Algebra, NAPX-I4-NC27 SA
U2FsdGVkX18dCKCZ6A89D+PQtQ7GokwV0jCoEJgaIGxY/0gjF4NW6UQ2Wg23rISxzugXITu88L3PDHGCsF40lqJEf7Czeq9Bn9m+5CE+ruschfS7TYY//tQWxowixN1piQzK5sgrV4YF/ED2DgoCgK1+ZDo2clvWCV8qIbm26kpUmRnQP3s+HSp81ZHWzXKVSaqWQDUIL/c8AayIdPRWOF5rKMu0QH2QzBeJUeU/tm7zzQ2PUddI9hZmAdEnN7FKqNfycTrTEbPbYaC6VnO0tlaSTEziM1it/rcBKU4DOLoQIfx83jC0AKEhZVbbwUwggSKX1InZa1NulhPWR17NkLx+APHFDPzQkNymJPCMrzbotuFbqfjpzEevEzgMnRtoZLJhKhhRFUnD5ZMIgUksF6J5hGvMHzjCdKVdafeqYSQ1e2G1XUyGqspc24YuTuxmnlIB+HRfk02JCW2lIHGOF3xI9qJauD9UAkxxPbbDT1DoFw7yKeMmYlrUVVdz+Uap1YNKHX8mskW1cV2+j3II2Ws8EN7ZK6mpjbZtNd+MEMY+2uMlGdkjbQxOYNIZKYjgc+ge+DjQyMFk4X3W6r5Yv1tbjaRQdjHLBJXnVdxJtWayknFY582o7MIWgd8RykXhMgh5Rq07XwhwfWR/Fcoj5QE+7nCz+VbvULleF+03v207OrVmyvzZ7zqa+rUehJVBAC7t+mWXBm/a4f9squJq0zVprLfi9TjqjjoDhyhnU0QXv6xgWRmx6QiWcaNmJ2d5VOFF+3VfSmx+gl5kJk8xyaaYwSChz9+l5hJfQrTfkks8vLZC6fx9gelOXToIXqfvmmN9O5PREbVi79XaQV4JzHYMCStgEL1fRr0JdSv3JHK5ch91rufpkPTKnGOYKVJA6Tev2eV57j/bXeBiYIhonxwjILZMQDYE1wKbKog/p02N34ynFZtEkkoLleuTUttchFlsqEjKayXhw3Jfmfc9Rul/9EcPbg/vPmbqF/4tPeSN3vtGvqS7tRDcHJpoLVGyrVYeM1dTRShp7e/w05mn2a2m6jpOceHZhhEMNpT8mhQsYnPGaQDn1nCHA1Xi/hH68E4Qp3OJCF0ynp8BzHpjM3QUj5i7gw7VlWWvfNyMQNLc0I0c0p8RricRt+WnM6K1/2p+M2UUQo0sZuLyNf7RlSAe5oaqLeALbhVE5EYrciFFwIDjjEBL+EA8sEl90MHiy9P0r9B3HmtiTkwnN1bXblNXuZGg9tLgEmhm4k2gJXX/Ff5E+fgkuNYJjSRQ27dTcB5IQk5Dx1uA4FqRmkVI3UaYHM3GdRzkXRHcOw1HWuTastmiBoYvnL3XSkbJIZUGrUGYoypVjXaUxE+tb3p3JXTYZWDiV8nPJLQu6Nu9iETQnR2L++1t5KwO1IUcyQEye+vDsZI88mrt34RP/hKMMl5Hzo+KABDe/Jd2HeFZZFDTmgnEHP6PplPEcjvabWELx9qlnT0wyQTzH/KvKTRZk6v7jaXzqLcGCegCwHg5IpvP37xMshW91N+Du65/R4omTOwIqcHEv/njwR9v5Nm05z3Yh74YAvH7EwAl+w6MgW0EBbz8iWfD23/JSgtZidPpDsNjIhkjZadTmoGOIUTDlf0fUrEYFmy3WZifdxaVXwX6efBBm4KyIZVAsnRX3nRx9X5ZdzaD1x2zCLCWerfSqCXP3zMxuPf06CkWakfvyQ4Buv82CSqkLR2atKACvAqD1gAcx2vIISoVLQxLeerze+hZlTb15isHzYS3/TxsF+n94L3fM5TuIwcca7nlT1tI6tqq8uiOuNdODHzPeMnUo908TqDIMHHHr2KvtyDwLjD4PCzZ+hsnQM/FSRVLxPnCoY5Kl/owgr271vmqkI4lY5EBQ6plYa71hY51ssXNA542XzDeRwjRiaTOFqrmFA6dF30HbQ4DWrx71clwrqAerO0CKaA3j6rGFphNYJfw9hBaDk0vbkuHy3Tx75g/UXNcqoTSww5qLn/l0HZHs4OcPCvluU0K079KqOziaeCsftLXWo27hHxRea1BEONtlHl7EGyqWFU+rQ/rL4E00/a6s5m3IkOu6iMJrzP5UgKvPRE83SkqtTfnZygJeTCvtEb8enQQpVY8ZzadaHyUvzHKIWSQaC2g3QFYl19T0hBmPvc8Iastdb4o66Z6moEH06aDGTaNcoGcYF7qIXjd8axvDu9P+jpA+D4/lN0Iw2YOab+A4rOysrxg6sC26AMUMUYey0yo0nVOsUh1ZJiE9/J+irNzFbNLM8gw4KKn6foGFsChLXCKHrTiiXcROElfOXB+EBAzVDp7NJrrhuTvLZJCMKJVvCB0p1t3xD932ULU/QbHERTkhU2L+6zY7ozcBpCcZ0IxZHDesrMeYXj7Vqfb1hftllwytd/Imi39NRCiLufAHmLf4skQs16sE0K8ofK5UA0eWbIZcHfgz+S7CtdOoUURJU8q+1Op3sNTKKfMxHDlxIpAih0XWmtJutNK1LIUSlL/7PejlqCP2g3/FUFzU5QRVHu5uLMhMJRNLeIukfjoBoXfuOvp0ObYmpUZC+DCEHhdpfIegKWidZG0qW7Hk14tMVJHqYgcBlxxOQTr1uUlNxhiF/1NK3QhD/pZZP8Ip5a3g54acDMT4KXCi4YBDvueBgDJrJs+fozYpon/op7jHvVjEQSSsFLljqxvzWAWIT6dQR/1J/ily1EvrxiBNo62clJF+2ZgIDEslDJ9AukLyoVOVHdqd7KyTMkoZV/5kz2nSF8988x/cFGg3l+XpoQxbrc5TJ6RiRa3HC5lFO4hb2EGrs7hc+B7g1a2y4oVYCVFBfoRFi5oMfixswMMJWxK1q0VbYR5gm94MZQUcpTU9NjdQBBYFYpD/CsYeB8aNAxKTAsquPUl/IrCfYDa89DzhmtsWTX5ubTCJqLxCE6NLiwiHYMcQeYsBm9AGOEl+msrjgkVnSxT357sBU/FC54IMujZryuHWsay4OPWO7LYFdhqgaT1sLX9AYJittaeVi726LC/KaUFoAKwX41uES9Qzp3u5Pv95pGFq+sip0ppkSYuXAlHybDfRkPtjP2AlrNTe3cO3eY1y/DTWOy5UX/ZEZGSvs3i7ZX5CaTi0PzlyZbe/kOfweKXTZwgJAIHpsyHJMfbeNHQAuwLnjFLso4s9Wa+N2J9e8K4PnHKkKIw93yhYAZINb5BTrZ1mifuaEEifPNSGFGmfKQ3Zl7J2R6UeAdEWEvRgy32rVLv8KUtK5hixNIV9IpJt6s2VVmlg5WsMRYXFFh00vhfuoJEvYUAARLS2uXyGkFYJKsaEA2tEsOpYXienk9XNVAsZ3o2a3X6ewbDT/I3kvAMKXBXUEKPc79FNTZJMFvYUYPSZwePimrTc7RF8EhHE4JQDIYur5iFt3eNeR6zpg/ynVqKoPT8Sid+stMAgW1eEM7u4OkelFPfUfpXFbDLpdcRj8ObSX7RIfTFcMRT1wMmibLd1mnLnI2YnuAGNSVmdtbXgmzMxcqUkFtuTe01x3CKOHsOR52PWsv2DntSqdOd4Q3DyqZ7KJZWKI2AYO6oj9qRdFHz3yehi53ZYqKWtLQVUFgsOmqkVFupDo0ypjpNEc/qqgk6jbMkKR9hTkWLpImgdhMTNDbb4gvIfTL1dorLFrNF5Ae2SzUvU/hnIiwvHcy4raeOnfzkxAvhiflDSTwHnkCAC3QnNzWlYgKIbOlGdWJsAMy7sMVfYIBe+wyYLvgjOLawAiF+sVVop/lNlV6vWJ4qIsRZrg9j/daJf4c83KuEIGWgFMqvshqc13cYZowIkXJPipBYWfwt3KefMpHiAyFDkSTTqqdQaOoEfRPR7s/TKMJSkG4evPhRvqWu7hlT8Ln42kizOpm03VAvyBcKEUF2di6S0HcVPF1wSl7m9EdUKKI/1Sr+0rz3BQyIlC0z2eP/EPaDAIyCsXWZZNoMOnxcFzSeNfegLjXlHS1fhG5kLPOnqOUQFJ3IBNwbklpSfTY60YR7XA63HMCOt5FPGo8q344+zP9jbrkbFcAwwSRxMYIcy7gFitGw8Xoj67kuzGTKfLTePB52jz1nonFcJJVmbqF4CHUBLzOj98gJ8hs9KprBfXkkiVyrnxzMr0KrhCLJK836SdgOnYkPTGFavb88y/ihhD+B9gFDdq8Cszz0qBX62oG6XBzabgyNGNfmY5aMH5nz3mUhxv2EZ3NC/GPRJxL9yf/x/ddtKdOXnDT0AOFjHFOEoaE9ppcRPIy1siH9z11bipuPqpg8xDaZDGbPeum+rksyzihpXDg7+4TaSHrl4+Uw8ATW22Ll9NiTpaQlc5sGtEyZ+fsCMRM4oLCbrEzWNk75pAThqaCbP/I8YihOdDM2OWvpwLnOEEmGdJZ2fd50S2G8R5aC2h4Xd0KSNiuZy2GRbpf6Q28DBfLY/eOgzc3fHPd0PhQezBKzqJhXZ0nbP9uWwTTYjjQIuAOOQpiFlYdL0f5YI0cox3EMWZ6/TKJs1hfFPgmdnbcIw1geW5eswuw/ansI2Va8kxzlRJ/7tIlx8fhYbe9PYFGKdO0tfPaBHi38Tnlrr/pYjpNMrOhG+eDVcJffwlrlfIPWfW5YoI4rmMcLygfhG1crYxX9/WO2mVpVokINVu7uOzazhtGGOmf0nR6hTPk+xXQBgiIFNHeDks1nWTUvoKn9a7K2Ig+o16MumjM+Nfzjm6EioCYgBmFjaMYj9QTEn467J9bb4cgwfhR0y1kKc8CeHfUsgYON6lHP5WCCVddS3GEjh6qzpjL54wwPsQOpfOuVs1K3pFqP9JSIwpvLmO/M4mQZupKLy830zNCduMx5dAICSXq8e824+/2otcFEx+R6r8iPwcl397tymug+LaAZGdQoQkUlE4UC1do0mJRQgGzRn4OHJJZv2a7IupPRZpSBsdgKIyuI+YjY0bwj9RbZSYBsCrjeWXGZR0my2HxCS1j3eqo6c6w0pZd8Hg2+7MuZm89hyBBTMyAssIflzr7Fk/SrrjnYib/1dUYk44ln4aEMEDmrYL3GZMObL6xxa8LZBBbkHQcafb69ZTl/icKBHUpSz0N2RlA5yVKKRcDNIvCxMFICa/FSOf25rcJCVyt49M0aaVXyQtXuCRFAhpCutLer6riC+HJJ9TOhTI6Ia3SfM8t0FsxLv5Za+dGxV1+UPGJHOPtEKMIYbkuNx3IfLCdtiFkf6YphjYEA6+6RzXIdHNSg/bPKWTMGvfUYC/Z9RAhEg7ZCJ1OFWVYL3bKUIeqhlSog6cr3O/rmRlp5j8oBp/3LEli1pBfDWMD1p1AY1VQ7jg4mXdN/csyZnnO8lKWjlYcXq2z9civf5HHgvmrEPjoapkHdlsRdgaJ4T3dJPRDPPytaNxGzyeaVsj4mDm4xo2rU6LYI7B6i9rtM10VccyhBDhfKoX9qa3P0KwmA6kQlBFRWqK2hIgtnG2S4IOpWKjSoDeHjNMnyGsb952DxWkpgOD82qGsjddhlw4a6Dus6bXIaQ0iMJ/PtobFUuuMVbeDLHr8hwGr2bSrYpptkeyTy9AOde9M5TznH+vlKxW9Q1blIXaqmE2jOy11h1YyLyjYd9s7qRY7fbUS429+eos0jr4JyunHpXg2s491pse3S2WmQeLMF0XR8VuQkjlv/T88IwACCj5Nr9NJOvDRlSx7i0h2GfuYYOV70g7JaSlXnFOcfNIFWs++zZPdw5KhK1frvYmqBeWIeGMwO2CedATOJRJkIDa7+yFJFLOl2C+AZ+vvo+5iqPugkhYjzoWJUZGs87I9GHKFkHrmlphEptipMdwnybxHXKiJNbahNsd/Ze3rs1gcJxtU9PQbQMeVPeBkoVTnOL5cK/klyrnyvK6Ir0GG7GtYrxc7nhJyQuLklsD47dBjI5jAWcouZvto5+wKlHlC7pSIVU2rsKP6jUrOwtgvBRfGC2Yd8TxEjoTgJ3sb/jO9JPOxNwDMWY2LEIJC37yFFsRMXJ840Lxk6Xcq7s0Kvi8Ucor315G3giEnWe7upO2/hxlVhvRi0YUpb1NiEWoeeXPem/7u6283u7E1V7Jo3Hg3SNEacUHnRg459lnRszNBWeIqtYf4zmNhHanuX4IVvrCM9FSj7QjLy7koF4umVlhw571wAISGNDyHTdatRqXF/eJk2QXGAfBUcai0NM1cLiAD6DleAVr3bRACfYV67eDIUfUJWoqnrUr9hTI4BjnuNdKk3++d2G3Ny7xAvB+6cj7voQt+hUicKyXkG1dW9wW8dVx5BcRb3XNSKYnVtMDqWagivgMiq3PLUMSV7elyCzOsc7U2v/vubgp71ODBxW7FJErmgRrZASSqorzwKOgxE5To4B91tnyvOFLB7eNZOSU2jVCaGwdr+LHjzsJB2+hBLrwXQAlaariZ817srvybc5OgQf2uMANn9hPgXeXEErxB8rRTV6YC97aYqLfvWCdDKrbGzttIC3abiM9K2e2fxK/FqZ1shOelpumK6RjeK/TGkIqWcj0ObUVZ6VZJkvsb57jomURyLNh/caDR9VnLZEC2byAy9Cg9ph2h8eHsRgGwOWDXYmqmcE4sxYUMDUUcjx67m8oF+DX+Hjy08822azL0RWDXhHhcaCFEEPA/67Yu7v7Qz41+5D2+CWXxjezttYMpDBfU5Pf4vOg/R/PrxaweVAfXyITmRDFZ2d6R+VH/T3HO5p/8dznasOpYAJbpYK4Uw69fxGSjFybyR3afs2loTUkfPWfGThBfQv99Q/GlCrekdmvphhaKYNUXo2xoj2wCSg9bwEb7hR8cAatWqlvVzRMlNDLRVZomA5D0hZk6BsxqCGuHUZB04yjTzRoo0AO4m0l1XKQKdHDZowQazgERhAsD6no+idP7rlxoeuIkBdnyxNmSuRKV/2jE2C4BtguX+JtAF6N41f/zmfnTN8IUYPs0mnq/WFNGnSIaj+9vc6sDBvJ15WFIZB2Tae1O+ZUnuInJEEolbK2bXYfiMDfttvihPw5Aq0PM5dtTFN53wuRHnB5NjG8029SjdMg5P8xxwsliDJjIuVOHHqN0zzk1i4ZKDUvVvbwq1yvV7hjrePd7ikMjcBamkBNbf+bxknPNw1vls7hTqqePx45KQWRX5XvxZ7KDl2SrdYhnTkNbh5Oo+Llvxg9qYQHpgqoSAL3XXcHmYYz/RZWtOmQiqMbbM+YxLBqCoiyR61yZIDaRBYX6BvlFGMfFm9uIf9ZUnxNjxRp3Fdjmkle+UZavf+hZYCoDzpSgSOaZokSBf8/sY7AX5zRPN94TZPmiv/8E/2sg/NJZk8kQgMmbQL3k9q+8hhdmc0LKBfZUi8JaV8cMe4iGvpfaTTTdlnRV/f2f/4DXB5qVzm1WB76BNebSfRr2pcqQm3sLTufu2SCNV4x1M0geTIe6T1BRt94Y7g9LWVWWYv0guBsykQgj5gVkK7xhvsPusTEZg4pZKS5cJ1bP7KYWDAPzUC8ZSE2r0vNOCkOK7Ak2iWjTHwBUt1Q3+VroWhnsge/Od0kreFKcIRL9KZe3eKtvDUMLwMQFKdohZhx2Kbrb+Ht78Jl+3wzmO3lVgZUBAeb6C7szj4ULdlDXeNO32QrwDABQIiK2AU5nbD38jBR8aREAVMrKF4P10kwquP8mzlh1q4UDvzm2J20kZuCscr6cNjHTwrak4QeJMzm9qJR15nKwoq/Rqk340lX2Snc+Q23sEmbP2lwTkUfuGbu6ahS25rkVVqYRHd/ep58D2819rR+XefI8C4RqSZgf7m/dVJZMrNQlRTkUNNB/Ix/h72U8OpM9PumpNJO+5tYV9CCSu7WCQcUivp8xCCxMq1RonMgXBbXJ7R+S0uC++UpKQ2JFb++FOwyDE6BOsiFMCrXQYTxS2Fl8K1THq6KYgOGtenha7xJrGv7pd3ZxV8+F7oqlE0PKwNjBgZ1GsqKub99b7MhhmT+TseH1fdPUXK8oMbgyTsekv3YyhTZaXTmWWdZfHcjHGAO2MwY75HZ5Y//d5ZIBxTMK3wmNdliHPMpOb+XJRMzXIHIHj6v/FFLQNxPlQiwbt8JPzyKIipmc8yGiE73/iYvb9VD7wQS9IWqlkZroUTmmv7Tb6dLH8QkoBfNaGJR3hGqQcoIwuNlNP+MnypHLaXhrosaBvEJY09wfxQ2wwqJuk3eI+sAHasibvAxY9fjuA1PV7kkrwjX817M9XkFC7RS8/SBKGh4FcbSMfECXdfYCqVXmTu0zkDA20uw0+HQQY4IUFx6QPAxaj9QBeXyOx4Em/5yUeFxtobPLQyP/6e3EASgrsWocHkU3AkXAadUBG4rbE4YLQ/I3MS3DOioxuBJj0XUFLcj4k3Kc35ViNQk/U4SLNRQzsDTbOjpPkFB5anGlro2XoT5ztsgJzjGRBVCXADIogmYCn4osIan0SF5G1dsiAzHf608JUtjDvnR8/x5iJ+2VWnWxcFyW3J3Dq9vbrfqkm89SpiOELGujh9mBuUMus0BWOTmt5Cp8lhuM3zJFHii/1mHQdmuyVyXsUZWGQPxRCg95MqwH3eudrbnLX8I5qmXIBMh8CAq2fXv9U+jlijC5PadfkAUGmiRmy8DoL9XynPY89DBo4ZOIXF0XwWjqZvI4X0ans238Nhvd+LLKpvR0VmwnOfSJ9D3mIgiX88g9hd298cUyi+K2M1Iaj8y4kYNS135DlvJZuBjrMb/F0pwIA42oPLwccqZFCwFE6iUdmQI2TuWP/rwmFpjD8j6NQJFpSkUrX1Opvt319bVGS1XJ2NaaAwC7GxHjMZbS8JBVQXX2q7xWMl7uxMLejLSgfCTbp0AWEFviAtuC53OXO5cGHY9r5vHKw9gs33AaTtMZeCHc87UyrNhrula7NgMY5sWgFadrgpwD0RSAmMFXAAUVUNS1GMvKBrMCPxZsMj227dfCjhHLpeEa+P4lhUr3G28+H/YyVec/0r7SzU63cShh9R4RCdbzPYMLjb4dqzEg81xduRj0TIv1jj09ZCSIoQhT67SICDqLl3hHEkTo0qgkpoi3q+FV33fMRdI3f6iXhlO3RoR3CxqL1881mSnJSMkWJ5FlM5JX4jsD2vqcGChicIYqrEsAJd9AJK4HFfWfkYr9sMf8MrGso4FR4vm9zzdD+yVMN2d5ZJiCfoULzAn0yuISnnO9xZd8pz7VEx88rE1I/g8k3l37DgkscitI6mm8Sebxnoz1CgrNAq2OpuPYCAMemytVPai0pa3FX1R67+vapg8SLUYLIbwUMFs5Wp/1Zxfxsrs8PzKvbXJ5yw0BOFUVIM3qXAt+Pw5t49GIKYF+TNSnKvlwRyLaW4wWzw5+OQM3NnUdgqNDMzuKKF4cIsnyftJl+U0kQ1pzkexUCNm1+MI1no7c7qwTtaWi2zNKP9sSeOYWn2nPSoPw5owCmvoxNqI8QSwZ/pPw/x4TKyXaV01/0NKof5m4UHLxRkYYhHCCefuJvRSl/uw+3FCd9fdIL0NG8RbOpoS2LYBNOJUv2ea7MdN2iLcJb3NCL19ziCIMNhr80Bgc4EMmusUwRXhark8iJs2JEl/WotBV+NJu8m44umQmRLcGb2WXiirVpMd1ZsoKPHPBROqYdbtloi0wxwGAjpmNg/iwENsh5fOzWK7db
Variant 0
DifficultyLevel
706
Question
Korin is saving to buy a Spiderman suit.
He created a table to keep track of his savings.
Number of months (x) |
3 |
6 |
8 |
10 |
Amount in savings account (y) |
250 |
340 |
400 |
460 |
Complete the rule for the linear relationship between the amount of money in Korin's savings account and the number of months of saving.
Worked Solution
When x = 3, y = 250
|
|
250 |
= × 3 + 160 |
|
|
|
|
|
= 3250−160 |
|
|
|
= 30 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Korin is saving to buy a Spiderman suit.
He created a table to keep track of his savings.
>| Number of months ($\large x$) |3|6|8|10|
|:-:|:-:|:-:|:-:|:-:|
| Amount in savings account ($\large y$)|250|340|400|460|
Complete the rule for the linear relationship between the amount of money in Korin's savings account and the number of months of saving. |
workedSolution | When $\ \large x$ = 3, $\large y$ = 250
| | |
| ------------: | ---------- |
| 250 | \= ` ` × 3 + 160 |
| | |
| | |
| ` ` | \= $\dfrac{250-160}{3}$ |
|||
| ` ` | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 30 | |
U2FsdGVkX1/VuyEDnfxJ9MnnSZMUFmj4HyTa7+5VijqVE1LRAUXzTAm3bfEmECz4y1VFxGk9CvyxOlYDHf4idR+5WHflpwMZGovadS1m0GqUgi+zTOm5cuq9l+mTHSz1x9UgdLO9ADH5FflxMDfP9yJvjPOyaWb/X5ma/ExGLDMuYSJax5ctu7VCF+/e+NZjb5o2AH1m0du53iuWGT7rZw5ZhVvj//VWFNL6SfKpse1Ek3cMBnr8IRhkeCr2uYMAw/5yons81PDmK2iloqAm+i1Xcehkm+YQmMQwq0s3X8qFQjsNtu+uY9ufKVpYfOO2HIsqODwZyCn/YRsNb7okGm1YfYXF3VRAGnx0Q0nSVcS+U9k8vw9kZgJbkBASuwe8xe0keegYElqkgoRYTVjFzmaJvIbgjeTxfd+3zgoJ9Xg7f7o3ur1dOrNDV0si97JaHDZ4mLw1KPSGmqNZ7JOE9Win4H3Qv4A2CgTrR5mQOYlx8z3T4aUhzxxXl5QIE8DS4RG55/ecC9IMSZ++LhStWYR+39dG6iFmE0/EYr/3kJBQ0/i/R+MCoEaMyGy3awP8qfnbW8DrDEPKkyMvYj6V5IdFd3Hppuf5d/lGAv8LOIS9uV+qJQBK5t16pYPxsSFw1OlECkLicyozom1ZM0w+MRtb6cNqOj5Z93C8051BGh1qSWxZj6XNjF+2UOeB+nezYjLHVpPK0rBmmMEc5+XX1/Gl+qAOuOk2LfehzS39btZonvJueDnD0AiSDElWebXHW5cHo9yTkuMGUkOqH9A8emOLJBG1PRdxEBnCom+SlDmfXafaHhQ7FqvDjaS70XIuxxTaYxYkioI8bP7gs5L2qlO2Zp9TPmsOY5ENgcL99hKAcszlEveIC67Ww/qELzLlE4CQdnJMsDK2mFSzBuzxO46+bMoa9lyaiXeIc7cpJp8fvmpq5smdxZHsaYJKk6Twga4+kko+fH/HnUOmvSvKzhlE262PbqmQIHEqGNEGrmIXpR/XlU9h1fPuY0iZvwX/O9epmSmth3emLYE5hW9llsYzyX2bQlfxVOgNgneLFPxFDYazfP9PqXjtLJrl6FEC++S3Bw7PrMmTIR1GnhpfsV8y6LvI55Y4SaPJrzeX1SThelO+qgN1xZlepkYl/Z0rB7QNhek38AfunuI+TjMKwuVD+pn/rg2T5weTHxVR4gtGNzxYmVVOI5hgo7Zvx/h7ABaD6bG7G9CrCsO5ymhn4hhSoYcnoPqNIl6mwOWNYfSj+vmU60Jscy7PPvvhnQSzFVrYRdwWdA71NStiS7gZkU2HfJ14CBUok6N79BogbEgcXcxXw5kECokOcv9sweFYm9FzDvl1rVTpEZ9uL1HotfOtO332YBkUkhkN5A+Sx/xnNHrlTsC/X3Yq5gvxivBTDZR1gcyxH7EZ0KnxwzH5VvijBSI6t7njmUbDWIvUIsRi3u3mfRbMyXlglUp8+Bg8APDKJq63D0GfWxs7mCqtPfrXN6EsXZNTaobLB/8rofwRrWHqXhN84B69a68j2mpVm6Nl15cESpXZEiMbdUJ/Yq4F2nGRXC7kgXLJPh/Ow9wxAFb2QpsRxOkKRSca+b6iPimn9opFmimolrTvs+l7fqfcYPB+OTnmTrHuxCqajXlntSSJwFMBMDDQrbZXbDHG6gX44QdmnY/45NNYPV0NpsknqQ/sXehWlqLMicXrgQV1KVwXqlAJYoZWGV6mrnRlwayuiXcaMZ5kMIphq8V0W0vUjb/YNNlLmxgs/ZmzE2oi8c69VRn6mNfAfxEFHzBibvoJU8oWC3ZNJ7tHnRT1FuBbswxSfkUAgGKd+mYPIWyyoBxMa2VhJ39ecaKsVEKctBW70h/uwiHzGUBY6hUjcyTQ8OoYoMxTWGn8ygWzdGdt/kOO1XlwHRnN2Qnc1V/pYzmgSGdxZpXXYHk8F9rK1QAyAiliO0QsGjker8cyf3zEw6LvzdKvHLSF+9NoVsS6W39AFbwCGQLtunLvBODTl7G958eYyYPKSoQq0hLErb9ZF/ofKAArVWjisj1G3lnyzY7s808PgQVZtVrU2EacyKiP6v58VJsXTeVPHbtOiikZoi3AnjVdOjSCQBD7oFDbiZCiva7UpwtSb4gCueE3WpkEVuZisb5dr46weV44TneJPhYtCh4NLmVhQmk4t+kHbMQW/KDgrtrva94se3MHitzsREIV0eaAey6PuzxDfISGVbfXKsiROd3imaKrQlpIdl+s/s0MhPFjT7YL2aFpry6RJ9J8TrokRv9Y/cjlFL637NFnTvoAFo2c3ReWRIZSSpNUBrZUkcPOvI7TIXHIrOZW3GJHTeSEx4YaDI1oYh8gwDluTv/J9n/14W5s7v4XmUCZnpnONwbSwND8bQHJ82NRw0isCVQpJdEr+F4QoG+JpF1ucs5HABZ/gzXV/Hh/W7nJnKKufsjq+JGrbHzRlFBHzJvjZW7dLfXrr+S5OlPDFxidtKf7ZheHS4gw6Sa1gX0idBE5HJK5tdOZHUsL0i4ryl16Qs7+VXrZhn/craDYNcGmRCDaFT19ws6qXod/rb9j/hbZx+axYyJgZHjmtieejrHbrscVvQNOcnKSwiHRksTyBW53Y3fjSaeCElEAxYjoSsHgSL9DbZ9yd4UvrtYIQ2udzfhbgVXpX1lnaxoXiYwyhzBgtrfzr0lNo6bUmygfUg8cz6H1hdMJ9TIiUbKeO2k5MY/+Gm2EHOl8SXz5dggXCUMxJ66eLuXMqf6mC9QiVFCCXxpNHum8t0s2ueadp4xMxNZThIzG7SPKA9rRJAN0oCzBrucSVwP1dXlQV22A4gaWQdsnLOy98CZN1MEg5TcFV6lW5nvx5rTuOrx6+usc2UCYk3YkyzIlp8rAHbgVyrUfujNpfaWLVLSftsyEMaQYdZbECp7CjdijbqqiCTyv5WPyPKKxHPEz+G5XEa6Ifj5U09dWdPg7Gkt1a6Qxf+RB/k363UDeOdBh5GP7Yng0ZRdyhnbengOX/kcdtBF7dnBykrNcF7YKBrVzcPdWhytc6ipEWK56wuY5mSSq11TOS1FfH/KVbla5gG68sqiiCf3FgiWzknQs02MYPzlE+RQff+kPoM+ugXEPLcdoE1lRmIuIaj5HwIgLS+TJJYqj7R0WZyEmLoOS2quXKoQRQQAbXnjGuMGX755/Kjhqf7/7t8s2jv1Az6yR8bnyR0OVi6KDfpGP9Fx90HBu49K7sqLocbqTdMzoe/uyu+niz1VAMRuORGVS6R8uRTgAHbxNvlp6jk/VxDxXqyPxORY+NbXV0/ufxpwaKTMJu7OLL+KvQv6XwOCiNzr+1Gz+YiyUgnqqydqza6n7m0mbWDuf8Qv5D8N52aMCHAAQkrrBUqPzmI4vxTf7C+yvAkQX1BdexdPlrrMAGnSZKmQzEISYwdEGqSq1bYb+sNZ6YK8WoBrgRbV9rdO/oqJOr0O5X8jV/SapX50HN5nn6hp1eYuXmI6lTrxhcVMVQD59Y8/XTqFCFCIaEJIQw2f18F4XezD+taAxz+08uvhtmbOWtjuVY8OSIsnM3AkfTZONbxw4YTYyd5dxOLtl6SgVvRSV52iXqOyyKA3+iYSXYfJZIBiLmqlWdYYsLRYAGSnKE9xQhRboUrCcLwMsDMZ7unHKRx+fZnttaEkPp9XB13wVFs0SefpZtsjjMG19rI4wqMmU0ghC4G9eGIL++91zK4DVVGC7nPLAK725XZdYTgm/DHdRS6bE7WnIbZwmrLeuFTZhrwf4wd+AN35QW0+FeUfaAMf/+70cC0QOHdiR1kaTr2o9zVaRhVOEpK3pSvOsktb123IEha/QrX4BTNF0m5UNNyk/eJ7dfA0ad0oRdjtD9LFHeoGns3NfmLYZLXmQJbo8nXjimZgMbOHMstjjMIp+kTo027mfpQYxYGI7CXk82gbtMKl3hHMGak59OpgJxZYuhs1MR8SekmFzgfYCTlevUQ6icyWZsmdV2uXYN92ZNVw8JBgZ0Xcy9Tv9Y7kNts/3rbECCqqhSldyUqCeQEfx6Hs2mufKHlNYGGk2ju7LLaU6752JbpUm6SVDcm/GkTIHcfhuQEK35DNmyJiBhcAA45amiN9wcMtzNbYz1yeuGao+IN0xuQwffDjoNnfyVpH45xSyWHfa6sOkYjOVewALw0kmY54CaEZaLXZQ+lffUNPW6eNaZibId8YP6xmFnrzp22FR9x1+/teoQil6AqB9qFIL1kT4xUEwOuDDfBDfR8KjSeSuzqPcUU+5vfdeJ3i4CUOhmZo63ahTO2voCoHOZofb2CUWPz2JOGxqqRCqMRD9RFYEAnMdqStI25SxzkVzCAaYXxmRccfPlG8xublDJxlojP/BY34uUQ2JzzGM0usYQWLQZAgJhnhjj+EcHwMh2EUhVxV16BmtT4vc1K9EhVlJj4HD+RlSSWVPV4OuMldgLdraxcKz/avyXQhtcpdigAJUWFV0QzHRW5zW04LsWTBTGJIS3wwUUzB8qhrk+D/Gyw05LGlhRKqqq4BndeQ3tWGYhp7V1EyQxAZ199EFD11trQI3tAePZ/saQrE5tModq2gFYisZxTBXRphuSq7p/M8pzhgCDZaVTHIKYSG0wUEO/TgmjVECY73coM4ZTkknl8GLioBm6wNzf20bpudh7ZP2t4zZUSfNUMf5RnH8P9DG89LAtV9Rp2nYyig/jj3pGKuJ11grKdN0Ym4u676fAzNIlVNyNb4jBXhttIraMjqm8NDFaqh6JZltW4z2gMW/ZSzSWPNDABcYcVosS4n4gZn9Qn26WVvfhVIBLsHFLzmMnGor2ALYZTRdGCiGXGGlVXVJoFgTwdIOlZpjsWq6u3WjJaLPFPz82OAq2DNMlZlx6sT93llcMCM7+KoR5Dh/ykFs5UQQa0MgJML+p6nVTDAJFa4taCXoXdQRWmJ58LMwT8d8iXZCcV9tGiYEpTlMkyRGJ5cVoCsIg5+8GgoAvj6WtZ0ga0GzsYJjUbhshQZVyZR+wVbQk4nxBCZBZ3poxkxX89ATYW82G6WqOp8psNAeHEwLRlClzFkTEGT3h01sIMTb7UkeXPZ6XWmxUjaNW6uqDMGj1kLk70zGK7VC6/TRpHGV5DEJqnxjsM8DDeABWW9HbrRT7JF2mbL6c6vc0mMlsv7vkAbhu8dTJ5748fGgX03pP+k2be+/xuIACB3ktf+rUjxi0iWocW8nubCiAF3KXOx4lRzdesj58/W+2gUT7R5+cQ11XEhWqURYS0nqfURHns0hJW9RMILVbrMFwsQa9hiddg1HQWicvwlQ+fk85Y8PFQa/PJSUNoQn8E60PGOieIgS4cPf9MfK2Nu+c7t+DEnK1BK430IGJ1MhrpZE3VFzoXg1r/aOIwa77SdPpe6UMmD+pVYlgSqR2Hw2bJyE5J+hs6KYYR0A4wzZTozVa19kQ35zv6tfG/0ehUpBNSMnMsxj43WHEEonAJbU5BXSbcDPAR/DEJ2ivI21ZuHA11n2G2qYr10q+EGHf+81/vre8Mkke0Rnatclal9ElsR2bh56LJFV9qcL3HAym2SMQyhYWwwjZOB5M45LB0NMUCXwzUQmRkfdmeOlZGWvUXhKsXoYhnuLJHPeRTgeRuXvHzJMty9xwHXijMwQjTHs/IH+RlGH2rBbf+db+3ULOW3TuKFWXTteeJFEPUgADi1RxidSIamvWtYrOJbltecP6xRuUfzTO7JbrfYriUsHr4FVQd1+1KUG0tBrM+xvRGufT9Q48pWQIrq1fU93J32sYGGQ3qVu6UONB6M3+44veDn/j9OnUYAc4QUrk8qISpc3niTOa9yGrigda/2XXwqZv/dKn392KR0KwvUtdjHmWKblM4uR6MrCEMUdLZjIBV/jKQd0uZoEtnm0niyyvYyrVluJTCG2E9tlrYDW0Lxies7um2yK9t0eddQcVMUoV0tf9Rhe8ku8TGc5q6BbD1oxZxmBWi4RXW4QDdM/IFq53lGDM1VKcspElviPmxXC7rbrzHhRyOywwCbjmdCLHjLSM9AgBmIIe2ddiEuklsflXqjg7mEDXtnkxfLWxMG7OEZBApm8CV2Ry1OEk3gnxiopaTIRgvf5X/qM+hNn77ybvf0tFlL+nMgoDqm8s+X3RcZC00B4ynVaECT1SVxGiiQVc4nNdiSHxBVTMLZgmiSbT84fwnys9S2FXt9+bEi6KuYFdKFSwE9dd3lOLQdIm5VrZP7IJQplB0u35supYDpbLLIzS18JXZ/t1d9ZUk+whadvHFhDrNGh6DTr1LF7V6CIKf0Qnaq9WzlaJaQtrMQkiN9pcOwX3Tbhb+eFIWmb1O1lr/oGEDLjnM5SqxeX1yBJenQRZ4NN5zafbbn5I+EqimPKcgZq5E/D1CHUwT10Jx23PL+WKDeJ+dx6AJ1yM9c4HgSkImJodvGJwkBLQAV+VkZ+WGLmiDhaEA7R7z9r5e2cXbL6Vr5rdjlN6RQwDz62r84jWU314ZeNfwHfo8FtvvsESyunR34aQeO3asRuj6ULczzsAu9ybZkTXrnhfa2qtIveu8jiU3GdWzqYR2N6/Mx2t0xjBSU2oQklebPNyxEq/OyW0Skwlc4YcixIfwbdKnTTzV3SRBUkuJSZ9QU59JT2O7yNZELKTM6RvZNORwMkHvuKvSwZJ0wvug+STpqaIqnofHe2GybFftwL4PMFmlJv5JnfBLGCiTKkxZ9SRH5KKBBANA5f+UWneGTdAlfPHZqxcX2Z92+L/GYDKDMfInge03BRq05z3pVDPBD95AdB3T4noaChazULnpJUZF0bVjgkjMcXEUMPlJ7pTJDzwSI0+tin8FpN/7VT1Ikyy/uHXzENzD8dPLWXSVBZGBV+wjZqGC7DF95EM+1Bd+3Oh3NtfgvQ/2K0ED+gL1eGk5hR6jETXK/lR5FyXw8BHz+3IlDSgmPn9wF5KcPf3JN/Lneh5y2niVNelPM8qnUF5s/bX3PQLPq1cZGkwnLGVFvC186qREulQO5n6xa/TCqAfyUhl1SBev3fQn49A1DGeKY3F0NpQojd1B+yXW1RkkAxGkmq6SUy6Co7R9bTDxBtB8jYe3Ns0SuSvoznWjpYLSsvJWh2zlqmC9eGy0OBRKzSCvPtklHK+ZMoO2/xITEzG9KhEiLDzEZlOhXA6+1lhKh2MDi+BKD/f9KkauaPBkAG4mk6OFN1UGpGhS/NIcP8Onc/3BdX8KlNzcjF9+r7lwJyrYESrHnLs8KuGL5YWz/QEbXrR2i0/LcIVsrxyRnegkgWGJPNdWhhL1H85E82fgB7muLFuksOQEIn3Va1sCR19IbdZctfq9ADsgBHSvESdRbzccN906wKNn3K8s6eCvUAQEwJSIjHsHKLqIGNJdBVUCW7/PiHB8F9XmFaCWXnkQ8zhIvCuU2vYZK0NgPCcgrlfo9FIPWIHHokX4pk48ktSjsmA54nKapDHA6BHqGIpxZJspiRNPkuoJmitQox+FZyiw3Sxrx22vNjZNweBWYtgLGIYAk7tLXKxCIQhxsi9mtTETi1sNWEFvpUwsgokeymh+sfzll7mGdDIiNlbjEjzhnZyHN25ztxtc0n+i8kGiYaVwQnS1NZdJ5bPPjNYlzQW197okpq85LVpXUCcqEsZ++TU377FSpKwoXEfwWyKXeGBrxuVtXdiexsHIlo8m5qzU5Nc4tAMffLy1jUR0JyFmJy2CrH7WOINaRyc/6nhb+tkre+BuQSUsMawNOl6lxyC2Dosw5ZiiltAW8yG2MZ+6bWBpwUMK/J19ITIT9NdVVYsaUW2K9zG89gbTZPTHSKC1GNG0IXpmfGc9FwSef6DNXNgzz0hAjYEke8a32Rscxmox7g7a/6eLvuxtl4cRydkID4FkNceVpjAnsoOanXYXaE+z4LyxFuCZV/ldWGwJ4Mv+VP1zKnobPQPkdK9m1n23hpa3wmufHDC6mar8K+2cqZdb1qvh+FI8scTa+u6OweDzD/wv2n8FxSHce276+fjTTXI//7dU2Qzl5t8pCe2olT7WTGXp6nTWRosBbPoVqI2Bma1LXL7ekyb4hxBqeZ5oPQSjGZUr0xYC7uo1Xp3CBVIrhTXx8/2MLb5B88nNx77dKQOzJHGLZu8hhydWVvx2GGDOz7LCiVJBd56Yt/uSYjRdgzIkHB7JO3TgJO8LabCzggiZxUWZyR4ldK1jPNXqeaKfbeY0I0e+kQknV9Q6fdnJM8lKWrTMO1lcojaqkT2uNM3rusQudK4er3CBW54aKOn2P0pQ8sd75W7JuJYLcINe0KOzarVzijJNQ8Xjw5GmBcoVqql/yUPgny52k7VIZQiesW1NNSilWd4woF5vFnkjfnpBg3G4iz/e5m2z1CsV+p2fwpXEnAp3wQ79JnVMbFQJTN7GNKiWXjzoL2XaztAR67tS1tsILqkPJLlEXATvQluh2hKB4A5zQobTdXri7exJoDTBrHmLufOMqnPmufaUwHypay+Gk+uQZbjypbndkwWKSaoVQrJjLSYYK8s345JpiEtX62n/DAFs9QHWbfezRfqw3lKqFrGXLmdmLYlnifUdoW+CBqo/xMtr6sPgj+nc4n9kIzQdK+pBLZRQhweB0PTKpe1dqzdgZK+Ox1db5RordQEqzqHn/wl7v2/lzylhmKkDG9pl06pv51PyVS/q7ERPJdwZGliBqCe/Y87B6L7CnMctFbOp0j2OPSm8bQnuA+p3mErIDmDWRvZc0eo7k23bLqt6Iu0hcrplmeBB4WXszCSKY19Sjcs8fwRDJxmEEFNE7pOypP/X/7t4DNdPHHaSp+Zwr3z15iKAXrg2vRH9eA/NiK0S8gKD4g/8KPPBTZvcQrL1FTw9kVMhDO39uqr5EKLxGIY9Ug2L8/uvMRr1e6ZaPvZEkkhG2FMxorCmrNgEv4b64aLPqDT6vbNWN2ehNYwugH2k3P4joSM6wULLRn8naipvyrxH+quLxxs1kDQduRTlBckcDZuxadTuwv33F2pqSNMEAqveO7pRVgBFTuv25J8kg/n9OpvomjXDu1tR0Bb8Ot4jipNRcwnwDtuOrsigl2/XU2eK8WSf2BcFrEHS37d+ZD6/1xID27++2mczUNpKn5CsW0AZQ22+BlAH3FOYwWgOCGQm2eFMWhNvzBqGqTsSA14Sey7Ca5wmNt2D4UJO0x1/JA7juZhXwgs6wsNOyCnwuJZz4MlU0+pq2QBVj4qB6gp0evDizwGBrClyVscwG7I7WxiOKJEpqWNErfYepk7Rgfu44FBhP1fQ1KHFz94lNcr0N3EyolHxxBfg1IDfNs7L2bMzb1ZvZepJL6BLM7X0GNmDTalIaoDaCzZYQk/UxeSytiJrsxF96RVSxfinVt3JjxzxXn+wgXdvJ1sDhnAeRr0qIQodKj58okn0cf04QKAJ1gUbbg/QjQzR6YFO/O6ey2WTLQIkULryLUW3IZ/8aWXSsNwrASY5A/M7EnF7A5wZ0WuW+Ijn79QKtS3jOp8hzsAkcH8Xj/uqPKlPPUY+VLUysil6diTs9/jnFL4qA+Ed1PnNpO3sIb3Vzsvg1s6NriRl0M/mQpG4u77ky8yFTdJnVZMM9r/qcpHZpaiPpaKTyGS6H0KTGDsdUvJMZExl3+GObYVkrve7Ux070BawSP7awdLXfqy0OXngy/IwQ=
Variant 1
DifficultyLevel
707
Question
Hans is saving to buy a new lederhosen for Octoberfest celebrations.
He created a table to keep track of his savings.
Number of months (x) |
2 |
5 |
8 |
10 |
Amount in savings account (y) |
230 |
395 |
560 |
670 |
Complete the rule for the linear relationship between the amount of money in Hans' savings account and the number of months of saving.
Worked Solution
When x = 2, y = 230
|
|
230 |
= × 2 + 120 |
|
|
|
|
|
= 2230−120 |
|
|
|
= 55 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Hans is saving to buy a new lederhosen for Octoberfest celebrations.
He created a table to keep track of his savings.
>| Number of months ($\large x$) |2|5|8|10|
|:-:|:-:|:-:|:-:|:-:|
| Amount in savings account ($\large y$)|230|395|560|670|
Complete the rule for the linear relationship between the amount of money in Hans' savings account and the number of months of saving. |
workedSolution | When $\ \large x$ = 2, $\large y$ = 230
| | |
| ------------: | ---------- |
| 230 | \= ` ` × 2 + 120 |
| | |
| | |
| ` ` | \= $\dfrac{230-120}{2}$ |
|||
| ` ` | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 55 | |
U2FsdGVkX184YaTJ6JQJDelJ6PIo1fUXyaRrPDmIq1QUPT2cbe0O2WvEWMDoxbqcf6cIeoA7bJDe4INLUqDaTQmmt/Z4K1SkOYiu8W+glX0bsLEmjJ+q3QXgw/Ks7bcCWoK41VAxQnEFbo/cAUZrD+jXnI7kJc7vQH7iAiEqkFXvVZj4SHeW7vu751OeJvNd81bW9gKMuSx1xw0lTorslus0qXlNubo13t21Tfc4Wx9v3fj9FEU0zEtKCsv83BYjyqN4L4levLrpNxFhLfyKD42Yi/tCsT/kNfkSjSjVqe81Pb6WnPOswxMrBeEZSZSJNSddZ0iKf9mAsntkJi6R+P1LgAsbB+Bu8pTBitEAX262N1So5jUyrBjH6aNRTbbQgL4XXG9RBOITipMlMGYOn80ez67ABZmx7eGwAhIcZ7E9Uu0NkNQn1bWXk13T9wzRdCXzLJ4OFyDgF5cfr7+i/sitZSdSVCFvddrE5PmJ/kEN+LmdsMEo1W0axzAg0ti7Zw0MHu9d03Q2zGMJztWy+7tyr5gKhQWr4KQrJFxtuC3M90Pvh6JoUDYDAC/Bo7TgXO54k34w7wE0s/I+nsX4Dqba3fp2t0hv2t+Y/djU0H76yQ+gRzTG7Jjh1FJyUzboT0XqidpmDb4L67IsnYfe7TTCcB+skHELn8PTrw4EcBBVtXvVr7gHrNoPpewwTouOCgzfOK/n2jGeyEy2W4ZuYKTqguZB9B5RBurVya1N6rESp7DlI6zT79f+55O8BtQjiUmFktuGukg3z+FPX+CDMDAWNmb6+wx/DHRYi+5hCZZsK3b7Y0QzR3SE0G1GDHoCSoMZKGNWs20ev+IWUuM/9Q/p62c5i4a+3ycdlcmKcrhpHZNlz/XMuUBaHs9/0QKyjuZAmNJeVvrai80vuU3T4yaew6lndv66HcRm51W2/tOam82Npmb9PCDb2C6ZsXbGOQKcnmdVk/P2Y8smUdDSLRDu1MxOiSPjpXXjoj1eG9C4nx/RjQ0busdaI+mLFZ10ib0R360lnard9D3bysksohp5r2H05Q3PlE6ITRNryuGfBs04QmVtBv3Wdy6ccELYa+vxZmnJCOf2h0tdJjolZUXt2SVxSX0YbVERRbwJteBS/BCZPeWGK6qvPFF9iaSj3ZSIapgw+jtsNZxFAT3uFDqjv4dS1tnu6moCt3rCTC0RhNMnZEiU7lQbVL5tCgz912jCwMyuGOwFOrVgIYU92Z3/wFypOD/RZsVejucictHu8kij3LYlRUgL+24P/Z7QqXeUHudjN9wHMWojXlY17WKHu7rBN8SM2/ekhW62Wm8yyobpUyMuRKQ1Dm47dmiAFzsbVeT86n+Mq8FFRgK5Zh8jO63tRIsKEkr7z98q78NQ2sTe7FWYhIbMauUD3oAJBUiDWPZaMU9YaX+sPRNTewnyVOvG5DTCZj3FQ9CvvuSRDPme5I1vLPsQOqTJKG+4m6ldZMQGlu2TLQ0Zle54xJm+LhWW0fb53FlQ/TZpHFTdSuxD8YE4pmtBiT+JW8kYHDexw6SEXNdrhEjq3XwYo5L8P5Udb5QYGCyGTv8jHZaMfx9dxhHV5x7fIh7wzhSCpvHjRHVn5Y4aWIOEsY+EiM0J7y+JERgx8g6jN/OCxAsNTqFDmPlCSCOXIrQ1k2ADUdhAAKBpy1gQt21mLI6VzVZA4qZWR7HT5u+JWnq4Jku5pY5liGlmwHS1y4QS9OWa9fPe2ZAjka4sNaz+VyDK0nhiY4iBLkIYfNTs4soNFYrND9xtRUp7zlLLdDNdkK4m7FAqrc921esCYLslJV5GFtmv+FD4twOHGCLBKCuJGsEZV2LRNLmpJTArV16B2x6VOeBYjDHNoKdHBz3cl2WQaJq/LcFmpNxIR2H5+B09Cbh4xSSz2sBCNVXC1swYVnSTSnx3oxnTnGs4nwQsY4h1oPDHlv/+++oS0N1hdbOHncFkKEGkEot+ff+alWTVbHffyGe9oAkcVEAbD0wOzb9sn9jcJvfpYHvO0agRUOMm77mMLVkEP3TB2RxGKT+vlpkLmKI4+VV85XjCzhd42AecYAFBEB8hJX43YNvpR73RYSjhCs8jbpS/C47encsLF+P09x0sxw5qZ9T9TOJzIxt6gza94najQt2bKCxK5BuI8xN1AibquI2iM/wEHkWZJH1wWvr0c+Oa7yMgqkEsdxw1LmZ3iLdhzyfF5tQW0+KESPl9Z0UJ1I++2azpCIxDFE7MDNdE9SIAeVSk5SdriCBZg+TNnug5Y919qrxIePxlYn6+648w+EV6vmgQVr8Q4IPRjjyM576pw0PhJ724lB4Lglew+KHP0bVmZZ6Eygb7zDFMR5vEM8HUnr4jys2F1GQ+XjoYnKo1V4I7rY2xZ6XuTuKAutYNMCicFKHHTDl1nIxccos3Omj730/5eYKl+Qyh2/DNWbxpZx8X1lFf92jGstc6n0C1hs3kthubnwgiajmcJy/FQsIDTJkz0L241ujps3jFOC+Uwc8qKvmKBfj9w6IaZHqQGCP+LYNkbyew7Y9AXUeJnKcXoQC/pJc4aGBRF/84ZX+4DoVmhmVnC4EF6SWxC6gsvWpQ+9ypbV6xBCbd4z1XAQc+xyrjYAF2J8nS6SbL5LHBmVs9VddIy1LljOafx0XNAN+nv6IWr9ag6F+ygVWc35bdxAszx6lFDFLndm+TRUyx6TlS6N2mzQnZiKf6A0qaAhsN6LpE/7KJ3d0GTKzJkCnE8jsx7ShX5pyQyq+vhO3RpGS/AqNIRMRxOGPsrwn4m+jBkwXtVjs5CcfSpqv7TvRVasAM+4i0xZ4xFBVBkdNgqZTN1FbmzwhRGv2pnFnRYC4Vw4ZOBh27p9LgED6Wl+8ASqcbAamFqFYsuHr87RE54tfioP7t/XUSKc0zOMdyG9kc0+GKXbXr1mYr/zXHD7ik1CYg2htd+w6cEg7MIueR3qQiswLAXZhUQTLmALGpomDYuZJeLr6LuAVzBzxS+flmuj2OcHqn0CHh2pXXFZeQcDmGwXpqjr8otZWB1pGPZJP39jgDfWyQtMm3i+D9Sl76PedeNdvGR1okOqb/lKT4raViHg5WyaVNVnaeg+bhpF7H2HOnR1eTihOb9a4nv+XFQc2CxsWm1icYEDANzUdGcnfOObhIEVNNrXtHUWmT30tfVmhS44cIq2v097c26j+rzjqzqLDM3LBPHRC27vXMH3fvwOk8rvI01MYBm+t/hLJxAr+qA9SSjhGgQfqH5elS62wN449OxtoytXNfJsGN0qwIW/y/2w/cxoTqQ6D45DoQzIQ+8+EIrT8jYGwJQcUDLgPokXuDUk0e4P3Odn7ZfHeeV73PCs/T4PQFv74ZmiHOkGgb7rZkLB3zzMuRL7mGrn761Qo+ZTGU25M8iaf2GoDv+lCynRd4l3574FP4dC7x5c++K6oMQnEtAL4s53jJw5swjgFcogbX6dSOzfzMI0ByE8NTHvuQ9TTJWqURUS0h2H3maafxuccDGS0DaW9LB6IRZ+he72Jpy0rVGdZxgyYuYnmiRWM6P/R7ZpZ1GUEsAe1EDU6Q2WPb25OlrzlFHT/tqA9Pw5IGllZMGCpUJBEf7lca/VxfyZsJDcBHJPQLAsQFb5eJIAAPQLrwfK/sRh5DXpbWN9kqhE49TpoOUxww/WHHYeiW3o7t6I1TtzeIZ3Fr8V64w1VyXcomGmETwe4gynZJUosjaMkiFCy74Oa8Jbm3THGFcKX3KlrVqvvnwmokTeO5jW24seebgE6//9o58HKNeFDWAPTye3iiK10eRPJa3odMJXEXVF6Mr+lL1mT6eiC1Qr3vsQimyznWwy2GL25ZXt4lOAYiRybAMl4FSjuflJUQBfZqQKxCl7LhZPXGQvvosHb2V7tPGYXugCpF4UfyFdlWra0hFwzuBenSkZMRRFILcACGAqfrMpfdzm7RvCJ3k4u94q9yP/rI7Huw/50VJsHw8422PAZGNL4TMVvc/Q/1qFB4oWL6ecJMLBBJwmodQvsHi8D22/MoePhaYrqt/gryuboJgkjbiM/G/D3dVphzTvAP1pSj5qD2Oy7De0/FgGaq2sYP3Zv3XF/457VAWkw3QhNVDx9MXjNgDA9msfOBHyDdG+8rdtILqWFc2587knjGX85zwMJRhcDFwP5rW5MPMXbgGE22xq0mlcNirleGg4Sicp7VyibfOUxpuLeQpHRLrOZcFglGhLXePThJA2UPwV1RZAxSir/NMjzhMpUAm+Z+t4FatvsR9fEM40zYQHFPkQcqq20DcUN4Rc9HZGjEwDr4W1c+WKEs+otNIJ3MmObLUWiHDOAKCV0JdexZk0NVhWPQ4AIB40fYOcz4yvvNLmBEgr+qxCFj2eDPdmL+UWFELsb4NStSnoguFlejV3zLaomhNTFUgzNtSQluZjqmMEXEOGt7oyEWGdYSm8XR2nM5x8TiinPSEjK7e/1Auy3E4+blNOz/GLQQhk4gufmSwsSwPRM1bIvKQHXL/QQNZnRcvTpOZJriudO5mhrq7tgUVKnr5DTdA8Lvlnr87//rHN6lOKBavX56U+MkIjXmk0yhsKi5e6JzOHcnU/VCu8dFHZ3evAIXFrk6UKWV6bJ0FWb2SK9ZraZquZvV43HxfGag1aWnRpLz75TkoOPk3Eg5r4pDN+NnKr5veIvxC3CVoGJ3Wfg5VKc56ztMz6tpPBmv4dSHHFxLhYDNtNVimaESowvFNTMUngHMKl2jTFzJ1LHrVtkcmoBdb0XO7oAa6aPDdw7n/3j2Aq7Ggc4bpvMWHKzFQI3CHBQQbUtwgitR4xTTcbinHtP7yY6ImfHvvg+OgyhFMATgcs/mpmpaEUOtzEWHahwx3SL3psYEm4Lz01AmUJIBfU4U/hmSdAxW8meG7VfwdDtE19BvpT4Nw/FPr7Qoe5zLvKVB+xvZ2EFvPEVYCszGlcCDb7H2kEfAsKe22DyADVZjfaANTqlMRV3mrg29eK++Ctor3kR/yZgDv8SCArNTpo0k3sAprB/2Xa1DplRovWYXMhwDE5TKqh+KM1skdQMXgWRd6bRXT+Hn2L1nhczhnrHwstiZgC0TQJ/7Sk9xzAl5/GJ8kX9jcYzTUf42eOwTSlj6XMPA0VxvbeLAX/DBMqr0BPEyICWkVRddqsxq1S9dE0jKNlNEvfVyt8J3tKlXTmn56UZHciUtUvmXAG/Ivyx/zQZQJNUsdRT96hZmqvbSrr981IwvzvbJcq2yUyylp/OMFx71Mmsc3+x8Y9UFGv0Xgjvrl4DmD+a4PTvqAo5o2eQGH9KbcJtXM6Njt0DgskdZWnp6j5zpV8+CHqbNN3uXZEEpGnZuUPwjNNSGSkm+dtzdNcVJlPjnZfKEP7y0BiQ/53cxDQB6OowWBT31Ym2f78EhpjEMIi9NenuJlWBq9RzkSklanWqGzNVWr5zXa1mJJGG/RewL1LZ7WmwGJzFY5JL1xq9NcP+EmK855lLvq2WrA56mzH3NFrn+360w+dYGOIfcWc5k+DKMbRwcVN0BFkOT7YSg5p4GZgjSRsP7YAk3oKX/m9uPH/Twzaw2niWg5ZQUWOmEY5DgPCkgqgFsDDxJi6w3c99c7AsKmigkb3agrpsHgy2vGXcK3QUX8/iUwdSZxRazjzZuSYdWwVWWydL+DZll/S4064d3NBYfbALrUJgrHmpPsq3fupdWlx/AZYQv4HoZbW9PktWOzNQ5VkxXKenuxMnquukoSm5myLQMHjlq7H2DHKNC5Er85ClNCusfR8anrYnqMSpWAruqFdb59bKPxuBpIzuCqYoVKQ5/DD30B2Nv/kDusoHaCTE1Dw0P8zxTnPLlC7V/toywXiyoHM3trJHIFRhm+csFFCC3ai1kHCcZjuxaxB1qpQWAZmYIVDZh1v0lMzW0CI+MsubtssB728XoRS3eq4s+77X8rmdmPCm/d48W++ynToZ0E70yjERToM0zLCHSatbrkfuYqm8aVkpg9nSijYVmbbBgHq2tm1M/e3gD39m3skb8HbCpNP5eq65yQuT0KFpPaQyuKYVRIA8zBRvHF/RBrt9Vm/pGTXi/mMGvFYP/wYnjz3VGr5xAHItkl3uCrtru1FJaseCRqnP1jt96vaDgpjBAq7hnSDd0QmvXgGncIxHuEXWNkNVRVLrfBMuaCU4kf5touMYytHyb3ZcrEPMUPvmBWcPdbc+3Ja/JybF89nYGTfIon8UiVr2i4Y46o/GD62Fy+o0/FE9ia9miPR6K0GD7aX0Gewk3P6+z4cRK9754DEwXl2Zq0SQL7b3sDWsu1kGz3QmtAlu+bpFo++9fs96kK/QqFV4NeWz5ynC+0RtngJ4YLd6ykEe9gGTlnF6hC5578DIFxMXQvfOyrC8NVhNrIGrhKP3+usnqFCkLzGVWmCxPMxxutEBXvljC2Y/OLvp12rmF6JzqBJ0W3CtyyM1ZI4gXKLn3Hb1+usj5TKNhlovqIxcVMckZeTvsX8PaYyQ4wTx9WpAy7dmajNFagy3hVVGEbsuZRPTbda8zO33lhaUvi9fXdAvr2mti1UdXGpBWBWA+FV80WI8BAGWg8ZvV4/NkTYfB7NbB0pFN5OcH1pgluW6MuzNTFT31eTW59VOtkZ5JzEkStf2j58eaX+rvvuyWxYWmC/BjEwic9Xz3eIfn9ERmRzKT3inQyvp+qM5Mmd8bac5okOiftYiSzUkTRmtsa3oHzTk8sh/RQ5SSFpN3LGFhqDr+1n1+NDwmm+Fe7d6Lf2wBz/eUbugT9Vt0naAw+sb8Uy52E2va4CjNHUbBgNP6lO0UyEtvEBOp66/pLF+wMlSY2RQrW6ENMLD4yEqbSWxaSjRmDSfY4a6Gz0zanICxBVsUZwvuhXUR5OEDQ/8cPsdwy7GdFp1qbMkHGvNghTeST5ApfTiZ32rkwX1u/3C+gudUdgJjSB4oGqnQX9hPBRObLE1O0kVeJ5ks/JDZDa/tVokoZPpqvgVwph/9CyvGahH16LEowcvgehuNIUyIQY1ultswAnYZYG4tg+w/iXPmkxmjQsLJHKpJyK3JsCvI7utmz755WlFJWsHpAvlP/hksy4FZJyCeBqhpDr5nOCHU9R9UzO6vep+pmaGDZEEdL/LVMoueJdcXcfKSsXtKSs+2M3LUkqCNZwuO8vXI6LErxfrvMT55bC9VcyBZ/+VL8+cbNt3R0ZPo9kgklzSjlwZzjVxoMC8rnKEu6bYdDAz35wBHgwAf2w8Wp3jqMahqkWaNzlE2tioNqlUjZs397SxZJY89mHA03YZ6tpcB9crQAhfGvL/vvYVsuLKzfqZdCeNHQ2nE/u6woxNxmJafGRUtC67eILnEQbXcF1trjI46z2518pbyPE5f9VAU+JEaSrt0sf15FEl1g4nee1qujOfFl6boC73e7go+s5tprOM9MIjuzi7hF40RS//X06ibJh2EUWcVW2qYoeP8wOxvrA6f0j4JZ0cuRuZx18LSxxryjzUGQsqMRcf7UFA26seegBKFcmXaZZFYg9wpkOIkUsQfXaHTCvTLFewH8KdO1PikzB3xvOCl4W1JpdNAII2GkmyBlTPsbrHtm4Vw3v0kGfCcq9FA+/iMzuS8Rhm7TuIyhi/QhykuOHsE0k5zFodr2IqvZpsxUmHaygOysVjoHglFtzavRpsVh+Sh5zfJ7P7A0XGF90U2MtJUFMaJzeqY5xcQ3tkJ1/WTcfSw1OWOepSbgDMtbgWB19bwCa20WOwkCKubrxBicjEJ4GlzgS0UoWwrrbSfsDucThv+RgatbMHH3pV327VBZAg+tAQkKo50eudpuEQ2bs8jhErSkWubRz295EIWkNENn39et3/0Ui4XIniMlAYSKaUwdSyQZEp/2VLADs/9abywn642yodoQKUxU+hjMrz5Adk+rwf7DMkirdeZZC98dRkjbxicDabVXEAOCPGmwpnPhcLYMGArjvhtcIOx8/ENAdKUyf4FH0XdDN8TS3gGXNVfq1Lgwq0YaX4Vo4YLI9QkglEHxhIAeSiVpbocaz9/50wi1jygmeoU3Hv72ceK3hZzmRquMYxBVpLGpt66sXakj0UdN5Rv/4uGvIZxd3veRlpOswmyZi+n2EzIRCDVddTronGxSvbE0W6NWwpfR1YbvoPZQu6ScnabD4ZfC4OLU+QaW25JSkvR4MxXj1qy71oI1fxcDvWZy2LThm5Mo1mbp06xyAbvY1qcIAopIZKeiADrc5TNXgaiw/No+Sb4UrA7NudovfYUhIOLSu4wHTwnLvsGvzxbx/6nWKjbIc0aVYjgBMc+ff82uoSYj8lbIBJRUTdvJnxYDRyIjbYuABuBRTIVYNPdhG7xlvL0pj5OmZKmI4j5l3yJqKuMhL3sqvGpZM7HBjqO3Q/+83337peU50EjMaGkkTKlWHq53hN7QFvrrkLPWLVW70UejPnwZEK3X1bcEzTdHo58mggeQ31cRtFfto8JapYLE4JWY80Rj8sHUq25Uazj3/p/HICYQdheoAvThSJMDjqOe+8OyrOU9dK4NNgJfEO+3BNjifC+x442oel5NAcXHSjL9WSTUp6nbuaOVemFovB3RDCoq2IcsqbMs6vqZ2+JTt9hQosLskwzdaFgRZDX4exNEPXZmme+JlThdjaOAzO4X6VU6EObUKpwC9VROFTBCgD1lvT4yQfZ0h8/1M+qKeo/MMemAb3ogO9hJnMo8GjhlalFNE+e+sssQcxNBwNfGnKT9MC/wquRjDP+wyQDa0xLg2yvdr3/+7hYZu1992F9tlU10c44vMxWrApH1uAP16JVNyZcP7/fF0p1oTVStsUgKglgn7p6kEPrAqep46owEgGGC6YJpuwgJ9SbBDlOHxHSX1a5m3MZIBQbuU2l1P88UFbQk6Cw6AF3nmDkwy5gHCd2U1gVZ7Ie6fnlrFR9uDCWQsR+MJSxO1JwHMKATXp6QxFZJb75mmhuYfhiYXI+xRij9txLrUI2wWa1fxzpI0c9gng14LhC3Da1Z7d/bdknj/AOjMycsmtOwj9RyY0j8LRqu6opZBQS4BeAnNXs/0WCxIhS9buapAiQmTXnCJswwgEOZ1OvjtV06/5G2tvz1pLO7+oVbgR3NZPRphs51hkl3J2bsAXu+6EOg/foiuD+KbMIKaqGEwImhvDY2ZHoCXAfeqyBSRv4XHBK35oPj2YTXcp1vqzlHfCShXHmUkq9+NIrZYKhuwqNkOvcOzmicSWZKp/FkHKB0yo382dhWZ7bl77OxCJKpjfAzgUE9fpUArxOJCIluoIfKZp3PpGpIFzfR3Gh+jfQJdfnDrf9Se3N7A9/0fxDiL+zfZ8HMoPEW/gF4mY9ZX6NIRHnLYUCkd3u//oUzeQH0GkIYATKxMksfGaaJ8XTHerlXcrUIqgWlsYM3azgA2IgLbyVGt0lg/wI+rEzdzPQOToGKV46e29Zfw4k1Cfe1u99TdPf+As0yPQrfRULVEBA7WzRNs6pW2GtNwgPwaHzU6NwCVee88cOp3lGCJOMDoDY7j9XCNsJCATC4l3WINcPjTf0mlEiG0xh9Fody3gRdlkDAfcGnVSfI4i4ZWHFDkx2K1sYw6peuodIIviOI/AKVyOWVIbqxA7iHsSSpakldOowRTmGrxZwtIqZc4PksZLU/OXN8zIb+5Zz4jz+c0ICDq8jK32GrIUeFJb/X7m7/LeZhvHIbtwsW0TM9WrjMyYotQ==
Variant 2
DifficultyLevel
712
Question
Sara is saving up to purchase a new set of cloggs.
She created a table to keep track of her savings.
Number of months (x) |
3 |
5 |
8 |
10 |
Amount in savings account (y) |
46.75 |
63.25 |
88.00 |
104.50 |
Complete the rule for the linear relationship between the amount of money in Sara's savings account and the number of months of saving.
Worked Solution
When x = 3, y = 46.75
|
|
46.75 |
= × 3 + 22 |
|
|
|
|
|
= 346.75−22 |
|
|
|
= 8.25 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Sara is saving up to purchase a new set of cloggs.
She created a table to keep track of her savings.
>| Number of months ($\large x$) |3|5|8|10|
|:-:|:-:|:-:|:-:|:-:|
| Amount in savings account ($\large y$)|46.75|63.25|88.00|104.50|
Complete the rule for the linear relationship between the amount of money in Sara's savings account and the number of months of saving. |
workedSolution | When $\ \large x$ = 3, $\large y$ = 46.75
| | |
| ------------: | ---------- |
| 46.75 | \= ` ` × 3 + 22 |
| | |
| | |
| ` ` | \= $\dfrac{46.75-22}{3}$ |
|||
| ` ` | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 8.25 | |
U2FsdGVkX1/MuLSO8aFKl6CrveX/1Ud7vk7pQZjQSHW0UTgg4kLp9nsPdAzBirReAqVxn1rEM1avz85RJK7CW8rBUzNTWYXmafRP9ivg95XuIpLR78HYoaU+vJHsef3kkx0WUs2sI/aasIIjO2egW/fDZpp/EUjaCowXPm4RXZMJSJ5HKXT0v1x8GdoxNjQITjeLPWGQ50R/sS1EAYXWV11yb/XXtIeK6SeQHLdpIqbxeM183Dhez3eUpbOxTsBlodlv4O+U475QJcmbRWaaOLVU8ZK8C+6zNFfAjdUy2RNOLGblDizY1G/BeU+jHMyz2mHpsDkSwOtSp49/spDPADQEaYbfINeLgm2vh+cNbMQjIewWiH4BA2nnapAsySqx/HdUzX+IfMAHHjGHw+oMEim5lDCh4l5Wjm4NS+4o/HoefwN6P5oyPHzjR+IJ0PNxZWuvTQvxrVM2asrVGjoAPOQlztimQZxM8CfWhWGV67Hh3a5oizkqwpDcLsykB0i7P8KbXZRec3kdykJEtxCpmof2fMk/wkQKjntzl0INyONTht3biExcqEZ+d5YxLvpdh1XsGAkFiZop+uWheApMphsC362j/w/7wjByfE2gEtYVsYVqMkBY/v26hRK7B+dJinrHu//ZcMyq7S9BIkFomLzBhP5kolTrTiFPwJG1tQkTF16WKsOF6N6BzoBiowb5+UEkGL0R1wMOVH+rnv+XVwCpkVMUBnOBbvDkq7yl1eZaVYfQimaEm9dqyh5zNiMdsKt9igVCbtKAkjlWP4xHih1r6lTH0H1Jp/e4O9S07tprfKT3yx6grX/mlqq+Ls1iA+rQqWWlaEuIC2rYk3rzvgFgAhm766v+BWEGsQ0N/SKbp1M1k8W5MYsrRQeIoSSdGSCXD5d2+SbBCsZxgoUn9tI7iWawbzVOJ8lrw+7BuTcnrkyuykOmO2ugr8uZ+wJJQ6GxzheMWPG6Ixx9hnYT+RjBZRxZzIkC6MUyhn12w4SgpeNhaL29AepIMKNUazv3v9Yh/YzOd3UpON7jlPycnJEb+sO9pSvqk47pWfSU6MQ2UDGqv4R2bgHchP5RuWxZ633okGCZFXGA+EjpB7P+JlJ1bWdVweALQbdfLRdx9QTfosibvz1H6oWQvCjuP7s1tRELwpeysSI2HAyzNNp8e+QKz2eKWs4P5LU7Lm6ZmXDaSWQ7AFgmvUz91Qw8Y61g2Xp+1XilcZGrMqcqoQLqgMkp42vaInYIcb0WRU5LONkQfRNbJXy/vtwWy2yWz0ROz3VGkcw+2H62z+D1h1u/RjONJdHmdllrubWi6T5gGXRLk4byZqoF4CEpwxQaFDkdqj6njuav7UcIGZM/SWBxAgTeT/e0gas/H+HXZgT9YBlotstCBdYCZrGlW+Wr8rcJzXiLO9qqj8mcx9zrWc4mKH24zMaj8Sa14Cqw4re9bXujGgmmN1OphbHK+1WwcDSNqG+PEFl+9QQq7KmjIEZQnO1nxASvj6UQ4T7S17fsk2L1wMlp328pOBYjX4e5soFex6um8Le8SZuRwZsuJk8eIbAojEVGHJ94glnL6J0XQKrnd/7CpyOJnqgdnaLxQKMOVMEDZG3szXguX80p4fsfOf82/JcDTPPZl1oSoCQpkTrPdzA1r8q5xmm0JynGOvaDWjhxOdTpUgBfv9jbGhj1PxLXoLdt3vDZihtFarhuCs4Cx1ZcYNjErMJVcw4G9CVWmSmxr2z0VXmnK8xySKKopPb3UJs/Ty3wahN8w92Xcgu9ydEB/GRO5u+GEeOUqSKU05oVa9yWIYUrxQxzP5qD05XIkIrcT1DZ9jd7HHAIrY4L6PX8U/PhKq5d62+qXm9uCQQbWPJaDzHBOAo1ir3WQhNYnXblH6W5XXUBMC9SeK82TmqHPuvXKlJCxE9zrVpL42NMM2AtB1AK+9ImVYDutCHPW2HFKZLR3sh6W7TZUfrzKty/WvJlJLhhxT7+78vPZpl6Bps6RzfcH/yX59oou88B4xvqbRNpKsEYOAEOJQMd/5WwMwq8DW0ozBAnA2UNW/qSBivIUgwYPjEw6KaSvOlBVeXBEdq111X94/MwD1ljpLRPk6EDBlKLThBo7kRBlxjEB6r/IZ+G5gKUVmsW2dswl/yLrIfOFOMzH64tlahZukC7HwVWYBx32gCxL7LuK1c6tuHPb4t0mMPHcwzWLPV8rFGwa5LibbhYKSLmj+gCTNL9J/0TLCehFQMLYmXxoi8hWBZwQCY6IXgxtgnc+Cr+/d+GGcQApuonIc2zDCa1OFywmiYJsQ672XFXxwq/tHExtnrwxivERlofhbHRXTqYxW7oOl0uFy69pENv8rRhWqDOzFrySFBKb+Wl+m4vTfmMaN+hn1JYFO3UIF7ANJrf0YrxDe1BJdUo4iuYfncHKbQJsIYy9Aug3wbrfyxy1Uw8iyPrWrKiU/UEghGTxGC8OYynE/c6h/XTa+emdQK6Z1phIISMB2zj+2nZf8SCHShWmx7h1dJaxB2nYNyXPX/iXPDQ4pAb4j+5JAW5ZlHR0Xj3utzNjHgWvc0iaaoJsUJo9UElkLu0wTCuV+Ltc3en+xpvJsdC+S6pCfKQjdeOmDuu2lpNR7liGJqemYhxutqBtxcFE6jUD4td2IGIZL7Ho1wBBgg4VymFNVIVwpbx2FORRocHcR/0OMJ/2/JgBi2DX2AiEq5r4WW8Rk6CPYp+DXb93rLgiOTuWHPCC4ej6RFNZMH47ZbWm8sd+p1eFUPOzfy0250/Qqmpio/S2+OhVzuZvx1+bTPKVAoVC4AT6K/oKvKqZLF54idDcOMPkYS20l9Tp3xzNkYosUJpJOAKhQiWwA59okHSz3EXOywFUysNOBzBAr4sCwqVmKn2UUD0dRdiuri/vwmiILCdeifkEaWLGmy2AgBuMQ352jSWzIZAvjKTWF0CqfoBos5DJ8OTw4DsvjKKv6hGWJ+T817blazEjgkurbN4pu3UQ5r01ElqXGC6CJkTpfe0ZekwbuaYA5Xr4br9XhgsqSaLT2tIgCIk0NnwZBgykQnuBjsNI5/x5Gs/Kl0euaXM/qd/sfwYK3yaAAgqRrzQFqOuVeLjFF6+RILshxIXLRuvnkAZHk0ZE6L2hsfxYsFz78W4Y+8wqku13agqMb94qlO2fgWIenTdR7FzP6cc5q794CL8ubgt71eW4estF/HWPgggjdRTXMQviY8lVFsgAO/rwENzU8y+fXzeExjfBk59HN2AWbSNiqkIAxw3iiohsaIwu3k0MLfy0vcwMM1n9t6ezUUFwKef3Fqeb4AuK79+0bW92Yp9z6NZNNUY51WCn9j9ckGzcfubLIbIuPWaX2N2esDhG5hTHQzu0Au03r6GJvtE5OjFFaCFl/4A/472rb5qZWKKJ667ZFcnv5H1f/JFhLBgssoePZDPI5LW03XQaZrSHqaNHpamNkuqBUhk0bwEKMuT5+iyoJ0ydj7jlUMgTYWGud/mw7xv9U8OSFlGkQiaBtwn7FZZrwJohxGv2E07eswcfWCniU04Uf82hR4IWEt5q9z6hq4xEWLKqMEA3Kkb6beLszQyufDbXyhaoAA/9QLNTSFn8k3Vt5VciU9gZ5fDhLy/AFmA9HjUx4DMpaWWsgurwrhCEzf1Hq58uiTCl6Sa1vxA3ttOGx0dGWh+IOrg2ZK/IYHZ81du5wDvBcrc5FxPSyrCDGLjLCA3770AY/muzeTAqpqDwalPBsIPvu9RPevqJI9mbzLzHNb0Urp4KlWvbiL7FJDqTR8GOKaygl3/6geg04Yngj359hMFGSzFr1wDPagWarSJjLNtwiPd96W7Ypy3RbZo1lzCWMxuZGgfem3wCf36W8f6h/0bBmVwIEKLcObmTdIrUdnosCFQglcmwcffx487xgIm8Xo68XAIzGkjVrDgOqC7SZBZ7fCx8uXc+wfYOs09GfPIgxUHgj9bacbqIcn1bmCMOHeaNXwZrgXMS1JAInrL2oR8sPNnXUlSyJHo+1iqFid2aWS6Na0on96B821HwXgnJ1cJW5aaEH4bwSfcv6Hf/5T+YZOMXznVXNVW6C5hCH1YfDssK0NdPY159jsG7iXgRVLDXcWhYe5bRc2slcjRZte6sME2Vq9OEF9CNAGNFgRGWvZqKsDPQCeTR+ibEt6vx/gVI4jGVuVOsN6tZECsM3vHhnwlpnFcU6sdks+BOQiLqTOfdgpFg3x3spiKph0lMUyocQft/VqQdIjRbQN1NNBeAu+SPhXseZml6NEn06nlOWIsILpSUrhwyOMlmAQg/PxIBSLYYcm0lyWRnXU2Tr7AzoAnPNEieeRcu8B+TUYQLPdXZ70Kv0uyvNmD+lpVXbZidYurIN8GhC2wnk8RIuy0gUwIHB8sZcctIFIiRbFY2I+zvEhLCL1mXTgAe4hEgbz4e/BN+WZ12Z7gZdsC5qvInfr00s2IGU+XVsVC7H++k2PhPLPFrKCsbRQVqS/CRMaJ59j0ODO9ON+ARtmgBDckhF3Bm0Q1QRCQtKmMzL1smk2FD+zDp6FG+NU+n2WGbUdofRQLtNSJVBmP0vgBS2e2t65EyGne4cbbyN+yQklXGVlXWswVgGI9ggK3QESxI7mYMF+fiY/JhGv7ryokqMI67o6Rc7YS5a9ixTwwhHPWBNh23c15nBjxmomgSJfq9FAYws2XshBiXKRvEbbvzFCm3ABuUaTU8qiroth0sTGJnMsdzj/je7O47OqjW7dbpiI9/dMvD4y/oJyuUQ8TnWo1BJ4C6N+1CJ4FLZtTSj+2uIKwQCJYUaB+yY9UgDzTwagT42qe0RnEKlTkEPw9+LnqN1p437EyGlpKe/aLVyGX/LdaOxvJrn8FfZFNDsFlvP+Oo7Gct8q3x8p0zy2n4dlhmbmbv1PDwLxxpTqo95rZrF/0mn0TjI+EaQfNOfYOmx9So+F2rQLQSPbsvpiLJ9CogwkWP8Us0b3lkPsgRpcLdGN2SiGk3pONer+yhuvi/nS18sGSZhUTmtVYzKlcaOkzc64ShdsLAUPtHFcAoSg2MIV7g+Iu03uFDjQfNgeODJIEYns920j/EC6GAwTbeUANrsxFGrICvsloXBxWxs4RfZQZHMiiaJK7g7ixqeIHJ/VIpqvGQosd+9utJcsODsOZb0Sd/OF2yVEQk2oiSk55OC7OYQxAW+B0wCnlSpb+g7suXPtoq2N5j0MOEc0NkgV4XlNe6VoblStob28LN/dmXEfJzawsNNDwcD/1pNoiVlMiT5Nom2eYHn/TOLMetdj6gdDkGS8xqPkqc+Mk2iVIN2k0A3BmWv0jOg0rBwIzInwwxQaWBvbfZ4JOjgmIa8MCA1MKBp8dfuMyufI+zbaXyr2AR6+7OwvcOikM5z8zfC9r6fBI+kMBsG6ZMWF5VuLqAAcs0vj0e3oWI+hk79zRO6xwzlThPMfcuESmRTQPA/Nwk+Aero0K0xi1ploI0yL6GkRgV35/ldnkiXG0V3VGk/miOLaqwg3h2AfXOm8V+B4P/SH77PC/WfLG3lLHMMoMzHRSWLdNd7PV5TGmO/+1Xyk/NFxZkcy+D3BwzH/7Kh6+87tSNuxtr+WeRGhEs9hJddnRpAahhUd4cexiDFpqIRj081WYHS2lefBjgex4LcjPvZq2MVAberHx36i1yWyCABghuiudw2OIM5vZ5jQxoQiL4XkNvYZqmNDuBRTTE1IkLQKZAasVFmV9x4oKldsSgoAwco0SpHKYb8bJqOAaAbvZcEq9cQ15fKkmw6aym7t2yVOoMF/d0E63qJ23LKj107jD9RdUVUnJlv0ai86mTXSzOZFkAWrjxthHeO6ZGIKgXMaP+NC9RV2/vyMe9O+pa7WnBt2N6QH+/juT6OAdUhjaq/D5C8sFpezL6JDsdr8p+ktNv/+L3watuymNwexzoKAF7jSZotDazhgLWgDb05uQYZ87bh4dYo2qJTPkaggdQC3Neb8anchRqDs/ccoTB6RXTK84sx9zC8qnnpWMjULLgHZuPoIPOQeettysYt2B0pD5H+RZjGk0GjM39uwUbS7Dah6cEgLG3guKP4mBz3CUuAbZnhA5ovz49FNIGGPJ/Knj7Zi4UH46mwYN6Bq2lSxfSBLqGVBzvIWceMTKqk6yD20QPbYu0PxVFPN/mkD0pmNses04myWycDQ0YZDtWg7JpOf9joneUCWPgm8BRlfZdqwV8BTNtlS3XIZtbtmlX+RWN1rpyZpZH62kytpAvAJ4dtUB8HLfrH6E8MXwUf3kw/k5ZjAyhiDweJrCbN643cmcb8zFMPVN/YftvYcc1d7iky1Cqukd0Ti9doe+LVI5PEaB0lect3oKDuIYFlBml4CEaOgc/pMAZMxG1BfrdQL4u33NCQMQTGEZnKw/PA1Z9INZdGqCKctrwqKZZO6/fLPceR8hUsQd2OCP/ErjPbQioC2d6FAhm4bdAxBoyvC7iICWYNNHhgFpv++fC0uIBpUzUctDG1m/lL+9jRH/I6dqK62nAO47GNoAOm3g2eYbyF/CGZrhWefzyxfX3ZQF8z4LGuZBiiNC/TFHE+gQ5OLZmQjSPsCvPfP84nBqRmr7CuYqtRmb5+lcZYNhWVHG/wEvbGRDCuDls+4nPS+5CIWlMAuP2Zg3LcBn2DCTEI4sZ5aQb1DnmJEGF8EDJmadTnnMGJm9c+N9pQucnge+V4nRAlMe/qXvmlprmkcHrtmbQh35krWtp+n8dzOhAO5S506KTbGY+kO2K9SLtYt9PVP6JbbAJuc3mUbrTtwgx6GiN6a3vn/7AcAlbdPqiOsiOQpKWBo1foCaKvPweIS/hm3I+USlxVVufNCSTzkXKkhZDkVPNAl9FcQfg6kOE8+xKt28cI96SQG4n5oQ4ZXQgUFlqMIaUAw9hrkd5DSQyKJNevBYN/dFYNzp9iZnXnDk4G8VtvvNKWHpq1BNTlHmx51ZBQ+z03+QweCyQPV+5jrJ4ZYhtzw+X9ywp5AF5UV6neldbxehPOc7x2pEqkBcozzzsEHG6f8J93YlHSW0PxM8/gpacAa2n8ODJu34ypftNWy4jH1b5LOUu4GAIG4Ri+1hgTkgh5gvzNkg6vZaet2jDjHt6ZUD/SvQSEWLJs9PjUs+tT4KvrI2X/pI5SFlvPO7+O4XQA7WF3u3TxLj3xcduc1HXwFDvT8H3/R+otaR/i0F5T46ZEez0oHUxArkjRy10IU/xdtPzws2TW4n1JIR2E0gdL5WwUjk7o3BTub0OKAEHf/6m4vPDNDJ5jPLunQBHt5XMnGxQFT0yu/QwW7BcSiskED4PYaA/wfDOjfxUVRvvFUQrjNY/zfIWK40w03BRKxRtrmcSc1gecP5/22ngmBQ30BmVGFCUyw8ix7xezmWQSMMU0OFdFOdKMGS4EQ9C/P8TH2Ub5afOzsn+mbE6KtkbLvLJB5DvMsKC4TrHlhVO93LAOtbwCoRQvYgSxXLxmgVImLQS4Z8/LRZ3cgZK8buWXtzczh1viY8/5v+daHhvBdP71f/y+LoTieJV8oxNbINC/WnJilhzLEpw8g7+CnVz01APiQEJe4LSo1Jc29Ksfhs9px69ismmIYYiMJx6HH1aCp8AZnSSywQME3JqyjJur0byyB2E3bUbp1fY8I2m55pKfPYRs6eqAciQv5lyEGAdBggKapWtp2RLcapxdr+mxGL3RKO6iMGTyG5aZlECO7KnXgyvqV0cV13CD11mJfe5X3x/GKD75uwxIm5fGb9SYVIjVFXKBBhwd8uQSqr1cwxwQXadgX5Xx/XPegD72Myt85fTxvSrhn8fuZJTnCCvJEa1GSG8yF+4RGH2DX8FUBYlVNbrx/ZYzmluc5YGI5aGztX9HT8NPzb+YFGSvJHkm0YglQJlh1xAXrrSf/paKTTP3EFR69cQ4MH/eQjKzJQaUUwHBYaIxaNNCpHqKSCX5QIgjEPALHaLUjc5W59ZoixTCmQCkSvm9polKbctT8z0W1vGJEDTlUGS/rbvc8XPQvEdDVv9s799vWXX7QQGu0CP5cJH84ANj96oKNF1hGGMRPEr7Z3DbEPHgUdkaQ6j6+yj9PDwhhoVd+/SczKkSwf6lAC6j6GXdA+T6ODcWWMiHzrAlPuEiHgw7W/fj+raefX4wJbSYKCKKP4x/AwuqSaGGFfp4P4PqD/L/xpJkkTQw02zuz0T9Z3uR4Ipd301e5o6G4hXEOzQA+1b7W9qmzZwcJZqX/rhxIqKjFqupBn2bXsuC20c0BLmMhYPQ4jKSBtLxllZ3bUX9apn10N2/fjPngM23fMJFHuEIw/GGjudmUs8yc0XufVV1bhIHCbhd4sHEFki+nrYL6PcUEkgf5ILx6MW36KuPeV4ZeQQ9qBgAqkrNdFuIXEt3rl29tHZo8Wo0dRbQ/FMABDRSphCTAd1krl6EhIUg5WNRXw0W53BrodIQcrudf6pbG52fDYEqqS8H3DN+HaRc0lGP/PdHfkn5LM/ouVyjveSL5F/O0rKpuU/zLCGe/0DY9wgQZcz+teu4QFNQtEt8uEbeVibFDBi2oQRAkFP2fPSS36uqVuFUu4LK8AKxuq5NuQwQeRa1QeD3aszmLlba8JHcZmKOhPNDA6t6dYMm5oeUJUJWJpBjtjygSDfTL/vJwlfTcb0ig2yVEOEly/jyaEMnrcxkBZUkKJbsu1gOWVCovt3PGJTTha9q8Owix5D01x0UKRz0tNNEPt7W/zBfSoQTLPrulKYj+QvlktxWRXJ8hPMj+4JSYRzdYdHRCYnyIV0JQ6a/8N27HmhsL744zeHeHjUSpcYouH9NBTCD8UNCu/nUH2qNbcN3qmL2JP/KA91wDjgbemuj7LpQF6mx2Y/7OBu/i6+PJSKTtMBDaLqarNxBrWF0jGJtUYAx8KD0PMxyxlSLs56hEqaCgdENMkW58q4POjqxfRtlbuSd9pxANjIi19zzfrqALkJBiwMKWb4cxTL8CvQkjNkERKromXzL9XcEQ7F466ZJDEceGO32nVfIw+NDs+NFCWU2FTxKzDgsMMgbuFvrxbg+vMSyuHo2eRZE3SY7hR08xbUxbuviwSkubTmUU+nHnINJW+2ChohzzIJJNIkVxEtAOxUtYy5+o4Cor6eL6yNqjaQfkNCBJlvLIWl9q2RMU6lB/6pprQ0ayXflALs+P2NDVh48jxNXORE3/zUcfW4DRrpeuXwaNDy5F5VWMweYyUEg+Tf8T56x2/zAcw+Z/CZ0xSlmc9yJndm/S3qgKEfQMsuFpzfxb9Jn/QqyeWCJDTGHqeod7rNxvevOo2xQE2JJ6XrCpARjol3BQUSfp0qUhLgD8pMLqG/522hgDyhLWx+MMY1ciQL9+VkAnuGWDSJVjLa2Y0BDgsN3yk/5yJDPNzGBZuFkxLOoZtDAs89Pb6qfE6Wv1L8vfgQPgFfYLJGtL8lQb2jT2baTfzoa2bN2eAKwEpq/ja+G+dNCmdADVH4m3PzPAdEespuqU8/tw/4IXcrluvxyZxwc5BuFZ+hqWi4aO3I2ozUTpTcCRerJlrMeXfrYY5eOloJ8iPY8OT4+hNBceV/DstVqn7x57HgJEELnmM/4Mnv3asDGm9MARn7ckXoRzmRm5Q2/xTBnw+cK/SIw3KGLw4BscN81qhlzOs8CEoBw==
Variant 3
DifficultyLevel
715
Question
Tiger is saving up to purchase a new set of golf clubs.
He created a table to keep track of his savings.
Number of months (x) |
2 |
4 |
7 |
9 |
Amount in savings account (y) |
420 |
660 |
1020 |
1260 |
Complete the rule for the linear relationship between the amount of money in Tiger's savings account and the number of months of saving.
Worked Solution
When x = 2, y = 420
|
|
420 |
= × 2 + 180 |
|
|
|
|
|
= 2420−180 |
|
|
|
= 120 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Tiger is saving up to purchase a new set of golf clubs.
He created a table to keep track of his savings.
>| Number of months ($\large x$) |2|4|7|9|
|:-:|:-:|:-:|:-:|:-:|
| Amount in savings account ($\large y$)|420|660|1020|1260|
Complete the rule for the linear relationship between the amount of money in Tiger's savings account and the number of months of saving. |
workedSolution | When $\ \large x$ = 2, $\large y$ = 420
| | |
| ------------: | ---------- |
| 420 | \= ` ` × 2 + 180 |
| | |
| | |
| ` ` | \= $\dfrac{420-180}{2}$ |
|||
| ` ` | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 120 | |
U2FsdGVkX19USMdPW72uim9Z508zhpxMwxzSVD/zKNhmrbrO8A8qSbHp2I/WmEnIPLtRO1Y8J6juHGJPcyxKYhVI/GCJINiz4b6Fx5lwo5Ms7DF90FSXaIxTeLL6dCQetACnzHF6rIJONWgKnzHLr/Rgr9atUJ9zhSEGm4LrwR4mG5M32sQIIrxfWqEGezWa6hmRELcvgRGVygvZLq6qobBFUddo69c12t8gNjfIr0Pg5LW0TAq3MILI3vjuMh2zDZa6K6NAERUvHu1nNAbhojE1mRlrdlqKZppb3BcifPFnov3U0aGYU0jjR36VxXberjqbs87+kMxaydHQt6vkmI6oJ0RHVvniP9Da+HdyoM5k3DaVnDTNI7lH0IgPkg5hqBpziWyUonxU84ITPRmN9VuM2s0ZSWS2fUkLjVnchJLdEofEZHWOz2mzkI1oIy9n7IN4Xc4olg8zSS15rrplzyKValDFOJq/jv+t//FTO3qE37k42WEoBODOuUC2NsVCNjHq8vcvifLAxMfbVOj7pnmMJ7BKYHuBXcdPF3Lm8tocI7bfJlM0xXnKpEhi1H8S38HpqmfZzBtpGLCU0V8l7GQvPv7Z9h75jQOQGHWNn8f6z7FNaCKl508Rfj/eZk+L0vqnEVZaclKzfdR7UWv8p9LbbREF7q9+jVTbR0hW77q/w2RX/IRrPm91HHXyFig1ZrfWutkoBmUUENDluj/8mNxfIyfIlmuNPcJigPsDiU1bmfPi4n1/wOJiSxRg77IIt37AGfMJH5KLdeD0CeMN2yaMUv1VNaYz9jY8CfrcFJpfVcgX4qQpcYuUWWTFLLjylhSMRc981uUkoR1olr1g9+v2WrTUfdclcYTIIDPRLaxATxeikEJxUPEjf+zsVvlXZ86achn4oqZm+nTQkAvKoNcVPGzSaRl8PrAor/X5+CJdFacmmlwZVeM1G0ZkArYLDpAz9FwNkXv3CEwId9e/0l6p6pg6Z4j+gCtTL2wwjw2MblIUxDZGbeRxyZlGj7vfE77WWbsGFyRUQLqcPbQsZc+KkdebgGsgP5JhXOjjt+I/j/0LJDDhWbRMMNZFRETvb4MD4NzEWYP8Up8ygLD07onMBQFOpK5STvAV2INqLiWzqV9DThtCOS3johmrTiDaIPHq5t6minsMnG32bvp+daVViXrInlrlabZmYp+uUysOhRwA8qDonslnlStVCCrRYrfZUaNChF6MvYEHl34t545NHtKbtqQJ8QnWkWdzrn8m1Q2aCKvrb+eN1lcwRrrnaCdeKcQVgHoAzgGotUwLLTIohsdcwerRTxDv52fjrVXXUS4oXVoGEKXpbc2oobVXZvrY15StxW0y+oOakpqM+/qJJSE2utTTgyTf1Oonb0o7vm7ClLIY58Ir0x1b89AX4qqc7p3dDT9kNA9bv4WyWZrcbfqU+MfQ47K41RtJK7vljaUBUpRy/H2iKv7k+DgQglObXXDa362aoUfqDEGJ4dwwysrGz/iC4OfjcY+ZcbvDbBoMixMXpiRmKPhoRRapfXWE5i7zggdhy5n0jLGjAgZOSTUJRLetgOzD7TJhEeCyaTZMGX2ubvMQMbDG0OY2HyU/tQ6UpyHrgxphLLDCmxKJAeKG9KPHQMVZLudQX0DIbrxpc2L2EgQWC1sTDxemvxAIzWfT4eUxvsjItKAlWdsEIzydhBVeLwgTHMSatVCn1URxf8JLdTJkQqsLdO2dA5tnRG7lvwZvSCU6VvFatacLWldDR5w+C3mfZuBuPNelTqoPG4/W7qiQfaTNZ4FA9HO6aXvNgL+pYTKIO39x9aPDJnFrP35MoFPg7U6xiiS7HI9J82Fd8xCakeuWAnsVEv0RTs2HEP6yoyyCNjbYA9EkZzj70nHvnbX1x1ZDR3QZhEv0pBXPDD4bddFiljqH6dF26gQBF2bs3TiTiRT4gqa7pabbCjWeSFtIMu4twIEwSHqjx9vSWYUy+8jBJ8VN2zeJ98dXMCs1e6GxeKu8b6eQW1y1XHOFx7cpPtLtYSz5/XAOfbgQfqB9FCB4MkloA6/1jwrkPC9Ki6q3OLmk8/VxYqbruvFaDu908wSeeIRz583IWc78NA5RgR5YGTDcYCaBKWoSoovf+2RcpHejcrtEfYlEsZ6upkLhPBfctt8pWOTH1bam61Cpamlo68S1geEnGDP09w3Zo6GbQ3kNiasnE6EY6zFfpGhbSHZGi+ozQVXrLAJdrUSU5a4rw/gOAXiSAhcmbyOgf6IYN0Atr3n/Kq4GO9ZuH495oF0A77LatINUZLj7KDP6Au1JAKroeDWdE7DYTXuQOXrgY5OgT5bYCX/6mRoWZ8nDUkmYEcO6zkxYs19nAU190fp39t9IJIg+I0Df+BpIlmOQiwPy3rMpzReHlOWljkKiQju8xFRSQJuwzmm1MA9rwYszpsoS/bBZeRHyZXLMLhpPV5u3WEC+W3rh+mcj7TEWNfxFCVa+CrO+GZunoF+DS2J0VH9YXuiLfV2IRhZlXmYsz/ps+pL4bO9WozJW66rBDuGFVpXFOArXHzxojAwpSbvSDUMLq7vJC6qRwMTkVU16yjnpw8NF+ZFr++6QhdVt/uW0jS7CVR0IiSjrh3VGwaHSkcW58qX4Pal5dJXbG6UCaCDRsnstzMrg4XoGQdz77CAHbNyHoCT21TXxSh80Kx5NTHmd7RkRVprZNN0bF/5nrEB6Xgn6kB8paWBsoTzj4+AFdJblBiN1ugE5NQ/g4PE0z5Hpe3SJPqN8OcrE2Ncs3voFqv0bFfmTkKCf8ZttUdKZ3Yq+y2k6aPThU98ihW0mqJh5LQNaetYWOErzRH7JpATKkAjLFcHafjXPXDTCp+AjKrMqdUIAqgXmgtgW8fb4+Zj06gEvNlAh6G+2/6uMXicPCBaejhA2Pwd5A6laTPwbVaroV5hbXGScqVJqgzhQ70Eff5q0aVp/le3LtqSsh5xmxRIQf7n6Cd7YUhre62MqpekW/C+BuWk5RN9f2TedfCbHIVJaqHHoMRTO9339RuM0l9vX+GqDz0F0cCFGqMQaALyrm3FujW189eGxwoLov1ZJqwhvlvL21DBhil7wgLuFSrGZvilR1eTKaXqqf0OZ/q8wraJqkXx6x0Rej0NGl2wSuNfL790pSdY2gpvOLAw45FRLxtDMzrdxa0GSHKoz5X0Dm9GZDJdqnAdnYJbYygEC079aCO63ay/5x2znsyhvP/QohzQ7ILFvVvgiwiw3HpTga0MeQiCn0WGTTNns5wsagmyyquf2QH2YznmUAUcsBxfGSy0uRjgMLzIcMC6lSWmofmvKiWdJz4pTFv4padRdUTVZDw5hpPEi+DT7tmY+6gWgqF+gNwUZI63XOLpUTvyWri/PJbMJyrsGFMmvQcc3hy/J6lQLP8RVCA54UndUz1Oha2gjTGEoGPO7gvB1QxY7Qy18gdXtSZYyFP2TrDTHUARNstOFbxljpuih182mM1F9V77KictfzC571Mrct22SxEQvJTbf1IOx+Xc/EapgzHGduTPOVBmEIa+ze5VQCVx5n99cVzASaDRT0gJYfydIGFmgSCykL3q+iyrBFju25zP5qY48GtGAl143m7tqBxm0C2mzowx2mfFNLo0BVshuwTNmew8kWCWa45FfIEGKt5e7fqgxDBYcYbX0WQ0A3dhsZ1jB7hmmVyHVIz3re+z7ZZI39h1FPKFIVf1xWnuqJfr88Ka3Vct8KvTjBYl0uNcpPdQMUPlYMO3etAIUWm2+zPHhvOvr1Y0kA+xR1Qc2wsHgMwwwgEMDHtPZHRPsFfBlsCleR1vvJNA/Ax6fdBgbC2u6OeC/aFYkkcYzu8bG0yySg5mUyFjRn23NDxeXFMTKzZGrlq5IlH/mPqzj5csExhgq7d8AlTX1/U06Hk8o8iU0tNSGzNTK7LkHhrSDp4h+6FG1NVlFOIdD5Q1s6d2lXrgfiEvwlq3/pCX/0MWPJ9qvUoAqE/x/xAz8dM4VPPuJ5z74IS4X0izTU4ozsHRQyCEm1i8rWtC48bswyixvzBydmwRrpcC/SnBNhJCFlrRK1HzDVaOe6K2a6URZLOrwCbovot20TuRwCWy3cPFoBG99ahsB1X5ojgoZZc7p5EHbWpmOBM40/dCVSLzAW0H+QajP96RcpFbFh7MH8iYpnEvx9Q1wsB8NVasMnkgpCtwdIrLShR7/xXwaDJ6MzxpTlK/C5rL5wzgJ6Ske0N41KwAdLvnfEFxGiIo1HYd5vgWsu5yMXQMKiKybovY8jY8ZAENTgaMkfAIKLMLnwSdxIDBT6jy2YwE2I47cUwrw2rYoevP+8hEPynjfFxdD9RRor3VYL5z5ea2vt3kysp7LeRNOI/PJrRHTAFucWhVsPw1kM95Facm1/8ngoV14xiODTZwRv1mLHnv5iFIbTDMK9d79yROpYU1hSJmnVyVgD6o6t6GHRLFBCQN7XOJ81P4BhidqXIyyseB3maaia/UENrX001MGmyV2c1WbNZndkZvVv2rxxymrQaQa2iPLkF3ArbjK/Bw65XI5Nsz2V5MHj6HQMuHRvDkBwYDGOF966sJi7dU9fGJTwWdtUciaV6QYJYV0GLGLfN8RtnZ/gx2LY0TxuwpLpl3BT4l4+3hXCdqYjgojEITMQTL9eDG3CkTdKDln7Bd5zHFnNP0KyyBnRpoUHSewLG9sU1CHWs2z2MzpHxJCMPxD83wDkju+W1iBt94un0CIXahuX8vhY6e50h+XJ+8sr3OmBxFSEjwupWOD6xU/B++NdE3mftHsH2pQYDOCchhymqTtEtcS8PSd7JGFphI+0dr8W2yRi2DIGT5FalM2FWZHK11T+NAfwwlImPWbvUnF9SUExf/o9Vm8dmd70Jy416YeC1z3H6kgKoIqbK5tjg4a3zKEhck6XV3C1l7386GdF3UvmTqsZJqMYr5n3U5MzkcIkIqWX/jJIhH3Ce78grE9Nbi5rQvsec/lRB1NP37xVE6MfpEtfRYQJBd5nVqYc9dD44b6fXkiwneZqvraOCn+lt0iWVq6UuQi9aoa3z9ifbIXWpSXC2kUE1ETbQa31xAMVYRfETZr3yIy0YDtFUn87nGSTxXCnN6YRcUF0o4PmuUZp+YgSWmjZaNm+2hlvHttltPzV41mOpMSxf/Ml3w+UjaoQnrOevLFXFI2srtRI4Un/AJnjDcdLuqYUkHH7oGTD6oW/fweX/eeY7dBi6sdtv2n9yaHSKZquQZvzu3Q3in1R05DH/pWnFyD9eitTjemv18n9Mr0HSDWrcgU7wKxUVgHv21Fai77uDiV9IM8SS5uEfiD8+NaCsTAz+tF8xbWewbuXX3l3PVrMK5+83W0UMk2fqPpl8GxAGlvtg+5MVPhK6RM4BgqO+7qnQnoGP1PiLcJmucgtPs4CIZIK9WDfxYcKnyA7uhLCGdsmI2iotxrNef0CUtTRau+KNe8N48kpHCndVgAN8sAV1msBsKqHcllap7gB9gNPwwPF1lhbIVd4jiQaPg1KKnz03G22BXqPfcshJtkz06Fsl+WGYEMjNDssGGQp8j82H7FhegC1dBjfVpj33OQIiiqmmobako4J3wau4e825pLNq9dW1z0ebRJluhU0z/JthwDzwmAiMo1VWhQ2a9vpSIWq6pgqXuLh685rmT6Pazjx47nuG7awl46uyT9IKtZoUuOMIJbFU7LI8OhA0jsixHASuNSUtnzMZRTsXZcTath6TxsgKBPO7FOlk1wgt6+5BiQoZi1pTuFtrpQqwgPyQ5LNjtQnrDItzdz9S9LyI+kt4L4NNKRXC7fqiiOWsSE30Kj5/5+L4j1F0hg1Na5fZ1zZ2qrAqrALQ8CQFXC9mayAA4tQosthwFk8AZ+lvch/T7EwzpFunH6qm2i3ai8qveUvcIt8EK07fy5vqP4WToeQZ1EDdgVdexKdhM8lidofobkh3YECZNJuwRp4J7uKDEngVKy2AIMwon0t5bi71tg378mqtkWC1froOtSUOfuSrmS5MrqKPBeCZj1u2FFcoYcumV61ynEs5W0Aq5AKEEEIiuD1ytdOcSy2nXZXllW2HlUJDHCkaGXzPDZATDxVXRNztMiuZyEBNxJE/fBP3mF/ZMsU+z0bNTUNKPjmKFxaSrRcEUr1yIhtFrtWkpOPAv8zQWlJSf9oFtpXAemsoX5/gWcQWlxcDq+J/HaRjeENAYXHNSgyZd2XCxpYJPU0DVJKl6moIGlYciPzZHFffpSF6ifs0BU6xW+XQivCqy5tcqfSJOEVkt7piOUsxthXZQVcTWlbi/fmHuzkV3mnhIZRyLbFnMCVr0SnNScddD7Kvg5FX6Nua32hWv8vSz7Bn71zhwqYk/B1rW6O2NTml6POEVXb4KKrun212zRk5le1K6rZchtsOqK98Sy28CIWuE0FCX/NPIgEZCXo4tZoZxPNYN1JEjl841Bxenur2BM2RatWc/AgHZ7eXoQ+6y/s6+PYtLemw+YEXxt7/Xbs3MaogLPDoSns4PE/hJW8E/rHIHVOu47SfAuSkNBq0ucq+2Uq49ZQmoek6/VsF7MOMLZ5bdP2d6HsbxLWUkAA4Wyf4NRwqOvH1E+kIlE45pyZnhF91pn4G5B0qpz/TvTf+OVGXqEEVNKfKbNU7i47ALwlxwM9IdlAkKySYTF3yt45C903xXKfR5bbWNpXqPdZzMXqsx29z0vLtb23ub3jFuJW0ATR+c8vpKg64VTkNERgdPFLSZsxFk1rBefbr4m4Cd+aAiBjMzbqWbfB24tLzlICXCs5vU2NrbJ12bd3+rPh/LL1k1tfurfVx8GZVlZTzoIE2tdcKZfv8HSiD5Wb8U7sTGfRjgBfmtIbJxx3xjw/G1HV0Dtt0JVHQgcFkGaZLHi6LR+3hlFZ7hbmxG78q/qiMde0Q8I+D/1YUlIvlwBiQBPA2qFtuUcMSmzXoYuiBoxPy8y1w9g++4aUweFkxgPxehNdiuJWiTRhbGHQkbC/zabxojIAiEKC0SK3nqPtaCufwYVeOGTee8bWd1eFIx85EwKx1O/u2uZIFNRZYlswWkE5OVgrzJOOO2d5ZhhNaqDUWdHKGz1/dztfy6bF/AWBJS7v0Ro1pxN+bSIxAbXZQuFgIb9KZVbpxptpxUO3F4dsEYchtfVapHUIsVU/UukJ4Z1shHWzN/QzvPFdYU2XfRHG49k/vma8F6Th/7qjT/h4J4FP3bbOiO5Zr5DIUSA7o7bWCSrgGVo2GjggS91Rlqcb7GYuCvL2aqDCL5PhrBuiZTPx04Fde6/V83aqiLUTkX/oK/6PngR76YasXs7pDiMqQ/rirT1+sQyQctIshC8xzkfaTiuiATHcQYygrBW3ui5vOOfPRCW3D5WbCxuPybDpK7WfzSUs/snpeembIrvpKblRDKRmbecriHSoaVx1LmTUmkLEJeh3TRAXwwm1Xu9WOSHMEbtVBQFTjZeOTR5xpLkfSD+e6RgZvYHdLqQOG7oOfeKYZkKxFj+8XKrWPMdxxywzduEe7nt9fOS+sK14KluKUDVbkWXcYdsKWJEK2NZMDyp1tWBaR7aBhwR1Sudd6Mgh4ROA+sFTRNT29D/kfaeOa7DFzAr6nf7qXUwSPyaioJH5h/aYeb0tkP6zkuWcAy0sFzAD+kCYg3z5vBUn4dj9rf9NEjHn0wdKGs44tUhaTLCRMjOHoftUeLoJPF/Qc2FLV/Xdp1vAVob+vV5FkUoh77sfMcNHJKQBpTssr66oFt1vks6yvPI25PLLUOGVvl0n/eSAxylg13/hABhmU6yFibsIlbEAVSQJRTtW0p9uLlCfJtUomsVh3B7e7WlcD3ePZ0S9hanJcn36LjFOVCaKZ/YNwl/xENc2OhPAUrT4KP+zGbsQL7yXIWoWUPTiIoPBghRn9g2aMUna1OzFONVIFq/h9bWrBmnLG4dfhNHt9+PKmj7FlZDVn0rl3KsBR1gKb98PzMDUVY2jcDZw9tR/3Bt40RtB7+HAMLIBz7IBSwis0HwgvQgOKToizOBBwm3YWXH8zxQPryhBEYQv1JLgu+jt8lVPacBndTDpGAM7X90yhU5qYhBoAJoLmThpwZwlEdRk4VzCTlCU6Y52owrt1YuLU3UbxPFrvRsMzqvynIVfdNBdz46EKLYo7Y5+2Q9pIQlmiLXZbHWZeXzYpxMW2jDYpAyg6cM0VVftsfT1LZ1ArZYK+mfaBeCz66+DXB4xyxJcjeNMUTLjoV9C1mtGrKn4IM0t0rBqdpqYMPoatIkI1mwITDpHSPbemLxV0ic1Z9utiShDcyv4UcJOnARHzQXhauwFXpxdbqTs8DWfiCTiWdfOItVFbSflqTkXAdyrUMzvH/9+ZXiH0hvvLDqCBo4Ka4xTnas0Si5rIcP8GniIu5SEt0RP6dUsxu3WJq9E5mNzCCcdJJDZppvbKrBdPyO2baEHwTCNqLtsU0JX4YdwR7T02S9G4VrRx30NsBb3vUVhPfsUPMEtH6yxXFETjhANjhH6dDzj4E7dxK0U+0G8kOe63o4F2aJx9kZ+1oYZ5o4UQ/GeS7JYAmyz0eE1qz9wcVnim0B+1edykQRPjcY9Bf5f6UUkWoePFmcMA25ZEv1Kn1v3VovzAVRnJsr7ECnjt5h6iJ7afoGTmDhF90HMv4cj8FcdCEsFuimLnFNkdJ2a0fyGc12nmcWvgShTpKRCTcvdbELA7lsSP/gcNYB5YcN3FKOtRAXnc/nP1gA9al/Bv66PNB/oyYXGa/xthyLHHJDMtmlW15x8WY7lSE6C3xvQpkARcxQRzK0BzYewlJU0lnuIylvSo7N2xtSKyPozM+xJDhfIrJFeh1CJVl5NQ4CDQZbGqixS7v9wPTQrntnG2xuF+kclnDGfmTQPDFco1mIxvRZqIgjPtIRL9YoTILHcCe9iiIcOFGA+Rau8LMsa51o7BzSEMalvhbsmlM540EJr3wD+6a5T7qTaJqhNduA1mvcQpUgZ9id8Qs0onxnelODRpPbmWsdTWCK76QczJd4vVBUlALsaMm5erAp6fa0z2S9pL/GWtkmk/fpvpTeev2Zd4AQO3Sq+yztDezYYVnzzxFWbQCItpiqGwD3ctWbJM354X4jVfA2YrvuCd2OfeZqD/Yovje3aqE7EkDMC0C6pGPVRdgPc0uI6IK74AivApQYflnM1lQwRwi0jtigMHN/m/4tRHSKsTo3Vg2Qg9txNFKz6wVW4qcxSdixnXh5Ve7LgDIUjddBEvNkCK0cA0zWYqM0wcAJk+FXq0Cj2G3CNmuvJVx47pmiuU+INHX0+sYSX7nRHL10rNZcpCnPec0b1fwG5bZcSjo+d3DjagAKbckEdFA9bhohc+jo52/wRWDVRTkNs9FnZNgsxCi86LIl+2yPHh8pgwx881grfncmcC3577HyBBj/se+RiwHnqTMewAuyUuMFE0i5O4uqbtB6DpO0qlyUnplTM/jyyiI/xeTvw+nXZzmX/HUn/LsRkAR+hWrQATXYqwrdsunga7yd/wEuUhzUcn/qYVDNw2NZ/k5PBCOzz2OIJZxp7OvteAzE1Z5QvX2lMIbOscMjSJnDPyk2eXuhZ4P/RCwWWaLIs0qSoUEkitYynzTqjnYovneuDAOGPnUnIdSROyBvt3+c+zC9j+XaF40e7UQa5hp0SqwijEGhZeWN452aacJOMCTvSA5icUCbNIt1xVcG/w9b0M30qoxMLLNAk1KQCzIgmksDC2p5ApE3FmEWKksHyO90cncyqRp1zEZd5/uVzdMDFbHDTY92fGgPvPvUGchVADkz9EpZjrGAy1vIHBERpxqHAhTWs8NrqY4lHzLBFP+TSR9XLe5rWFlle1ol6T97dE6gtaMl2/Lpc0dAwef0McNHJph+rO8oiuIfM1wURRM8tGzE74UfbXLXp/XOh48JREya0Ax3AzotN3ioHqmhe21KRqO72+K1cHZASKZKtU5e+XIijzArxYqYaqaKx9oPOeuLVAGcXJIHBKUnRo8z+ddkFggAnkMX6+/abiJ9aG0EjXYnmm4qICwpcos7S1GnDWIFZqJlYS+mqOfqRphZXLYcGISXIgv1wlhwWOw+YV74vir/8eGJHQvYThzWuYkvotyDW92C42/WJLSUsAetpJ1BhcwN7UKQCgNaKpVAmJqK+k43c0+hY3jMEEFcIANvtgkl4wzvMF4bsejyA9XvHEat0MVr9YPsw2HhdS/xMldLWSehAhswSBozFEiYtgntHjWh8+iKlPIIO06xzGcknJGr+e1c6zK9XlKRJO4LXK8Bu8xUUAby9ttTLAmOVqJ879OXU5na64RtPALSpypZQkvievV/iewJCIIXLtLfchhjoTtyjX7JMeLFkrlkfVdCBdN+5lD/TXVgGcFy70my7qMwvCK5Nh3UJ5rqDymNsnW5NK1E7VGGaltGcosslO58KRCWULpVWAIrQOcc7I2rOeWqZ+tGoV3OTy3QIWfMqxk9xaX/1HPUNoAN28DcxI3np5/hjsYHg7ABSCHH2kxNUBal/CZCSJsk69e/ScKin3+erA64Jba/IxXThfgN7eRWSPrBkcJcWgqnprVXY1n8bsQQiEDdyXPu/YXav5v+CpJ+WEx+ybbocs8Y9D+I4cNx0RJB+Yb1qOl7xgAlhQwoK9qwl8wPY89q6WFztAXBdUpW0y0CocXcEnYZnp2s1yb9FgH21GhWPItVgkHvjboU4zm3XXskta50d6GTis6RPaib0QwTD49zPFWuRa3mPeboSluwikgJ5JRyFcm9si6EnObBCDfmOqNz+74FyXqewURbk+4O87z95+33J2baxxbAr9YvW7h6FOyFPkMEofge+JfvfcEriDGcB/AnkNSfyKNfYD4pr6orkRdprF1Yu0KISbrsmQxKNZssiGIHOrSu1zZhQBow
Variant 4
DifficultyLevel
717
Question
Axl is saving up to purchase a new piano.
He created a table to keep track of his savings.
Number of months (x) |
3 |
6 |
8 |
10 |
Amount in savings account (y) |
1706 |
3512 |
4716 |
5920 |
Complete the rule for the linear relationship between the amount of money in Axl's savings account and the number of months of saving.
Worked Solution
When x = 3, y = 1706
|
|
1706 |
= × 3 − 100 |
|
|
|
|
|
= 31706+100 |
|
|
|
= 602 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Axl is saving up to purchase a new piano.
He created a table to keep track of his savings.
>| Number of months ($\large x$) |3|6|8|10|
|:-:|:-:|:-:|:-:|:-:|
| Amount in savings account ($\large y$)|1706|3512|4716|5920|
Complete the rule for the linear relationship between the amount of money in Axl's savings account and the number of months of saving. |
workedSolution | When $\ \large x$ = 3, $\large y$ = 1706
| | |
| ------------: | ---------- |
| 1706 | \= ` ` × 3 $-$ 100 |
| | |
| | |
| ` ` | \= $\dfrac{1706+100}{3}$ |
|||
| ` ` | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 602 | |
U2FsdGVkX1+H2o4epPIzUvg2ZcsZcSnu4c3lPVY7cKde1ELQtX5QlcdVH6jSAvwbg99ppfBY/GRYbLqB6GbvIzpmj+p5BtKyevYoVAKFMBUggNiVPqDpkl+mOYveIexnaj17oF1UONiits6wp7QzBonn6Y1cILT8OhLOpZbuSL5VYd8LHf5kbHghFNjdSZi+qUD9u9SRKbvHMbbG8JYP503Dd54HaSoIiPsBWEBSCjJnAQFLJG3jwBXKVqeZE3d4DAP06cyRPN2Lsq6oOWc6zdTf7+BElK/ammddOgBdTYFAh7Nm+wlsX4RclT3ikE4LdPc8a9xy+aW/wkJ3R91IA97XKKdExTcBRCOnJ0KkdDin5FqcleYWz1v1HTku0HGDuAHmOBL2KJ9UxIW1QRklZTy14irwhaXucjKAaFKzA0jk0u3bLR8tPTbLumVVWS8KBtlopuPMgUWBvne4xCiEFmc0EmNVBqsm5+IErYdvDQ4TLjXFulZqOp+sV17tapgnm8YALnzKboPivbSz5/uGUNXR73OQ+vYC0gKmj2UghHFm0akztfur5j0RM/e4XY767xHzC7d/K5vDtzkvoG/90csIUtAWox1eVlqcygjX1D6TMLvsvHwPyAdSeos1NAxk3AY6Ojhb9JZNGeC+05RUTenSmtsjZ3R8xNOXwchsuZqjTH3wxLesU2F2rmX5sqsd0gDz2ZOZ0Q5YiB6J9SnpqnSfDRS92beBDWiqo7xzss1NN0yaaz/0DigY5kMDda073ZyHRex9U+qYs0BTwtHrh0hrFJ7QKFC/c7p2i1945RskU7WdeL0QkmjYmOt+leumEvOWmnxFeKZA26S95xo9MiyqN72WCNuEkY0ZUSiXg0k/PoAo3fWQfs2KKDte/Vx7CcbQCjoluSSL+UAIJELHULadPMdbiunhAg+AtyWo5xY3DhmnIDtiyW1iJ3lkEiolKr2XJHnEH2kzFj3vEMLw0Gw6CkaiHdWKnjh/SVBEm5IYi2IhiIX3fF8bWPfFowZbsmAmezKsrSYEEsoLnK7X4A/6yquwoFnzjwYNDw5/yHdN42K03H/PUG6Um37HD8dtkSROkPL1CiiQnQo83Lx1gq97J7DEkcDGg8iAdv3XiooaLTg0uFugr3++2tHhu7CdmBNPDX+Ve1jEQH7txG7mub19qekRGtENoLw0311XCkqzkEssuCW5DouSYbSX3MnZIkz/ZDkomohXgpjHebidXBlOOly1ZOuiF93I6Fp7kJF6xjnIBP5d+b/6MI5dtZU9V/d6EP/8mJK57wkt3lHiQuZCIncmCm2A8pcFHVZze7klt0LhDiLrHd49hknV0IzM3PB3Sizulaxu6xcXDFxXvJD0nMP10DhI/6VMbI5S7HoZ+2oLk0y7ipRMQA2kWQiaKELiNaNFlOEmyWahlhoxyiVrDXDWgLkobyiDTBG6e6L4ceWGfRdOxZH0qKdaqvWPdkQGKXxabvymbd3Bc9qMXa3O3Qdz45PI9hAy/tQ9IOYbCAFXWh6yxh84lMIEvRaLjCIpHv0CpinlrEOCu8FCIUG6Zx7rx3Vg5qLqMhp+ISKqJqcOcfuuZ9Ic6GB5RLbj2pTzPVeSb3oEvatD/poEWel5xUhOBvahdft3y21PogRQ4yLYZn8aXFki6l/cbwCzdOq50KaJ7fvWQptozxzPY7jh1fV+p8L/v6XdICporB6AJIXzSE7+hghcNQ9eC98Rv2Ti/xwdsYTjLlYOyRT5quZ6vvrflvZLKLyhO1JMUc21DBR6o+XpquVvM3Fo0hOz1b3/om+r+ZLXYUsnAr2h8MLHYS2Tj+wM3o27KUc/FjzOtZeTqnFa2gTrkBOIm6jGU1XCG8rHgQePQaJ8QQ/69+mlp2iBGf0iiNQAx27FSnBny096MGLtqx1oQQGqI0YYVYMvUL7eFlFG3j0A+PyPIgNfNYvaTWlJqGDq2QW7eEpXilnMURFMfiLBajJ5xgbbg/hKCmzyKQCKEcQiwBPvoCQX33c3nBOIzjApt8qfhVYAkMNgqhOVaQiNQSFtVs1JEwlbzaOSDmAIj490R9iP56ZrEtnNCQKnrhnTdqj5FfCST5OaYy3/Gxo67npv72x9K4OlEH1FuLaTAgzbLLx30tvfw0z8c9QVVnDm1rDg0lw22x87qVXzAC9O8jy2sPJpY9bQmLp6OcdE2RC5do0dT7nMcv2KbISQJHirh0DjBa0CJOhCw2gfLQSw7IqmacKdckkea+4Q8EW3kfjENPAZ2Utf3M6v6utp6k3MNSdHmclyBFLHyYHUCn6bpEh6+AXF6e11rTmxS2A+C0vwUVXzEsbV4OpC/mswlGJH5MuxgD3UbTv9ARSS7B5PwQZHt26Zpn5w5Da8w182AvWVc5AR/f9yoF3pxHwg/fcBx+4K/vjxI0BqpuG5J1YNurJY/7dRWi73+HrCZUw00cuUJLv71hzdfP58tJLHvNmirqwTVQxIhdneSWMcRzP+e9nSfiR1eC63chbTEbEeKQVqTBmfOrVhpQHuKqnzzXcjXsrIvfCCBCw2I+VRVT3js81mk/WGRrT3NGRrz16dfPguJRTudy4pH4Zdhlqlrh4bu861C0ZkQWIoZcq4fZboDg/vGC3TK5b4LqIz+Afy34Qvx16RZsCw1PPK4una27pNDnuulEkAE8kqjJMxewYTuioy4nPlZpXvHBdLP6gRpq8sq/n70mNWRCWaDD8dt7pjya/gpqsh46qRYiomZedSxnqrMJbTqbT/MI60clA4kLHrQ0BLXqSu5dErlAtS+g2fMgtvVNQRTjX0d2vN6OkhC5uxc5nx64Bkbqe2nZp7aqDoMHBVmLirBJbgRyQD2y7Y3NxwtYyaqVcM0MFudt1D0nYi3pSvg04GYkSQLvJ17WwVOhf5Xn+M0mUmzWWS0oQgjqV7SqHKbgCB8wYBJkVAG7etUeAXuTn1cTglSkHPUEv3Aj0FmQZ0Od7ov7WU4bgmbsjZV70czwDTe3ie4uE3d7+ADMKndq7cCdUPmwost+xS1H+NxziGueFbRS0GnrLbaplUBsuyOWB4qXsL+GtfcxZmcoGUyjinfr3vPlB9rfJXcbxmAKj71nJG6YqKwRpaoLsR9clVqdA1IhrQfaCrIEz7FheFActQZM8unSEoGxStkjPtSwwXNzPx/z6NighuDpqq0otTysQXK7WF5HR9CYxC7k4i7A7oC6YJn3QTBSfHI955NwSijzi0qScxQEqIgyRP20sZMobZO9YOWK89BIPojZqeRxSeexindX6MUb4+KjESNorvpA/ti9/eDnX0UfT0OM0ZIWcFW2u36sVDevjYMcWQ8bhzdvrAjn3lm4c9qhmTlrN/yJuAuXKwkGmdZTIjUCZnAH4BW3iuTqhKF+oItfT2HAZYl7L054ytwmqlZ3O5NGD62kcQSeXzXiq/NngyQ0uY3NCJjxUIeFiT1Fq91svQtY/Aceam847plkpM8ZVs/HKM5Yuq0JhNTc91SlWwROEJRuv2XeayDA6eRKQVkQxSODDEjvPXC+JofBwDF5ZfYCf559QbjgfkjqID77pEfMoWORWrQkSTvRoG/65f6gu9D6cpCfZbmNClYzar+UV9svn6rodunNR+QDO2xBq6EWDJD6nlENIW3aQP+56jQ7Nw2vuS4Uq+lqcEEDbhLGdvXKnb2P2wBxa1sQ0UXwj+2SYGKhSB7DtupeHWYYJNJSaNw8WYfrZMHdCHexk4h7LBNZpcxYTwC9eK/sagFoKlu7vCf4RI77QYxSJIBoA1YNk5dJTCGJdaztnJBb293hFsd2Xi/42T9SwCJB7plZz4W3+jos266k9x3ldcTIUsSqzY7+95OXcvTFUVCRZHEAjmzbRFJ1tCAniEKYrQtl6f9QBGgsJ2Y88TLIeecSq2ZiRf0JiMNpFaE5xblvj8HrjbGrr+oP713KHeJOmpAOOw0R/dsJQzprAw3DNs289XxlRR12vfWr7WkFPfc069D5adseuaUx/rHF6itq2QffyR74vAuNcUFyRXsXBCBjZAamal/qpPPHQehpqBJcL7eBCppKV/xgRBNyd4Loc3tH6ikpLkSDSp8zQtMO+lVevf4MgDQGTwxNDJja6kHOBY3I3N5vUmLc88z3tRpzg8r9h9q/nxGvomZzOfOmDGFG1stF3Cxl3wbaq86ByKo7gwqhS1/RDDdSo3dlQLxYvX2l/YrLXlavcVLxCwMrcgFhlhBeoI4NO9fDGHNvU47WTThnmv2D93OzjsDw5DD3VT6rW9ODY8omZrOlR9xNH0hdtoTgRX7+crZhy8l61evIVGwpfwMtzdlQM2JankKu2/jpUx+stv1xqjgTtNMiYR2GOcNGy5g/MyE6OeqiwGIcP142JvuayoAyN1llj43WLDkD5wr62dWePRq8G6kzbrQXdcFq+tgNn8a15dDc9i8fKjuze354PhaDCMh/v8fC2MFCx47VOFMctIrpMP55dWGg0Ti4hjMDwbgaz0Xq7/sOx3w8zuHrxhosBR/Hnf1cv6JR7WokRK/Fbm9JNqaOTtBDA/jxKHMddVS/juIQR4n/2t8gabNQRPQVxmlzkBI7+zhv6nQXyHoxR63OjeSMmUEUJ5F3kIl1Q3mqfNRupqozHnrei/nsoELbcSz6jdnQPeakIbwRJf8CWpdoxErcTe+BPiTHuQo4ib8OQ9sQGPsWqXoQc7kDp1X5VEc+9qw6QRzHmIcKlTbHoH5T+KzLYR4MqjOsHOyXHtGXKsZkDJ1KaLw8ohjZIJR/X3o4yunuuuCQ+nK3iDrqukc0ACZ6Hr3W6OhdKFNPQJKuimtASbqHqMS+tmOntcysn23dWy6y7hIFMS2fDneTTlGWbHDTTtVH+dUd1TQ+IAgrG0MMQv1DFXhpHZy9nxXanYVEfmVjzVR6pDtqNH7pjYVEXfOlSAxMbaadpTu0YkvDhlv7TCIR2oCgW1hPfu2PFBrV+kiHXo8G7cSggHzTPY8cl/lIFTwOjzJwSRkmVQxkKaVAobDdPJeme2V+dZqpaCCXoubrEKnBGqivs6UaDVr7cGNZj9/otwQ5+Fk+4ulB1CwluizSAroFFEQIvgf1xyNxlIPX6HwaRuzW/2TMQedrq9PGtFUgGfKGzG2LZm8FLXx8rSIIt2gAh4nMTv514YP4DAPOOLYki/hqfD3SZt5jVv+0x3F4SetnM7z/RsNKOSt34T58kNRD94kMDhSqs8yCWhEvoOAls8FQ547IorwR9s6CZAfkqV3rFp4Uz+wPp5vkq0lk1E4oAw6wiiBmEMLdS6Mr0/fMdBizijLDOhpiOlBN/feXKM8AKbhoFFsN3gWcA7WJ121W2N+SvdNoCQBAnI8CHVh+cEezgGJyShBlm5ZeoPsC4Cny6CaPYdbRCpI13+/uolBjE+NiKD2GZt9By8QG3oWWecu926TaE61ioG48V5FOCwANq0FrY5NSaIJwkv3qrU2D37Az1n5DwbbW+0w74F0UUrkMs5p/WmkmrSTEwzkVgoPBxfJ/vVMik3EzlNYxLa/O2DqifbstUojbhvMGuTbyJ9w7Pbmwh27iSppJ7E0yaLXuLkVfZLGL+6Ghp8QoF5wSEvFp02TADS+31LdBaZPFiIx07dchBUV/zCwawb9olg7+h+eLJX0yNQVo70CDrS620bFO2GF70abob6ITVVtggbQTGSBaE1v1epJcajh/JFc8TPQ+G/qG1irgfYb2Les0yysdbl5w4gIx/v+G3qf/v/UVD8aX+DrZ5dBjmQbYYhvnycVLoA+EwQZfU31VMwuzRUrJcBzcrdHg3rkcutq20Lt3qD+S6994DS8hwLNTj9ZoUpdVaX64kgxUXu3C0ZBkRicevl1f5zPwn4RMvFkz0ibqL+uXCwBmKP7yK6bWuSoVewGLa/bA5BfjunLtXYawI+RJRXl2FBr1oWRcL4QOz1rb6lniXlZ6aEu8lLMJbwcF2WnGD6dS6Do8mog7lozf9cyNQAgbgwLxJR8k0iAeHru0Xy0n/cgzCovHh2Qfgl0mlq1kxJtuhfMyqEG0ON/Pe6V5hoqF68rwL08RlD4Od+TXSN12/T3cYjm9ZNC7vHGl/+18aTBg1qv47+aYFZNKDoOTVSPRUCv0mJ2dn2b19yOA58Wi3XlqAoGDfXwFPrcYP6jH4k7OOKZ5bieWCC1JBxRi4iCRgoKEE8XljLHK/npxuGgvJuTh2ma/M6MnsTh8trKdDwNSDtgpaupyNQVdqdvgvF1rIVQGk7YXDGIyHuU5JnKboimMuU9L574ugDTQAqF5bOPrr1EbrAm6lpcaHxGD9Zmbx1zi5xtx5Lz6Do/ra5yUkKow9OA8FA1jXCeVTCMfzzzSnbOrmRPoHWow9L8EtyiJbrEDcOQEaKswnUqNMZEDmubeoqHo98d2aMnsWbSaJbIzThaX6ooxsgBndge7ESa8awXuuGpIHetHou9lrziIsuyHDFmQUCkJzkMinTmA8nXGpSXOBqTUv8aWrRsb2zwCTWd1ximpZOPG9n3qN4bMSiUDu9Jud72rdV5nZj0EdAdJl1q31Qcs1esoPn8mIvibQtce/NTxkKeShlMIhZa5qTZTLZS4aQrO/HWt//2RseNFZPXD18snrwKCYLj3+UytOhiXb+eno7MW6gKibQt8qxgjvpoSjwIRcHXXJgPl2PHPfC9i6bmut5RTYSLPOQKsVFm2ZIEZ/Zaa7VAz3AUsVEiqH2E9wjuOmoqt0MCx2VYksxx2GWHoxf+0C0hZagYe+j/TIHBdcrmWjQ3Hy4aLwaOS89lmOKOyGbonIVQMo7T55ojVq2jxEZ7J6lNnKgEQK9HSHpUM1xbFzqXjmH6HGyxviXBjTDzJM3VGzZgaOIKAmx/GLoogsniSd/fkGNOvsYTwU3zNhqDgGzZOQ/3o8zDTUAx/JK/i7PkdoNPdqxYyEtJpnywFFkFyMGrws0fTFDjHAIWv4tKYH60bBmj/CBhoMeePMfNkc6b+YfaFaEaPqvAH5zPX3oTw6zkebrCAf6y99n/OsDi9hUGoFGQ4ZGM63tK8K3MdX8Z+lIL3t8hJIsbprVSTMYcL8KtmrcPTXKeMUgq7eIBLc7VX5JZ0/UsqNCVZNhVIpKQqQS6EbemNrl/mggZvay+pWqI/wh5M+CFRAqlSdvEhkzE7J4iiVMCaq212Z6cV3vcJ6Iu759MiZTcDEHSGs3yHayYTqFjkC7mDR+06LKYKOFqsz+5Q3N+rYYXnCjBVeTAIc2QgY0U+aBzOxH5Tj/LN78PGQOWu3L6oSZsa7s08NR+LjTeaPopED48vG0kaY+XzCMTrKqxqIDdmP1NPx8GmXK8Yzm+07J+Fw3CNw9ecjYAZlXMQDeZm5Tqq4BEpamSSXnHxHf1hbz12vfzx7foRdCjxNJqP9wsSrBQTyQFY8nONVsEPvKGZpDREur8nBgJODVl1uv8QMHtUgt0HGw9hdm7uDPBWsca77NXdBxYABBnoqk5D7jlvjTYV0Y3OgMET5Em4wUTDVeHfg0SPwcBbMAmTUkjgKfqDH4YaJWzPErinPPS7IQ2473Gov55+KJlZR5K2OSGjUSub92efpU8Xp4kzA0QlPCMIZuILH84h6a8/A7aZRd+lh25wCkclMNvw2C+ql5q+b4bLwQMp6X87yWEERhGJsssbO2Pq6uTDUtitSI3o4FBoag5eV+1sNxGUxrp4e3SKKZILaMpavRl/W5UiZMzZ0EBLTunTKK72LjUNWjM0lJ7lYKkYexwylVd35tV6aLO7r2KVDLuBbd2EAG/nAl3kUgjAE/dVYEvEeJ1DLNGfp4Hy43eTSbalCqKFkW/2rHr9U07E/ZhMLOXERZQnhCPHUZTywquXK2JYeyTgl00+uN1WrYP9celdPIwrM4iwZePWJQhlPIdAyWgdLe9ytzJre3Bj7tV9Bf1wUx4tq2A2011y/jarR3xRpoQwKR21HXbL3u51hLlD6DrONEXx4SDwy8iFCtz8xkInIj+RJ5IS4VfxR0FHKiFyR/VSkRUxWIDW4rDRNoC1OFG3qzPRI7hO4r4IwAV0edCK9m0ua4jBjGZs4QgMZxm6GG+N7lbzZhAlPlM6hmHt1U5P94F1f+KLOd2lrvAgjWGDnlU4bNZ1NULDIBB05//M33tqWiQ1BbiolKgfXmtAAVKA1uPZcWrxPpYFfglCWL+X+8qqUlr+THW14eIKSlrcf6njSdcqqgckeu3wMT6mg8t85aSEQ+be3Sp4cI9AVqI3nDwM96YO3X14ONibZAo0AKCIdDuGR42DYLeu4HL0psFJxtoD2/Bow5KDFWXo7m8MNxQuGj0WdMsWqB5c8aRZhiQfAVp6uEf8X/4WaFu3rZbvhPNWEOsCc0Hy+JCbm8CrnjtkbkzpjDfYz+NrxWgXG7o7oP1tQCmG/7JSpgxNQTWVTaqUREfXKAI+f8qtoS/6iboLRUUTIYaH7tfXZYqpQ56PP/18q25+0kco9XNUI8I+tbRQ4eqlIxZ2eQEmBVdSxx2tXkY7j1oS6bQw9hApuf+iuR/4g43Vfwxn754Kr2vKCBpDsFLDGZa941wG7XhaURXW/5j5hQtkK2F9NdtcSCOU9eQfegm/nQ08K/bpAc6OQMbl7FQw3FpJ0bdTRlAM1WaTdU/JY5hY6O2k9iCaAINhCpXQu6/gGmSuDociToHq+9cQzs7M1z7qhAErtpBcVTkkCFS4ePaPIVcc/c695FAxUFAm+KTDGQqKnHlDQbgN0dhGiuC5LYo4IJmQPZNsz/qCsK2+5SJ3cDhf14UnKBDffHlU8lXjl5os9U0HfCiO1AFeWCJavFwIqbQlLGrqrlU2PSXtcu8WqAPixilcLwNZFb+EJinKBosp4MSJohJh+0YBvOrs1pee5Z6HpCTkmfBxynAksBEgpBXo/GHFhbp102oI8DIcRm6PfaymQCJQn99NIdQ+GH2qDkHe6cbwTcpt+XMB4XQ1occUuY2pJLDpoUhXw6QRV5I/r4BAqgGtEpA4XcP3P7ERWGE9/U5VWVrl+kEAcvijmn9AGZgfN1YAgriflxoLzhupYx0MVH/WHT0ugngR0GaVJZ+DhJleIUJhHMBD0Ls1F1b7bf31tmYJJTiC4/HgqBoQ4swk0S6c+IklngrVgIHzXeMfxXHVMCg4PMf1VpxUotyJZ14QXwwjJvMbVmECJ/A24s13fJWeku9RM1vKT7zHcyt8EPF1J9RwKukfb6HSa51QUznf2T7dQuJCeoRcmb9HKhzWplytpPq+Cmn/u8p+Z1W0JW/mElbk0mtQ1AEl+a67+OCrcHmG4+v2SQ37INxxYsEvrxM4P1cHugja6oZAikn00ne7D7z1wI4VEW5ZtMT7ZOgscVcQE4iejSd6aRstIvEYDxp1H/nvVOgWXkBqtAFkQLdsNbEYbxdhZaoHEXnRPW1iGjTMF+q5JCKGkAmkaCmp08itbWbzT3RH0HrW3n77P2d3kB9+ydblKPkJDEkpOIRQAwBNITNK00NO8Ms+QyWjt5U3mUMp0olJ7WA0KxTBewvoipNxmq6EECUZOWatALVKaO3/3W309bBOgFS1ckqVx8PiY+QnY49ySlVEv0lOvd8S1o4HH7Piw8zcul/LQCkA3buYo4K8jbSxPEf8qGrE4tMcwyBaXzhEdWBSRUv1AaZvboGUewOlDuTZghofyAzJswxUoysc/KZkmf6Fomo4qNpQwCoxZpyIqU/daLWvY8YH+qIqea9GX3mIKR7z09JgQbvyXhnfWvm5wC13wlrigTWKT9BC7AQUha9RyCo+V3A0AIjmV2vndN0ws+ZjCHx9iZreZ4ZaVb/WzEZrPH5S662Yj/xEsb3D0ZBvCzJfPvPB01Ex0Cx++XJQy+EmDCsgKIItr0EfmwHuOt+8Xhzdu7yyu5aFgD0n7aWyfh60U0zBl3ewgWbRRY6XXA/u0gLMTuZ+akVUZEJ8dDiDmJrqgb9ZCF14qBmFxv59u/Wq2BlgQR4v1ji0ljS5haHyOqmH0xH0fXesCxt8U8aVMtE64l2+texeCA8wKxg5dN8Bv7AQ9J+of8qee+RJQ41fUsgRkDtVb2y8GA1k4viFVGeBnjjVwH0te4a+wgdegoOFO5A2nmIClfB6Gx0x0CpTTTHhzaoNEzSVVytWSqRLTGVbGA7V1EAH790h0Vm/LH+aKCl6D74FaAbbEIWtlTrfB2Uy9kLTvT5KZsBe1XBiJpGDVk5HpkznN8zg7UoFVvecEY9JM7pqxNmEfTQwEHvMbMJN6Pa+f8LPckb1RGZtfbwUfLbgz9B59ARTg9SkhKQ1kd8ilP5cDJ8TfD5CiSZ9ykVcDbeoCwSgFtkdSk9XTVFdn23OWzgiabMi24X4tdex9Yq6rVpeJadHZPSsnl5OBp6iCW3HlV05+7HdYzSOWjH1LRLZ7k+3SOqVJX9/F+DTyBMa6oapqykFPXcN5Zg2XrFllsw7Uk7w0h6ULrRf1Bonaf671/Fc+/YJ5h/lx2xVyc5TZ3BMJYcR30ThZqV/OU6TnzQK8JchZPsimf6+jZEqliw/H1XnVN2nGMgZXXS/VU8X6pJlQEiQY83woDOwWhlg7YSYdRq8GHIO6yFefcCkiJiqq/UYQcjOw7oGI0Tcb9E3AQSh88B8XjMV3/CGoW5dWx0Pc8dhUXsjphFYh4K9wFsjVqUnAnX1XnwuRVK06e9dLjbAEwSWO6Gq+qdUrRoj2/7ScwHg0yCqjAAply5fRTq2x4VSWr0vhvZsyr6eUxOkVwOKNZZjoPqD0GxAn/i9tntro/2gjh9bmQSnP/4YOqpNosbqCEyPKxz2Np868jemIgvY4=
Variant 5
DifficultyLevel
719
Question
Jet is saving up to travel overseas.
He created a table to keep track of his savings.
Number of months (x) |
2 |
4 |
7 |
10 |
Amount in savings account (y) |
381 |
812 |
1458.50 |
2105 |
Complete the rule for the linear relationship between the amount of money in Jet's savings account and the number of months of saving.
Worked Solution
When x = 2, y = 381
|
|
381 |
= × 2 − 50 |
|
|
|
|
|
= 2381+50 |
|
|
|
= 215.50 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jet is saving up to travel overseas.
He created a table to keep track of his savings.
>| Number of months ($\large x$) |2|4|7|10|
|:-:|:-:|:-:|:-:|:-:|
| Amount in savings account ($\large y$)|381|812|1458.50|2105|
Complete the rule for the linear relationship between the amount of money in Jet's savings account and the number of months of saving. |
workedSolution | When $\ \large x$ = 2, $\large y$ = 381
| | |
| ------------: | ---------- |
| 381 | \= ` ` × 2 $-$ 50 |
| | |
| | |
| ` ` | \= $\dfrac{381+50}{2}$ |
|||
| ` ` | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 215.50 | |