHsmjM3v8fzSkqCo4Cct6U2wE5+E1FTgCxB8xXxBE2ZsUJX/16IfDVBXjl/UW3hXlUF9eq8z1Z6MIGTOJxu/gHSUVSpvRcKRJXKKsJqFHXh5GVqURExshisMi6Qhpv4e8CdpATaS7S1lcEG3uuamcZ0kl0SEdkQbPvjPWOlZY41etirs9JgbLR+e431v4MxjVd0y+U8i0uyk9oW0FC7HJSfu8v0hE7M6j43iHAPQnGxuCvsgmJavXTRZXi7w9sel5sWUIjfKGvMyIg7n3mBg9d3BWyFlHZX8HJk2H+5zSLSejdU7nApNolFEwFPwgtaAOZcR6QtFU1VL9n6S/tKdxvesQgFfLPNz1xcOdUQsr7FCy0h+VJZn8EnPR2tgSt1qcTsdC76+nJvA7GPndKjWkecaUy5I6jE9zEImjr5C6eCDkMR4TW3Vrgu2C+Jn703r9xdQCQrQ2vx2J+oOeJkeztmsbJVJoP8Ajd1dV90KnUJDxDPIvHip+Visn3WxRA5y4ikeZ0w+CQ3WsD9zXdAS0+4GgIEd/4T4WtH0Rl9M81sCLuWV2DQYB1s3Fwe3yxod1Kq2/yyu27e9JOJRdkhTwwYFM6JoB6rqT3b0WOt7h8smJaH4cZ+QjdDzoDqDU3qXiBCskfnzHIQdc1Whcnwlot0z+6oOR5NqYOZvzycEEWtQf0yhdT0W4fO0w8JoPnuKw3LrasVR6TH7Q/bzIhwQ6sA1dUA3GP0EXpAY0fTVlawtI7TbwPCFrCvkA8xf706VnoKY0z4B5lCTas7QfvEn42InlH6/S1HdP6txXwO8zMnzoLoMZfUocJUoB4TO4J70vqsJweYll4bDboyKXdvUIHFvoFbYSdoapkr8aTiifz1a5NOYt0pfHjjQrucLH3/Ov+wFNL3fv17xrQinO8aB6O41iufQ1abH9eR/DC4jFVXxZ6b84YQqHl5/H9ik0k6R+fG9F+W235RqeMmZOC6VAQ6u9RuV9o0a+PgP4SB2ke3b+dPYVl1xEtdKJVDe5fWhZZGdJlIID/cyBfnHvcwlYSEeN/jAqUVx2tuavMuJfvkiMpYXJcBA+86pb/SIngUvspzzYCdbEK4YPFpjkTdd/CmlIXHxuJ6+fZB2QiRYWnXX/7BYPxVXekXT3wIoW91uBn1h3BGTFSk7i8tT4M8e3uWEgwU6tcwQYOHoSZ5IV8NPcYwbBHnd64OM+7uKzlNYowBTxyjblZcqjv8jFKNJ9LgAa7PUIsfQ0zrgLYglQYkLiw+HAYOCpXHcmpN3P7z98nRYzFWcGGQ7tQuQO7whSRC/2rxtnGYByTn3z4fciwO9mJWf2u6F5cQb6MyzXYs/i2grK5lEcFz1yof8qJFJC9h7dKbgNYt5hnc/FNhFHb+1wozNDh9RUYVwEBjuyVXfkJ5Tm4yQRo3LblO+FWiO0c4qsDdY4yKHDCXE/QcAMO3boBV45jperAQlXs6bCT9h2o1ReI3E6RMkX+JO/95zdTo/SHbU1tCGnCzH7z/9u5tADF4UUk2dKDBs1/dJezBdhQEMxDVWMIDdc9XnTczRmWahCRZFvSwRWSZH+VEZloRP4ozetE1siNF4iFE7arrmfwMAqL/uUm+cM+p9FW8QiAFpmBCTB4riDd6tG+HlnVSonnRjs4qbbA4zr3V3Et56tdMnS2cJjfDzb9S0LTI9vQ9SdF2oqaeckFVwRVPzBpoxbAC+hYT8QYOTLIWFvfxMJetkl8WDSWD2u3tZaImntUsFlQ2xsHB+YZVvc0zWxJdeM8w82JRsovTvq0xtD85EVuJvEInetEQs1e7J38WRDZ0hiDCWzVTzYrvEVg8ANon0nIno826E6QUUN853CJWLEPtilL0a0U2ImxjOqvwNVD7LMM/2tO4ZAapf5TCZm6aSUpdIs/8uTXdif+8wXXih2FvC5UyAVfn9Fdg8xnEEZfz2ENvKG/907MLAxSkiLX4La8H+kOTdz7J2YwqhprJQG6cZ4lOPHSSfnWjiOSWcgKucoF1yzP/bqtptS5nLvSGHQ+NnbqsfZpC2Et0O1Q+xBAqk+mxkq/wut7gw22PRg7R4cNVAuwpueBH94ssdr5mkofGD2Tng1LFDwAW5+1Y3A1qVpdjdYtj4/uK17cggwv2SxwNsLwM45/Ie8OtLauDffRjMBW2zq7zifbn59wysPMFvYSfQ3blQgucdGCQgubu1DhbKz1vkOd52M+JVER2q7hesUfJdkBLFpV3PO6F/x+kIJnj4t53+VtJnMlqrvFl8ti4gqBhDmM31sYXcAbVC6wgJfdBSiwB/mICX3AowUd2ePJ2Jvb8jhdz1IhEm4EPJArBDdUPvzZOuxPkISyqrgzU1ZeRd3CEp7VbudiVpSYutADW/fWpapeAf82szgfCqA6T0w1PK6NykVdYcxGAnN46q4eMquMt7TMnGCEmWrF5XeWT/OSXQDDUT0dbXZ3/LMYagnRtCbjn4USXysV+rpx/w/QDC+4z5T45eRX2hdZ1Rvz8gyDlyQyuncieBaBtH5xvs3aNf6p/YqNA5VLitkxtmwAvtsHOSBN+d2CZE0wSpMPR61iFeDaP34aEI8hGoMvHU23TpgsHXTIpZkupSsT8xR6i5iueYXZAzqudarTdqlNDD5w/eaIvfKnzgqxrQomPUhhAoTB5MP58pkILWZ/d2eodfqbWWLRUXMvlC2BiCgW5nR6NtTdnfKgt7xGW++I2mt+UreD+SYool4XG/d+K9VLXqi8rnHcrqlyul4RbtQ7KstWbvadrg8wATd8YUmKUxDVe7ppxNenbjlLwMFDYr1N3mrad9gAroVmgUGWKDEdIl4QZzev2UoZ9gfNFoVL1nFqC4/wqcMFLqnTNubnKT8UDVS3Xra3NDaHjo0IbtXaYoULsgszRT/yPHctH0GSGfaKm+RR80iwYLDb10tINnC2CQTtY3SW35kpYPnuJIPGUxxd9A+XBKM+MzZqSkqZJUGbLoGL+n/VfukShe78XCdBqrjd/vLi5d7UnZBQf4InRyDqJmSL74lTpPzNj9CPYn71PuQ1+dmV8lokrsfJOkYvTSL+If9lt9kps5voya3mJqvHCheeONcd0lC7CaNqRmis8ZYXZFVWZx9AbcOugacj4BFUBiRDFueX2WUhxtq2E+hlPwvhpr+CUrjD2jC04qj1rRzGLuZ4zVc/cp6yuUB9TU6sl8NHDTDB1RW+NW4oCkAIwBIo+bBCzJShIGZn47QrhLqGQ6yjGGswuHNg1LsxPlfhoA0gRRY6nMM7c9i33TCl+OijfpnZBQeE9ID31+DbsKEV6Tw/UFxnVxh+WtK2jpGj6ZRr4+WMtJI7qbIyS7hJznO+BGna7QzmcW9cMa6gOUwApBX1Z3l/gTXvfrChnFQQifhy+bXzLjeczE9TRGq4l3HriO9sbDx5Nj+Hu4gYDE9D1NQN1DyAQePSUVqghjBNMjqj3ZNXjwR8XTAqlWWyYMlDEdOfPizzFlBcM34gI7UcpaS/CGhuKi3oqNafZf4z2T7JbsSDNTNToXZ+mxWXmmv9L8E1Th1dyOzBVaaC5cBqNQpi3KwVOTKZjhqGcogaEvWjLIfIrDkRpkhuBLAlHcDKG0f0am51E3WK1pBTLB0tBOBa/SqiJUv1xFK26I4Aa3kdR4c1XSSb8tW0/qlOsevuYWLvT202TQzYJyn5UisfHTPzN1jqJuf7S8fPhB73XWALm/P2eee8aLYDa4eoc/UTqorD2xHmohNzFy1ac3pTxJH92QO51ch08m/dasvqOEhRtyQE+GoN4T4CFoC8vcAvISwN4/UbkQclcC4SvD9sYiQnlT59iW97nJXDl802zl3KmgIZ9qMZ32XJ+PvzSttIin66oC4qefDQzFc0o1gKwQQ1b9EZtdOzhetj+MkHQiazCTfHl7TEqiGNuZlvk9EED8ClOnDsn5yE1zPboZnsHFNzUcvluqHrwbysNWNPrjglF1T7JDye7R/rFf/6PcgSzqd4MZh81vjw3Ba9RflWOxyxJdzQI7rpxeYazTOx1/LzPNu1HwPFXhb7xrDFTSeSnJ0q7NxDzShQ8apUq0hD+TsTDGtQvHpx2QwnZ081X1uyt++wWdzEdryh3W0zjNqi2QW1cLvgv0c8eFYw1BR9aj1iBStNYV4l9jCo9HiYUzUlMdpGQbUAsgMEQVorNI8zWuipd8sLx1lqLmpKIJ7ywqzHnGVkrjLGfnq6Rg9c2r+zmiWzAhygNP3s4FjXhaW0yvpDrQOZwsfubljy61B5uWAJtoIWA5xwTtznGo3jPQuVj8GTCTT7/smHifhV4fK7u/gJuVeiMHCZKdTtJYm6iiPyLJo+G7VzQPXtWPZLbJJl/Oor8tL9yV/uJ+p2PTNN/Ly/Abok+lVjjfcSLCymUKdsUEy5p4n8AcQgHzIfd0tQOeLRdt/HsQ3v7Ga08Hy8I3uFh7w86k8m5BT4oV/itMJpioS76q+sewHR7B71J/e8LcZD4TtpTWdVU9Zj3YKnxZS9WMP3dYxsctmCIz+kroBdGMnvYU+0nvXwgmKouA2tPmX652fJQJHrNa5QAiSTt/cD/olhR8Kmb3ul0e4tYMfBJf3YXRjBzjZv50mJcmpKg97j0qleMaODzD/jqQVJct4sn2p4OzRNEBF1l1u6oUS7AFMlVH1KVyx4F2VdE1s/QaHt9xqMPZXen37z6M1GxpiYo4BkbehoQ7i8qwY1MNFBfrxjRFSIF8UJn7k+SP9RNOByx6gArpKLEaFj5GKgQkcW1PYHRORkdBRPoTJEAiZ4LQmyDRRrlaDxq7qU/lv/uZ7d/2x7uTT+5YMyfkIkG2NITW0plmTikPtb8BDMksdkK76HLfhyv96SJom9z/qlgZMbpLhv9qCxgsyozj7UlR6quixWTrYIJSor5B9cbdm/23CS6dR56CSNM9W7EBXu9oOoVc/y4G/K8bFalomdZhlGn8i7KJ/Hc2jgWThe0IbrDeA6nfzzi/rIMQbEdJujIFuLaoNJeyZJnyv3E4E9jFHzBI2VwYeZZjhuXnkwrvQB8njc66Wv9DnjhGr5SD7d6ljKJxEdXdSCG9VtMIjxSxbU4Vppa80vJqt3kPSXHEnbhQsvGl5+gPbhjgWpNP6PVOLc0PzV+9RdLLbwDKBgNL5V1UmhJ6AisGu+k4WBGBbrZU+LvxfF0/TzVlv9bYabhLgHr5wRO2MJ/+478BYIOexMQi2vmE1cPxyMQeTh7TpjIzQddV/mYRsUXzVKsWGAhmp29RANZvPRO4oQYn0TH08dbxLzkaiT53esN+vL7UxVcFXIwXA4TehPrtfiGwf6cR6wY93doi73kwch8+aJHlSyd9IzqsWvx4YL6nNKeKffJ6YdffpSo5Tii7Pf69B1XVSbKBcpzfd9lHWIKICf1W8JayAi5JyDrZP8ZsQgXsTKOZOjqzJYqCyNrQuBPYv7ehD1ENNtpC4f2y08d/2khMnFExdEixPlQPhbkiuCdKTcuLE5vyYnNApxHN4D3Lr4wDw8AZ+Of41v26Y27Heb99esfAnepCjsnKTGEbug6pNrYOmgk7tqXuTnjhMUrHLWkkfAAc4Eelx3eeXx3dcN4wsrUDfYTWvHNclQ+b+0ZBTyCe+rhZdE9t3CP53gBarA2bqvoZp6KL+s5pETyjW/RHUkEzMB+6VDFpJanYOC/APyhcl9cfL80qYLZkzo5umzGyuOzbf7pwwzaEOa/imppt8VJz/KD1iW8Y/lO2CFf2OdBKROAfeI2S+7CwTfL9kry2tJh/7MbgE/9Qk+UGuOmzpAfCuUwQQecwGDc9eUWqY/73zYiKivCfM3oCh07ymUCR14r7lBX8ehBnSYgHCH1c5PFoVb7HAagt2xotRieAPIvhtVavqSNyK030Xe/tRNzIa/Oi7AFMxC0eoYohgpXa3Lw63PDXm6z+LVnai0MBrEKHQrTetbpR1JZiNftsZnG5uXGusLZvR3Y8e4GVsiL54sNO/NHBDCyxdW/pghWLMNCCmZsAO8MROQqwcGGKC9FGwzPP60pzEFgEe838EKxH4MSDb8YVCTPUZfmlfR+Cz4UrSJfGTnFzh5X7B8F9mNldxDhyv7IPZ34stSmv5dYuqFdGqwHM9QzCsV68fcWNOnDhFhyjhPXO7lEGiMJqsX48eD3KVYT3cnxLHp9P8tMZOWwX2+ti4Uh/ggSrzutW9DdMesJ+GDngUtmiaoH/5hxDnn6xMVnX+NgBT/hZGfoaM/7K2aKPbxnW8lKKWXqmMXZP3x0rD8nstHXshnKeiluxxz0xeXGUsuvLu+B+qqxtrDOzrhhlDVjYguVxvcGn+jfm0hMFXIGqQUYMwEtKM5Im/SRywjigxE1PZ7byVDugVU38TPdzLNCsCtzFOk/A8FciDmcSHjHg9z397uaUiFxLfdwIlQ+wRioTuOExI/YWSoOeu/YvGveQ6Bo7prJQr1hDvGDhvDCnW0tBl4te7fShnUnjwZnfua7kkabTLmae12R57ZvGw3RJJI+Y1alWoFFvN25jMPdpYZEya0/d7m2OguN9t3yezFgUPzt4h7sOfNuj26hPI91rsgjgPc5enag9hts5a/rCX2g5hdcmx7uLHfGajA0a1xrTlpeePp4e4ehaNXFEY4upagzD+GS5Bv9AEW0zxxQ9ZTzb9l+nthWaTcCX/0sM7GfKOxW++jvfiBIkQJcUuHGDIlnpmy5zpuiWFYZEku5cPi1UCE5M6wbFZQ0HWkALCqv1SOAHnqCRLPr39ZUh1NA9QIC0lSeHD91FTvHcAlWBf5z9eMpuIX9V/ZMDAhUyp4N220GLAu9AP64qzPilBLRK1J7RnZjjP+/W5cQH8WQvZy3mYnHq4JZDjlqJy5X/dErEhbrGYm0glq13mklT4ZXk/q4ieFAo4jdBOs46AqvANPuAxTKKKT0BtM+s1mZRTTgx9z5Z100lmOeQFVaNAJ5Blic+hKQPGwE/jty78sITcEXTUILrRYBvazq4n4YXBo2Y/etPSQ5NtGlPWWNhsRsjKBzeWZn+iBBlhvx/8TUIpzo3eS09WTi9ZIblCY09dxQFZREEPmE2KhYCnXu94i1ph7ldYZqwlt1hXVaqHMSibRHAMVyP2I5y+R7/pldn67A8H4uPNX+twY+DJQCCpJETEUhvqiEEzcCo0boMVQN10QavMOgZQoy1nux3MY82hNUrZuAWAOKAyrwdFAMJz1L8IW1v2XFrvKl8Y2mID4OqCdytEfaLJIoMPJivYk8FE2pYQs6qu16+rOWcGCPlgzH/YrnmPNJyX4PTgXviBQ0Q/GlzFMHNox0KXjBugVIbi6LY2bV9zRV0fk0aNmnhNnX7Tbhxn/DlouxD6SR81OkWIv17NitGB9pt10yGXfHBiRp/+8krpPTriACr9bRSpx09teqXS8KsS8XY1Wh8F7Y0zBLvhEbAKMzLI5qYKpM7wWZgbflXhizYczf/ROz2peG8akmDtHjjN7C74Vk/0YBy+pZQaM9lF0520KR8zJLsacPke9RMtTThU9i14blW3p+kxhHBVnDoJ0BpJ8ilmQo8rB8M1Y2GCBssRZFWdZ4RkBbmPjLGiG1rghlXPj5YE5xkS3g0xMjrBGFwkywSry67N/ih2A5t69yyqq7CzsQc1zZWbbbx6WOXpB9Sabe+40Bd2fEoihyKDtIOgY8FCzWrC1BGiSipXU4ozA4f93ycCb8YBOuIhWGXfiHIZwDPeEJQWsoec7TxZKmw/BX6l65RIXtnSdW6GGz/yeqwckg0CDZM4jMOZmC1yhLhD6kOchsIH3LWuWwsOhEVWzfDCqAz3KqR1g9SokffGhw/+zH+/DY1JXYOpyY+PiOjrURpGrmtOVbT8LfDpVdOch5RBQ2+xDAwCVh3L5Oa10BSSsfMMhf1rrod0kCVujSCDksFzi4xEBlijChRKyLc5J1v3li/n36wS47SU0F2vOPln4QxqghyUMqBIYLEbzFqnFsd43r8ATePBgavuSIvOVbX/1hv6eym2R0caWyHhSryygKtmb4K3qSX4zffSF3DlaNbuuvOnj4NeUk1DDAwlU4D7HzRHL4Y07fyW1VoBGi2hLTjFYUARaiQntL7QKmGOr8OU62bj571gqwTCS6FAKRO84EVm6ONNRIY3n3xtzO2KUoDmfNpZWwuNWfkhLqmBsviLY1rNhNdsZOHL1RzntbO+Ba9yBhtSsZWYkm4r4Uu6kz9+sFsxYyHvoX+qzVlVMOkW3Q4Oyo5fND+ZXcxfpalaAqttZNots7iVyb9PoAqqC+Hgg2/O7zSyR0LeUk+YigILp5sL7b6idpUCjSFeMRuEAh2YRksoUpXsaF+Nvp64JXbXrKX0r0hN0P559IBR2hgGs4SENjtffOyykSQZuoWjKRwLS7wYxZDcC6m2KEdLDazDXQOdbzAnS5QZMxmD4CxwxIm6NRdFJWiTG9Fo3Q5s8DAqQzISPgqoR+cQLHPWSWC+owm5lblAaxTP4jD0SQmPrc4LGZJoHgYOugaQO3eXTHGo14DJsewqFtTjZqL1vqkcodJiyD9fQEBJ6JVh5nM0NzzekfTkKv495NUK+lspXxMO9IlscWZcFNLNlbq/4j6GZT5632vMZpuxBzQxh6Q8md+ClgvQKddkjYnCxy0dyBM26a+GWF8bCqt71GpIEg/1MUyDQxB+DustUQMaNAbBBODq+zPPueuYgL6T0qor+fnU+p/BOSlfbpWDCFiq89MTHcSHQvpS3vQVZC84jYqWqJN6SDwZgRugz3f9HmRNjYadq0kFRd6adwngHBns2tGfpydUEuFmtemA32DSAsin9r4C3EXRjFlOKEFRwzc+38TfCqiPStDW5Wkfvke+8lkhnJhVpHv/XPrkuotjNITdHzEOvKq0qXSXJ+QRmQA4Cfv7BgtWXP23ymEg2R7i8jinvw1/JSssaPArDBJ7iZGR/oJEIBx25/R3UJ9GNnRwU6xGYByAmCkIGH5hEP5lj+VZwx7kWj9JMhRK8PG0nQiHZxONBCv36k2qq85NAeDevI6IA2hLHhJk1SbjQWaC4gmaSHH+Xs/c3sVZBkrVigAxJhROlwrzjfH1aEN4jfs0w2EIg8g4Ky676vS9WQU+c33f6+KF2dAhFEZDzWM4t5VUD+ZTzA7+96N+efKSumstYt1B7UZL96H/nBZL45iRl8K71px/+X+ZGPZJxeZqIv1Y8jyulaOf8/k4rvnv0RD7hVtL3NiY1LJpGVIt5+N3N+dkt3hDsfTbtrb1vP5VWFo0QFkRyESszd4p9nLIQXjY4x/9E8c63FiUSZWu8mRNQ9golmcmaExHYutPO/mSsoOhU+RnTXRa/a0ZDS5ajIBRK51b54jhZeUW2P+xA24iB0L4lIZvYtLOULgX+g25BbaUSVPnx0h7cVuuL+n08QCJ+hNt7DQ1n9SbF9cXq2fgEFSN+Y8Sag7N3DRhgNrFmEHU6L/E1TfV7rso9lZU9mJcEJyzUKZZyyOmy9mLz6XO7llK8pP1a75EJ0PG0DWEecb0hEOmho6GhKJR+XtXuyZNl6v1jkJqvgOX/BJ9LAGDACU53J48l1+M9CW7TFW8PteOySZZA/cRNgPg+x2UHu+nkBpLZAnRMh9gQ0sKha7i3t3k88sIVNUn/IeiXebgqT/4/j3kRT0+UsAtrDD4/rPXVF6KuFjhVyLRy3HTzQsv8LgcE7SSmPbdxQVHPcJ3erc31r3GpgnNHjBz5tLCRBXT9AoOLmbQBD91SAYsqr3DTb51jCriXuRKDGCGsr6jQVn88I4U4Ks1XMir8561Wq83UnXWNvn4CB9pMtrw6SHKJkE5XT6z4zhXZ508ppcHdNkb3ioSYnPtau+tB78IHGaTcu8DUwa1l0mQDM7wIn5/AdOc6GulPgZ+9cpuds6OKaZ0GWdgoxRUWJ78RAj+a7QEKLYs9Sm9gmRQosSrwJXE++O/fql83lsygQ6gun3aZX2M/g2asWBksEvmIUKWjF2nWt+NBokJKMJa5fOC6NiI+EQnJR6SCRxLgvdfvO7OjjA07x0vYBW3pm/QRiBJg5grIK7f2Sna3ZYxCiz6qwY6ElSEX3aDo9qxfKvmjzyLlZmO1ZUI3Pgh75yK9pZfSGhyxo+dSlSaGkg0YgypN0BggGq2KOZuUS860jRpmjt2ocuQtoTaW2Nu4Q=
Variant 1
DifficultyLevel
532
Question
Express $18 as a percentage of $600.
Worked Solution
|
618=3 |
6018=0.3 |
60018=0.03 |
Multiply the ratio by 100 to get the percentage
|
0.03×100=3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
val3 | |
val4 | |
val5 | |
val6 | |
val7 | |
correctAnswer | |
Answers