20350
Question
{{name1}}, {{name2}} and {{name3}} are {{activity}}.
{{name1}} {{frac1}} and {{frac2}}.
What fraction of the {{frac3}}?
Worked Solution
|
|
Fraction completed |
= {{working1}} |
|
= {{working2}} |
|
= {{frac4}} |
|
|
Fraction left |
= 1 − {{frac4}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX192kTEOLog8TBhCyxMzaYjJ0vqB6FGWBJSQlG8qtb23GIyeb7uosiBGv/HAF3kxYsk/8GHCMAYwZFgc5qaN7wx9Mn/w7TSycF1e0Mdg5DpBGc6h61nG/5uPAdAcvBiD7yd0zPBulV7+o0smpJ+F/Xdd75kbFF8m1IasZY6KzAbtAMtWkk1z4Np6GSkk4v2B/hpMYAMbo84N0VoKnOreo9ZtSE73MqO3AUOn99nTPr8tl5oMUgIxj1azckY38UKpJy/iXBPSCONVMJ+PQxEFeWg9fzwWHb227p1RQqLt7PAwC0REN3c0GC9LgziN/5W+mI0IOBC7WYsLNz+77AILaFVEZO3pYTBGy8y2bOZZG+DkT8tVQ4DBWlfLUWCudj9NF0VGZCx7MKJgUnO6midwmUiA32eiewoh0EXLkfpwjtzDG5j1DxKxbajiqwpkX3oGoN11gCO4GUhhl1h1wAJIu7IBRmmHX4BGFzUwC9cX8VCJ31peAT2zok6g3klp+mreWg8SYm9YusPi/diQqAHGcmDTBiU7uN8PoP+a1zfCPhn59v0iPuhq+OclxICiC3fvtXHciLLoF1nw4JmDT3bhfGo3dcLsvs/Cd3hV+zx1Wpm2JBPtzPt9dDwxUL2zM5RrXXJfgV/n7SFSf6ZY2qrTUZhj6Gx34G6XOWqWV/UFzIMsiKdNVKhoz9bm/EX3xA2NULaeGbPYDfnYU8KPCyzS0J8uTLtkWAkeZOkTxE0kMsHuVlqFNyeF0UDJUyj76LfnIavfcWx0X3+CguyIqlyTgPjql1Xrs3wIo9cG0ldGztSQwPaj6hz3+34Sd4II2N3B6gBCeWuaprIsKMMMoJP7Zu6bFCZGCfgbntHvOhHG6RMKchmPDl1OSikU0u2rRr0qQwM/JdFoib3p8Q0UDHIPUZFhCs5Lw3WEmTh4XXAkidhf+poOUbcMrWf+7ypyYtoRkmSa2aMA6kYoZnAZvaMRMiCD8+5aA0L9j4eX3EgbqgvXbXB40e/Hmu0zCg/XNMqxdTgMhVeFJjK++qAaet+bGxi4AX6qs4sJVjVi5ZdfJdKDzwr45E+hiUeuI6TYfwLrCSKKnOLljVIbtq6e9yIkWMZaUzd8Mt33yUUkQz4lNGzYSRDbTlJH4387kOf6XD7c6JiCJJd40bow+Q/DMnkhXgcw+vjR0sdP5fygP30eMtOVWwb4oEBtdc1UWFSG79gF+oSj6OMpf5NXqvE7lToFZvhDgzsuAQTsE/k+BWFRP7UQeAEj8kx/GCDtw8Yu9jMjl4Y4d2Zm63ntR/0W7AeTSWkvmv1lM37KnjGHPa72UiYsgZhbnxxIMDIZ0D4QBRdcyWQDY1TlTZlcT1Q2BWVm7t8AQc25GfySA0gpjBK2cHQwQmtNax/NWpgap6xjfr6thMSZq9KMKU6qjVWVuSmzRzuphY4oOE3JozyMdEdvM4dZLAehGP/LQItJ8gO2Gg8IJAm56D58X82KPDuBURib82AxffFcI+C0jClXBJrnT8Io7aoAsEuj3qEtA8P9wlDtx4x8VCvYYOrfoL9GVBL5OED/yyOZBQs7r6n5fEFYTpaeJi9SNl8+clu4DqjMNoPTxP618Lj6uUmwtTMN/BRjVZZOMPyl0C2kvW0ZZDZMjpQ6VJpWUrHpQY+oiJ0qkCb3KPBWzVTc/Z0MZ2cuTP4URzYDkYpW2YK+HyaiNp1zDjRVLaH2Gf76cv2ShDEZouR7+1o44YWXowZPddOwJ1Uan0wokaCZZwskYZ3ovZjypnsis9SRgbfcFA7074DGJBeFgeALFPcpQ1be7siCwF+lJjyFj0eEi2RyDH0/goOnpN2UhizUGmYEJKx4TlmceYKEUC1gLL9wKNQbqFPHvXIR3KZJazBDu7Vy8b/QNQiKTJveCPaAvIFnfTX8os+3WBPrmqbarQPKS936QHuQDu2AQLxnpa6xoTWPWfmSFmioP79MrBzSNEVP3te0oA58LRYDoPbSgDzLqADwRssj/qr6oAeuaBXpGFgaBEZ+65RtbSQH6wLQCbM2OMl/qsZin3/CT3W9ugQBZasTqtPNozfVgIgmG8Xusqm6b5qySyuNQv5dnxgFOlDxHtraZSBkwT09rq5G3SeONWlAOwRKSkutKksb9Ikt664nKgcIgf7dU88JJ/jo40nIYQS6WcN0ZruzZpgjQ6TDsdwFmupR+0PSiedkLd8AcreytUVAEzCS187kprKlisHk2o6jd26abUEzdS/iVXwFXIsj7Ib7/zLrXfw0b0Yx/tqUDjhJNFN6a0PyRzX8YIz0srAV+V8pK8EXA9oLoOCGGF9Gt1rqoBDd+l6DGLxNQ4sxAJnctRoqu0COuJJESKomYNNJ+yVoQgMMDfOPYBLFysg4Ek3LuzSSFSPeUeiJu6Rc0zurpQs6X8ZNXpnHkrN0px5UThylTG+16txgeG0ZMvuBIIuYvSFIqmTWdFvq+vf6yKvG/4z9jdZHwxwbWSOiA8crwB5BPGzWdxY4cbwYgoE7Pm0UwtL0t9tJMdUedsENgWn3fkHkNXjtn0+08JQB10s5w4HkfCY0uXneAVE5dBYmwUE1XraaET2cXF3qHllIwdFLA/HTazUZHdmEM0Cs8ybwA60hr4HDYqd6J2q2/SviTB2MPtdT+fQQ1ZUm3skdhkttSmmdV8l101BEKuMNlSoQJJYK1w/yC/X+hlkZXnimK/RG/Ub4umrSG0f97X6cE6OJQyvzYj7iShWdYqfWw+dm7hUCQgHQSOFiiMbmvK5x3suX/g7w00fpZrJUJe0SMstFs3G3t/nu+D00e9pch99xB4V7FqGotWoP9owqDMhIb6ipEVwSqZ4gHJPBtZkJS8F9XJgVgVlgTXYVE36Iv0c1ugDIizgfPn7jJ0y5h3Dw/aD6VrBOYP6KQFGQtjD3yk2obsqpcsJe1K44CHWiVJ5a78jEkiYsP9KgdIVLdXfaJOeD5q8XvZqgWTRE5RgztZoF8KqMbD6VsjSqTWZ9eF+mumPa/3lrkVzpF5JPfLv77c4XGnBAnBynJF8l/91kg0R2VrG7kEU5Hv3Gv2J77W5mYFnBRHax5Fm+MCk223IBh3jA7cE87zunXwZ3cvAxP2SvWcISawPTdbwWZDuI8m0XLvvcCGbjt598SpplsN+hsDW5Cdk+D51OUlC13hy/94/wxbY8RGFULd9AkTkqSQt+beqdO83l9Y2UZi+8MyIohEBJ5xvWuq7HUXTFJA8+qZF/2KwhWIo2e95RgSvDNmN8RQTBvmuwlWtXiJ3xHYV+KH4y63Qi0u1Z8Lm5b6I4LYysOGUf+o0FT858t8gEd6uZtTEXEUHo4RN8JdnQDNnqu6NhnBzJ6Shr6QgyX0UL3NISPTlIeKtD75DQcXiXn/a5AxLYjiqaxWTunT7TQXLJswsRxscByF6ySUpCPQPkHjiBOw232qmc0z4pbZYB++b/wscHE3zF3Kl4L7si9hFwogVeplI5yNhF6M/8PvrGaFz8tIFM5iXgSSeS9agfAVGLd7MCTQV7zppbZyvAqvtfssVKMUGGYOvh9GA6kkuEzsXHbkUqatdL1CssY1fsQbgxXVEBa73oVaZZbf4Ivz3zc5h7UIt8Myn1zOiDyJdUVNZkfBqJp2V5CBHxCJNmHdTGo+pOdZRLYxpX9HRn9ySgZ1hUt6Jy6Lw5ZtwrX0+F05eOF7vZu0vwnQkn5KnL8P3RpTaL1/+b2z3hpMOkj3XcyaudXkhXcnjWm0HfHK1XAigmXgl6Pv/Vx3Pz3MM/H0IwhTp4MMwhNS7rBLWS0XvvcnbjTdN6wywHDUPd09izomABvFuBl2PIDetsJqFSdTl1XVosSf5orUrrBy41xMyw5kD977Lk6/ymBRHDVIU7x2JI38dm2O8UGYxxU2iR1QekJzlES1W4pQhjeUwjq86FV9V1PHYzyq6W/kGxcEfzCSvPizXn40WUM2oqwpFm7ehOs8YL8Oh1671Iv5AG+cLQHqrmgPaKsrAjQsq71UCzLkZs9WWNuhdW4a+Q4laqsLZ1T/LaoOSrkA2FzzRjdQWZeehLlfFIqrHGXUo4hJQ9Um1UKgoYxOn5OuCZajALDqKowEhNzcX9GQvQdcMRxBL30v/UwBjHuiQxPYsuTyvM1SwWoS94Xpez20S/HLdiFwXMqeEGWsSN90wmos6vqn8V6JvNoYwQjym8AFzlkPcFS5d9U9/hLyjHf0HwOoLCkVtE7JacfMg3Pkx7tyr8lX/ynYGqxKZ08Z/KfJvWqySTyZz4xX+BWD4ADBBZJwVaTROZgko5OqNO/3POt2OGek0Wm2EYLX46afZn7guPDTqnU8y63XKvYMBMW58EWhFRIHA55gj6CBW/57bEE+dmvcZp9NL9rsUI15W2TU6vwpz9rhOdaNyJ1SfSp6lJgDtFsk2v5hEmNpaMmOQuhAE5CZPPZwrCwSQdudM6WBjeFKHwlgIYh+vO44XOsO7ejlSRHn8uAFi1Aj5et1Rgqn0HdV3R937+mvzjdkBbDEijn6+AVH9eE3g+3gf1YbqZUQvtNvpmhBCzDw2XOgBCWPh4y/V/E48ifIIHxxFisbnfZqBZzRvdgD6CVpSUMRC5q4ck5pIm1ld7N9D6D9Jvecs3k7BKacgX30m4rSSOotwEGy9RyLk9PXgBudNbNBScjDbafwctFUIhtx1v7Pk02AQB//ksJRGSNy1YWNaSsQKGlMwsXLDlzeB0DNncHHZmMjTJB9IhdC1uTQjtXiLXGEsQo3VlKAc88z/y4IEV64ivmTZuIFYU3jk6jXEC+ySZKzsNAqt0gkuXqLXBsRk7qJvMLYd9B26iYBb+XSHyBfdc81FvvWak5/uwxBqoZFRy+r1cuxgbRxC37uUEaGKwHLS3Tg5C/4fnJ+ZFrUI3pc7vVE1sjJbksZ474+pzhPkXZoF6A/P3/FnUg3ykhxrXtaHdWqV+v/1n/SNVljekdQB3PQC8aGXnhpGqMsVBs/UkFrBros+tyPTdbk66sqjEEADVT2lb2JguNOytdQR2x2XDt4/ZJ37O1oqz9ZXTSJFoFCVjwUFe375FgPtm/QD6ObMHQlIAMhLoYVI0Iz5ZgVy4+Blh1XNT7m7ybnAYtYVdpi00vOMilBOyuabYPa/2NO2Qps1HmFJBvy/iyNa9JW44mfMiAvgxSw+l9QAk0Qpz5atuBezmbpR23PFyCj+flssgmEdvuVx3F78IdwFRMh1byDq3N2ujTuJHOOx2WgeBp/9r8JOhxe/RU8BhB7YbHxV3BgR2LNiA+LR3wH5QuzPji330tmBLVptlexLVyMLM6NnshUbETdzSJS0GWRNnCZ5bunyt7TWVNmyTMWrcxMcvQVLSo+6USZe+817zJWro2L1zRSRUxk2L3MJzlcH+pYN1Zz7b3Ji0Eao+kL9EY+/zgFEjZnTwlTc8riwsldPR6HirwghmzUmSOLne0yUWSQwRemF7aucJxOCfsROvvaXQvcZ8BZOpCuyIDxKcQ4FA2hVRVfBxkxJvkTuot/gQw8L+W2tfmgOg4fzCaOpCGd2WNa40ItpdSnVHosKUAtlz8cIifNAJgEbLCXFF9nA4Y2nkI0MKiGdABlwCGwIjK0CtRVX0W14H9RAA3hSva785rZg8pKD1tz+A15ECrdEOGBlfuFfOcc8KJUQQsL05lV/lFzYUFEupX0LbHraBmqI2PmcQQeBjiuTdmeF7TWsWH3Wh0tj4oHXFclcCIy0Ix/STzBHRm5mlge4kABfjUb4zCYaVsv+NRGvDIuavxjPJLNGx+vNBPmMti5/LL/IIo3RHgklaeztqZ2J7IJLKDN/yBL7g4Qoz6UZHItZHK/D1blTn37ZETslDWjL8WtjbY0DisfP0fgH26B1kbEemh2uZIZZt7KwRzjtdw8KaGe8rw0F963T22eaEmuvW6yVG1Ef7TPoeIPDJS3sPSY4kZFHl3sdMdnMQDd75qkVCJu9koTcyzuhGXAkS15bfqYfyAdG8htRMIFRRzhJhRFR+EMRTQD4XsV+PUmzW01HkTFjzPDCVF84CpfSuWWFuW0GX/n/NCl2Y1ab8gE7zom7GlQFXME589sEbyh/KKXQB8ZHb33V7GkC/eKY7UM1Xak1fiK/vcbn+l2GviWyF5CE8qFexzZz5lG3VM0PYuOKYc9GWIev/TaLW8rjJv61H0uI6bP+etg8bqQCWK4t6i+keYAfK8Ok+fsj4J4J+JUaxNJ/LWmA+VaXUDDIMD2eklhJj+iC/IoLklKozLqxbw8GrPSPrLPVRUT+PGBc3Mh3aREd1zEHo7XFK8U6lm/JaugJROiqXuO6Z5RabIdmMMbLyn2WSH3Tau5UwdPHNb+TXxEf0CzPNqddCpJcDYJ0rSKV6E5ATSWyPQCWyQGo7QT2j45gbJQgNnb80sjTllMdb9mAx4nHcFy2OhAyBwOatjuFijHl5Z/GwwzdCcTZlq1JVSiOIJrXQWMIALaUxKz4msdFhr89MqKMbrw66ZGwFvwNTB/MWK6toui1FfmXmBGnARVCDF9DpyNda3VCF+bYC8nTffdMa6gj1an5A8+KVnWpKkkJywWx/tHPEC0SzyKwoejTpU1gwtz4W4I0JEQCvk+zkJqoeV+oHuRlMe9E/ESuIUVFI8HcDg6EKo6fOgEhEFvd5rcHpt9HIDC8ZrQ0lszMUgbwwH+B+cEgfZ+MvTnU+VfEelAp3vxGyFk+hTr7AV+s9cXyXvZiBU1H1pX/yLcvhxBXRyB9ND4f8ZZCqq5nvzNMr2Z8pGZ85Vy0YdhsiXsRmX5AzRfAQzhl4RL/dTR7vGQUBooCp0wDuB7+uAiX2GA/X13hm25PdEwjB7t9IKhCBIKWPJi4+ARUCfO7pRvCC6eMCA0pA3qRvIQJ4OYQRivMPwPqvxnnSBXLwBuUoTNtUtIgjlH+Evvdemti8YWP5IpEpSrDFokUUmnKN7LJe6P+dI58XZ6qcH0/dNH/TxzMbyoftx/JcA+bNjyF0cYtH1noDQRXA1bUFMwfdar+9j7/cDKuvS/F6iXMWDabkh9t1+qGdTETZW3cKAfGKNbs1YA8KpjKkAJNdu70c0gENWMB0pM8LTSqOLCrR2clxls7An0827PlwXquYd8GXYDcB91sf7lKS4ve+1LuJWieOneqzM7xXRgBa6gFubkqoMpwf3ykVMMCPTHlzwPo30cme/PkZeCj/WipOb5AVxKC8O08rM80d9E0eIN35zuM0P4rDC2r2QdcobJ0ov+729SpfewEEJCcAjxpL40lmWu07Y7toO8CRPbwdrl98D9xZmznpz2ySrQBYPWP60Fzyab7vKI7Fq0457FZJUjEIbcFhEUNmgMPZcOd2KWBOeXWEgszslhlV6uVk96rbi8V/osJ6HNqSxceGUnIHVfXLT10piDwxdnewTUuv3cnJcbuMxT+rImmwGcYmxsV3MLBhm79tFResBy+stkex4zAgNJUtbXvrspAfXABkkKHQXuziXn/rKbyNnAzIKSjrFn7YmjxPrrHb1OzdN5gX+4RXJ/1+0cHpxGJGheaV275WcI5C2wLV+gPMgoPRebWr8TJp3SGpfORqdOxvrF+kTrBgBMjWGNPVF/sUPzR0qb3RO+m3Kkz54+K1JDmvEAKFupPfLkrWnvbi0BF9cDck6Vl2uBwZNzilWbkoCIEd+kdX2MRepVlczucDiGDG1DVIw7d+P8jR2Uu3/q8gdV2bn6S+vp2BeAbHI3Sf17PfV3KvK2Afv+jRb/iV6hhJTlTkG/4uhPXCyWpD4v0W8IcVgP5+HBKeFIBZFAA09KzfCquIeX2KXQj09REI8HPMa/IJOTqXlb2n7Z0Wy3DneJF2JFo8xtyvKZuEwAQcRNUxaYX4WYORGsq65npDhpTFUGCCXs+Ojy3+T92neJ/filNStsjNC8QKG5JQWX7mTvQkgK0Uwlh9nPDhz9XAnv8+RqYH7SGh0eZ/xaE9BdpXZjrfhbiKfOXysROHVvX0+b5A7VCKXmcK/pOFX62+FjhujBJHAen1ZG0lEHQMJrR2SDuy3vVzbZatfrg00sAhqgePh8rSGQDsWy1ODQmSmTT/G2dcMx69MYqfwrMlSAmHRoQwYWZqosvy7Woom7Ii4OX95JlCteXr65pTJu6i03BXXwIvdDiHTzewg4A8lRVl2f9BmQPnP8sYJalR+ErlsM6P4K4cN5ZPtotwoRhXljSff0I2nN3Sxoa58RwTugoJkdcVn9Fu8wGS37ssf1UVbqyqGfgRNYWRSpvtNDg6enX+95TsTSuKiIRHYBgrdX+jBPMZNbQDUu3gLqrb8Xz3DI8XEENG/eRZcIjkaTxBBfNGpb0oxivaxTMjOkKHa01J9ByzfBTFPj+GapeyI2RmzerNsnnLXX9rpBs/CHsbSXm+prwbaF5D5vOJSQA1zmuRAdSXJD9ej4ena8NiBqokg8LBBYOdTAIgSBuPI0zCsehpu3Uj8sQ1zvckvyPJPqBfUl6qLfHYXZx9s64Kz9hkG30I1Y4/bZaXIT4tUWcIk5MTVZJ7wICTwM6BisBwiCKjdmniLZUFW7Qpm1Hq7FR6rjGmbhoHx72q9sOfY3izsTn5O+RpmmIKILrevnJSv333cJ9zsATsMapNSloXYI0oZ9NrGYc6PNOGj+pDMhVXZz8FjZ2XzxWViVwi7qMfntWNt66YXUlEFtBRWfBpntQ+Q4s0+uZxvv3j1YAwj4c4zMP9/GsNIqk+TIjmw+ArcTAMgL7QAGKQgaVmMJYwYXe3/dUhXIoxZ/PlzpIpbhtOIJhMZIwIey/HXlU0Ac/R+sv1WdGgqRwmcCdTkKY/Mntr07LnPtyBdmK0g2sXcNZczjV5hxpkgG2LlaEN7S03X4Y6oNILzDxIPdRoDtEEoZ3o7REphF5911c4IbkwheZgoqE24Jvbgz8VUTb1gmcEsgI+fHwdaI3GnA+JJHvMR4qIGpS7N7YZZdZ5vjkBlJ/AS1GmZU59MbbnDhpkjxZ6a4vdDUPGapFITRxdqadXblQAlbxuivqAYQzIBgfRIo9tBT77YB6IOQkVNFWNjVZEC3i6T36IdQBepcl2BG1dsgfM6eAJAR2b2tCKBhmFaEudn0adolVpRWxp2V41ClbfxUOo/aJPLglGDvxwrr0a5c1Pq13IAcUXYD/9c4z/YtWocwfHoammJShwTX+2q4sogpDpzkfzEX9hORA4e7D9OEchq4Gbdcj/M7y0MAgBHb63Ep/8AYOr6FMMacJ8yIQEqRri5qU0M2UKeE1hG6s22c9A6pNyDUao/xrG8ubvXB6ORhUf9Rhqqr8oA2VLSJ63g3v53KOV5EsHdLH0ZXj6dFTnqBTk+MM4HM0Tto6jEl+liTHacujMY9aziCGsUAyOWOwzxl8xgpeybZO/1WAP8zU9OB/8G3rm9sLVNu1xhOBZ7phf3HprRXUmebmz/r26LZYuC7ejtvSfOrMeIhwCSIqWQlcDjo5cA3GawX3dTpnHN/Hqc4jvnMU1/9bg5GheHKAlq5Y8lzaIaTmwqlbrc8o6ZkDfnfboVmr1if/zwNoqI0bKZBzY6/qMDOQ1ORfx8hpDCNHi/Kd1THSqUzhGLzIXFi4lc/vLMnVV1nw5SJkEGaXG/u1o5V+XNxgszjuaMNvsFGm6iijP69kx5jXmm57RLg8pCe4wHZh4B27XmqSeFTYTqZIwdyS+ycfVxApRNa/JsklLm5YtY4zJKu6NUeSU9FIjviYAAnFaFBNm+1dqP07uVUa+/5vK1wuQ40qqUlAOEz58ATJ0112nA1K0c+O2pce2RoziNx2XL/hg3B1sbMENHyrmGZx6/giAaKldeYYWhkTrzpIpCE1Ff38j4YMBZuI7moRpe/3QEaMKBC/rICuQHQHQkfsQi85A2SV3Yn/mp5yuwkUneGKHDm/0tlyWs/FEThAyvVeeKP4oXGnqWtmySCia/j2TErsxoIRFkEanEfojfXdzgQhOl+zoX+lgsVHqqZEE2OP1aO10LLDQP5M/QfS0c9txx//Y7dEvG+1KBRuZalwJj1gUNuh0YV8vc3OYueCqS3xgtPiDQPRyEpISWwQNjYeGLsyIRgzAjHOy9WeFtjAmQFbJw/P2FoGxyA82Hy7EtLAwAAZZp98XE70ppRcF9dG2qSAIRx0bAbxkfQz6Y65Cg0UBiKDXWzV5dG1OL8Vd7ekx1+VHmHUx2PPNcnokviuwWyn+ktpt3Scn/JpEzNfD8d/hjaH/zDGoRTElJSPEbbhSa7q5DR48F714RcveZv5ouVaEKHAEYchoA0hb0FT/QtWGjGPh6toDf7j6+1q7w7eTjJTx5mraPJW9lU+pIkHlYR4lcumW221oaMpoDcAq3XSsMalkP7ZF08iTMdj2FuvFlGBFZEwaGM1F3DvMmFfQKfBTgD+tlpWN13H3xa/YWPxNNaesi6VroGZ4HRxX3krmT1igUvwNGnfgX//OAhIW7ZKboH5Kb6mTDkv1S78q37MqD2hf+pF3hGLFAfpne02HNwR9XqHtFj3F6BVq35bsdEWsCxef+gqGMmt1g2vezRbpGIDxoAevk5koqa6CllwgCXlvP2b7RwvbYv9LCTvLeRZIrpOepuRrKdKIXDIEvA7Nf4mNxqTOFqOM5U0ZhpJTpCsBZEqimVRjCVE7hsK1NKHbndPqKMTQEZCZpWZGL4QSCJt4eI2Blg326LHDQ2Slr5Q1RGNyojCM5L9BrXeoz/jzACCTZbmxiQc4VQbDk+qp+Yr/V9tljrG0t9PUmBdKwe7huK1VYEl6m2KIjY6TcA4+Fz4IQHyTSVavHeh6zIgm7vQBTRjY5DtBwZqcQHWnRepH4GauKeYEwbN7VkBNHSCNa0t0DMgD6T/J4K/uGdoXilxgqxFNTcf2Jcv3uBIQvuKxF5cBwRuSUOA+Bt7fkAPAkX1bBY58LhN6evB4qHNmgQJ/6iNaJlLx/5OywjrfbZnN5I6BIZJ7+yUeiVlb4WiyJy+8kDo7ODCv4yFMB4ozF50vxqEmRpMYvzttIY1tvUpfyjdH6ov1ugImvquXKT1RvM6LsVmz+r1rXl/mOEMVv58fxovg0QljaGhS5B9WZzOoI5MpwRJih1OkCl+evEPB/Jk54eWTilO9DcpTNwZOhpCFBeXFsi1+1NK0Uj9dGmlVeLimrpbg7kUj8RQEzaic5f6wuKOkarxAHo4wpUNEGsDqFOx9A1SKo1Ex4WNGhc1SlOjoHmOzxnZkKg/qjUjRZaerNcbt76gzD+1wjxEX7NUQd2r4UHU+wJJmxtcqnPyewEk2japXYA+9CCQlV3Cp6zLUFnDyLM2k4MduRTBeZfFetWI2CBH/xMxon+LQwc00SLz1N4HSvj1ZTndMYWnIwsoZh09DOYdwndg8Yc9/ZeY+FPQPsiMtSjGTpYjUuTgOwZVn0pp9dsC9TQUmHQrjXTLiSajozvB39sG5sMalxSsH/zdtHJbPfsztA/KV6dIniBIjBb5UnbK05G4YBhi1TSeRuAcKNFSMSAlqX6YlTidJZjO/lOicoNqBdQ+jwsdBJSe+a/ViNKTXX35DV1jx38PBOTdLghyRuDHFTV5SW8JmIyHkPiJZJejoTVH5Xa4c2nkADBb3zMD5jAuzZoJZwOsGqKqIAatYu/s9G/x2UZW7SPNRWQvikIb2pa+crRBMay/NWkmawwKGsacB819Vep/pJvPv/1xnqtHpkBgr86vBqqM0TLcKnPj6a08KUynUwG1SjcTGj0EeLJXz9HaaCNqcfgCBIuppYSibXH6HQaxHqB5/sZqQm4sIvmJkvqmreThnL1CE7zE0JAy0s9cMc3pSbBJNndUH4tiIHCijbPp90NXH1hhLV+X7KjgEIg29ET3x3tNp0AwoUnjUo1sRmrcSWJmcFL8xqpR6poGe2DZTmBwYqKj+VeLKV2So3eyduNopQJDvCly9ErbX+dZHJIeArbglBrXsVV6QRm4IDuCCyj4oJ2ldL+wm/9GNXt3a4VvTf14qzpoyNGJ1xOJqJgLBDui5wZVEdI6tWp+c52DDDEJIYU17pkfME77uu4YBt2UT+VaNiOnF4vY/Ui8If/hJfZw4i77Q5BWNPuyhO7udJxv7E7yPlaEGW/cXSL3WeYJRPZOCBxPtY1RT7QEXb5clxelckKjyS2FIG4x1XcRGEUDphV0ht3Q65QRn7ovBtqbk0SS+R/mMr9I/SnlkYFPHEu+B5K/ecJGx8DuROVOGMMrapuIQutFqeM9dZdTL9b61OaFoNOBIQ9xBppUPTFP/R1dppTxVWH2OAfsYgVPCc1ZK+qZQNqVHvLg0NzhkBT7Z2pV++wxTI997n1zqZXhsG+qUu3i17vWRWdlcu5qauXnVugNIVZUxBXs+tCcFp3QnCZJzO/61QXVHISnUS4UxCfitidVKsoakuVcItQw47qoCPwPTQswKumJltbtG4A0T0n+Eh7rcK+B5PkU1FEZf0nvrhNOc/w9PGnTm38rD6bsw9AsHqeKXhNjDtE4XTZseuEN2D+YZUH/HSseuj9bdU6A2jadH0oIA5yQ1bGL5tccqPvFRyq/IB9pTzksfo/mLQZcaFgsP+CDcPq3Jj9fFFdnUFapOSjjIOQN8zDo8Y8Mcynpg3j6co0Em24S4lU4w7oh4vANfI4vwPoAysyDI81PpY3IxntGdcYvljS9G30ekpTcc24X/erJF61pLZzpDCtq3qg8EZzOwyyX6D+1oCckiFKd/CZa2V2pZnf2qquJ7YMZyW+QrVFGVKLaMLdClDUehKU1VOIHxpmpahr41QJ5lQ/1+R+roJddd49Bw2tc4huiUCOnppzyJAm0cRxLlB7jy+Qhvw21vej4yF2VKXSuxlIRp3RfQvSSo5OOJikaszN/6jYxTZS6TryoyDMOq+o/NVFCOsYXtCONsKamn330JZcJZqnc2iZZN+x2U7qn3HMUw9uh8s9Mc/W0LYkw6J3VSAOTAqx5XK8dp4NAj0VMaiy5NZ7AO4bc5kvmosp11188ZDvaqP9Gb6xqLcKBf2qfEZ8TTZQrhHyzUBmHLGEHcpmpdreuGQJpcpexnMVJKPyfUrDEF9CJBZPS1FNnO/u5WwIXJp+/at7iiOpLt99Y0vnvzyobiFr8A+6+M8cNl6DEKtdjfahgI+5UW3xBVpHARY0Shz6Xb4gJUr6qQ+9J0luCMysFgzSOkKmVY03ntXS7HOgKe6gV92qP2E4xYOvExnEbKfPSDqgQ0+ZKxZ4iJjtm7d6g9xzp+lfqWrX9VS1UlB7ZMLRw+LQM9pX/KlnbQpfVEBPK8qtW4LJJK8M794NcaXC5ZjKqYa09j3TlHx6xQWYrLx9TyUH8A3Syfvv+VZG4ZWnDkiX+ZxWRtqDthsyh/bND4HJQfKORfWMmKzL+PN8CIq3wMaGKwTkq30RuokckwC+7d6pZMVY388MjiT3XEobIMUmRPHG52/mvHWMJlJIls+oYXxtu/EbGlrv26LDFJ0VEnpKpkRLioQNYmEAqQ0M++/vbmxEvZA9ymukY09Y00AQ+9qwPKsl+5SrYumPKSOHbRpLitkB5jKQ9zQtB5YTHl/4QCcvZVWLtWcY/Mh9F2khpAsetYS4k6eJYyxI1817HGK0rug8P6OyODr81t9lY59GcKkU9i3E60NFwhrpmK/3ebSzOhZpGX26bIKUsgWJIBY1RrNSLLLRgvs/+c1VcyRxoBDdPZylsfpaPwHAPAylg9eg3iDYrtkISjZW346HOcuGCKdSJ64AEY/5W2OCeZTQTf3LAKHmvdH2LN32s0Mx1NcFksBQ2P2F0opuaz62FOvAJM3lvGhSRgQuocjm34kOATA/5U7EhvTun5qZMolG5e39vE4cyD4Yib131AXrPagPeGZH+CyGowhSEF4HsGbftyoqj0/uK/fTKE92WmsXZMpwzYb2lWV0eCLeHzd/+KkWOBoFoUclJilU1zsh2Wu8TGtpSi/15IR5BP+3Zdn2H11KUEmOInbLy1EkFljFQMpSRz0yCNPUuxcjYjIaQ+8zDg8x1s90Aq6Zo3W/IVlJvEyWPb7Iy1iC5d3SF2uvogmkflkfG9Zb252cbCTvWJ4muTuCPAvq+DqbYa3bDs6tO7TCp6mKlCK6mRUVU9q1RVwDEWgt3OTc1A0cugE0w7POCQW2C9xuvnf9VguWequsSOJnC8vrZodCz2+e6/QpZ4SvKeoBffqD4rUAlAS7ONn0vK+92y8i6hcBQQfNrUhA4KkKObKTjEYXXtUq1jQGXMVW7oX/omOPLt3TbOUdCYs0YXy5U+phLNnAiUAiF1ST6qPkZWg244aphQbiSmmzA85XLEawSx0q2D5G4hZUKEpTPZu0jIFUJNwhvZNnhYs55RdXbrv8MEATI6CnGg9/EoR8ggxxM2P52JhL2j9yvkz3ORkN2FNjTFI/JVuhEqsshyFnr4RXRoW8HYONDIv+Ou7JJj6VygnrWHMzG4yULtRlbUvHcSGPYIqDs9ChOe9csAitV3M6eTsUB5Z3ywI5ZrajC6utOiTyZvTTFihcwRB+jdsDzVol2w3CUWPn9uBHPAjjqMBLzXEaJnNw9tW4v/XdzplWVJgu/EEPp8f8CXFm5gT10wr0JZS9HUHWtMsc/5z8faK9gmZ17C3ELXTQZkWTkhCyeJEj44F8bsi0lF7VaogpNt7vBfO07UyJWfZUU+RisUgq1ydP7inwupE2kiu6RzEd7u+9YiCOQOlCQ015Q3lxuWLTUwEIY8JSo5Q9tjznP76E+ap1YDISxNaUVkEBAXxpJvPBIQcQmxGYen+anYcPQADt+ulBnhuqaDb60d8/ockqkdRo3YLZiehPvx/ZgkKq0q2SIMby7Dvt+8wXScvEuRKW5g4TYOAol5GnCJUOuwR/EAwxuuBdLCzK0kPPTGOYrLXViA6MyVayufWuU2/QQp09ur9YYTuiFmETdOqpmfkI/4LHItNLQ19pjMlY81WzKIuqOyJ76jMNtPHwhZUb3DfUonMJLAvDtsf6HaToNVQGmiCR6HD4v5/QYEaE0Pxfb4hhweyBITLHGTrZeCzy3Io58jrfcLr5WSUTyE/lLTufqaYxXRgR4bQUMy5W4q634TAyrHOxT2EUmPMKQgiJC4sDOoc43DdekiYznmrX5Bo4/zqMOy2jmuCbqc6uY7pTQ6S1SHO5tgfZHuby4RWv7vx90Q0a8w+OCehdCf+SdsraTCawnbbxdLbkT3fZOvtjz2LHfYwuwrSPSbLT4Fp1Hjd2HXCysB9Cuz1HwhzfojoXjtNrgH9rQxXauXHu8mERa3+IDhotlmhy2dtJOiUj0lXIm9mRx2QwMg9Wn2JfHrv7aTyaGx446Jlz7XvtE5R5LqDIO5hhkUL7Z55Jhr8hbzqEgQWwcL5kypqMJT4lEHfKJhMlw4c7YCMgJZuleO4GiEGvrddQGsWQUiUNYA0dZF1604KySH+W5nI0+pNEuasLe/a8ammpUtEsPg7CCz79y/Q1Y6nAVnerIMQLiqyMW/w87s1ZD8rs8r660EnQfI5iSaSpK8nxLWlLBdFjwem5vRpMRnfm3S8KLmqKK78OH8pcdbB2VEve+m74XZPDFHo2nArfDmBV4Is4wR0I3TKnIVk14vZ6ofEH5+3CMO5Bd6zNn8i1I8Rv8iMbyyYSaA+XO/bZqky5rSzZ/5e3ErHDeXtNI+O1gwX+uKg11a+T53Dflgz4XzW+XIFt0zEAZuDYd8TrzyXhOpRacuuPg6Tm7IH8bMJGXaAlF+P13dOZdd7z+nMU16Cobli0ljxJS9YO8PRE73IXbA1Thv3Em69qD4rtShoGDrTKzxFHJHO76TFK8wobmp/TDMDhOOMh8+0n+ILqJG7GrJndeBGzoxLkCO9Bh7VGpIZ6H71rRBd/B9ujsJnKTAqiGqGfyRirVtFpTuaqw6RY6uxWR+xI8N/CD8U8w/sNAEl3IH57CY2cGoz0U0HOPRqji0xBqBqEyQLcsrwCby9ELsxRmMFmaR1OiUcQyqH31qcUwlM52xFfdxPfFzOOfUhAY3dQSeUBxrP6ISasr6+votX+z7xlfW5lmKTWML/iA9Hxf6GlvAHNa9wG9zNLemWk0rtzGAnf35U6xbSPXYfgDN8z6GRX+v6a5xfRjTPCBnMOAB0SUYB6mMsCcxvKl901AoTOOl6/LKvTuMmf4NSXt86KHArKPb/GvqlPWt1p2DQbW1yf1wNtDiZmHOAf84W/yqfCzqFJOHtKhAn/AI//87T5oWzfzyh8FB6j8YarNLhX6wMsIC+XXBdEW8G/CYvFciIQfW2n9fenqzcVH8M+iykmAYAEKAnAQYiAoskl14rIvBrc9elKsIcvalySn5ptHUzMAfWCD7Z3zt+IWa5qwnv6JbT0Gs8HOyQlzfS1pn966PD2ZuqsZpbVdLdEERdecg/Qd2VX4hS5oSE112RtywiXt9/3H4pu+KxoY/uTysWbBuD697v6mzDQHoBNKjGT2AarwZTl4KX4crjxINHbKIiWhJN7o/5U7ssWTvHxBF/2O3XXdDXgUO9nNH0pZv3ZxpfwVg4pRctrPyYz8qirddhtIaXkOh6mBK6X4Yzxd9whvGIskxXFms8o+iRjYhfVdicuGJhUPIf2IyI8KNrn37RjPkH67vOQ8RNbMnkmiEMv4BUy/DA3QwEjk4OB6A/QrXPwD8exdzy9QzgmAry4mjeGi3nQCEpcqkt/PNbM/K5IvYYKp4QQWbxFVyt/cnystAjptyUrjSclCkzxdFW/cXBa7T4v1/OZ3hJEfOkjnfV3Npc8jxnyasO/XMPVc29UKmTFRuvVwvSrk6K+vrogGzkyK+DlW6W4YB1eLgn3ddtIM5RbqkO7vUShtHxo3qSR+iQ7P971oeY2E/wjhmiLTIEvPOqxIbKLcMNBQXMFnAHbHx4b32gN3yXHaKcs+Y9/e9zzlJfLgWw9FRkXiETq6i2X7LudtlqjcayOKvE6pOryQbVDJFaXwHQZGC2eSR+V1eLnFPRYES8+cBc6rPgL6rIcgQ10I0PXS+0RUk+lt2uPMekgffvAPG3gIUmz1+Cj81Y+CZU8jmJHIAIELc5g3ZqN5v7dyctED05TaLR0gflhx5NDj8+2W57MiEhmgjKpWmbG6JXsM818QtisYVFrWr3TGo9PrEVQGyY+P/Uk2fVN1loFBjlf0wxTN22eCP0sOiK1Bhg+3zHuFWO0B8UYIkAh/nP5sH0imXuuFYXnKixZ+cz3bhb31nUtJ4mv4idedJspsJtx1W0lTAfqmiAlIMj9gttSrUqogl2PMT5KAWaBwGAd160GSfLxAU200t7MH3ywM8EPciwbUrGFjDAg2PwsBai42uiGOo0DDnPRToqCHlkh2rUO0bYOdmqmxyfzDfZVAXBy1wL71FCoKY4+W1Shm/hBlgMoGt4lMIW2IQFgpUei590Paj4s7LusjfBsRyCdzNV0TxtRurM/vutIRdh+Zn31wUA3sLoyQee1++tKFa43gW8LhXg/XgpDxMJfRL5TwAUWnFI3qXaA3SzCJWrva4tW1/1Zd1Ih1SJfY5goSAyjOY8aforpzfOF+ArREOsmZ/QOjL3JhwsSdUtUeHYYNkbZB7VA6Nii6rJrPfb0zDTk6pCe+CUNZWkThlNzlqb72EulDe9YV6Bl/L0nOOM5WoV9FBhdf8WIHRXKjbNPqO0PWgW5nKzrQkQQuSG0aB2TH4jt81GyngirJ4nLwr/Ko7JfxApDIIUhTqYpthH41gOXse6YmEs6H7M7ptWK5QFLdmQqTFltrD1gmfjFfH+3QfcizmmEtK7Yx/Cn863uaQKWWoAxhAGdJg7K9FFDHlU5PGOPihM39r4OM0bt69+qFqPwpuXVDlLVIzCwU0vkuEweXh2V/IjglqcTBSLxB4F2K9+GQGOpKHYgOlKmh23QYEFx1EwnllkBAh3h9gH16Za3JvnieicmgSSeUtMeDN0HJ7c67lZ/xp6SQfJr1pN43sQioezWpn5W/hfkyhCUH/7ggO2oDqV9IOkrcAD8c1Rl7ucKPabiO88zQzN+3oiOY56/wWfJqc9zuFNWCaj/dU4BV4kRgQBUuOHWuvwPG7RHrfFOavWhNah+E3qmhPdser/7YaMtqnZy62P4ebwZG/hPjORUlwpeyPyA8QlOYFcRUv0IzxujOICTwhUK5PJDwxvuluzZuPIG3D/Es665SU8wIPL/NodPpeon94nDC8YuZN64KmLqGuRFfLsBrU/EImylM8Llmu+FJHIokxyYtxdf+wcuSo3wiMQMnE+EWmTB5ALz08bhRYzpXNTvJh977ak1GFs5j/az3Lp34Ym5UxDIxD37PrsskCq/PNVgz2f/nISJIiHCmhyTyQl22qYJ4e3ZQ8+xy1Xz2BYOq1Fq1iiIBvK4HMhg/f0qDNF1rNiz/K7+ZZq4KzreYJwPFtWH2HWIgiID4LQxr3VKpbyMrHRiKCi2K0OhC/7di3qhSihpjfL1D1nPfEJ7tb39bjbhNZbI964rvKLms6X31nrwvFdLOnhB0pEPNuwAuDipzJ1mDXrZu6LDNzdP/WC0C28aKkHMwBLaVrz+XeuG5PEaAjxYReqi8Ipt0xF+4EnHdiUVpqTJzW2JYNSaunoN1ADpI7jNBUWI+BveQ8v926pp1OBI5qNsYHtIRKV5e+0BVSxHqev7s2o7ThMGN6Zex8ql0ptpDV+rpe9cAnIdGqS6QunfRfbx1R450LkMyLegwVT0WDMlEdVGBd6a79t49MB1zhwHDWzRb5N/tM7FX24QDh7ijDfE7v3d5J/XEYT4dDM2MZp5faZQzYjMo/yQG2rK7BbNwSZYdP95vWPXpP1vyLNICsMGwTDWXKR5AmctpPsyKeTCSkxocAyl43T1LFHYkG0DEdm4++4xOGNnGKmaDOGYTC8chfKotAFGqxZ7SD7H/JsgAXNhH28zMGkvQDocFhYL40+t64AIR/tZygKgUPMzo1y/0dIA3t3Wm6qR+rbjCJMBHXJFWTuf2cOq+9l2BqfeZcIkiodxAn9dwA1LWT7jbcbu1pK9FYxc2x3djsRlAMzvNRgLCnM7y50tJBqiHqsBFt2I2CpB1gww9wVd4MMQvBZLsIE1xKHDhYEwn9DBmvLe8bOPusEXis5PYkEXNlZPAuw58zX/HQ8g5EY5AKNf4v1uuu8rrTucMesn89gxot4HHE+JQUxbFWhb0Aqn8ST6RPsFWYXWJDvqsMsdqS85AUaFyp9uvELUa/sEtc9E+6FTznFA/MKP5xejURPjYk1gg6V0hh+vwh1f82CdE6oZFOun3qTNIKzDhdojOBgwsKGT81ixDuyQ9fZQF3ADHAJ4vR16z8XdcuOSkOajCEozdgJg5hK0io0AY6IzEHcV19nz31dAEQFMG8EF6fIhj+qyoEJHWyLBDNjPrcaLsYoLEQ4+7y7zKNG26JaoPlAdgdkfEJ3EVP0MpO8k9FismqEJIw77VEpLnzZi1Jl2xzl3CaXvSM8eL54FaoavXgBJLctRkOovYv3OsgB5X/YIG6ONAGvVZj9qIUTLPaNRb++CSm+HuzdA+qXnRfjIGyjh4iYT+4bnSSSro6n4Svnn30RVflXTphTfUWEGkc8eFJPFkwLi6F/qF2sxd+jbrj+Q4xGMpTzozm2Kci6e/e3ELeFBfnLn4rYb9u6HqWpir+HqszTipwZZ+4otTm4BOU7sakMey4hL2WOqQqxwENq8H6qMwuEWBxi/PtvxXIq2nt4+AUtaD/EiBNVBbCvSAqa3vkL9y9eeZ6TArwZKUIOzR+C2Pczd7YUsJzk7VGW41LOdhdXZeqhAXm8uZtrTmrXLCX7jBYAy0Fdh+w+iU+QHJzPCp8l265yfKAeSCiidvLpiTaYoLuhKL8kQovFgBmZizj3nkWJIpiPk1ePT+WheyI84SJd5yFSL+qqFF89sl0WmfImFkTe+ZbxbNIIoEfEcKR3IxaGkzBco1ecttH1/SPn4UnJAAJ3b+uBguKhUwyVFUBmzE7banokgsgDiX8lffwq+cR/VP9IJKeIMkQSzqYjdqLCmC5WvXaIa3uNz1hIlBKdJSxd3Ymy4qLdUKSyaD2ixqm/Poz9bOzmh1+p9aDBuT22+XFH+24yiEjwcHuvXJ0jH/d6z6gGwIufzMKbswey3yWkEJ/HIs1RmcTyK7FFUAPhDltQayAK/xHwPRJ9fJglISxCHGpA3a29RvPiE3Uz3cgUcxp3h7NGh5M1XnOq/99gYRoUL1wPhfuUgQVVlWU4dn9skeUgDJuIQa44W8bWzDFX4xvPxEqedikHa/QE+XIq4c0USCLYAK0EWv7q3ziUr7KjR0TczGRYvpBGQQMtkSGVkx8ki36twK+rh42E0b8tB1lMDC0U7XOhDROdVZTLFHvj3lg1SkDFevAN242T9RkxuZZVpVBRswJhXKS/iuI+FUAxzE/8Ahe78IMWvknt2sryGf+DoBgP8Vh4LM7itfHg5eAYR8TI8XIoleaJd1OjDl/fxnZWQmaYFPY6Mktbf5P+U7ojSLFpQum78MqhzyOlrtj86dpUZ3py2EjKtAFbZX7uryEUzhoZh0lu2kPFMdF7LSo4NgH4LBprdZFi4h4M7t1ARU+z8+tv6a8KkvI6La5UXm8BeAkFTPpFCeIG9D+5h7dchbtkgHUJ40+mES4m8dOy+fWYNMVtqXmcrMiynhcl8v/U8VuE1YTJUSM61sY0XqNQvmjpVwJWh41AVuZwR7RlM4p5TL++eOXUUf2iXHm3/c2li+6BtmjgE1C482evVq0E52oEG3l3YIKlkw9DzLDJbmwfxru9kOatiZFomfKusE+FhOM5cDUTlAUaYvBLjSE5YrCQEn5rX5VIXewpX8WpR9+1ckmedQdn4V8xldyqjqcaqlcsLhSTeXdBJ/i3iiNNQN/82uwz5cpmMC4lONIuvP5FW1jp688kFr0Bg72Z9HPrIrmyRzg5n8qg0/z3+rRcv2AUEefmNwC7pwuBNScvq5leO3siwe0IeA1l9An3J/+8hqGop3eM2VMy/ki/9JaxWXAUSMDshfGih4LHrg8XQsp5egHiXsvDwrjsHbFzIBwTRgdaqRj/vCUtHLTZ6brOlx9Y1k0km0D6pFSATF9zUw5Q5tMQuKvuRJE5ON31DOHXI1oDk/4AT1lCps8ZOypkEPQUh1oc7Zq52nhrQxtqyV2JOSZyK4tIEnEDQ+Zb+e7jceGfi/L56WMV/EAxThgP9h0GO4fNRx2ewJ58uWjwkqDvbqdZ9qnecZgnFKoZNn3QGXuDx4LqFWhHr4yX0/i7qnf/jtu0Wqb4EbXUeEQeJ4eikO/1EKL2eCR3lK5fKB4ZFietX5zx4Zjvk1x39E3LeVYDasiyfiAa4mGPGw8DUcWnFB2RBg57ocLJclhIBQgFEGNCfvPHSHUFHEq6DrfIKyZDYnUnxhjhgudv85/eNaCziefaGzx5jwMp+j/+Wc2xpUrns1XuLEEdcCyaHj7w1Lj8N3Uo8N1Bc6GEjppSUDQlFiutP764yQ4omQrJdZUxgJb3vXURAQ42cHciz0q8DKjFp7GtcV/fPa+Ge6HO7VsFy+NBCj1zNLDBh42+4NtoiENpvsemd6uJKU4QO3aPKpM2gEkX4U+oSTCimZ25b0HEz2fEY2uH3X7Avan5/RYpg3Mw1OonA+zG7uvLItE8Dutc478g621zv+IrUbOos8jLSRc8PDe6Q1mYKY2tTO6WIgludMnH5dUyNWq8n19wRRDkVXrVyfb9a4/BA2lTa28OzZ3W5HDThDhopMbUvaTytum1y6o+axPm2nn74+SFC3nRqtjEu36wwp7olLS4Kuv4vg0l8s6kTtiKR1RPrlWUYkMPetk1vaE3AVGpwGX6TZffYtMvscWGHU5v7SiJFowfgLJnmPY4nl0mbQUbfpu3y5o0M5x33dXjNiiiNc361aZ7kIFfo4goCQUdb+P7pamGn0CJ2P+5BhZjSz/EvYpnXeQZuWcglNPTpdwKvT56GYaMbPfZTBycsXajB6gWwpOAxr/JTCQ+DOfyMhsqDaZ58wTMBWzwsAWUlZZx2Qlxeva4h3hxVdnKgC1g6HU5Fy4mKecjkdPYFOVbZOidurGEdWEtGLMARgrMtA+qyHBo1GIr8z35MMBF8CDtc1XNnsEVLgLdl/AVsGa4nyzwmQvwH2r8son8iNp83bY/1Lun0Hsf5lg4Ng52+Opb+zxgb9B13M7/XsdCddsKiyphpCUL2RefEndGmr48GKoNiNkGH/fsTQBGjsBg9oDjiJKUM2vmo5VQEcP3aAd4hmrQtsNgnU0CSPCzcctWn0FihW4J6CZDuGOz8hPHgM/oonF7N3uempamM8L2mTtauZ47o7MVUx2h0fiRzb88qklEv7HmpXkubpoutw41MtOMcj6tRS4q+5OvYB8Q0SQnc7LMHNNcyeHqrJ8n2wQa3G3xhnXTc2MRFfOP8nFAQjTyc87EnD06Yh3watEZFW7MVCbf+YZc1kM4p4xtR7j2nHIQEay3535Xx5D/WiqojshNYZySauFZkwgF8SIat43VEn6vUU9n+tUur4aJP7BJcPq5Q/o3HMnUwOnia6IuLL/Y6iFZfBUSPjPCkIv2frwZOAprwzzU5thiu5DM34H68G9g77Myyn34rnkOz+Mx+TmTIDp97w1O6L4wX9VZJjAUNG37WWYsxHrj6A2aqrVx3JhffQeZ8CiqGpdPtcSaJb8iOIzuC2B
Variant 0
DifficultyLevel
583
Question
Kelly, Megan and Narelle are running in a 3-person relay.
Kelly completes half of the course and Megan completes one-fifth.
What fraction of the original distance does Narelle have left?
Worked Solution
|
|
Fraction completed |
= 21+51 |
|
= 105+102 |
|
= 107 |
|
|
Fraction left |
= 1 − 107 |
|
= 103 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
name2 | |
name3 | |
activity | running in a 3-person relay |
frac1 | completes half of the course |
frac2 | Megan completes one-fifth |
frac3 | original distance does Narelle have left |
working1 | $\dfrac{1}{2} + \dfrac{1}{5}$ |
working2 | $\dfrac{5}{10} + \dfrac{2}{10}$ |
frac4 | |
correctAnswer | |
Answers
U2FsdGVkX1/cotu4MpXXDHUSO2yUJD4ZrTdd4Xgy9Ue5SkyHVMDC55mGwueKHkLz/Wnvo79U9VC0k54NM6nJVZFZnPTU0ymAcTOt+ReWyB+HjH6F2jZp2O/h6JeXr88f1RMoyHMKXhxdrtcRG4NPE5/AVMhXflqCk3EZMEqCR1sAkz4zZzDhQ4XdfhYgcZgyGf/zMrKYEHX0yyw2iqypjdF0kvpgC0nD1epom62vm535z4O4DKJVrySUdPX/DC3Qvw/3Vpfc7WgpNPsqH4BbfvuDwYGGtPWKFYqHlur+AyNkUHJ+3QHF1WMUdj9PTQ+5yUaKdlZyfAEQqM6RzrFP/f3ml6Y0Gt0hfwQFH2CK99tgF9mARSbMGp0V1V3PUoK3jzmWg+srhmp20Gl7wwcnB4DZugkegwaL4WwoQX1YN8xEPjQKTlg7oeioNzJBOKenNeFoAU4r5r5QbvMTgVauGKdE4vll+3m1zhOD0fqyz8UiYJ7mZO1xiVIDpffjYBpJ34/JuvrUdE7yPGO7CPE5ymanId7ERnKQehbT1D+oVr2U8O/LCcIAbqfsqFGLGiQlGFhwwZo4lpxWA1awkqeFHMnWsrmLBypPXSw3ltdX5ZCFziW+fYc6DtZ2wrFTYNljNlzHRP1g5R7bKSvuIMBrS7rKPjHPyT9Yp5L+kLPUfrwAehK933wh4WaRBwLEUdI25eCrQfaNnlxjJdXCLqlPjeZs5/VQ7PBYGCkrXy9P7aT3p1w4bkYUYdwZBuMarHF0UtFP6XzgDfsqUmqZP27PILI1XqA7QqQTto5cGSTw8++JCEcdUsju3yN87rpEmAhuGGFhKyCDTQoIWb0JxopgNi+vE3SoFBw+1keOpiCb8DE2FfjR4yDE0KzjFFfbMcpdcdg63IlRhRa+4yhXk1tnvae4Zmd6PLc3Jmh3P/MYdrk+hXdsxlXqXBNepMp840HU3qpBwknEU92OjnGrpEu6Rd7yd7PJzH+eicOIuIzQ0hvT+G4w8fUAabJGsqnQaLCtaNFQej2K0XNE9RaSfm2ygJCbeQH7eKOom18IrETtssLEPztRLRRzN+mOAinj1MvQoWDdo4dEJdTmJTj6B9lFvSZM0WK35oE5L1Q/pzV96hQJuWiUc0cSa2YQYcXdGL6Xy/ftmNrZmroFT1gsU4HAI7np90BAST+lbUs5SK1us7I7DWFl6YjFRfk+DaMy8YX/fhzTztJtMuEb6gWRagTSzOTGqC9d3/S87Jm2tEjY5K/1BdtbzS2jMlX4yrlMVDpYSG6JuciqQ9yEt0wS/6scr+XzvMsp4SQwMbGO0lIiZkSSMN3AvC0clMbuff/RGoqD2bIJ6OtOT/kqfxA9sW6hucUR2CHKN/pd2+fBav/qu/9p4prONAqoIWkPA1A8ONUOcf6F+1hG7j1TtzcYpRgTfJxAIZDT93nZA4ncWvz+QOEQlIGFrFaPEAZRSWw2JZjQ/U1isFtRAB2ciMg/VjoHhO/u8YW+BS0kwnShzf31chvcTpe0bXqXrKNK1WsKshbRlaWNmq1tVAV7GNj+fW7/PmvPG/UQGpW+L9Lw5vIi3gNMbYjICBVFQcOhPPfqBDEd4VaXDQYAD+xXhI22eROL/dVQKxAuI0OwUrSP74Pl/NHHyXQUyitkefFN3HQg2DyQay2TdfC/maTnlUQQpfwtfTvamhjFpuvA7kguKhPPxdJOcavh/6P9WQPdn70fqHiyarCmyZJBsoqCxI+my9P6WD+YoLEY1obSB8AtZkZ07lClKRhCtGIFy0+/WAoTruzuKutytjrGbP1PF1TPmeA93df+XwFVWCia7Pm/YtCYzw6uSA2/dTkhNwoTIrEK0bBoQw6GG/pGbZGWIpQOkKpDh0YM1Yo7Qk4hBmQ56Pe8j7JIOLfmVTm0zcrxktRTQUTnSRdJWcN6CoGterrwUpeqreg3ma1WxocwVnbGNupu89hDxKrNTPNG6HDBgdBo54DkU0rhUPk6ppf9qE5VVgDIK5tXRWzbdFFiAaweMagO2Lea0i83BkiUSC4HSSgHcPxf5Y3jbHi9N4j8LL4zY0F+V/M0ZSuouogkLDVtR/HeccpzAbzBKwuHbVbnMLu+IceWoxLvAQ2dFBnTHd6FgN7Gibrze37LH2I4BVi8EepXgqksvBvSmdAAXYrPnyWhsv4AQR1xbDV6ru2flWSpllzJMXGs50kJL3eo0mSAyhyBUw4naJCp7BajqHyKrhYBhqVidgJaF7bciVbRfU8PWOLewMpy/2ONlEVxrAQz2fHlqBNTMgfwU2iN7hBtSJz5q7eY/dP2ikJmc1Sj+pWpysNgGCYK+p0BMlTQ6wizqHTjVHUB2j/X0iwFGOoeRTfjgBTfWh/0kUXUwgHzppoMci1KzzjHP3yyj/3nTRvrnFD+kcCpHEUnwRWNHCAZpmhHEyEPmZVpN09FxZAkh9CFcRXH6Frh7hmmz3zfFe9Rg/pmnx6bTXwHhVwOtIzUYHoY+rqlAlKS0pbk8qoGcegCLGSKoTLKLFlYbwGWHyqPmvngXC3BLx+PItU9woc6w3wII9aXmfsvrrJNXItWGwETjWCNwAw+FGlJESoseVzu5z4Tgdv705r7jOM8MZ7f4GQ0XeQ56DCI5mGNs+KmOcaVKkhxGyapCZwTKU69lF9YNm0P3sNlrz5FKNzpbnzGPwz2Z/pABHOTU5ErP2jBIjApFPgak/O8bSwtseFd9Ln+dL/0waOj/99haaXIUMuqsvIi8eh3ITdhm6060V278iOr3r+0jHTCvxxUxsERlyTqZq25Srre83WR3gTA0RmrtYVX2GktpppHYrrQkKuCl+pD+Md6Y03IJflmU2ZozZk5oc6RYRhuHnRVzYVnvW4FVbSmre734KHrHItcPiPH8W5P6UaxjE2pFvWLwizo+/p0upZkKyN0Snteh/Lp7lHDURmRCEXGT0jn/8LlEn+jGMIZ3JhP8Y7PcGHrsfkTeK070suHQc6OjBHp6dA2JOSIn+bXLzT0aAyq0bIcGqEwLO90vsWiKSVLiEcpXljuAG0B7a6hldo5Rd2jt1oecuGVSoy4AKgfPwe+9/dvnd4tQoQHnGn3MwNW8miCendR4jkne7BKpMvL3YaiTV4AC4t2sSeJeCimiCvOTJ5FmVBWN+cadmZhw+8uUyQ7qB1ZsieNk/LyIKcx2FQae3IHZrEBy1lZoxICZMKbuIyi4nhsL51EsJ0/usBGruCyjj1QVzCgeWY2ZVd8OeteQF7D4Ae8LcRFu8bROs8oZrqhep1o0MGvJdbkDaGgLEBl9pPdZDBJEb4FKhgca6MGMHVJsfA20l0CSTkfhY//xt393QT4zCGoe3c0zdYxzRHwj5cwiwu4dcCRYPCPJ/o2JHrl/4+vBIl8p5OLyXbo49ykItIM++Stm2zW/qlwzYyUuX/dMw+st6KZZtxFcD7ymLsWykpFSkDP9ZkT0DNpWo6hQSFVBE+aUDWm50Kn3j+qnwCoK33R1uK2LDU98I8Ar0ggjpHQD235sNRIJZ4QXr4IWpdi1+VTQ8OwfUOAEkKaciy/Y8HKY6HWQ8vcHsM1CfBzymhd789x++2CoKwS/lv4QR9fbAq7VfJaZmjUaaUXDtLFdJ2medSCA3w57ssGnIaxA3BkNwkf8z1M9g2CGeQbAxQh0x0upttVfEbZe51PJVsN3bQYtlGBmXOVITkPyQtDZzuziqyLocdK3s/qj+Wmmweg1hQ3f5GYkRDi1iy9Pp56/vGeXR3gymt/u9mNrkXEGgMHqVlxjQqjUFW4LUr7hckTJ6HXJG6aY5RreUHgVQ9PAKye7a5XbODDpWSeGswnavoeMtf7AohXpDxALUzMTSRaR1a4k7bHVwRqARu+JxlI3WESgYP0RAf9LDIzhUN6/iydAAcnY6TDoR+z+keh82cH56ZgiSnNyVsBMbDU/lwonc08PKEXmq/jSC0MvWV3BtENhZVLYby2fNVdbSK9jR0j35ITYu8ac1xpLro0wr0x42FXm1RlEmACp+eJXhhOKyoYzSH9puJmOu8TSTQS3BK0yt9YT2PGAGliYjUT/TeP0BH3xvXK4BSKo2R36Of5wXpbLJir0ufZZux128rcx7zQ4N7/WeQSrgF7pO5L7wvpNdBostTzK+U8vo7FPY5I7bQcKe83nLuoYind+WstVy/tOGhbrJCCg753AbA6z9iYlG7d/nyJRIfOXHSLwNl2b5D+Puv+ppoA8yibhtpHCSTIZatrXYND9g4UD/jq3Xgbid+nfGUt2LdvidK2vtUxTsVPRD5xqoDQxIdI7gJfT0x7h0S1z54fzuGFZv4wSJ9kRjba+uhR3OrlKavWSsYOxSkysHzvI/q39nuzj37v5jAUlbEl70bxEdohrYFk8Qd0LXYeD4jEO5T7M2v1h0Ft8dks1tO6OIv9BHMXU1fKWdZ41OCD7nGE4WNYYqJx6iyw8uMg5xXFp6lRDTJpC6KNeCQf5Ex63vJMjKZ0n5t0/a26AJcjVwd5bqnW4Yi2YnJh7QFWMBIeyAzkT0kdAXnakkVmjAXksaBxNYQ7I9+Eo7Oy18fg5an8MaA76iDSgnaYH/Jgyn8/W2MS3ADDkZS/rwGd3D8cBwqwTfnNnTpaBXrDXUJxjJH3+11UUrvORgeTR+eOT6NS/ylYZXwngylXkzuxbcQBJP/S/ni5WLaEzRmZauWtNNqKFxtYedvqXovjbcXfZXII3e6akkse7m9EMTqpi1mmqYFU9IMEoesDeWNNE/FJaH+eswtpdQa8/jEW7qWVqeDAvJF7QrBO7D0+a+rOP7XkQ/ud2UYAB224kKlATPD0UxuTCR9ApCUoOVT1qoyXT/m+lkSvtuCmWIOKzI6Je/xUOuKODYV4cIe7zdqVgrGDuHPN5HuNU7Lev0S4yNSqClqv9wfYOzWJNcysQcHYKfJlJa+j7pcKnJ0DDV0ehQqbfdvFid38316SemuBTYumndH+M9BQ2CQs+cUUqz1g8NguHoXufUPkL+6nz+vOy4WaTzSldeG8zzcOi17uK5nLYfylJyEqDnJrEJgZ4CNLIt/CM0CtzhCZXNOCLPo+ClVjn24OrTp7WmW67ldRUuSfmEAt1Ciy49hi5fUev/1yr2i/thrmy0xZDHWpAXr31ToUcDgS3kDh/AKswbPk0AGtUauepbHzuNsWcFk+TZw2jAk34V1r0RF/q6Z/SFxwcHB5sZ7Q/jA4OBcNTsr0X2iQBt0lRty//xS0DLf98XYAjI59BCNmEtK8rTSu7BLziKlnEjE+VW3quzRDrw1/hHMN0+e/Ib+ounKUY5NllxSOEz87PGj3PFK4Vj5S6G3xQH/1951nvUYANDBfxJAW/z1tVzimv9KzCLjpOrRGl2Eh7/d460uOgNsWlqrRI5kSYPBFvphe3xZvRMC4d29rMrIDOh2BnxGTRU/DcqxllB7Joo2VimExe0SmwF9hIGIlQK0Q6vFadSnhFJwmXbXBlpU8GNnV7kzMoUD9CTe1wAqJrv0/hg92ojG8Lc9UIlPD6oArk/mRwO+q770vg63Xe2wrvbBBv0geiY+NAznYqv5M34UUxPR37zZB8pZgubbQRX27XUUlSLnHywsUYzvQ2uhXFK5fNBgMWP1u+KVl6RKPeWFV63JsfIm2B5FxUZK62SEJwYuYCrdZ5bmyAdOY7YnyZUHSxl6Zm175dX+0ycCnI63tMFDXy5StLHBBmCrX1JQO4D2eMxcUY/RoDpf1zRkIwzd8/scfYlpAN1ljvuliwGv05zP1NnzdIlvHBKgYa7yx6v8ls2bW1jha/ZEfBD39Io6EWVIfsF3ScKfPkV1UGJ7mFi5DBIY9y5CGbb8huBV7QjJ3Ywd7QbwRtkb4NFNVyN6Ca4ar50WbJdsKzGTMsZYqjQPxioNiI1GHWOsy0xzt69kfbZO4ASkTMvZ8Ye0sifxZZWe9db/IPRQnp/iUZIzFw6hOEIc2S/BFiq0fFVOOcpXRggPEGsOrSs1iGShHXNK8Bcn9q/r41/dw5Cx1Kx1M0DrY2Mwbx0e/DI7zN0ZWQmC5CUCTBCb/LICQ4t2PTOPbg+y/YCC7LiMZmqeE84K2TscFwfuYPuHrqVsUMdOsTJrDdwFlRkskZ+8fAVYXbGN0WTLNBW4aGwMNzeVYAj3qoPh8L6EdDsL26pJOsFnthUmbBpj5KTNaOBB6mQHCGY7PaDOTL0PorZKx/AhOP7rDlUkz5JH8J/oLkqzQlTRUlE+V2TUOIsRtm25Uk33taY/AXVROAUsu7WXHnQKClAVphzev7y4hCtstLHBCfNYlxmnI466MuDwe1X9hP69bJlBODiCL2BMXVuSKRGiEcS8yD2jAb78mYLwo//KC4ClG0vzhvXOW8xIh1Lt7z6h+s1FE7n9N7QyDDM37nDiqG+ndBzc5KfsY2u5ikekLVP5xDb4rkSGRQdHxizPcytS5AF4EXS/yLxVmcet93V5XKx/n8TY6X2Bhpp0LPmvQeHujTT2JrCy/pXgmjAMcmoZ0wAuODsy2V45NTQmZLBxOYMZa9WGLwqzp7D0vkI/eOgM7XH5a7RwX+mZJGwgMpg2XNGK0Xl4wKYmBnDN45bKFKsg1gI5PHovm4sTdhmsmWXbgysKYHVzd6RPWw7mGcK5kKsOOjSVMolFMh5CQEtIZAgKQ61gNp9bpJSBV20xR5X85dgMJ2e4Ppn0U15TRfkf4KDH/MPW1zIvMCUi3E8LTN6cE7sR4r+0HLWDgrCrVtN/zFYblX7ybPWlkOisrYtvPjMMsECFmNFwzUx6ggp/Y6YLYD5j4w5WeWsV45L5dnZ/hzuZgQEgKXeW1+CNhEfozfFhlKbTrksIOqXrdsJPSMczt0lysbgo6FA3NOcQDHzdxAHFpDM66Ahiy+O6IK9WGR4LzVz5fIeCV9thh4SFm4hG+KDVy+ifA0LJMhJMOiOhLTk2cL8O2o55HoD+piMVNkfZqHVjbQ5gavjDnZLKf3zLb5C8EpqgUT+E+StASsHfjyf8JC3F+uMA43x4r2KqH4Isz2buOKh2HYaeJvEAWKMbwRiHGL+NuAIcJfTicreqTg96xM7AVaKSATFAfO2n5YGUWbK4nTur4D+5YwLDvivkdZTiWxTFHfI/liE4ah4IyTVi9ryovYsVyDX8HKa65t3qzZsnCLx1CxPHnCQN8qgzgTAw0bMz35RLRTzFT9GG4qYJWLJC4ZR/k9rlHk2e4WblAQNNjgLGAG7g6WjB9N3mTMYi31gdZycYDpXhAS8MPOn2LEzUEQ4CacWzKJXWiBSFhEaem/RhKXCToD7eLL6MSGnfo6L8/nzVzfkhXAEjpA0api/6Q2JnfzhxUkd4J6F3YAqx7Exm6tplrcRjvRNGBFYEsA2JInD7d9t8tdY6NdBzHSm4fMXNZ3rWN+pBeIAlfO7tdIxErdoDVpuyKk8GlsasPxrDRBsBCE7K0gVtfdl7Na1us1+xeuUOrGejHr5uVt+anwWvpyVdmv+/QBhWVnd5ONBYYdu600ftvGRqDOF70z8DNWvpTSNz7kRKnJ2F2sQbvc7gJ30gdLZayk+fdpkI5DIVNvdcqPz9lwKXQibVWN/iSL3NYqu3aP8jW+cFLlK3ONITw5UbgfXdDvXiEJtHbMnJJQMEpAlPqwyDm2odvO+VWEgzF5qWLAOvtDAnMK7yjP15wT4X9We1Ktb/kvHvRJ8jttMtk4KWGv1aKz0nllKavIhgbaLWyjbQBs5iZbBeYiCeP+qDZaMr2lhe/4sxoofEFksyGfDYzPkPYQa1x3NQgDUXWEWhUJbyqkoIoKkL1p7Kghs33AkEap9v7F5eTPLoyIe3v+PVvRHybmK5EvQTBmdPXewxOxsyNoubOzF+UnTMy3xoiyCteWY9L8LxMlLb9ChEYdhPS4fPOYTLgV21P2wccu8PfyvNLOLc9nnJDOPZOwBmYEd1glG9sLbTpuGE/C6sSao7IJz3d69+BoROGJ9ROA0aCe5xN02w16Dht3kYArGb8/TyZD0IUUPnM6v/3CCb6adzc9X54/F2Xbd/qrKAa3Y9Pl4vzFods+MZIGohy5OD+lp7lm+1i4CjLS/Sc/+e4RG3qSkJBc3XRhvPdCFwuw2+AEVtFh0u91aOqkaCSeRtw4sz5k8TH4ga38BGqfAxL1u38da++L8GoDsxhBgYZVWP2JAQ8zyMJfx+z1K86t8JNOpw8iipltxG14CuS8oIXnYBmbc1sZqWz7a3Z6B+F0Ou6OVRcB8A7ouvsbC3Cxn9fAZELFugV1dizX3hBKnMqe18+apswVPCF7wlfjJKamB8z/C1xw2MrUoeBgM9oV9zUAIsnfSG5Kd0hhsxCpVLRq0b+S48TTZy6BMDZlDy+AHiM9WG7QZoAI+EDLy0bzVhLToQ18FLv2X153SrB0bzew7x01KpEh1uolRm2V/0jUCIYxbGbScFjxbQlJoSZ1fqvCTyzBNKYyqIMnXvh+DeogUafeBuk98q+sLZrBdffrnFw9PzrKftEOZzyaYCmsY3XFuPZxFg01uo6SeIOiH/u9CEu7WWN/SGn6qTnXVo1iWGHif/Nct08TraXABBr+hNRZsGivJ3SOerVs7a0BIiW/ASVeP0RrOv9n7cBwIDF4RopWRuSZtN9vIOhz8riKtt57pR+cG8VGtUFOktnnBRplzsG8bs2AEwWxCcaq3pUYkzRySnFefm4KO21ZKYBpXhe/XaPtiJppSGIf31gmgNGUnJ23BMIF4JIBZiYUJU6rXP7vz8Hwg9s0+SbfzKBAg7FspVJ+OzGVDYriqLVbfZA2aZYh/mywmiGlnYxKxZoUX49oPNp9OOJIeuqhDsvW1sbPQeboszXtOBWPC6vU4ygvDm5XxtrYHRG39E8c4Jy5EM9yMX8vvfy5rdosjRnABOir8u/bh1K1voXIoo5w6Jw1SawYatBo92G9ecw1T7+PMGNVgTkJZHx/ScGujAySFRAWMJn2rES0dq9Ik3srYTDyYl2ZhnR+RhrNMyXU7qx/9M9PUPc8n9imK1rdi/9Olp+mcP8YjV2GqDDNiafo1gzwSNOwlwyH38XwE/MQOzxbfKa2wfaiABxFGAenk8Ux3Q1cm8ubzvtOjfXuQM77MyqXs2G+UpSdUET4QdKVBJPHgXBPPDuY2NruB9LUW2hqla2w8hytl27YygW32jecQmJjWTQpc9dLKISfqg0TJoz/tBhlpEW1qysnc3uEjtuQJ0BUxsfwmk3PT4tgv+cvsrLLg1twsCP4p569YPLjswDJtJhL8jcgD/juTn44epPn0Q2SHc5pvZs83yExHvyXiiwmILhBWpR+P7+Xgaa8s0TcqqQFSGYkaWLSq6ZpMZckDCNaEtMXA6waOHI1rDWVn8mIJ5bzKPtl0qCr0iyQCfZkebfSshFQD8UvAgLs39nVg9RGZ2Eb/A267exY4vRrsD4uGAQQcFgHkRsHbvwzDolTZ76ZFN541gCWSfsUcntSW0SAejIJS0JkyH4p87La9qeY1aJg12pzSi/qj9xKgMa42dbs0xPV5bYVbmVap/GEiHtTr2jos9jBZEX6PPmne87SavcPELwx36dPE2mkBo35dtIP05hIyT1DBtQlYpcph7F06q4z2FBhq/C7gDfxYMHhXHw+vw0zq9CjAK86+YKTwwrvIREsSylfV4I7ydu5qNlomdgeUtwCKq19KG6xdlwh++OPVFABBdmAF5ZmcZ1eSs7EWCoKAJ2cJIIpLJiVP8mwPxA8UN7Tn0L3iqedw5wn3USgDLO0bJEVZJgZxbBpCABWxTG4xUh7nEU6bbgkub/3LN+5Dz3yuzkxkzBctCtvTqraN6/aHL/XS09iqUtbiqacapyg2dkykGBNKqCTKMiof1i4MkCBYWB25nYAfsTgCqAUw2a5zPhQ7sfvGGGDDn5+NAt7kw3xZQR8YVoCBC3yHNFkv0C7qb0bY9jnJVPgG7JorF97JY5K+niw6buEcdp7hbeyrApTELPen2regGqlIlsFvJKGnC3biAKP08mhIvETXdWTm7lAXXEfXDKfTFuuv68j2/E/aKJbbx3zpkgYMa52hP5T8L6Jg9F9ALJ/eSuTHqbF4jId1JkyMmpFzkIxVzCKZjRnr8UbkZLExqpFYE4IsgGKcKf3/ObPZZRMwO5MYMS0uEm4SWpkvzJdSHunSwNxm4Kr5MtVOrhWR7qo/vrR3dRrvczzN2Ot+fjCU4zi94TTw6SyYv6nZxa3rFteUzZgmrbGJL60SKYF+Sve6SXseoA59Chfq2TYWTZO0GxY1s25bqG31Ma5fBUDaVvsz+rvalBnCBU2I6Li1KBZCLaO2B4pm1nJ4gDMuVmW6XYON6Sm6zh44zjspQ1RmPvbcCcslrQ+17oWO1OOpRCwZb5Hyx8gbvUsO8t5OJamTM9439rCSaUc9BGIKQM37lFL3qFC8/4yvWQDCEQKWxUN3gaPJcOkn9Z6ig8TpNwSjqjRBewpUpMr4UloTEIEgox6UjSLGtm0HmECOuvoiU2OylhAh4qcjOSRX0WedPn2u8jjiQGZJxg39aRUSqNyBrG0Ksy8TssVR7MFBsHuPlcIdijT6+8BC8PchSzCwBRZr0kZi09KbhqnnElzof5JPQOeHqbJHQwtV3kKEAIJIqn1OIK3AlMeEI1v8w8KjOwFUYUF0hn7OWI2tbYD7QuZZs6YCbAF5oUntpGsi44SlNuuQgsVL9SjjPzI7R/zu91mxN7mw8HaODrKKkS5m2gDYNRLpUQt/jKjw2HEQ0JYjHzr4E9DmkpnjXLGKxBRYCkbwO+as6E3/3TylRSt5baXn1CRoKLbynD/XxbZ9WScP1VGrgKglVdt/97LnH+ywnY2ca5ckweIWVvvK1tyqKJVS4vifUE7VkQbRfw1d1GrdhLjsryhEBWQ9pS1bJuqzbLCkE/9NBgqYwYtPSa7Dm/ANvkiqEhATT256GulX/gZc7e45zIDbk19CO+HqYDrw79xBhwgRo8o6de38niThJLc65Ih1xD7/X4CbCDgdOrnvcEI9OsCcvvVuNINuRm31b05KzpNbx4Aw8rvEixStaFb54NJgdEznUfL3N5lqeZKtugZ78CeavE46vr2cdVuhuVdaGWIAjaDSFzKST9JxceLvBM4y3gr1q6qZXM9tXQw83b14OCHtfq9O0ofhHsZ6WLiEUI9a4oU8UZGXottTivV0SUsgbssYiI3R4GROWY9lTSq/5OfjxO2EaE+iOFP1lyoi7pbrHXSJChuckz/bWtzS29DPwaGvihM2MM/fJiN+ZnSXQDym2/Pikze9VYf6gWM3LW38rMErjJnqUEbnwERINN9wTk5gH6Yz22sZ+ExdlEyLfhCWLiS3EpW8OFJy7TxfUugi/egwEMBU2dH3810OLg/3vSQ7XQv9hPzlNigfz9eL97MLXOScCJycLiZM7T2ys9ILf5AT4LaPRWo83ChAe7ZQ8VpT12u+ZCHmkT4K8feilJHpMhh0O+10S3hruUAQRY1jT4etm5zAw7+TQl57K/cf3GFU6Z1oiAZacQ3RSH8GXTXCdI3UHDUC8WMv6h4/crBFGlSBofHcCgmY3N1M/N0NOyrGvEMxyTAousUBuewfK/5TEjp+oMgps4g3gpwZAQT8l1j5rjzMWDN+5vLxmkOCHW25Zktyw2q601+8CYYkvhqy7WAmpXeB91TY/WUa2OUFwlEUQ/r7BBMt777QODYTqVc59aKDpeimaflgiY/BdwJtUeM5TwNLdi7kJiXGJ0nyiWAugiZtXL/0UzOj1mYzbzSQptvdANaDHYf+Se1B0wF14dgSSfYwPiorgkjIo4a4uel6UtMLRnSw6fCqwPKnZMeNPOg5/EBG0CYW3R7Ylnc3sPotIeXjXy2fBTSjx0hGW8hM5QNkbgj6Q8pHqXBcWBVLVpsz0Nf9yHxuENuA4HKcqOSSoE3lEQL54KIBJJPeKi8GZMhG/qq+HS+TmWWg3InSQFjwgfXreg5abi7fyJkaKPrUCiBh7MYrvJkvbpNjtHrLgGX9JdTARCPdzAzxDMNn3dejben4HmaWH02r71WEmTa7CRNve7XWlKLnqXae/U/e+ybRdk88lYC1Lt+0atdsNvaHa3QMvNPDAgQ1Hm/+uxuBlwMX4iZMng9tk/ekWXnUgdYotDL05voE+W0OX0pcSiNDnN3FqK1EvMl09sytzqQidh9oZgr/hCBM8PWYaF3eNqmNZ1T3qYnB1gTSXBTdBKdKg9Vg2n6MUUAzT/nuTFDSQ93WX5WJiM/Rh9Jzx6WAtxoUjiPnFjtVQz95n/hcwdWQxR9+rhIv07giB8/ueC2taKjphK0LEYhnMYLKBLQFqjGRMDo+JjPfB55ungkrb6m7vdUzUKRyFKrPIrwFUlwR+uN7rDH5iQAhQULWeS0J8ZmvFfwYK/fHcCvcE+/Uo/rn5x984SWzqYBAo38qcPPLr2sq9Jj0PILNCb9x5Hy9SPrmWO7L1l/6P16/v/zLyxMbFIkmZufzodkLCRoazY+e6kxw5AXura+OphziBM5UvH55dh4a/XT0MCuehe3j+s4z3SqSB/7rwVi7F/X8SWICFMreSRoLuImlcts+VzwbkkTm8J1U8UAopKOszY/2uZVltbYw7NlU56lfLcQHOq9Xxn+3oNQP3kWbadIfmjg6o8HNdaInGZReAGdRx75GTkyqctYj4+OeAtjTf/1mHILXZ7hitpsCBxhCXQo1bJnpbxcR9m6g1WRbPrJT8b12t0V1vxn2wtBId1vl+y1cohLcIok+WLikZK1g+qgDRpeapUBTmtUpxW5KsTHB5Xeq+VhKKb/4+oruRms73bCP4i1xt8HiJQn1k7M1iDwn3WV1dWEzdDUotEh4zcPYTQgINLVNXo3K7LQZUJsyyh35CQGELuAyNgShd9xRP10HXY6TtHFPokLm/RFaJ1ktxt7fO2m7XIjw4XI+Rh1b7REis1kNRvXsyamV4xdVKL97odnpGcRECCwJ7mJpBliS4GOOd0R0gkZkL3z5XcWqucxqqzKvmSR6dmXFGsE4KUyC+HjUjZOeigc2qJqVkhep5UN04eoLGfZsilQ1dI3vTXa+htX0sBZQ/E0OoVV5LPrq/Zt2kP6HAx5QlNUvT2eIJB6jzQ6Lg7iqY+Ram6DRUdISd0CTvuQ4ZudG2bhImOBQ94DO6xyBOQyUyzyVWB+IfgZkLHQUUowhHsILS/ubxIuNxbBpnJWa5dxKE5dhxH9P86T8v5oACdmomB7GrQ2IUT3CJiI7I/RknVXLyUGDQADRvGosmLthkH24/jzGU8Ue899Aozldvs684d0TcacIB3+rm+/qx1j7ihFbkFLvTab9ucJ9a06Y4cazVk0razawrmAHWmVbYNdoxJrpKMSKT35XfZTyfHniYOy2n0IedXk8niFrBg/GSqoHVwKqj/vKY+nCJs9vtwBL590peO+A6VDnThVrFpwbZQRL2n1jbV3NthdQiqXIdyc0sBaylW2KhBjvPLDsQsXUDj5WftPlwejIBVNYPxQqLiubasSrX8Jze3hJg4H8QEdBcNKGN6zOgs2R1/uOJC2MPbxdIQecqZfRhUcPq9B76+D5M0XMCviamElEjFx4o746z0nwJrpH+cGx+5XuOY+q0jcyd8C7RBXrXDhsi9q57HimgyRRjKT7FJ8wIaONe23GdZ8rgC9oyf4pBXQoOY5H9AV7+Xq5VOFeP3s4sM7+s+S1x+g2/5Ryt8C3n/UQPoNoaRL/kr16faJkT+2TLiju5MwxkqBXEk7q1NiEY6s4aOPFUZ6b5ofRFAkx2P6pj4rf/cxdQayQPp79QjGZ3j9ChDrAWAmWV3X6WqSUK38wWhGm5iQUFor1tTYG/j2uJniMLStuE1xLOwNQ8xfP+3dTqrbf9h8LcMK7owdxuF68wSghyZjL5g8RqF2Z/A2Nj32cQbRjkO52Hx4yVYGQY3PYdcvbpDlJiSoRpWs6F/vl32YDzqEC8AtXu9qDOeoMG/yPuq1Zz2G8+IYPzrsOnf3vX+HUGbP4CEJfw9kxpDoy7+NYSHh380nxo/Zy4WIvbRp09LZ4TI/N9EmKCki3EKLFyA6s0zPc/5G7ggF8K3uVNMO3LCiiz0COSzeifb5La/GaRRNbTc2ybDxjMn5bRJl9hmlNRXL76SIK8QdPM23HeH7Tk8fPkIb3m7RFz2KXfg0f1UxyTHu958iOqbzO4P4AWBCJbqqXSJWSrf1ihHwKu/cOoaEZdedrQEdcOGw/lKgLfJ5oTWp4akf9uXKlOWDSt2EA/Py/Df4p5eisRCt/h2GeiU9rg7mUnIYziWeQorshbioC4CRYs7s36sOuIeiXaUKILh2HXColhqGr1D3+O6QpqQ8nq9eHPhyPi0o1KDSbXXxlETPSbqGBWXPjpHzerU3pFabOhmpZ6jfgSb0ZK2kMs/Ca28zGg+P5T38S6OJSaqFCSKSGf8atkwRO/wIkAVdZovInjWv/fkyARwcPMc2vy0I3223mO07Cv2WiFPj4Yr9lSgkRHsrkXFGdi2BPIw2T0KsziInU4rUAyWIUSIOt1GKNRa2Zb07/Frf2alV6dfD8TTSb6zkM0wVSvYbhxinqOqn4/gj3NA+BmLCp0ate0bRNjbqVbAvvzGHTKfsVNXd4imnpZBFEi2ObIlXz/iyPPSiyXvNbh+U+I08eBa+6M99+QYozSeEyzitn33fYCUuvhDWEatkfWpAFCYNezYivGPB+OPoACj4Bnco2GazdTJwWB5KBf40Eauh6Z/foyiRxRxqbfr6UEk0jwOJPe1/Wz5tDqHd61Q4hUII5HA/EkNR6vc8iIJJVECivWuNKjgJ0xzSOB0Flff3ygFiEP2eWnLZ//9yeiwCpKKqg7tmpaYuy1OvfcnqRj/0DTJZ/rXMQLIFaulq37HefZJOtXahT4o/1alNdbAJsqpm3ODDMKsEPNA+j9fnrx/Zs9SlbshQhbQmNAdUmFtu4D7HX9IpD+zwe4xZeYr4qFtS/brgzfDT0vQ8nggQ23m1x23D6PGPSE1prDvH85JBQ1NoJ/Zi0S0ShC6skVkPPMqZVP1R+4cZfznExKrjoiOtiMCPJEYMAV+ehlAUZbIeZvZJgFisz9DaYBD0YaW883b3yg8mcfeQBV+e173hd1sBlj8j6KZbXtBzGLOBju8LuiXwe/GFSawlZ5R73GoChUbibAxt4CU++A6mopheGHk9VEEFSh+3RaMt9q+3iB50MReOacdF5JORAi0rZWLDBxNFp92Hoa2Rm1t5Ur1QWTcC54QvBjL/KfedfZ6TLOGUQ28ev4WYyWGrQ3KJGzWXGxMgNM3qalSs9viXu9XVDyYuhZ25nbG0WeYcU7ZncsDF4zTK4w9T8fC6rIQlDQKPmqteutdx1yn0XpS3QHNuA309Sb9qZrAImJJiaK7T9TlG9pEPA2SZHL2wWtrD8ZR+xEjpqjFKt0aGZOpJ+qtyaVcGJmMJG4/67UKh16E73h97vFx2x+Y1Xz4e06y9eRLz5bg3KkOzitFc4mF+kHeliadLt1QSOIHLc0G9LlCo5Wy6BY6geTQpOF1TGGEV4obFSj0f5d7wGilyRMMQurmBfkcumX3V5Snf1iPiK/QrZuR8jE96mFIXHrDjnD5GRGtnw/nzV/rO+tfox2sgk7kuFleGDUxAvYuJIo6D2EoGr0foozGgWG+myP05SiI50estqow05L6mC1Yjp321poB/BuVDjai1CdA7CxXoXYyQVlNWvYecJFVoLBKgMuvZ/olscIyvIxWhLF7R92nz90ZEcKwhGCN6k0dk+6t6G9j5gJwk2uiYF0ucMBGkt0X/7/8UmPPRwNsQCeS7azbRRiZgCT58OZxrCRM3QNc4P+mB7quJOHkvvfHSIfh2ljDLySOcFeha8NeUQoHHeFQtYdR6VdFFnUvZ31dWg8uba7FzDzYp6N22sDXxRu1eGHVLPmVJ0E3EUTAjB7QLldhebNfA8KelUcSV9LWVfJiXEcnos7ZOxbhjqz1mkv1bYOLcESJKODJlCBKsjsX8VAiUCRMwaJl3V8VvU4cjj75WbpYpdPvFo3SgRtMlUESE4ZE/mE6aKMACghrkBxYpAtsNvsrwYisOMAoy/OIYK7KHWhe6q9sGiaLDZrA62D5tuJ8tzHhfNiEoIASXP+s5tbUfFM5ZpLlvyeMGyi4UinaQeoM0LcJcBpQJwa6vC6rlzJb+gALSgz4ytLVZJ7pc7wVigTzSWe5iSHo3OK65K1ADIkAO8meRHpMAcJAu6GNTdsltzdougRp+uZXsenioTejJh/Q3Bj08AuwhqXR7ZCpGdI7Np5iW64CNNyifcjwrU5HdKSWIohZ8Gk16Md8CazgtZ8GNhso9kW0U5TKVhIdk2ThxOhjuUnbhzGhKb2yHgoKUMYVH/pqcLb5dCnmmaeEGKQ41yEd4ndD0Ty12ehB7YjGO5naD3L64UvfemZSytZ7R/nRprLVBktNuqema+KvBehsiTk4CaVHuNbaWsHNxhn/LlpWo6rH1cs6C2i3KBdGWMrY+lf/Mb1ziqtiuSJiuHjDcd0OHlTkAx9PU1LXLBbAwO0yHDIf7PZoXsQYa+YfFTmKA9xavnXzDYdH5pTgyKMbH5/zayyqpxwrnJlsD9cmCaA1RhE9ghwWOBk3kruDLqXJPhhNVMv/1vtSwceBb0NqXzBZJRlqVofyRoNj0RXb4JANQ+AFu6RNUkNMfQNyYfgEtJjxLH0Xv8UvAeMCOZIY5J2/ZiX1B2g0h8rXJf6Ka9DAuiK1/sSHMKWGT5DE5Mkk4LfafhDiPC0zzzvPA2ZwSayvusxH7cNq2e6oeGz8wYIazIEMiqbx2j6UJ84ClYdL31tVCQEIxr4hzF1qvl3hwqCU4YADDq6ZYQ2VUAWnOgs+C82sEg6Aoti0DjXnBmaVf4cIhKy9G24d9Tj68/CFjuWnpVBEYtm2zI7uI54v2NfTMHswe9Ze2tTlocp5UEtDs2eGQG1kt3LrOn1iHu4Tq0nbCm4MGqY0FxaBJsgVpzYh2pBLmxTYClcqsvMv6q04fot379brh5rkS+XCHPhKHS+6a9OBJZ0/R84QhuE4P22r37c7apQIyyYxquyHPdPoc58vlde31ZvSSI6fbOW5ET4hIiGPLh4W0bp5jl3vHPKjAwz+JnLahsgJj1x535dmle2TCrzi8yKq8GHZC1uhnjtAar6Sgf0Adtzn650k2gFEySRytyPPYKHYCHUost9l6jnoGd75yx3xjIW5NIECfaNW1InCWP8wnCr07VUdsETp4oZ/izUypLnIKolVdXpKyOOKtXVQdd9DVB0fuQD33HfVJTwpCJu1VQ6ilcQt4nYGGP/ctBiNkLa7r6hRFwVJSfK06kQCEtoEOoAwpuJTr5SwcCVyZ5UrllSDjjkDlgw4JgktrW66ElQmhLYRIOqwzse5zQ+JU9RFt1qPdmOq7fNdZEqTAvqU/o4m2X5ms99CX/Oo8uBFQ0YTNbzuNsjvA2+2u9bC+BMNXuLax30D0r2YLJayfiPRPgNXJPcKjUQyencqgS3iJ2z5XV4nmEpEyzirT+zq3mN7JanTpp54N/a+jaVnCGjq4ATMSv+DRBn+TkVxjMoA5dI9Z9JC7ZnpJLpHsvgr85I46Slx6uSduPm/bdoW6zRzWxiTC0vnfM802NxNBkOAOcuz6yeePzKg2XF8sSOZtDeHt7C/ayTvJPs//pp/GUJLTXrCPIcEP0QTWTsMRmjHzjunHdugd64oNgN+hEz+AnKnAmfnyajqwwp4xmeKGa6yxEiD71A31hkdZiXZUYAl4uuvfxA6e31rFtuw6KZwU1y0NOejpF2XlvtqCp3H/jIpInkeALt1ADHzXlC6eqBv82bhLHHCy7vBXNovqlZRevqob4A6h8t9AklxsiaQ15S9IvOlPmjkBModdbEEIzTkuq4SNJ+kv/lpSXdOykYcyh7dR0w6gAmSppoFhupHqMCuog0HN0jcSLUWZryCwskW2KBtw2M9dNacfcyvvYcazkFTLYrfADQv2y7Uu5cEYSYrgdr8cvs0uMHnAlrHHbsHARJV7FSGHKkyRHPDkq4YhevG9EWdVeU4xnyKLJvHYFJEB+rY9HxB+uIRgKAU+TJfiJilBXL1cBiTzH50DpFNags4nwmF3IaQdYfA2T0GKYJ0t1YR/E+9US4krTfzjrK2neEvHwOvN3jvJFwECNCY05I12mG74elcNV3dO6ycw7de3+rESsMVpJu8a7Xf9C/3YX1l+bRcBipYoQDX0l0A3s3lrRr/vc7pQLTv4m2Ii3JdvPay61ZPIMflRh8RhMoeNuS1En0m5wcDEyzl+tXESc8VkBCxxMdMFG+U06kpqZ719CorssQ4a3pww9kjAvUAWHbMUbtUpzGS97KV71abwVTlsgj8qKOH/oOGJ6sR0kmIVVgrUSnj+h5zio/ibQvDiK39fg4+nivAcxwhwgh+2gpKI/nbEMN9rRAckD9YLTs/BfDxkX+0q27rAleYp8ti9a47EMAITjBmtfcyR/CcweOS/rksHcFKTc228wn794mPCW+1TRd5S4PBOP7ouNVz5rq5tADGmrFG3twEMOqvGdnbIG4NYtK3UOawcXYYszhWiqubttHtW3d0M2GARxBng+VecFvWc1XCHM8o6w0oujugXHU2tIfpuO6+/vjqGC/J2nT+iqkv9gmaIySxMtPXUFptK83kllBYhf/0NUMu07L5Vi8N7u7A1eOCvN0U3M0XSFnBnI2L145ggSeAWe363t+n98HxErfEOciQ6XRy8hqmqNmFZ12v0iKXiKJWAXA4+3FJhrgPGOYhzDPCH7MtEJzbl4QuSgc36yE7TwCNzmOcFm8dPVevEUrJGSGCnSdmh6wGJoSmKEzHqa0+x9SOKChVj0emfcNKcwJhuPeA/TqRTXGz0PJvi0UfvCZRhGFduUHYGVCLTbjQhntnMtnzp9VH3T52aNRLPXwtJA4G07r+DaMl9m2s38aOPfxylf6uSSts0rwVSvpBAZO/qZnIwbdYJw/nGVpQys0Bsn4tW6iu8QneDiaiY+Y68sjr+7KRcy0AAEqrstG07+cONnjYJOn+3B+kbJ9EuteWhpufTh83fk5RKXzzHYUl+WJE3nnPwdA4TwTID3NHMk55RjfQ3jHTKG7/aas3tsf7T3gP0VOn4zFHaiqz85R/9P38OHJSt29tD1DdKD3n890Tyt7Nl3BRUuK1dzttLyoG69/dh2KvsFOQf5CWKG2TwI+JJmcaO83u8KkxKFrM0Gl2Yle1Ulew9zozspTc78Xc0dhsq7Wr2NSCLys/0n9vBtLquAEAbfazbIWZpHL6pg5u1dcmFFUaZTe7TKWQofi/iMK/tk8BgFGuxMpc6+EIC+WXEeUuPBbZsikkqpprr7n6GRvWVS0ha1sw4u0fbeZX/foK3u9Yv0QFtnqst+oGIQZKPFZ37M6hgdodiBWeH8qNmuJFQgaqZk/abPC1dyabsB7a1mtaOplIaGJuTSA5VFT34XvMthJg+h9QXx0d1l46o23XjgCfsCtCL3anICwhtOnO9K9pbYC6fJatpjwfwqoMN9bQJvS3oufpDwHzfGZzCOwBGqw6Q2ozAupjfnsQZGN7ortdgbiHEeC6ncBAIvKtDzJbY9VlhZ9/J/11EQnY1YiyPC9aSggjY+SumFw5/O16iGRMLc8jb5o101u6l7TEr1kpX3njlGXrjvUGRT2cqjgKxxjBrAAw8W5c5AvNnIdFrgvgyYMb5ZY9NaDtCz6luoc7iLa/no/2COVdBRbkxgj/crsusi39nO7/rbuEsvQ42CP9bKalLtyfdQZLI9yw4ZfGq03IOHGQ6hqYulpfTWBHrMPhhRW2Vv4x0nKcUqDlidzbFgI03CxTsfqOnezrdrzexCWRk9+wEdjHYvIuu8EY34Wu8gRgGJtpRoiBEf3vONskRjaRPtisTbaHWBZT1NzqC3UPrHEtEr3EYZ3ulgbMWn7z/ZFZ/W78YsVAd48SyfAkH36BI/ueixCWdmihYj/hyG823ZSFFyto3FtrHpLAwb9byZlCD7UEOwIJPeJ7x8gNJ0GWVJ5sMDSHsEsApRSl9ImA/jnHFK6U890+t6d0xbdxy75DcEkuxDI8UnackrcstX4MHayw250oMnF8MrXiFZ+JY7oAHH6LvI1p9d1jx4JgTzHPiG/psVtvYDhROj+R0IbdOEbL2MWWYEVz4EXSwZG4pfBQ/AsnJfEdlWSmH7BVQof7xGiKyjCCmJ0ydofxBGvAW61T9q7scf3n80h9wh4QSacBwkgXqyiw4dpe70OKzK30KnPS/G21eKSYOrotaBJtFL9sVN71qLqXwB0gw6CVGtES5n7KEGN7Jjsc4aB/9kcM7RLjiSnR+r3x8eBV4Jd+xYFCfuMWbCVepLAGZCPfFsIfIFzR51TrLLZ/R19A9CQTgGS5O7IJh3JBPyzpHx9TlnN3QD1eoLXgTRwReLIm0ZJXV1ZIlsayHm+Jd18Rsnc02a4c9Tcz5hpdxDqKRbyFbcpX7Y6JxqCqYRTvxYWARCLBRlQXNzVz1Qv1ySZg6PV6Eflx0dPZRqC8votpp0rSJbVDncC0GW1gem2rTOSOg7yTG47F/KjeP5sHUsvPZghNhC3rBgwrEHCTw2fE4FIS+nIAyHRbhld+KUVFwqMGVJI486wJInhmFUD083R++YMu0+qIDYNDPeMYzO+Vqk6UhrL0GxhzhcDNpWhdbMcTxR22H0MJ83pws6WQ/yOXhAzNJXDKOwmGe9QBD9YqTy3b0BaVyV17fJpvX8lv1G6g8njLf3QF0KQxrlwVxWTe220bUnI8Zc4Jc1EZDZ2dezfqHClOpv9F2LRdDi6Tny0UmCeXXBXYv0/TgYXbDgltU44lTTS85Uq3b9NywDDdeV/CM5xexNDrWi7msdd4dxCtFl4tWhWdgJXSRgwbcuBLQgIq4wRkCOSRuZ0p/JQTl1IKuLP8ebvtQsPkIZOyO3CSmd5V9zpJ+sPjlDoUZhBijeAVVrprmm6Oq6P/+6LzHonaRMcGHbqD8koRGK8nw13/zgLN6Wc7r4tMF3BSHJvNr0vab7sb8XeqXial6YdC/e1TO/Sp56eACLWYssN+oghvHZhzYfKLORREOPnRxCF2r9FvpQnBEX3ENYFe2qTf8ZcB4ge7lxJU8BWrP8RZMArJ9dPkEU1ttJ2V1gVBz76aK6BGr5jqD6SDKmU7X3NAeNeStDgmAtFqE5drcPwmW1XUDM4YJ0/+n/Ds9yUR621EVDZevtOI0wHljZoKuodQ7uCMAM7Eg2P952ds9/AAMImkRooVT5uvmmVzFALgJB2+7znXAxURESYLPQU2CxEw8CfV5dm5dJY0/rrBF6rkux6N0ir9Zh6qD1GPm/yUnNFo/aCTlxtzF4TVs+iwqLplkZqxj9fV8V9z+8lkTWFkJpCkbytSja8OpCyxryi73QTXfmHskjKxTDMV6ausPEmeLvCc9aml7r+HOwpVNhQTadZItuc8tf5u4OhUjJsqKMWeR00Qgu3nBT2vQj9WV0a94pWhs1l4JWT+t96o7flSozUi8gr/OgDUE3ini3iIRSjRtKmR4sPK1N90gSaikFkIiCFTyZm5cLNh5i2Lmqrqu/seGkuKj3FyIMss21SfVwz043UlzyFv+1ROt7pFa4ArnpuJmlnsAtgpL89VurTG++mV/lt7+0ejgOu+XtR5Jta/551KGVQUtJVTwsj9xwac82YLlUEb5WdtZs+pH8OTACwl+taTfVSW8ijr1OeHQuN5/TTxN96KJfNqyywvEXXKrS8uzXal+RW+BnN/U3EoHhJpbDKHzdaJwCTQr77gwE1gpgN2EhbTIrfAnGYBbIMhx+AZo9uoxyrDYexDLrOLH3khaHxXKb7j/VgchWJfXbVZNfQajJPzSuol6o84qsp4EcbkNA2cw/xfN/vGyD5Fas6B20vlLpZVAvJDJ/c3lu7dLLGvXuNSUad0WyStCncp2eA2/s/xfXQQOT9La4LLZImk2RYy+iCTAD6uxfr2utphtWYMZJQCxObAiwyDlMiC0GNg2Wbsu6Kx4HCn0sImFwnHq1ULfRGz0ABhVWziwGowxtKEYPVlFzfr2BQdOYjTdc+Bx1VlfD+Hiij0MCNv7uyqQagTRqciubAO0zcvoshnLbgpw4cUZ31jj3GHJqjWaLB/Kxx15dZ28XVetX5Eg5sfFe+XT2Co3ZoOTNsrfHHE6fcdtH+mqBl0RuS18aRCPXdTCZJj4Ynbq7UyfK2bcFROJiKhfLsaiqkQ5WsTqSxo3CTLTdRPTITViwryYmBv/j75piRdmgCFVR4MhRj7gfFuKNZG8fk1O/zGwYDT50fUe1qKHgWspMxI3DQgefIAZzzzxOfitAH6x0qNXe/t3hvZL59dy7QP+A==
Variant 1
DifficultyLevel
583
Question
Ian, Greg and Trevor are swimming in an ocean relay event.
Ian completes half of the course and Greg completes one-third.
What fraction of the original distance does Trevor have left?
Worked Solution
|
|
Fraction completed |
= 21+31 |
|
= 63+62 |
|
= 65 |
|
|
Fraction left |
= 1 − 65 |
|
= 61 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
name2 | |
name3 | |
activity | swimming in an ocean relay event |
frac1 | completes half of the course |
frac2 | |
frac3 | original distance does Trevor have left |
working1 | $\dfrac{1}{2} + \dfrac{1}{3}$ |
working2 | $\dfrac{3}{6} + \dfrac{2}{6}$ |
frac4 | |
correctAnswer | |
Answers
U2FsdGVkX1+OiK5y+c6B130zddqzePv9E+EcFKxwvhEH21iP6Rdrp6K4MtVqJVo6bi/RFn7TOQYCQOC8/IAwEyydddgtGe1wQv7+kyp00dGAmmyVOL4dn2yiIglYFsP8GAmQooWKemzB5moWhg3yDtnWa2bGWel04NW5F/r6pVSVppuaD8J1Q1uC778YhJXu/SBBl4N4doZiCLqlox1nMVukCUs3F8D+46H2GPgPK1QbTseohXWvfyUn83UE2pNzMg6ILlucka90XcHgSjpEflP79/dXza09W5OAkszyPJHhejZH4lSqiKvBRABK5EGSc0/3VaW85lvJO/eF41PvzskmA5gMZPVcyjrWokBXCDgkN1c4Bcke9XbaCibSBj3Aluj151q4dVHAd937UBnUJnIqR64ujntCEeonE8uKWZbV7JeNosfy+FjaG/1twCWGFalxxKcosCnDzRkJBQRaNcih0pkDJWVLMW3++bxgUfpISE1249zGlailLTDTuHEI1XGMAouBy9/3MIZwetbH7ZZ+sSo2HYgurbC6L/sbcDaAYcI52Hg9K3PAURzMzBK1i7ctlSZoFMkKysFpWUtcFaAr/buW87VZdU2q0cSw/gfqJUrDWXd7LY3Te38dUPfgc7jYurxQIzuEyuzBROg9vDJkmYwnsZRxvQ6WiC5zd9GDpo1NU1iE5k6bZ+gzTd1tSFrI/F9BdmwO0xWma4KE9G7n59CWNbLXCQnMmEx5bV0undBC3Gxz/hqgCjbSkfMFqe7RDGiy4XgatjRYTC3USvwkQO84VhE29MCoproA5oxvdOwOmdTURZaE33viXasHH5L5m8+r0GqMsoopzI3ZCFYfMNzZG8uyLPXniFg80s9e/X90COIR2SsXpmRxZ/Nio2sUx1ajDTLtXQPbnn2w4ruyqVEWaym3VN+lWereelnsjquBmmB+4opv6MbaepikezIpk5XncEy3avTJfHXGEEFBkYhhdEgvLrdPViFHOZAIaHxqwfRu/Kgkmq7KD8tUCPJsuR1SYx5DaNCaqv5gK7RPq1exHyUB7+HZqgLrmBA8Ii2GqiUJCFnDogMEjaKeaes9Jb2ukoJUtuH8og1RAXzRV5V1PLdJhGML1KWdhxCSrrw6TqPyf6MfMskmh+tnpZ2H05MjtStCID1lBlQPEeWX9FfNc7zETUnGmp4SO+bGM9pJl7IDMIkSXnjyfKCps/N16R4rmVSXZZ3SxrAFP71gvtS/Moz6YzwN/EG9VSxr0FJxWT7HplodMSqXOZB/SxoWNV3kvsDeikErjQhDmUI0RkWAhxuVTGoGxepY3iWZ1XuYYde3r94Ea24W7L82plonvBtkZl+H37uTSaqZV0OHw+RyLxYLkhvjefU1HlbDLRHpDHN+1L0WXwKIeQvRVjSTUZQxsepTYuLWi+5yqyFQSM9vr0mssc04Gs/GexhU8tVnqFk9uwHx+yKTjEq+Jl911IDvoJVopPPOWUAIM31isEv3z6kBr7VfqlpTnRApMG+3NcQ0tNnDC7fgm13o/207YFDA1Gk/vzNrArVQFjctUYiVTyApsnGZ4Q/rvUABz8me4hS5rlLzKVZfTmKFJh4Jp71oUhlYWEEC9P1x5P0lNlQZuwIVfwOEFbJQgVsrBfRRJ00CfPArdmh+GuLTNe10H1aqVEBKMi32bTbk8/bd62qbb1c5ewT+cHkmoTuVYZLQB8rBrK+PAC+1GYZw2Bg+RG3mij9YfonztKEnF0cusFqIgNk/nGCpvf82e2ztqPJ3VMy4tYZiDrWwkzpapF5XhIsDAB4AfWHlG5cJ2zBYUN1XrcehHpsFBV3FytSQnCubFSnxWkViQLycqte3dHXmuvqRdWVz0JU8cBilUgb725N/uY575eV6F8CWqaBLc+OHy6WXtTuX3src3EqMiPbiDyVFE2+pvLaf6tcQu9lrnVISNUxJZJYfzhorbBlgQc6u78sile3KIALheM/O7d/xRtwjqYQG97N0ciSFe6Zaz1qlRYYwue21+OPanRUKFagR9A2Jm9p/bjQW4Mc0evGETuV9ZxMXVX2qAOGZfIy4y/nU5Bx6JIgyiB15HpP525yUwvnrbZmiCRlkbRlhm0M7pQ0G5vP28U3kmRRLJsYPE6w4FWqlCNOz9NKpb58dJmnMYM5Ss/Jrwz5xgeVSIF2scSW8aunpz+EBdCyfIqs+ZcasCEMnTHwtNQxB23f3MrrwOYd96MXznx1q8T3d01vSUye0PEIK7f6vxP5UMi14NuxwrxewUnouBw8p/Zc0lyq64MOruGq3c+/US3czaEfA4xTOkVv0kk416JPSJiF/RwxCdc2gZj81niR+O9woCNxZlWQxpOMGhmfvQ78P4M1n/koEFE8eKiUj0ImpHAK69cCAcOHr7CFLEbPpjyDvvGJfdoMkAQzdE6MnlfACBYbmJuUvLTVAsiSkHqgL4ybcz+UfAOwS7FuufNTFfT98iWTuVPMz7ipuAwK84IiIyBdvepmIFe7gbn4LOMcOBH8oPuCGhfPt8ozCEhXoA0CngAVAWjlX5cacrUrrkXJhCsTa1kdBDP3qgMY86kCUMt+OTVcWTTFp6GII+hpVTQBup6HizKFwnlUhzreqkI5MCm9gJFWERL2701niKTcFKFgbOTJ9xyGMPidI6vPJZhvoX/p9Kj+mwCItKYrHHvCz+4mMTO4cu1G/gNROumb2x8zEvfPHZOYr8EOPqlciGM6/KtPCKemSZP85lqV4AGzkb8d8j4kjz6alJd4yPYMUDYemPTLLEbQLdtk4O+w+EvurEU8VTHmeM6M4KPT/k4dBi252Ho3jAVZaKz6UbZGrtEPwsxJwiNuHMBHWFkUAhhLMNsQ8ewQePh7/2Glf3MHfz7R/w8jC4WHTLFHdbjr6Y25WbVbGuZ0cdOX1IHGB6otXxsxoAAIOcuPRONI2BAfEu0FqFGP+MOylTgrWLMvCgPyt7asukWi9Q1VR3rBkP7s2FVtvai4A1+NGm+IGvHn3pzUlbmNmqu+qum1K2hCDiZLL1Euuad5d3r7PMEXrrPZZC49wIxHMR/MuDN7Qd2ck9UjUWt9zz7CGGkpIDdtT+dBtF24ezalNDsxhZjAzU/UeFWU5BpcZZrwIUvRJxH/VqUtG1LITqEaPqri5ZBp1OC6HF9M6K2nJI8hnlBRMdRdG2IVxFm1Hj3Y+j05x2xQpcp7tKjfR+o4aW5MFqxV54TcQ9KFUHFa/DdtMsuogIPgTuYzYY/7oHCZQz77I8AdnKdbfxNQKXxNgh66kuiS0WEHRFuXkwcwQruvxGxUBOFhUpK1kNC4EhQJQZpfg3cAZrCaI67Wybv4aik3Qsh8EEDyK1EyRcbIWOU1ce9GCeWBteU73qq9uFKRNVZDGG9Eq8K4d2HHtATqD3G0s6qR94yxFj5qkySevW3IYJL+48ceX7gABpmULPKkW2NBV7qSyI+SsFUnsQIRguNZPxH/UXezzfVUyPV6DkgDZYPpG+w6r4qCu1idpTKWnhUqHuiYwxLYkfEUp+vHgJTHA9kmOpeI6fRT0xe6a/Zta/dvLmfM6yzA/z0kHH4SAXPQCPBu1MtlROz4jONSKe6QjsvX7bapOjHmFnxNCOLLzH1cxbn9lTv2um0kfiol2Rezg7WK1HwG48n58b31DVL9GRe+NMyaKhfoDhkN8CoWLmwCKIZgULEVmez/6wRYwDXovY79DpueIgK5LVJrkPee3gJsV4aaDBR9geDTIYrmOBwdsZsuRumKJh0ApbCJrVmStseZ+v7rqfrG4PB6njFlpNxlI4yV9HYuIvIYT/cPfUR2xQJB+Q6LeM2LObiMMfOSM1NNM488GkNA2rEnVZUE6f86FxVjTE5wr1mJBmagZEr3g83ZAonZAboFMZ0y7L7cwQc6W4LhGWn9dryHoIeHfdMuyBGPSyP5BJiFa8EB35iGMpo6OdTo0nFxo5GVLgPEGg7L/rMHn4ekN4h202GEUiT50dpKNvcXl0rx4KZ6fY/+ARVDsf+qzZMmNyYcl1bjPOLE6dsLP/rjifeAzz802U5LYrgxWW4Xj6MWTIE2BVtZyiV6yBrg1zI9ZLy0/p4l1zd7+FctpgUBFp9sFSKuOBeduM6YaOVF0zi5MCHucr1yPH5JsijOPOw3zxbQh812mXD8ay8/PrswG5irKw5f4MjWE8dfTQIAdQZJACjSc6ZSwceyZeHgf1a27JWGT8lPZUGASfAmkGQVQpOwN0KavuWoeBqSggYRFf2N44pPwm9c9Vnsa/kGgkK8ojBjPC4KbVDpnDaRV57WL52/0Frhpv3lHX13f6tJ04UxuZpuDwroN0KkYZWfkVNCWI4nh3rNtIHIVkbvz0ww996sonZ2dpEm0Pusg9K19BZuX59njtjtGDt48wjCxgjLADDfdDdiaJ9fqO5GqO4DAYmiCnhjkBzq7mJNOUOB5MCoNYN6i2tEvDSepinRgN2IFVJntn9R6SvyRKMlnhHZFK9cX2+7FBRyFYVSZ/aITNj0vw4jzkH8oaZ0SMs9f27y9Hj+gKwU5M2KX/VD8CnbvrTHx6pArebczebVtp2jvuwTVG8Fyh0EIYITvkoM/+XgAiU2Ndf6VS4u9dXBRu0ikI1PuuYmFDYkjBBtXPipVlexfLkyznOQ7YCCee+Q2qOsRF+5qAGjIBNQz3C+sZcDu7EjWvjp7N2Ffhy2mMPtf8Zwk135OME0Z6ocdCegSYKutDASNBXn7AJzkF9vhoXUQf+Z6t2izI1mtoDZzRHf1t/qj6tT2gFeqo420LPeIXcXunAUFHIQyTB0ztwPZwjq0Y3/cYGL/zz3xBMOcGuloq/PW859sTvtdaliuV1m5vXI+j04dS8yZaci3TelbioZTuwi4hSzXS/XNp3IkURkuuSiA1BvgfW5kjT70P5kleVq1RtfkE66lh9JNE2ExVybRWr/BG2Ptz59pv3MAfRMQuSBtuWhz9CfghypGzVqhEs+Jq3sfz1fiqU+9vfegFSMqDbes6YNB+nNyL1Cb8DOMn2WDUnabkBJkQ99U0wrURDBzOOJO1peWGW2fvNyFrvwYZCLBZqRGkGbN+hXKsF1yUxNhC+sGnhOG1kNPmrUR0CBhm2hpcCe7tEx9pu/KRBVS9cAKF3+ePxjSjnT1qnGWorBzXFI5TiyD7ek5U52QIXHlr6ZyS5IruzwWEZbDS186fx6EcZVmWKeAGbYmbZ3D+zxyZQC2XeHBxzQWRz4zwAf2vf+YVvIbwLMqA5iqjSqOjXeQMqL+2UXX0hUSzI8wjOW4wYchXZYuwaiif7zMAx4V5hhgB4iibTEUOkyafrN8auXp2GplUYEHwAjMry90+9p1vHBhtiR0KLfpr2Aklu3MpCQksgViDwz3VjSUILW9dt6O28H3wYhO7jPuF6HrpzHI3GCE2FKf/pb1paegbrynTFBmeUhSH7gznZupBEZLel1ZdfifUaRrk5mTahnMGNr1aL0370kVoLg4b873jsxA1rjWmZ+8vJleU4b8IX+Hlz4W3Of4d7T5ia/2wwjyTQtZ4aYClrYE8vPZODC1Ej31SGANhRgL9uYZMPZqZ8J1yLGLjh1HGbs2tRvhdi06Y5q0qo6ocNipRiA+y34WayoA9jWISOC4o61cNotSCEwDYzLqv2FClqfmxPiJQFF/iFY7HufOXCnRTq6oxDvSgXeLqPKo4a4OTNkJRfvhx07e8IDVRqcGZOgXLNCjeGuCb7WPCSBzCzDnxTqm+x5Tuna/4ONvAehA3u2qrCJcvAnVOgIpUWv9ZPQ1UVQwtYR9y+qEglFyRsi3Ij9u2wnGPkk2EJRuGuRZymDkUW3IewR3juNZ1IAfprbuuN15uIY/SVqUHIEImTbG8VWUnU4FGegWRAt6nrcTTAl+AIhDdM8xhjjTd9TFoSffn/w6qUWM4WWF+0yJdzavGCOegm6ErQmh1DmF7WnwRynNN9JeJ4FQoiuuyYykDQNGfvTk2c0f7hcqFPhzzEeAA3eBUZvOPHkwyN0woTMW3cSk1redCRaZhKr9DCnLF3YOw3KSGuOUAuCrwDAa/5jS1VeUSIlfAFbu0aQ55d8wY7F+eYPiMmSft6m/F0pppFkWe31w8jvKZomESsZAyo70gdYWP4G441jv9SxlkRTpeQ0LzecbBALTQ4Kq/tEna4aDhPxidlhxQYfvs3/JN7cCx9mSEE6qAIm8tMv4ht0GugA0xl9H+YlE2MyFD16Zrz9Sj+mEumOkAbcOIROjKW1sJEsdtCYtiO3GYov1GJ1Uv7Iv+kK9JTPw79/L5QoM8iGNAxDN1ZovmBo0C2s+U0MMDmkfF6zNkP66+nib54Y8QffnXlFUvmCrVDVTEqK9tpFYyQ27l3Zb0ENluukJZfeJPzA0wPrQpO50uVq7C6lDTbav8Ity7lfBwfmFEKBCFIWkTsiknVpmkdPKGV5K0h8/9WTslU0LR53AMe9HDhQJVpzrF7sw6vi3qpuL5RsntfYPQERsMZM5f61y+qasoE+9MZhNIhoAOuiii3S7Yi+DcWGwwlG6VDAic21L82yKWPA4i+YYyRheEt2rDT65HjNWV82cco0lHTPqelHVVSdOAa+KyXLuECaEdJtC0qdCZuNI/yKjh83W8Byolme4vPU9U8MWiNzXim8JHvd5dkD8xDB74iF6Vq4eK3tEqckq79a7NI3319PclVRrHDcoMW72eskOtVpc2Qp5mk6zVqM0FVfPhqpbsPSTDyqFxA/oIey45C3gUKrupO5z6WGp3Jsma7wdLCse8i4+HHWU6mIkf+/Zc9J+FxHa1w+EE8z5GEqCYLaQWQjv4xVfGXDtdjTflaiSU5vbdCC2arbbUFBDtdaqZOyMh+i87Ax6rAxxAAcIcdjTITaD2fdz4wCC9uhRWSjxwlJVOtNmz9SjqUJcyxhmiS/6M/otreW+eVmqnwA3kNKa20YggIs5roVCULpUFRitQJtmchmxhu799qAwWXcmrm4wfPdr7r3LJ8UsAJdjph/WdjXdETsRKbIgPovZaB6Jqf5n/WDP7vphFr1aHJM26PS4PrRcLQpDG99pPPe4QAqOp7O4NR7Fy648pHjB3FzOPCrEd5sHfM/31YcXZ88L6nDmIYECevWoREpTjFcriUeUSOttnxPdAAfpzCiqWG6JWyayQ8d8Xt4TIl5aNmXqTx1qsomxyw4LaxgfDSwMoqyZLuL7CGq1pHOZwgXQEIvfu5CFwKs3bGJugB+Xy93AIJtD3sRTnnz3mrSC15Er64E2sbwyiFy6W8tAR0Sw5Bjo9+rWECi0yBRnL5GjmT5zmyUzjWvNXuA9+AUj3IeZIyUDeB+Hn2PKcuAdhiBdvesELvNIZGRKlH75ZX9v5KiF73Ie8zvyi+2qT5VF9DePVgV4Akhj2CTE26LftLYrexjLaRO19IhJOD+Uw9ItkSXPi621zaumKuIpDHXzRmJ+C7suQmo2XM2iKUm53w0ktTiClL4vJ8O3gZk6FKHHQ1pnZ4pK8+4Mm3XLwOu4VrtobHC+9yNpXRuuy0gbipuqafHFLzYK07PgroHLFTGcnsIIHPRW3bxlV2kYyJgrILP+Yg+FY7Jb80ORmALV7hnN+hXw8JFbVTuWpklsdqO5J5zV8JmgDApFqb2r+CcELf346sQZhSFxbh4FUllTKDlpQY2zgpyscYSMEwH+wsGuFlsTbigThj1WMWJfjO/sqdVsrRvfvm/9Y+xaMmzKRTe0ogMIyngeCORLdKp5p1cXyJTvNqktPO7bXo6r+XnxCTSOqRPtboC9t3nL2igLPMHEBt+jb/bGJNZqsNdBOpD/Qn3Vncs5nz2pt2sw0xvUtDTfM/zKNxSsm/4WhcKRqOJUHZ26GzqsPwEYuf1uMIuRX5eBG8aGsROAU3+ov7Km6VzAReAKI2bvJ8SkGJYoULxKPvU5m3LTaJ2s4jxpQ5hxELpa1KyJpkPG/0+cCpZ4pTmNHY7nNYKkKKrU0aZ+487PmKplbJHIgovYPOQbR16k4QUplqIHNIua0yCLFLs8XRZNnWw51atE6KyT2DGCOsfHk7aKbtq0tDxOU11o2RS+jHAaO/AxFIDEajl1qGrYmZJ2P0hn94Zi0dWb2I0ttyvLdQbkuXvb/4A5Y5pB9L2b3d+xQTAVvaegveZX4EUcRsGIKcKgVR7imFGVjR9Nox+mZ8TNLOqEhYjUMI26jpUc5B/5l4mIpeQoDoFcSa9mOFXA678GvJ9Ed9ABjawrHsjYvrqBFuLyvYBZX+XK473v1+uafgdGmO5YcWsanSxivj8pVDquh1ASrtpnKtDwMAMKePrvspMo3gWqKXjGn7HVGlhDVo2JL5EP4gRwgUMAJOmL/RMJ+LKdTU8N7Mm6oXubO1NA4JvqcADk1LGvWgRZFiGR2rM39oSni0IElrQ0s4/+5GojXWIrB245EfaDq8c7I/pj6aYPK02yLa+TFcoMGZkn2vqpR1wnVc1Hr9UCnxjFsxKcwHLQUquOODHdFWNyoGWCDzUra0YX53h0NZI1t6+94g7jrq13QDE7QAqXbLpK0FyWgvG6QRzlFziE9332xsCmeiYoorzEUwVM+850dwHg83VMoixVMGVX2U0NcTAKVQdVOK4GLnQKQ+yMtbQ7ass2rpDTBJC/jmHfQepr3eqzWja+OtAHWUJv1Y1D9CYwY3QV2wSqh57CMrPT0qxmQW3uPj9Zje8bi5wUoOfN8j9ltbJX2TcXoiGPMvgZB4MWk98UeqRYq5pfCXKUX9gXepvWDk+XaK/eAYtzoIgfpw4D6EDECTmwsw7/ElbkuLL9DrfFdCjiJdAX3HHknVASp9HgXv7AdIGiakZF8Ub9JqKRWHNUZKuup7w0MUvSBP/T7cXoJ3lG8McKVIbwWXubzD42ggbNmhBx2cxD0Dk1xLQn3E/9zIXUgJ/EFJ/KYutYUVZPA+o1iq7E5wlilcujbh2hcKcyiiG93XASt+sHETbgUemUTGALdO++CdgzYitLgrHg8TetTVUuImjEJ8CjXdpnmmkoJMVfo8i8fh+l8saB1EjaagSo/2UgGK3c+Djy9oN0zh95RYNJjz1c1ZFBAxG7LdXpdSvqaXaIKVvNwczTne4Cxxp0cI+mGatZRSd+p+MEwnHJAErKmCMfvgPofZPCVMlAM61zpPZdkaU+H+C8n8IVNSDyr8Pb9UOjId2j4oC55jvOznJDnumVP8AFIAmZmQzddm0vCbqspk4MoRRcZ5BE3MTlUh5errw20HmTbYjFlSeq6qX1MOjqBWD9RJZrZyggbhssLf/f17wBVtr+bGQNABZtHoJc41mXlgWvROk16UgBVguZ6EbvGIwAsAe3O0UqWTzx+0uGlKDhSn8Grur5mpmJrqnfMwUAtWjsDJPS0Mb+Vyf2YM3UsgEkeS5K1iNiL/sxZ9z72LeP4pTot3xDXHS8R9byk8MliwkgosOVzRQpXwIUdcyjfJiVTxP1ua7q/+NiY3otI815h3UvSa9yO6/5VL9H1AdQmiVYdY8hYb/VeU9DouXkCnoH9uEJljIHZRmrP42IxrBMyE93LFb++skc2GQXNZ4q/12KwIiD7LAOhvDugYnhcm2DK4QwJAT+ZnqvIYj69rplUwlwuUzvJfsevcWxlwiObiCHukssyeGyxEj5wegilAURC96fsV8u8e9Ps9syonruHgfV//0OKb0rRb2Qx/xkInJ5Ou49OPA78v8UQIsvNdU2AotYMbp6q2SU1g0ufzcxuaGencHohhdbeL7urW7OUhwwjRBhWMD9oPVP20oOhl2Gye3bAVa7oiq8P2mBXiMsrQMz8ZWYrulNvBugD7E+EKfgWEM91Ib/kqWdWG/vMsULiCLJqZUD64SIe4NgK6ANsiWEfVaX6aBBUmARaefdJZk9H7XNej8GI6pzOn1Vw/z1FBxH8Fjtmqg8Tv2pB4y0IOwomSjv1a40CbS44QByfggxFh/hNqe8HtmJsrKRdHdZ8utd2KNQ6lLxEsTiLdW8qJU+2Se9LQ7Hvwv/Yaaea9ULTIvYgAoDCHTOAzq5YcrtTY+29j/5wHkdXHD8nJrugoqo/GcWn9UKGySrG8o7+Zuart6hMTcZ9kGpQ1do4UX3c7wfitASyaWuU3HO/vb8pt+4su/rmbSNdHj4R5XyUa7ndSxY+e/VwKbFxqwSm9GMo+gGQc/4QidZj5Hbe7NvQuQh03BfRMVLgSd1SSsO0zkzTyAH46e0Z5qj/sMfumx/yUHyDQWqAgTJWj3w3OYWYaujlP0z8jNNq61ALpiFUqzDuYgWK6ZZzor8sRw23JgPcRmNUIMn6iU/j1V/oVk7GGz5X5ligqub/jKj5IaBgkBv7uMFD5mTe3lYg3QCxKvosmqs4P1Z/XMlxzkqs3OHcaxaFOt690r2qQ8taweir1BnZKLfLQoKLvF+JUn/CX9A9QTX6xo0O+ffdOpusBUmo1Nu0pIOsmD0Inw9Ushhd9xaBIPDSS0JW49rCgTCjNbis5duy+3xW7i24qvIiSD65q0IF4xI3JtytxHU5x0t/7slgfSETifiEOtlew5MmHGbPPVeHZDeIJGMIyxmRiJp2vP/CBhK5v4DH8627EQ4pxLpbkCZ3btyS88TlqnPBpefPK5O5vUZ+XqpDTLSRqtMPKzyj1oaHgIVuphTO84a0f4dHIW2G1YG/fMpD9Ub/awqNYgEC3XhCmx6x5c9pWP0XeUjjpowTrsCxjPqojg9UzWBz/JXHOTs5b2tLWQzRuaxOkOwzCfngdmL8SdGyd2+/WCNbKSwB0blNJH7DIRSycM0Fb0lMsOE+cq9u9iTrXQhXO2nW5yi5ZlDbkOAepCGLJV1sPtUqmbfFb88odo/XkQAAgBzNQKixq2pobfloJjWDocpCVdrEjPTTgi1ZVaECOnXVyHMJ/oWRMhWdxiSmD869DJYQ7dOrkRJQVajm76JiQ7fCZkQcJ+9B1bubYawyRzNxMDprVHn+MgQDK1G4PwtgC/DSK+UB6EN7PidF4xnbIsez+KXJ6M4f9HzsnaKEAnN0O5Rl3nYSaaim69Y3V9b6YJkpPdjmIJeotH3EtKc6EDfna6NvD64cvCaYKWqBCGGms8w4uoV4t/lUbwnqH0GjiaM/C/Q/OHWZSKBuCUuhf3MAQdcSb+vkzZR4qLKs3YQBRf0RypjFr/GZVrRDvyCkYAMrL0L9G1969WU9Mj/U0eYzwvUsDBRcVwSUkO72QlbDDw/MQk3QYZ+a/zWrwSF+GLx/WVcBQjiyxQ8R0sfWqbK28fTud++L3FugXn3e6a+nbpr7Y1fkerJUP1VdGTWhwktRoinVu4sReplu3tzis+2iUafy0Sn/6/d9We4Hc9LCSov2LFdw794Q0U+xVdFQ7EH40DkIrcbEtJ5O0nSr03+U/QiRhJd2kItWM8cTMhKEK2Sqp6/ZfYW4v/rK8mL9BRLlEpSLQeoQlb+AMXlG192PDCBfz4Y0dhuj/oVQ+Xu+aBZX62heZTl+IDuEEFkaARyfGvPQhGZvgaLgW3TG1fR0QPJOueq3DhrGI6eOKnc9PwvTt6Kyl7EIAoIC/ey7AV+K0eV9aL87O5mVxJSfnFuMxpYw/pNQkyk/CShgaOSUVzLGzmsBoV6GrwDLb2u3nqxyS3X/ScNHfP5tXvRWAWgNaO+iOGJYmzJsmWuDM8JhoNwvAtbK6FZIMijumlMFxg06ZKPjZKYVW5r/fSjQJjOS0GzN0C7bIGJD/0RywnvsAPx4c2V2c7ZXr4ybH49RR/ZeaB4whQNsuTsNp8Nib2E0VaGsxnAKFQEuWp5fqAoGgqKXWfvmX4L0xxWBt6fxqlISO7/KkyrIbsSQmDI2Lh3yRHdK87kQh/g8coe7oUiSCQoiu5hjPQFCgXLt8L4tGGYThjk8pOzQZgROIFSazC2/NkyGNTJVzteV/Mndnd/xaSIs9CkKfPVtvMNkzTcIou/MjEfPvO1+S9vUPsXvS1UjgBYkFdguV6o6YxqiIFybh2GmXZfHd39cZZcc074TZsj4TsJ9WtyOpq49rk3r/SI8wPOIi1ANewoLacQjqFzponZDMxDadpzZLfTfhTXiRM4FXjRMd3cg25lg7Dfz4HOIEh/CfYcNw6ayK4BPqcRJ3dAJGJ5c7PP8jYNoQDmHOGm8aTOwjLmZe3JCdjxjvLuQBx+zbKT5528V7bHny8A5BJAoCP+2MSmmGEk8qOSzDtxcKCXwZbgOF1j/3ptviRYSX0NpMo+0FqqENcqjJxpLPvqD2pXf4LmDOTHuQiSq58a0e9Q83YV7Gx7xUYelHDv0OK+MgKpG+obfL1fD2pVU3nPl7WN1g2htNnRj0jVIKMBCxCxF+iTgJhIhMGvizsjPF/QDvjcKNppUIb1OvYs4CnMGB40ho18HXX6FMUMQoq54Lh9Mp7SsKTPYfe/wLHsTNubNMXiBahyZI+tvFzVPiF9OrlJFXEl1D+itCsXjQApFiaEWnohFFFucludfeEGp1Q+843XKP96sUpbB999vx1pqSZDB82pXB2aE31xtPwTKU6hBV5I5FqZ7hoAR0BkT6MgVz2TChUJW1Fga8pMECr+BB/quccZ95AFwVxZTcIp4PDAf0Wcbg5hrN3CPD+KbMs2sWeO8pwh/mTIId5haBmDYhddg4BlOFvfku1LayXVwpzl9JlrhEGBwVumGWQkSmEb/NE1cOBX5sFw531kZ5WL5/kBW8us3xHJ4pEJBFopifO8B5F3avpDizs5hOIPXiaoOxUNnXM7tWBl75kbfDCcaAtkCdC86ZQaYTvf5PWG7XImsT0maZooTqUY4A+bCIEIiZ8Kjq3dBwLt9O9PXKoPuwyCTB3r3jXv61SjGHBQM+U+jUKXUhKY+5vEpQKjGVavUWWpD5l3Q36Xysr4ME4N6kKOdS3JH4F1gTQjQFVNWqPqVKVtr1LWYW9nhBIcLdfJapO78fQ51NLhdDiST0obFUsyANRh6f5mwsJ2ji19luesfjnq0nGVj+DnLDpQlL7OJY0UWfK71F0hOSzhcBgg07sRiSvmww0veqt8rE5FLN0EAEhq3IJTiZ/FYdYTjgzU8Ob46PBwOlKf+/0zieoRsdAd7rz4kTHxYm4hp6EmkNnUUYgpeUe5RaUfkLeBRwRiG3swsGM7M4EI8ce4EFDw0Vinif2DMrgk+hBpQ/VoIXB6UMOeh0tFu9X+BiJqDAScucD1CoWfZUgQYviohBYOOq/yIIsMp89cxkxtgUcCe4EpKMByPebsyUCccEVwjvMT8D1sR3OkmqJIHFARm/U0IGR0QsGF3piSCsAkvqYCppgqkjYGJxwrpBNNloiDPNs+RofVTx9d4JFqFR3JjsVhdiQRhK70t+i+cGndsCWPEDkMX+m3D2iPxZP0+PYaoYlSdIcJpTbZdy3PA3A+HMTIWtz4+xXSURm9bUICTBt07iIW6jYU3F8/BrhTGhhPYvl7ShuBpBzV1pEOt4Do4p8dbb8NZsHN0qCEP200vgL8ZxZ7ncOTtGWbKQpjUrsjBo+5RRZDH1XNoiKgpxA0cR/a8wTGplVPO02byE/V1O6y2QVAHhnXxdPuk6rjBLS0XEPxcP4zmLcIXdp2FPY8sbj7cCwGJ/F3l9p2ZEd1DgvPkfOIpRzdx640dKmi90a8G0VzGFfE6CUn804Kz9W15EqON81chDLl/c39MjCdVeCBpjkQw4ksxrYZVd+e1y47vQCAwqTIGioU+hIbT/iVfRcJgpxg6gcq66pubJPh/9l5DBvaDXmZTSYRhjsiotZy7sKIkWPNvx1hWQW0/RJHjazZ88IFogginRym+MQ1RsLd0jsB2niwjrmTYX+9KYMWGevzpefiXp0fZWfsEztFrhgiKOP8s+A2SaGIaj9FX1DOFQy3Y5a1yEC6/jc0axlvOdp2vG9H7dEB0XUsXuveGyf9+rxIOIUECahTDs8gjCFMB4d4MyKoGom9npnhYn7xd+3VfJiFgYfwLYyvM6sxrNlm/SCOjfot0HIDE2lj+wivga0e96tT7IyNQZTAKERNQR7jM6YmJIw2ZboGOBMIar3BHqN/yIsAVOntKFohcXwDcnc3R/uuXMZNQxQ9IqWCNn1XKZxK+r3gSdLRyyeh3bVfIGSPNncONYZrdvTY/oJ0IWQLMzPaXo2EWCrCko2kO9iJYE7Zade4gkJSooLm0wPjPbFjOS5fAlGuWyxmvZQ5CAd3+r96FRr+fohVCxzmsX5zAIT3adcBPLdaP4dudNxPWfbfwEC+TwR/5F64RgfbKHxWVkdXL3aOGQJoNl6Ss1/KvyQNQ7t8YCvnWZqhUplLl8/3jUteQKSa0m/5JkuLCP94RpYyqVug/Weej+32JlRV7Jf9JNtibh3ELWUl0jUsawZpFbV6j/SsitJbGLBDYPMODU99LmEHDcqyeqEQe6XRO8Q0L4Ury1v1UeFqjHMVkcVpX1Ia47invERvNCnusVaJM88FNEUJNPSIkXym88LTrK6xqlFWupxF7fIoI7J6RxuDyIK70WKcLENdz66yg6gXGxSDmFb9odv2q00u2mZgylaBQj3feyq+5QGosyGiEsMd68SjZUJFz9QPeZXri2WLiDDw2qlHujyL8W5MADVJCtEfQcZzX0KlC/UM7LmyhOJwB/xPqng5ILOVru/7ZJqHZng02RxaSDqPA1nIPNxNvZ18tEVapd/6iGSXdDSWsthvMjwjoaL1gyaKNyMsfaDaYPti99yeuFlOjKf6ZaESZG0NDiyy0vmyobvGbBkEOAE4AJPeNJIOCq/9RADsasQMGgqNdTlbLYmbRgGY0d1+SnOGXlnSkV8/pFKGaiIvKyMYQqvhT6Fn4npS+8Nn7CIqzZTFiWlcwlJsLMbGXvMDjfbqEA0o2XKJZjmDHnb3sqvwVZs8/jWvlm0ISeforymHCFURvNG5x/55hmFy3tKNOkk8abP2KG3TP4QRGJG1yyD8Vg1yFdw5gZeo/CHld5b+DKxJHA6ZFJYD6zig4IjhwzyKB7NbWya3DGZGoeXVEL9103oPVCf8hZ7C/+dWwNwP4aFmOBzLTOsLsubH2LJ2S2gfyX0kluP4EvWsKXgAogOkkebxQ7WB/U+9aCvl7nX7SpY9JQVCT9d88647v98N4nlfmv4guU19tW9bSqRydBtcfjX5aDMvn3B51czMhyT95qQKDHSPTpZoGji3cFQMRfq+Gv8zh7Ms8qkjIbgMm7AMf4eFSazOLazmIvH8T/iNM/VR1HQ1WHX06il7LMBhDZKfYHwsaMyElWDCjNGDZa3JbfA+FJWnjH2DvxNhPmNaDJhKuL2ADaBUBXaBN+t1696fGT3SN4WxJnV3Ov+xkaskFQPV3dgMqZxzOxo/nEXRDYQssVNZFD2jVot5/ypYF5t8br0N20UPdNWYohBEKAliCuFFfOOU61H+9i/mtMrqNaSoxPxUgTkAdLUWU/tqeQpC1VvZ9gr5WyAVUNpDdFGak/f1bme03EqE07yijxLi4znzOlqXGEEvONBuR9pbTZ8m6GtU8KdYfes6NIt6FajWALEUghwrll1mKevs00o10/RPu3OmLscZWabvgk43QXRmaLnNoHQTdgasiVPYP1o4h6ipTxXtWj8Cleq8WfjbtVXJ3hklAnhiD7tWGsGE4LfM/SxjZ/gWUfVrHVFof0LrJWCbHsxqpj8B7IwyJJA6kWdwxUHzMXeTGj8lifG71VA2RAa6/+3b11xKzR1Ayabm/1B1S1JEm9DAjqKDYWlSQu91CzL61lxig91L2iqafGNihcjRrlA8neka9bSBzT+c8k+WoUg3gSiVUcDZ8QgbleLMMueN6W6kBWbI1DXL7INqUnMJNRX8KAZSvhm/VkD44JhUnODN4DVyFDQstez7B+IS/BcRm6JsBqzgzCVrBegZCDSCq5PZsFWBVLpRfZRpGK9wC7l/1DREUzw7e9OCq6uOa/h6c6Ia1K+apTOHgsubdcNfMsyAZup8vbIaKHyIsDLCA8Ycu55tsT4zxR/Ud0WPWjI/0sJyJpgUXhXUCECFzkznjwEUnObrY3Ub9Bf1fb54x3t4YrHchvBmAD04zVjbRI0z+PRVpvseNb3IHmW5rNix2EqGmc7ZVDAs9sOJaOka/HKtJLseAVhCPmG3lmSpFRpMh1gRBBG+6PAfpb5WAdnPlGPPKfFazb4bSR0kpKa3T6XBudHUoIyUxnCHLFTFKpkGabuHRzvpyN+cZpzVQ7J4FU46qtQ3yG6fo0FlxhZ0Eu/g7Tc75PjAoUkuOZek6GS7Xoz1/f1pC7tSMO0Q3pNu9lZLNHzjFAgC/SUkr+72BeHdCkxOhU5AFI4SXyeaoYNUy25Rkp8N+a22cOGv102l7czWziSUfGK/P5shm/NtOfRuLlIua/gTZPpcuHiQnW308LkR3KnLLaeyfwO/jXxj6CFgPk36gS919ZvBe5VM5hACh94IHJwmciZw7x5celL/wUiOiYiYQ2X4bVkIOgXcXVk07Wlc64VwrtQLuITV694beFoj4VRze7R+dXjOpvk3tMXPiBQ+IIt3+v30x0IobQWaArzJ0pXhQ2yUshfJ6PvAmhRI++qY5gVgwixzdIVON8Im3SoXpgYjyazCnx7ojgnlUUk5K6tHD8oDnT9TTjuCdpbD1sMuGeBWnaNYLzYRgoymMVUJbKelw5RbfffkOf7lafKfJAE4dYfI4625Ts9uMcBbdnzSHb20qr8ntw/KuQaSZD3ovQvb7o3OsztnoeG9w56XoqS7Nd9LC/dsU1ZHSxPP2B5MnNAF/d8O4FYVtYPBMQD9B4H6Ny/w8E2wdEK4ha9WI20KrSCdgGYtP4Llb2fdeo/q9dLXi5xF2a15GfhI2a08m79vTboZWVqohisax5hxRQh9L6TpdASyNDmfvI2H4EHTznx0fT8wDx47YcxSjG+tk1nysFbsnPssqBWRsjaz/4qWqU7OIGlt1in+x1pAG89MOVVWx9by9nF4Wks2O0CW/i7GmlluAxzSO3bqRfGyVC4iUJ5tuwoa4EPrMVCWmTBe0+Cw4epIlBVKYByjSJhVZItPMrAHnfOVl2OUqUzfM8dZPxvhnYNim/VNMJbjFWTIomj+w2N7OvRaq5+868XTsm82Rt8IEQvlo5j3Cs5LfDwf8QfovsCh0uQxo0AQ6VM/EXRx098rLnZ1PqMx5uVWyJcGZKrXqBj8W9Qvs6H/7CLoA5VuWJJq4KrTlw8hRvbTesoLMB/xjjSla5U6RMlgw535+c5NV8MvdxKkePezsJmVzV+ILyn4rNG1Q6+ii6/nE+2pJMJiip2Kv+1HQ3mZIWUjfP60kNNfxpEtr/0s/q26sJsUN7thWhqVMnfRHGaMvJ8SY96pDwyfBnbomx4NcBflamrKAeQVeBzN8JoGEqIsSecC8J0SjGYeI9I8UDhGCSOA5RBtJZyIQR4xCwlmdKDPpiOaJW5ge0XWYHpTi1XwlnKYHwb+87wb8eNvLZqQYrUP3cCzhw6U9Dg6pBfa1h3ZgaAmuQaVaq8kfcMQYm2izvWQLPh3gNUUSBJ4X7jz0EiVqyuZ5I5Hu8SUB2R9kCE6SJz0gaSOILaj6Phjyuue+aqYB4CgxlfQofE0mI7Lc9gQr1f64RfdqvwFqIJZHY7UmQWpSYQDX9xSvFY5nEZa5GUV1PbHDqtMZY+EqRkaao0EVYVnQ9iMOZgh+0w4GuLGv+lL+otVqyM3GHWCgdZ6P2YaGGWkFrK/99XVBTyHL9cCnKIZ0+pn7k1J/NG91DtWMg8+FZX3GIHRsGDOxwniPfOqraOaXinnTbV+FTKlmDN03CH+yCGBLd7yCRlscG9pTI40PHbFpHWjpJPFzZZYP5h+8eVuP1iIgF2WNHnFcpiH1vHga8Sg62i5tS5vZGZ7sDWu244TOuKfdDyxFrbRJxx2Sl7pWv2TYNwgh/0zNqj1lGMNaHSJEuis3tgmARUq4vMf2tF5OjxycKfvHHDKvWtInzknVErG+PHx8sNQzpsWDmBAkxOmN2Ue9VODn8a9cwy1Yl/BDLTtwu4JpakRiHxGyMu2scuqpznkHwvGH6i0DLeWIsCVNX1jbgyWlhLqPdZ+rk/Hbddpf8dg1PXmaGzIxvFcwhf3jAIdZy3cNF8dW62XFXbhNXZhDaj/PXo/4vokTAk5eIpBZEkTq6Qfetnk8/A3kLSwimklvp5B62E3olTwog3H7+tImophq+uQIzP+4UApCf+6Xd7fCG00fVe60PV79dWu391g4SWi+Yxzo8J7RSCjRb98dg4CE01MXTNnRWnftOOao++mCzwQdY3K1A0bdoYd2DmQMi/a/GHOzmGb8KT9hmBjuxjrCR9ow83IQ7v0NwSz5x/lut3grMDFY372GNR104e3XkFyxMNYwnce0O0kYjb8dTae6HLwqapNkV5HP9O/P5Pv62Oba/GbY9nmL3+q8lE3yxBCTPJVUKGQtW+LLRyh8x7777no4+woInjOpNV5My+4GXdfSZBJDOD1lWpuonVek6AGmatcKT/fZingtGd5HEvIm9QFfGxd84f8thn9+0s8c+TfBAFT1x8DfR+HzXRfQ8rnqwM/7rcSMxGbo37s48C5UrYAnX9DgeAN5JT+/AwnGXkuoFqeLQgRddttJC0PZ0CeIhQSH3PWSzvOKBOrqD1g2VxMa70yOWvV4BM04XVShanmrx9M44f21NM5KKJ/48d1xVW2zdzUhD2rqG0y6KZl0iY/GcpdowNNvawM9Dxkv22RLg9Eb1QKA6P7LooSPM14YHvTzWj5z5rbf9/eCVAxiZLyNHz9vBJYhpBH3q7o9OlUbCnecq9UBm2ST+aJbp2F+mjzRBHtS5CIf9S6Cl+IIvQ9DtQLEn1aNSvdxlRo5v9ZZgWQkUkqHy+c5s0ChpAyxGBaqVA0HdK/O/x5ApS/5oDwma8F3qt4iCgF32GnEVw8Cr6OKvgXMFkEz34ZZ/uz9mYRs9O6aw5qEtxTeRPMXPQecdwmnImyD++5ujbtwD3Igu4o/41G/nRLWKFSIEJ6XjQiAKqbkDtTQBc1ukSpegEwYtmA6gT/xC60x+XbG0Xa1OkcZf6LabrqQlMwzEYQA485LyMs5gIhkcCQBzM8b0OhNBQBCEyivnMlyivvM7Fs5redvj2znrMufacYDrVJLsgn2C0SqY8+FTcDAiULVanUPVfLJy0xWn1ioaIvxFc7M0pGC1mBp8XrM0UI2cvwQAmFbJ12O2/9DcFlAqXORUVa5/BgW11XQwpein6N8/0gQry9PZiJruJF/jkbaXYpApWDkPLGqDuAj9jPxMgexsFeoH6v9TAQ65AXvyoBEbW+2NH0ne/cfAXDFwhqLavCkJsNYRtdrDxgstbmW4DErScgqYWkDUR/PiPK2eI8LHTXa+sHTZVCpbnd1k0W3cll+Umu1eAbywblCALf5RQxf2sYviR2Sl70wWc6HmL8Prv+Y/i65v7f/d2MiA2haDQUmVnjnNQGouDlG5JC7Op4ZIIOtgyEyf3N2QUkiUwlhdFxxymvtidsi7efn4G0vsy6iydq68O4YaGGQ6UIG+SIZ15OVISLIyXpE/MVn57dNRcRJwvn2sJoNI0e2DBb0AiKgrwzL4of/UuKpnY6LB+mOy+SGrAeNL06g2WJ4Bl2yAsiHeSvBwSpLmozATlCdo2+V9u0SpAqtqD+ER4kt1R0m3jgjtTm0gIXhfpHUOfKGNFzrvic5ZcDCqTHnat2AZ7ggxJcQHnru7RpPFBI4U6x75QaaH5zC3AvEG5oqlPdLqSZmEdB0by9LLfmCeplKX37Xg3YC9zidyLk15FKYVCNYsOIoDl1iWcvawYksaJuVP4a1AOZK2jgjGulrqEmaSdo17C3ZUu//veeV1zCOlnllRXpbGwItP8cTcOXBUpNTFXJl4KRZ+kelgDX8HPuL3KHXUXa7pqtWFKMgfn2qwSO5Wcf6f1wRMI/JUhK8Yx5ka/uAFoItgMhA4U+z+ot5rTqE8O83E6BkAWgDHRVEfR6fFj4ihtJf1j1LP412o1t2lLzOc2D70iIG28TXH9GxDQCnEZcQTpIOOZ6RS5IisLWPA3BkrghiFlF5m2ETjv5ZFb/gAe469GsNd3Qqa9hYrIyS3XoiIrx7pmD3gnAbhKcrsx0VrTrOhseK9iAZvKhvne9eTR7QeLRQx6DfXXGeGC3Ol2QSfF1/kUfWSuNAJwjgbj07V7PKrt08/HqwzI97KoYFshwjaxgFBaOeW1DYQkz3b5PG3zF0FlAOqKtHclAg2MJp4/PtfI2YBAdmg6gzevgWj/lwRWFdXS8GNf08BHyoiIEebyXLaL53i2mOwVJOB+tdwwtq2kv+W9GGxczmj5YQRBNdbnRCtQi0Yjs7ndakuOtMpbkuMCvNShfMsocCWLBEhIl5j5gMRBhdPgysmtYEQyJkOlMFes5YK4Umgy7ccsUXGXEX9V73aIrPZe6etNYsPWikSL9c69k2C1tu/M6CbS3UdTUcWpnWSFVTyBsDIguYb7YNe2hCCUKmMwdpAMc/DuMmWVD/5h3dLOCttWFFs+9WuXuARh2AKa/9GRjbZa8X3UqthBAHuVThRlkcX4Z7HTLECuEhJgnoqKR+D4EO8kAibwsfjhvMmQ1EAwgRqcKjL48pNw1V49uDK/+dNGRucpxdMdbiz660t0ZpirdQaCoM8kDl7cEO66+27/5OHcyWg1BiNbDQ8M8HNEA7LKoT1oZ4BJDXhZGtBmPzJYCsY0kxTZkWrwWm8JKpeT4J1BiPlZdQ++uaCiZas0Rk9zrNo3xsdPfEI5qL3/E0f/OUm2HrZW0WFNay4Dwxh/sNEcGkw57MvvPUwu+3y289W9S/DASWX9081HOGuTmEb1QspkvRy6cTornefmqNJvh82JtcRdwcUBI/wptlxbk2pJttgx7AHejvzPOgnkhqFNnii+wQ2CeNhlafKGLIIusYkGuXR6xaBGBcKD98zdE3c7ByfqMxdPqe4mZ/06mb/79y7lkrsT8rE3AHWdVCf0siZWAwZFWv5k6+L/Va27qIGvZaBHtHYrcER1FkEesWNAOeqUyulgH1xD/P5YRIY5Xn9H7c85awS4FVGhRrNTrJ07iaE+Xb8cw20u4pP/6XMNH97DrgscJIACVpWTOztdyFaZtnmptTYxq9DxiDAadJ8RIBMcESFzQ5+I0bubGZ9AsqWpJ9udDngIkQHiWnCtCaxIVk4SeDLvu4NISyQU0dgHvWHKP9EWaPhrt4tB7UVA9GaosNlfCRdLL+dkBtnVKk0PIexGK1IuVjPiGbtoFJJewJ8rFzLdtGghmbUA1YhMeG2xAqSnKQnHFOIODBsjWltm1BB8VW/2u58q7ff5pvnxXnnl2sUyRYkcqp4b19qmaKK91DLfGsTr50bhKacWhEJQ37DTUEnfXCnmC7YiEgc3mU3qgrnEVqtV7iw4ppVGwgRA5RF1WyBDCPY84d71Gso1quneA2SAVXtnHDZ/HL/Cditqi/LldSv2Cz6V4bjk4p0M3ESSFIm3QaOK2/IXDx/XSp3d2G5j/RG0Czm5odXlsFs382pBSK9wR7zuYpVuHaeQyqywBxD7HcJTIYT7Iugb/KTQSzN7F0b1JiTBhTpgonqhom0mB0S7GFkNjMs0n7BFgUZEXWbriTfk8Ahb3g959+A6iEZ9Doq9mq4ynpyrKMT7lUmh0xTnEZR8l+5Cl5343jHzVcruLrrOWcoaliTb9hWMsXamyreWa24X0BAvuKzZWrqLX4LlNwi/hmxkqCuGLoaFFRqI9q57Af0Dh8dmfUtvc9eQ5jD74wQVG4icD7A7hIcBbBP4UrUsE/3cZfaCmfHFCaxzehjIDv9Cts1kNlxUja3Z5ps7qSHifil5YF7YVUpF+AtJJxoVwsciDyJ4ckGvu3Tq20/vV9iJNdfM1XYHWQXJfrAAXXMIwLKfZHAFDcA5jFQLhrABjud7fbBpa7ptF2KVeFkDwcS0jZRp8eR28LA/ROhmg5zPowujlcWTjwzUhWP33/6riyjPLGcImOgY6p9JDp0+cd0uHhq3hjL7VEsJFMTZEACdT2csM6vKnimGxfOvM66RQy6rjBy6onei/zVdXmnFMDsiw0vvPoPJ2APoE7FMKNeam6qTfv9wLh2z6G7rcNqyfJQveFb67A/MBYUP2D9JagEiptWQNg0Q40W2mk9y3SZxbmAjXoCuyZmVZsir+tKudmeuPwoc3N3Zi6Yf5yIBdXjoWnXvMvoG8l6zAIYwub7TnhLLwK6cRlPz0Eg+0hBLDDw4LJ4nqBtF2967+GtEyVH2tDDVskrpXb9WJnmcOXDrkihhbd+DEJrOLN93YM2LZelVE89xKB8mHGipaGt9T8udz7Wq9iPiXQLDM2RRMlvgeH4CpzkvJYHu336wOFVl1a3Dt+BFbFLKRbrTPnGrHg2HYOJDYr8fuoO+8DhdlmpOJrha6vzS2tgj/SXcplGCjChmDaLjA/cFc5iVQs2RdcqySocodgmgzu2zqNsz9Igs34Zmnh1A43nIoNBmq38a8AEO3jI7uKpwGQmsxlbHMNEd0/d10WbQqN7wYIo/yHmeGDqat3NpiccPKVdTTLOvtby5i27zOomg+BHFs1QuN99GKES8QpZkazxPIqKsIpz4+bhl/zeGVPakB5rCCG2npd7YpBPqoSwBuO/lSpStpuOAl1wS3ege0jlYcyD+fdoEdUIyGbrroff4KMtkpOz7GUOHA7QPzdgEQun4qRkGYEeCvp3Fyi8KNInA2spo41XGRZgf7ILWTWJCdiEcBvhBe+rYzd8ao7PqAqTfRdFXuEdEOP5ICw12NaTRyt7iATRU=
Variant 2
DifficultyLevel
587
Question
Chris, Liam and Luke are walking in a 3 person charity relay.
Chris completes one-fifth of the total distance and Liam completes one-quarter.
What fraction of the total distance is left for Luke to walk?
Worked Solution
|
|
Fraction completed |
= 51+41 |
|
= 204+205 |
|
= 209 |
|
|
Fraction left |
= 1 − 209 |
|
= 2011 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
name2 | |
name3 | |
activity | walking in a 3 person charity relay |
frac1 | completes one-fifth of the total distance |
frac2 | Liam completes one-quarter |
frac3 | total distance is left for Luke to walk |
working1 | $\dfrac{1}{5} + \dfrac{1}{4}$ |
working2 | $\dfrac{4}{20} + \dfrac{5}{20}$ |
frac4 | |
correctAnswer | |
Answers
U2FsdGVkX18/dRpV+tTEFOvLQ9s7BPpzc5ABAnjV/KjdzarJJQVWAHJBBeYpTZAVobn3th+WCXRLdbI8hEGlTnJ0JP74T32TcnThs5QH+Yh24aJEsOUnQA+EwEWzh1H+TyotWxn7Ke0+AT5SyVmXE+/s4u6tDd4aBIJsG1R7t8dXOVvPM1JnFWOKrJcZYOsLFzviU+odsApFR39bQ7iV961POp1uFK2hRxJvIZgDeKeCSHIcXHAsINfvIF9shtcmvircYZwAr/8uO6mpFkRETegP1VMqO5L5ai1eUA+/ub33FAE5PbKgc8b6PPEc2F7seF34a5j1FVrfx/N3RjQBs3E48O3kCUYlR41calM0hm+wpbvhfgEnvdlv7p2OQt4cJxDnUVWA3enzW2MitSl6Wg3rA7ZManZZkVd9GiJozB1uj6UhMc/E61UflQiUPWl75VMgTdiNT+9X1A5P704gz4AVAQsbkf7BJXO1tCmBkco446J0DTWNX+leDCJCzNXKVdVS9yFx3nmODZL60DrsJlqzvGRvOOlw8QPR1a4Hm3ZCyrKsHRg69xUu/nEu7sZj5FwCSDDnQ75gnfq8PFko8vq9ivkmGde/ABazSTPWswTqdh3dfpRwgRU+ybe7+RqvsAbB8KBxb4pALy9abQJkxUbdtUMLJ3jVZDgCKXG99+OaCy6tXz5iEyw8a7adwQTF2rpv7i31CC+0oxdDZrtf6SKPj6ObU1V0REZ51F1SGcDBeOVh7fOCR/jOLTmrZ1KuBXl9bRJgbpDF6+3A2h2k0FRl4zkJwY+Dpjlr1JjYb0iEip9nItW3FNG8V7mE9Es82dG3+YPxrTCnVryLrv2Q4IUrKn7opq2RUOOs0BrBqMIN34j4cwekvtPBkL44sHuu/yeFjnkV2K1rxyRKRa8B43bK/qRzFsA6Bs9I0F0ZyG2EM6YdIX8n++BmLHgsL/vU5jp+0LO4U3aNhbQxSEJolceAJUlPDlx1YtDGy5349BKbP+jqeRb0aF52vZG9yxqXsqMnsisZQ4FtMDY8pXlGFMiJA9kyHgKlGjeAFXTlZymJDN6TVcAlRPnn6qQn8URaR/WwvMd8o4+DsTfs6rCg+SDN007e/l2hcUa5BgMNgk9LiHgQwwiYtcZiG0JAqIXH+gLBdQmhGvQWbqNbOcER6zo+oeahKHV/rsW659pkSyakq9MXsSat9AB9flWgIOaZMy6sMRub9nas7e9s7dkOc7LxFYzWajHidcYfP1KMUYiBkVVO4aH/i1ehJEy+HZaQt+OahR5dx5+EpouQnRoJ+6rbbHtKGMvUOlxdEPPG9Snx1Iu2DA6ATKBm1MSkU4zX9ZMDn77iMdbsQmWYUrzhggms0SbtVz7JaF9jwODjjOSqP8tV7yEpvJ1tsZb5h9iypS1tQFi0TvtTw5usBDBbkK5aUKF8eGRYc2N0Ly1d0mNC0iXmHQ7EZTbtuzmeuQCnnhd6vB00czEKCH/vYCSn06HJEMbRdo0oOZb8JlZRWH9hB5sLb7dYvOyQU0jCJPHoiXdeJZngUJdlLz5qPdslPd2QNkPwe0okgIXhnRPZrfBKqNDagjLxpsdwENdR7LGvaj5ZiHsjvFmWBWBJh4aU98iagt19bq8IyzQloM26ZccV3P58eC9am6gjmC5WD+5ZH5WXA7WhDFCrzHE0lb/1tOdQtqIXYanceBWjiWpLrX/fFLoXy4W9ZR6Iw1Lut4a91t1dsx+OAUlg0hBdIIECgF/naeligIRo25TTAb2p7HMGqw67dL8XcsPwFqfE3O7mdBjF6jQMFZFcGzHseFWLmsd/C3oy8eX66g8CHO4u7+VeFXzV+zYPVVutwSH56eUFITq8bQZPLZT3VPT2r88uyl9WGjIt0Qb9W532IF+hl1O88qoHHSRPbOjAUesp2V5t0zw+2/AWk4haa1b//6PhvQ0lirCfViRBX/yrvF6fAhYdusO0aKqyHTva3OGRJb6dw243IHXtmN969gGfDS0oQi1S3GV4JbDZJTFhSeUvmFzuRP+GgGrgcFo/TeVTj8r3I4mYQzxxVE2J1LOmmXA6XC6Eyo6JgwjUxkdDZvDahOlCcuL8bzgPaPeE/jP0ZfFrEZqJ0mSd4FKI+M3WjVahxXmpYb+0IUuSyvUAi3hjJruX0Sq8LUq9My/emR1cBJXuA3YdARrAdO6NQu1p5vOQdkNVCSAnmu352hTDDNAHLSZNdCrosBGG7hp/DEXVhA2197fN6ft9evHNlCrD7eQTL8eeD/e+R9xlPA0bci4DnN0B90lyXD0bUfJXMNgS6drq2tJ3V8eS7uNj9C5DMpSIdrJMyRPr+bhEqSRm5L1WbgLrqHwOgOMBU89r1sswHsKdXvhnmoHCU1NJhmXkJqFWVkRtPdzqc79ceC2IpeucTMu83yZJjuGkYxs6X5KZ8HuQBw8FIukEWw77dBb2rH9iw16RotBqPw1mNxFh3xc95cTNKeX4QRaqrNTSuuIAiwlPUAhu9rMA7q6J8btD3YH64iMYffY+M3msIl3AtYrSfBvRH04CJIlftsdps5ShIxG97mQ/JKuxEXVgsx3LZiIl9AxrsY6avDfvr/cB7kkVShqj1S5tudh5XUDzCHGJlcX8JmKurmz1MBzbEpAUZtHn7/kT8YQpcSS4LZqr6PtDZ3LLUst1h6xgdAjl2+Ect6aUBDoAHl04haEWyGCu4oHwwqd3fnvkmWHQv30ZCKdfjAshxajAt1Yk+W1MRVkhTJiRcnGTaRSNIR1DU1T3Z63UwXrc/JzN4Bu2xWrJ78qlHMOyTgAfR5IRdXZZL9dmqVmnu+mv7Ts4vulBvJaf31LcGOCmamOGvyViWXRXujxFkuJucmVFoRnrgNVzMrejiFZTzKDzl9N5E/uzfr9IUQIgfA52jiZvXc7D824iGBJ7Bgg5Dvk8XcKlMf2U1usZjKXtmoGPYZ4HB45BnRGUoek9uO2WUJvbZgHc1d5HKVkjBUth4deBpHYTIqKLjWBeqYyxNKrKc+FVFJ7TyLpCOmVM/XhF/DdsWBjiKVHqHkN1XBuOY3zVH76LDFlzdqPgytysYokM+zwcGPRjv2+HPBRn00xI2h80zkG/rg4SEKtU53DCpjHfy1rPTXgoreTj6wxm7bQr6ocy1oIWWoWD+xNSfkglJ/uOfWMxQ9VYx9aecuKy904GX77cm8uSN8GIA86ozgU65JB0myvlKBpB0YiUO9VOecDqBpPSwGH1PfiI671FHiTcnfswlqLvaCzaEbDY5ngBBEJOCiR4tYyQoSpQEPltNgp4rB3EO24p8pLI2Tx2i7MMla8xA+z+Yn8Z1NTrcqYECqAJmK4eMdoE675kgK3BY5UpYoLNEi2phquI72qZSXJhw8Wp99MVd9b7Os/qogpfQXiFYz1qkngCtOUmdfJxHt6IT41BmnB7Bi83zeSaXu+8a+uvKqPeueobP73Z6l3UsswgnkzdWru6FxPSqHpq8ndoFfwOIWjEldi9sl/9r22/hWvTjfZBwwLFnnEmJzLPR8tzIfpRMN1t+LUzpKHEeaUWuo+Ly6Sg/PxbTeP5ss/GC759LsFzwsDX+Mqo5EqwnU8W41Z8Dc6p4Sg9VfgF6i8/BMOt+d7R3W9xfd1BNU7wVTIn0oFAWCshe+i3YPHJh0vQS6JuCs9ydJ/EFDN3WM5Ek+sjAeGJsi5rL4kqQG7bf8SZHwtnnF96e36+GoLhu/7GCzXmgOn/+XmWjFsGhW63LhmVs58fve2x/eiAKn6UYWNWWa42ScELphqWzrDQ+hPYkJiMK2gY5dU6jkj6OwIoJCm2pNbnp4RLfBIPs/V17wAk7wdKY7xdH8lKIbjfcOHD9irhqLHsi0RE2vFO5U8LWDjqkuqLcZF9TT47RZkLB8uT0TB81kA7vJ9CDN4ARkrnSgp0stoUJxcPE/3imFI+zhftUtsPWLuFMBgu/0I08AlDUM1vA7aSKknoutEWM1UdVDs1s/FVNaKToneksFXzYISkAst81vk4Kxt4T5fZf9TEeqN71pFs1+2ZIMLFzLwGuGLB0oYDI58qrntu/ysW2INpXSnrIFHUranzH7xShb4x50AZADOMkEiQPWhTtnyTVW8KtmFAaeNm9w55KHWwyMhSFXTbCQWQdzRNpDm0Jc1oT8IWh5g4uGzlSk0EyYRJFu5P7sJxyKyAdSxSGxY3PHhtgjsfdzTp3xMlf8f9WkhZj5/q1O05oihxH+PM/0iG6l8LbEN0ox2ayvmLrh6phsjFh+lbTvZmF8fbkdzZYqNa8sAIJb0rkt3Tls81yR+CgCJZZTuDPQCA5pI9zpjOHfS1tOp4hqnX7By0qWx4CeFShxXGy0YKKFRoGg4ocZrJIbiGjwAAI22J8VaoupyQNMxz1XQiffeGNwGJ2QD8ZMJUfWyBi0ITHPXMGQ88ycZ/8JQp43APwKQ4WgD16hcLSJ0Q/KOSknGkEgl05EAI+JmmxQStDWmK8jwWxSI1AwYzTrLua/FLQ86uKG8Ta3FeFVjsPo21vlRZLAd7ApmItkSwwoZr0VVuDURM//CVe1fcWJ3an44auea2k7kn5iHsNqrvjOR+xHbHTOr/HSeKm47MBue6rn1sy/1VdlV9FYIZOj+mln8ITCvgxjKKSQiFuGT/TEgdZfbtJ30E2ixdoEVEjDTqjejxtCMFKKQCeUOEtq/Iz6TkAWp0i2Q5Q4gNU7+mjyXO5Vg4cp3Bb+drxQwrCGCh7DItXU1xZfAzSP9gvKyIPFQactrsI+Z3/ojA4aurdf1v5Dn/V54xPMs5JmHoxDeVAbmSaWboKA8FUHx+dnrB+glP/00S2BqJkTqy+nvUx6nYm0yIaNi3t3KNS/IeF+W+h717DWupZNytEDZi+kUjBTwz+Y649w+BR+Gb7seqy/FFS6EWzCBByss/zgb2OJoV/v9E+Ic3/1/RWJ+d7REFOfrzWnUnWNFrEUzS+jBt7s91lbJ3TpHL662NSdLFdinRfyRb/6FCjRJo/ACuaPvCeEs69Q9pG1Bm6Y7ubqkttimrRcBiJC4t0TNNWnTmufAfooW2U6dYEdxZSBWZ7zC/QNzqJUHSQaF3ZdSWFDT1ln4XxMenlR6otPEdtZz4Fo47IvFElajuPmF1Mkp5HtG2kdzwXryg4kSpaZLeqS5Vv1Z4qsfxAdo5nKhqb+LAF6ibrzKvTjRBt0LCjlV9qDHVOavm2uiv8PZ0uAly8eCa7fO5Yxtp1IGEZTLyCsg9Nq5hcni51rsQzanizgBkmJLArBKF8pVfdD61A1I1i8gIZ0LQPg3Dc6mPWW1GMTQxRLH3n+U3kSQRdchob9HtAZkuFqNOmko88GkgNChFVNDlg0fjsHy171sMPZ+0F253A9FqYSNllcjVDxfwiPRvfF0S1f8DrKMXMtqHuDfodGan1V3rhISktncEtph+DN3JIbzDNx7euAEz0Y6xhK+MT+NlHwDzLiUtrM2K6HEVLOptOP48UJcke/8nA/VdGv6K/aC3Exfs4jYFBdMZtkZBpNqJ3IPqrP2+91BlMGy2EkOz1LGp1MwTb1H3VBe2TmL0TwBt8h+FpprD6qBpJm8gFjMghSyaa1UuK5fKfqosXAjIRr4f+urq2IrJECusuxBNkqfC4Fo1LZdTux5hCDyRCityQdcOCJPdQWJxFS0W7kLIB91qGGkDhp9FYHWl+ljzYeokUvdo9hRqlhQ/6MoMpOaHfR0Ivgo/I/khU2meG3Z9sqxmNkuLSayaX9GgDANIs2nXmnkMELQYp2x29hgKZeDJw6RWlvMVElOPRRlgHCahX4XE6A1g5RX1VWqXfXzPEC5yUmC/dCqm3wJp5wRUyerLNnch0snP2GURHAWagPCGJuivPLTVAEdlMXMcrhRz4pSCZxT2bxzHFj2d3t1MhxKypKN7ASy7wdtsTCOhOd0qVI7h/+7elnOsRF53k/nsgbTJrS06a/FrVRBk/dH+A4oZ1Lk8Fqu1ty/J6vW3uEAoUhWFZD5+eqmg6SxUjmMz9Xn1CA4+r3hderhQlbaShplTpsRce7I2eofzH4rlGiU56OtuWcMoELfEJOqw+G1MYU44EJPi/omtkhEOKiHNR3RUTdX1Jesg1YRu+PZKyn6Zti/kd6QaT405XSMdPIDxoLhZuG8AMzM/GkDX/zmdmuU+NiDCg5JvYMJ68/77Ikhs1C0O9M7k1mLskP7QoaGgywZ91o5L9SKG9GcWJUebMAvIL3HEff6fcca4LICCG30xhXzA41JBOUL68FZuuAeormrMqhMf+q3jjFqJEP++exx0FbWowaS0DCv6MvVJkIfN4sdAkCidHAsVzxfv8EyewTwYqRdTUzqr64bJCHX6057Yve4sznRDH6ZDcD1oJx+1J/Otaoc5xNETcjSyRyRpa8Gdg9r6sACLBe7x3OLq+l2XS5aQgAHj/gtsJGPCwNBxVFUTKSOdYG3nB6RS4gBAB5Kca67msIG1Fb+2dxOsgWUKmXDmFfo3qnCYIfBsUgUMGN/QrknEEuAe2+AgBY5lRBIRiJAXI4HS4TW6lhUSXVVpr82/HVBVa5qYlZgetIHYhjQhW6U/WLL7QvnK1rQReg6p4EqNPovfvNs1/slE7Yt2o0we+Okgx7VZUavEyJwfMG6MJejxOli9hFH2HazU/IoN2ZvaVHx2bxpQjnfLDWme90yyvsS77eflJToRq7h9hD2WwsE9G4ikSNvuRKZ6o3QZgMQ0eb/yvUCP7M2Np2W2xz2jJ1SaWBcXsedX5BpSftJjJhAFosFMRtnyjcGGFRo0WUZ6TXq+Nm3hKAqL1F7H5gVZdpa7jhphfgibXyTbUaHd1jTPoe2ru1V/1qJo0yycB0bUAUGOvq1Toagm+e3gJRyWr5CyilLIrWdMXTM2u6joCMzYL0QVV6r/oHkfHAoSrSQKCIaQFcLBjcjJlCatTG4pG2wDDCCN3yMgOb4zXO1ACBqXqQH6zk9FsMiksXEwMisepdcQ1v19Sjm6SVkGEmuHb4yEz1QoeIzlkxrncoEx5IPsjAlgc7Y2qYKjpclKhOGtyc5Yow1w4aWIIAYv+zoZ0B67bYkP7FND9cGtoIOTDVZ4CmwdUfzXM0Ygj3YQ7dH9eT8cESzgMzShxFOyDyM1THkX+4LuKtM1VIVDXAUPRTmrbTEYVO8DHWaQ/rtHDF6m8ZwajjlgNp7SRRNerthv6EtSJ7hiwHea7FD01wj49zark61X7CY/5V2qQT/UEb9BUf+9RQU+QlhCpgYLSywf6hOIPJBs6B200nec3hTvqy9Lcvu51GCmOWBZcoelKclEiURBYgLvmzs9HzNsTbRlK8uPQdtLMkOiw14Cx6Kt0FtX/gZbSqteWhkog7EmrBgCRUAUZWelrdI500SkOlYVUE3UY9pSIL3oxug7VaAgJ1CxBKGLXBORgDvIFulAzAoYoitaOB8oCd1Cy2W/NHKBL7fA+5ODns4Byd9UQFL00KbLHy227j+y9GdAeKjJqGMDdrkHk0QuZ+HKM0k4QNz1tF6ofiUSJnseZA/iRbaGRv6oGuLEa/Q0JC7iXr9O2Z37Z7sqMIrESB2LGOLWXwiqtsUuCby/iByzJ4Phn++j/pL2ZgMdWhvdaf8agiAICHdHVENRFWPxoupl65THf8kPO05s5tmtk828iqoIpfn+DlH5zgYVwkFxzJ41HBHo55YfQhWAgSxUj1aSGcjIeXK/p/LWLbdi1nmPwc7aQRXLfusCnflSpjazCAcZ7lbgcr9KloC6Kbs95aAAiJorBHoSZJw4G2I5JJLZboX/y96EhoGATkbuPLQhUIj6bz73eu1SFZ4xlpuX/sNkk2P/Hr9GfWKD3sTi1aDXc1ZU5O8rK224ugyTzjxB+BAZkeWvH2+OfGCbYIJPnwmBW7vdvr7nfESK0QqU4h65z0mBrU0CVLvJTcApjtyXUeJvfpB09AKOaTfm5AB054e179Hg+C/Xhii+xEEofQQilT/vSRCs7tLIBpIajQE+a2a+xlvOitePvrG/gafdcxcpnv7TmDu1l7c9IKjezkqP0ysxfJMKV7XvYiFprNqIXZPnR/x+VjQG+Kp2v0oNyQNZysbVTduSEGwdK590+5dxDfrIiHlfg3f7F9xupzoWH2/dyZxBbVwBtDAkgU0MsscnBJ89lkZ6zK9mb6S+YE7TLR9rFK+DyxZH8IcgOUmpoufNwtpe5paT+X/AzPoreA+nHP0NXchY5PhBW1wKYLRzVHmXltP9T6MGpN6BpTlvO+aS2XBykpBSzfCD++stp/+N33crxDoeGfGbS7Vp98zrN60NQbGtKcY0kXVLaZkpixQYd0F3Cg8Rers15J6TfPMVENCRPx9AmRClWk8MeP6bIpahBoa5V0efwmh1l5DapgYkZ6bkEOZbudGnyQa25JoxqxSUroka6Zy3cURckNzqMJ5sdcPObZDHpwXTPTEGoX1KbWyM0hPBz9lPNFMb9heS+Fx1JlvuUtfBGGYczFP4TTOlAgSKmhM9GDG3Hp69tSWmqHMjSB/CoXnSEtQVJyKulx/Uw4+oEgrLjYWK/mqAkCZHzg9RXPKmb18oGKcCeRze7FfGNDCN3DPB1phCFgOo/pU2QWNw0+AGWnpG2VxmXcV4whBn4I8y3gcJGKuCDLQjAEmHSYC8/1zNNmv/s1Kov/PHjsofNCIulRjw2myjqccECRS/dDhQ2FLTrfYJWf/sLf5WBabqQDFc4MewkEtiMLGuP3/T4YU6mFx6/Uhi/Z8B6LWVuy4huklXVxHjxwtOD/B7NOr/DdnUd+A83Iz6Sq98/P3+8Mp157t8B6N2rZkm/rojm3TTNKq06Ev/svGLh1Tnc03Gl8rFCmbXKRpCfcNieIe0kwroQIG/h608HVNoARJu+TcNYAWgvrldAcHC7HkQ6oTd61AhqU4dsFWtTdo0adb/sNWD6Wzsy+GuRvusumEld2b9BL/Cl5DsoacsUWqo5zEoT2zVQO7G3N2CeYCBknuIJCs5Vc/wrrNvCfnHjpL3Cfi6ckydjnvJUpP6SvTh6JcSsnwyTVWu3amMA+qyrk55N5Op+mwTwC9guBjDCGkADxaEu8QEOe2q0kI7sEJpC5gBFiBCgCLfYMGyEX1H2vkCqiCDR0gDxnsbktZwpKrm/chRW4moAduMdd5j2e2AM47iCKdppZOzo2Yi8HfM3uvznjV8oePPR89kUwBdymHdPvkksd83TkCVIkiF9qMu4+0LSkysrqwIgITaqKEEk5qRix4AwS+nt2ypL0EMVP1/6f/WbEwuosglWb3fYqQHuHpLFWkm14pcsskfa1tdHaTFGkLZZQ/dTCc/tJ2xHdC0CLpXLVhiMl3aknxiqnrydSHwga698/QOo9ixe6WDr4c9qvMP4Hwa0p+qPh86bPp6nNeHz8/TOERwTmIF0ic/Zrk1UXTGvSFM7r4MmroEAs0DGgGr3PSjWdzeN0EiQZLMwodg+kfbWsvVGwqFCe6roRonBdriSzHRUJVa/1ta59k0DqccAPGOsmp9oe6L0VQR8INE6ZvPUac8uJTN6+oeDxKXbvx342XG8DO+EYPhiZpRdmb+CApZFaVSsy2vQUykauF3opGKBooe6mle8aF+r8K+AOgVhlGvsjv/25dAD8ccVRO2t+PrUQ9cXgchV7OShQuFUVepGghyF9WDfGxpQhhpUXpyWGmwpRMSJ9uR2ChQSnWk8EFzCF0lLubvtqHGVYU2uuXfRVi8/n+XLRVJx49IcWxl+qCluKOSATcr0nWd6ARSAnXyI4kGfNNUnSqMZXvPwzVh30j7aHurvJSzE5HwsXg9UfuuO3NKdCtaGBcBxnLZXUCS+kpaGKSx70TwqfELW0naDUwvVGeT/9wAw2//Znx4DYUCgYbLq1rwx7T7xIunTOpXni/xAgCpXG1bsjKt/IMJdSo1Lw3YAvfI6TJO4PHkSV7pMvU7yHSPRK0Jwd/T590VTHqEXgfL+7aLS+i1CcdQcUf9dfUp2GzA30ejXLJBHz75cvyR3Z7QD87Tknml6aJOauN1ZJlNhRrfICKPdF9U/hx430ZDB+e6fqj6CW9L1VY8YZVoeZ+C23H6BdjO84Ewf4PQwWMiA0MYaEnQ35iUNNZ9wGQOtCU69NEDutlaa7KCAEKXqeMsxHAUN4KaZjkWVeiX8fIwkn1kW6Ha2kuHi7Tv7iezkOypwbhCc/TSQH5YN9e6U2Yft7idk6UtyBNv0+uKZ1jFryRXnti0q352xchOztl/eW0iotUYynFGpiQnYP0MX0K7s0cPLK0k6cYIt3QCGcGnGO19M+du/7qpBVx04PGtPGkDd1Uoe7ZtnOwuZ14lCep9i5YgNMRsHJMOfff4jjvYJydNl/i+h/MCjp9pR6jhDSNSSr/ZrmKvm1bLEB5yZOoWA1O/KSY1jVWfH9vicoxgBAI1KXbJFabbxB90KLMORRh002T65RUzb5+QHIWeEsry+qBW9p8KgOb12p9YnSU48Wg3J+KrWFr8Gy0kgIThxKKJc4SMQNpfXPg7fMKRjAwXg8tMVQhwJAX7orrV95f+AMm2y7LpHrVJ3X2u4WmDdgROgtWerEIG9wXLjvImg6K0mRXU8HWKglZvNYV8RScIjlM9UpoctrjSgK28F5ArFCAU/BtLXULF2d3FkwPwwZX07RP3Ch49f8B7j7KdClaxRDC21BcYYxL3IY9QoicF6ddgb2sqa7llzbcMVlxBHzOy25bQUhQc2X4nyxyVicdzc71v2MXtxXe46YW7pWp/e5R0gv+2lnZSswVtHgfjY/WIbM0U3ZAzhnP0xrAIcGbK+5A8rhI9xtY0CaAXRrvMJmRCVJAhxZwdWkz+ymuUty0WSgE7Tv3Qit+aUzhj4+w/wDq4GEh3GFuEd+7o9cPe7tQJQ4YU7Ot8+cptENqGBMOFwuA0qE2vRkBZCa119JiUvpk5neKvFpUOFSGCZjncXwPoiwaZ86aVLMbbMPE+2mZS2Vi9JLHpj6fie6N8Bac0klznT2vk5/3/TX4eddDoxXvCKeQT8hdOE/UUR1E6lHKVy/6jKE/J3MNUJysm3izA+Ax8bURjArSVcv+QcBIOj/Sb32HH8DDyMNgzLXjJiw3aw6Lryr7o4GnoM5CaM92hasmwgeXU6cIOTjTbyk7aq48toHiM6rUFkK/BxgFgI+eh2Jd+uWcI5I6Zvbn6YPgADBMxmRgnK1nZRAszAU6wjxwCOE8nBvdHpHi8IU6a9o0f2ASiBMDuJLDMScuQ8Fm6hZJ4HY4lnQbLzAHZuFjWRkpev5O2ETIwBFSfIj6yOLUrYbTO+8CyPkV440eA9t2saGdC0wIN1melN3voi4KLmBIbsqzHucGbfPcyswoVI/W2mInUJEtaLLOqX1gcqu0hETX+/Dk1+6KSqTXc5xLJyqiRNLPO121D5ZK1biB4QGgw/s/+j0zeq+BE65NRVnDpYqeUkKosY0AcQAts6/pPL8hLYoo9ftN/ufi+9009t/ZB3gqEJpSpXD+VDtw6Z5vxt4cOVnz7odMXfW8Xa1KiA9iW9WSOI1ABIyZS0CxHGFY2WFjjWSsqOeHj25TYvM4MvMfYHleRAezrnhrCrpUKwqDQBP0fcqgX6K5lt1P4OlEJL+btKVZQF8roTXWwf/2lMz3VEN3xVMK8RFTGwdL8jZhQnOrqNIcW5D/GxxsNl9AGy2d5uCfY5sV98YbfS1efbJ26OMPIKh5P5HQLhxPmqGb8W/F+slfLr4ea9CimSDn3GTo3meYCC09q30Jn5e4B3xJXIVYc5NhaSu9Lp2Lto0Qrkiz62ZokNK18jeozg7o/eklaP3glrkbvNem4W+PweONUQhFWrn6sHRlcqsBSZFpwnJq2M67u/WypN5OgN73xL2Db29pvIoqExkOTg7PMUzNbFzDVW/Uv3ALluyDFbkEmE67st+Rr0sYEQAj9iXbNYfCEd4hyFL3GZ9zKht9lVXWe+ucSwh5IlPHW3gWHawEpYqEAHcqBmk3pbwwjDAACXcmXrs7jPZ2Vz+sFlNCOACmBoeQtENPHySetgvcFOtx2/0yb1eJyXEqwb8E0Jk3sKxMaRb+PZ0UpuJ0rcwvmEKxqMK+Xkbnu59QF6x+PN+ypBme2Si4FA59y1tbBhcHnmYzKlrerrr+ezFAlUIVqJ7L9fnjVd3ZrInqbaPOCQ8sTtsIpnoyUshqjldiLJgy8pmw1MwbLPUIaufKkW3jnCM//UvBaYMRqlA5GD/dF+J0YluAfXMyIbuqWu9EfUZQ3S82+SJVVv7fCGBp4rYpbkYv06mEAyIZ/wp00BZbCOMejqpS8rV6zaPpoRLHgJYbaWYG/BoATovXa1htdvLrI/OyDN4sbqfkiA2ye/FeYrVfCyZ0FXVY4YqzgKNLibdthnY+5/8t9iJJkEdgDmyig1o3+UILgMrs5tVxq/eux1x5DZZ4qzfCHJrv9F5L9NXfqy1egF04nKRvRf6NUwh4YdFprmUXg7F/6YBFGxmcs947nNWsje4fyZlYA8tFGwJj5hGHhMDcwd0oTranoMFEZ0fQeR7OLP4pUOeg/gAksEIqdeW9xX8pv8iNLxekefJZs4n6E+aLxvZvqy4o30/2YZ6RY0bGhT8e3hYEtzkd4DQq6F3GWjkjH4fCiYzuG7wwq2Snw8+JKa7w6ofJ0vwK495VNhA74iAoy5KCayV/mwRYvY+2AX+d1VrfUttTvy9dGyyTMt6M6uS52yhvcPF2Y6EFksf+zI4VppJsUOIGTA2JIenP0EOTe+qPKNKT5ka4PV9+TSU+kSmnMDCaimvP2kb8WEjwGjQ7hx4ys6Wc7WCJKiRtPph50tUisouGCmCBX4i26YIhOgu+DWIXp/C0r3si5xZcfOXzhGJLiGPQQsUVWJbUS9XT7BHOmGycJ7EfCTROk9QEb4OdP3Gz6WARZp5qIaeT5Bd3laB58bFlaNU8ryugo1GmLglQlWyOF7aWgjoyvD8rkfA+pClfasy0kYStVRvaz0Bzrb5l9taqGjdZWMsWMDMjiyQxGnl87h5k2l//i4msqg3doi+ehyuLwoHvAOdPYFMoL+MBFx8qND7rccEj4qr/sUStDp2s3vlaiegnsV+jsThVUpOCsJ9198HfnqfPIgwCxmBqIx4bY2OvLSebYTzvvGcSKXStP+KZNAiMW8YrEfqeO0L4DT58UQgApUpC5TWHp24z0RPkewsjHLkxX2MTGVvujTIivjd337RS0Bqshd/FZo9o5bFp7tbWsXVf3qFMPXpGkkUqg1Lg6zt6Hl+hx8v7mN+rdbBBHY1L12VfnDjNLMBG0u2hbTu8TzWxooeAy+KvRlZrzXgw9EnBBfZP8uISdqAh0Z9s0fShQjy8JRbFHAQ5KYtjeBVzAcH7S6+qhe/L5ET0YooXagDSUHrsMO9xMuz4FRVVBQPGdZxxDVaBA47p50g0dB2nKE05CLDoM+8QkrdjEJuUGyFg3qaHXx/UXuYEPQnENTnfvwG8WD5FVtvKlmob4NyBhzJvFIMMOOss9YopO8aL4ZCLZQ7LBXvRqnOoPxUYAoc5ZA885NiNwyYaJuNr/Q1yx/LaPJY24bzlI+y+YOH4X1U6oWVzOpUJpdi7eo5UrCPtd5Af516MWiSHd5ocP+7ZGEJmV5mX+NxWjIewpoDrHmrZX17OLVE166aGU4+jz6osMsKQY2nEEJfoB5KhOGdSgK2l8/tkLgeXnsshHA+H9a+VbWHZgiApGwyPhYBqvRovLh23HaDjCuAMADYnfZbok+3QTZL86ROCAOCYeBjUyeUeXEc0h5WVkDAxYTW35fKtcibzbhb13Vplq1Cmj/K0rk4iXu86MncU8lASKmrtluWT8VxmeSLb0+3NPNmOo3YY8Jkg/W75L1QMx7mLrX0N6Ce76JuqrJ7lfmdt5PwzSrcEk3lPnqGGV8Qw766wC0kps9sdrCyNrYAo9d5yg1oAzkIQBtCXj1sC3BsQyBMe17533pPLbizygeCvlTXqsJGfMGUhtqUR8J/5WTNb6Yeu+j1i3LMpMid+QeqVO/uTbMEULKP0LbLmOnFKs/NiBN0TI7s1xq27dThl3nQgQG3Emwxzm0GEsYy1A7CzJR1eAx7Ssoob7+fnQ40loadvtKLfVNH9dEKs3hRCqCEP0EnVx7uxRUVbhe4EDWjTp6fwYkrNl00V5OFc4BG5+3ssFw75zDHJu/cuhCk1Pk7peIOXFYLDBKda1pvDnRUoZ9M1G/+7fMhG3HFFdRl5u9xtTQzPxfSsjcx0TzQJaTu/YkZKYU3NOVLOhwuML3r83wY/+GmXSCHNurW1YxSk5WZVjrd5wU+AF5An63A7qf2HjKmnpzJwCOGqxfmQpxcsyygw5y4C8ZMS1NX1D3ETc7v2dk8s49tlg6KsKvJ3y/j/MShfX8+k50dR8IRU7CGJErwv2I5uCYKBHorLblj/wZXYDr1S5w8u00qt/tcRUpHRC4hD91omjfk1Ua3feF7h0kDmeeZMy1Nq5fmGp+/NeFtuKtfwX8xkKsr1Q9NLNl5deJpJ1P+77qmBHgpOXzG0Dpo3OLQzWLSmjnPpbEsHRymmxgAeVCy8v+JQM0bAikCOc9Q8fyS19XxQjCSkk3IxUPklCA5Z3f93U93c3+LtiB5gvLM1r3dmOzRsswIul3iQk+gSOlAl37q5ADWsmcjgM34pwIeMiX10AUMQfnp+je3IqZ7bA4WciMRmzEP8B8TuGXXKPVOwMkmWkLNIfGbF26ZX8kVeWQy69ey0skJbH8lYAxHY56WlMmHDhEICLEmyxBUXTlTxS7ICHp1HuPMOpvI4W9PxS9fZ2YAmAowacmN7z0jcL1x7KNmA5POlTBHrHwwGtbia8Qpm+UrTNbt40LsXmyPLsobV5OWp9uxkkv07txYGZK5br7GlCS3VZyR1GRW/6Koo8TJakZk/2c3j1COZEogYk9HUa64aHq2g56kOqWFMA6e+8/OZfe8xIzNGrY9XKCgLfCeDvM8HEeHdRXL9D0aWuHgEX6gXP0GJvXsXmF7P3WfKPaSzS4cDN2CuDo8ZyUjCpEy8Ue16Z7co7lAC0pXMRf5AnjDt/Q3lrJsLvPXqv8KsOAVvgjp3kJan6gX036sUHF48EcslSWQi5HgmZo4QxuqdvGYXX3Ydbe9PewBpZaP8XypMPI4E8xnkV6Ic7PqJQZioU7urh4HkQF9HfHQFuu+SMOmAaqBdY4f0MAi1YKZR0EOqgQaN1TFNRcgZprxHB5oCrnILJO6nSLOywQeHdOS/6pt1A4P3aezWQRqoWL91Q/OAD82TfBGWHdNSZrxFtXfI0S4JCHnwNef6Vn8DZtb9HsqjFzIXgLIoWmbbJQ53ePTGd4/i9xCnRqpJgYg0yxabCYNBRYCDhWPN7mFVyMfra6A/DlrGZtHQmr4jeufGjBSig7AyGP7vTNniBNlBJ/I5OsJOnXRpalwk2GQY7SWn8Tey3scKMSJxGpBnAHBzQuhT/9LOBaEPVHI5pZTzMXMXXaJxZ904UMDa12OhiCkGazPLID93gfMGnwJ98aF1jTgEoHzUQBaZYYAczuwOSNPlqID4o1njMV3QRx4RmVGVq4CN/toozjTGY+m0s/EPYebGmQJGJYlNJeugrpE9Bhl109hLj5SHBotS7lIAQ3E/6oYNnW2BMn/DmO8PdVeatKf0AKDQb5dyNCVGJdQN/vwgdpMN3/aSSU/Wrf5pGB6i5S0OqrkgssuBUJ+PZnCQvQfLrBPGHFcAx+d8oovg5vVE987xo8lT9gnDig/itEPXzN8C5783f2X2Znngr/kaIMMYj+OWZvgOUnUz1NjeyY1IygPaUGiidgsoV3ddH6Fzog72c61/9OBGelYVcsFSTtUA50QspoHcGBx4kCwlK8ip8i5Iv8TvD52JU2Vb4YLQwRGgb+/MXYL59TKucYb7N4IIQQp4pSs7dio5z9Xhnapi0lwvjfyV/31fE0ULhEnsqxTHypKCugLXxSo+c8xTeFT2+0LoqbxoeaLN/NCvDaqXuPEEUCZF1YC2WEwg8ldDg7izxcTzT+FkvjM64i5/jmPxY/H276JVMl2RDbrF7OGLIG4zqamjuja3zwMtxfn260mTzrb0ZulkcVsA59zCYQy8PTDQAeQBWLAl1G3AqXj9BuD1X0oS+9EPF/sAZxq2hzj2CyeCtArJ7Gv3UsAHfGNBGjitDZUTB7mFemoSgqonONyzV/qWu2yjVLtCxYlQL70IkMM3wP8lg+lhkaFIIwxYsmlzmQHDYJBxQE7WXY4iN2SXTCd4BItpQDpoaguQnedfzwlp8J7ss7n5ipIe0zWkSHyT4Md3XZoXdnVUeEs3Gq5oEDu2LHr0NK+xM4XLjF0iFuqQ8W9hAi5Q9gVtSgbhbCCm/ilixVCeIlISbKO7Vy4FqDAbACKJTUI6Cn3VKjItcFIyrFF45JWR32VQobC6SPEiuoAfWYRrvq5wTy1f9rWFBIwTWTkyJCYIsWh04qXXg13jPfKVXy7j9uOrsnJXE8FJZPw70V4i5XR20ahErm/jQ2vOTzBcEOQ4xOJ14YVvaWVmhYL3dCDpg+psjzcFWk11lfRUHK7jozNUYMWlVuduVbwo2Zrblm63yrN5fSzxxlsNHvDeRt/jaVjCL52sBTUmoC9MAJU8PKxL5OPcidrP1UMVCDgHvR9OW4pZS+8evaAOTn8sfhR0DCbWuo31WgDZxAc9YdBXdveIHA0FUe1FFdPmu/9B0StlMOJpvRwli5o2FEc6UsdFAymYtl6Dzp2jBErHhP8msu9g0wKzY6LG77VKG6Rxe3YMbRfaXsmYfmoI4YTCSWrkhLEmm09r5B+ut2zQ7HMNXsZi9A2t3N5nQiXdhvbCYWrtaWdCdNGMhcCLqr3KUWIqfbFlJcNP6iRtC4J39+17TuBuExDR8cQB5IPuruOSwBlYhrGA79KT88VNzaFfV6W1juL1P+F9icfXjabUUIAz+GzpUC2gCyJ/e5TqAvNNJ/jlR+fxREP6mRIGGIEIQFa3YyTSDc+GTFvWDqohHcrLe6F2kB0GmfnojExRhDlK/x6BE5nGoqZQ1arILiURKCC6YKS5KL3E7J1yRbHugq9dOdf7izuRSxYW33quc4Yy+Cp9MsEymT8cjWyk3R23ywMpzpP42z/bH22EIG/7FRLc9WVhZsYfU5Hi/lgDVw+5tA3r28r103SqQh2QjbEMfjjpocSdy2RKkyvgJf6CKfjupAx/APCIQKZh16EFg2Jyi9uuwH42zTa/a0Y0uTXODgSYEweZc24h5ooS5L+JfY0QnHmta8onaPUK/xqsXSsC5ujaZFpUcibAvP0yOmLKXYCGlbCeK3mKU7AM4wEYQXBLU5jrUbRD/V1Xt7AX0buRxJGRBuoy+ffyF0bL1n3nO0BqoCmOVNtUthGPwki/XvVpvLhs2byYTbbxeQB04szchqTk1bEb/usAAYSqH+xB+gGWgyW0VHsMXdDWd2a9TAFR+GUdVLhgLwjFW3o0ekj6Xd962QAd1UZVJ+T/kP+ITDtJI4ROi2n9pnc/xc6peCk5fvOoN9lT6bOuK1u2V7v4DttUCjyxjh3ryI1Q5hYFslIqXBtlNwlmyzfGTz2VvpKOGZY6wyTMgMhgqgyRilbBUG6k4D14Jc6fZKLZ34gdQ32sTY/chcnGSkZF0tx5vISkM6u520seAKpvsXy1eOLNFumhUk7tL9dmox4ux05D5YP+xYQz8tFoV7isbKq+BCJmfOWOKmHFKLJzMlDLyBrKtPM3EimzsHyHSpuuRR4JEuVX3PWPqv75nena2Lrsr7lefXy7NCvAda5V5+nSDWN/m7P7n7zcrpuSHXmOWbs790ofnckD++DhVOxJmFJPhPF4ZFA/bb6Y5v6PU/R/uLBFysCm9kiI67bL34OmB8AQBDrHtaPFpTegHM2Yoane4h3lSRb5AVXxAg8u7xUO2vG/I35cg4fhxvdHJSg0H4uqn13XVHhu5w8B90S16raL3ln2Rs5Rw24g5BwUL2o0bOahY5NPE5jjIExFqxSqh4prF9wFLmQZKeK4BJZpN/lZNzJyYMf5QOuxEdxecya4LxiJW611kkFvdT6sP2c++CpV+Z4Vc2kr88KQ6bRlYGT40aB/1fvfzH7E1bXALsgHZa2cX7aHgTugj60LtU0hcVaggMCnKfx+zsoNFZ8ww0b7Ip5YRIVvRFpAwb2pmOhvf3vEVW5lQhM3erzp3qEuVOjE5Sz/itYFH/UMgRcAR3S8+tUYjuavq3FYdaxJAaFFNgJ7hle2L3M8Ysfudr63xtTIES6E1bAcruthg2AJwyrCstO5ANu6zs5gvqjZesttS5gUxxq1QWZC12mfQ+sZ/TsdiMt35FuDfb7/7+5f8fAvyhxFuHueQjVi5ZFON0htfrRxim2hd+F7P8kAk0UiUAq+iwHQPo9Zp/nCEu2BO2rvRTx2992gq04wX6gNe2nRILS9knyvbF6lmyvqJc0jPmyDb6bRbN0qWrBF6gyjA4lLTlfYTACqR5vk1NHD+wq0jPZfKElv2SJBN4HnEyT7LCO2Xz50JnNOc0Vh9Q+WIa4nUZNmygpXLbt/MlfOXjXMq39ilJII5eUO9ZdgMKqD0tufVIx1Qt9MAOzxLKYl91vhbms4Yy9HfhkPo/q1/vKGGqZkPiHje/Hjo7dE9JgJFxU5jrpfnCLISV5nVIQAbWS4xBnY7WDOu/ZeCiZ9qLpVvjDv5but2bT5m1b40U5A6Xj3EamM6uR/EX4I82ARuwMtvBdqXRWuD8/gOE1PO4n8wCQR0t6Z6VWjSqpgiHKvXykL4Kg5UdwinvdUWQB1aGXRT8eNv+ih5Jk2Z5CJH5ypOew33i1Vx/bbNMxWVGMJTfbhJmOakiIt8S1sVV1y8x9FaALvL5brDX018eM8yHzOLrFghPNFsDNF6RqLyDknO+DQjfn/1lEmt7Bh3+GymB6FF4wERWhMpdZol20efYuAGMdkTCDWorq4k8PGTmT++Efzsowzdredq34L/GAVgHZ8Fn8ztwJHuo25gPe4jDJV5675+uKQB0bBv/MSX8z2oGEnyRBgVmX+8h6/nq3BWiFMl44/eJqabj/mqF5EipaucTgGwoEB804omCDfsHb64FOySMpRamV9vC1raOn2ky3eAeduG0nosTpv/vvdo1HSMzyCjA/VhQ8vyAkfmX0n0Dnh1lae6QyHTKv90BkVGBmYkaIODGXwau+WaAxDv5g0+jfcwnmB75No58bD/a0qNjv5fpDLlWIP/vHiCSobCpvf6j4szCmTqp0u6f7RoeqNPtqVUQ6b4JMIT0xNgEwtoh4c/w2XQaHkEcPjfgFwPpKLx6yrW+ld3sGT2E1WIXlWa6u8S7o352LjqR1zz3XmLtZVKp3OTNsUVFzsuprJSkCPriWmDmMm9yHJGPq2hDCsgJ1L9Pz1GUPqyqpi6SA16MaUIPz4SkxeTcytHcZUvPLuRN2R8n8yx1up6GJpYzOr6sf/bUJDPLVgBbY3oq/5uSWbhUfdYABdO5OHS1FDWPvraiuwEKE1Uu1VOrWGeSkykZ7r8X2cOmZUhx/jxwga0BRIK4tO0EdZ1YVPiKMRQB2LzL4bN1uEErsvgIhiSKNkJxRS1Elg20osSgx5LinSkVZxBVTJhtMiKCJiUKG44kUNQqUJzTrc1M0TWpU+nkOIG1ej8Ku7vMFyh0xsWpGupSs51BFKtWafx2Z9C978QrlUJ+8BEKAcnlZAU9Uzeb7vh2RpPkkGdRZnFoWKiMyVCk3/FN2UDegZNJ74n/equbyMJtEonrf6KG8V397PJCBHzpLyjAQBmSvn6B6rRP57aBZhPGZEk20StrcU409SAS3AyD0E9SA52hy+IuyXLCxVqdY1ZupOlPGajCfWln1K4B5Q4L/0Ko1V/VR0hXH83DnSOhsemXlPQF9V5B+00nUrT+u4JG1AtHfV5T0W6V5pGlWDzhY7XfwC7j4v4kmciLvFrjGNi6F6gn+FJDr3YdnzaW7qR3plRmvdVSOjdLgI9WF1n9G+lxUK7ksGrYquyx4MV2fgKcbkPq7D1b1ZewnMEarsjjbk49zuVoAjfuc1xLSifSq9x87V78+wBPqGcSnoaHdJP5LhAOxxZcXL6nCWjFkwWp5xMXPBmb6okaA2eBPSB9BdDuxi+ypT769eQIY0/kI0vkvDVPCOQWIcpQmdXcrsCa25VTMtkO6ZQVT37yJHm2mWvOVq/H89dlyX1RS8mdtJb+A9eCATavz7AJyP1ptX8JUEiG8lM5qoxxPtbSYq34UcBeVl8WVZCJ1sOAhZSFETW3cUtwiUsiDY9IkzmkjC1BvCGvEMTCaB/EV6XIGzDy5ok8igMYb0ztzOJG7paX6CGg2CH7w13Cf9EKhV5hwBKmevttSus4Mb6pxyT0paW3kkvNePR6OF+2red/f1hN3OoTIlJEBG/3JPt81zHEQED19+m3GrKUxn200f4oeRLa6rGnot90SeC0jJH3qpUc3cQeSPUZucdQz3ibrJklDa4RthIkcBsjv8De77WcVqN2/9gU4tCquvX7wh1Vbur5sEGkc+SxHw/6CXlOKcofd6bMefx23X8U2Q25sm2hn9HInAux0gdOvw43bW9uoXtoLfGQIV9n4JJBeuQXbd7tpJ77vMBmSthhL194uxNtuZ0yDYS9OqqtzgG/dRlDdLc0LCFmXr4SloN+EZ24hs6XZEVWh/JKl7JP4IEvrGbOrMBHhZZXOjwpvB6bbm2O5urC6lVrN8FOQfifx1MbTmP7LrL3pmqG9w4vmbsWNVWQqAT2qEb6hadK568jak96dKrVt4CUEhPW9SUmw8kMcqxEiE1wsHlZ2hQtUjW4aC7fzeQdf0LRhbkevO5ZMqx6/g2YIy5b0zj9hIYq3rOhDLTf8d5ReoBhV7INGe12lAHUgfuy4zgcTh78XKD539mbHZTsIpJkLdXfNbf8wAPAtfiO4iZmmrQRSmWQNnTpIMHFQSrhWqdzqjNaOLoESH9G/1bQakRw9YfG6fnGw2ur8woYPxJ0VMeAsk5dKfnmcCbFcR+PzFCPIj36AY0+ezwSNqWa1VU5FjuvPGEQibs7NlpaTSaPDz5yTzog5ZZRu+Awj8Bbl6cA0fck6qZSXCedFYTW89g1VPLqv0AmclbvXgol3j1a0GnkZFg6TbUzMrzBchRM04qoCxEH3at9zBP7sg6V3ntCl3rlxB+69fIcHH0hcouZW6qWMhO228YL9ztsvbz+wen++p3F3MLJ3iRl217AnjN3bm10x7EyUuwrg3B5on3vk3W3qv44wi55aa6/09+eDpA7xd/kZsxTMoKfbU6cEA5kBIMbASQVtvzQ85VLn7ytqepCMUM2tD1B0vRiGfpKsOceY3E10wuq6rNmcKWGd/XV0WU6sC6gFXuXb+izlXBdbf11VYXTcugp3oAJ10JmmWh1vjWR8U4mpuEA4pKMP+dZQa/jDz9CrtIUTSSrxNMfHI4/fwp9hT+DPeiUOGuRheA5F7sTE7/8MUnjIDWDN3IdT9beyOsUggrPKCJNxtAj0J1eXs4bsVkPeT5PYo9tWcZq2YV8Ev55Khgnywk/tn/6Ixd4eo5bdaWzkcMnzoXFGNQtkvknKCIoSXEFmw8Cryr7LRLvByHUOCLZS8iDCWJMBcJ8g7K816Jg5mgpyWYznuH6+O05KStH8bVdDGy6LkOyt0An198q97n22KYICg7uiCCqqVeDSN3jSzfiBQAA+wcILuIt6agoLVjADWNhCa0BLlXO2wOWpTBkO9217QBlOHCeBPEQzg91eUZtRuzMwuqx8IXhBV/MBi6bx5Z1nOZ0yBlYbK+dCHersXv5ULfmU++5vOuP6+3aFkE01wDEpfFmEQW/SFj30U4929WfKyGdn2QZI962N7F0vuXzZq9Cry7nga4BFmvvA6bImmO/1IHExA5XOHXtIpfQ+tx5Cycov3zJlnUDP/ffhKpi1cBX2LH+FrDynWSflX8SqxAEtbgZvAbG5hnaq6qty98lWYRfHee3FB7iB9g1g1ipaSq5lIlp2+0+0MLKTE37+z7/KZHpJCi5yJkBRnYOmH3FBOkoDIMrP1J9YWFAwTSxeFE4sQmcuUI03n2Ty7I1D4R4mhgjXomNl3jzTHFLX1ejm9Mjv9tEdBqUFjbxXQMNPBe+BcDWT7xLx8gDlPhYqAcjRIhELjxG3HXyhXJv4G2gQpa9jsCIjc2GcbjCYyqn41/qu9p0h6h+EkXKb+6eqiJqFhIynkANrMov0Esec5qYiFdu8pFswqxZozxyPOsjhFKVTnH6US25gzNK8aG70vSif1382koc9lrVdJEUrYap+Uha+Ucm7Z3ZOXHKwUkgMXEEIbsCarIoOmrxk1Cw2JNFH7dmZY/RZii13iGKr4u6c060+P1SIHiZ2xQ+WTwrtr+MX2irrQlEMFnr058bIuOXI/q/lXn/oY0NIk0/rmGLbw25vJpxeEvJlQxdrBCmKfzn2z6e3dvN4GK2N47WeXjkNQpsPdNNt5BMyLtEBisiY3h3GnCtB+4aAYicMQF89sWbgU+8n9tysQLpw6zpInfHD19+h7NxSc6+uxUDyv5FYx7G6slZIlAdFQiOjkcmNgyw7ujmspfF93qMDZd4qJvrvHGwO4XQPWmYo3WwbS98BPRvK8t8MGCXI1qUqdgDpStIsaPI1mB32fTgvm5B+vk9FGuj1Nm6dC6sUlsYP5LsWim8f34/85MYVHyQA/VBj5Yo7wIasACxVpjuIhRevoHzgdOyQbmHYMjdelcFIt0yW6vwIqSlhI40EGYzTmS5EU0LhusyUtBFUG1ztTsgpRPvLL+MMLv
Variant 3
DifficultyLevel
583
Question
Andrea, Caroline and Sharon are laying planks for an outside deck.
Andrea lays two-fifths of the planks and Caroline lays one-quarter.
What fraction of the total planks are left for Sharon to lay?
Worked Solution
|
|
Fraction completed |
= 52+41 |
|
= 208+205 |
|
= 2013 |
|
|
Fraction left |
= 1 − 2013 |
|
= 207 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
name2 | |
name3 | |
activity | laying planks for an outside deck |
frac1 | lays two-fifths of the planks |
frac2 | Caroline lays one-quarter |
frac3 | total planks are left for Sharon to lay |
working1 | $\dfrac{2}{5} + \dfrac{1}{4}$ |
working2 | $\dfrac{8}{20} + \dfrac{5}{20}$ |
frac4 | |
correctAnswer | |
Answers
U2FsdGVkX18BU1C8ga/KJcymwUeduY04RgeD6opJDiiZMHmzDbFog1L9Lr+1B1Hlr95D4mdF1Bwby3AMkTf7Xmp80buMrg5L/d8rI3h3KkIR/UNVjOEWeNWFpGfPYjQoNRS3h+IA1QE1uPkbBneO197xZSQkLN1xHEXLwiG0pUaZsPdSCuzMuaoHLn7hh8jDqucT2YRtfBtdeueq6MgxsvX13oqyK2C4nfiOTwEfB/cHd8JFkxDzEMcNXGFhVgOP92vvswqX++iK27dIPanRMF+rHrUrVQctrkjt1Qil1nFm8TA+0dZjPwfLi2gUDlCqPpuIt7CKKPhk8PH9P67LzS5f8TMs80oEbP+fX4mXvm8B+YOWL/THmtasmvwwGdJlLMD1jEwxJ/VJgPmizNd6cLrq+wcoXW+bAjgWx/MkDoXtRq5bshx51AiodxmIbZBQH6IO8BEaF4basIZ8hxMwO+9LZgOAEuub1051vGh547hckWTF+wT4M5gjHDVvwr/aGsOAQGL3W6insbVMzHhjKOo9iI3tMiRc9oS32nUfwQAN3QQXhg+pjHQ3iA/8xBMzOKOp7dKP5ePHn8uNJZzNjB8kPggIzLqkU6xfS21Cx/XT50L+v7bAjwxo4hMnLeO0j2SR8MPcoz+rbtGsWBG8Gk2hRnNYuMYnVCJXImm0T6Z6BGPlP4MKNPU3jtmgBejV/t3qR69OoRP7jSMgSHFX+DF6/ps0P6yW0wCi680oBeqJVJcI+yqolaqJyrkE8mnwAAofJ9Xo8IEyYyfOrMt2rW/fbTdRex9zyFRWyMUkUOCfLRvR5pxC+dR9KHIioLjwSIE/BYD9UjoBj0VJJ+CI7aqFXWRuTOFPOY0EoGPJHLT6OMjB9n3ItSJ43E026lSHBeG6WLCRwDY7d5SsIFaCxguwDFsCx74VTFcbYwIvsy/TXkd/jUqgBJjF7WOoRphKJB9DGgkUe7NiNcUUApkYMobVmp5KZgJ0Ln/yp3ueLrLedBEYjb0grpf03tYnWA3zs00iKZ4pDmlBLzjcUJeMKuMWIxlKzrS1vYllgesYVkYgImShAfdAeM6xRwR5D7LwfVvapVkzF/Swn66/d3roAEUV81E1b2yqtvrqNSNsHh1Hm++TCGSXvOddTY1MVGtH+NwmnZqvVJsg85cBasM9QSVhioJMdvrIkoG1xCo9fz/3NdxaPKmUc/057w6wALeEEMwt4Z5rgPnzGOZ2wgYD1Ke4+wgPFcG+cqjRnPda5ejYKYDm4URJx+q0u7FZ1UrcOSUVsb5H5vg399XQvVFPndD87XRCtUgdGe/zLpvw5t9Hw3vLARDCJnfMMk/t/Sryx94bCa47h4XQsxywcj5H4ouZH1mjGzKdq2LDED517lM1VXutTH0NrQ6EOUaCAs+LkE2zzfpu0eAw0y6mzqZYVjnSb9+rm601m2YO7Qh96riccSlsaJ3DfyAIvq1ftgcJnVMO+3o2oKBzy1FeIQu0NWnk9hKVXZlOevtuMdyhbPS8NKowV9xkT3QHp6HK7pt330zhBtlG3I7YTMw3pvCF/jG8vlsV+gmSZ+pfdTMwNqd2C2QEQSto56CePL4E/+aFd/WtHmriYUT2C7c/OIBGJR9bte7Gb6ku9usbdilsGXx4tcb5lXQZzYbi5pgAUYbQNR4WnFRvmwPYmNv/rtdGaKnemkVNqgyowBGud2uwXhraMV+azWuddQ8yOd3w6wEbNMYQYx76/AEu17DvDNLv4h81g6Bvc9RD5H4DG9QigPRzmaBoSj/N80zp1AbnVszbEgDcNspOzhxlYF1O1iBrt1IMr12aJb2VaEBycqcdN5ZfuPLVXGG5PS/n7t/OFJaMJtMn1iTyxFDHyA2+ijxj6WUnO9YefVFbLXPxV62KPduvY24Z/xi+pmZ6isF6HYykTsYWAFbVp9bqDfi0Aa72mXJQDmDkxChZt5AcIUaLYRSg00LGAPJZFshMg/AiO7FZvytwrZ7cANmvIdWAwfXTGQyXFhKvhDdYzn6pgRoBtVeXwelsfRBlkhP0MRd8nVrIGgVg9zEkjZWt/nR4GLtMrCfSbw2xSRcUJIZ1OnWqUT9xYEHBocjWodMdgxa0NzX8zfj882bmxvNtfOW64REFfCjYpPaUO5KJuqJU+aSvwxu6OMtRLXAF0GOSHAyVe0Dnr5e6ynnGgZss/SE3+pu0y+klCtsFmQagUcQLD95Vi7nFxGDo6YBLH8KgBPOzPVfV3utEatvlG+nlv/0uKql/8oDSuyC5vJ4kRTQqt7mtW2GQtXKfjus7toRPjdyE+nRAH/uJ7npwF1sc9+hwZNAt6Dt8k4k3QYoEs2P07aJC6Ma4mSImzowUEhaagdjTBXTemXfcOOzy8aFciY/FTfuLan5jE7twNueosav04/wD2+s0GSYFLTOk880am7eGsVe/ML6PQGRq1I3mONojKPf4gl8lBLVXmyNoI4IZ26H/5v9bvE23CVz+vUpLkr/eGxKapECBC3SgH22AcV4QI6uyxgJGiXrwym5Oz9MK+ZMY+nHs5B95mAy0z/0vwR71NlBxoareCzqxpD9Yn+Rb3TMR5nTK/OvV25nBq8VZW+nI9LJiS4Jy0pH+M0kz/YXfbqvcZpQjVXhzeU6jxOsKnopE1NmtT2lBapA2n83k0AGZ/0F9yfmaUjODlASTQdUJUgzYt2GZEgnSHYvImOWOBevDefKwo+8an79oxqiaqw9Ox0fZcSrItJy4taRrW+9CoAxAtl0S/Pt4SEBU05PN/6Q0g0Ay4GKuoy+PJeNA9zVATTXUvJ3L/dfPZ48JXL8Z8uKrYCp511WaViPfCkwGhq+ZJPxvvGOf66LPT9Ue8Eav7XUf6F1K/zpQ7GIZvG3eNeA90mXTgk7a9OAkmPZNs8sA07NcAALWdCLahDHR/0V2oWg1nX7W8uEjGInSRO8L9HyRLlAG3iFcGcm7CLwpkAj+ie0MHQGuiz5bufYrEi2JuQ9OIBzNPTpdGFitPG7xHfepEdWBVVadf8wZZoGDXFxBICReFFselCZoyAO1wal33Kyxis5MbXbARVap1CLhUPTjYe0AsjkFxfHcOxtMWBKx8osIUJ6v1/jMs1XKhrAX9Xb1dhv84vMNeRufjqqhYOsQv6csVQlIgAKX9obfg/ELDJjfhD8zs8sg/bApqmS5FuvWcILRNs5eENMDqv2O9b4M6/ZtK1J5TEyaEMqUofvVliKHwHe+Wj2zBsHPWg/oxY5ZMezKJ/IsjCCFFTaMIGhA6vlqZaIjXgs+Js+hEoHo4Y647CUUlFls4XslWvwTI2wAcTdgEXJ9Yy6CJpm5426ls3qYiFK0E+2yg2zMxT538bZkivmfOhaEkeJ+7HMUy56Exoi8pTExf15nm9jeyAFMYnSg6cejwc9DB6Os01n5N9yTAMtcoQEMfK7W/ch9pY+21quCj9H4WHipO/JmZueDRMAYeNwlyw2ORUOz1l+GZdO9xNaJrFz4pfZvgHiAwC0iTN3y9ykS22dHhIcpmEoC+Sbgd9xxRvJqpmVzFivjTW88JUs1d124fYErPNYGXwHX28Fr/6+k4hZomJ7+iLsdM5ozJ8PjH0NIC24e21lFx7kGcKpx9VrENVq2YT6hSQycVmzZxet8ho04KoL8JBEYLBNYqlZvlKWjMe0rhD3Af6z13Sf1kjOY30cO4XwAeFcmtaEQV7hP+yCpeRwwaEbnn3wZXJrHbMyfCDiA8k5+l1ACAAAT/kiyKQx0pHbaaHOYZTjeNedoixrOCqUcmruPAlWc4jmfWAy5hehDzXkAGXa83cCifvdNiD+h/RHZuD7T1CgbxhL58yuxLDyGXDtdhocsd+14eA9FxUz+kNN33FJsGCr4nBlkZT3LPoS9+CzIvdWlGpKxr0CWv2yzwnQsqu/RJ0Wnuwvd9bFVhQzzrZWqORlskggizciUX2sQS2fBI02ktSxxvbdt2NeYM7B8NadYab1zD+/SliIACfWLgj3brXkKkLoFFjfNqhD1a02ayGeXSI/LpB8nrraVXR9BZzCbQjWz8gMbNAXNnkXcx90MEZL+dcfJMpYL/aVDVfGq7mKcRQJE9rxoIZABEKwLVip8jhQgEIHHdsni/YXlHG7dIBtBM+6Dg2/M+1Jup0h/dNgYLSwmzRNoW4Us0FJVKfzVzH+RCmnIlyD/uklDYs/Mozac/uvd4Wx1MXJh/PykZjZjZSD1sLUBBjLnhMb05qf0FbGkJtQqVJ27QTdYH17Z5Gy+vUYGjmwGu3uXZ4KASD+GpBa6mnx9nzxi8HMncFcpTAfoif93LYNiQplAc5OKqNgZrxVpAYgrXvN0yBBIzyfrouN0zcJmRl3RMEdVABC4RGAjJPbvK8uKMmgedtkF/QvIC+a0YGJbhkfgVjcvCIxrN1hzEaIIFJbwgxDAV4AtgB1O1FbWKAmc/SUICeKKjsKCOB8IUskmu0v1YT5dwoMP2MxI3QuIjaCPFhgS7tCSXBmmmpwTdnpJiK7PJp7FoLKBP/Yjjw2+fFVY0A2oQLHjrP0txoVK3Ot2LVSItHpqgL2UvAoF+DI1UylqeQ9QhBxS9NvBcEObwW4Kwi41Qj1cwYrCg7rN9ISZf2cQ2/di0ovSNK7UDjV0sS/sqf/PdunimXo+Ayhrp9neDFj7yTSrWZ0tjHiqz4yWnkXHNLgJYK6Jkx3xraW9IOxl1/ggM6SowSgfJqnNEpvp9DZQhHBsoQGpvyFcYmIp2uJI4HGtW1pFDrVgiutn33Bh/+v+lQYRJKzhu/kYB61c8P/ePXwQeSMxVdbOLWNDNVBhnuIN49cyMNLMAPOZy2yVxtB7vWIf0H5kVYeJGxV5ViUfzmcCEYilO7ScvJnPOqEetig6XmNo2xSTqUs20MqhNjz/w8ihsf32HudfAzXUL6U8kL0eGcRyrdv5Taj1lEYq0nA/WqSNJlyhDAT0DY2l9tVz2cnAfXXUh7+t5HK6s3Xt/tBc35/n3ypV2NVsaxmW7ar08riDNCqDWgTGjs2gNoNTRibXJhCx9LCg/FjiX+ewiWuS0BL1RVMRzkw9wOExzE03jmFN5r46goy6XqN0JCU0Gw6LrNClafsWp+aGjakxQTZnrlxlSKS8yQ5YlvliFHAZw7A9pgD0Yjnu+f7mgtUEnm9J7YqMCuDtTRvrpjmZZznyBa2+rLcWZ/fALxEgIp3TQhgeH19+hbLOIO12clkdP38zzNHIqyOqyWekmgEHWjkOlnJ8iWBgegl4N6s5KZEoe1+0hRJ/BwtjCuYijy2P4mDqGPbvmRIrs3hdpDiQ8vdAAJT0SYnpDJgedwrSSrnhVTCS92Nibjlko6cROSGIBolVCYhxWNhdNLACg8QF/p2ZElBceWZFTdaXKUYwMndvIZp5VWIhE1Hral5+Tg7P17a4DzBGLnPKExTQMK5DgVQyPHklUj7ofnjjkcEYQpf/hPzR6fH088ZNNE6sxLkeyBgPBEqRhY30bjFGIZNImT3Z54xRLGe29HQcrgOCU9ta2VOMgKQyPlq5JRQq6fq74jMFr9FnQLiZNzg2OGg/5REB/WiRZGrqovNTvGUXjETlgwH+N1k7maCGq76XEHcNV+XnPqmDqHO9WGZUUiS5Rdt6ppllZBhfY6QBfHpCMkFPyT0nRRtrCA8rQmSuZzknf/6ioZyBTu5A5NULM5RckkVBzmDMhh2Pz+uMqcJO+bYknSzdUdQNdZlvukXVuuGnk15gdyosk70mKfMuw3/nED+GTSVdiIlomUwxmft8Rp2hne8G0j8z7jxQlCffzupMwZQVdcpf3r7100OcsYlygKnSiNVYTcSWO88i3Q53H8S06li1GmeO9m/bn8TwKk2nFzV/ImrptC/dGOb/Jlptq86bX0jnP3ei18E/5B/9wD4G+5GhAPDrg/rNmzWozxmZ2iP+mNHdyHiWKgva5WQ3VNDzJB5awzmzPEMmid3l+DSyqP9IEcezybgZd/EQQPEs+aBRPOEVv9OO5ow0POBOXUnHgT30JKnStc3mU/z/YMtEkwPyMEWWoe01c39O8+yRb16+cDloYl297hVz6PCIECdIZN0rOErB8t3Ni6B+EQaKeb6HoUDM+Z45fC0LUJpv/54CJDxZcxrWMRyHHsk6V5SA8h6CrIRH422MGk9XJd/MLwAU7HEdBrCNdG+XvZJT1VvlcFCN0kRSTK5WtJXFweMWuQyvsftcqBYZb+m3OXUqMizAyXbe7VFnVGNukv6XeMFBYr6Qqs17ulsJmfQBpkwTKdiPeD1UlM9fva+sH+EU4HUF8NlV38B3nBn8XzrG2mlyoJH0QXpB1yhF9N10jyOr6IusmHFpX8IR7bxtLd6TALZLG/d6Hnm059D191XV0WXi8qYTgTYBUanI7+TUcqAW1WSnkLINXD8xEZC43Bpe4UMCO2LGZQdFFl1rBSw6dg5itiQxcTkDVm0IffcjqRG3glS20zlZ7EERnD6dkca/zMYJr5tJjxTUpqzfDFNXtjk+o6yBme2hwVf0V2/H1velIlK2jI4PmIdq5v+V8Du1Px2yQRLwuCB63AzS8TRZLC+3S4Sy+R8hBUl/yb180Div2++kSpObvQ06DZZz/kF31RRdYuDHAGrsL9JtAD7zze+Ks07uD0/qaNNWVRgVfk3+F9O1ac23Po/o8q69m1bQm64Dow7kOMrq6cGtUEPApGsJ04qS5j0TNVSlcE0F+2rTHi1JGlm2eBed2gmwnGf8ezOSbTW76ww5fnl8v49gyGp/oYew0q/fZ1jdtNR1EcA/MukQ6Vh5pANwHzIVDrmiaxS4e5b7qOP+NuBEhaaR/HIbxcEGiYAFBJB2H4De5GryFrF/SKv2Koe+wbJonYXEW63m8cqKOGWfv0z7/kQgXKngBIzifTySnwAfmB1PMjWiSD77y3DTkC/bOcgR7FgsRSGf0cuJxTV3r/F4sQgSxcZ9MKgqFTLImxxN35ykO1dQqBXeSQbt66OOpgrc6lzvmHfxugBn371P6SOoiHs9JQ+hiqGa4hheTq1BKMJKxq2sNNlmYi/dvHi9wHyDhS34NbwUJqBdQk7EjHk31RbwTP3BjE6FEwTGgt4qF1SrnKgy1nCNFWJxBT5v3+uMUWNTTADvCCjoCsYOM+35P52TGRDrmee3f3w2wCFdynWHlRQT8VRtmxldfuACP0Fwbz9tQpg0SGa1bjmt8ylJkw5d1y77DmbeQgB6saIi2Z4pbpQlzGv5/8sdnFr2oF2b4PAogztJWtjakyzLA1x5VFHE+vbCjeISCYZl66vMH7ejHoYmyQdxeUkrMGmrDIQXAZEJj9cJ8qU0OIqnYH3SvWeZbxdoZThBGtOrsoXt912wQICVUSpsr52IDvmInhu9uO0WFpQPdK2TtHbBmkAe5ZreggxoHSqDDyVlGct+7sHbVHjvKxxdI6SUFWeYPcs4BxKuVTW5/BPV/vmnMKqKD+veaGTTbO3FnqOTrzJ+/lydzAxyHeEfGRFjf4BWi6UuA3FRT2QzneLnfOAELa8G0bU5SVCCLm+qPFyde3cfTFlHvVzf8OcYgcru1f5xOMfl86n4sfxHwyxyTMueoeBLnYIzfThbb702j0uYOV6EpXI16QvBNqAylHBsQT//vUdRrCUh94rBZOJb+NU0wmHnP5u6j8dPRzj5IWOYdatdQIu1IBCPRZ0pky20cqb6OdzwnhswQHb8L0msGqKAzsNIFBsP0hupQcN1ggcIGASxyC+Wal1TwNqef31lqjQaLy9tV0lFk2scUkCewuJTj0YEXA60+bsEJDwJ1x6L3PG8HiZzHzlirERZdWck7qIG0aTTnNm6LNFRrBixc6ypZZstsX40cSRCv7CTiKsKKJusxcOwYtm7NYEPJjy5UrG19W64Ao3Zk/PTl2TaP0x2FHk6GPdPLc9qwRPwbg3Z2hqtphR+Q1+AHp5hZ2Ok6Z259CqYx/c8Dt2VFK2Q99fA4Qn5oXYLcSRF0sLOLEgn06wufDKxqWa7btECdGhoAqFsGSG1eRIiBWqB4ooS6DmVI3YQDabdaP7Edf3Ha0obm7lLyuGjdUTX4yarddfC9eKpit0Hi4/mgnE9VgTqRqaa5WJjFXm5i9Jv0kVy4kGArhWP0BmRL1HNJCYyMADzYI4zZ0uGHeYo8OCNIW2j14XFqV3pFh6T6XPGuYPcFlkxXQfjYhClHM63FqI8veEtMaeWtRiUhVuUmzodBi2fz83nqcw5M2Q8ZqpX1k9WK+Kj4KLXL3/dJbXrLjT8YW8GaK2s3b05672isjTSADgAelSAFwmYUS6yULSJ6Z38JLfICRj4VJ/npFEpyjqJowltJmySjszMDLQ3mniBVWqHrhu9j1V6RSSoNXtqlMADrrHNpT7suxEUrfGaMcbzii6cgD7MnDYHh1+1w49MnPSL1KevxMQRUsHatBbzesunMZn9qJh7g/4zwmUUkJfDtoIM7GLl31R6NHTaJmVceJ5V4zK+6nxw6hRM/R8RYH9lXeyQIhIg/2wX67UL+Zy3KE5S0IZAQ6iLZuO57jNCKR5GUBjWn1l+R4XH/Z9KOiB8rlE6pH984JU2yPW5tyFvvJt/53LBKudXdWqFhIjTtbNUh+JUKLyUrTGgiIZNOeWvuKyVI0wHvde5PcqYIkqzNu+S/a072LPQf0oQRQUNN5g9hd7HJ1SFe+ecS984H7TQ2omB6E6sJA80ASalw3HpPgbHoNbyENcuqA9JFrjqtgoEoDwLx3vgzsEy+k2vXIMm4DcpknNdT45hAwRTCvHHh3dN3qQAKYu9KkvAH0A6DIRFRFe+9eqYV7o8bIPiLqDIVwY5y2w3Kfi/jx5uKWzlpoANOp1hcDIk9xwlauQPUz8TUgZvcbuxs/2Pu5qMAwd0+kKwiD2qzAfShrH7cV1oiyKfrXRiyF0Fwsw2QufqJ7WW+PD19Jb3D3w22S/7uhWMV3ImcmgyL36qTEQpxuyXz6QQkmQ8c5+p1nlA7ozktqfqfkwLiUPUYBbRa9Upb+/iEboKOXR4GyHZqtMa9Z2ozVOPqy4EDfZ9q/k2M5fJYRSFeHy74F6vU06clyNu6bYQhJOuMqYk49gq36Ci8G7gn2yNgFuoJgW+fMi9yUbZh61DBZFdFo9f1x5IiObsTqU31tTQZbOqXOmmObRa65pk2F1QYfORuj/ZaF19sh4yoNNVJ856+o/I+Xbzno8I8YVvrS0EPmvQbTAsKCYUTEXbqjWMyent13Gb780w3DyjsRNqH1VtDnSNSh4ogY2yJyXxNoI1ZtYUbtxQtjQLHKDyHBulj6cBVj1q2CqnoundyB2M+DkxYSciXGGzAWgM0jdsFhdDP2Vee9TaZkaII2LWvNUoAX2GKRoPwGcIZqKz2r6yrLshERvVWBXAkdecMEQjIKOT3lRx+7DLEM1YgVk9h7/+seAxiOFFM4y+xGIvjpGAWR2qQ8SxZqESkxuuhd+aF3x8O8uDu21xRmZTdlhKDrHSDGP5s90eq6/mDhpiuS2SGFrHYbK9XX7XoJZ9K6xU6ZOhbYIv5b9AxoEhAvbL9GYeFyuHO2KgbYfyu7wuf7yRv0iFpBkps3Dz7AlrUB6T7oRwcXMJfm1p124X2YQo1A2Efzt9Y9S1SqVFpEPw8ql8LgXJF4gvMhjBsH/jcZmWDQa5lfZhe/8ge6ICjxoQx/guEg+13ZTGJ3Kn+NP1MqABu5U/OsJcgB8oHiD2iE0E3mBY3TXeMC0csXf9DS3Sj89j24FmiwP+UpLDEZg36aIzP/8tZLZDqU6fAUj0RYJ4Gyjo/jK9sG8HQmvgYxaRKBFW33E9BVB6HT44NaF5hQUe6Z6Qy1mjW/WeocyfdM11zB5hk8rrE8+0u2qawY2dV1QlPZhtFtQ1xM2jt8PlqASzLLbdwcbzypdnYl0JnFnL6TyaDQhPuB0RRDePAOITMB3HKKllqQJNmPGCrUStCLrAtdaLdqYe3bTBA2k2UuUHPJbE9j4JsaOT3I/KrGuGFg8O4YM2aRBnh8DefvMtHSlG0u3jdz0GBOoF5AUdHgEGm59DkmwL8985cg5n29C8gJHMvYY3MeIygkqxGGbe25is4T31iXJD9534Als+emw4DoNNxbtQWRqQy8sfaLOH8JidwVp8f4k8bb8XMulf0B8uRvXF0LrhizvCSiQkMYFV/R9/4pvtrhYiXarKyvD7jKupwRWBSD/IUyTwxo+gg9x8zD3bnfOvQn7WVqsquTLdCrayuxYDuqdneAhQ1tzd+jp8BYAMnLxwP2/hxt9BwQVbMVH98Lfnr0qmPStL/VxRmijyH4707NBrC7VyNFfVB0oH3vvmsMfbHNst7MB3Ilz+NA3Rbc8uOnsb4ega3nYVp0Z64wlCgLeLeGel7clBZufmJjpouDGnDBMPVvrhu+zOMft0VWkvakyygAQX0c/hYf7nlXtKAbDEhCRmQtMqpjRVABj1uETVjIQC+JuGz01kwsi3Npk5LK7BUUXw6L8tGsQReeDEwVFNTV0Da/TChzJlcw0wDYwRm8KrHmKs1Le1hnIf8rEKOa15h0NwtkG6t6xjkQ0WcvX44fhUbFmd0xpmHJmNxmGErntN89iGVbIazF1LTHtZW/Em3gegOSq+qKaBYFD1DfoB7a5h6/HGwMZUwW7PzCgbiJlFmBUYJeqT/t8Woiajh2Kijt4uoYkzVjldgWLKA670lxotv9XCr6ieBpTbYLOTe7e71akaRTHvBJgaIxxE/GvtteGtsfChz99QOf0H8spIybqZPyH7cevzfE8PWMoTq1Z5ML4P2awaUuHabmdgRl6SzvG423lwugvSl0fimrAnzQOJwZzKtZuqd17aQnD88VGYLkRDyCZquZKZ121NJn3X0laEsr7w9DTh470rqkQ5VAUn9kv1bYQoiub5LuubOl8AL454BgsGoyrI/Hk/4gT0SXW4YKZypMWdIOHwzUa9ZrirX0y8jXUKlLdr/+AflrV1qOJVlOVtUVeH6KyGyQasuq4kgFx2goBRyJ7yFWDkFpCCXtt6f3xTa6yLmKLvxk2fKb0BQ2KxOnDmw5LpPD0YsLf3CNnPW5M68GRx8uPLh+VGbQTtguqKdSyl5SG1VMnFaiE97+O1FRlTzN56LwC3pyImJVDVbvN50CtsE6vqP3idSzSd/WsOHTkKKJJhF56Gi7WghO+x09XFfEwrJ6Kdg0yyqVED8tEzvH6nPs5G3cRva1usBiYtGTNXXksUVcuH7e66Skb5jt86Pw7Hiqp5hUyvIE3pWExLiy+P3cBIr9btW8YK54z6Bu/YV/uDPUWPhbm6TACxUnX4fe1iPwv1QR0cMGPWjSn7IpI2M2DjVq51UjxsfxoopMPRreITvJyW1AHzk7WtBCwYLHDN2m0npjnefPQph60DALJl+HU3N50/uyLzaty2Sy563yl3wBKxHyMzQ2at6xyMxFQjkYI09Wxuw8fzXsapmH3LDQai6PUZy+iZfLi+0uZ9lCie4u/HxqqpuXMXbj1iS4XjNesoN2Echr6az+En74WIbaqV/XYMOpuz1U1JSIzzux7K3G7GddN9aZyOqeiBRzKKcIj/jvct+QblHw5ojwmTLoLBN8RYpKOA5KVGe1uVZ41BYC9qJvX4q3tiUPCNKspjA68n/QssjuqB9Q8QYBEw9Ui8wxnEJwUoiyEU0XXRlIJ/4H1U24aiN1Fxq6hFEIT/qkj7CQQGJ1t5cXmLs8epf7BgKRiEdVZldLkpSNKJIevQRW4GSympHN/gV4ZPw6/ygV5vkVt0SGfBo/AdUvhYMBV81zsAMfRZnQUostUTOty0oxr16uyj1bIbB3WtZdQMhTgYE+FewWtnMwiCSMRwrRlAG/Fh9OGCnS3mdRKGpoQWMLjIc3I/7KGklVkoef8MJqiumQ7Vf8d8GtZWSyXJdxGqpzb5bHKTJMmMHn0kCFkwTvy278ieg2LidlsVaAxqzYDTrGiDhmzyUlV62+UAor1PJZJvFsGX3FkXuO2uv8PlwJbZNDT2ovQqLPrOKLaPw70WMqreWjokJCuzwyi3RP5YwPhj/hB7Ea0ixbJHh97MA17XLTA4N/x/FNaFRs/Pgg+65GMTBINdMfzqoC+klmxCzG4ZNADSEx8jnTiFbQG3OI+WjsjqVEUXharI8noogD0AoancoXcbWal8E6x3/oUvUPFumD1yHksgXBn9CEhNalkM38V94c45H7KhW5ts7hz48DBaZFTxS3Jbwhq5zhmXI2Q1/us/MU3B3wWQ+WYmEi2yIz8j3hzmD8mIb3psjoh/4j5/6AWuyfUIoFMgR3qGOa4Z22hh8K+sjG57lPSJMw43dA4lKiUdmFpW5RxyFELRiQylDMUiAH514mEpzJXs6l2IuvLcEK5oNwSdB0w5RKVG0EiNgSGyj+FNF33Ch/r3Zfbd2OqZ1tctxEp+LEumIqNUUMXIaqtf+uweWg4Fmvn+WT6bAUFvVHS2oqTbh2kSKPDXvqoljyl2A+EK21KlR4IP8/0xU6J9b/CuEfK0nCPMlnGHFhm3fAj3KwK34Z2Fguylvbtj82MTCjEa/2cPZ6dqj34Hd3JIST5Qt1ESVXmTNUoPXgXuvJdKHsUIAUJBzTNYNORtRurykXbCVk3nFf4hOGXJJRW9P4aVBkT/8ytaRazaoZBisewJJsjp42TpD5OB642MTBmMelRa6BrGt5VB3ncx4hG8QLIxUNV3SR3AqZ4p4M57MiHGN48zR2F4Sal1uJJRrsDjvLUB6EcPyKAcrG0edXxR28F297WG5eAtiCG6/wAUN/14agcp4/jIkYUJzaUHYCDID9z1VQy6vu8T1HMxfgPA+d+zt/VPQZWTFAlEwwGRJ5iVNY90eZeRwTfTmA5m12BSPdEjtdWnypEGV3hFCtHE5nYZyq9ARKx9f7pVRBZ1T79QUnpCdLzyAysueCdLW1uUB+sIsC0EaEbplGtb5Wx2iTm0QAKvHagEyV+nele4qcianhzZiefQ0mwmVt9bduK9202JQEKVGq7WQjH4lug4iwIdAWestXIq3MPVDcvSStdOTy/bdW/ztVnHz+3qKV7LUg597SOdjw6Qflt70C7KG3jxdxN+a04wUyxMCblxbfeIZduMYN1QpatgYIvnXo/n8cxPIlvzDmCVeQis4kAbQsBuhMzt6xcYLQLjawv8ObhnTH+aJTrIzC8nGZ7rU/MnDe4N5IUu5YCfG9s5s3J2uhO2kJBhRsTw8GKLl82d5k/+0dGTo1z35hekqnjzfzkGMNMSf1Tnla2iDTQTTYOQG0nAWaOBpfkAnrANIx2X+xcWepeeOgHCMADRm/OGJ2nAytcUkp609sva02hghn3DdUvTiESm5lHqIP6OgdRu8E2vJfsfRp50JkvwL48mbAjPfmj4zYTwlCpRfZsIjOk4h3sgxIUa/0zL1CZZN3SDPaQ1KbYUWz7+FWq391nmkcI7HxpBdPY8B9EvBQzDaGlbUfMy2S2Z3InO8v0rO8mGbOBddFwOpst/Q0vLksRe8GT5AptHPKMgtRnKxXVYm2ZCFFa2ueQPL/wtJbf2kNqmpguGoVScK6Tx2XbOfOK2N7GUcU9XWh7mQZd88H86OJydnhDvZEyApBj7+vsgRypL+O8hBez0AOCC8nT2Nl38Sh0rPbdPx6ojO6zfCx6+CK/0CAYOyuhm34gAUbN9pVMN+Jb1gVKnSj2Kybm2Nn7O0ZKFsEFgi0FhTIxZ8f6EV1Lb3ClCF4ydA+lOBWmrwPnJoffE4dso61WkzumI5sfjSsz/evjtj7FMqQJF8RLYGEYL3bLu6Pf08/REiuU20Qb9KROw3zHG7/aiMP1g1m1Kw2OQk0ftx8TRitlQC5Lz5/1DwF+lnGPfFnlQ0dPymiVmEdYHCVLz2P5iyYIp/qu3Bsc601qALiomRsTn26rqS7RKD8T0VAStO7PgzNRIQk+raVYJkzx9SBSyEnzFfRNZTE+rtBxR5GRm4l5Cfr3hrujHD255pRqfzMwP6IBch+jIWQq47h1xU2EqrCONT67HL1IKJyIe7Bp1wOeL+3vFJ1sEgkmDKqyYIweOVsyXdXsjvJagJv+l0gsoKL6vid5fYlN/l88gqm732kc6VrVrAqz9i00ltzFuX19j1tQTzvMXwPqmgcMhRng/T4jHqs9DXCMc8sMlnhGNbNX4MOwRer+h3TL2xk+8zIo3g0edXS5WxxRQDm2BB3xt5HIILSBbv2p2Sca5uyRpkwcvARIKBzhi65M3lFLBC/zVv585eV3X9LRiSTEGP5aIAIHFEcBm1HUowJE+KPE0KNt+HrhSJumBd8h0jog+MoDLIzLlTcATope9Iw6H/tLvxl6cRb+Lfr2tSlLU6uOIk4siKnAuRk6nPbvnsbfB5fZiybvDeKZeBayqU+suhKAsnA6zO30zLEwMpS+cKd/yohIm8pkgM6HrQQe2t+Oi9T9yerBR4pHGfrfzKP0ezz8ks4Om4xm2MUJTOgfeeZ4pNKDeUsCILqtwnvvTn9JUFDq9ALWCsx/zSP8tIl6TpOTySp44xa29AQi5FK8jM6wl/eBRH6kBH7Iz5alAeINZSXhZ5oGQinTvHOOuvASlqSTQ6vz10CaWtYaKHZ6JB+PVrvKKXNBMWRit1RZUKaXo2zrbB4spdGllLr94qOrXd1/3hi4y1DpOL0r9g3m8NubRCy569PX23/Yhy/sJN0auZ3qnYt6H7wtqYS7RNP8JtxNxgfnPgSTs6urt69tLaJbySJHS0+soKUrSEbJxOmJxd3RXw2EQGSgrBUAp0bmGgWhgVVqFU4+1XHZsc+L1x4fF3AuBdbzBuH3dr6kzb1UJ99GiEBms8/JsSzSy8QGiXFLyGyaoZ7O1eDTKJUXDXJh+j9kyjp3qJ9O7iACsk0Bc2Qyto2I2+6Hfs6KCPRyrpqgi8R/RqRrdlbrcswEr2sXU2rwTzUgdsNcQTZhHA6buM+zOkBPQ6QEopyeLlUfkpys1ojjAKyNVKLCotdO89I8wzlrCASmplA2MCzwIVP1DqhdEaaBYbAAXaHdnYbi4+7Niw+Nef4zX6HuJJ16jMnUQammTa27yezkcOYGhFQA24zHRF0w2mnxntryXho5bLuc6lPnhOBwL60CWSuVyEc1Sw9OE17/lG4s/odQMEqvkCQiUWQo4XbgxMn8IMdkYDyF4mWN7W3jFu8WI79afThgwAC2WpzV/ON8MfD+/+YmLL6MRVYR1fRHpIcbwrDmCrVCG7o3PNPjmvyOi+BT+XwsVBXXP4QPaFJ5W3nM/Z9Vp67MJ5c200Ch1i9X/KiMvoIh2xE1TTUAwWh0Ktg7Ql0kJ5S2PPfJr+MUyw8pbYWvFCmT+dfxT45BhWJH/atc1Bl3It515Yh4cnh53SHEPpMwjMUZ8z3dx9CRXKWXKzpOEAqgzf298SRfOc8hrVdYYTYhzkTiebEmAfMbnfjZB7skq0qbaonclFZS5PO8tzmEiqA6F/b1ui4n9UU3AetsFyYp0Ag/CxsoDB/SxYdetJJE5JjAqaBIdBbNeEj0v1LdquhkvadUTnRPZea+y8K7QTQzo05kI7eoV7DPh0GHBTh7tXv+csb5FFyHh/b+OS0LOrD3BijO2WBRk0YIWX12htfkeoU8YlYls0JvTdrCvjkX3ct8d2u72voOlLNK8q3nIpD6yGyyXB2B6CjICCMjbsgDFVNHd7zqC/ceZ20zfuCQ5drBG7enZXPhthufIN4xrD4A7tPKv7EJ+Yyp+c3cvx9J+HWeyNuF4y8jsZEom2A6xksu1uNt+dKdoQgonyEklt5VE3RGsNuztt7sXjFCXML7KdXyP6n9Kk7f3lJaCzwl4KPs89BF5E90XLojdKfo7AFfljQK4139sV8MQscJJnRpnuDNs+rnD1fgItEGik/8EtZ/zX9bZJ1Ek1Riy9SR5yb7kyvfsfE/5Way/vMKMxheFmzU9tS7nBmqBebuLN+WIEts3kKU6OtFK8hL61+wq7eoW4dXvIt0sH2gxWui28NXgrwEivsYlPGLO4FZeAm28cMRJl8WO3DZ/At/RpLmUbNhiJKseF4fxj20P4q8bhaAaRbcNI3bVRUjdU/25vEWGN0opRTGMsKvfzLOBhktDzW+X08yBICE6dPjd4e1189DMrQGdkkfbGi2hT6vhx4ITqOGWDXI6Iq3yc9VjEUlcxv83O4yf6+WbfUP/vRayk/NFwEcVPdsuoitoUXYA1dJ6yaW8haEer2q9VXVBGqbvBwV4VIA6mTGLxczKJvbrtz9IwuEDmQwmSKSpt2+6R3eU7Z3Kpo8SYwlphRPIj5OsB8Wl1NkmxDOXlN7Sdvnw2LStA16Kk7MvxsJZ0xsa7BWglUjnGdG2sYpKkHwlor7HoV8Eig7m0tonhqOMq9iBLvvn77PKcuaAYW+e3wnFmL3JPJHu8+wm3BDef3e1LlrkUeACKOYm5DqVSFdAqCZkHVowlwFrwjAfCB8wtBM/aME1GII9Ni1w2XCvOTZhWB0OGfor+xNYyofNuzvMa/D/HiMBKNMhWgdDwG3ixf2YsRsZ2u0RmLKuCK/izM3E0foaQCw9/iQncCT+uJU5aVT+lI/j+Lapjxtn+e2AVOX4A+Yr9ivCXoJEnRWfQ/WlgGjLnFcVD/zTrw/QEoT7Oeo2IdEfN2L/97Mh8m9oyxkP/Zjzd2VbdqTrTcci4oWY2Q4TvEdjRVawOUnaMzVKgkbTzIaT6KS2dabLL4dNWjxX6+859AQuZCs7FHsoHuKG//woKZLIcc+9e9ty7jpsECYCYE5jtFdF7r9NybK1YWmfnN07KEYzZv+Xt+vsZy50sYptZqRqzc+5v9JHxnwL4vq8kIO1vPC536VMcUSJ8cA2yf+QhO0gzuFPx09G1zklfGIMzyTdqbbHzcmQSzDk/pTjCWzYuDGrKI6InhqvmFxzEKJU4SHradeUTLfaklC4vt5U6J+CRMCDWvzR34K4oTQdpr/xCNRqFbEe4C4XEkPD8zbM18YH9/KVsbBxuNpc5fwKYBar7Svh7OoB9uAohozE2Z4Z2QL1oBksO1gbjrNaZD/j93hfUa19yRao/vclYvUC9DUF5EjKwunfU4WMN1n9CQVofaSbz8PQMU6m4yiJ9UjgB0gcc3dKzx+85lMIJK0MJBaJhVVgdxhBXpYv3iKQRXeF9oQiUGRmlcsmCuahtoygz8LPkHscOUOc/Ph82S9v59aKTuPuCGkuDhtfqDUu0meqPDh8vikr1mVIinOPJHMluLtEOwAm7MOsMwqzSXr+Z4dbF8ErOO6ihmHr0LGnc9UUrFjCkNLYLa1K+GBkpNqoWfGVSFjOD+1ghzo0M8u6VQ2CQhFNxCj0qCakTURwsmljCwrpGaTG0qcfcHuJ2V5ddrawDwtvLfH4AIfVhfyByi4PbFJJQz1xULqOluML4bkg9D3Uo2T5YgI/PeMtPL0pF5ofhNlHZV3OIHiIIFpJKSEHG07lj7kX/49kkFGv0nkf3zUli6v4Gg15lNcq0CNFEz5pUKZqXkeZbXlbkQQFnIg/nAvz6o68vkSA5wgQt+d1BtgovQ8rlLstvQDHC43J5mgbs/qJXHEhPtObFnKVWB8GAbkfTZTvvOzLbskUS7F6IuC6BiAf/YFiTr+ul9PhhQIkdH6sRFgUQS6k3PCtnEP81ETNkCPWx4tRYRhxcG2Yy2SQduDZxAeOj/gMmc9akrq0YU+15ZcWXuFF4RJ7mOiJaRMJuVYlUc2p26+t7Jr21xipfaFQ/IQ4Mn3AJWVg5UI1f/OCkrwlehEawIPSL2iWzDA1rXAj9KgIDCGx5pkrybgGQ93myvtXz2uIqd/J5ebp78+I20Sc6kCz3wPYszQOaPmLd2EOsFQlJjNkUKjq+WgV1TKT0sn3/4pqWxDr9VPrtLxAqWoOLw6iICuLfZCkredwwFK1KEUlZ88Ygu1h8oHdMtEVwyZiOH1sl9gLnt1Kj68UcfOTo1YO4wzpOGE1wl9fSt8Rt54AbJyeIS9F/v/s+noQ+ObsFzu6kHovWpPlceTuqnV2f/rPUAL8wzzwT7TrMndcuklfmW+vRPo8YL40ltSr7/NoVhzYTmRL0y3N3j95bFgnC7ddm+39EEyeZR4Q4vh5+lUATk0lbQIRly4XiuJgyvRWBu+3mxYzVI2yMNJuyM+xfWVhPxm/LyKs6l873GdHNfQuEOUrDKm8ndUBAnNBqsUcmbPLLIF8K+F8IKavdfcmhlb8+srFODn87C0VeENF6WUCTOPn9qWtdhkIxIt+vWqTNTWcOIu4S31PMN1vMMne/lKFGzqwIm3CHUhSKOXPYPyeb7Bet+0qTWlLtKxz8YW6HSTpfbdPe9+hTV7O6TOZJLiVgNPw2JhQn/BqkmNhjxR6y6jeqOe26U9lKBUM4V4Dq6ZrIrDbb/UK2/m2a48ZgFEUFXayAiPRuckjTp0b7fEf8+Nvc+PM+SUilrVkDvRzXv7FY0mHCtjNjsGTkdckww6TZ5QviEfs2UMIZLIbr0j6wDIpKoJrfS14H8wLjIe62LTyLSkIP9EgR7ONX6QRygVC4ZyMYo53Y6734qwgexlHEiFdMzJixjjxokF7GcwPBo/Y8VTFjzkkcGw/MM30NLkjehDKEqNUy4UgyrnDBsHg+AJCdwQRahRokAcyHf6wzHtuRTBTYHFWEkVwUx68QxSkx/gfV+DXcCySL4phS/Zmzr5ahDOYwIUffMDlSZ7BYE3tlJBGDXYw+LbnOaj5Qje5e26sNqgDUyDPJ8GGufWkXbgBrQRmVOvxe6dWPWpaegXfcF/ViynkKL8UQWUBMeFISJNhfnDAWqbx07efml1NafIzJ97yp9oozNhVwrrZk9w5vgphN1zoSX9DIL7xMVurtHDFpvQg7CuI4al65Z3aKPPlvW81iTMbivBE/LUssbw2UDsh0nK+2UD8tCIjIRCfa3N8U+YXUBI0zycULTQdcY8aAql/1PzjFUQvBS8lEJGRjWWYWvQ6kXP4mtOgeqy4Z/9WQt5kO3O9bRCWpQGh6OIUEOZVJP6Z0nkyNE24Wxiy8tdCmBbk/rFTInT8hq1Qi0KNhHo9oV5CymLOfY51+olSytEayyV8om20JuE3XgM5CLOAWRasApiy2zdFQSH8NeEbl0AU1ZzJHP3VEYLnHO4tnGtUdqI7g2XaErYziC8eOlmIyn7ySMsTmQGB7nF9keFNPgmOsebPBIMeQXc9NmNMBzdaAM5Gtrt6vIoLiuyWRzKhPvYA1L49EAeZp9+bn7MctGW74wtcAmjFPSj9aiB9+YzL9Hqenj0Cjt+2B21NFB1csTYqfffRwWlBeNAvjmWHoa72P1YG7stL9kz55RB1iYBWHtvUxxMkyJ4oO3DD76+Cz99tL+txyAISxdVw8n2yVM/Rdjy6uVNl/ZYV0knqev51JgbO5bs1OcexWDhTlHokve4CLT9sV7vToQW5mPxFupAvwUL5nnjg4dGZOEutfHI4AeHGRee0D47nXCeW620z/DeDjonvhE4D+zLE2vNrqsuw3r2jDBE/dkvesfxZuso8KvMJ20B3lWv5AexqTDcyrXy+KHX1+4hitVos2noE0oqat5dvRzpvt/zuPvgBacM4aMb3/jV/k5NJVW9OLE+T7PsRK/WpzHFHGMaOVQR9qdZep5mzZ3kHYuRXWuEkoFWJ47wwiAAghpuQ3F6V3/mEpQQYxeDRIG7sDuy+YUcGMc1HjUCXdE959e0ohuBocqF+G7XmjvXlM2VPwm8OBONgzeg+sSuGD6BvdlJWInanZTadzf8oTFM6u6tT40VTuAaj6NFyXJ8dRWSVwTQ9hiphqA3bq/vqopr1Zci8mdYqB9wYRWu3Yv6Zk+LQ7MSEt1MaDkrvVSMH9xIot8Fu0hNNhHV7lPHTEAAtxsbxm2WgGzDAOhZa/bWuLo37tFwglFc4C4rPAAKa07nxAWq+W1iMApTfN/LUwUC9OvczFMr/5Jda/0AiLoOmxWYUV5Mppme7+muCaoJz/KTInQc7LOD3gm9kd26+Tka/m2SXElofLLTpWYo+/SlqIko73In7nrX3eHNkFxvRViT0dYsyPvREPx3IhVPp8Cw359wHadVCaPrHQhyRomZ4YZwcPpnWa+ou5VR0cFQFnFZgQc/ReUTQH13u2wBtBFVvRHzAy9mp0vdEgeTuTJ5bantqWVIncQIqq61UcU3Z88N0vpRzGbMkNe9m7LthvctMgfX8n2Z9psyPI0TZYg8vD+b4exSGMrZPwwkFHH0hICnNq1JWymhfauCeC/GCaFKEAfggrKhM2rJ0nwYI0NtrkdhvXFthNwj2JZTPGsd1PZk8k2Lr+TBFdEpC7RMgvRxYfHh9pLij8qkkSHOFxGFGKDaSTOZ9pI+u2gpkn1CPkCPZJ4g/9XrF+kpwxQOc7OBpHHT2pb9WkHrJkie0Z+xHJyOm9mC6P+MnKaehkopqmihjxgDzDiiIo/trmE0DbMavdteO8+AXS6nG0tIxDZ2LEUe+DMx/Acb33mPqYKoOeMrkOTHJGg3skbOot4mCZCMNatLbzn2VKE9cTooCG2hy9q9Ro3rmsMFwqjM1NSROCPNgdMxqBfWQMZnbN8wFWTaptMH9IrJ/zmcCu30egK/zQD4DXVC308aRl75lGxcA3AgsKNz1pX9G+Ap+0tNbNHwbUE29baReZJvIB78UcbqY+jKNYmDKyhSfgb12CiOK53E6YlQEv7+KmvLZkwY9LpX92kHGxWyCfkGmscnNhmmlwyRUA2aAiH9Y4ZAIhV9H7kbm+uegeEoUcsDRtnMyCcqln/NvBKEkFr67anOa7ebSYNQ3W6tEsyN9xvjo3A/AfdVHrQQWzJhqrv5oOFFywNiu4vgb6s6OR7/P1fxG0r4sWfwjSlw/VzL/Jrm3p3hbF8lr/bb3wPg0Vq+Bs46Hkbk9pZxHAYlBa8SpJ8LeevykidUtaBIA/e9dl6BiPcjExLo/OoUfN5+lSHSN6QPzN2Bz2RA+lVwJK67/jxrpep8z5LsP2kfQAh2jvpijmldZGtvaOBLM5WJrUV+CmTZoXnBdfFrxtwjyyxAQewG1ZfTY+vueIimiY7VP2V+xrKUxjY7tjLl+X/KcH2YE7lVbHkyUxDvZcN2r95Dap2qT/ryX/tK9spJm26YlCUYg2WR+NFXo8ahYJxKE2Hj7kmXgHX7j15lB6Xqcgm2HOOJ3D4v1zGXzlKqz+k7AAiBY8P4tVJma7BTq3+YxUdAJ5o0ZQAJ2cP/iMT8n1wIEgBbpMtR3boT4lmLv37LQ0YurxPG1sXNvjqJbgqYYowCOqqNxOS0SYWPsUSOLo8cu3GVuC8vgbYrp95ITkXqYb+VNHpo0EIZ6kVO8l1jGRwlI2noCHHWx4ykhGJLKIrCKPFN4BbnOmDstgZ+TrCjIzf1T07sLAb63s8dmwS+1o4fdcKDgY+tBjCDgoUyEIsT+5pLEs4lazKOY1CDr7qrgVVIiMKBX9NWCCpb0yqIbJCTacWk3CJMkkjdX2PhKjjV1OHDPLDkNWE0e/qIEuBukDd/Ebk2xlnOCUGP0EWVy4Ew33zXROTTuSA0BKFlw2na5Fgg8VQxWrkGDHEdpYL5HU77JgugNAb6zTLVuIR2C7QK7iebxr0dJLOFVb0DfD42Qd8tGofIZb0/AU8PbCLQfhIKz6DmuZxdLPNsOP0O9GsVP3OMKwlJjM6rfyVwEEIF/ca5wzYQMqOyIpqkO8DZJDUPk46KOal+sDO4yEJ7wSRqjoNY6d1Ymj7e4SAQbOHrZFvUuFrfCjKxT+34gEL14DoOOQQdrO+0Ehku+hmHxOpZ/v92PAewFUa6Q4IAhMxA+5KksuzyXGeeiTB2DnG/Ze6/0G8RL9gdKt5lhBNMSv8sN807D0WeJdugVEn8TL8ZEtPxXkOIq5/3/TXwYdg+MU0CCPaCozJvd55X9dQ34DwbUnyxl6m8WMvXZVNh6JMrCrkT2529ilSVwx//5i+mUgiCq56vuQVLQCAzh7Oy4b07r0LcmIUV7q8ZmQGQZ6UUtMbXCx4MGjPg+dqEbSN7Uunp3OQId4yW9lO6HqzAXYkXGE6i46ob7HY+1+lZ1njGH4L8BKZR5D7UPSPmltBm3kpU6gcYeswU5hDo7ZYCBCUiRWUzNs3xMohXq9SLQZEA3L0W8vxipvlRFIiGhOdaW+VihMxmszPnRlseDxZabwPI3nXxCVECeao/3uBJRyhv/K17OdC9QmVBzh1x9FeT96BBYRzXHvzkjCKzmrVZlHw40WdYgPJ4lBNb4xmRev79C1A7L9gBZM5o6IWxN4lfLGFaKDKz4luS77S9txryQaQU+ZlnpEeNoanUrTAqu/RtEe0J6bre3URE1bJ4aHz84jLM+24+kiO9OELkQPnbf1Ecu0MrSdp0uYGK4sEdjKLXhr4Rtd0CxX8NsbAoupFkvCmyfBPnxrENnXtdj+ichCO8iG/858ULVMiiS2oDhjVVMqwgkv+Y6x8jtVOvncOasnqMDWih+O5qXltRvnNLEM1fA7uvcvgmikFwPxzbOFJBVYjD2GL/MRBUvF2PvSb0cdboFIzVygefd/URw/euPRy4R56XPkvJyTDUUqkcCxydavnUtnqkJsFOg9UXB/pxV5VpVkTURGfFaYqzDcBD0LW6GR+hybEn+5W1OHYFufvaOEc06jKGkp89BM3jTQQP30yIrS5MXlUdYnkAhU4I=
Variant 4
DifficultyLevel
583
Question
Larry, Mo and Curley are laying bricks for a fence.
Larry lays one-third of the bricks and Mo lays one-quarter.
What fraction of the total bricks are left for Curley to lay?
Worked Solution
|
|
Fraction completed |
= 31+41 |
|
= 124+123 |
|
= 127 |
|
|
Fraction left |
= 1 − 127 |
|
= 125 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name1 | |
name2 | |
name3 | |
activity | laying bricks for a fence |
frac1 | lays one-third of the bricks |
frac2 | |
frac3 | total bricks are left for Curley to lay |
working1 | $\dfrac{1}{3} + \dfrac{1}{4}$ |
working2 | $\dfrac{4}{12} + \dfrac{3}{12}$ |
frac4 | |
correctAnswer | |
Answers