Measurement, NAPX9-TLF-CA37 SA v3 U2FsdGVkX198IyVXtizqdWIHPSbYI6Fl+uYp4eEv264x5sRXU/kQMKFfUNlwv1voM5i6/m/zxyS/SkmaysZMJtq3Ny05NxqdHJPyNeH7ZlHp3u8Si4g+OEwTYaHGJe3vm3rw7ESp5lag/yI01LAJA1l7C17nZgbBNvORj6oI9mJm6assCfKDXHZgnmhF90pqsdvy9kVD7fLCAFU++NmK7GTf/EOOjlMdDG8l/EVnMV4XDCVSHHjm8DyIu9mVUhlQ+TRhitqOE9INNzIqCtBkJQl+TdW0LqNKOxOYTHnv+tim76NypZVrvrYGXQcs/vcy+7xTzwGxoX5fssc6LMvfFJm7gaBxrh23IW/6TSOfg0zoiwdAv06hCCAc7a/zfM07T0Dl7NjRF5rQkkz6I6QvlGtg/pHIYpXtzaTz5NWv9sKdRuNbIbVzySXG9eHpE1qKUjKRgmauNvL0HchALksSfU3+GfEgF2ZxRNGvWNgZ6TiP1FHScfffVK/a0NlNZHQznJ6fwXTgxU4Z1QBzprUf7PVTragwdg2hMg45QzRct7qxpvo2YtncFgsifvka4uQmSR8ifS/a8+hTgWdetor831/6iK0bovA7tvm+V3AM1CFdB5REujJajKm08s1fGIlPOsiNcsCqYbgf+Ai8w1Kod6HRF1nfuemv65GrcL+AJ1WvLtOI66Y8v/enBCOw4ggKXKzZmoUccyANuktZWucP3pS9eG0wHzw7ZWQ2ErIt4Nvf+WUU/W6GAECR5urDsqkkdwu5N/XuPYI2q7ez0RswneuR5lLCUrhfifmd/qGDyf/Or3sMFkALMesZPErqasMk6mQ2raw+vyXWpxcdXkz8zeiwTWQrBAAXKDqhEWVRuRw9vz3p7mIK5+u2zlIHdEFLolW/iXE8SMekKvmhTmMm8e7G9XA+yhcTs0sHaKMUUTJA/m/L3mkQGfd8M/Kue1nkeUwmkkGNtkpKg1MlnQPCtngdA/09MZGBRQZpYX39tu6bX9niotcdL86FOywxrYmLuAyKLhgFvYwGWOHoz7J4EWgK5q/4q0HJsMqO096jfm/RiHNPNvjtoXIsm3ZEpthPLaant7Jsd63kBawm/okZA6l4Q0LrG7uUPtev18V8fQKp6LZAvYar06Dgv55xNQOEij0D/WCm9DDf0bwrHrGhel6CkVR+iG7t+Hbci5aIiiy812vUZvd4LD1APzsxUnqOTJsDUAIiDnaA732drUgyyjvw3ELYRd75CVuOR0H1icuhXSnD0uF3N4ZOi+Dip6AbTYxfI1gSOZhIte+ccF4D8ZX/KO4aw6hXzresrDoN0jLqwmWTORDb9Sbn2em9hkdfmy77W0hKgW0dS7s1AVDpPNJdVt3csaGfM7euNbObdR6gGSVguuJvklKxtuUaiGRdw9poIh2qIZFwKGrUhUAn6U+eCRinHmPp2mrHt8g+Y6TfuD5QCPJICd6Czyhcbm3llIXB7L8mm0vzrS3YUlyRahM1xlR9ZmB00Ec5TmMwqgziHQfYIhNfvqyGW1BtCSnbBnwRH98g5XvC1XIuK4Dwzk77I33d2WztRhCo285J+d8ClyomAITfp5qRKdCkD/JhzIfHbvSDLu0jOkcqX9j1ka9u5757aVUM2UI+Y4iDWNh45nfTlHdKah/HsgHOr8MtT82arfTh4z0SYnrcBLPCTLaoDsjGC7AbHarPKoSpl2alRhu89GQ0mdrk9AzkD7AtJkHNxi8tnYvnjlcDb8igbG84mKxvP83Sf03ibukpaR5T7QjE1yw+d8guF8HS+fnJ2jmulUERG+os9yU+sztmVRETFcE9uTvvESQ0BBXZ66PYlZwtnHTMZJUo4t54RQTPdy6FCiG/3sxHCmlGVZKqW8OnbST9l07VqGQE/MJSw7gH8Kx3PLvro4pQYjbIXdZWMNRwNp9oTuECyOU+mGFfm+bylELW6xc+ccPK5+lWKPRSFttlnpVOKeJUEyZ1M22KQXq9UHGiVjrJttymRKIXBVZvPQitXY2Zavxbi30j7shRaiACFEJkGLUkAlb6NguP+AQ2mcL3GJO5Wltm1mHRaYoFQRUkhtOVuzOcGmT/SDdINBUG3LloPXI7hk4S7AZeXoroj6IXuUCTLMyPUTHTsTLGKn9vGw6yZPm7n/Fz99/iBMHSctLEEZ6g1hgUmopdzUl52/gzLrLmGPz2m5uhPIhz0Z1Bv3R13t3r31mFXGoc1uvjpzuyG/fRd67vZzkkvTAhsd5csFT0KrWk+XsSMXdcDnaqRE3oear2JMxEhsRE1Rj2sB8fEjryiYgmoXwRXCdGhC+Xy7OtGmp93Jkw6NKjt3jcFEfnPyKfBQapXMEVqB1wEjPTKxEz9ct0tLZG97uG5y6BtJD93vT7Mejm9novmHIYKBjzaKIja/a35laAGdC5nqYnb/Rp8vvZhOTjX3HkpZnDyutAZjJy3V3zHKEz4You2qHeAIMVaCLJtW9bz6c975/78p9eam1azckndypgL3feh7Adibv5m4dkw8TxcMpKXR4gLsgW2y6RypfEHW6WoKHqY15goqwBCxvfQUN/+v27RDX5v6TUwqAGTVM4NznHc2p7yfa62B957O8jalYvWg8+5Usi7tm07U1fgl2YwnDumOhgCxmYJb39vkGlZaSHjTja0ivIr1YGSymoqaQNvXTz6gQFTG3PbrQdTJX4Y8IiWj/Ouhe3hWIXf+WJiQJ3+bMnzSoz28tWjLgfYrRYFrlz02Jr/k3acOBvSHM7jwyWTvFY/4G+3/bJdRFhRL65D1qeQ0fzvbgsBPxGImLeY6MagW5P9Q1V5ErTW/CAwn1CjWrfV3CFQEOpnupzc4EHHyWXYPyEH9dW4i2hjNAZxFgDzr/aNIJTzhbpsKtKav16Ho91+3/YTjZZetT0OmfG+iWosQ/CmxWs/hA//dRT615MCoAKzEBqCTaC0nnrDzCkMeNj9OBD9OG/jcgYRLbYqBqA5VK5i1RExCHCTyGmV5EjGDrPYFG1gsQvSWh9DR46Dw2xsJkaR+JhfuwLOpKz8gsgOMROaN8NNFV4V0OwGa8x00w4v3ZJpHy4c0fQYff1asrB7G70msgy4ZR6M7PalbopkmC1iVVdtbBaW/C36Xd/ji+8GZpKSfVdmA35PDumHhQdNDB9CuZg+c9AiEdLqsmdZiURs3e/WjlAPPgdv3Xa9C6Z6g3MabZ+xZ+jUnNxRSD2IUoeECNBY2hXDjF0fBx4t5jrAYm6PvaNffQLBT2COELTlUEcfexNX2AaeqVyxe/NkXQakT9fzLcHs9larpxbLUyromYQDLffZdWMKS2210Nf89bi3iSB74pxilnRuhRr1emNhBjjJ8mIpTqv3vtPXS+pqarsMUU5hMV8szEVaCmdAIcNW5XqEYEKvYY/Ohywlo0Iu+izb8jrsqX+4Jy+KCXRw96+bcbg5JYW+/jYaBZiGdYhD9P/2h1Um1fMDvRKzyrQRrNjGfUuzD4YFK2OQ6KWVnxoTfq/YErAstD18aBBSXYT0iJ1kF1WbGo5o9/UzHOX/LYq7xXlarQiYcKCv+Z0DIYkxd9t9wLXFSJ6nQaqjuyrmFs0S3JxtcBXDuysSwjjnEeaQZV1E9bNd+lm7ykwjIByYQHw75uVbhBYsUpn9J4e5BtEfsHR6Hxyag9hbcj5atiOar1tbFu3Rsy177LBbSMeg8Gop4f+9YDGKLDwPhJytY6KtzzhOJiO2aeQBGB3NTvIcD/wEBFbJW6FToNkt7XGajefghkJ67/gBIcyqDD3UJQ1UYOVrGUqUMTWVVAZQYTrZQkCiMyCcQyJ/TScE0RBFep6HL43T/VQ0TaK7wTLEfSB8Oz1PDVgKnTwJ2MiFEHBqzclquWO3QEYsyK4IXa/QkarJpDBrDf70sURm8C84tB4yPWjw1X5utG2M6ogjDo7HAJT/Un4+ric9eIB/yRkPROtXxq5jXL6EWHZlSuHiuc6E9706OFoL9TUPfipx0lZyXNJMiXRYk68DH1pV8c8W9d6gnMboGyxIcUx/vB3VlyO1eCEFtMF99OvaECFkwN21kHG8Kw/azDBpTtFaIBPXWlh8RTKfXYAHftEL+g3jurvxiJmGcpei6YMhOj6kLMi9Tgk6VEHZXJNY7fNkb0dGvL3hEfAbegdSw18SG98ycamrqwoMsM+OSPTVvi2KfujajLGVD0NwBHr9dZafavi5gBMjFKq3TWXc6fAXZ4kNcEYncyY/Z+jlWThcekaelSMWAW9Wq9EAzOEzaSCHvhDV4gpfNJX3FT+RZ2hgUH+cEE8RHpfsf12J9tCnAFUS2bykT/OdzPnrpA/Uqn5sIgGrehO1loT6ilR0V2rmI+VYR/6g3SSX0BD/Nyzbz6nUI2FxZT/cY6y1vsfarER2cN3m2OM0beg/z5moirhkr0qlCDW+nJ/Sox2ZHeFqqvvdBftKfznRSDMPd3XwKFpdYyJz0T5iVVMom5hIKSiduEbaHa5T7OZm2DmXmBAsfOZKRG0HEvai9jErgXhc99NPpG9Gp2I5Cj9qIPO0+5qWy5hY1ggEKxGW7Q2hYX6joaSW0YqZ+7GwpTKERJh0iETRQU2iEMoNbpl2xa2ZL5pz9LED68mQG2/5PwvPN8q106XAPRZcxO/3U3vwBRix14eejGQX9+nL61nCijOdbrLZbsLHAM+3bW6Zm0YHwoxfc07sXOHwghK09nD8AW3TdRwpEcIY2cRMH5UhMS2pOYQbpNeZ4r0hmr4RdIobj6B76W6ZwOHQ7OkSZawiZSXlZfrq9qiajeBxIQZ50bhq/fjQCTfKkdAuTHsQD55xPF9MCgFAdyQQdozA9oODWQ20WNgLwYOHeO8W0MXCUwzECCrulT54Ak2SZZsiDF1k4zjbRLezrGu4wSe6bnJezknl7BaHV4yDuDexuxD02nfTPOSXntzjs4wmyWs0MlLPqB/4SW+SeXu5dQrq8iRq6GbMvN6QfJ+hM0DVIraW3LRgLaaraGtOicvlXmKDTbSrr8vYN9dohuf6yvkiiogyhNaTlBB+yJ9Ysj6fkvkZp+qLQYPdoNlb39Cz7H36bV2+Td44/bgmNi3jBOrj9pvrAqrogJB5Q2haSs4keeQhVLS0/kNIHwqlUblp5rcmW8pTh3MjrqZO9pnA3V2oNiUjIt9sP1r6JvPg6ymKG5RzySqyuyRL5mowjSOG7nzpnQYJf2P/JxgIzy4k4BriQbkHsvEq2voQSsNjmfQk7aqPoRv9Wajm3yvl0gCxSpkaxE9tSl8qVgKWCkXmNB85K55nuSeqQMECnO7WiNvo/p1oGzoJpSlj1rUIOOW6ewk3kKTjTVM0ufzFbQLkLuYclZXhvXdnKiTKOgFqbQ2p9XSqCmHannZETW3OU7p/Jff7b0iZpDxHGsbdzN+H3YsgTAdJEU9m/YD+ZvgvRrxX8eEZJVdXfVIJy4eWz8Vfm1P2w2tIiKB4D6a2fdpanrz3IfPuETmduPuY++qso7fe67eI3iymznuwo2Q0DHpRQSzE/xKzuGH4QoV6ILe/xO/WAIQCP1d7m4b1/sfZtmU6mNPqJEGukezcLe7ZZ6d9KjJ51PeTb51kQOu1vw0DG/pYmFoHKnlxFUMdyrdXwUU/M7GqEp2JaBuf4das1UVmSg2sohypxYAhxjiwXtOa9ODLPaJh7IyKc2ZAfuXtGauq/I6F2cM7RQcTKGXLKymrF8/XGjHpPaNKsmFUFWLZ+6fpAXfNzCsDORvGZ921HuUku9UKYyEg6SbpOaN/MIhPIG800pcuUQgCIHJ9XlgTylhJLgR+JNwtMaN3vZt6A8Nq8xNbYlFUFvG/dtHrcyWw5MdR3gGHlMqztzCmrcWnftiFvcq5CZ2SuVBlVahMh5fcN8UahNRXzs3NhNEUmWsht8aBqwSt6ucw2HvsDYVC2aaEdIRAO+kbykCYFr7jwEbCXGna/IZ7FfCw8uWCgd8KPCmrPC09b+ywhoiIdqh/Jb7W6Oh3fWP31oA8r1nMoiOeypJn4fTVt7W51JIs1kWm1AnCf/Hu+/3h/r71JvKoEVj//3vL2IFTieUIU4Bw5WKijRifMo8E7cI1uPo+BsRreeFRidikZeDRxK6dQbuZFp3E2/COB29OEESIFHL3W7N9l4cyMyobseMKPYO3dg0tCheR+qymHshsp2/Hq7tVWUNLDOVEPugrARvqib1/dzMzqe/Yy3GZo/3+5AkSoFnbWbqc+fT9cpIgET3U/iJ8As7K+u2Gd8rSNhOdG5p/1nTqGRAwmeT6Po1JMfWp0ki3MbjRsTl48izgOF6jaxzAoxnwDElc6CVDeuPG9zm9KnO+X7hIV7RJ2PZCPfW2Z+SWsiUzYyFiAzNbP0+FVydsIwSdetTy3tyqx+onrvXUEOvyANHsLTKENx9kxGc2vrshq4tPNoNiBePwsGKj3vntE0aDc81JzEOoqTFw+pKYoRc22xrw+Yxf+MnYmKphdFy3S1XQv4tNYcOFhS8e/HnCwaY8yv+p864Lj8F9VpzyqO1Lf0MCUaqC48rM2Iy8r2knSO8XoUcmZOx7pv+GmLOY2uk2IQPBao7fZ1t5oS2BbWizU4w/FfJG4+qL/EQkzDCJHmKRKFrpxMHspNCh48bocXYp0S4ufVjOz5MhR3MMTFfysQ2XHgLIrpoF86bLZQdriqb42mdjB3RdrDD4bcNysBviMpgxjunlYcdh+toPHr6hWrcj7K/wAQJAnmDKORaSGpSH70hufPZnapgRbHzfPEXwUuvzskRV1gEKU9JFvluH9RyNqFk3DSgKPmgy8J33KWAqs87VVta8M91Jctijc/qOpqs6E7e1JCIHGO4laueLzt3zZvnhYIVby1WwnMZ0Ht052aYMsFZUu+o4BrSsh0Uy873eH3tCT7nh/DR/WENkmUycHzNl0pC3t5rzlRBe/m3DYLVOB8oPrkwquQCyTv7CBgGmvTGSa3pnF+SB1A5gU1uAVxdQTGhj/7C1VyQVCFi+EgMPyn2lH+aJNg9uUh/kWYaAoPhb4lRTpJIgHbLgqENv1ojJXKnQ2E4WmVhqjRMSu93vl4a3uYp+sJkybECa7XmaaGmZ3WYypCv855StLktWUIOgnkEUkHvG18B2ZxTrx9cxnot5OvB4T7sUN+RQRe0XWOXyEQ5rFsw8BbNoh4kW7bV8oNkuAIinILclzLb1KIwetO14SW6puly4f0LA+3HV3HW3LD+SOeoLgBxpmsnlOSW4QOZnw9nCd+OkdHOZJPustcDRhQ63sEkiv4j7BGUBGqjefOANcyaOtrgWPINnFYyEMLRfV30rYut9TSkO+6s0dx8D9f/YueRfZuPMjriRMo6TKFBlHrwn1pVB6AKJArGQVjR5fEoOq97d2Athao52H1I6LjiwiM3eZ3mJnaIcb0+GZtEXbn2ZvR+/SQ6DitrnVAWE+VOL09Fl4i1rSecH5vIXv44f8AmxbSEn78Kcx+Uxy/0mhdvB2GvqfK/c26Oxe0Pd1C9XMq4dQpyeRZPemRXuA0lJmAJI+FtkaLEUG+YtDkLDzwUvdBjxOshIPcwRpAJig0Suo1wfHjt+0tr674vMPXpaDLlndP3/1OqmAyKpWFp7bp0gUxUaLIM2hmnSo54VkPKc5y/cm+YC6zWgO+vptlct+c8PI0K6s7iJnO6YQiOF5IFAhSA2xIeZS4+Yz2n2e1XYZP8n2fNclqJnZQJcdrdCnXn8lcBCuBeE6iJh90edr5LRiTqHJ5iAE1AbIHcA3qfZCIIWITnKiZZPSDoFIItXf9kXW7ytip6vpy+UVCfaIaOG9bljPbvj9PgNqjkvVKX9elVYuBSQrwYdxaGOML4SotJKKEfrunh3IlCQOssFQY5HDVR818EAVqLv6Z1W9tF/oXfvQmNMkR0xUYOLBcvMX8bfpS7pCMzUwTyrY+AAemiAnJCrUw8e/72Hk+Y5ntpjdSEfI8+t4sZguAwxbOCeBI/SY87eE+AVwFX1pNYBLLZigp1wmEIzVEdnsrUv6I64nEFTo3wiA0u9rtcZizEmCBYvu8LdoBcSoPSa8xuyk4oBABOLL1t9h0W0N0lw/L7BlX4lDITygcflCoG05SdeWfDnCdJtTqh03K0lxBNw+J72k2shH0/HHJivJQ5cf8PpcSG3+SzAVqBQClOZI0NuvO6utIxdwEqXMCM9QHOZ09iIJfRx6k7kgAsGnUXFssr7dw4pNB+4OMdhE5yhYqUjC2MginBCaWYoEKi07WO9l5UXiJfR37vFKRRXr1XPvLJG2CHzLBHKGScQAC7Aqo4njvPGjIZpoAsl4jZmectXaUQzLVayTLy0zcBakjC1G8aFLR+aZDJa1aZUj6pMrNEoPqJqumH5Z+wj538H205oy+q6YniWtQt3KHLOEDlQ1SuRlBl+XiAtXeQ9/8MHitoCstpU1lJNCtynnYuxldNsGvnkYHml1yzn+FS1h9xXo+KOjrKm1CeOqPLCqn4GsX8P1qgnih5bytQjZv9xGO6qSYV0q+WMOZN/hePkPqgU9QECXb4/yFrczbHic7lj4J83LO5f6EnPI0i1S1gLoec/ydaXY2+mEx7cLMSy+rqRLVv2kyhZq6kB0+pTV0wBUr9L/XgZU4+R6MDQ8g/d1gTm2KEwSzrP22vmlt3EzltJ5R8PXh1JG55yAi0iBkgYaR9tU/imp78LE5paLurkdeW3PNNH1z9/3Nl1cCz6Ivi30Q4u4pPLsE+tjKr/l9422mzcqX2ZSebYeTUmVIvmvea+OOk+btonISmKw00MKsfmHbdp7f/bimQA+KyNvrBjFUqneBIWVPmuelzOa4ZyBw0esGYsyBM3Gr4+i8myX2CfXeU9boooxi0tX8wqJAN+eAFgiK1cXtlW00k+xTF557ZZ57Vrxp2VYFHwuiGdB5Fmdxv6t9js9h/5BslLykqROqqFmobtVuics0Qj2o+kg631/Kjogc+41fUWeFOKtE2je+NQmK6yrWZef2ipfyqZHKFTrPuf5oeJut+tll7zxZDnx/uQrRik64R9APH3a2dqJqlpuHqX8t4kPg+8l1Y5kSoL5o/t+AMuCYkeafL8vTHyQkpAyi12d5QjAYqJQUHA70JFVKcae370PinWSeAki2j+lLjzbVxWEIMfEz0Jxw+yGM28wV+ZN5C9KtgRL4a1muEW6FWlOZxbQ/gBs2jxM3h9V0rrijrTVtlVIgiuHbCdC0iVo++PwYdKuLSXhOp6rftHhbDqECQ3Dmg5eGsNuGV6JYbiZfUZBWGZrvrAWYdxknPgnvou3SoeMJXxghcWeep1GIPHbY5BgbzRdBNU9LjwCcnUVYiF6gzUT/gfU3TLtvqM+ocGXaYikChkdohLvtbx1XNkCR4/xCnEH/26Fnw92iBOBj0enPEIaJ6V5FbEE/iuX1W41bvocVPPTJhascLenjHqDCtvUhGg1MBZwI3lKIYSkUApE0LPMx+rlDJqQWsRC1iduACHM+op1c6h4E5/dhhiVHgPTHrkhi6jU4a4cU/rdKLSdd/ZJqjDLgOygqMzPMCt8Ip8jAY5wxTl8glurSeJ82PIFdbHB/8IPrRhjhwE0Q+ysrTrLkoAOenLgcgskqHIuuYlUf7XYuQ0FZvOy3hjFNAWj6DgwN+5ZfJRiy/AAUugcwaKKSvM5VQFv7THi8=
Variant 0 DifficultyLevel 740
Question
A cube has a surface area of 150 square centimetres.
What is the volume of the cube?
Worked Solution
Area of 1 face
= 150 ÷ 6
= 25 cm2 ^2 2
Side length
= 25 \sqrt{25} 2 5
= 5 cm
∴ \therefore ∴ Volume
= 5 3 5^3 5 3
= 125 cm3 ^3 3
Question Type Answer Box
Variables Variable name Variable value question A cube has a surface area of 150 square centimetres.
What is the volume of the cube?
workedSolution sm_nogap Cube has 6 faces.
|||
|-|-|
|Area of 1 face|= 150 ÷ 6|
||= 25 cm$^2$|
|||
|-|-|
|Side length|= $\sqrt{25}$|
||= 5 cm|
|||
|-|-|
|$\therefore$ Volume|= $5^3$|
||= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 125
U2FsdGVkX1/Ln+ZOnBYGT0TJKTjN9I2G/ZrNdnv8zUjAkr+PlUbBy+QwjlsxHCwKd2OTG+hccVLxJP7wytorex0fDUxPoH8YI6opvHpjY0suv+yEo8rHytbVuonxlFX599gGY4U2qklKPs1GbVNRsf+fWXNNtVL/Uona8hCIBcWFuJ0F09aMQiADe9ZiIxshbDpOo6LPN2JagwxRN9mvQq761TzLq+/lfoBReztk1jzkj5o3AeP1SW/ca1NMmv5vLQPL5veY31pvUQXzgyzqjUbAd5HS5ebtTyoijsqFfc+Du/WVZEZSh0z8E6jF2ETdVnqRpvLkyFCriKwFbkRcyWrfMNaSHLnKBUSARTUUgIMVMv4ziMYKpNBvdu5RupMotWdwt2c5yuzB9jrDCDz63+MaZPURryY81u6bOrEHyLKeg0lz72+gPCButI0qlx/q07GNpidhmBZyf6oJCKfGTuUzfAXh+7luWJnA8b6NMuZ9GvWyNobj5U1ON6nGfDXwiSAbcB36J9okcsruRoIMGv+REUtb6ZYxtZ6aWOsGgAlMXBqo44vEaTTGZn6fkNVlDOMCfgh8Odx/hTUcpTGhWVr6NoxYAn/pWPlv63w3bI3ltgnGeuqM5Ywjktb7RvdpNdTVUoBhEjKRImmUwR6jFXI3iugf2rIhWZsCtsW6lyz6AVli3LaNwXO7GvhQIJ2k3TIGH9oGYaRUvkAnmb2jvV11eD9U1iAAY63+en7PBphY8XJNGNsuxHMsQpf3auQarOs2L39Srnxk4zHxAuLjKDdtKmbAKi67acovUnN2XNYZvu2eJCFJN1PVz/vAE1pl5DFPXwomYuBEM4j9kkoi5yK391F0FvUL+DB892OvsI3xax5kF2wz1lptthiKUUlJibWyXNiK433Yo7+McKq8X/MDUTCOBXwSkVr7KTP8fUAAfPhU2F8ziuz9D2/58Rtb/XgGW21x+2azlbXnzp/3AX9o9qoFo3FDYGSUk+zplVaa9yYxFoK0CO9ijJ3N2a9MMPpDB2oFel81Qkl7jl96yVEkJbvwjAaOTtv85hxDbBKVoiGC+arjB8wgbrsB6gfser8Z2bpYPSK8SairGyV2qs7xve8Ep3w/O745TxBfpfTYQd6t1ktDUIHIJyj2gA4ZPLJ/t7d3SW5n/Or7lk3dahsrs4K/llTyqL6GBmxtW9Nji1Cx8XI5ekC+5OagKvj+Qt3vOU2Fs+d84Pi3CSVIdcFItebkNNGaTl7fy7Mzhy+KyzaMc852onBJWBInd3gmvOpGh6ilcWVoZ/DPOVRgM2MGYYkt40l0GB5a9ZoTD0Fgwkr2LYLSr+PqK8BVsjPgtaps2hqg8Okw/Sov2qE1Q2onLuH/Eja4Er3NmOiJvBgjikfiPd0K2meW8j2Kb1maALQMlQCpog0jsyzdqaS3056Ce0L7IckQOxoawiIKj4jWwuVyJot9tXTv3kte0vz36RiIsXQzMnrwRFtNBmiCIQMXnu77ugjVWGI3HdcWCC64m93FOEi1RQ+ioobrQsnjFOxEXbooJ2xlh9zhnqo0S1pQTKJciuN4xqr81JYoP0zc4s4fw6sEIsQnme9o/L3aIEzqDnSXnh6JFAKhs8t+Pyeq3y6yju0IkH+MQOotF3cpB4beFtzDSNIpCkHv9XhEW6OaJO71ZtwD2XJskn/sOU2GQf9EzmQNQ7DHW2BxkoTuPpImPGuE/5d2WCvZhVjYxLLoOUHReyzXX4Olbgj23EnNBKDDl5IxpkRXypNV7CwBIzv7FE8i+gIg73naJTQOpuicDTj3A0ugjVFRKZ/x3Y750k+KnXKq5zzsNCFEJmuh5SstsxaAFQRtr23VXcwhlB/hZLMbg6N6K9j8vnkfBON+oMZ4nrsBpQtFzHfWuOWz1xYz/36r+tXentHKoKOJhUT6Xb802Ysc4M1xVK5W4k/VwDBOJufFflyYRRg/YEzrWGnZTPqeh3kB7yGv28yb2u28hhkR1KSxl/Fuy33log34b6VS/+a/b+KVjuNpSGjXfuSWj40N9JeyjjNYyogmx6r1irI/vCXy0IECLV/SRsamoMnp16U5NejAP/rthgukkN1/44ssGxUAVWG6zABt2bw4rDxAyYeRy95jnpdiBBof1OhgiN4IcYWTxIql3l29jOCKCbM/b784jJSscYzzUlCmuTZFVOxL5Ywced+ZNMSx1YTHRO1qIFKMx/dyHFUJaiYiEKfEyxvVQuDWACWzMo/1wNQsJQN+v/6X68EpzKTLCOg+rTdOvN/XrKyBQhU5J8nSWYpU7ECIETEU6ON7tjFeRuP0q68EuWr/OXuOAR1VQ/RnxPobqpR1GugfPbHwc/xv4/PLeksPnqr1G2AZpThUZXcmhQAIROqo24+oMdO/bHNRNxdQYGS+M9G1Qs+hv7Q9EUR7ueMMPtt3wSqmAdap8BsbOEThcI9kM1F+yJhRXnSV1dQ5uRVgMUc+BA0IVPSWw7dc+ZcbE+2i3+r3ccjhz1mLptHFUT4Jihs2EnpMJ5QPVIZGQyDBgL3+d5KIf9o0OzQ4IqNvAaEozcycigZ+fed3/jHWJxaQGjA9q9DSgSWA25ys4JJzu4PVMiOR9wfqkkQgJr87SEEKNaWnc3owo4FLJ0oOw5SHXgy1CLiTYIab85dGJyg0Pl6WpEdruOA5fYh7WmJSM4nAzplLiwT2A8EboEMexO45vgdyF3xbOcizhaJ2AvkYlmgrQawV2vYcifTKpGnpuOWV+cPgS7pZKGvb9FzjfqhcqNiTz/vPzOGAyj+3fpG3oOWNwueEXkTymQThQq01wqUHb8fE+vrZFqztPXZnM+mOFGY//YGUC0u58eHOAvKZeAxMiBlO/oh1t12cvUUDu8Gs4dMKQ8HhczM62w404WVTlitW5ePWg8+lwVmQvf7PcSv5H+Cu7Gc6+wJmVqOWtNbnS+cycJN0toEpDcflKYgq487kIWZkhui+TaLkOmbVUnVroycr7slZPvQvdIRliQZYweGf153sKi7/o/IFPdY7ev8Raq01Z147d0uKoOcXukFuviF1BvTiir6sczYaJPexzsrODHZZW3DQ4f3/shaZyXtnyyw4SnMvm5U7rCPqOd/0QAurqwrAjVjBzR50gJMgrComVqeZHUikI/3E7cQsWKlwDkYlqPR+Ik3ewVn9+DcX7z1FBXKcOapQ/HRALPFs3qY8TF124l7i0xNWc/L36mggQoAbuYujsYLxoP+R1m3gqJf1Wgu9ocZWZRlaVb1kI21ejY58SxgPRdI/ixqUc/hyXJW+k7VmtGy07P9MlxmVkAUUz91xC9S55Nd0uznze970tjVslbTC3jjiadfoKrhjbPcK3m6NUBi//NUJkaKKXLUKHoMF++hRsFI4wQwx8tWo8JoJvnl2VLKlzP5IeN1uh5ma9sSfAd5A95ON2r7s2ELakPF6cHdCuk77fKzoagYlR3tf7tR5IcPUE9sSETUOrTb8815Vzsw/4ULc/hQb4y4brcAnOuADXhqS7w5RrSt1AcQE2/TOwTBycUJSv6Q8CeOgmdV5kcb7LjuOjTPmIK/BgezB+7/oeMlqdU9seWl0TYBFalZyZYaIjLXmtlYkQdKCnphVrAXHI1Fd7d6tZj07rTLZI1dWEznu1isvU3zeoL6cagyqcdUlW7XKVsM6SplBYO+fZAxYP9GlZ0C2uvn080EV6bh1EWj/eneE5KuGMnP7akRY5hDJIqYQMOVyYumks+aSdyNDeYH7J90fnxO45F5sIcKz6DeSnX9emXcyMnPKqARmM/XavVgaqpbXOtUmE6KIjXT/mlh5k9oIrbtp6ds8pyVPiC9hO1sWzygn5btUvHk9MIdS4nEjRjKlQOUvcMKSgF9ikw9zdASTlcx2xILf0TRndlmgc1m5TfXX89EFDzAvr1ttfULOROs8QsfE6Runfq8JKuOPQJUrgmeI9clI/9Bam8tKeQo3yTZGxuKae1N9U2qFxLT8XqJRev0n3ynyvyboRzbBp+kcf1d6SZKrLS84xpljLA/gbYmdR2wejo7/bGH2mq0OR5+u5JHlCJxWuN5EYgmV1+JZEJiD4etEcPXGYCULUOVfUZR6MY5FqwwZKmP1+Vw+LWs6opmTLNTTt/nokwSe+f/itzjB1VpGkwYjDYnJFjwu1uVMAtXFrySt36IVnhS8z0gkzCVtW0u/sI4EDyluhw4Da8zglg7wlkuxelJ7NOTvIXj2Je3vP5lFTBO+NKOuIi8fzLukv2KbvOOEi4d3glF9uPaxSEuic3O1QoaSoIO34hGeCEZL2oex70rswyqTWzqQyFAlTDe6vgCyf4d/FUAv1J5sphQwzp/mVyzegvVndikwBeWksRdlxiCMsF82JlVQjpXb4EGRdpVFRtTNcmkgAbTei+FoM2IvTv2HMLMJKoZQedZafi8Wr1FEezNCX3zYMt7aCSoftvugO5vO2Vm8obnQut3QuPku8GsCMOgr/uPPxbOvPrHRVfJqoDaO6a7vCIL6Ql7lOdNOZtItHdRYxs8jtSJ+NRX9puTuUkZX+Rt+U+MBhupxa4ZEQ8sXzKQi4J6gTXZ3pwVAVQ6DudPTZq9TctBPSZ2myCFEmzdwdkHwz3eKlidshSutkovQODRhYJEcJlDfaQh/YAfoP2pGNIyUIhxC6Ujg5JX0U0qoPpKGA/Sk0LajBEtoIB6E2p27S4m1WO3IlxDGOHMw8ITMqrctGvW/xrl3EMvUGLp8bn4AfUn7YXWZxV73mC4mfcSABPHSkFDCVY9DEJziAe8KyGEHyoEdvvHs0HNJelMAetXQ9DZOMGeChogBycwvrS+L+oKXD8mMcshk+LFRZ2WaEGIVh5dWaA95ScQ6XsR6GfDSavwKeUPqSBrHU37aJbY2Kn2/pvaH/cGau71lKNGOe3p508X0x3D38JwzfsLZmnBeZPBliCs+IMm9KwNL4MCFyHzjyxOYYmQOi/oMfHpzzCoDhISY67Da4Dap0zHvBJTsNzQ88B9PHn4hAnCuh0ZE96/2f3GhhKAv/lYW1f4AKlTsy3BG4+nwapgRaBAwIe4tEKxSuGiIO5k29me8dP4AvasQT6UY0kiBBTWzMyhfzwV6O0SC7HzalKXoWmomvKucH4xcZz+3whQXl/25K71lUn5Jb+GfCCEe+52qhRN71q2jTH4KcGVOLFglehITw5yc2Z2vJHC+X+5zSmXQbRB+NXwjKmkP6CmCX1tVHWLxrumwANiBR9w0ck2OzTATd60sugVn77eoCDUkmhKoZOUuFtaUtct1zbxzbCLZgDuC62DOzWjpx1Gzgi0ucsz3Nebv2zgJQ1lASrNGtx011xIZ8xJ5OQ3Zu5Oey6oWOyCL2AaGhGhj+vnJzO2ThBgZ7uUaMd0QcTs6Mv4ui26R16rODq/V+ML1DZ+jCp/tYmzxJAGwmNSX+lhz3TFMgHcXcNVbW8sqt3Vc9zb73gXUgUKhhZYoT1aJ45pIcG8RmHgUuC+vQABumE74rsfcSvsfR1R9RIrmRCgu2NBNJyhsDghaLbPzqlKcMeJrviI4VBNeyJyF9ToBtnmpICHprk7xjlCEIA7xcmh0NApyJUP6HaoT9e+V9kiXFZR7OQYzX5SIZNsztI/B9wsy3vNVAy652PAZrpcNKSnmHP7MOZY2Lk1bQw4nNrQuK/88zrtdNpItL6uqcJulmcPqV6I6PBiYbHH6jdd7f3jfPVmQCUJrO64yWk5ayil2vGrqW1PjJGzTWkhr7uy9Rg5+uOKrO7ArAu7zKIoOi/7NgrxO5EwAj6Rgyvfg8Tw9DX1q/eRqhweqLCGgO34SBjmqN4N+zkGIBJyHEFN5ngQpp8CSg4hk0jKZtRokMvra//g2/q2YNJWp5J2SSvl4ytCxnq/fwHLm/a48wEJlAqmmsJz5K0fB0vG37DcVSaVX3NAL+6YtgaxTJV0LzehDlEOqGrdu6iO+IISqOLLuht7BAU9LHK8V453QKFRHeipdpOW3OqokFI6MIdxkv3G5VayJQ7vyqx+PCbxz0g61eN7XDojfT78Ss7Mz/XVIIdkJSnojE/7uWrodT7cC+iK8CYRmDIN8RzcEY0vBuByigZ5OTBm7JYR2Tn/Ik8WMBqOEjddVS3ClquD4CxVbjGGmIEliUTZT1oF8k0TlR/PFlyPhWsrnosFJw+sDLJP9ZuuufteLnIlO8YAL9z85Jwis4jcds0upjlPIRoJ8QtI2BURaCZxLwk+Zlpd6s8sHLoHO9Sc2CESY5jbxjgM036SCZkl767X7v1t7brazerz1hlbSD081Qi2g8onPR7FifKqjgVo4qhAPEp6OE2Bxq9pJNjWiw61o7WrQL8YaYDiAyUvhs21wXrfuRCPdDiWCPiYlJgkMkKTcaXmKuxGMmNzjY6uKLGPrd3+TK6X5rfQn5PkVq1EDAbpRkynSq1GB6/t8XWNrMBy+aEb2Y4TzFKal2weMq9RqofkVOpm0FYpblLauVdY95/MXQxO0CrqJVclTcLXzqPINEtqiBBXBIggqggVkDYGhG3rXja3To+MX6ZEgSOJQ4DaT8TUIv+zPXqJbOIWbS/7hhSiWA/5S/IVMSTMiqrOVItsOZxn1TkCu7E2pE/GUJD7E+WuEY/3UdURcnD0YVMOUDFgG5YQ1nfdh3yrI64z97y+ExRCM73u4q91j+0CWIU6h9h4U3FD6WR004uhbAYH0HinaG+9FucoPtz3E/sM/WLuN2JyhGsObFwXPl/owL1689GlCQCcxTWv3YncLFxRgB09adY1NFGajGoo8NGunI+e/6MHNQcTZflqLZIs2IqiRb+I6VrZTXFsTXAOAjn5j+hFcbab2Fu9l/QbLntiMSNm3EmZfndkb4FVJVUDQalpXoMCqBcpsnUXph/1mnp3fIzkYGYtlh+gGa2LkLvhHC1If1ykqV22fKKY9Z+VOkQg6/1OVFjd4Xfsqj5mmpSmn7uAoiqeCPs4DBmbA6Fpk38S3Qmm58dIBuGLv8B3cXjFqkmDEGJIU4PFLpadJmDsg2I0n/5CiE3KcdPf4PP8sooFV+4km1XZEpZHL4TBlGEbNwnMMoJ27Wube7gsJiuXdB0PO5Yf3MPPQU8R6LsMwI1W6s7PKGfQ60RQs/QQf6Yv4zoHpJO/lCamOXVcOlEjwTLxAQJDjkBgLC92OJj/nU3V2v08G1uRU0EOLdp49O5A4XIU8YNEv4415nfZhAG37+pMskhE80RWZs0wmRru7QFp8kao6LEzgIFGkR+6Dyu9DoLTeM6EXOXZZe+mLaUfdcIvDhx7Or59wpeUYJkNcgjiUjdsv1a3UZqlbVAqELWKRu2J2+HCkq3ayleD0o6MzJHLLsXDoPZrG/SNjsW/W11f3zmdbJwe4T7zIRW7vKGwaRpxKiXm0QMBRBMOKrRSM/rcglHl3b6dHsWTQ5q0yqxAldQNQLqP2Vc9MYLZv8hDGA/GsJdEWUdnThHzNSRUR5vASCoQ/ZFr6pb9XK1t0trPmFtc8LyAwsq3JM72T+qFJ39Y1UIJRWomyqlWdxlJCC1tZMtj3LBWQsTWAv/Yq2nnY5YJ+6qlDJw95IduBbVCIupdjBIUvhoaMGVsUjkT1r9UjbA3Qbo3i/n7fK1ElH6Ve2eY33I47i3/pjfxn3gQl64q3HRJzn2eraJbmUY8TL85kSjZv3KsaeKMFVRUI5yVbxOwmc/sDgGVdBMWtEAs43F8kPMT0L5xPt+5aX6ZaLF+FQD8susYjFWBUnO+5jrjm6R1Uelb9gn1nAP/hPp3GuJ86cWbwyJn34v2gtIisXeuwYyiTvE5R3vZ5Bj+Q7sBCU77iRiBmDpW6bdlsIy5NVyDUHtGMoAab9dtt8tlV9JJBSi9xg2JsAl8nrc/W2ZBG5FoL583o+/hzP8oFh9mjpPcmv+sNP1BDNnZXVdg5HIWwSCuA12IGlMOy3kFzDs2zNS8CXHBQoQm0y6ioRvWtGisnA4vyS/jzUNdVjWCjVE/mn1y2MjSRma1eFklBPvE5ByD2qAP/h19urtV7rSdrGZjigPMCKB+f4U9LHx/0FSV2J0DpRlKyKPpTrUKYaUtzXgmcw7H57MDMYqpWvdnDzd8vq2FBMcKHIgklerXw1MhE18VCAGMcuCxGhOQJe+OrTUiyKK1GdCr1oW/XLdM9PtQJwa52rXWSf/BN6M6LKNiNIU16unuFhN3AMbPUjvVi9ePQlXkKHxJ8w2fmJKdAC6e5uQi+6q4xBRndhJLZ0EjhSm696VEADMiVLwbYaTmjPnwe7fl3JsKDNH9k+hjmiImK7mwAKnqMQ8oMqYDfPG0TlQ8vu37Hpi9bUDWutozdmhy9c0yXS5YZE5WA6szqh/V5tFW0mqvVw7yBKrkX5ToLj7mApkM51tpjLsF2PL3+BE8wMhlDoILz4MLZcnQdN4uUjV6lQTx/FfCx7mDDeCQEHj67oISAGlvXvzeOGsWc2il23WbnNwJtIsq3lLTmA/rbK+2lJWfOitvkLOvM+LXvDMPA/E1Mn3NWpvRb+7lVVxJCo/Zeezf0wO8naHZTriq59h+JGtQsO4QixBBNAzevzx3wBoshZvUhcxI6a+2BFo5mYXzBE78YblSk3YZ7gLRpGifb96+/2NB2uT3qglhd7Kf9Eqw8tdeF4hKhDczSk/Qtjgc1+YKQM4ai+csOIjA5Dv3dC5zQKwDyehERyLQCerYsjkq6bplq522C+lNSSsf3QBf8Ym11MIrkCtIbhtdXWT08DXOFUceIaxi7SWXqaevLcnmtUOA7zYjgDOvoU/h8UrsnJQ4mQluzomEXZgdXUXM8ObVwYbkG9qx60y9yqbvjj9wlRgkSyLEaUbauOJF3vEfN+U+t5BpXXjnm0LMQefEfVQT4UdXdmvzWUKbZgXgYvewoqHGHLEwJAJbsgPSokhpCegbJvvd94UixOoDSC9G9G2b+h+LXEQSRdVtRCkFHpviEQWCAX369SRwM2MiynL6+5fQ0i9lOvzI8oZJGUNzD0CQMUaw/Q6B2kj0oj+UMqAjqbJmNSTZZIMpPwMFN/is1JIQWAiJ5GN5nU0pOT681qkA7t0o6gF8VSOnkhrvy05HXX+YJI7TqP9EileMdRqpOEKxYEN1aX9M52FMEWZM7l4mCBaE92xPo45D9sjZdthvjYVkw3voMlwJHsbvjoN/Mu/2gmKJ6WTxgh4QN97Zvoe8hr1y8QVp/eJM2Xarmx3Y/E8cdgAqeYOJDwe0w016wfO/CeNwiR0wCJ3yIdPs07k1bk37syv1zSmhc9n1nysu8BW/Ddz3YN4fCYp75pZdfnv8E/lsl7QEk8kJSKw/x7jmIs/ohsQN9L5MCEePfYL1FHaNBkAm9OXTuWrbkS2bPL9VeEci+yPcgwWfxLceuceLHiU/1faxT1mZjbAFvWQ1bL6ucefXTQnlZ/sFIrkowhizUCwvus/Z5BxriAO9AOZCkR25v19m2HPywRkZU/jt69qFk0ldZ0mc1HSTxiWDk1i1opcIeCOx0oNs1I841PO2g03FVuNHIspawIPn+9U7I1S+gIOGe4ngS6Y+1PxIhgcBztVRhqCMtzjKUJek26qYgfkS22G5fmjAxQXB+DHvQmB2d4FBNobfeNwkfTUFiNiNbiLkhNNL9TcZkfLQUJMqOE/009N2D+myuh7Q=
Variant 1 DifficultyLevel 738
Question
A cube has a surface area of 294 square centimetres.
What is the volume of the cube?
Worked Solution
Area of 1 face
= 294 ÷ 6
= 49 cm2 ^2 2
Side length
= 49 \sqrt{49} 4 9
= 7 cm
∴ \therefore ∴ Volume
= 7 3 7^3 7 3
= 343 cm3 ^3 3
Question Type Answer Box
Variables Variable name Variable value question A cube has a surface area of 294 square centimetres.
What is the volume of the cube?
workedSolution sm_nogap Cube has 6 faces.
|||
|-|-|
|Area of 1 face|= 294 ÷ 6|
||= 49 cm$^2$|
|||
|-|-|
|Side length|= $\sqrt{49}$|
||= 7 cm|
|||
|-|-|
|$\therefore$ Volume|= $7^3$|
||= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 343
U2FsdGVkX18yz4Lwd/0ECC8Y1eQsGRvWbA2bBEUTHUdpA8nJyEynylc+YpV/Vyhl+QigoQddyp1mxHJuED4zkQ3i4nTz4tnpT7CRgxPq/nIM4zCSyUv1n/pUAzxHW+DUU5vXZI5Ip6kqCuFIC5a4oFDHUBGd7dtgEiURMHof3Y/WinSWWsqV5M37BVgavyAOuN9OR4Ja4h++zCO23+vksx3fywKAuIvf8rvyZny8lqNjWOOCxkqhlxc7SrQnLD6VBOdVQ8N0Bb4IapUN2HpVnpaJVr86JfA8OrmQvIcvp9p71lKNuckUK7GryfNnJIwJ752DXFiPkXqoWhs/73siA20DwKxfC3FIKCqj8+syi489XncImap/NUTpaCEofC+z/rQQH/mXYAszCmQIfKPGWEssPVFDGJeI7if2RRXcS5s7nfHx+9buWD6Waj+JdJXCX5FWzIHQ5Fo2ENo15trMpK7cVx6tyfVP2XYfpyzLa+Q/uexCf3sEbfw7YBO56VUWhgGApRPI7TfNKHsGy5yJDjoJiEplnSHmEqSIUBmOlsdmAVqRkSAVWfXTvMrm4pgeRLC4SJDnjfgyrAtvB9jpRxPAqcx6Q3zC6H50ZLzH4JFcly1tut0VwXK5Rh2vArzGjTY1sIV0d0/GiKoYV1oz3M0xUXmoUU2Ouorcl1WyW2MPKf45l7fKA1pzuHd8tJX/f/FPkpuxXySI+fCwU2Wavmo0Nd3ZUVFhsz+AsTExJaITMQV7ap+Kc5CAQdsN/jEVJD0dj+DvmsJmdO7zvL5Stn7SNb8bPtIjY9FWsbCU+tCMbWoaye3UA8Z+OnL3qymRqFta1k7ljP3p9LXcaV5OJmkddqYKgfDvW274ZKh+uIF46ApXrQOLBylJHOv3YDilu9puZD9rHKDJo5nePMLi2RUcolb3rmmcntk1lm43xtzg2pzKseb5HUnPUkUXPxTeip7D/iZAjYqSRptBFUr0hb5TYmQhSkrQvu1dhAtVupGoJ2tGjmBuAaZ7Jrfeaxv2sTxKZBJIEBlz/ly62PEWrZJ1fa5CoPi4hVdDM5t/z/U1XBvc106AlpFpnqDfp9CY9XT8z6N9TRoJjzygkHYEU3xDxlrQShW5C0wsJe/CZ8FHUAPB0G77Q3lRTi7yMXjbvfehLCP6p7vTeA91or0uOgj62ZdaFeQFr/8sfFFw4wDnLeaikotON4AftcpV2vcSmlzis52q5GJLkDUmXLF9TX7kTHnNUQlA8pVaLo0VwtCbxa+sV83LJwabOj1kloVfZOMhk2IE4cdm3j8VAu0+a9uMuGn4cJxi8qc0irbJaGGANPwWLCHkj3GyN8W9FnqnA0KtB/AI4mhY5AebZfej2+olO70xB4wEh2lcpetBBlU4dkEWQtet/X8p6SFqH3PepdfcEDCvQ0YIV4yyyaC37GTIopmXVqKNNw35yWtPNyMzlv+lntnoG2B9hhPMyUme0LnhV39ed3o2x/u2Vx00qbUptW6Sy5+z+VGrumWH9EwSFLqpTHFXl3ylCkLPsxyuSMaWAkzQdUCNOd1sjAZKdAO8KwU6oPZlQmtOl3xFu8Utx8ZIgxLclPrcvOpMp+sfJUAw0rA+lpENNidGcnBaR4t7HNGKHTR+ZRkwftBhp2aph1OUgI28uY7s5qDb6KoTzl3OcpkP6hi8VuBkg1llJwHLVVIN4kc3ZVcx6aOFqTUk/t5Mb0f1Ou0qLT1kV8u7c8IuQtEF016AZrxPomhMwgzYYrR8Ux182L/aQs01Dr1EHGi+/75s6LYLbrCKa0IFM21dM/yUQqUcx37USPoY6qryCIBnmLpi1I0EFwfLAmfC1zLCnuSjT9jBr5AZJyqRs0K8oCNAOjyYGEctxm8W/SYkSv1T0m1yjo1/RM4gQtyqe4wGunAdaE9FzKgaWUxkbPHRoSRaDZEEoKSWiN0r6g1h6OsDloCrSXxkwKIaiXkPYmBje5J6mHkCydZINWe6x+aOt1NXO3t4vU0SR//JYyyNyw5Sw+G+86FQsAWJ3ilDYdaQcMERd6t6vrc4yD2RKnJaFcgOaTkV2W6LnwurGKB2d515DVW9ioAP7cb7rD9J/Did0WueJyVG/lHel6mHUSei9yzfw5w0a2VjSYFz/5k9VeiIwFt2ocFT2fev+DZGakkqphRGdj2nLpGrA/GP5ViCHW/BWb8AOatw3qMc3MopELh2jVeaZ3SS409PSfOiMJL04eIk3fmCFk8oCmCb4jwcauiwi99uT4vPYgcjOqcK17KAFQEPHvMzcOxJ7LR8rwLm9yUbfYkoL9RwCjhT2qiYeDT/rHaMx7/T98ZPfiUIdaJ/9XBQAzaxpwe4BWKdAyl/nClFhTpGyac3STmJBrZ5wlBISG7nox+cVo0eIMLgTaNV5iy0qmEdvH9uAWZScP33NRs/gYW5fNY+HPfnV1Z3vd12o82A1pss8iZtgmvupsA7Oyx2x8sZ70ucgI8UsXwCJuBSeLgQhHD+tIofX45y+kazev2HYa1vcj31vLJo1mK6vnsAhRpOho/s3bk8bnC4XHyUPx9LHBSV/JiyXLMSHn3iU0pm0WX1cviVBKv5ujv7VF/oB+YKHLcM1KJ9Ze/VMJ8YhmWwryRKSO57EyudnGeN/Xej+9Hv/7Nzag7AaZn9A3Fpj9wpfK7JuKwifeb7qxvEW5Vto7AUGvh5P0k0GDMhdtdqTPTirV3nktHtQdgb6412H8dAetn1dwGlqCDh7wfsJcjbJ/Gm8PEHJPHaeUBYrdTpOBPvphESi9iA5DcJvgZFGh3EdosF0FTJV4tV2b6WuWkT4wwXSQ7tVQaEjrq1mAWoRJx6BTuvzVEqetZ5/VPnPdA+bA00DcyuHPXLzY9r2x/UBr94cKSlJiZN6bMbUGiRuowKUTmVxlH1OIfYGwUxWmW3mEemamRJp+Ob3/s4R60vPVSgzKkY8vht8vD5lrGsQH0craSYUJ29rAPJWDo29VxkZmPKETjOkryFG/0zAbyYHgkwkEcZF9bOmX+Q0rgKVRChahpYc7sOvKoMD2KmUZ0PV+8YUmcjeb1quV+bbwntj0ymrGwsCdQx+98xTWY/v98KJX43H+ECuO5Xt1PmGxJ6lWIwsUeoUeLvX3HcmtiNYrWbqSlSHmUpXv9tcQCOQHA04iSepi8dt8NZDjA5pAQ9mOdSeKfokUprNYCjdv+3mw1atTkLdymdAnnDc4gJa38NCHlGua4RdMWm3rFeTas9zONnW7eL89g9blmyxQPvlhr/FhED4A+dKdsn8f+ox1UyQrgmaW0zcLF20Y0z1YPgJkNschAoQ5ih6VnPIiL7Gs7Lu+o8qJKGvi+zqBS2k5GUaP+Jdgia3livnr8mNsOCUddY5CqekLwEJs7iMyi1n39Ggi3sNvBm2J2T7kitPwCpMD02Yx1rjis5YbQIy7AhTcpiuSDQWOc+5gHwUZ4v75yzmdNcDF+M82RhlJph6ocRam9mgFD8nW/bMSJm9MuIQCUnejBg4aG/KBP9oHEqpnb5Prfl3FMWv+KQghdW4xd/0tLbj7npw2T1WZkiHWnMEA9rVucMMWyR4iK87mXnb+CjjUQUU2N6m+E9UUqd2cAX2aLFrHRTmG0eYCwV7d+WMQhmIHFWo1dgaIoB6UbYrAjtz5lySsJ1DfxQB8PkfaVhbWHJM6vnd1Z9N+wuevKtDOn3jj/vc3xh5M6a8h3eGLVu+RHrVrP5nBZuq20hB6Zp4XEpty7blUQk2SIcaACI6CuAeO6eU/mkGNXmrsl2uazVG9/xo4oBDuTXoK4we5OV7QeQWrj0PyCv8Ru24OIsG2lMo4qcOZXB/k0aIriF0pXkGzoEijx6wDS0XuaHf3RXcop8R8rSB8yIS47lBzTPrx9dBRhs2uq9muWE5/7uylCslZD3XGpjm9FHzRyhBoGZkx/RJ6gQEErHTeqkbk4IjHdcyqGr2BsKYyJm+0pf+1nI9akmDfNCAiBzGy5rG+3XAMhYcDI9fspC2C0PvwPlN4IkblZ4ADMrsTm7F8LgfXklWvUo1Fei5nwav1RRScyUnAOWAqr/0UtBqlG0vM8wV9HMmIRUM45aDEM9MnXtF7jzpASRkxjiei28U58ejWumAkSH0DLYuXHNyqCyP/hCcLzE2Dm8k6R/aX+AdhdxTFusZBX52ZEB5dTH77bh87m+N+d4+yddBQ+0LkfhqXkQwFxcpLc8vYYb2CLRvnfVS/e4h2pTxOFTEw1QHeWbZ4UFwLJBz9RxNUq63V3DnFCKaJXvjmRtuO2mYqUQP/kDOE1iY+u48OYZb63kUODEAWG3MOM6cvbUscmfQVl6piXtk1RHygug5kfw5tdpcOWVtf2Ka7rUIs6zR/4PciJnEs/9mtQfCRUYguYbUsfF0C1QWicpkNWUos1+8Pzzi7oFnML3d0XnX+Dd5arzkCpAQp2eGk49v837GFVv3ehp562ISL8HoI4DD+7miqQnGdm+X+lEjRA4BubJT+MrvqifmZ1hhUGjVXnT3vagBjQtztUcF+1U6VaSlL7kW2BJLBQkOtI927lMf6yz6oHuK5H3zUCGcPM7jMJxk2o7vFIYXsJ2vD3IgW51R5lx3PfY4gMqMxBM7ncNRV+l2+XNo3UnyYDPaFZ4ksLY2Evcnk5MlkGt8Tbog2EB7hpi4uEa4VorFnat3CC5P0+7mr52J3+Ptg5Uo9Oj073VGW9SSWtm3NMFl7f1dPX4+h3bdc4FA69acYMDpe5WGOS368iWY2H1nxHyYXD3Y96E/51S99XwDi3bM3Iq1V/C3ZJuNeuw9Z80e2xtQgfXkyiRJ70Ji/u6K9X3XQPdMrIiqj2VpD5b5LiBeE6jSZ0A3jdM11MtRXS7BuSbx5I92GZuM9Du5xJ6ZL69SdGnirDvxy2oIp0HGfsc5ic2nUQ1BnveRxbuPzyhQIHh7eVvP5qRBh6DK1mKlglHpW11UUdo2TpxCDBocU80WqQ1j5PWK78l9RZWdMyeFobs2UgGlSLX1Dcvrom2HLjDkzo7QTvxZUDCAgchDpNjWcS2HpXeZAFwbf6fNa1rx6xRyIWIY5cRcdi8a7m1YGxIKzjPCbo/ovY3ebD+QheCSXiPaefinMnzC70lRU0zCv/gtHdooOCfRlPDAKBEfDlEP9ClsL/pHzN0AM7FqycQWNSBxh/B6QerKfgm5ddHdeHTq1RqSw+ZrBYNjkmZhGs/jGDHRhUmI+xlTxVehDzB22HJx9+Lehkjb/fhzMu+1L9g+xB+e0rosb7cd/Zv3blmZ09fTeNoKl97T3mhgC+sZ7OHp/EDKWJ/uZo1RVfA4wMjr1tRFrGnj3LfnBkRMx8+PGyO6xHZcP3Jr6gBpKnAmyu0baorjk5UvPkvCL3eawlVIX8S54C5rWpoIbT/A/AtxehFMhUSBn69TQBxrmUP0KAQd12KjJJApJZMu+8mfVPBoAH02hX+Ghab7v/2JbFbq7c0PnizpSNnoqhoNsBqJtTmVN6da6AH8CUTYkifc0YExZuVs8lKJJ/8wdD4EXvctTaGx3oVQeJ6Z7u8YMzqQvQCKn6RPRNd5LrTHtUH22SOa0xQKxsUbdPUD0tTbzcPfs3is90RWKndoA2JymnkiXVkPzdl6Pp0cnZAusTGoQ86ktvowXVUKSDpWi4+ORipQjDckFRRVu9gKYpHgiH+WK5c2BXhjBhKasdhRGApdIuPOKbgA6ccAo/zJUIgqxtLo9PfvR4g1SWVa01mfR/lh+Y651DzoJF1buZ4MBHecezyEpNtr9XkXfH0xzhrOyJz/D6/ac+M0XLF3QJbuqNCiqJYZRdM2OxLFE3yRE6VXFrXAtspDzpOdEBLTnnfkxlvwnr9PSNyIOd2wbQae80dHckLBwf3zSaWZPQQVMrShTRPkDAZwdELX6ksmWVxuypPWEmAoriq9vLTEZUPf3N4U0zxSjE9t4eta8bpy7t4LVGCYYNquSdNt63vfAlITq8buvXzyotnTHSUn0ugvF+RCsyt5j8Ua9lDcdwq79dnrTozSBHiuoT/AsxioOqR5zuxJItpINouXlT09a4uwMOwoRbO5tGz3sKxnobDsIDfDWyTvDkvn/0qbqvi/AmPTIt/6gTZfHb+Hgn+/3oQAIkIow2CV/cgTLzIBjgxKdmNG7YdxmcWxHYsoPoUy35RffDeTkTAtyzM1sQUKsLeW0112FKbRdYgdFvxVPFpeWfMx+0ifUOh3n2X4x6uHjTNhsRIU6ksyp8AXQr9Coew8uyZ5HitkmafCINQSM3A92RV8yIY03pzm4D3KCUzM1ccfKvvnU4ycOY65Pf3eAK2mDD0a746/xJUmp0BkikQNg4PJ4dxMksyFE65zIbmVyxalH0/y3vj9SqdSBjru+Gsmou0R8UUbpDVsVZ1y3lera+Cd4VERqFDN6x1CL+R2CzQAtN5t/IC7uHyJTF8g0zgDneeTqc8J/kR+GMa+9RqaywihMwspoF72iess/SsIHqPbC/WzpNY/NuGg+uxSLklDmvtXlbLmSPA5fMJ18XAzsMF34K3QLEU1DbQfFQ3leNbd3JLamKYMFIkC10IwSQ7NnUDq6gaH6pO5QwnIryxzUZpTpaOiccAsNDjeVmZYEvoqCJoUnkpRWQAbt+fiLWDfI/bTe0gAa3HxvEYGHVpZHvonhL5k6UyAapKgAC9UKE8f7PpcZ0lVZL4xXd+wL26mNmwmQDUNxOmL+ZqpD2MV+QhHvNtMXK1DLpfjytaHRdG72i/X1ASpSzD2Y4/aDtmrJQroPd9w/di6S/CHc1NubFemslK9FjJp1uMbRFcgglrzlOZZhVUvIWpP/MH8Wz543R01JF7j8cJlMtcyqgeqffrzT5pIrMBFGH4Emduh7X/wWTMfJS2e76AA0i+6HCT2Txwqqza3cvnGw1uDcDbczv65JHjXmzXR/fNTXNzQCaRFe/CJyV7u2N/Qf7JVEed347s13yMKsLMxy/HZr1mjKzFL1ZFkKva56neFI0RdfxPdMhoXHh5r36Xi17gO2PnNfE9PAWBrWWttOLpOWLMz+9K7QOiquf0cxpJFSsBNJlWPaYwc+CUXgSDPfdp/QpYHoxusxGA8tVBuynvPTiNtSn8X7usz6+lt1n8IICAP+0rn0EAwSwOfFEk71mbltMoU6XpjRHA0VaEpUOV+BgfDYEhrB4VFzZj0WO8PRi+REizz4eBYNqzNA+rxcZ+te47PQ42GUoEvazoOqC+fnsLwaupnnGq/WbVUS7KX/2OtaEQ6t+GpU+XdDhSQUO3rgusN4DCDRKU2po1n06lTJ4phGx1gRNEm/H0shOYwy7N2JLAjg8EeG4IArWlRo27j5LUwFKh8jNxpkjxJPlpCGnbF1IWA6b2TCAZjJ3+mmbWeAO57eNpWn8AjbbqnnFaumj+IYlxCc2CJA73G8XwZZrm9WxI/TOV9+QmzNoGzXG1nLnE5PjUEgRECGMwRxxKcXGkvrlOPr8UR9CL7ubL91rOxwe1sERWFYn88Mz1h/889cOL7BjVBn4aJQYhy97RzntuXFJaFyXBi3/WIvFZs6cuHNNQ6Hnqtsv1SxoHH63BTjmMPl+XUHPpxHnVsD0fQFpIehesOgdLEF6uVnhsriS3vZMlyb9H4SaOsONDmDIwzI8W63MGQYAKPVEpWjNLjAi7yx7S6dM1M+DlHm0xxH+6qQaWXPsP5mdfdujFuM582Ruqm2DHeq8zlryqNza9EY3XltSMRReKSER0h0SD8LHvNuJSjoaS9Oq0PcA9+A7xJbOtJwG8c18xAEmIbShV+rOCtJjCnMDu0CaydJauwkZNu4k3rwJy2KYCNJ3+IFuY66bFH3A/Y3oNfgkJXrg/uo0W4QOVC2oHCK+dbnfIbf0+rcTssaS7iIHSVZQk6roJ58NwVIXHqlHr3oam63AFxnlqlcMD7EHpIKIpDdmy/kuLuGi5F4abZwFkgJ/TiEKQNMhaAy0roY7Vana58V/6Tsto0zxJn3HHLrFy1BJi3h8NWq32KNLPgAt/LmyagzzwzxPxVu4UXeOGlIZ7+3uSsiIf/lY7sfZTWE7PW4XVm3mfMABX6QjF3CKWQgHTTbRKxq1J9Pz2u7ZE1IzEZn/Z0JFGiqOCaF/QvkF+Z56fOMt2i1uJTTgqb4275v64h4WNwB5XIEp8wcPTA38UNd891CaDiEcXNmHaEXSbS0K/fPQbeYyGAHre8hgTALInVxnyx/gEDJP/bhKvO0w2EwyiZW/GWAQu5TbqZm5LjFCehnf5WkF/LibZQ7ImhsjK3Uoy9BWYo5y1BboM7o+DzrVo+Bb0KMb9lvBKBQC50OZczqxZGm9yVNI9GhKgb1D88jS/gDR/z8a7kp3GPEj3XXKZykCema73UNamSqsI8cGTYacALujP5ZveFP5Aq31/Sw+Hd3OKvtXGwwkvapabnFABuO2ji3g7qsbyYrdogrhpG/acJ2l0Gt9OMMSfjtmknOsWACczhvracrRhaZ8o8IZxFq5efjz4I/tTDMgtYZmdE4Di8yGofQbYEjU9bD9lU0uOjNK2k4GHnOnZJq2nhiIkLg5lGSeQQOMg1wbHmMbdp1wWutEXQdhbDwBOPgPY5xVFWlXvhLx++Hk4Td5ui1A9cSwR2x8/sBBFTu/NFCD55EmMgluEFoqJZBXntOdkFe/kHsI7HeGzMDwXufmYRa2wN9FAOjjKNTofBaOalvPN3leVvmWOYxpfSCxwtLUkdNuBlHn2eSwZACALJSh2/ot/whlueMsyS7rKI4RBnNeeQCg6KSm7nCpG6/RIHelaLOpk2dgtPRM39Hl9ygmrDo8PNRqmDW10rXDNa1mDC1c2oohr3NAVLgZ5BIndMXrWhLAFQAHlB8WENwYd4j1qRrC42GsdWQn9PoV2TL1cUkCtkIGv/r4voP/b9P3Kl473D/eX+F41XFP+EHy8baUsNwm6P83/b8mvTKvlME2T+i74OBVcnclijidwloW53gAPfV8qqvMtrZuugyONaVMDpH/Crt9s+RyT/MQQ2nJdgin/FqLn2EwtJdPkCT5knoTTKZcwP4qGEAnxWFQd55aFBnV+jiOhZJ14sUSrJQE8OK4A/HvbvYkVuNhTPyzzBQnaItYFfeQlYEbCcMAPdj41RbsPSmOI5faEASHicnNJIVt4X61DhL7UL5geCZPAT0m/3MwMyhB9ufn0m2Rml9igVSigqVVjINrEL1N12rIc2JMazmAp1Wbv/XXCFwcnxcJVDI4flAlJQWD8pDC6u/ySw+Bu4FUa1qD6W1P/uJOE9wdH1BPoT2lXJojzdS/gyc91sMK1mlvkL4Uoa3SlTkhXljLYawjEHsu3E0SaNnz4oFZRF+ktPzjAUy0ht4Xi5ylRO19Grx5UnfF7c/FvBGr43UQsVHNvLd+tjga9OiCFfQf1PsGh1fNC1KXKTSZq8lpTDI5H7GglKh6F51kDx+bU9Z0Vl1mVNWvfw3JD15W3QDJ9xF2hjFM8SSMWoXHFnTflt/TpsPt4Z/VvY+iDm/IVuZcldKyZCb/PGgASpcv1u81FYj1Qp96ZruITjXmfqU5LBQwoN9zliz+et3oac1oXypi8KWiuybhMbA3PJmTi7KG42UNQB8794dCCGgFYRSy6SYrshDJ0W58092RkH8+YONmHP+UIM0z7xSc8WOBqd3Kik7kbcvLPxjhhxsObV7jF4rQOD0WqxlcSbnZCXWZBBwhtKw6ggSDXNuoi08Nbcvz3aZeXKbrRQD4Ddd3Q
Variant 2 DifficultyLevel 736
Question
A cube has a surface area of 600 square centimetres.
What is the volume of the cube?
Worked Solution
Area of 1 face
= 600 ÷ 6
= 100 cm2 ^2 2
Side length
= 100 \sqrt{100} 1 0 0
= 10 cm
∴ \therefore ∴ Volume
= 1 0 3 10^3 1 0 3
= 1000 cm3 ^3 3
Question Type Answer Box
Variables Variable name Variable value question A cube has a surface area of 600 square centimetres.
What is the volume of the cube?
workedSolution sm_nogap Cube has 6 faces.
|||
|-|-|
|Area of 1 face|= 600 ÷ 6|
||= 100 cm$^2$|
|||
|-|-|
|Side length|= $\sqrt{100}$|
||= 10 cm|
|||
|-|-|
|$\therefore$ Volume|= $10^3$|
||= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 1000
U2FsdGVkX18c5MBhSmWfR5cRN56tANPlbyBKrF303dED/YjXjPVS4TwjjIB1Uq67kT2COqB82yDUv0ANuP21Q3d643zBudCxIXzuo8pgCp/NztlcgvF6bs0CNRfP7iScHcae1u9LjrrIjfjY04LdITcFJxG0RKTsKwwYNZPI/WdcHgIkCY5hHggdhi7zogP5QMVsDQuRV93oeQJyu5Au7z8AKfY34X7xHrYEK9AiQy8S88BauRNldKeutoUGiobwXhFkcDH4KwHIGXZI7Kv5OQOGGaSoMWKbhfPrqeuQB1WFozn7C5qidHUznX13fif16OYlN/flCXJxKMNiglLxFmrpiGYCOvy4EbYIt/yMM1DCr1+kuMwOSdQ3DmUMXF+eQB2dsZzwYEo856244Fbs84A5R01EFisrD3qZupXW2zYYqGVHqQ49Rh1uWi9zLiKfvDRtpMQ9A0rho8V0i68zAV5n62vcgmhtcR0p4Gq2yYL3DI5UIdh8WXjgM+T01tl0s3KByRq+Xzc/YNSuyhVr1KfaY46nlVQVSqGq1zIANPZXCXehXVYuYSt2prLC2h/sNfEhDa8X9FTXKnltFlpkyZYkOd67qfPBt9Nf5SSdhW7HStrQJrWLuXgzT6wzbWeGI2C3wtqQlIw/e+RWr3Le4aXPBa+Uraj4PiXfUc2AmicSMxW5LEcj7Oulqbqgf0H+3RlRzEeZaUGeMBnNmUbbOtmLrb54n85y2eWhYaN1LcCugKTetil5fwZOaA/WwjE1zDmO9GNFiCPaIeAR/QkgrhQbFdrUx8IvS7bnw2lWX3Hjl3CUmhxIplCWUP8WpaMI3n7CGjSeQ9zAYJD+pzWmjnCDOPxJKUrDnqGJU9HYaiYhzkewGV8Rj6XVkWSCZdbvyNlwME9S475bHl6mqFqmfjMjpp7sZMwDUMxuMA/gkdsWl+iaBfXm+0QWLuXatDbUvWiE6TdHVgvPBUOnNT7IeMLonhrIoqynCCWtXlBjsntz1IsiRVI/l631Rf9kpHfx/ZVgZet44Q28mR99IAWDuqNovFtiTERiR7YZVB8vR6w/xSgsRhnLaICnBXKueLHu19HpYtd3AXQeT0HA+/9DXVAU270MyaXnFkuQgKlTGxPLm3vG4rueXYmrZ1YxfLLnyIE1El9QSkIUvSmAmnZxkBew9r+s1bB8/rQH7Ca5+dqlV4BjvYxqgThZPCiVlMeB/F44RnfNGXOI5l2NMgiVJiuihQT445Ef8l8T8N4Di5wdoRBQjx5D0HT6XrVTDdVSlHk5TzG/xzSeWRklL+3Q1BLFO8LGDjBITFIoOYacKvG6nYg2hrv8sxPwNL71euL3DEZPregKyqzXTXtD5xRRZwPlu9lCBBsfFUDCTKLnO7ZUgrxPONNtoazrpcO+O/gK9WFKg4arCeO3EGJgDUTGgqdBNdUXr15Ir8A2h1BJGPsyae4zsRTRTACGOb7ZXqBSGxjt5BIhV8J4GeAM/1CFEStkY9pdeSyx5TFYWShW3gYovjfuZMrjlMDR/qBqZ2/L59YR4e4ePpTY2EkM8DdUOWAopXhg+YuJvkXSgcK8fEAx4mJRzjtFNy1REJgimXYdLLHNgfE0Ialdb9eD7k9/bM5UBTx90PRhjf7k0+KuncyhVjLUQ/JpzROgFmYOXmT8nX2Rcu8rWpfUUNbhLzplkFMNFj3k+U1cVgfaMvK2+yZTBv6WGaF1ZF61yWgwnk/1ZCmPexxwqRBzCvzqaqHasxY/1xMk/z0W9javjcRrcMJzmZXpRL5xgMDxC4o/O1DXiwmCW6ekpC8SzJIV1x88KhwwDu+fNnYhImB/zKsbqKYH0bdurXB9Ec0QHQls9H2p/5GdItClCNebl4U6RgGUCeOWZDy9gJpS7V5XMMaMtO7Q+8wiZlJl78PU1r1v8G4hdOdG79TzeJHc8pWqqFqYYtFPqSRHB797BYAowLxvUlQ3KSCbIY5GRctLuHx5LAwFermWV8od/4kDblhbg2qBI9YG6l5/VTFZyBLQTg9nxo84modgJdZX2LCn/CL+PTMsCDVIZIkGo/mgLHFUXQmA4y8evsAH40F4TXegSMJet8SQ53cmFSJ0ImB3LNUQN/cmcDmCy9PqkugdoSmm8nnvZC0APuLFZ8PPYC8PTyMZ6UKC9GMHHlVRDkh+kf5Sl/nj5H/fjlOgXj492nnaLPSskH5jtd1PHBcCGVczlLuM0njV/INUbXe/ZkdsryaVafPu8+P72asvfuBOf7p2TySJuVOAXONki9aQCfU5zzW7tjKVoB7Ud4XwN8Q9sQkwvd8d1P8btQv/pFROAu34VJpMCGBbCs3En9r0UTR9XyaIX0MU6RAkGOLLTvHGT+1u4+w65sL/Ju7EkEn4bO7x3DaXjFJpDbx56k9UQkuqbuiAqFCQCWwCMduGteqPn9iZxRc/BUEM6UygJAZF5sqUTZoUaqN1o2LG1pNTLa/9MFIswlt4LAKFXf28B9G5guKaG/ciLO0cpm1s3cMN9ZnRLy5n0xkGAkFcY3LrYi8gBO5qN5ur+fC/LyAdoQ4xo7fpkor3TFupHZXxnpeq3Wd+WUKQwNzU+nKOFTfym6jTpgHEtEviGMIKGZizLzQPmrCj3NiLN9sXp+mYRBIGX098GSXXCd76efCmrZ0OSeKkmud32B0AJ1E9gEkcb1dDMcQFH1laNyjSEila+tL5lYXwox7B5amv7x3Nn68xSjmPeIUWSyX/yINIkcu+7EVu89dz8f+4oh48k/ZopgNWQ9aJnyDdhG9KOrwmmvBrldd6LAG4X9gMALc2R83P8/chiwkFLUrxWW+D4/WP6LTeh/76LhjqgfCXNp7nJDQym8QDQLUHNyYcoh+1rvGOIAQn/alG4aZtVx3jXhLiRSOdwK46V6rmX+1+JUwW8+61VksQoIDmSBAXLV1L9yUvqcbOHp7rzdE3a7yPt1GYjzjDrAyI3Ol4oeDiLBdi5IhhweNBfG7PGdmiyZqceZN7T3lw00heVzxFj0xGz4KxWq1xHE0oYoFEb4ynWXY3DrxfA+C5TVcrL3xH3OGtnPTrCkVfSbJjuFmV3sNzBDtZINqAucNWh8FJyrVHOSEOoy67YuehOguw4rjQgOdnXOdvanRPOo3WkSe901zGjEMTNKp2nlWNgkcxkKdiUFTAzv54L5Ei+ymNzFuxU7xSnNRi4X23l0uNvN5U9ZkvU1twVdAm/qa55t9N/mIGYVR20m+v9iUFRCP62SeFzfoZHR6HJK+tXa7IKqFHWahiwPDSD18+UCXX1NPTLmhgb1NepqYx0mGVHz/CQaCJ4/kUSErmRP3QwkH65g9JZnc+ZvUihuKf/e/Shg+n8/BVee/h4NlZxFryf3pyBnvmyngrhNJC6Rv5U/+tefIb2G9kgpeTEGV9nKKuQ/NmS4k6pC9BU/hOJv3Ef8yOJgJeRK6WFZzoZhjAH4FPzHmIqr6j6pdWoxsroHgsDFDc0yMkpZQPJrhSCJmW9w3xidzTWqD8jaI7WlyoevCSaZdVw1eFrmJn7RZ8Ba0rSNQNrkHZQwy1Cr0qm/5CGcHhp39wur9MEBimlcyNJaG9Xhc/N7QbtwoqcevUD4i9RyjOCsKqLAEksR8MELPqsVfFlF6Z3GQpIiQDCZAWrI7TJhAbp83LmrUkxoHGtHRx2Mt8kbswswZ+z/xjcOjdYZ0lsg8V+3+xq3wHhR+a1jBxq9jnx/UUKimUeGlWq1AAl3PZn5QKGpM2JCF7fww47UAGS/kul82GBlTqiQZx5MNPT+6O4euMLMAjt2soG59lr1b4wFOe77a7MXhdockoRB2adAc0L19kjxr3Ae5YOQLippalcSgHf/UmYKOKeQYOiygK87LUQsLJlwptUAMoKXSo1fiPIn0OU6Q/FuUUwUniUpXzy1gGc1qdAAtEGC7cvRVFWwacWNqONb1LleYewzEvLb0SqhDIPhEDoBK97ozSBYTQPGPk0m11ihb4nW6wYG8uVqGnCzEIzfvRofFLknpfxsJ5vnaBhY01E30d+79GOD98Bior/2MXEgZT3H+Iyv/6JTjE31zrqN5j4L1wpJl3b/ZHyHRNhR8AlO5tK2uprWZFVG1gWit7TCnYGTgzxaiuUWN7DeoXuC+C65vzr3t/BzX+xWjPjS43Tt6R183grANGCTYdzFKEy8XUp8XK0GSfuArmlOI50h1nVbzFrK20YPfgK0MXEmRjnH4JPkoKTXVswErPAalSTFTrjNVrF0KD4q3+JjZv7dDGJun2hAekGvH8cW5XjOkrJSruWjI54sfSKmY9Od7RFD4Oulafqe6crwMXcpmR3ZqJixYo1Ktgj5+PbR+vWkQu4PdhqZWh9gHW/s5RKUEYMPtkDQSYIeSL4qk8/V04kgCvuAapb/9a+uvUVl64HY4sKWyVEqVHEvz0bbCtsGJTFnGiLWXlzv0haNV+DT2sO79A6ktOz9vGJLjoMZkTv/kC2WIbeKPFJDua58eyd3LM5aeMUX9JUnDMhmawa73XkZ++Z25D9Qc0UR4FduOJjC49V/P3mOQYYIG1pTRb8yc/7WLpIvq3xUMH/G5Mr2ZQph7hIzcS2QXSer7+TFQpXOaI6hMOOidt1+tLpWFMQfqTv1nInCFRkAPsdBs/TJxIN1LB9TvckuNyhqRMS/mC9S+q/sydWtmB0dnLduhtMVrMqKJC61b2toenWymWuoyvN3kKCP3v7flus872+zppV+1ixhlvZIDF6hUlP1ZW4hV1hWA/39AMOU4kIkKDGtfsI+Xx9GrNpnep2ifwwX3Zifpr7X/wP6nshnngns/4Zgw89VqU/iwYfHOZaIczkOjpUzeQlURYt9H8mXQph02DMTl1g0QfxMF9qzpJcbKbg3fHFPrUv33AN//qQJWvlSBCYv+qBzhNBV5f17FF2gNFiZRViu+rLB+Pw6OH8RZhekWiTVwoQ83lZk7QGK8eGEQWwIGdtRQE9rV75c9SQP70kOlZ1XdQOF0fSMq9atPpaX0BvqE/LiTXyk2EWHNLqMCr+Gh7uDQmxH2dKkBiU3pcVO0JQBqpS+iHSHUGcOe3YL0hgxNjL4KJB+Y3av8kxYusrIK876BUgF24Z4rVz2TTjD1XXz7+xwuITUkwdD5KN0zi+bAO6QnGwebrCGwKDJlpFXt4/aw+W7F/5Pbrg92OisISxy+T15nyb8v4AN09fM0ZTZ7G2/tQFQL2KNljlkQPxo6fSbf+qzoG9Btnm6riSrCnFfPK2MKuPZsIQ+0GdjV5nmcJVksfBYjy1DnIL3RerVKKreuH4tjqWpONZJVGZkvDYyCiskJBQlieGI0yC+7CZ5UyaSrAKNDrJRa6SVk1u4bInUzj0CQvQWcDW6aGjcjxoUws+i4cYkxSjQkmb0GZtH2cO1odElV+zDH7fuULYDu5mTMJNZlspE+55lGTluIPK8qfErc1D9hfOBBSy8xlvunK/7cEbvQX7An5w4QGv5yBzmtduKXKtPDxSo11NnOch3mMs7DFO0UEbocwlrPuG+UP6oQ/q/2tjqdlAiKvLv+7MbJKqcDv3i6v0kCT+Ert/uKLbj2sSlqL+0vKDGiCFxua1Eb1o80TwsgT8AjSXNRyv/IgT7PH6lan/xZrp77V0eNW221Rv+KEDkwH7vk45huPwcjbmgw60toMavMXNyb8/7+mK01d1hkV7fRB8djfvxmSudigrkSVaw57dF2ksVUiYXG6t4bGbRTDsB1OrLkoay7ebnTfs8Wthhe+NdPg0uCQyEP5DOai5DwzKLaT6gl3JZstiYLQZ0LgiQO6nHFCSoQ3MIGyp4kwftPSR5+BfybekTTuhvR1fko4GZHM1JcSMlosizCPLRlIDdeo4g+l26iRotiFRDnYlMhD4UV6X/Buwh9n5FQPKC2Zg0xUH9ZO93Dhu4wS8XkQIsczgG/X/dVi4h5P//IgR5u1Izf6FubolIqFAD0JpRanWThufzhpXrdrc6KhjjvKnTv7dyXkJEMqJxyBUS4YzI8C/v+aNDKVvj0BOpioQSwD4Uw5STH5Rb7Xvxe9rGcfkieOp4mgSMg3N3SEhzsHvE+lz5e+T08B6FVvXnNAvfbeRnc7rTj/VeX1IwW7GDgYButyBLXgHPv1OIAo3+M1AX2PWjWDQSHwyC2QisIf1zxZBTjeoOFaQguTdkp8vB2Qbsh+gsfR8zyLt4JxcdraUhDi9klKm4atVi1S6EXTjekIaJQGUPhKpC3RpROL/UUnAbyma7D6IMLm/zA1bvrnKG878X1vsndZwO23ASdPoLFED478xnD9dMfJlUcz6IR7z0Nx1sCqZGpMHPhdO+2MhkLpHNOrj1ugYQZ2Sa7tF8UJczNnprbMy+VkdPVCKBLn1puQ7nf9NdYlpW1wfLKDyYWL4xt2JqRE6lK7NZ5et6NYIiM7VpsYjzoDJUNyHOpAP1YhyJ8z4k9GllZf9GtifDwcCGczK8PEPEjshnyOshzC9Z6X6awwJY6Xq7xbN8GYU2eSzUdnrnk1wQOjt47aV9AVVCVpXBDWY+6xkEK19QdPzjYVYcJdZ9sWn/AyiWqYAs2HIpqJKd5i5Y8UJFyj+yR1YM+8MIK9QShzRK3k1rzXzM0GJkWCC1w8Ggz4KvDkuhLEutq0W01ATrMRUVu/fUUUvbzXmE22Y/GSOhQCMbFQ97LjBvKPstg0o7PnS402ydr42aQ/53xMNxkNcXrAz3FIiT0mIgFwfvxyGoEWmRzeIOUw8HgBi45FaesInanOM/fIqJgR5fIQ3kB+Sxj6xFUbDeh1A2w1wVK2Jw9Pkz9uF/AS2iAHlc8wOPosO2TPSQChYsM/50AIGIEG/cXCtBhbk2emLLu+W7Klb5tEqTkQ5LdNFIWM+v6Sawc1hRQiKvsvD2vRWW4CY6tZj57j4409U8NkQFt5uxefOlNArnlZOYdht3LfsxS6/LxxeciLjQWymgKtpTEpLvUy5eUUTs2XMCk5TnNOagT8e7wuyaIx3CV9Ef7vvP78So8crP71vRZbUIhgzdmOYMp5MZZgI+DUM2rSsak3UkP9K8auNNuGNIMUxDSeh9h6FciG9G9NY0TRmVP7v7eu7W3j7VIkUXZB7m0ZEiljxm2DXQ/luZfEMAe1kXHK8bZn2aHX7ldPDi8Za6T1IU5hRm+0Zgwm04j9EZxUHW64R5KR3F0zmyBKCUq4lbKewQWsx874/n7mpwBucYxC8j/SbtAIIlaqWi4wEByQRs1aJxa/rVe8YwpbV+XYRZ52unvgwXbRmGRlmydL269J66dr+Q+UUT65Tqk0DLu0Gh+nWjikTNcgFnBYk84gd9jcx+Vtj+aoAfgpvOstBTP7WjyJRypvd5NxOQjut0KjwWMiSIAHK6oKMfE0Q+Y5m3/dfT+PSextvd+QQ18BnL1pqMb1Omji2KitETnwJhK5/qR2Solz6e+1VndVWEJhLisrNb/cqHSuG9+XYhQUKn1kk7tYmYFHLAYfKdQOwXAw2GU1O9Hbi0JuPfz5NsgsG3qW/KFR6zemv8PS1dDss1s93LagTjQiCTRks5WbOmx9lRhaddKq0DOFclDBmIibYyzmP1Z6FjcKS7Rh8fcDKHKTk65BXKZMX+mGkvYqigBcESo5giYG+ZqmJ1bnHa0PkS0X+aTpWUhH3Dl4Tc4MXhxzq+BLUo7Pe+cdpgyyjOWuJJb/QU0SCT0ZYRYdahlZPf/tPp4u0KICDqEnooQWP5G9yAYUGcapa4Y2gUuHTZvRkedTZn40AEHx7hmn9NIcalwno4tDDRzyNk0ozg7pUihnhHK7cf3VzFcUwYQ2haT4S2A1Q9YpDpnSMDpRX4d6eO7qtvfBvx0uo8YzA0fDQ5UBEwQPNz3l7Hm1U+VsaXTsLb2mOZp+zSInlZHzbpvsM9RALIpBAP+7w32knS8+2W7BSui4BaVhTa6E42a+IfCoDVgEU6eljEam3KUf0ZvcLgqVksPoA3qCZZN5BF3RBJoQ6YWJnEsTRg1eMJ9/3BQ2F74q2VRM4PKCFUp6/MZ7LaXwb+MpxDYKNaqMarNzXB78HWx5WG4Oait0in0zUnL18RuvRFurEq5tbc/VhIKOEGqJsAjOgpB2soIU/LZsqOBNlb7Lp0ceK9+6y3QBGpCkt0hFQZwaGAKookkp8B8RvYtrjlHg6+ZeGwSQDOPZPe375S9QW0W7kG5xFlletrcPWE8pb7Siw0r7YO7wA8evtd+rScseymU112mryWerSd7H+S9weGQqLyDaqoEZ6TVHA/PLuUPLbz1fRXXvl/NDFpqIpUBG886SNtPs/5lss0sE1rjxxT/U3n8pQYXh9JWS5GWXhC6YfNYIGbhM0k7D2zt1YMWjJQdeE0RvgKE84Le5ISc5Io4R76I245uohJN3I5pjqq3scjI2ZLbdb3jMDEe2KztrtokwAJYO7ucA6p7IWCiwyybpe/rlitGQ9rOQ4GB4FsddWkOZcNVSZaC460ghNV+fZKH5idikACRnkD1LA7agWCXcO7OpE7qIgVa1Itk6QGn28nZKPekuukiShEnkIR/mJCLcJCnBDb79ahWRl3xWos/gQbPjCws4mdpf8mDZbac5MDSMzHMXt+yAJH8IOquqxnJuYWtL0k320XOyBGzluiXsH39fpra7VCmKNzLjqYiR7tg9OSudXcrih9+jHyI6Hp5W88ebZ0RvSdE1sVzDI/M7Ux1uAN+lgr189zDaBUOSUxdQ0W8DVwOYR1+t3gZVMgBCLeGQCaRaoE7cKaLpogAdT7zZglID2f2C9u12TXNY5LcxCJgupXVn0cQJtx0oP1xLL58HaW+D+rRwbz9tnJUCajSy0HVzveAvVgN26MSBrdGSeqC7WbZnVVqdJjuo9aQEKXn3DEV5tcslLIVQ0kDJIysPK+xYQR19uBkrUmkAF5EPubBgSo7hbcKIJJySGZ2jTg0lJR9GIY42iAFilGt3ivM8oKkOEFyynyGIbzfGMU4AWf1CKH1KeW8fXjp/05jw4kMaN2uNpWAgaMw9s8MDsOFoJRnl/+7ZhErlFxf35KsC+1esXfxBWpxs5bOay1nuzYru+D6VuMYFejSZiHxCJWCpfG9UmkyBRZxhY92+c1osPlCbnUJUYgVVlA7+WWiSv6/HufUjHjXHHCii5NNPjExdb/zzf3Ee0XswllRbs0D5r2BKIxrc9PVyCFjoIbRCV/Ycs/YO14ePuPIzqjcG3FpqY2N1dyJTBbQV87JnFMKGogSJt9OkkC1vkM7pOJhPwzqScpUGZMfmWD4q2NdC2WX6nLUtp/IQwGt9skk/aBM0EHMuggOByK/k9xO4Us1JxFt00jy+9+kWkBiD35Yj96GaY5E4TjiZAx7WbZEYzgEHKnyQJy2m0isa23fF+Nz+r95PNW3tJCwB8aHFHh7TzXC3iwAFKPHZGRssLga08QivERc6T1oXu5zuLVQwzRGXmBa6PpZLKfg7BywCeRAeGBE1QdEbgt6uqnhjOe/YskBdY1txO1ivWp9P3GxJfxoRVZL+kd3kjyzKtqhT7Q6IPWeRhmEXKOXqo9Kl02fKSRHXQ6ib6o9YDXoRAargaYQMBawaaqAm0wk7RXcKLA31t/smCLkGm3MsuOlhyMRiMn9J80EaArKufImNLFs8lgM52tO4WAuK55loIJnRtoOAC6E=
Variant 3 DifficultyLevel 734
Question
A cube has a surface area of 384 square centimetres.
What is the volume of the cube?
Worked Solution
Area of 1 face
= 384 ÷ 6
= 64 cm2 ^2 2
Side length
= 64 \sqrt{64} 6 4
= 8 cm
∴ \therefore ∴ Volume
= 8 3 8^3 8 3
= 512 cm3 ^3 3
Question Type Answer Box
Variables Variable name Variable value question A cube has a surface area of 384 square centimetres.
What is the volume of the cube?
workedSolution sm_nogap Cube has 6 faces.
|||
|-|-|
|Area of 1 face|= 384 ÷ 6|
||= 64 cm$^2$|
|||
|-|-|
|Side length|= $\sqrt{64}$|
||= 8 cm|
|||
|-|-|
|$\therefore$ Volume|= $8^3$|
||= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 512
U2FsdGVkX19Hv5O7ejSSKpnba8N1goWCW81Om02j8OHGniuELSCjVYRig16WK80iCh9aW2tR8IbCBNgnxU+CoCJaUiAyq1qQh8tVBeJQ9PgylGtNc7LvBcLTtoSoD4bjeThI1GJrLepcwYXjVaMZ9YMDilyF637heozz+FX48onfQG7sVkUQo/Anc90uqznlIWIRVQyfx4DSOYHp3e4yPWaiIR+MIVB6MlhQcQEBk6jJxN11gXeTtIlEbUKI8FhLRROzQCfHeOXmVier4mHk91HJuPuv1smHBkps2634fnQdoYO17T7lIbKkTebCzTkLXjJDvl/rmPRVmNXgABDSWi3nc+b4w87lhcEtCw7kY50nNZUTrzWF2SiMoLmBtiqrmKLwSIRQWcUuItFyKGoX3BIPI8B0vc9cbNT3gyLW4UtmHSOwAXRbWmjR2owTx7Huel8Vg1hSuMDc5mOwl+rO6N/kmPVlDbdVydwWczWGdTkBIeNUcHQd14o6q+2AIKd21XoertiymRURu9rhy+40ZhGLcskhzL2lilH64nyNMsBqGAEciePmgGgQ8bJz3kX86vx3G9uoOJGPoF7yK7yusZUGqworguDzf01uwWv+Sn7VxH6AfgFcsFq4AkOFFXAAIBbC9ll3fHka+TjA8ozwlUcgvOaq6LroebuNG5hg2QPD5mYGQ/RwzsugKBMmXD9HEErvfLf7FcEg62pq/HqiHtdSsTGS+TP5RjopaCE/c+PDpW+3U3x85TfMgGxJeepLXwmBFWRyT4KonDPoIMaG9TH9+WMAjSMNrbIrAw4IaqsKcH7zOayYpqH9dsHzDs01sxz+N2lKbNMpDb3I0OCkw0wPM7hGC9l7hr5P8oantlXY03+78MuED2/9TO9Yp+DPIXIIfT4XkQeLMFFB6e1y/MV0+s4TN9hVBfWcHFoZVbZV7fdfF3eO8QZBhKVfHj3X/Pwpta9gRKS5u1jyHxCrSF3lKK1RNq/YLl46/tOwnYyNRqcfA5wTILO8Evx8s11MoJlS4sn8Y5ghBb9NUfPARgW2MscaHBHB9xM/qTJjWjDKfHvuDOu4Fvmz18/iYFAL9hj9TIX4GKi6XfMLR3cQ6Qdu2pd55V3OzlxKbNTj/ow5Vh6oeAkg31HvmIxKPe5OsjA26+YPVm0b/C7VWgdchQoJeHfn03ISSxY2WKBzD9j4RqEeBKBXeB+psHk2TvU7W69OGnuw0cHT8jSpwfA2V534ES5mkj86N0KDfF9jdHyxQatpSz/uQGzUQztpQakMVtDo9MCXupKoWgFfIjiSkGVZi8lbZY9rb/5KfGtA1/LOebtdCzYxceDpHGsS1HZT/d2ktBdQ1s+U4Y0TXh5p0C5LJpkzUS0I07dgYon12pobcuNx0G20qaRaEP6iQF44At4AvpIiYyoIOFbIJwd0v/sVIiq03yZd+rzUO7C0O8RkWanQGrbEzeytwDvydgvJRABuycPwmirkJlsCIoh1YqKEGTL6a/ydDcg9OYYnKV1VMJqBUR8YkyHNLQzgN2WH7qeVhrviuYGPQ/0nd5u271i7tY1KuOCKr+9wixFqwQU0y6hdjvQ2bKZLEXzxSPGZ0vC2j0xB9EnLqYRIlQX90H/S1m41WxgWxAW7KtR4UsI6MptsOKEe4N/zONqTkShvqz4U/s6Fd8c1IYBFvzofy6k/DVYQza+bhOT2DcP4MJ13bhKGujTg7/xVfexCun4Hq0KNjkrWsuhj3ED/M94dzlVwf5ib81ItwuWHLvjx7qNYj9cU/2hIWpo65WL5dzDFosZzzF6rN9Z46+qQi1ZTa95ipav4M12diNxLVEVNpM4BBuPPZo22IXmnihpi/KJKqaR4f9CwmHRJlTyJLimhtpm8c03JN7Kdr0H5btO1Q980ucETOvFPuUAOWi5VNse6Zt3UJ9Wzg/lLRBlW9Mx6c+x9yCTLCpPs83FNA8+PT1pV8LzK8L8LdGvYTV2QRGiGQF92rq3bmVXjPvGSgs+CeQiYAacRj7nuGzMbYM84Aw28eoRedjfdMN0wIxgY71UtBJQbHZgYCQJgiUmtccxGhVLdBI2eYPLLL7FJtT0w7FYgC8AH9PCVzH5Kv+jbSVTQ/nlQ8qQW6oJNlCHtBiX9Jkl4WTDzOq86bzVPjXRspWOL+2b+lGeJLCXpA1RPBgK9INLpSiD7Olq06OYfJUbm/D2jNY6o/qGN1JyUFw8dxfkETYRKg3DBhIDCQoSEYfZ6EaICJqqAv9GrN+GVyk8aFBt0r/BkCBZ4dB47nucCcZpHqNtiatfcRp2evFh6I2hnegKW6J5JTDQilmMX0m6YfRS1kviyehIX2qG0DPsIRBu+ftMaERUHYeWo0NzfA1Lr/oNwgAzvR4uqWf2tev3sTSiUT5fRQ2uu/yaRlDLJejXRkZsKD1TpochEuTnTf6MKZiaPtm3F23vxi3senB81+qxUzMhtEiRMAwbEm2YqNxf7FWymIMtVY/IWwPXlyBWwVYOX4HM3gXHX/cESHUbcg1SYeBrse0kWvqzlFs9VzJGuyzuurs8vguexRfaAf1yZ2CXix5VIUoWPC6r5m4q03IIUyMq9OlFBgnNowuy8/jtWtL5ahgwLKXOqwG+EjWBMmugb9orr6uQERp7uYhWS0b+yAMCkJFjef9+5H9mNv2PbROKBzVKyscVPh7tn0gbh9A80UwKMXeU2brV0KgzQ9DBWpOZb0FodFTy5EyJamKFkkoDJamMXABrIihpYi8NsByW1QO6HujkiD00CcP/p9LsWykW3ezIwubRYx10KPEosC0FOhnd1OAwKQ3bjB0/VulEpmAwrvKtvh5D4gSLnbdirNZaZwI7sDFMyS/D/FQDovGzsZIKoePHl/SRJuoDpZG/8B6dThMGMVq9A7SiebWIgFkinU3jNIjlX6doyWQSPPH9ig0pxO7dXNZe2zOuO9GkLznu/cJfXGaIjGM2CZUGFWfkXYPougW2yThSjsPhn+4aPENgy8f2WxnbiAfitbN2BlOilqZ6Gneb76AzZfZrbb643BWm/xfb9Vmhgmzk5SB4uXLkYpaaR6DT/gbD8JaNoo0cswK9Tv6ZwG04MRV2pGBSLNN8ZOqZT4oZnujRvbJZIfjNb42sxfrdGTOutEnj22hDrySIGvSrBQ1DQoRML1aB6GO2EI9RF2PQuKF9HwZsXxHR/X0UT+KO5BS1vrO1zz9T87qBaVY1aWAxOY5GUH9/uSmQnrEbgTbdpC6ChM8EjKBLyxKfyNeVBqC/LeTnIJQ9AC2JkwZ67I+XEpQVswdiUipwXO0xPNTGFqapsYFxAJfqIR1UL3L8x9frWFlfc2M/vCIyYdknIOEkoWoFI9C8DIQQWwmmkCYKWD1qEAJpCD+6crsRh3vg4QnHyDINnJe02kfLJkyQoMvtPdVwVB2Yv4amCHIPNlT4nBLemyG5HLVnt6DAEglBU+hxw/6/k3oO5TjcLyiTbfw7u1xB5gl7Sjh5qvGqsp+vmvkpap4yp3FifeyDZ7fp9ZOm/p6cBWbGNtayNpYZs7Hlcj56duaarvMnwmwjYsrWKm34GV8CW04SaRkhCh/UPzXy5ukVQKiagymnPZSZsVl00AZHCbM9ZorfTAS31FbKZzwuW7MX80BAZOGEIYZcGutDViMGgY2rynhgnNSdrx3uG5yhabBFZC/by0/5Y7vNyjaTosHcO7aSJd0wrGT6qlfiJ+WRvJscPuY2qidBOihT15B9qNO3Kp5nnPPio4GyBIGI6gJKqX7u6aHuxc5QWtRrS4STGZYek9q4didLdAmMpmzPpSifY9BO0iOUYFL/Q5Z0sFTACOgqMv6JuwojNn+yu/d7KTdCB4Z6dyuF/dPo3IgjiVkh6rYGcmNrsiMJoDe25AKIHDRC0NuVQcWC2iCJh55ZVIMs2HF1H/EOZ7RAMpuqwShb6mUBlPOXzzCYyWkewIf26djQ9Rj8LBtfktwUfZyb2gVld/hObIfQzE72/ffo8OxCioQ3Vl/sP/slGJrdUA3jLvFBJTfxeDx/ZVnQsXsjcAJIAHnRVLzyOnr25S8CmKtw2eEbWN9ikiKOOsAUrOGN+Tk1qRYxC37FdwgrG8G5GJLkuCCOOV5tzx+2GageIbEKjlkWP5JPoKxXWePp3CP/WiyVP7era3V8tk+A/n8NuIdZkOmYBhC3f6jXlBJlvq6ldO//UP9G+OdnSw7P7ZF5tDXWlXs75NwJd0Jo9kDAuao8d9B7hH5li9c3fUvZGjKjDme/VaL0QKGyiqbFW5Te67TFAHiZc49VDdAmJrT8Iadbg9KkTcWxror9PS88d54qpUOjpJAszPGMuPT2+Fa/9XKpiVDioS/MgZ3d8U6NIr4l7m/+x0M4g06fVKBTzSLs1VTGWUG0fVFlOeM4w3SPq2ZT5Pu4EdkBfDAZKC2bOsEX+lVMqOgUKD+ABs7Hmz0+AUm4W1yluZCFRaosXHJ1c+eORfdBOJwcb2VFF9thXMlWcw9qlr/SWlW3agEZKFz18s+WIAqIw3hdAR+xa08hDyQGrGmSZK4hUpEUoOuN8ET7DqgsPg5AU2gPuKuAisKIU8LINJ3AffY+aJKKUXf3sofnX3bCk5ZamypziHj5leG0hASijAux2jxFVddx3wPNp2I9WkXZf0eW/OPbRnGg6CR436pTHBVNuNHrf1/vLGEs82IX5rSvEL/4ekkhU0EMWp31Il0r28A2v/hIG+bDO/1/CzDKwaqCV5RQXNHNVfseZ/gJ/0txGNEOz4NG2F8eS6brIysZOMq5OA9EKywUa78RL510L7gL+YrzpseLmdNjI3MZDqfobHmd03og9ZWv56AIrv62fP8DrtvyR3lGw8hqI/Tt/d75i5+HcGHNFEqfksgLALZELygo2EGPWfW4wUAO6W3n9d1MKR5LQu/RPivkjsZEBUIcSGPw3GuP+GjwUNwS8vgPvyxwFTdBBAl5UCb3Aylh8MfejQaFLsm0ToK6ohCVsKyftl/6UnSyEqfCUkr3p3NDyPfqbGaGYocN2m8xOcgyUSryH0uU+VOYiAe9CtEST94BHzWbIbMBwhvegwMOFi+kXlia89+Rj8bwKxpWxOjDN/bCqkdprfwHRSu4NtzqKlzfqeFm1Rg7M16Shz2uN1z46Av2CgL7wrDLtw2gJQ26aLV7JTAG7kuM0u4SfxB8Cal6y9I6pPUYs9WL1wi4suwqm393NM7KtVtz6drJbQnEOzfsE9N1bTkNMf6fkTKTefcvyz1ZWQmQiPvGryHcnSFwTOZGvtvTQX0ojey6RG10bfmM3Qh7itsvJjx5si2Nn6H3vrD+y51gbQi7hhKfbNWFkqFqJw3MnQ0bHzPuiH6S+NskMdazynwROoqUZo+KiZS7FysOGyX3zliWwlLsg8zvLIPgW0eIECkFzRm4cIFo41UjCnunQytavcp/3LUjVBfeij8KW1AlnlnsmRh1gX79jhEprJQkqqkrRQIduhJGFUWE2Aujd/9RxB6s0LU+cdBqC6hH6qHLy06YF+F6m2rbjFJmvCcQEaASKxavePz04RV99nfWRyNrJ7rwRegLsXYr4B5ipG3UTWIPGyDfEzi/4vU8v3nBoacKa129+ueEA+qEg+nu0c3/nncOBQGx5Z8XNmQNnnT2IlBhWwvXugzvr3qKmyoWe1VuRcqGN89LghKa7KLJdzEOT2OVTpWgxJC5K97Hch8sxVlyaiw1OZ1K6Qz6799U2MVFxWC1OdvJTdyJqwVMe5LyPD9JPMdJ/KXPS1XEB8WPlNXxbQ1foMEwkLYQFbtQ/3J9N3z0ejnorxqc7HMyl4DMQe6sD8hQ+6G8OMGHruXgcOFd4DyL8gNVyqZhqhyDNccakWJ40y348blmOcFG7Ry5dzwYPkvtr2nRBuJgToQzCq+JVaHnQOU4/AfOjK50J6u+81Y3lzf0CPzWuWgTQvCjqTSofy2s5/azWXwUCYBBgYoW8UtlRlm/6bwUhXpPO2zs0ReA4XFd/xMqGFKjNu2cZxcDJIAeWWTmFWQ1Th9TKz+CA8/ECfr1KXJI19SwiT+unGPJwOCHR/Rxv+BslmE/bNMBHNZ317gIf1XXjL3KrMZVvsyQ60Fi9NuhBNFTiXttLod1yfNNKOAWfY9qZ7tWW198qoI/0F958B0W6Mb4fnbQObYDPvEUlNF1AD2FZXf4/3iYYEeDAhfQvCZ97kYgZ6zqVLZrlAIm9mLKRillTy1js6R/SfndcBbaophUjnWVF2srswFaTuCHI9f+4iPVl7rCMtibIBmR7b0sz/CzJfusKFMbm1xvHdwCgeI1kgZhL++CuJT+9Rkw0KstzhlLdEl6TzNKBeZ0a+Gy7yDgzFLMAgFWaQVXh/G1CzxpG8WdcDAJNKk9sP3bX/1pT5NC5hF9KkgA3NMw0ldHkjeo3maqJq7RK+OwnLF/H0vMDpM52nPzQWciDcAzeGXMyNmcEL53KV40A3pYTMx32Vr9hCQZsgT7kLYkAa9CGJxLyghdMBof4tNOFuNPa39H1hD0m1W9YUCks233VHpqqIMKh0NIlFE7JC9goNQU+tYz5/s5zZdMTLZLedamiSsa8aG4t0KJmVHznhdVuIf7bCvKsP+hOvZYyUiqiRfIxseHz7thZFPjHoTefkomP2Tk3umKdXX456fRRgz6rqebblkaH9ZayxuoWqzGoRwsN2f72PCqK+y+Rvuk9QL/wd3snVy4lrLcNi6Q4zA+qBd0WW/Ek8nbmzGMy8EltzXpSmxrW045AhUSDX2you6P0vZ9L5dOzSqq7ID2tTuGIoJP/9fu6Y7joQhlMWDjK1kbZTJkvIpOqTc71gGyu7jebt2v4N9OZiqCjEyrqJP70514nghWQw4fyDRwXEOXkqeRtt1CtVXnvSGwU14qdtUsk41tIwuuV0droo5hxiKBFLsO7jANGMGG0cKJcWbkddd/LkRw9pwsEua4PqzOsPRqhjyno8H7pWgWH+tWJ7j2s7rDjrwV0pUZOR3GXzM44BsN5LFh5n7ET2xBv/Jrvzn9K3yYUdfN/ifohNFIGFBUEdTn9iBVrDD4WXLyfnuZmuuB7hPIa1JfRMX6SCfkQu34jH0ejCoTaLH4nB33m2N2BAUQSUDlKpTsX358M/052O1V9IaP85Wz6Uba9EJbpeK82UidJDF/7W1ru6GAQ30T6jUM+yRI1PC42ptFRwHuxzwS2ytXF3QlAFomH/llL5Svf4bIsvSVXDEtP4tAyCO95X92Ud8Q1fkoTWDR1AkSL+/K8EIQLoHPmue1wIhRnJeZ9fRw/fxvWuXPCUSU0e/9xcoyIY6g17J6mQ3uEYpBySJSOYCVQk/yKcNOM/FWbljfAwhKZUJ3+Y2HKEx2YJpZzIqcGZ3vAkLyGMVM23dIqzoJ6ram/HN6JKLeLX9AgxXNE54nxnzib7ka7j3ykXNRPJbNWipL0Sw3aOGbxMqeCwfGm+hK5hwmfUTvWFfXB7LSnNWOEyMo1TPzXnl2OkTGRmxyN7nUwKl2XergCGhOxcg5m7/8lKDS/NXks3rh2LkP2lfNWpE7+Z91bOoVGOO+oM9tb8cPz1EZgyq8LciP0Ju8BpVDpP7/GMau6SVeu6Qp//VmUvWz78z14uI0j43pP2umJFiCwnz6cOgywg9jbxFE+7APRE6PjaOOK4JOcPaIfvYNCfTUki7wprLMPVDXunhju60CqgVNOzvDzWEsFxCMWfwCOOTTjEOrifK6jWU50tNxNz3sV1C3JENCqEXXahp3LK0Dn7Tn55pznj0VkF2cDmJHRH5O8AxvUM4CJGZuo6Y71S6zjXfiOs4IiQs7zVD7InVYtjb+Ms1ygutCdjRE6SGLZuuP0sfzwBAVts+leEPkQEdrG8zNZo/2bc2/35of0cosNEWw+1b7MIPe6/4IutRGkrTtjYWp6D6hlkmjqzs5fg664jgwzDD5pAzCD99ox6Miq2ZMh2QLlIpfERm1s8EguzHH+h4MIXBdj51Rbpy915OsWfQxoK7zZ1ufPAWqTROONm/Rfs6nYOcn076ULHC+enn1ZDGfQylLUnuP+JOmDDPojDpYpciZi6cgDLOB577SDiHD000zEeYlRSwdH/R0SLPOPgUIY5Eo3rKTH1LigObaJnf9q7uCodQHjnnnApNhI9mDSbcIXcIo7FjIZ/SIbgZv/toeKySYUi9XNfNZh/fF9PiiV0UA4cCeYud4JqE9xlgSQLw5EeOlSTT0V+FjSsrhOfVgzmPqBEaQoRTO139ZC6daFRCfIXlLYl6WgKUVUPMFpJ0YZIUYrI0n7TOS3RAJInkDfH8yJeL21eNxPbQhacQyU1wHwZQAoDk6xnGifFUbBOtgTrp1kejzdllblEddNTr+jIviwxQ8ROqmTgIn3N2mwhOB6IfJni39eCzkPLRNJzOTjFICSjMTdGsS/yJPIQ/ukXsK3t9VogF9n6y5fsinNYEbrPYJOmtPTwciHoVH2tokZrFh646D4heJa9V90c6TSTDDEDTEr5LK1xfbXc49WZY7XunPgef0jROmj9fwuQtkbcddaPdjEDe8Gil1Iirm6olS7A8H8wGx17aT2ljbhDPumRZBEIeo4u0DiUsCrtBOjUczUdnoeE9jHsSEO5/0egsA0dTjB7h5Do7XbOOBMfJbEb+8LQ8l9YN2afpJQbN4+uocqk+h8fWW795AooGIvrg5UzFsd3nEQuDcmsgFiBGIp4qAdDH8Kua+8Dg26ZztqV9kD7piqIlXdpqumzkzm/pkdZHOsU1sEEEZA0ljvw0BIbMYVZj8L5BkahxovHLdS0NqAiBSpR5g67L45EHh0+wHHZgBVc3tlWavPRnofM4+SryZfzOoTETzBbTXcciYiEg8NLUMKGu62VuK/qScyCy+gQwrlFyO9HasnZr4/hxKUngD2tNhccSo/jQJbm7i3Yz8NY8ql6j8lWBFxMJekULtA+C4h9AmCOQf0T5LjppllTZuf2bpQKDe3kV4cc5XEZDLE5b1CjoIHv0Bo3xf2030DD0+DmYchFymNkJv5qEcnsxUfjmiGo0yZqa9OKfwUFMhqOxOB2CJpM8/3Q8ZPlHKjXuO+mnLn9hwc6IbEIIDwszNLPrG0mHSXr8R4Cl2pHTm2KCslnhIhmQUzPmo85oefmJkUeuVOZQewvLj4R9FtORPmSOyqpNa31aLIAFS2lavJ6SgvjFMJ/WzHX+lsZStlI0PcLbD+qhGxfVKRkX3lb2/NFboyBj4HF90U97k0QgPOSmfs3BSVhj7x/IopoKH7CJt8+TgYUIAl9FtAkcnZOkdUD0owIFC/ZO3AJdZ14d01tRV2tylUvCp3CM39YEvHs/tNYkBsIgI/GUQ7/fWoPVwrXyIwINtWnQWd3kLRjcexscELw5wJUSF6nQFZwMXcxUX2G3+uvANha6GTSIO9bmYC+hapPkZlGSzBK63cBb/Mhhsngl96Klsv60D84A+p9+HhpgqzF4lD6lfywtx40yv48j2P6T6Wmq5mTHZkUC8sCM3iolLA5+Ph3EBevG6LvfuY1OMstLlr6Jqig88FCzCOuX0vpykCbL9Db9Fb9Aar0jMdxjaYsDyCeipBT2ACy9IiwW6A4sEOnbScHA+z/SE35z5izfoeUBS3+ZA1FDnfuFKHJ5AA3gRlTCXjwkz4efh9ny4=
Variant 4 DifficultyLevel 732
Question
A cube has a surface area of 96 square centimetres.
What is the volume of the cube?
Worked Solution
Area of 1 face
= 96 ÷ 6
= 16 cm2 ^2 2
Side length
= 16 \sqrt{16} 1 6
= 4 cm
∴ \therefore ∴ Volume
= 4 3 4^3 4 3
= 64 cm3 ^3 3
Question Type Answer Box
Variables Variable name Variable value question A cube has a surface area of 96 square centimetres.
What is the volume of the cube?
workedSolution sm_nogap Cube has 6 faces.
|||
|-|-|
|Area of 1 face|= 96 ÷ 6|
||= 16 cm$^2$|
|||
|-|-|
|Side length|= $\sqrt{16}$|
||= 4 cm|
|||
|-|-|
|$\therefore$ Volume|= $4^3$|
||= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 64
U2FsdGVkX19xaBvANB6hYO0pm7sWJq7w3okAueKsVpFAQ+bKrJy60PcribrIrT4DTgskgN1UsvF0fArP/AfJmIOYalgcsYDkSaU2ZzcsEMkUbr8Lj4krOXg1GohZ5R5DUBaRy0QRQbF/78Z2xSnCW6+OKB5Ya2lgqXdsJnAYm1G2T5tHup/R4O8KtXJICz2tzPATy6chS3bNQFl5E6hxwzuR9ymaRS3vx8SUXUN/hyel1Rs9zhnx2moNedEUy6hgVpx/Q1TxaFh1OiOnqV9KcH1Ait5ts2SKw5dvQ5H4GFt5woNMYGA8IE30UHTYpLh37cDT3VIMNP/AqSUEjSW5wBleXmecMEwYNESeYsZLgvDoRXO5wy9Po1w4XH5qRHfm/0ySYwclgKWY2WHvJ4NQnwPcYJMPLeqpFGA6b/sNrtdEWer0crypXlACI8Y7Zfcm3mMnXKjg6pPPsDFfS9ZAQdZnR86yMTO+2j07hjKppY7TgPGgL1bTO35KCaegTJV/uBRbiSvNb7FDCu+DxyKSGz5Oiw3JwcMjdmmetgLrUPmcCedrwQEN3ZWgWW4MbQ2WPj9R78kyK9UvfNYbuQ8SdqIFOhtIDFWGQTx6JAOG2In3mCGqI+00ZWJGMvl+N4gakJ1mG2WUESx/zZg8ee5ncUQSgONeJdv7yK1z9iwOkw3eqzzQ+6epX5a1Wux1fL84cxYvfr4Zeey4JJpjb2CSvSiHEWiEmPTGW3bvhTi7YdIThabrGGWHxD9+26iDsCU74wdpN+pK7kBPZtj7ZVX81Dm8PRk25Pcwf9OyPK9KPpDVsYSF7Kffx3/o5cr91R2ZXMtlkD1HoJmVE51dEVmlkjIQ0jBvHSeRy4gE8BSOrQOTMUHaqwtS1MYwGYg8f37b+bIwU7nRWb920odDd1MjmYXhWk7B5p1EZdAV/832hrCKMWWvL9ZKh57Viltx+pzVfsvUfc2YhoPxvsgr7qNz9KdPB4/8FLOGmVF5PK1Yuz+x0IhbW6Hm+RBgNkIRGp1r4tn7AnRZz8X5GalYDJZlhArY50vpbtdcReV5CkPNnG8cTyju22UA0xD5vNNdC9Y3vQUAhoC+4HRgtjIwHs3v7n8MfpwiYzAwwMres6R4womCEwmAbBuy3mVczGzKtAdkbqibHC4EUXthBPOFppBO3027xbaFivt/frDwXIrwJMTpjONn+UGnE3Ll7Gc4HwyUXPp+fKy34GrBIpAiOJYWpmCfume86HMvHk/3XqehA7L2FzwMzuT/vTXPrkJ15li5SeA8FUS5O5fg1or8LXMJTQMLxezwC+dfqM5CX+KabuMxtTMAMRMyimb4zXcFmILZIxDiXPaCjGI1YvsABu7GnxCtZbyfieljfLqrpx5L1wQo5B+pbe6PuntTXUuhUMBSxIYfc24S1ybXDHZR33xg7R21wB6bJ7Qf7R2mcFQBYvjK19+nXVXMTzwHGCTn1BYnR8uyPHTzu7wnbg/V+NriTR2XI+G0GlubWQP8Yau51OXEA2iI06YRot3hi9QrReiYGH9qVmD7SnmPBStUBQ5c8nbUQz3juICMLERB8rYZN+7VA08o1m85Nvt2neq//BmE3ogiqzggG9P7YaosiH5sCQ4h8EpNpLeSRaoNSFWT7eiBhVV97Fj0RjsRTTP0/I9XQyV0xFK00Pv56O9bP/OluzcP0TyL/ko70ahkhbXQS4yiphrtY6X+EUcsTfrTxOGgg8fi4P3olfQj+wYspGFlfvezTVxm3ewB7/Vcsjnsp5vSJis73eLqZ6hXNMlzSlcjW/bOgZatN2AdZBRKhn0k4eWq9mY0blZt5zdDIpLrrmJEKngaV9EgpPDPAoKZLrlpfh+uCTN+WIanUgLgXBCqjW6iCQQD4jqOOV8cOESsFj1QxGzwGwJr13H63dy/+DMc4bT0PJwbxOOS81PTYP7Nc7f8RNlj3Xbrd+eWJPfHeJ4SFS64dQjBQKLfvzrJePXehOG9FHPFksxXN92SfBQnjaI4TfbNG1BW7684VfJEXU6/clfHa+Uw5naJrWWSMZv3ZL9H8cIptdBVX51Y3GNELNQRshiKABSitIVbW+a05WW2z2trJ3MUw3fkd1SUuBQm6YYqlLIucJTLU+xmfxhddNLyXfenOT1X4UdvZnNs+oME2QXkgB3lHBFnIpQaLU3Zz/x0G8sAefG61ObCuztYJT0JvSH/wniT7XKCpijcdIN20KGCNZUiw0xDWQOo441wVqowLFuvmhQpb9hjX1UODs0qwTa9NjAc+Dtv6FV6DjEM3wJIMUlfMEvXKGXf6b7cu+mirsGl99j6iho6sG23ORIvX6lLKrxDdI+tzfAsI/ksNc9VOuzgpcbgSnxxV9h3gX8CmORwIAAy5vim+dHFHaoXus8sPqfLk3Y3jGKcanFKGJXjgjkaKd6mYNtmzfcCmpYvXQ9z5WddRQ6z4Nff9vezlZsEJlgp5gb2dNX+NcG919ye4lM9KYtTBtKHNPgG8hg3D8GAqlNe7iCn6IM/eylxNj4d0zW8BWYST6s4zTEr+IPHlJZAWrV4+H280itKkLLnFVyOE96Q/My71TMA62TeqpOZiAcDhDyQOp7baanTxDh88bnASX0Q+hwv8dr10qVwkcrryGVMmkr1/6X8Mi3mqzCBErRVDvhkB2kV/1O3k+kAZDfH1G4blWf/z8WL/xoOcWCQxBGLopq9zC72Q6LuarzLYxopDr7OcpGhZCvb1jqD5EdTsFtx2ze0qkeU+fCcPcPaQCvpVlPQkRn+gdjWQv+3MuX0cQ/ytqg0xV6mE3nKgvcJZchf+DQQGmx/Tz6u0dKjZxaQ63cbXkb1Tap8ovRCC9LYJmNGR4GsAXCMHFFqVDaUUa52ClGH3Mu5V7VeU9EQ8nQmMja/tDYdHyvlgIzbUgLWtN5WLzKU7jjTPMuSVPJlyqXGeh6S+A1aExT6HHzW75VA8Ik509jrH9DHlNTvyYLE1GGJ51DPExoK0izscQErp8cC0L3IgQT2IyWLEkYLulxZ9CFIna9KDO4hg2e7Y7DBqzVUEVjxVPg7HGHZEkIPa4bWMQ/zxX4Z3a7Jxs/z4kfSQ4Tv8UJPV0G+LOQ1H086CEvh4y/92WdPUcBn7Ilg0C3S2+wKx0wz97GjE/F2/iwdoPOzApKAfiJ93MBPmM6HcFw85XGmAtL1KzEgNW8aGTx6P80Ci9rc8xlQaT6hULQN60aGLHcEvj2A4ijF938Z3+ecgyEWjYq57jUvoa3bxlkgEhmGaTftRC/Z+CFaxl+ou/LcZnRqSrBIZW7aBOfdQEqQMK0mzD/Bg/8kCrXa1d7ezJdUmdRd1Sci0bEgg2GP9N8oCYNUf21jWH/LnfAbWpYDlgOR5AUgZ9gyimUVTE0zoue5ZOlNWf4ncnX/V9NQtqr+Wvs5edvYCh/OFV47AZ771Vm2gXFiuQQnn0qhgCtR4vgO+z8C4Srl0mUDUfa2mL/yoz8GGv/fC9EdzA1zP0r5+SA5sJ4/k00xYm1towC9kmdmoZcv8SVI/qD+3/DPNBPM4TvG662cswl8T6Hu9v/lEWbKcKQQ6yvp70lTelG05kSi1Z4ndYXs6uQcg4o4XMmb3t8vagFxzoiVUmnCN7Qt1GsozLyPzHr8f/+NPp3YXEMVs/t/v4Y36q5MsemJmHh31vuk9vYZRw4Egbo9uo6alElivorNWK2iD9FgbKJRizrldiw9anzwPpBldai+mqEBn6VxIhVGyq2QRrr1ZckJUUEX/ngIhnxoDtHrZQTeo4UMb0qWa87itH9sPdzbaZkX/YoUyQ71yUtuR00xNPblulpA+3LXfTsI1Htg2ZFXPO0E3btvmGBswZZGZ/g2FynBsNc1O/oN6OmYoM6wEV9YtEZyYl67XbVneFVVoxnD0Iz0GOAm8RaBH/nTKf1lcIEtGvzMw5888/cB3hTltqjCn0diy3s6dv0mp11whEpPGNGdM+UsTkz0ninwNOSwwHdpGyGwy/WulBoEFx/mqeAOJ378NywaaK1nsimfyjOaCWOm5rCxvMtn+T3dSj8ox4eHS/YNjiaX7is3vOe/qn1Y+9zi9LHDCHa1vH3h/ZUUjbjemh6pm+zR6dIB1IxaoS6r1AGrOTIaSCD6lDivVd9SKyaD1TGw5cIC80R5lwh8ZYF1SgQjByBs/MdXQEUezxljOG2KMo5go92l2gyMDD3GmPvuNRm2VnnxEpxzYjIDKk69ZjjqzR17WjHDSkJ8EJN9m0Bi7/U6KLHlf1emiDc7gvQwALAJc9kvno+YW+MB8hsfHGYIwwuG5LUqWh/MorQXPcYF3tr8VS6iEwczLOJdAqbAT9WF4W8MIoGsUm+QIu90tv0xg7gDKIgtWiOMC3FYPMIs4YICOQNgHpM0ss9D/kbuImT9fLJtoF53xZ13rClxq8xskVEeCk4nWOo+A42qLXtDr1zvTr0OEzOVPTBj4PKz9BgdenjmwnkwjqdayxdUIGKx+M23Um59m9F+wAyrIcOcdrlrhzRoOzd2tA64+HDup7L15JIWYR2MqSzzxiXEEyfzpIIGCja71VrZZa+K5f1b/SltePwDeyEphmXYi4fMbAKqsxy1qM9dbUiXkNVMYQw86SYIuqXtOMw5bKbK9+KWrqw47z+9m7DDvQPEePpD+iV6cxcuROySGb6pHoLARKsl2WR3C/++3dPFjhhn78SJOTufR8OWJbxik+B+HYJkfZ09qsZC/gYoc8dKITJ5sWsg6X9p2TNOL7W7HE3jbai1w8Smw9QRDFO2yXnyoF0IzYMatqd3UnR3PNi8A6vlHjuMtbn0Be+znxSgoRbQOsEYbkjPFcLfiH1D6THsBMCbOlltK0mwXHe7g7M2C55TqM/mj5qPaCs9X7AwB78O+EPXEpg8e2jFToTyF9gyEBlxivlLgcazl53mT3R7MdJvNdjSHGjOt+N3zBfu9K9LgWPzEKSjjpKm/4kkcEhzhP7mRJIXoZiUjmlVxSQRmakhJDDQNfNJHROpHGJz88fqI3Zw05ZGBc1I/5Q6fofBsugELtkFkc4CqKRGCH8hKD3UZiQxZpl6rElKQN9UtOf389f+qCOXL1ZLAIOgvvyZBiwQnQ3Re+MsQDe7ED12lyJsYVIKStnc8UP0tXcJwtuJ9rJkF9F8nHVDotXWMK4HddHC/hm/6o2iFxZ1rWdB/ksbgE6Df24SRGO2pf6ujX/3EGUfsS1lB18Fr7QLI+VIyhpOY/yDh460OOuZp7NiTQ73Oc/GzDfM70Klm2TbLKxjMpfd5O9XKbefgNziOGSe4JxFXpU5OgEobkHH/wN71zgIdccc8+ukWjjFrMxrkgBg5srCOjvkBgSBEbVd7mCNPvzEK+ItRT/JkmluIYvHRq5vm4FQiKmi/i5x0aWVytqRiqkKOdW+pU/C8CqU7VGvx1687gcuaYEb2/1vbT0z/lAJ5LFD97pupMFNH2u3xDDw1P3jJj6KtCR0rs7b0KeXQhvEOGadahraEmvDdXDb4etFO5c16G04M0y8HhiGpnsvsSisjPODdMvx38A9Ec8YMvVIRSrHBE95qlqBBQX7nbzXBAk45A1PXXo/3+ayX8ALaruKW+1OTRSnUbvf5NJBpngKL/A8FqjORz+8FhTPPHcXLq3FMZ4S7lHp+qgilol3WnIKO5TSP4I0+XPsKln4Lt8EpArNAQ4jSF/AnzWlbmBDm0F+5TCgLRJR4GmQorUXwXCcHNE8RkhT/ayHYn5unLSCdGNqhXRQLCHYHF7WJ5ueuwTEe2VaSjMIFgjbguMXHO5L6nYifCUu+Fjjd9qBy04ufXGYJYKXMZ8Y5UJJYiWaNFoE0z/RqZyTC5T8S8ZxxZJ4Fd21BIFYjb42WC00LnVTgOO+tx7Sjx97hbTH88czZJWr2M/7Q4yHI8pIXA2JQaM1VXbuASWrnmCnHr8ztSKnjLBJp0DQo/3FCqvEZ9lH5W5nzbUrM42WEHcXXO3p8Nv+Br2xb2UMcbuHl6hL2R4OyEmI3FJQWElmaf27VM8+0wllKm/Mv2+i04t7c0SDwakuayBq0UKeHhzbvxs1NjoxmmCGGjIe182X263kLT6F7atW8Edf4chOucfFBCmM+S88DoI/CeLgnTd57aqzrvbiEd6zJThPs098lSyULzdOJ0oyKdVXUmwpOFDdrpRq3TFwLvjQgMDdMLBCEIMwg6jB5AmClDjPDz3Zi3mqD4/9OowYMNE9jvet0HOp/p21L+7i/GD2FqSZGw8qnNmoSN9bqK2J2R5UOhO02wDcTPJBF6/pGyE9SyO/Q758EH1qz+k+Xd+BkuHAMoeqHPoghnv1oMbVDJSd8eEKFKNzwg2H+h6RHQFOKWGBGtk+PQp2Pnmt1RzDcUrNNJnSiyDk4AATxlTUPUUiMhvsVw6DivdqbBK4THzAhkDDb3MFKINOp9Sz1HS6euHvh8NOLz9t/vIXFHpxd8dQcUbNgy/dJnJsDbJ12MjDAGLjGyM9g/9rlxtE1ZxPUo5uIxn/HUCEHgWMDEO/E/XQ+i/+Bv0ZCaH5RsnVkzlQL68LHtMngjeLxyWs/lO31H3NZLt1uNmixzL6LsuIVOfmWKArJLoGwLa3dPQ8wf04/b471M+T0ADSfpXLn+JUcjG4hHaYInT0cdBwiQ4+2DqzNpIIvtjaSOEdVhtUOJJcAbt/w6ZzrwC/QUKTadixGS7ubfFYoKatbxp04ZH/eUegW/2xDLQqK7kOtmjqIIDxTOKKz/8w200glBZsTqlgxt35Lm1AEaDKj3R7SmWUMQGKH8ZCqRP5GPXf8RbnoOdtUwDa9VGw8MjpZfmjY8zzHOQdG+ndXIQQp222Og/3ytv7rpk4cq13EnEWJ76WaxS5St+1+z/cES1LgXMRN4YH1miXzGu3i1KNP+ydsfbXcjYUe15fZjZMHQ4PoLWaMS5ilTp8usF6C44PG9qvgs9hfXK+NMIGzJVyJGGvi4kiT//zd4csTCM4Zhdr1De4lAnWpTZUcZqNA7nWdIqnOQVRzFdQc91k7P389n33ObV7J9YREq+qwi57L/q0Xvk9yRtWP73Ic1yrHfpsad8tW6txIVDZmmp+JLUAqaoPFQiY7f0u/BY8GosnerT0jvI+0Da2HZ9Yw4HvizjgTyseupW9rIbu+IjBZplW5qi7jNPnf+3OJ8wuF5LoZzdtBXoEAjkKgWgXysQiW3/k0dvvkv+M7UkeVusTIyw7si1OfGDE0fXvHdmRqSK7/qZ4x/hzg3Iy++bb4Nc4J6rVE7ej/yzqseWqp2wGyRw6hf74RWiFKrWmXRtf/GSOigJZsADGDUwXmbHP+WTBBhNzQz3/EnYn1wsPz6ltBeak4pdeM4NLj+GNhTqQIEZdaY5TO+5kofNJdYnieDxDYWzJJLFm63YseEndPE6vsttoVsOiWSt8iqqSADYOJ0ptk/zevhacG2w/OziQPHRe8lF9QXpmMZbw2oizhH1gzRzYctpKNqEcFitECngqWWSmyxlsCwzPEM3EezUgQx5PyvgHFiQgC/tEwF+9lqeZ89fFaDetbFWth+UVJyi1PAmISVMKItDtSd0gyj1f1h69BPYZmDelDCLADsrtHnQ7NyVB29zlOLONSknKMMtXB/GYRuw/aA2fLVZ0w2z1JXaE8CNyR2QULvDbzI6gj2DvRX6kK5sRcNhie+vpWl5CQErpeJGQTez00UK8jpWyxIhNciCmeUB5RpqkbXArxKuNX11GgQe5oH7Dv5p4om/JFA3NpqnUOVHFl+w+Z7ms6XuEogPzCAQsxc8P6N7z1GETCBmnQDpf7v6clmFrpN8NnJTtHC57OAfIlZsHMiz0FGXsNWGYs5aeNlE/742D4UasHcNknU/z113Sf0W3ezfLaM33OnqtXuvnm6MAmcc9EZBBgmQ78bmcLCWdad4ARQBOckBeg6k9kuVZVlEX2T2EzcTFtfoNi/QNwEcijDMkwfy/gbwvztbZI0ozPGtTdkSKukKulX7N6sqK6p/2Ui0hFNKTsZSCzC9MkvOadwkEayVPOszQnvSlHNUdYsulPIRuPsQh46nfTZg/cUKyF1/P4KzD5fGTUjptfw6T3HShGj+kS4IEdlGwI6Yk92c72y5t7DEsNpidpL57JYD7iQI/M/leXuay7aZUmsqzAht85LUUp0HiK4F9p4HZpHX4u5O+7DryMO+rqwAFd5ksJdWsKHInFRaV2FXIAqvH5VgwMLb4lm5yPFDmdWZL0e2sd8pExlB6ShmYJ66WG5x7Mg4S2gfcmHzHRh3sItNMFu5ySTl7/OWT0cciWzdydojFH+8Ud/wIbkmYRKaTViIdSA/TNlCih2lkwmrghkRe8LvGOEfgQmHZ8fYdXkjLcTzl1OCUTLLYWiaZYCwCILbGmHenJGZn5GquMArX17H8Qw3BIKJuA8bBm8wHKd3qlhRydVBe6lJ9abvtWTjEblLCtpR43ZfU3GehoBkb7+6b5IYpkgisPAKvWxafUok1U1Bb7oq6vMXdelM25DzvMM1SFeJsxID8gN1aomiP8o4eCD8kfr1+2hck8kBRkQIPEmpRh/QwwyubI8KA85Z3C9DaNIHC/k7fgfGI5b/fV1Oer716Ok68jFrpiVTqbs4VnnfzTpPusQ2or6sM9JU8elKJfk4TEF/Q0CLESnhzAO1M0Olh9layyETWz/bmhY4loCgUlihNE/iNXMRnKwXNFAjzHFZT/eGWBAen/gQqCAQXBrlSxzSPYJ+pgWHSMPPNkKHl+4D4Wvx9gq775v8fg+a/G4n/iwvPe5gkE588ygG0rJWZW35OmcPL2k4JNVF8HXPQ+mH9JBHO4+jBfdEd/g9S937v/QKwZue3GLTLNXkaET/i7cL8Qv+WvYzahWFs3SYblIVhivN6meid+7Z/dYJtiRVRO6cAws7e3LWc94KvJhWD+drzf70E/U2EeIlJpm3YeUoO2jN2Pzz1ZWxOqVUzzx5DuhqNOOcNV75kQrdzM75x92BWeJi7AdUf1RfCJ5RVx9EsVt00AnZRFo/lv9AERrimFTsOtsNz+6KAFMM+CwvPyqJUbhpmt6wtbvJw7psO29/ySmKDu3FO3Om8ry9ZI93Y1UkHAHOU45L0OQrPue/ecGoxIqam6UX2cyA5ZCUsEmkTGETeTGVLpn4AWKOIZyYB18Y4tdnaJHkEnbkGZCDCCKBJI5an5YKqCKBulzRrqpRl2CXKoWi8XDLxyBDvHE3F3pgBHufvOQODnkpcn5wOckNa19h9+O3A1i4X2tpawqsyi+rpBHAB1JvHYwyuSW2wnxKSTHgfz4bXyZFhgKIlJzj2s1b9Ds3twbfQv0pCIoesfyc8r/lClb0bJdA+qYYwctLQdgi6M+o7cSMGa+aTnHnWKR35jTIcEpH9L9zHyYWO+FhAToe5wJfGQX4C12pE2AgWOkDh1uQqHW84q8e20jjVjLvJuwnw/nxhfq2l2ojTSD9hdz0wDA5fiR+BnInBwXMdilb+mbM9giZeNWed7u44Wk2F5ToINVCsZd2mli3lQZ9GMYU98qCfGBgcyihQVTsn0Jbj5keYOYABqXs+TiIejmMA6+0r3J1TGkOmm45JX6u0z6KqijNL4Okv9OJEZeIF3N/wjM1D
Variant 5 DifficultyLevel 730
Question
A cube has a surface area of 54 square centimetres.
What is the volume of the cube?
Worked Solution
Area of 1 face
= 54 ÷ 6
= 9 cm2 ^2 2
Side length
= 9 \sqrt{9} 9
= 3 cm
∴ \therefore ∴ Volume
= 3 3 3^3 3 3
= 27 cm3 ^3 3
Question Type Answer Box
Variables Variable name Variable value question A cube has a surface area of 54 square centimetres.
What is the volume of the cube?
workedSolution sm_nogap Cube has 6 faces.
|||
|-|-|
|Area of 1 face|= 54 ÷ 6|
||= 9 cm$^2$|
|||
|-|-|
|Side length|= $\sqrt{9}$|
||= 3 cm|
|||
|-|-|
|$\therefore$ Volume|= $3^3$|
||= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 27