Algebra, NAPX-G4-NC25 SA
U2FsdGVkX18+m1NZfosZ9Hh6c9o8GiOYDQLoRahouCjveTg+YhQQg369/1f8aD+ivRbgOu579NNRCNJDLzQB8rDDBQHLsz92e7BZ9fpzHfGoildcMrAUIcLyJOXfSgXeo/SEx8Q5LjcV2zlSTDXqisd2ddryhl0HdWBu6mZtpPN0V/cWtlSFbz+52eF/m6ZCtBNY1alYQaKAsuF/742+zWurlTeae5ZCkoJLc1mgjA+BkCImO46CFHbHHwbQFTg3SBNi9SXMmnxn1rCGlxxaTozy09mJ67w6V15GaNcbynmn8byDbBDFb1LZqTvFkWykT+FAg9SH/OMAa3d54V5RLVC0kSz8vgYiA6qnFKamDHF68OaiFKTdZdCeUPvp/YzleTCXxITn6L3QFqqghwh8kBKVkvlJM8rMfWr4ZL7vcLkDFJ7l4NoDHSC+3NZELfQccMa9MAQsoDK4xHhtHfXSDEbiVgBFLHjI3p6M/oi87pphg8wcwCOzjpT8q5wUPf/ci0t4G6sE2fRLl1giRHma8JrBoTbG3mFDjEVzSppcCsfshyfLjZVlmtOq0lnyJUadYVkO/AUDXj61d5Z8BeqMeFVo9cp5v6BXatewRXxr4CRQhUwFzvGELfvGASc4t2FgCJKopS6MZVwehbaa/fe6dCw83Au2OHKs9dPAMn3s+a1nTceuLBbEmpqiHZAHu0NC3Usy/swTCAFhINMYkYkd8VMb6TkKHzCQRMJ1hESU9294z1GCPmllP2XDEv38d8T2WwtMdTu4JMkiz3I6m48cOuT83ivHGImozKbvzaZgX7LfGLQ9GwhxhwUZbFWXtfXEno8A4cAmiCI8IXyEOlZApIxTmMIiEYDocSE2Q2wBQTpqFmr04Kdw1F3HZbpRAHOtlNMB78LFFpiSCKBWO7vE2sjgj5kX07CSnA3G6AxNmkur0vAQTx+jBv3pgqjflm2lLvo7/kUtgMfmAJucNhD7oQPj/sFQy/IW+yPIk5QeSQuADz4/lGZ55AmkJ6oADtlsSCA9TOpfKygGkFkemU31JgeQJm7Jm9r7qDUvG7gyb6lClXZ163Rbj+ZgjREkvVl5K/KzUsiblReFlJykRNPZe60XbLYbB9+Cf/3WI8bcNUqrL39UnCgO45xSAMNvvA1DFW9lyaedOqzBpOg6Z4PEVQSl/xt5AWP6ghwkIHZsA/BL9ckmz7eiKpZOt1/UgH7oxErLSw0yBCE3Gx29yPRtAOHqH2qWqd40GPT9ryCRoZCw3IcxSo/W0tpOpyrZvoCZePc1cTEGTrEbHjDKVLeX0fZEUf/w3mgTKG1JzTVh/K99CF/fZN7addLLaMH1ld6Qy9rLUMPU/xv93XUzORbUsJi+4l6bOMXPsyXy8vTiOQPI6ZJKe9/Yb0j91JoaqMM57LtXZ1yIiFkMdp0gTcJn4XL+AywG6zrzcvZmBhki7kQURXnl/ZeSFbibKWlCCIUgZEW3aSwuFYc41oGBeXrgKYm+bwxVOy1qqnNn+iPUeZGUpUJff1fBgzYbWgGQlYnUOu6OeDKg9wsLR0NO9fQq0/cwyTj9iJuo2SNjK2eRvZev9pf8eX6jpxBOjTD10meGMXoePB52BTYd91NHzamfCJDNA3i9/6YOk4Iy5rEP3vpOEkJbO2v85zmUv1hv2ESRjVYWqGWFBB35eBAUXG56P3l3WSV4D6LezDdar8liAhdRO/QcJI4LZIt3zq6Eudu82fw56lRyGRfinuGvzmLwRNXWQeOOxZ+giJtIkrruJQ6cUoC/+m7dO/+BLJos7EwUaAhLz2w5TA2+0ZZUUISYXNgD4ZMA+PnkOOaAKLcTK92DWrar8CQcjthbKx1hFzDtI1fwjpWcsoS8Y5n+0pe9fwJkhXtyZRVeLzKta7Iop4xqod6uO4KzfptyTTj2NJzUYTYXVitxKJJjNLMM5hPRSWbJAYz3Oke1PPH7zxfmqw0NoVqy0B7kzFBJg6NuEnAXpucCovLFqClvsKQbP/YT/cmbTskFf+6PskbBJX64HpvugrznhegvmTL3V/O6vVmxbyDvqb/azHHSgXJZghmlX260agtSiPvhA/MKS+4/6HJcnDwwuFUyEiauYG2+4K+7orLq1tTeEPwRMrbX+n9C27Jwoo9bnYO2hucwVBGe/k2nFI9zZuXGiESxFLcHvUyZsYzmT+aX/GgxQ+QN1sqs/6QsOJENH0jYptXNKF1WuzChFNwBT2g2faVrY79H3gN5a1YM7/NId4+P7h+VhBAHM7ySorddqsCXt7grA1APTFpi981jL1z7x3QUq2xHiFBJI3noJ9A8P2sCXVOiSfbC5X7U9Sr7gLqgo8fwiU89z3pbpEWzF82sYdGWxsG15B0pasf8rkFDeGVW0Rg/8TjUS3yMlpAA0XFAIdTKgvdkan3bQbUJmOnqqpCSK7rvksXFcIjujFN+EtBLPgFe+/+BLL7cb8WdQFDbrCmVxRTGwc2P7Vpl/ul3BwOxA7OusM4vg4qCAZMb8i7N1HQtNfhVOYp4xo2zB+gRuNahimv33owngN2OykfBPGqZt1NbVjxQVDlHv6ClIl+OW+GtWsEpLvwQJ+d3/+mpZqZE28cllE3DEU3bbZjZkdGmbJgwPc6YlJfDg5ZxvfUHBkGRm3LDbOf6TvkYY4xnnvdG2bXXQLp6JE7q6ll//ZJ2ql8kYKfZjt3TMjXcw6ofGcxijvKWEhbjNYkwDOJe+vll3toLMjzGvr3HquS5ntuK1Kv8v9I7YpL4/YGuJrAXFE4KkWxRFvM2tOdHIzD5h8FJqWjv92b3h9pzRFMZowUro4wFb6//TJq5qyuzQCvfkb5EeDFoX0zfcVkQl79yWSYF/VEBOnPR5lv7RekKoSfMGhRg6eVmP5riH2HevzwHJJ2JRfC2lCNTIKqwqu/Huc3T729nqnspqvE0OGf036F1UYnVnrFQRXaB916U+75AJqoSbPt4dDlzg2y5kbaR2CpJPghvfEyG/ludX2nFfeJIh6RnG4Kk2ZayE6vZupescSvdUu0L0c1JJlQ8KqGjhTKohJ6R1/RUKRSHmTKQAfet8rwh+9OEdrwGKaaXFWJKWjketKvNYRmEYhc5v29b0o7dwCCFdJkMeLEguIVB5opcloaAJJJZfirzhT1KZX/MhHUAYFsBqM5Nhj9W/0xZPWZXS8pPr66jP5Tab2Xlc3QhuYsboSU/k3BDj8KGGbUxu8ZbwBFAMyvBK5iALnoqN6tDdd2Au6hCyyaTnoYcCC6wm2TwAD9Tu20el7NqSlIzHxQ4rsBkIKpgayAIoTWfNZ3fb9TrJM20/CvxmH4FQ9ZnVup+nKYnfOZJUyaW4FduRtsNqdFyVhC0IZtP1xmKQLnPwY6BYg306W2BdLpDdV0/PHj+BZQ10f0MbciT0LyjDyqjpNd+uK3XlAFAQiX8NR7mtYR9RBMr4XvKjfCJLEV9Ls6N+7lxX8MLvR4LFvwXDF7GoFpUf6mKuA5nHYD04QPINIA6SQTr0BaeAH1vmOvNum/Yi5yoCZuH6ug93S1up36rdRDm3Od2KoNlTqoODHUTFaX7HT3YD12TVvqTNXtG1A07cmNFa9H47zvI5j1LyZdIgl/MGVzbm2H3/vFQbi6coXK1aqhcBEM5OLpbXoWp7R+kIa/3rbIv/8fxCtCjrzvr8Otlp7xQ2heuBjXfpAd0pReDDw9oUVYzlRAFC82dHKebYitj5UoAAnaz+MxzE2ugNuJxRUkd31yH/+EjZy8yv4vQiu/2Uwp3TD+PhepKuU+yUKrhjsjs+yHiN1IMPcF5qUb/UGPVdUjcvxjiHjw9u9dwXvpaEnYAHWiXrogE5b9axiO86i25q89yL5vRia2+a8SaMZDJ3aYvE3QmRwuNZzGsqNyipt1J9ItxShBC2UX46HyvretnZlj6+32VvVxBPrJAg5UoIDTJS2MEAoFCtE9zP4xW2lsU2y3F/TIo8Tkdv/kAlPXuoCzuVFXifefu0ckS+HWqlmkA2+Z8kotFZbPfzhy+gZ+LlGfy/tShYxcdA1S1bK51jyRZaghQrmaUw0AQYpBZRfDWIiCL2UyNq+ZqGYtTYZk8HTmihRAFFcHJex3wm7UzpLde1CVfPy4+E05Swr9FHwlbLrPxQT/BHRzqbwcnmjcj4Th0zG+cpMeikcCAYSdJVQvpurSTqAKg/pIrdxmvIfPsZxZAdnUVjty2Qwmytc02C11IGEVNNzB78TZEm0LYQLcDasTIOWN4suaaOGn1BR2njETyiNGM6PXMFwaBBVx+vETaT9bhtS1teRj8Zl9anFOMats7eglDBulTYUQWpXGb6iWLDvXfYjUYkWQdjFD5fDNUrxadT26qndyp1+U+p8S2AUb6IDZn0N3Drw0CCqy4IPoc8Nspy5iyuNSQ+5Judvh6PbVqWlo+oVcL82+apY/YmOfScA5A592/VDpxxY2enfVJ8DB8/3RHyxAXhx2nQrwe4P3xXhEOISnRXuMdD/TyoP5KS0AMf1kwi8l6tuUqDY1rTHh7xS4JuixrQ47LkFoaPOiHaTAgfAN8ZX418ZPUuY9zYrE5X94aoFsBotkjdgJzvuJH6YDbkCovoTe085iYAs97oDcCSqmJCxdNRsRe5WvvAlJ3GRjDvpymfljAIQmAg8nb3w12IG9aAi3GS3hNPNLcTtZnrQpF22wLovv/5Glpmif42DBS3wbiozhNl+mOPhXpNPUAVEdPnAT5wypmfAV0LXjWPTcbeNRYpBFdRkhcCVArn0qh5klmWd/kZjaijOQd/Z7667zVWyhcyG3FAA1WbmAGjiQgLGDY3GDua0+7ap+TN78WSNRXv4KQwQADhasFm0cvOriPCIlTGYYt2nx2R44Yar9opBwH2vYDt6jQ8nOWwyrE7xE2JxFnCb7VOtivxAMV1C/Lnf+qluB8lmo4X88pfWkW+dGveB5Xf+I0p0MPA/zwo/aL0ApebWSuf3XIkYNAtmsNDencZuTBs3VPEI9QkPEQpXzCkymPm+laPYeodFAQ2wQk8G837sYaDyFZDBSjRogtGuH5rCiW8b0wLgp7qPIuGBoKGolavuvtOQjs4PeYIQf9HMEkqFTvS/lRjKUJFYGt2QPzWUhd3cBB+f5wLuU3O4bNV36I0EPM15iTLEm1soTi6L4luHTOvUJ0YXlGVui+eY70YNJoesgubB5sySFBr7+rdleNdWlS+k90nBSZ8W6aiSaKHccaCNHJNk/NHHskdGUQ6IwcwOmvipX6lyH0eVEBGxaCnrv4GbBSTacOokCwXPadmphF9O9488c1iCbrqdFicY7ADviBU9aVfxlWgrpByKgP51LYP71QFxcM2PWaIyVMc9496J169tg7iDPrOr6ib/fC5blnxFggmWrdkrbean2jP88fB2E1G5WsImlXOncbyYCsQDTNls8F0f2NqdPaIF6SuvFu2HhpCVw7u+8ATC107fHdPXhmmDPjA3AfhNasQmW7S4mpgdtHZ+Gm/GM9dmjf34HpyrxUXS5qiBzzDwdvHyGFr2dNaSueACAw8VtAh7GNXujGd/uUvaoiAvo1jKXurnlxOcDtxOlmVVaimKvu9Y6oV1+ADavUBhAxa+E8Ib9OKEvyh6gTIU10pCPmf80KdvVyurdsUdJF0YlcJ/xi4Q0D2ArB572aNb2qknFbtmk5lGsdm4LcMC0TfJ8VkntvYdeDhZxuVoM13S1SV//jZ4/qE3KQLRqR5JFjGwzCMqFwkugKB/lFRIl9EZWSGQJHfEZqs2iMGl/8JWUodWajcPH44cOKB650nqmFOvKj1gKH+ZS3rySCwlNHMA49+nkFwiYvYoAlJJL14WVj2HQqis2b50Ga2RVXPebKDEmeWHZ4dB+57Opwg2Y70bpPojIQvP2HxsiHuJyzQCD9DuLs9JpcKH9wUoHuD/CXT5H51qEEtO4bBjtPtO6qOuNxT/eTLJEmHLxhdb5LKU7sZD+Wu/qC9teXFZRB3QK4IxWUheqf5lzJfLtZbIDZFT24Auqqf98WfU2eDiCbdrTrAnv2pnuahc/KAkaWUwvqJv1AV2jrjtD5fZNwen1mZ/cXbX5fzXHMqECPmHs9xzX3C9154Y2sUWMxPSetj6m5/qK+1+XTUZh4mp9u/v/liUxUPZwTEWWHk761EGg7WOFuHj11lXMDhJG+RmSo5WeibCqoZCcG86eIue7rq5178GDpSgcEulyXI6K/jsrMRnWYaAX4lTWZ6XBSZAyw411E7YqlUdisPdlRJwHIZCBX1CRvGg9VRIRo8e4SjMQDYLZM6lp/bi7zBRtNgrqUyZSPrUHJnbrMKFl/uTMWzDMrfHpTLl4JfIfEEGvaLRryCuQMfDKMprzSrlv6DpEef3WryyhfRyPWKMApKXnau6rg08cbQ44MvaL4Eg9A5hXPbUJX5116qa7Kn9qctKod+fQk5XXewOJeqAPZT5Qv9r6Ltqg+Vvb24NLJ9ICkC6CfI3RZCpG2U293xok8wlXYU7sD39NIodIYpqY+3uk5Z3pEM/3ypzcibuPfLzaweiK1bFKgtYo/1EWHEAPbcbitMTADhtLeViP8RHKQBC4taT7PrOb1Pxrw0VWrhLRZ/uFyw6Qw6VVldzcO6/xSg/GrwCpHjHxbCiV4RCAzSzgMRvQ0hZFk5OZ280Hq9SgOyaRL2csoqlvyy8HidIwNKh6Yz1NyKpSD2qdE4mEORCa2Pa0QVi03spOgqeSSsQyT4OwPD4K6fK5YOnK+WqPJjXD3A6ChUWeeX/teeRaH5I3tyL2/mE4M+AKziQxElGK52mQjw1ymMgRxuJb9fy3PmCCXf/q7Mz0nVEZb70TMhfMdfkTZyx/pX+CZo7BySWGaxGuF7/dLFA8g0uYhFaKzroD58oBHdyUd+fbjUslsUOQAId9u03yquMlVLEg8gHrwJ+YU1sWe7wOiA3D+YixfHnbyizVyf5txWkaMALiJNBs2OpkP4+SO1lcytFtFVjsDpjytmPQxEmxkSv9H1k6Jg+qwl7wHThk2n+36WpKl+xsBouTMvmAheWqrLcC22Hl2jtddQf9j3ssr2FN7wWP1u45Ooloo8vO+NGWIK5tNuAhc4ZzFbF+bi9JA3yFWTW4irNqVZXjV+rKJbO4/1CaW9ePyJLyUZTO8djvT3pTefA942h+LejYMvf3+4pUyVw/CZsYRSNEV3NRXFpXqUJXdNFqxLOEKMdo9DXpJh0YZeLfO14hsqTVJCat3J+5HztBc7R5d2j8xtRO5+dQIQMPasbuocBHg7Z+ZwWD7HpOU8zXpiN51ZrTamSX00h3K7yiZNyRlRXZ5DnhJpRzGpa2fyDcozVJudGuGvvk1nZP8ltOMVL3arX6CLsWnUQJpozK9quBWNbyGVieCsE4wiClrE4awJ/ejKpiLiNnehPBWA5gBuM336aqrd5oGH6w++IvdwOPA/mi0uLxxERLLZ21Yn9uGbgfJ48uoMfIVLI0KGHH7INP7uTwGMwPOaUZymSSZrW5rUVUgsUFLssci8vVmMdbJ+/bUJKmbdrB9R0x48pNitIl1Jj3s7AOHyE5derHKS8/kYG0Z1vFzRiXyjHpQX6ZmFYtpmX0M/FxqBj5MvrWl1BWq6YJoBG3Bmc+xA4zTV3Qt6U8bHNO31EMU8d/yCKUtHvM9OtyXYa4zznphR4vG/NlT9Tw5gGqemykLuZgK+6I8DBm2Ns/hLm081hwbRRDtmVmqBXZxRjvU83kkDloajm7lIbwBwJ24Kv013IibgNScWXbqyCk+dsCZxq3XjP3m9SyeRUK1j6i58aOhp0vA6+7OdJplk3yrs2FSTNPi/Bsmp7cUdy4GC8t1qTtxn+a4wR4fL0MrirhKFnzHNDJzZLX1VUwm39BaPteeYiw2QY8JU181a+RpyXbmhUxGy4txPsZyeDaKqo1C8CIO0v66Rk0rSGR1ad+n/c2gDK16e1zhy/sSHRIQ2N6jO70yFJG30prNqOoPHIAMYCPVVlaFpGYAuHE8IJaqdDg6z5tShTcJ/c2RJ+eUz0TSFAiCvpLbCALEufnZaDwZkwIIb27l+Nfilp4MiHX44aVjEAhp+3837IzZrz0+BwijpLNwZZYku9NJwYXMjYsWpBYOCGx1Xkvppft53/eipFLFgBDGBQ0m1+XWWhC0BoYdML4Av7Dj8l4mmH177OErg5FmY3h3A3FxtE+9ie4bbsm1uvuBsPIfOX6KPsdig4sL43qFJXQFFv2bRH0gW7sXFsM7xMyzNS6KqLLaoAliUvRLSM+rviCbRPU0GYwQzNoXhreKuwWPLtY8qssg61OKpqVNubqrX5SE2+Re2Dqh6aHe2GH8C9+ej1GekJlHcwPLURCaliOHW7VVC5j2ikTZnvkwAZZvxAraHGmEYD2+Y0Oi3SEiFZA1Ak0xoAXeri4tGspxhHWm0JM21xnQPT3ZiqnEF1Q7PDHWCGeOSUUZhEBjQ/5gstCOu9xm7nOdiOIGydSgncmoGQOWlKrR2FR5gHOf/1XNb/dyImCp0arX+97ulBhxmf11BPbh4kSQDy6UZR+aCjfPlPZYdboqa7VubtdRMlY4XVYOZ7UZ6YtKll+H/QY/Md4a5pZfQHXWRbl4uUzxbx4G0pSLegiE/RkojYat5XbCOgE27PKdysfw50Op0laofAXlq0b4yKJucPRmsPRd7FkGYt/8fdarS9AVxBiz0zPpbCvXIJI0dn+ERYG4FerIdIA0zQPS49r61j+IjsnMJTIm0aHo1Me1oSN+ozKOhEy5z2H5IfJ/cBt7lZ4t5nnJw5/eDgWEIj+uTHK1M2KzRs25tdZ1z696Ug9FVFlnQEJAI4Y5V78j3fjfcFijwWDbD9zKr5iUyRbCjWREtr0BLIpTym0mvXQ9Ka2O1zk3qSMbeIkx5DquHo+3nyCZ0J64lrpApNeFX3WPWLPbUK/XwX9OBT76Vr7MlQYhiawJgJMySYqf7c1mHqKUFzgqPxxvDu2mFpSc20RUi1wSRTz/JdljVMfQsFHt8owKek1arbjHMWdapdMxXmcK+tlCmzCuwcnHurYxGTE4O5i9XAbvlqBN/X259MSIIOBAB5X4JMVrj0c9dh1he3I3dI0hHxt6d9uibi49meIsITeM+CEBsCst2Xez6Cd+JUhcZibm9SelB/dW3sHxTZ9xiX4jIgEiGwe/daWxsPV0+js+iOnM+szBv5uUFuD7eG6hG2KkRqOflwbEyvcmsgIlV8LFBqGdVePm4N99gGKxK0ew2G7GodGAbca3c7Co1ZwOsadVCeSNZPz9UpWSkVHU8YM/AMo5e8yYwE21vofFCexXKGhplxKawRu67VtUgYIna84hF4g00xyaKCUATusCFJhRsKhsMNRoyk7GIg0UnGabB32iFYxBl0oCpsI4esieIcNq7N0SkRFc06qScCyw73pD6Y531nLYNfmtHqonI5zM6NdjtvMzwCSzZVtJsO4xRDQY5ITAOJSotj5Xu/w6//ENLI31b/Y9DmKzdkjmPGCMrILaKpQtehMWcSc5fi9NSSyltADNMz4UTcoPTRpKiNPPTWnXGC+cczGFUn+ND7d9awXlM0y7WgzR3K0UYSDxmKXEsKYn5AkEfJ4igV6yd+GgEr4Oi0MFAisrPrZZOicVcfNo2bXpS6iLOdx/HPGFLC/LoPBQXcZ/FRNmX1hWaJhPMu2fCuuD+0TAQazjhHJ6EHvFeVAkRt+zZeantsFJmUHy1HQOOC+teo4kRhxTq2ZaBRI87oQZE77gztL+QX251tHzivFZdD0OBvw6PM2erZjMA0L0lh+uYm1gbzDbGxOlaf1mLtO0my7hiu4192wsG8x/fUzTmmiLL+2PP3iV3okvGsPZMlvzZBZ5BGjCRB72TrSFtBr8UF0nHuaPu7GUXw7LvSMFIeFURqK1TsOcajHUoMkqNQyx6zDOxBLkPnL4iSsJ2pvmYnj6bApF/mGwX8Q/Dk83zkgoSGY3EMYKHr9YIbWv35wd+MeIeXnG1SF0qP27z8zffadEJ4HV+3+RTtJnnL63oeqkuNxPisDoPsaeKsySJ8dopycXhbqvL/KO5WOcBVeQ0XYnfhyACFgZcmOArFURoMAtFm7EH5KBbYiRphlpYUU+3tbScZufU8JYNCeAg5CWlGy5pOCIQSW5A1oVBeLhtjDzDUmY1MGueqXW2xzKJUftznJyd/APqPLiVFgENQQVLpt/FQoFb2NQ8VhGgF8lbQJJOcfS8JyjHoCpwEgJsBnWmp6EKC5HRxU37L/MO7d6963GBEmAQigyrX6pVjRqmnT/76ckaPZtiwumk3qxXAntkYM/5bc8HVo/malUUH6rA+VLQAIxekFg79m55HnLHqm+phmqKLezaSNeupr1knVr37VAh6coZCMd3m+ln6Kj3/EPwnK561YQK8dK6oBARzYt5rJbJBdV3gLln4WhwT/5MawP0aqBiiStiEQv4q8GoWjUMfsdWacSUaMPZurxe/vunZGcT9DPJUSZU5coM+Lf/uX0evcWkvmTbPlknJi+yLWy6U2dviwfyAl+sPnD9eofasw2Dxmy4oibOc67gdkfE/nS7JAHwOcLrSEFcRyv5n2ZB+csjeK6FJPKIYVDfbr+audUlkY6b2BbZrtwmfjEzJPd7ntQSJpC0Bk5L1ulJr4U4v8UbtsDuQgAAd4NagCk3DnNNcyK8h/xmtRoJJfU/sg1i4B09pwJ+4XETIbUCQz5NYb7YSfFRwKaORJWcSwBSQcxMYxvSZX4xiE6+eSD3GyyHGiG5sYjya99EkD0o/VuZVvxyb9+pMRNoOR7NQW3HQUBdca7ft8WvHavLVQZZnk11NdRzx24WSrX0dhYFKmL0tlAK/Ci1n2h+LwUCJizN4Rw89y1+JqI187BWxthipzazKEHAKQEb3i714QWFgeWAEdc/MmA4QDGrP1XCgjKFFvbibiSsry95HccndGb+U/LhjNHUygFC3U98B5JsNkOJ6yvnkbzx11ZUztMSODEUdHCQ+X2u4M3qW4sz9rdvy2AAItXXNcJ4/HRRpIeuDdU/kdp5oEB7n/cCzGChLADBa/dZw3fqbfVa5zThPSjwSP+/DUw4WLQPv3wfPxFmSJnUujqNDgxgIgWyTgq7/oov5qIBm8w6yTXs0L3tQhqRThULScyvzMdW7H7YC+JPXkC0VlxH4N3sVrFm+JUcm4G4QkBAHAdGoLAbqrTWL90581sdbeOKI9RrVjNFSUZKQ9DklDrN3E+6YYTsKxGnYJ5wubzmXRVTLBDCfev7khHlA6zwWqJZNAvL8i2UG38TYmo9pDx1qJVECd6354YD5fyZATLkMyN54kggSGsexlLCxu1lOahdQW3lYYQGeZQYt01mdNp4zaV6dpkuqugmv9Wr06Y1iCKOWz/PFnzB0E6J7bY7mryT91xxdoS0lQAjELy6T2a8IEEsGwZ14pdPm3wZ4I39K5neRtNe5NtCwzlSs0lV/Xh8T00s//4WCqFtpplJYC6sCYnuLLbMCCpirNAsv788I04rnLH6ZMFP6RrIssnRp4tvYcVymVMrNjtgCU1Q+o4gfxglImMXLi8wxyBOMHb690PDr2hsrLMEimgL3FTc0EvJC1IN3BTSjjhnIBTLbRR3Qz0wKQ/xypC0zX7UeEJ4CSFuZcGPboN8X/SnXOaKE06BZfk67ulTCHzjjx2P2ofbeEjRijU6AQhvBKTtNrb2ILj5cGaNTQwsYHTbpWRvE+5vbqbgZk/FfkXY+hongeOf76CLtRbZIrN0KMFSKS92zL6Xh8FKLUaLUg/Rpm2mGWzbr5E1NWhWDiOvhEibAHHU85m0O+VVJ4+rXhSdq2FkyKalAhtcGERiuSNCHXHV9WVPkWFbDkplvew7qIMop7Bl6raR4BcN1wCaviT66aL5iZBx36X0suZ8blV+VB36RQQjNB7Xbh7S4bDLGwOHYS5xPjV+406TBaYVELaC04f/yjnohHKtjthizZEvgd/BKejhBlwc4to5k3EIW0pJrSqcxh6JU8sCT0H30FlHOp4zgxAdR4dZ/I94KRuqpE4zmnTT4/ihGdtDbo+wzKEn6TAoQTFb+XmL2XMYADsUCifk3MJrSSnWbMvNDnSD6jygkW8ko5sYoLbo1djnXu4CK9lyiO4WIVDdXsO+J6bmO9PdcwWJl98AK14sr5g5tJ2yIb2esAHFh7kywrGFn5w7QRc0+Ce7r3HOYMScun2bzwmlH9PETynDih/lVTxYx4PUnLlld347fS+eI9Iw0gNLwZgYnWwt6s6FeIHDcZ4/QCeO1/doXnLf4cnoIt8tcKCtLRWvybFQcx/OKEFkKM8wRFFP/G68W7JzSJmW/RbUxJnORBNM03t7fBfgJC/Tyg3OAVsfjJkvNHFECY5plwyYwzOHa7iVXYrADaC2UIyULLhBMiRWXJK3w39xqfXlnpELuMCIhLKmTaV/6U+RIQPxY/4+mQxfxPChWBlhEHGb6qu18yxf6EL+aFMw6lPFMbBqiSRH4zwL5WQQq2mj9+CZloZtGJg3MyqjOdxVbEylh50IxZ8cAc/2khv9WJj1oO55JOl4kN9arHTfZeiQ9O1b/31eQnwliAqky+t6Y4ep8mogckaS5oCxCx2oeoCMfQG15w4jrPWXSjyus0c9h0Xb/u4lFvqw2SMPb3m8NEoJH8lLmt6dKrBWBnnnR/60wDFJsNqJBiGdCYt/TquyjS5/1opcflOigT9pc/4YDzyTID9syvoZ50Op5kzfgrBDOqgauur4HZPPWqu7odmYoTQl5xqzrfRBFJBBN/X8fS8SpRs9Mge8+dAkSKZ+6GiY8wogMcZZSMGyqzpJ+t/SWdNcPX9pmfSaTg9cjMlq2An6PPWDPjGXJ2PJPanush7HXBqYMtAQV1KE2PnFoNiAsrl8rg/NU+WP4ZduLHhaxjO9m2qAl6/elzlF2X+p0m7ZXStOtgH76KtRUxzCMb3Buh2G/ny3mbpDNWJwvFerFB8GhpUAPEuI0fl7l/NBltUJOEkh08GBEWIuZMlwwqm2i2oHnpO/8zvhsNc6wyysvEZtBrLtcRPYuu7lkReDHxln++QZyzmeckqlviPIXjHifPbtW/356pwtGUfNmemUEPxMj1I5oFI60zy/JVLYl6f0ycsyURadW0MCaiCLhqXuYUQi1LfkGVEFm0Y4JMYKz8ROmAd4FhnH6/ljHY9mdwoI+QXJs+bVGRtjMkl5006/Zt3MJL9UfvUfuCxTYwhkhlm3sj6G1m8Vn0YHonpyLHKjBY084j2c47lAbt2Q0fW3lfLSbgV4nofCL/WJpo55WFbwcq9HUJhMYYW+i3o6pBNjOHhkCKIpQEyBnkDajV77qiTBUL7lWACZq6RLgvPUevhjRqCPktVgKTHbrw5E8wJFOinTFPBPcxS8danrWvpN3c2OBKIqcdtRYZMQ288XvPgaGL6yO20U8DRqdXeqPlrEnuHYHltaR/286gjyhkYG61zy/uWeR7K9EIYtVZjcxaNRWLQwH/2c2Sm+/DcqI2k2bfTh9uucYpCcJiPNzXo+sbrGJ1SRTn3bMFhZwjyiQ883wXahKE0eziAqGWF5317bgHdF93Z3TLCmQyMu5RK1bp1yosh/WctEaToMJqfvo2CkubElX/Ui5R/8kvulpt36V8/SNIflrMGlWIsV5/PDV5SSedFIGJ2x/J59PGO/6JiK4K0OZfwRUKap0QnGgkxFaziMXf2TuWSv25tT4gzVgY0xFq1PJx9cxhZNlXsLQFK8c/BCkcrPDi62Yer0ES7JJRiWN8MW7zWWoGQrF/H52cSBwvr+z0Rb4OaU8YEJsaLJKQbMpDab8LfteWodhS4IS3nuVHD0PPciowLbpwPpS6hmK/p8cuGUmM42fbm4hWvEf/BQgDO10ibVr6ZSXWMzEZ+5voStH4NjpsnOLw2NXBs929S3J+3lZfdvNsG4qvBTDlkkNmsqDzK2CMbKi15hVEsDdpX+dwpd2U0RFUR+5q6mMYHMx5YPYU44z9PKWZJHCGM2/IhCwPZXXYLSM4CMNxuig3U51AEUvY1pWQx7RYrzeZdUNC3HchTqdB2XynT0ke+YeUpn59blybufOuOB4pFaE5yIM6/KyjnrkQ+oKXKfKQQBNWIwglnjjYy72ynwTbZ4QU3t34KwUYwpp7tVnyX4wgHp9qC7wOfjxdBaBRfBlIJ3BnTfjQXQmXfMCTlqamKF8shErBboTeVeH1fOCA8cn8DOn7ZdQT3KdvkHR+fQILxrOEG6axewS052Ko07VLyf0EdZzQX3oh3tIeXzEzIpI8EjfO12qyVB7hPY8fjllkbFcTeHTXUd6ZuLQRfFxnkirBzyVotkJwXq4GQ1jc6JylKSHSHaQM8WxOcoaL4CvnEdbaZtR6JwqrYDPJJMml0xWs0z3eMD9DsQWu1crR6p5NUZydy+kTVpb1qrJA+B5HCJjc+BztrMm7qpBMo66DJLBLWntTsc/rPR7xQ2Y+DlWuXpyQtMIYAycXsub/EEMv8ucQ64Qk0USY6OMpDSDBp0m41UMDABtGIkyfS1xF9S2TtdUU9WRcIQYScd1ohM870W0iqcg0hbMGhWAYTXGmDfL8/omDKPGut0IAFf9I6wgtwCxn1f0qZYzk0kap94Eu0BGQBYmNkjH4ohdOk7e43V1P30K3EiVULBFb9jEJs/vcxYLdvYnd8M46uYmeio2P9v7IDYipRbRf+UrDRQEWSzZhTU1Gac+PS+YgWmAQg9tbdpcLbGJVCrGcXl7SsNwAfGWGXXpNrC0SWDY5LvauiLmNSwMPyPMuW2iaCZuU0RViNe7vBT1YznQ0kSIBOqsKzYKaGPp6jvU/DT/vMN2xDblLAM2KF3B2/hE5kd0l38VR1PR/uf18Wpn4EblqWuaZdHw7uTHQmlkbmUSqZUtJv8bhd/rN4NSOXIiiFgVpFmxKVH3ql0dRFgX1Lld9E5phWvztPSP78CJqAVMtdM9wHevya7RlkqVhSq8Wl7d5pqnIstcswLUcQS98eMidg/zIrHQXAQVsbl9+Hf366OGcDzQISdU94XR8g6WiA90weewXG3Ek9f33c65VD267AVcWP88cl1kMelH0fC35K5YOpyT8GI/WFej2mGTe7Be0rmWYsWbDEjL2HQkv4SQVudFOqNbfQ2HghBbLRabtQF9D4YxYc5ZxJ3nju+5tjKzdHfSG3H7oiZ9Jf/qf2W8/1ZaYkKaUy5WxdridRTwEfOw5tkWFnmctTuS32Z8sZP2mYuqkumBTe80eT0DfXWH0OiSyX/nwBOLTQkc7mXxM+Ny9WS9/xy88PWMLM4wM3AEJPJlamTHCCNCIYLFR8VnyWLYcRYxF4Xqfc0V3fqyrxgPRfAYVS7E5Zt5R9aVepMDi4oV+7XpvyOFz+b4S2rnA11BGoWItNkKsGKSb7RuOy2M0bFRH0X+AtLeji865dBiPQ90PCk1ZUHSCOxDnuls+zgJsHom+mb4y7dNWQjUxls/ExEhk8K+B5pWAK3uojN+PoeAdmsqfR4LPKVTJnUD0G5qFVrQ6as6R5F4/pf5tUzWJ4nyYQMM2EXJlmvP0Na9o6jSHYOhnrJfmr62ur0YH+68aGA4G16WVB8DIWb8n8Ca6R1OIAUMmgfC++49E3rrzziWu9pcg5jqxqIPLh+nuPOU1kY3s/Wa2kogkgglbdTqzazT1TPAwOpMXf9cy2KgxtvkFTs3tHpGboQRN+YFgSnyYV28VuBf/jk5/gETdK8uv+TDr1vuZrVG2O24bLtbA9YL06DrzDmTpwdvSwky4LaLyCDLh9RKbuA5JySnAKN6x4N8mQNvtOparQ6/HFOvfZL0kqIseoX229rEeoI/el9tobP0WUmPHxT4QV2z8dy4ERGhofTsDiy/jruPBJYIlJc5s6KVydNR8Yaa/KvX2QZYqZfa8Bmd6jrr1kGxzM3GCNMqDVsk+Dm3y9dONYkoOu5SLZ+Frn4PluvZynWTgt4sKSeGARQZqVxMVLWNGZxNjG8uwtlzBwVYnRPk2zrtKEapZcv8EWskr0rYKfLWpgLyMUVVw707HqZLiNQuVXBzO844Ccm/wXUOgXp1p+aEUT+cl6OBddmwZZmExbXOGpDR5+gXUZuVwNOjCkA35XUxEH0JC2AdfdOQSzk62rokBb2oRaXh6uaMr8/A8EiBT+mdjKZ8trOSb5Pieo+3wP38f18MokDHqBHvz3niP5dSEe7hfDO7az71Q1b7x9f9bW8fQTxiTLsctj6Pb8DfCppnYMZLkjva4+H6VPhgd3a5YFAEZN2wV1+iBY5DKxsoELkwQj9ugIELebtAQHHMh1VYU++jFvyvMcBqppNtRYcPiFEx1ISIDaGyIzS4skvwTukHCSYfDucHMppeaHijdjAA0NAHRBSHpQ2JPZStObDMoen/4D2K0tEpJFCBBLMQ5p4JiLXDS21LhqtjE/IU2vWXP9YfTQOW92JhvtXJKSoKk7wzIY4U6QH04ECrTwcNNenXVqKzEg4wrC7pTvIheaex+htcV+yrjEsjd8wTHlgZUg7lfipj7J+nHih375HTK1MpKptpesSX0i+37PON2vR87XOzKts/0qI8OM8vYdQp6CoJQ1fNxh3DM1dgCf7CCNoud8omNh929wYDpUCb0diaHgeUmsI135b48RnauiczYF6kAiDOZi6JDiuC8nCcgqELhlZhYve4JQ/Oy+jQVIkda5LO/x55trtC/hgKtZMmz3Pkomj9b4DCKXOCIIrVQFKESIH/ctgxbv2Wj/7/wy1NEa1TYQqvz3POg7TDUtOFRcjIUQJ8FoU0rCYLThUXGMT/z6MhWME4wVEKsbaK7uxEkGJQgCkZBWO4Grbiku6Fbwk2tPQnt0S2EbOWLX2bBzHCMFlzP9d0crb0s02kS+D1V7MU0+bVPzJDDyiL1cnbg7cCXxV8zQYVMC5vr8Ab+mEUIEvnzvW9I05CPPKcUuDUWnEcap/XpHj+cGZ6HhpJJvG3X2E0SIy8HWlt+u//BJ5GMYl4vNmLHG6hRoloWtL4N3Z8p8+pozcrzGOdcKpoPTGTddYC7vAH0DBKm8NtvV4+A41oYBrRgLb3W+DEutVwCghofIYdYPiZy0zgBNXrjElJqcACBukT/Z++IoKVEWCtHI8jSqQz0L6S/k5AT3ZTUhqn5qBz/RoiWFPwVgmXdzqTMUcFowKI4jpeuI3g8TexNlvBsPM0AOR7siagNN/ahlJ3YpeVfNYIWqBUnH0E36rcGsj93zmgo1sowpQLajqpncSf4n2ycorQYnCL83JV6P2irpdz8q29ILiMq8lM9zefzQMOt/aja+lnlt7/4GYqZ9fzcDXB2eA5xUrz06MMwrqhLSUNiP004YP8iJfjNLILH5PXyAYmnrfAEUSFYcguwr9UlNbrqGkmZ6fH9G1Of1S3zLmkRhEfEXBl6Xhe53MuqquI6lDoE3YMfsC3XGLkz6ccob9R6gGicJ5f2MsBdC56QOlYZ/sRQ9msMzrhc8jLbvX5xn3IK7d098TocmC+6a2ySrQKqz4Qd8sMPSJHpmrfxBFepaSKJLd6af9PKNPIfAovyvQsuF0rsmEPglsWtLQb3nHfTWZqhpzmkW9c2zXwTZmaTGaH3HEAjELfHpGZ96VYn+rBrDTPf/zRtY+Ij32nw1SlOdKQUUrdaZkx6HGV+3QcDjszCKr0VtCxCRKsaoDsi9vjGRWx/zSIekdoUijBFJ9AH6ebPNB5ikq1pCyNUaGXIBz8Sqa/OgpsQM1udHzrN//k7ILs9uedd6HSV3WU13o6ip25iHGUKN1Jk/2jitWr08ZOuI9EOM+Z04m3o94rUMeKtk9m3XDkrVTmt+AdYcUeMEduXC7RoDQGKGTrogq/bs3zZTLYdnRNf10lXqesybKtqnJgtFDAMDx7qJPztXecmmCgpB7F6xBjhrBz29hH8wiZWnqMdWpKbSyX9cKuhp2rkJYc3VAC7Zztv1uF4T/g1P1aMdztM2ZUAkaz3DsRXEIijWQtS5Hoh+aeXD0fUOKDr/3uVy2LHjPD1qxvzJ/uV8MHBI7XMegwODhzZ4eJZqr/U4kYX8F9Ysuw+sNkCSMio0fRCK+IgsDoHUHsGGUKIeSlYVodK4UfBHmQKwzNRq6LrJ1zoQ4emCWBOjyUNJHLGN9LX3PR6izPQZ2p4+OTOsvx6J0QDsn5JJR/o86pHGyMC26AqYy0WtcTVclDq6wk1PlepThjrtsr0KeDmcWlFNXU4FeaMKzxmMSmrj/jbdtWTAyBIC3IUG5Mw9xS6GDn1ljV5edWpiepxjmptwxH1yFJcgXKwGfPdQzaHcLnraQkfU7KXlCBNZOF/4U4Jw9DJKZCOth4DWZ2ZIq/j1U3SGzVAt6v8EUPVw4NpcWuovel94vW2iX5PiTTs4N84E/Gc2U87RY1XUcoqfXBd7wJh9KE8lp1KYMy386zzAB7t/n1ponKhwuro3YtmNl+ck8GCk+JsmS+lj/vBhWWN0qcufDw+i5s1hM0Zv3Jy5s6fdkUNdDTfVh9PAaqROVm3FnVjcIhSvIQcfOQ8sdV3oujbhzAvWE86sqT/DecBTVzCtn6Ij96L6lCBOj1XWdpElrYkYsCtK279IG2riFHX9gbxHj2pZGttkvH6iir6xccocvGLl14fC90GkIz50cq2HYs97MX5y4rUKqWAKwlp8wDUEK0rVd2YeQO0OygRjWoX4dFTg1XfNzgi93YNBmBRz1l6wnrYII+RWznfdXTJ7DVBaP7VhXjqTlcOAV1gosZ+KtcfknqCwLaGOr8/6Y1WuhzM7OGX1XX/Z/twfDRthB008AR38bYRFqoAheK3JG6wHtmNlGe9mliPdcYxlJ5kpE8shsEWOFu02bfRGqRTXNhELdwT4LNdD2Z4XNLbVhGZJOHYH8FrR5HkhziOCrWPZkYO6E97XS3zgapZA4TwVvdFAi99oUmPhmHi8qhw0CblUVQyFuOIrqleQjChr5ExtYsETaFfYvByddelakBDQmXw3eMpAg1uKexAcz8jmyjOrWkfUBpu6HPMuVBM6hvLWay9PXMRmARLbXFJgQE0tAbOTS2wL1Hn8YiT24AkX+FpNcSXRYOYABL+X1w6DaAV00RyYIPFUMckRB+WXzvTaQ3PpsMF0+mzLjvUjvxuSQKhxqQ9Z1GCxK/jswaxViKz70n5aeC3LDELNrO2eazqmtS0s8C4m5qC140lu2IKema1iuJJ6RQHg9/ZaGzgqH3TQvF8rQ3Aqrr0wcWJ0xn/wfKpnkuAZfLMDbjayg5T5E8mjy9qV6qz1ervCNeKYu0MYUkJFvk9k00+7zrl/nJLxu9nUK+TzPxRcUCULdAWE+HttUXsf25CDKlAjIalhcjMtLz2kxRakp2Y3P8Y4YlaHT8hWoOVaXnTldSZ+EllSjTvQIHJ+1+zGXQrxsuypDWKhl8klp03PKZmIVZZ63tEA77L/S3IPF2akklyBTqW1oHrmMrLLAP8+d3/rdZdaUAQFCCv8mGBV/a2cYEQGFFwNyZa7xdgS6sxym5Nz5NRfPK2Xu1SzBRl3JHHI91YKDX7Q+gnygwJR0XUxpczZ3gJ4xqEuLUdgANkzOcTuoMpU0thivoVYj5zcvbEkfqcJ03O7vxCYwVYemK3WN3iDBKXE+pQOwVoFmmJ5MvXli0CmQgRxnsmT7ZpbmP+vwjLKzDAqTn8wl6wl0wwaTwhLbtDPTdiQwxzYJqt/0xXbpal+ybY5g3lEJ/jEFTTLHKaOHAgxOpRnTsoWSy6BbSCltnj+EsBaik1vhSIbH/ixYRA7qZSmA7oEUZlmQ2lu3J1UxeEiYxu1z4LDjYoWBUPMIOsO7xOgPe/Smk/YOVP6npEe2XH8Q2bZgJJZ+vS3XFIIMz94xNxN0WwUMp5eQwnawv07dPVY01QwOvt2E2J5hd6gMpCY4ap9KP/AyiGuCj3FQI7e3MPbYW9najffSbaxH6sBeN5R0WFneepKUirqUQjbAkxl2BsvlSgIZbZzggFEEB1wrzu6sP4xBNq8DKKSmAmU0HEyqgOx/0SCsHXSBGzSBAyzGXBSTtB95XRhyBZuWVhWsXbPwX0hYRLZoqTkG0uky/6R2wbYmUIhs/pNkEWyDJwxHBQCFzmINN9vDP0x9VKJr0Vgu33RASxN00gQZyh6rPjFHqBYwOWrptYjgfRv2umFtfJlRRAhaYOd+Tw4nR5AirSX0D7usFPaiQA8Xexmb+uBhkxFTUemPzBoLiFYl85OSbTFaLr5jtdYRz2RVKF1T1XX8xdyfr3ErHG7cU0swGszgCbOFNCAb7S+QF9Rv8I17JVsf+WJ/hukWV1pz0TPulJWF8+xNznIHDZcHPQOWONWtqUcNBOJM9MC6idB8FUYNM3ZLn6zX0lzBfFbCebhgZ8mWz007LfnZl2cR/nL3ZoMtrpmg+CTpeIHU81nw7gpeeKSIyyr7kQQv5LbRlMNZ6/dz8MUxNoec4kh6QMmg5LU9jkESnttPQvDookx1qlF/XRxplimL8CmRqRRELuWgMG+z/j0MZTA2f9CsB2FVnTyqQhyFnDsUxucCGhMJUZfyRUJw1MoqpQBmIimoteGcEZhVRHMablsY23/j22TjZBKB3yflYboU8g2H4c8KNg53S5QFez6+m15ccoRSzE94u+axT1A8yltOd1rRRoTLTNg8Pzw35f+GSO0fAc16tTrpQ9udzEpCyvcI03zFi2b4mXRjATooSfy4my3eZt2Kdg4/FGORkf3IpEdmpGbFyYE2SUoCriPM+CZbA+JF0peIoIuUAR9bMb4cmqwU+dEtWXO99YsVs8f9Z0HzEblMiKdAtz8tuX1wwhawHwGuje1cMoXrpH8ZLoouTQ404TwWFlPiO3d2LLH7oLLm+sNYPme2Kbot8hD6ZNUbiTK8e+VnxFP4K9wyeoWJRcOEicx4UrWf3lk+l26R+P+b54nKURQElA2NT2A3W7tqxFTNoogaFvS6P2UjfPX2RoQNdbli9vTYg2now9+tznydGQYLQnDwVsm7gsP4iknuezlNt5uXeF+yYiAZZZch9J91EFckruqCaN9rf59nRX+WM2C4fOxLTKpQM9uyvi0eusVPvjSOYizsnmwU8O5f00nM8U/KkmTWevOWCAUBBZ5P/BeYi88Cfbb6Y2A/NuC69YFju1dWMGvtOWH+E19b9kHVWtZ2t0w+iqN1PnIsdjf+r4mTB5eW6k2sbZCs6q3ncwB2jGdwKmoNaJHKH/nXh/i7NYebuvVAAZfFSU07JWdQ4DcY+qGIB4K8OYgKukcYSdBYJtWG4Tpnyyg
Variant 0
DifficultyLevel
684
Question
The table below shows the relationship between the width of a tree's trunk in centimetres and how old it is in months.
Age in months |
6 |
9 |
12 |
15 |
18 |
Width of trunk (cm) |
681 |
641 |
683 |
621 |
685 |
If this pattern continues, how old would you expect a tree with a 7 cm wide trunk to be?
Worked Solution
Continuing the pattern adding 81:
Age in months |
18 |
21 |
24 |
27 |
Width of trunk (cm) |
685 |
643 |
687 |
7 |
∴ Expected age = 27 months
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The table below shows the relationship between the width of a tree's trunk in centimetres and how old it is in months.
>>| Age in months | 6|9|12|15|18|
|:-:|:-:|:-:|:-:|:-:|:-:|
| Width of trunk (cm) | 6$\frac{1}{8}$|6$\frac{1}{4}$|6$\frac{3}{8}$|6$\frac{1}{2}$|6$\frac{5}{8}$|
If this pattern continues, how old would you expect a tree with a 7 cm wide trunk to be? |
workedSolution | Continuing the pattern adding $\frac{1}{8}$:
>>| Age in months | 18|21|24|27|
|:-:|:-:|:-:|:-:|:-:|
| Width of trunk (cm) | 6$\frac{5}{8}$|6$\frac{3}{4}$|6$\frac{7}{8}$|7|
$\therefore$ Expected age = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 27 | |
U2FsdGVkX187/1DNgamC6rxZm3iFy374ktGqG85oLryI7QPq0o/gO3YKTbuuWjLykSt6hUd6qfYEptdgA13hfrr7klavgSkkfdvbGLbyAsu8sRcIBgZ+6tc6cyPnqaDsBnaaNY1wDFwqrb86/UDn8LNmJavmBQ/ktahZ4vWc1mJ7hZBCaq4e8vj6YQqP8piqr3SQZTyKirUM7SlISuTg0skQdeI4Z3QWSbjjXsh/MhZLNhphhsLNZUtTyODHGS79ms3uEFg4UVej3DDQ8+BGIbuZb+O395fs6bzNnPM7BIGCkZMtDmX0QtZW27y93JqvuB5TQjMtKCIQGN7PYtf+fd0snL18+AimMG5zZp0SHOtYvwmGqtosDynBYlbkOdwWhhU1Y66HwK+uiRxKe3K8c6TuEaYDP6Xy1rngfdRfWgBVZ/2hjhjwgJcGVcECLu7RNTTghAb4klqWZ3UFEOT2BrDAPlajlK9tI72/pf/qy8eHP864e9tAPOwt9bTBiEJixC+HTLa7BeKHN9JwvTu30+t15Ftxn19z3FO1pOF0lTrqqbm9eJsjFaxFEypxZR9SxZo+UT7nkcYM3RCjg/mPfZyqHfbG51GYO4UzNxWUTnnYadXhtpUXhncJboCzve0E0Vq6gso8NKqSAFPtGfUu/l6EO/434+wTWaMCIcrtPZB8igoj3DSHYfeTQ4jCl080tsjf30oW7TEFoTaJ4PSytL9VvAc3muHGy71rDJa3BDKasUwEruuS7uZpW5AlUGl1Cz0tmjyveZmRF9Jf6RBSklOUv7xUpGXsObLYg+CG9DAU2nLLkdC10wtZdTWksW0DiaxJL/R5J0yeS2MJG2sAA/rD938jdWsJGJ6jh7hhHqD27oMt96H1zFYM7SVWQlWo9OUchMhcU8QoUV+e1wMAIjsqTNCtlWYKlp/bYFMCXXxSn0Ami1kNK9s+/j3xs3NSh6k4RAQGQB9Zp65cloH4arHhVzqWXO/T7BL2UFf5NE2UQrn6Hw4VNxdu6GaEsVnEhs8iYu48YMj20Njxmvp3+4MP3IOwI/NimJlyd1iNT1njDcaX/2HQW72V4b01cN3Jjcggkwxhk5k0Yem5vOLw09T2AhMJlcNGSY03/OH6gyOilS2Yx+o7os0av6qWr4qPJ1RwGZQ54nNhMAv/IUWm8AKRUTKkdhVl0vRmKOfw/YaLvwpI3K53DEB9FHB1X0xqkf3lKuh8zkywWsylVoS0pMDCRYrex6MZIIfIQSQ66bTCXghMwagiJqVcnTkXZkzFqYGHphx84z5fxhY4MBUB/hDpQPjFRwxXAXYdgLWSu/fHC8J+9+SnnTi2UxsCogmkswj7TmcV5T8JPgiMdROMlmoBxnLsLqgXh8Vdi3Scz+KIYSBF3YeQnhpKTrlM6B7HuBpwSpK4ddWvtPMDcB5FeZXld1Wx0Aod6rVZPjzlxbDbU/k+YLmW0qn/e3CgxMY+CiyB1+GZgxM2dolbdVxyXLDXxgzhFBJ9CsiSMsPHju+2XovgdeQ9jCXL/+WNqEzixmuAACwEtkCvRjTnpitC8vN6EpR8FYtIlPhaJvALghJpZOSDGeTnRytHSPDdzoway+RKbvHU1ZxpB8d/h52vZClas45pIuWSHleCjFnGVA+RZWUF0wEsrFXDYqJrRoSXoJFGosxHmiMkqRvrEG9IszznZpC8A2cJwre4Xlww2JxXl2VkshDfY2kECvxaEkPzK9UQg6mHugdV44Nj+OTnEkZLAnHMk1QWEArM0u+GTV7Os4m/CoI++jUFr7eYL/qHVlOonAoG7B7BRP2CKdQ18HGUFqNqWwX/THGhf1yR8FjdV7LjvNkHT0rBn/ctYWknpy/9zX9yDqKodfV9A2bY4cz17ILypFHDaFkjynL4qXfnVZj3rd6yZ1Y59zYQgoNQLhUhNSmMP0UATnOJgTPIs/uxTdEeTWM6DvIWcNXHKgE8l82pPvuc5E+xAVHQ5lM68WJ12itI4xAXtSBxqHjntgT5fTHQ1TV93Du6f8IlH4I8R+x3A4QnmsxiX98KxJnOq1NpWhdr/9cuUme3DTlrgNBqsY9JYYN7dGCHhQA2hQWDZ7MySEKEutMi3Rto4YWbMY3HCU4Xj+ZtLAQszgbLED4lCo3Eb3OLl6kig5AFk62X4MVBllV+bF+pEKmCzEQjwtJIY6kxJFx2mDmNMcIkL590j5B4RKLhNCwCZEqExkxGMhq3jx/QPE6YdurGDmaF+mS4ZI3ftCIiwH9caXegnE0fqj0rFhZzYe6qLQrNbRJU6X8IFGdXFaNjd8iTMn4IGQxGewoPWfoOHz/iFnH5k2VLDmJA/8736mFsLgzsTHTy740I2pc1mK+2esi2nCa//mvFFwl3rdHcJZahXMAM2U8lttpbghMGHZeCu5YqF9xaCEWvm6NOdhXNiOh4QirDp5qdTIKZExal0uDYMGr3TwA6nSRXw0cxq34ehQZwWMVHYpopr8ewyehZm2LvlIKYJ5FMOzfe2gyYWlM9rGtfqgNsMTECVUclWeJDmSage5ganoAzH61itFdNUIaihASi89lvS9FCrkx+4KeZet9uVlCIgekXW5IzlBBtAdtrJVTyhtnkf/osB2utvo1w68+pP/9ummYbg0vd52lFOgUUrciyXjHPfNVsW4uZ1Fw50yICxVOZ91Zbi0D6xD0mK+AsZgA3Kdy3hEDDsO48Ho5swYWHR69ZRxbYQBV6FqTcT1T3oglVlywdnIl5c+1a7U/yuJ4fSZzvdLlgE4mPwTIyD77L2D6W/Cd4nTMrWzHPDEySBs0yydjsphudxFOxlCAQ3L+zub6QNP3bHPG3e1axN4CzYdUVwg4jmFNHVD6tiqtlQM2kLS7bP1p5b0fR6yaB1RNiKwkDLQkwfSDTvDVSSvNC4wwNi+T/Q2MFIEYSA2FLAU94u9FHnuV+bDeOIecKRuIFFtxUtrIEk6fHQmqB1HbeBEfB5DqF02+i/EdTJ7vPiNyRjBM8RzWqFHp+1qbHgQtmiWZO3P5cd0Eo20h1q2SVczHYQGiyn6c+MRerb6fRQWkgQLFMBrdz/KY4rli0sciTVLsL8m9sIxP5BOfDNNy3YuJ5EhaLh3YeNYqvI7LmDvjWmtghRBLGz8Gfgf7jf25VdbRrvf7N2OvjCAcHFA7Mla067HBsZRHd5CFkEJxtQyzkpEMlROZPv4QKb9PKlk62sXZc6g7+P2PJCVxLn2fKh5r7b/BXJeN4C14pcptSSB3iw2YhOLyEKpmNTnJYyPLB9KBzXfKHYsRUVCjxpSRtv5+YbOSQ/Hqk8dHteFzLx2I+AZ8saMDWo7JkemJ5O9VSjY6ZGd+Xf3JfSgRBKU1MaSyoKgPP5rLb+hfF36O/lCgYAhYzcnhlWsxc1LLNK7si+Bz6RSxew2NqRoA8le0IotaQ/jfdfo6aQmsJ/A5msz11HrindOhZNxNo8MgEayU2vdmVUdRG4/ftbFg4f7Th4JpF9jipHx1VFpcgJXYCgjUF4u8Bk7dBYLl4IbOU4gLqY6n951z2Zkle2593stqv7FvvMsCXBSh1nHkpAH+bkyputRNBKCHEMIdq+7+ddNQpXXi3bQklwFK04qVygjWB/fWg7rHx8AAngGH94ckdaQmXUMW4QTJ8Kx5QVHuKsPyGFHn3z5xv4AzVJHdXuAl7gkuMw+9qCbx4NMpc8asOBKNuVCG9hF496ssbHmOMFD0DsKK6JYnE8afXFA/2qotDYQRaxHwa1pSO/DuadHxupokJUHoq+i7U4A5xugYZjqS22Uf4gV+9zliLIMoCsU7iU9JTv8k7Fp0CQSEPhZvwgLw1q1jZvUUCu9WKWOFzIgmGj/KGaRloRI3J8wDcAtGZZt9RPh/Kyu1U0xeRI6Iu5DQXxUa0OaBtcyxHrL5lnck4x1X9cOFRCUwZPTj0zznqinY0WSOTGp2R44PL9fisYyRt0+/3BkPITT5BTxZ+E3rFKN8cJfLCjeCa6SXtdG7SmIvQwQyFXnI96o45mM0u5bqkpYL3uJcESyCNpY3GmJfeV1FFZ5qwYAZzj+W20EwWM/LL25WiHtB77vei/T3oabn8raJJVnV48S0hXRN3OhcHVL4DGyRMEaKh9TmrJyn5Uw0RPs+r+G2ScJM/5XqpNVBDXsngyjX703P5wmJQLpkcJLsVWdqDnZGl5a0K1ABiXZSEuK03uJVtB5kHW0J6DJVmpPf/Lh0RtV9igMaWUlnivtgpSoK7+Ks7QsMdYAHsEhCQhFU9S6MD8slPey0/INQk/bOZJwx4NEcij0RzqPX+g9DQY1BeEuZOQXjKuVwpD27GD/JWGOblzQgguJIFQum2eT3cCj45BGR4T3Z8nJMSPzNM/rgnrx4Cy6AJu2Y4AFXegjDjwPbcMX2WdyT7i2QqdYhwttgBHNov2vFuuw0Aq7L0LvsKXSjiFaxWqhu72HTuN6koEdmETK+Ii0/xX2uefsi1vIpKzyktQMMShijmZfAh+u0VtHizD5eC/bUwwiR7jshOijIVBGVT2FZlm5GnTy9HMX3dUJp3wbvemo3WolD1sTYDvGndVP5WaZ8sSILf+41rR7G8gPnHjIR5FhewZnQcn77sidRyMrAd66G2+9maSsAIzf3DS90K1/m1PdyiTdTZc7jC1QEESlesp9Wd8VX+VkSbfsZj2Hy8//zjlJz2st5PFEjgpCr5zj3OalwAFbaeTYI0D6P8X+Ro/9cAAyWCU8UP48PAHrYYm/o1mnxMkASzPA6xxiPk2OUTwmpkM+PcBrq/PwhMnEAQ6b9hFV3Vma7TGZU+x7QFuSRpBm5tIupei5s1536CIDxBcZmLQQMaehwYTYNBLRmDRrTpH9YsNs+acI8082j16LtyyVQBYCsb7B1GAsbyMLxEiyTCUONdvEO5C/UEJLK9fgfbf/GudjnqaUT4pm/v+7YbQahXQnpqxA5bvFmI0o+5FcugKBeU38IZgQATwf69m/oTQPQz1LzQrqsWRYxJ33TnAt7sKVgMOH88cuHAcSGZMQcYHc8I7Q11hOMf6oGaRcHhbk2Z+HXwPVHqiydbKtMl8wlOxEL5m1ZWmNJxOEJvu/QJ4+4e0+PlKwAUq8IK0LgEwufb/GvVhGNDYrvqy2RkiHQF7LLBS0QDZWCkyDAkgNEcQD5N5gayfXePMe7SjW5V7Nh/xToz6kQMpVwHFdXyl7d5TqaXnPCnPXVjuaFOWPLZodOWxxi1Ej5ksFG7EKDF2qGtWQyAB1Y5OhmfLqYWy35N6jhWNiasQ780JSXq0rZhFPuFZB6QynC5zFLWVgIYnOBepbVrwcWP2cDPWzz2mCnfML/tB8L1pkca9X321NYCqncJUCD4O9iVRve8+RGGE38j0KtH72Ndg6Dy3efPIzXT54j7nLpoCNAaeivs4zb9dSugNJCqGaxwh5OCNRge2ELVGN6Tlh2EBHjG09xuJf2rSfRQCp14KjQ+UVEX7HsSUzMyqyGtKIe9cwgmcqkYtqAeBFUm2u7rnebgKu+HZPcll3aT0qttbxyPv+EkhMsJMAkKcnU+EX8+tvryq3oNaY7r+aqThBIQmSheSZlBFTgnV88+PV91T8+SymQr8DnsGJIrLzBOP2rvNCN/7sajVZbhOasSphlt4ApiMN1lnK64rh3BnN0rZ9Rx2aD4kmW6GrXLbxeMj/WANU4pNOpzzhxLI/C1pq6f60n5MWM5YqDVaAyq6Uar1DWXINXx3Lu6uivluX7EcNW0o8Mh1ZwmCmq7+15jW74A0yD5Z600inPdF0fnFsognPVfFyl4ACSsBQGJ4FU2a9/JdRxJNRV3fVQIGKlXQkJGuLETf2VssCf9dGkE21be5RLRaVioyIKGTAeQ+3FsQBeD2Tl2uJ88skJgrBC3p15j/5/edWkaxDAUQxT/HjgiN9peTr0EtSUFu9VPvWRE20vtDCsU1wMxqj4eqKWalNgiX2H+raaidvQBJMR8oTkvNaHay9Kqaqjd5BVxmOCZrPUrNiueENh5x16OqZRrwFgY4lSWz2drqnDibsLpM0aLzCdCBINANQlwwtBpnLqTovzNCL4OmzwGhS7KFmRKuFcEaIGmkfKjnWGyPJI2WzxsYnfOJq6YPVhitJtGmFmxh9CtrXJv2gax2YSXxgv9488u/uC9t8TzpuBcPKhv9HNWI0hK2DQRZY6e/z2CcXXjrk3YXNR4YNgFrPIrksenGgSxXyZawS/rGcvnP+8gtzRNFen95EiRx+ucPEf3w9LITObtPvfdRQEEqhPh0xtyzFfKMCpJjDCkcTte91g7wvj50+j14ExVhmux8AW5bp0Vxjrw6o4QghGav99FkEiY+RG6o9uhfyvFW2wQrPlbo7OvR/YUml+8Z+wzamlooCPA2THbY6eMJpGRuFaEA8Z52fUYIAKUed36xkrcRnZD2OqBTZNKYTUxZQtkrQmk0Qidx2rECHr7nCq1rqHjDx1G1Tu7EIeMQtvCBw1YZUb2Sb13Xyl+EjI5rCsOqfbOw04/lsPlulYOA0r55MrObIx/Rf7QhgZxHMvQfePquMK8hS98tgp3eZBi6RSDDn9O9ElLlAv5LDNSKIeZ0Mg80o+5IXlZpI+y5HDsqZnY8aqs58Jrl+fbTUQrjU3+CdGNy//aiwWQHPadRhfCAVKnhqgsL5JAsCbjuuXNrUxk6/+U+1jehsSUKzEsrAET6iwsU4Nj/TuBHIHMZugj6OAsou64rnkMLMD5t0ckIax8wPguU1L91vHNz4gQfQmclevsF3mmmBELx1jwuwiuPrVDaWlNKv8y92916XxK+WPxwZIZD3w+UD2LVvsJiIJO67tlvuDy66t9FaTftEbR8+Of584KOIe2h3t4SK2d2PrVEB6ODEKmjDb3FgfcWzBvc7s87Dtk1M5AGfscuIcZwjvwVUxj2dxvCOz1HnHOyUpAd63cYcwC1FkpGahpN8Z9hJqpRLQWaPGyzZVZfh24u15W1hkRwuzhQDcRBPOG5/mCwERXncFJe1ne6/bFSeLWEeNj4vq6QDjpWQuSVfvUsPGajFqE1AtLy9AHXD3imwi0D7wh9g+gg9ArKma8jWI413VdPGu0T530+dPgQWX6QjkMzJ0+2VyWHStTWfpWieMvuP7UPPoUxqwsEVcpbq4Ej4AujSC4sLXu6G683UMq5NtHYSCPkJ+e2Qk1dLLY+XUPVvgUaJN9p/NTS3ZD2nSQcFPvxhXIA8D5ZnSLyZV7dqolyycvsAuB6F4jBRSUGo0SwDwXmGVnvEo1JoahNBJFYJaFRo9e/xDhZZp48W08IKnwTMTCofn70UY7nU3rwxszBVGkmgPkcTWkIYYpYXeUUNis9TYvKR8iHSk4b1q9KEVVHjkgiW4j9OGwfHpAQqbhCQzzA4p6YwbvuE/PyhRKgzkO5z+Dgl2UAeztJyclH5D8/fTTzKy9cnoMVnybKt/dNW48EDPIRy7pg0kANSFClai99YcuIBUvyiP2k/AYl4SflkkJO7CPZZA7YrsNcCmBbu+F9ZzcMXnIJjUEtAk5D0Q+LHEA68zqk3/b2wV5KbF2IUgGFcR2oJAaFXGs68ibk5aG+vfd5T4y+HvD1MZIWoi/dwtqePrkQpqPHxRQujKvjbK1lmuTmSYydiQmr7/hWIDscXAi3pLFeOt0pM1An8X7Sv/hNSME33NaZRfj7iZljUvVd3h2Kii1j5wmottgcpIc3H+EEYE/CdGCmS7keP1ISeoeLstFbmm2o7OQch0V0D47WJ9yoFE7BMac8po2pCKF+srNMB5G0ogsdvtCS4d6sr6RzQCn3IId65jO3BhbVFyIV4XaEZkxZyauaf/RtZvFfpr3f6wYFBdSiF02WyrkbEFpyjOX6anQMr8jcuXIOZ90MHsZDeTnv+zg++jjTiyOx8RSdR/AabCUGJmzizi7NZhac3n+IbMWvj+G4I8nWKnCX7Cwd6pkIoznTEKNZkVvU/9QTGkjVg1BLhyCNOhu2LhhqRzsJBPGVhYHTwp5zHNNJosb5oSf8Kqjy4ZBxsmRXz0nw3pTwHCG4x2XW3yPaSJzxf+4DVsYOQVJeny3e4EFgDcVOlUsKZQWU8zA3uWM6PUr/EgVdXSOIybAkjate9fDjsEnHywn8eaXa7mGCx1UBWErsIMp5eq2ToNvDOvvnv4ocMpI/e/265Dv1mCZsluzjyeb90iG/QLZnRbMt7hzj1pC4YDwoWy2M/NyAFuq2Mi/2PTfXRI9lqfQ2wPWXPEEzV9dQKMawqd1ouVmDz6b9EuPVxQGF2+cOjn1tn29Vm0onQKTM9rGC9Ne3o5BCqybj3vLwZPlg0gNfVxeRV2qkZcNEMvo9JyaguU+byeaENYvjG7GBRL9tplKDiReZxKTMt4hH5lJ5UDcthXu/fcLCmMA2cg6N5dqoEt1njcGCAvR1xRtCvl6ImyGsUECl4IZxD2TNMPd12SCPTujm/47ipE6Kz703KdbPnf7CUm8jxq3d3OJ6DqfAHFGunrvfjf0u2h10VIxcoc5ja2RyMjwVGOM0/uzqHnvnmzgOXujulqsJS+/K7081tpyHQTXS/t4INkySL87wiFD0z/7Sh7GVIYK93OHV5WIKB0agMjHpHR89N1cbnA/tnWIxMDiMvlpG4Zwyp+gvUcC91FZE2Xg+UQbkMkjYUNR8Qr5vT3LJ/FFAFf8rpHYOrsGW2LYDfXxI+VQ+/RTTWfP7vjFRm8qf1GrjMLPpAz3D7n9ODPSKRLmYg9F/kv807PLgGy6/nRCZ5QH0w9MSYjkkJTkcqrKxilmQ2IQvFqDccyMoWbzRtO7VJSv4EaR9VfylME4nrdHXqegFKvCkWB92DGEzY7eF8kRhDurtog8GIMVc+QiwyjcLtWic6ErtZuhw1q996pIeb7uIzlsC3MyBngkPD/Ju725PBL9e4SGOY6Puy1uoKrKTKVyGFhwmh3FBpodIj0kxyc30FrbYEy2IKm5M4SJOgiCwVYLBo8n9lSHctSjc0B+If1c3BsEGNZtipXLM6JIhfmrbhdCNTZ4p2kGaZrgofPXeiWpp4TqJ43kzQ4q4/srh9BmzrsIg33VcoxlLcESjnYu1GKX6MS/zfd6lpTzQrLuJJl7+ZO3wktLliQ4SGQU3RIwAYTKSmWqCP1Fx+5/+x7pALSaBomlNyaDDilIenHo1FdoBKuK7nNHbvSJbWtzZjYO1OhO/45GXSBEDaq+toPW09KmqN3az9Uh1HJD4Id5G4ppgTaTz3YEWm/95P3kXUzBLyqUl8dOiYizJApCsSG2B0518J4UwR1cdDjNXNOH1ma3XP8EjM8fPK0zM5Zod4Qav1OLpYUDZF5ok9C81x66bQRCWkpsL2Kv9jm3kxEj2xkJacdv/++3EtSVzwpGFRdRdqI6+cUHUxjV7f3FWYI+ukePoTWIsZbiwxyDe2WU0r8wpVcwCdRqEInRzKYmmFnKmggyXOz6tHF2syoKZr/HHosCN53Jd670rT3Dvi33+p6EjxwB8ntQFOJyfoZGf2EmAFPd44+gPP8u7WdfXJ1auxVrzIG49N1X5Kf3RjMkwik2UENsfY8Ey9zXN31fmU/8f/sFFQhhNpNC9ZG+XoKjbRyY9rG8I4kSQrjaPWrdUHxdwVkeIpT5EuSTEZTtZdqvZ4oJ4tkhvuAEFfdkusYmT8u6w8MfwK/K6CdyFib7qnNebUViMRHkuXe7GOY41P8qynufCFS26lcZbGqCWDklX5fRZz1kAV7ymJe2719M+PJ625IkHz5+bln4OrhSl7cRld7rE5JlkKZm5gOOJROKW/vgeM2D2hVW2R923HUhPlLQSdh6gBgkkezLQQXAqZLR9XsbTccL89LWoCUtbt72eBV2Tn1nm4XT+AJySBCk1GBcFsktzLPNxH6QgdcKGumjoSh8eq8PYalovGJv8xJRKSg4IetOhZuU1N6iE/rzny6poCkc6Cv3ePZzZdgl3F7nCOjSgKBQaDG5FBuoVkBYe+wGcghg9QntbWTyxkmBA5n4jB6wvVr6OofwnJ41TIg+L2rEUUyZ0wfm5JKnw9GIaArXN3Bt0U4k85lkCvpFSDs3wWP3tFmjRQ1Lbo54C9fp1sa1af4AGlwmM+CQy/a6qIvNFGOjqTuiri9dP45bLL5LOTyvwg8RBWjqq6M4wrccr7ZIPvWYP3xgig4eq7sUCVwCpqhIkZ1OULB522nty9E2ha0pd4Mj2rkspFiXMgO9BBWBPOlB91p6mi1KRz40xOuDrg56cHB0FMBSLntUfkAZDGG1kZogAbrsb6T14q+aZds1Jbfx11BSMUx/b/Sro5/UxRI36y4tMKTA0/6SIqI7gIx9PCko6Oo6udt1j6JPPlST1LY5Yw0nK3ZixpwJ48Zd9I183ldQrE6dSn74xsL3phrA1E/YpK1T6YyPArlY8ezILVpyJm0+C0NvI+hrEn540dsSi/rf5f8YEYw2sXh5nSCQLTq0V+6ZeqHOlAj5mm6LVYE5L7FmSamfDr5n5PuCSw+Qz9PV9lKIIbzoT6PL2WX23pajHCNztqBIlwF1L2L9wpLfyFY/SGVn+u0LRJdcByLer3s6QOTFejvaS03aN632U8v1JAXhWfEqJw0OCmKHcYLczLeARvHen9Mhg4G3qUYbVy1psj15ZQdjJpJ8RhiU+bUiSLkB1+pPWl4BaEEcAYvLXOsKUgLkYlXEHITGOLbswb/cCBhcePRswaOCLiJJG+d2bRMsy1+ouFWBm4WD0+QVy42O63kXOA4uSQ4vEkhtjUqm99InyzHJjIHNFxc12BJPsjlRcii2oeeap9VSo10MZ6ec1GUYHevAbTe0zBLdkwf+IPgSnm15kI9xfqG7hXjxTkps/sj8VeCzA3kPlBjws/3mmL//N1Hh9NgRc4yAXzaaXrgYLrdqZBwWnauNnGtfZdGnbKwjLrXSsRny0U1su8CxzgCIY1R1AfLbtkpvyXKZQSJfSFoHFJrv4J5ZGfTnkmtYOHq1y1K9jR4pMl7dYoHg3JhgTjnDIMVM1AddUB9FeR9cdSgm+imQL33iSlztEFWl2dpQTZcxbvJFgvtJwNmmVq+CAiGNnSOUG6JGO7ORBAM2wsDn13v8q9jzr0eTWGrPYTaECM3hh64GYl1rMKm2WGR01heDWUdr4ivqMOpPRhCbKBkQYJmSmqy4IfuB3Z1mqJO2fhgZEuHwIE0rlJJUd5z8B3DW4/AED2KRv8OMF13eH2kpVbrpztyB9m221mR6RaG1SsYmzw51CfyQprDL9ZL2qQCAYB04NAYEKXMcYOBEj6iiTIQuJTC/FI0VnVa/w3cOiRxtcJTkCghbZFq+WvdxSHoNiKeDJnIWt6BUNreuUcoB4B0V1U4qFg2CbEC26JotSZRImomVmt8XOhtSesM+3N9u7RjkXVc9aXsa4od+2G4KzaUkNO5zNZeCVCXjolKA3luBtFohnUpZC1mLkxxWBodz8xQIelgaR8iHsoEKtDYiTxK18LJGHsFL+/QVqG+a/L05tjEvSU8GkDWLoiLVpSsw+V9L6ObtWY8gBWSyDD4cKwgSYMTWSDJ3Ay34dP7Qtmgl2If3UG5cSTXjUg99vGMOSpvR9fvk5cv26j9eM9wI3IGxvA+nIiaFXCHuaEeYWO4s4CAet3mEdqHu1boUag/sY/4hs+JN9Q1TH20bRAm3etRIaKTqVhhGJaQ2ryGF406AVD8pmGtDpnjsH6pj3H00mAWwHyO5KUl+Sc81HlKSnHEUI+rDqhhh306XeGlRRQfGy2SBMcB/GSLf74wES4uHbvg4nKPsBk6TNZGUMO7ZDX1YGGXj+NLOnd7jg2Ho/hgoSIeAOKz/FoNXYBFjyngT/INMWr6iDt7m43XIBjR8YaCVQ70m2kMZmgoWDhklCH+Tg+C4q0bj6XiJTOlaMUwtgcSwWLj9jgueY5N6UmowTIKeRTUP28K51h4WX7GU5wAce12700xqTSg6WczN1+7GdKFWgeLHNzOXil2iiiFRxWMmfv8YITQJQ8Rp6rXG4V6gj7ks5vtKVHJSmU7S6Foz+43iC1R++G/H7Jgvl7ddOm4BTtiI/c3IxudZuRzy4UvMkzTrhOrH+HsPyLpR2Q2+vR/s1o9vFzSrLcM9nySom70GH4ooG+2ZMtMQJdNJPVmflFL11KnPWKF9rTojQi9gy2suSgbyloBo3mp2kFewHz8D3Am31JSkRzJN2JMtOhR9Co+V8YvX+A4rYV6brJCWSoQibCqcoaSvvDeD4rigQdVlvJOf8D5tuu7cdDQnuAY8RtDEKkHPWL9fDDQ9UKGW1tj7miZ4lyyZnAxq2KhM7bISESe6BSRT4AE5retzfSlxnHCotbENgfLU19+oJSMG7lz79ixJKKyNEqTdr27JYCjGXlrundceuFfwgcvWVQwhprNacafVgB4XwMKl2BtIBIjvMq+9yZtzA1xNio22MclWUnV9Kvj0JeQenK6KWfkeplkhim7S3x0ZGL0yL1IWJiNI4AWZKtSHQXIy/JgFH1P5XSZ0uBlmQvD00O7X3WISuWJqhkJlLf5E6KF7voQvG8pvNAPoEZ14jKDdpaJumePVPVogPHd5PGiIRVj4VlcPAyFSBe95uQV15w5vnHUj52mVz+mOeh1L2WNLlWhEVVUAXdkY2O2AYw/gGZ2VGEHfUpc9oT7EVQcQJPlpY8w2cp8mm8N3UoRbe18EDgGw7fS2DY1aUCHfKYeUE65N88j7bo8u1IuI8Axh9D834ObRJdgtU7zKy6ff90oJrPoGTjhZexv40Cr6wgy47jrujBYei9MHNdG0xe/tgBwn2qecPWatSGrpsxfdHn/QxyA7Rvv/2qEXDQ8GwrNY2qPijBivQJD19V/AGZHTJmVA47GaHWvc3SnORgcdFeevgIcUIMBojFj2fZXwjsXEvS2ev4fY4HZJgFmJPz0TinyMWHWgnPCMHGAGuCDJbMkF1RZmbXWAh2n4/RZob39asZxQ34fM1yPVt37uLpXMtCl25ErnkYFTeg+5fmiZrNxne5yZiQo6ePLKpa82821qkZwMb/EEgmqL2/jwNbbrZcz8S+ne6s0uH9RLJeUsJLz3Oi9nTnOZLlJjU2fAqGzJaObm6menii/R4/jf773CORvyEn5vgyLQCs3Mf8Z1cx9/07dT/kOAfQ3Vu7f6oGzprX50qO0BzIvwCdiE+37OPhjcvdoa99MIhPLBVOJkm5+jbLA5EYJ7510Wz5PCXR9Xa5/BR1rDrxQ762T7ccvdN9ASjbGEBDZpkxGDSMhrkACGGRaxJ4a+KHMYF12co48Xdz8UU0DJuslbGFQ+7QhNCQK9axhkppFNX+Kr4DR169Nz6UQYgyUn1e4TTmc1IrUfBgmTBQXvbhRcY3pJkLlzu4JK2wzZpWHtXpFA1hbwsHR5IWNB2MhQmoDqoiOgfI+q5eFjzkAf+yjaorFGCRqhzJPGxb68Dc4UcAa9ScBdTRXwRvq6ZSk67EK7INKmQTjpB/3RKvHeijZPfZeQiMeZqNWKS2UsSgRJKLji1Gk7XkQIY6LUR65PNpHoGQGUi+asFdDncFsntWawgSzIHTSzG4bfG4F6A8kXqE0zvgGkhWl9yiju9C6c+J9I6ZAKFfAINMIo8zkQ/Uq2gC9DqC2Ieuy3Cg1tR9z8QrR96NIn740GayfaKAJuxTbXJttNXhCBBYHhgbv5hByrrgDyrjiw7h6W5pknZFWLRi9leNQGbwkrhPrMhB5IX42p6sniTcUMW9rHXHpvP11DmXacaBGCAeUNeKMfnD3mb7eDAnyd78pyWrSUXaZx3z4kBZrYYkUAMRePZeOC3GjJVRzWtn7G2Om6qyNBSFzD8/hOeauYfuf+ERiKDVJSXe97OBuMf9qwnf3inmb864w27ZlU294ZPYciRf6WSV3/y+J1Tp6uCPqqntdjN11aMe2F4zMnh/DwYqu2Ir/ecYdJBOrPJb9IUhvLGH0kH4YZzHBz13jnFJfuBqKqaHqYNsEBcyPAqZYQzKn+ShtrTlkVrU5ACz4pcdbrlcgsYTMYiWM3i5lbbTSFio8iN5osQtvr9JqA5H0t+sn7QLkSu6ub19GAGSs5+TeifoBT164TcBPoFGWGbeHmmk468cotVTX4P1wQa56zuKcN/UEWUYpw4gl6FxzaJlb46DGL43Wrv29bif6AZU6GR9c/ISHgSg6F23YkcQAsFS21cCfj3ZPqBJZQhCFZf9ydueHqcVKYli+lQtFykOo39H79oL5AzW7V8FOMvTtobkmXDk0cVB1IXi1pqsJJQ8RBzrGfd4V+CnsUA64KDuRt2VnEHc4illyU4l4adVVYatjMCFiz/+oiv/i4gvrhPZRVsMnycsBeI+wqtzhwS7qkcW5jjzKAWtZZt0Rc9VC+h08hRMo2XAA/1a+QB7cEKuv3CN4blnxOTvQBiCjVR6FE7RgVdvyKP2Uwsy/AcIOpP0D6gMYmKvQtnAhTxU6AsNGigiL7FnSVNZWAlKRq85UK4RVgyYNuh0VtOjxtUvNcYeePbM1SOIyEkzkXxFDLXkwtDOqEIjzKpJXtoZJ3mnnaDm5TcEcAck9TtJ4GaZfLydxfkZ8LeI2WAJYBeQiouMyfwsZXpavyp7K/eEc4KoNfWVD3EkEYxE9ZMtiOBvNu/Dslevy1y/gjF7l/wQFmjbGuaIBtZ7oDQBKKz3jiNKjhyqY51e5miDm0YmOZJbS2KuwHWMn5bnC08LuaH3uxNSNXGuTrbZQsQXCWH2dob47ti63grapreULRsnnpxXFs46iDNBnkRmldXBm3Xkbz6TQGvY3oEMGbPNbMB7CzTMuPFFjHiF0f4OReOJeGNbkNHHyy3VhvnHDrmGmFCCRDvNLp0b7a/we+gA/Wcgl2f8WDNvYD3sdbs2lqetvwN6e+ey2HWXqS0TVTV4jPm6OIYvvcv3rGyyCJVCoS+9X63JMQco3AEX5lBa43vzssOPEaHcYVrsNAwRHlr47P0AaHAi3lAkdGZwlAujjrkiTyXjK97XrJU4iITg6VmZonYPqkwEiRDNXkcL0OQ+6PZt0h3EBMyZOrXeoYaNckx3vYCURh6jiK+jb2lhLneGmMwEuky/2oPkQg6iHZccSF1gNPKtXzhxMxyl2jnNX4n2fD5myx3/hfH+xH6ybgtxd6Q9t76HAoctOQeM/dtOp78pnIwE84+5ymRCTSPwQgDCMGNPXUbtltlUbYpF0pVKJpiHbSYG2heCYYXs2FSd66TiUhl4uqR4MMYZPf8eXShZlgm0iM1adS9FT2avm/rtk3eFsrD3u3evIclG4r8XGDtYy6ktq2+V1RiBMYRpyM0ZcCZXZTqhvcPFG5B9LhQ0Yv1ruE/dfKd3TMhY/19EgrMdfoL6lDXmuzm9/pgOYvB53GlgwJnQCSy/BDHLCmbSo+mo16M26VZ/3EugWtGpYTszgUyIBXzsOd5+mpWkYNp92BqCeZb0A4Oi6pDtf1HQT7CFIhyCzuUL/gmNVjzdKMe1pk26ndTbTZ3ObVbupL6vrVG6Ziz9NHSSFg4sK+Pho2mkZadDzCD9+FngBNHEDOQCfbkady32LoFkdQVKIyLODSmJapwqLNTPy3jmtjsYiXtNRCSjFAWh9+qwfEFSz1nzlLU2uBrbYAOr88BRalg/qnuTKsFF0IrlWwr+cOOpnYJ7vdqUVtBSWrl4xK9Xo/rDEc6XaBLSEDBcoebBfOzS93AH9B9QonfECBtDTHG6G9Catmg7urTNI0m4O/4BDy9dOkRpylx0eKNtJ3M+11atXpdmVbkDFwCK6BdoCeXNS/MAlTn/XEiC9QZlDua+qzoe36imQEPCBzxdfD5W+gN+cV+BGcl4CN2J9PIbjZFcyfdfzQ4FK5T+YkAl2f7zt723XS1AGMvdv+PzXyCv8GkRCaOBOrT+RtVA1IHUjjK8/usyQxU+2T+ZF6kwLpaBljY+YjMVKawTqYXhvJg/MfncqMQSRsxo08uKzm04xRKhVqsrlyfSOzRLNZx+wh9zw0s3NoOS+1U55I/6PXFQgaN48YSFCR9d87kom4c19Z5IA6/ctRd2DHHbiaNUF6rBpKlp+P1eiPBTGhFQeJGXgyE/PTps+2aIjB5J8a7eSE5aaskv1JUYAgGgMGtgTQd/pV4nz9ZqRAA8C5assI+QcYDnShXYt+p4+GS+PtVZc7P7zzHlKpdFVkzBNyxr+GCb6krWuqS42KKsAqJOf15RIj0MeCo9x35ni51ALioEu3K7nI+ZonNx06PRsp17AoXh4fk0nP4GmRjYmIzhIzVnLBxWfffBMSkAXaRBnm/ogFGyt7SgZoG+48tVMAsqHr6+afx7SXqzzY4Bq0F3dUMk4tgpwJeVpWnClu/xI+PENq0c+X5agtGb7Z5UCKyicqApT+3o9rjHMyHNi9LKXpRvyYGgWJE/eJxuS04U03S272LclHTw8qaNPpQYW3FN+/I1syQYQSz6O8rMS/b+94ZWGNBMEM83xAB/wsuwVgjlTJjyaTosHPB3l+2z+N5k278u+uVIBBa+TFKMBtAlEBpUhi8oh5I97+ME1TDbTi/smyYTiuBvw8fRskZFyUc9UXJswqFtEyVrcQde+nY/UqAGRek42NTUubjSdGhzyra2fErbZxdNHHkGDsKPJSoqPOHN42AhFeSPb8oAb3pAKAPF2i5OObErUGo9fYcAyRGzDDjGp1QLerBzBBFg71z2eyKhdQyBnLHuYdKd22iFLsjJJ+juL2webFtMPeENKazyQ90ZHZxlcHiN7r614WgtxRo3SLpQapIzQ/wcx6v7GbwkFxWaHnuFmVoBpPaLZ0K46+/NkNqua9+xtTh+d+MKuPWmY9qrEJ3KnWds3iP6pRkxZEYWl7x/tjUyeH3E91Ym/bn3WEyw5TIZwlIc4Qa2/LerWHklhllNZ88JfDW5Xf6vDTTZETfttrPThf+845X+uKwkJU6/HlbShd7ll478xwWjChOwgHZa7BgM4S0/Qo54vvR3Ftqfev6WdaM10bejD4iwpJZDq6rJGFOyW657MdY4ftzj1QPrh+jSAa1Vri8WoWYkZxjawaA/57+qtXk4V7GKKxdq8YfkNmRJt4CdcMaDtagOp32jn3TVV2Mp2yaTNlv87jQAND8/Ed9zWiptMbHhYNmNpnRCUDyMH6bEAUeK96B2V4Lb87V7/ZN1/yqXwVglemya/ie2eVSiydOeEK37vNn/9YRnfrgMHiQRP9xIOSRUf4CrxVBIWpTNIYPmKBacGyinVfFSbnd6R+Q5aYhZrVzVM8ZQVJbf7X/HXMHcYeuDpiFwHygmoaWE9TqTxiidDMbecKKjrO8AFoaFhjFOdg/NZeudLCOF6IIomj6QJpsNWgZ9wdRis0bw4ThdUXkNOOK9Mhi0ACAbESFquSXZ6ve3UHCYki46ugEQOTkonmqFPjVzeaz8trjY1s5c6U/Q/S86y9KlQ0JtglNG+AbkIqG8rBrS7XROl/Yw20c+U2angufCp5ZifMF3tq70W+khBaBtVuh2IXrjqDvRyUWyrE+AhClzn41MiWHlWU4MILKm6TpoTJLwPg0PvOtRs+dHR64QqwpuOq35k3fofqJA88UWTF+a5uKN012jqD1T1LkEzd9L23hVQeZkXttVf3+dMIPPZeoeA4X+LT6b+upmzciJrc+0GCafJvSFeMeUOcsyOwIAqm57s13MgCEOBmtw/RxikW8iufoCa4mNgX7L/15Vp5BVQb1sCsmV2DN6qrgg/MZrhzGkBQItVW8Ej2IO28JL4pqTH0/MW01lwN7WgIjjYXxV/nrqYqnSRtsmY/W41OOIGjDuNIpzdwq8d7DWtqtOjGP5J9ifJxNji0dTKZdGlXiZlvc8OiXzHNsmyxCLCEShbX95YcOoqjlGUb174xuKUqu02Y/mm8ltxeMu8x2ulwsXjBZclP5hp5onla1w/wTT9nIJ+snZvHI8Od+kvCATTv7ZqQlDAqdapR7pc1YRc5el+lvP4vlkmjMg2IRpH8Zw4qR27M8zmDYdTUrLVnTjBcd804oqQ11AmfJSkU3KJvpnd/gY/FEKN3d7TCnC8LI5CPN0Ba+jqmmwpHqlKMMcZr9qWlszXMz8rcsaS3LBPn34vTSgEo8lD3lGxOmid/f0OdbXRNTI4uscAYEKEsh4w5VWVa6Z7ifjixEhteaYVOkpH/zwHzLFfgEeuCbAT+UmnSicB/WnvVpXRTkfIPDfNYuImKkqXFfif9uPiB9GMJ43tYPbr9Y8oYolQpbwkTr3Ga6Hw733+mAKM+mav8a/b9VtReZx2dTEP3BGYIppo9tmIpij2rRxGc2AYK/WWqRrxoMMjCeRRbQWOwaHmFh3Jn47ndU/byRHvUKs9gzW4AoJmEcG113ZLi/eCMK+f9pN+He7FYtwpvEAbd75ZRBzPrLxeZ8JEdOfgfs7z7cQJJU7qmwGh7tnYDVFeaV0+ozTUk38gJc9wfNJnkuV3koT3SXJ93gT8FnAW6025KyBT5NgzsP2F0qn9X6/Hm/GMKKzI6UPyBW2cAyz982BxV58/1TI5t20cEHtyl3ha/q7z8X7D1uRwRYoopWf96eW4zGoaUJvlZvtWPLxVaS0icKSwY78/anVNccwfypZIfp/r0dLOkm9t03eeg1YsMMwpJSDV8VBxFGbJjU9dVznPY3ebHmGyGiToPlIrEFKS356zehFzhKsV3gSnjbuuP+Fyk2+KHaDdtgEvV8Y9Otue/pEI51mciAnnCyNcIfCd2KneItXUKhp8hZCmoT6mUYiENpIdDk9826yX9E2TaNKKh5+xhTO37pa8HYHV2qqMtUB288/FZdk3Yacf817lmCCwAnAtezGB19X2HoRzI5R2EAuqyhCcwKpifSFG/iBqz1xpdpp/wyqiWoikFwi/1GPT8OL8aAWPQnqCEovhD2EH1FBm6aAlFhUU5GZ5XpLYy3giagfxXKBIuqkmEKcsfQD3SDIZcP3y6QC6CIdznWw1YrPOTLJtnQzl+Pm3/ZVytATmCBH2HSg7Z811fUnbGBnarlOe8Z9Ae7WxAFsS2SjCQ9zSsJgMIZHahQWGGGpC6ct5Xr42BNn8YxnL0CqKWxbSs/Qo55ILUWvcH5Z8Akjsqs6WOhSrQnTPzD8/nUroo6A1uGgFdvhN1nogM0A7ujGRSxk+4lcmBIio+FLEVGuqvsV7xqYZs5uja2rOTtjXkP568rAZpHhb9UYMcPtf89LsNGknxE7BsrQqKBVVNH006Oh8S2ztK/9nVu1ACOhfXjR7rurYkFN47QXXK+eSv0HbRgbz8nVW+IKmmSQdIyxcb4bzzX2MJVnJm9evFBRipAdzfz3jRJlqhWAEWeNJ0dwVTp9ASVzbmmkxHklsKHafBEHbaFmf3UadI4y70W3Hwy6+d6QM/+T3snoFRuxto1NkiJ17DBVMMD386rshg4QmtHGsEpDyk4FNMzCQjSG5bcVBs5/bHlhmz7cLH7db40r9uSQm1xZgbJs6sBN0IP5gFOWhOic83kfz+8hKuPKLrfUHXyWEVpAxnB/BBaaeqDUx+rcYLpayj1VrhcRMaSBupiHVn0Ar4AouP2SRPZ5zoESAj+d8+xrvzuPLueRf9gFZL2YSfM3rxXJJ+dQpkKkD6gdygyYdfuRAhQliWKurB0DF9d09C4kK1tjNd7vA+nOaGvulQnok3F3ZDKlD37CjT0XzVdpIZ91UuBPruiCd6oH3bJr6cTMhBoFvJexPGVxbp23c7qySq20lqvwl2t0FLdiWUg6cb+/oB345gVLdNrf9Ig9AUcx4gd5sPC/UIPwWxAXIvKCaPoUwjAUPQXjalxwb6vYgr8yZONKsFf8P7xdY3KEmOFsslArfK/xpmX/gFECTJGxLF5hzdfD7u80MQoIQIwQAbtDgJRlqX5ihuwiPa/5FsfJxrN2J4RMFssr0sjnk+7UYTczPph2M2aadTE9JChABzEPkeiaknNdnF57vNHtCf5S8kkuW9O/dRTgY+giKNCYWz9TQuRtP6zxpWxU2bIkKuBglZK0ro1k2hOS9WLbG+AM48jssVfbKFCe0UOIOoTueUeaKtfbx0MGAKX+Arha5kgbUxB2NzcfBY8zXPjRqolBj34KQhMAy5rLGTjIlIg5YDkxEQIJaRBcwCSY//xn7jbLVRTdhxXQ/yiKPkarnF519Ivuru2zP0FhO+PGLgxeFuGFFgQwdcV2lyr75tTes4r8rudIPufRLm05izfU8UorGPshAb7J9eCwxx0vM1tMLPcqdcDsVhjM3phLXjA7IALUuWAfnx5EFNcYfR5DJr86eo08JLoBTmV4ucEBQwylenh5FQYC4jUlwwIpr5QPZmzo4xhvropN47AgiYxHCFPsZlw0STF0+7t8knzNey1vniziWO2MvdWuOMrHGVzmdqZT5Afb/wLE4Allr3sIT0UVE41QrvysRd+FtPwx+J1oQjxPmFO1G1RlRcbOXaAacMuSE444Id86U+jLtKusQbcfHi5HuMIoSpVFD2PD3T4z8Qcih4dJT/kDJpm308/xpbvbOaj2Wzn6gvhB2KjTT/G0IvN8zsUytFJ/u4y+/U5gx39gsXF0m99diG1AZhy0IQJiqEVYgqvdbcBTqdg8N+i3++m+X0uaZLMoRzxTw4aBDZCDLMAfepEwzpKos1IYQbnjgdRv1CsTp0JT3CvUYHI+Gl3phNtY+Ufx0fhS38OHwTK+1XRI38eljfl3Zffb+/VHyYbkmLhVf4/Fg4D8/kQfMCR/5eL/+S3Yi3n5/h1Em9yjqRx4GdvS1arEScW1PLY8416+TNgdZW2UbIz7qR+7FXdCZHWp0+EbHCewZqwJnT9lV+pCefrbIOpCxM/OEiE0Q8pTkzXFBCKre8G8/MCsAKg4is7/qO/6ZSOGmUSrgMdLKx5Wa+fMAt4W6jv2KgjuFi2LrUbl6w36JiwDkamBFb6vVIMdzKujQFf0IQ8eXL68JA1GVsstWWZwvwYKkmUekVx5Sv/mhNrx73Eb+pYDRwzzmk8awVYn9gjRLzKmow6DM7Lj3GyaiQQ8AxrCw0hDHPCP+WmIft5AQ7mxT9pbnepbYnVxIJcZ+gHgn9+0XsbkNykRbO71f7qrtDmSFNmgfd+wgNBU1eE+zoN3iH74usK0y9RHCN9cBMyNl3qDQmyoX2JG8di+KBBUQeO8+s2JB85g8rkBtXDyWnxd4BU2XNNSpMfEJ956+SI7FsfkbKZtaHLFhcL+jgYwkIhEZ4Iv1Ek/LAzuRShs40DFjqa5eC227mSfZ+4a+dVs5jvaGOKhaskB/gnPBYEivzlIHKRcG2+M44o32bjUmSlEzBmJDtZQqngl27NS5dza0HBz97WsHz1/agWYMR45sjxzvu5zl59q9DTm7BwfSZpTc8gz5pVteq6UdhddoluZEQ6oG++UYRtbJfCoLgdRCq8kapwq7mvycIu3dl7qJvTD4fP9YTQHpa5YzuHtNkUjBuFcmazjyjwrZ7KZ0VERbXBJIKB1aBiWuWiUDgDC6d6NkS+Ho/xjTrZ329gNzKZrfXEoxhO3Am8lHR+XuAT4SAc4zdwKboeyvz/0D3XUrkGpa9kzPFKzCYYUmXIsnRKE5QG70HFVT2chJeXa5d0mA/nVu/50dgsKxKReJShBC+MFZkRCMfoCfZYhQaElI0V+UJDPWY5476oRo2S04GkHZfVqVF249ep9Ny5V5clwjA2FkMMPt6AdhcFz0v2+FJWPdUJOnFvIN+wbXR9Aadkydk1nWcAQAZppBZWD8wxHbZqs7rCjL5zbNYwLVz/AGnKmPrTdaur5So48WpXC23mEU/2ThpE5NyLJOdnLruaLNtLI9gZaBKcn4MUGaid10Ha0gVUMEcqcVJ3mOxE+Hh1dn0cpLQYGu/z+OVAkaOA9rzoGDAsHRDp1mcS9peql9MaYF9hw3JkkkozdI17J5oW7SEZMQ2F56H1OAdXni/8Zjc37hoOrk+iKLOdi8oeou+H2WjUsMcUOJHpgtGyquStcI/c1+uDy1ButzWJdTDSlbm9exAqOHKiFZMhRIfK4l08ydZV64j2b4A7+bFQmEFo40zsm2UpuBpWHNr+gZ7F2CCiyZ6iSalbgo7APOmXHQIUqCt+/Fu4IfM6rx6oawqAIyzii97z8P6HMRvzZ/W0YcQ0XR9HBOfQPR34RJL95W8QmcVUs+OKnEGATg4wLaEOQSpqjd/xHqrxkn4fSw0VY5s4fZCQYMKhS/2GEPhb1MI67wx5mKw84B95GBgPt/kHg5HZoTDmNtLofPcKxN/bdIgTLAVrgGcU+1xOrOGFFLpDKaG7hCLV7oEAPTw16W2E7nhAUPcpDFA3fGXtGwNEwFXeYggFE0bAxRM25prokq5voM11GqGyF07qPgMGk80+jQK36Vw0CEVe6VxHD9BPmPsa8ZKdff1nwLEI4L/ATCBGLJ7Ba7Z4xotFjvafXjf6GUzuYs9sU944zH5HXwAavn1gKS+I0VMcBB1Pv9FaOaiPRVvr3EXTOP9KUnKavDvnO8S9bwgVUF6XNamSQZ2cRMCADy22B9z1jdab6pBqSJ+Jzjw4e2BWuGZCwcJwsg26TAvchej1h6AliAymYkFRdysOC6EtVlTuRij/5XZOvv0hvyGWJ9AGwcxukJqXiDGNO5ARUflamWOVrPCpzppEFf4kKtWsyxCGzJCpqyUmN0JO/rcM8jUZFJWeb+p6dRSdepPA2hk55wwj7A+B5tQxzUGIInmL2ZFuv7zI5cC6ZsbC2WPrYntGj3OLrR4rAabl/GytIDkipZsjq3LEW9isouDIHmsL92tANH9OrV8AJM6dKEV/Tc+GcPO4ER3KQyOjNG4eVZvPeb8TEMtw+x7OGivjzJtv6Ea2cfhmNjEEMdM6B7lM3TKqQux8w5D83ktJd+vEH8mmsAbljCUtAp3Ckt1Zzv49lAUHMfL2LzNrkaM8xQckaO0AQPMMHHgktcfNp3bwa7ZLhbYP26AQnlaJuOarEFyBm36iqD8lR7Uz1pfYI34V2tXa0cBo3Ydhyg1ApDwzOlhot+C8ap7alPMWpSopaTe2ntcptVwKe+6lQVexy4+968qnCOUMWOpRXyyYSr7DEuRPQCLVzpYeKnB00yo2MW4o6IQ6z4L19IspF3w3a62q0FkRcy2V9gzacQYKPH39h9bvFPkHbXRS6G6KkBTbdSc1VilegtfE/XQjQu/bU7sHfhJ2YAo0n70qru0MIn32ml+NRFLcgx0ZELvKkHUSZpBDeTT2jTF3S7Ujp3S2xHGreksaW1Ik6Ul9GRAmvdBhquj5GEWkLyY8RSgvkl0Ch6IFbVVDCVjm1ptiMi61Y+6X9pbKn2H4+1i/mGGtwYEX8QXeSm7CNSodKLgsZxC98kqie6IpvBvKeKLPoTXzEdBMREehL1yuSqactli7/C34E2EDdXuwJ9CXHT5UVkBbkoXEMXtixcCHMsOYtHZ85cvZQMfC/XPxxjqmbLWhfGcC3Z7a8i3B+UKoN442IbTv8J8R2uVswRYgR3iPL1Vnf/MMOFmN+NJ2KVlf7yZuu8KQEVMPm77r0A/7lTFSmNK4ads9Mk4eiqQY4+ofSCVFL3E1W0kR/do/F9Vx5N75auewJZLXBgiizohwWSsJAHoLnY/LJGtrsnzbur0ceI5JfutbEiv5hJJbkPdt7c6LKHEwj9syFPJVRHO51zIfdfAuvnmxl2OrtLUCjStf6pYmL4VRSNMqMDpxd1sWkvuj+hUXWT5nzl9W1FfVrl69eXuILu60M28AobV8h9gDHCc1fDbTU1Tx+g8LhRyPU3UtXrPkGksrQurd0+4UT0oVC/sI0Kv9C+IgMUCoW91ToQ2D43B0DODwEoYfe8nMIC+0t4puLcFuIwU9T0+4CuXVFqX4HWpPQzldOts7PKrABWztEW2rKlDlE9BuhBHe/6AzF60QkJ1pw8QmxzLQ2g94UutMM8DlMBbkokDMg5HrCyyi3pEzCePK/ltaG3rTKedwAHuaFbcxh9tv8ls5SYLO4ax+wIxt46oolFsT6MzL4rKb2GZgGw5GTXlDVrDA5JHEeC7YT55jkW4eqURyMk6OGF3zYGvB5nIvF/WZwBbnsED6jjFMqGJw80oXy/ofyL1oHC8iz9PiRrIwNmXAR7SOM5WlWQLuAxfag5x2ZTY+oPs7NR1eRS22FGr7VakBkQ0myUhEM39Wj211PV6JQRzE4zzgIGjUE1NKyRwutzbAcbwcsnLWnu3fYid8V5wQ3FNmQmN49Snc4x/R9JLpfqtebvNlEKc3vF6rO6TCOwmBSlqJDL17FerhOZBHsVblQue0vDvzFSgKI77oab0f6Jqbb3+IkxOooEunC21SVSLqAj+qNnqhdyGSl6pFGmoabOc4d1gaeY5v7hhpczfJYsTWaAfOAN6Dkc4fZeV18I9AtxP8d2+1dl67ghnf524UTtwerYwdK2jYOSLQkUsi61SIQISmZlenEpMtwGJgZ/dXfnkgPhKERnDmQBBj0kV/0emvSj6y3HnQCTcHWcV/nuDNoHCLA0MSssGs5Tj5qumsQ6BzZ1AVwRoNpB0mDuY8k+wYbxwcpMjWPQK0Y/L15EFqoB3wqhgHkBG+LYwkq9GzsTkr45OU/rcZ/svPDkB3QOQ/sdczj+r524RatqqYFC4UNA8iYQKv8V7aCIGM7FbEAvMu7wp9tsX4HFQsJMK2ZflCMutRjPz8SeGKU/YlewZrjV2sW9iUbnawwt235Rmt080FHyApKMYz5rEIZ2IIdaNq7RFC5i4N+dCJtiq2hnSiySRESHLTogVQCxm4dL0Mfi+YD+qXr0IVp79kLCQhNCFFPEkwCX/nkSbYsNqVnz+G8JQCHYM9vulKYLr/zj+dPOOEnXe8buIyESY9JXQMvT7ffXwg4nTYvgnB1+bmtPyWcOxojanK/9p10z9MXi/wL7m93wKpU3Zp+75tb0TeA3h4VhQWSbirtd85v/eDhnCqKkgU1MH+J17IQtNjx6ptAMdXr/xMhB2eC57oVysiRFi+PIHB/x9gp4qo0k9e6thaWcncJvV/SGVDWalwO6iCNq3JriQG4RP7tNR1Ptl72F9HG7fetAIESs3NZ+duqfE+Gmnbdz8p1rK9bOqVjD3bEuRsNts/np7jtyM1CZUUSXeJ0tzY4Uh568CLAuukrsaw0rWfotj22YYowS/W6TXTfdYnmJWmN56MG3IiR104A4Rl8u+8z0XBklyisFXs6WXejGdWrTjcf+cCCDTZmLLhiUuRmlR54b0uxhnt1TCd+Dgj1X30iux88nLdY/tc+P2rifG+c3sWPkr7a8ZV+jILvLw2qHq27ugXlsjmGT8W1blvPSmlHlct0sh
Variant 1
DifficultyLevel
681
Question
The table below shows the relationship between the length of a gecko in centimetres and how old it is in months.
Age in months |
4 |
6 |
8 |
10 |
12 |
Length (cm) |
883 |
821 |
885 |
843 |
887 |
If this pattern continues, how old would you expect a 9.5 cm gecko to be?
Worked Solution
Continuing the pattern adding 81:
Age in months |
12 |
14 |
16 |
18 |
20 |
22 |
Length (cm) |
887 |
9 |
981 |
941 |
983 |
921 |
∴ Expected age = 22 months
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The table below shows the relationship between the length of a gecko in centimetres and how old it is in months.
>>| Age in months | 4|6|8|10|12|
|:-:|:-:|:-:|:-:|:-:|:-:|
| Length (cm) | 8$\frac{3}{8}$|8$\frac{1}{2}$|8$\frac{5}{8}$|8$\frac{3}{4}$|8$\frac{7}{8}$|
If this pattern continues, how old would you expect a 9.5 cm gecko to be? |
workedSolution | Continuing the pattern adding $\frac{1}{8}$:
>>| Age in months | 12|14|16|18|20|22|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| Length (cm) | 8$\frac{7}{8}$|9|9$\frac{1}{8}$|9$\frac{1}{4}$|9$\frac{3}{8}$|9$\frac{1}{2}$|
$\therefore$ Expected age = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 22 | |
U2FsdGVkX1/xRyZgx7tE1kN8kpx3Iyi7q/h7HDV0iex3FUDf/4wrSOCVuGHpGObsHGMOn9yWXhlu+x4gCAXc5gvEKAcbf/rRM6smCex9RqlrZFHSGlHpttmyMhzO83Qi/ZcNrdrC7tOYmeilMIGWYSs/MyBtkChcaVFZD8IOzd+FxlIw0Vkst/IYG/WC7aS8Zyccgmrj4nBs+3IixbR4gaKlTqpAvmkFh3dVGBalCX1Ozw9K9xeWVpoGXqr0M8axpPqHMBh5p8ecji/0Nosf3bizuoF6KCkyZhEvUiVJgMY7FSzk+cEuIkqeAgyJkjVqWuc76vvhW49YvmmSDu8v027+PAnlo40/oFKgXTGehM2bTQzmFyoZPVvIiwat9Fv+Hyz4V3PejejdzOJeyYoQPaASGnPgixMuFbjq3nSBJDGRulH/a2Gdiy+Id8fHE6Q3CAY2v6lZ6PNU5TqV30mnenEKaWAlhRIJ4F4HtzQwrLL7MkjwyquBBUQ0etspOldHRGT54/4ALxqlgV6o5mz+FdQPhEEwuuY6ovetjJ7T2VWo0DSR8F489LEjZ4jd2xDF+cOLnU+ivBUzRPQSwmi+HIuqryzT0jpPLrMU44arLYX1ui4WKNvM89r4myQn6oFlIeQ7bqNDWzPsyB/KsmNq3C/KeKQC20akbbPmx3vUmrnpMAuzH6GKM2y8CxqNGn+xdmDtdVIq3e+aiy3rVJZ9tW3XwSKbPrfTB0vE3YOYJd6vDMaybvNw0ZxHAa/cjeNjOjkdCkVrZzQUWT86cTJugXiNxEWEVN0SvUlUUSC3PQ/cXIy/v+fXf6uA0ep2uAxxg5Tw56+Q4FElPa+KeIoQAbTtX/VBLfXinvHzrKt8y7UbuODDjUJeFx6DKXO2aQ2wUi6k6VdgvvQgoyay99xDwkWQ/T7604NbEfwO9hyB165BUCuI8aGv3uNajF/k6+10POshknS//sTMLZe8GvckW3j749qsurHIiiWsJOTPdWN7KmCjZbMTepm+QqmRylvDcIRnYujt8ljeuzMteBogMuL4PJzi+nuFu5XDAATRUtVJCQzPRAHpYXdddAIDrmK27ykY5I/RBoJXVl4z4Sk94vWyZGakk5r6Do6wTYVycWMVY2HTocNYQuXEXx/rcRnljSuThpIQ2IfhUWfA3nYNWwDE4X+pZNXDcYNBn0g+5sOpl+Uwmuvw38L7mxx/4tytczqrssljp0qGsvtAr6lTFd9R/uyljmXYRUfOZNtL4C3VDK81kcoNSxjECa1uJ9313V6PVTrTO9bMT6wnvRTSam9V7Qn2iNo5qHGw0VZWbkAZ3wR8KGC8B/6iinXL5AY1vEj36FtP8wjNAoZN3eKsct9NUCNzGE3h9Q8lmNBnPNF7yrtxozr1F8Lb3EcSRDxANscRaweVWjyf9gmCuBnMGFKAhNZ//9UbNOIwqlKhsFeXh3Sx2dkZ8exvnnsmz0diwyOOK0NfnygFX3sovAMMZYJPfgjKE3dqaFii1HIvjHfgDlVRoM5DzP6xBKRFCw3lzYNWIF4kuQlF+oqAFdXk0iD7IekPoC35quqT2SYHRtJlLsGDcEdhT4o5bUKuElggEEYj/bOlVj41Qf9Y7JWpCPiKFSKPip+Spdbz/qupJ4EomK7rf/LlLrdFZHyME+AXOeCVe4+kMyqR7/3j7ASiUPSPgMgdcg3GSirhRZrng/Vq2j+01vUbT7p59bWbrdb4W4CAdJpoN7LruEs96Q9udpOxni7gJMcfuJGwTyeWPuW3YyRwdhh60CcaAsvvnHJubQemphMSLBRKrhu9UoG0tYYw0jZj/Dh/GWzdSKVVcDS4DQKeJMHuECGyFrEftK+rR3zE/e2xJ2Ujm/a2Q3XQjrdKJOkBgxqp/r2yOO1U15S+GHNiQiymaOipMBc4+o14RmQYAlWKUkpYa7mOmY3k5jO9zRJjNQRabG6h5g1L263VttT9s+BzpHxAuRZeWwqZjvIDJbswO0tvt1zbxY7kLC3q51Cgby8egKAb5VVXoSWsX42LWc2LnSYn9hb0RyhyZItz+A+PnhU79klZwRMwc85p74FpohbBlFc+BXadwoFGGxHvb7OoWY9RRMkFH/chH+a25UFe/5uEpbASwb+/MqYFJp4t6iAtf+RxUgSKTBoMkFwq/GVoMgANoRsiYl8vZrT7pQceijUGbPnqz53yQJpSkxup2A8enYx8dlHnG9PSnslWcbKEyHX8BFIusWzgoMMMrRI2dPNrI8Fl5ApAvnAvDw/LksLd7NCz5AMifzqUPlbE0CJSZ8thXYKt9006Kd5pKrk192YvrB8kZ1YcNSWQBaW1G1xGW+iaaDPOgvkip3K1Fr/s0/aN7Z+jc+bYCkSV7rKoZt03jbYaXExyLsVck0WsFi2HKv1+zI1nvg+qKzqhXuU8ix3mjw2mgQkkEe7JZTW0JetcgxBEvovz9VDDOEYkOR0VwRgXw1K2zA/Xp7z0yxwg1ClpCdqKuar2z0YxmrVo0yL4kjxvlW6yw7MhRhbxuE4HqC0vMmOC4IVegi+HpM0LmmpJOvsnkFRswkoQdqKC8MFXNauqmwagHZO6ulRZjGWpnKLJdDOKgQxPoj8ZGRIneGTHPl4YqRs10AWGir8KFbW/6YvzPJcM8SzGaJYqTvmQpQSaGU52IXVJoynz/htOLLKKCpuFi/S/lHXV6wcWx3Sfz1t+tnWjDPwur6vfhhqBqHxkmakLGNRgHCpX3/VjW1ar9m/E3mBKBugjpes7JORLDvVBzKxnNvBWogYOHXd7kuI2vCfVpv44FbT4lkexSXmu4JmrZtn6+8oes3BFlGTfoxE0XxXPyzsAhvmKzQJoQmmYqB1KIOSw0nu0EWO8LstrHdNX+FqAss/Njppz3GeN8mMPTgw1YCKswwSPK88Rr2NO0IU6TU4jgGO5J2rDX821VXx5VQGi9cgXB2A/gs3PwRE50nk2wvhUZottPj/fEiqhyWwmlHkQLTBwlRznuSjpxpbwofreRfnGgfep+MbN1LcoeGqo27Q2HMGiwAAcVyI83aVPu26EySKEMBe3vIkJPLQbPuyNSabowVtrqw4Dis1UoY1WZLTjC8Spv2axYNQmrSmYhxa1XQCxtbJmgsNg9Q5cE1dWIRiWetTBO3bZSBVnhxksq1V7BOryD7/vsDwZe3+1tisvolTVfUNsD6K8Wq0LPbiL7zi3+y9WluDZKuPIii8A7otCvu65dfDw1q2uFAq8YJtlFJOaBvsMx3KEjV/k1Nh2U4XaiSXagoEia4ud7Ma7Fp7XoCg0ClAGhTPsODDh5FI+atpI3XfaV2TzHn2SFlzGSTqzTPcV43bUB96CC6XvwmBJV6lq1RipPnTQOJmAwATzmXAqInrYOsMHUNVJKTifCXAbdPbbnd/buidZZ8kgvjNdOYQ6NZlpYSD0wiRMBVtSWMl+uevHSMtrFC0oclUfPG1PI0k9XyivL3Wg35bDJcjkundcRy9QuiHtkUbdPQJWmbWWmXcE8GF7Zv8cUyikLgcO3DDWFZM8ImqLU/NxU++LXJZW6fCLUxjGeYIHFJvMyzjS5Otncq+BxsK+GM4PmLNJcoGPaZ+9MRP0YdxRye3E8OIAfQVRv0M/2hRiofV4qzxlY0pozdgaa07kIdwUY+YPwyZhP3FMvTmjKfR2UAeh+LGk+yNc7IvqhovaFVjNU8fJbtvKCRPwBGbZy5fmNuN6uiTDVAYbKOoIL37iBof/dzOGKByLIniMjb3Am3BgPGLL3UpekHA12kEp4QY88ujq3mkJk/YY8Hu78PWd4uEi0nXYKoq0S7wDe9hsoGm8vRkvrMrLjC3KtGHXUQTssRutHVCrWObdN662+LUPUQzmbPYGKHYm5sO8hGi9l3zvI6IMkx80f/aBIjquihF9BvLbD7OlHl2cbUlsWyxglRveuieUi0XW0Wp405bVvMfeKggiUeZevK5ULiaoos072taRn4X9RS0iM5NFdXzLXCAMT3B7/xkRMH7bNOsyLieQSIFgh408kOc/dae1D5jnfqb/2uJAQgKPGOCKNg3DwsieAZzvir8sATTFCqfHWkUhbiIx+2ISVX+dx09JVF3/zYuzbCfcKiryU0/mzateHehSCbzYPg9F9iqEIX5VHw/fuuKuA0s+ZsfBCyYrHAjvPgqwT9DHURTyjGZg1agwAZKuR+QJr3Err+yprqumqgK40o7ftteyPpx8PPAtgklAVgRuHH3np0jX2b01awBfl4PV/YdYrg31/xexQwEPHZbxgAVHOqR6xWOnhYHQjpMX8QXKQ49vWINOZ1rejb2aBpFG2BjOpdTeE5Ahb7H9azcZRB+t0WndAs+q68Pf74duW1jouif9s5QdGU7iWtBI2D6BqKzDACfppFpF4GGpLnqQMt8ZmaeBYG9Q2hYPa97/Sq/IVwxgnXcWOIl+a74avJZvYo6r3ebFdkHC+EOto86R5Yf9mfKmCRZeVqYrtc+4dAYprakvwG7t7K/z3nzbwWBEl8b5AMWIjrY1C9ci9TFSutdouAvso3CBukZFpi+U2e0fsyHETaEMwJAx4XbJFLRpxfCueRBor2Pt+QXYi0J1GZ+K/eXidbFwmZ2MLcQoF/LgxCQT8hyqINssII7o2zZo76G4KesUlmOCF5yRsoMsUPhk0ZSTbjOlT2+LcTdFVTnHhkGqMvYLFJf8a7M0O3c3CUGNsQhaVim5m88Pk9g3R6n3M6mCWihchv/5EnSNK8It6dNJywhv6ys2wQh3igM0nIaH0TtCzgExkV99b2WETMgZQZNsopg++UJrEDPknyectIGyQa2OZ/bbpdlbhHJpCEawPk2/NMYgi8vuz27AKw318zS+MCfcL3QDryCpWE0Xx2o8fQat7nLTI+0c22kmr2xiDvqAxRyFTy5h/wOQcFcccE6Jm+3tApctxeqCdnjem+O1hgoa8nVplc7AZmkwtPiAjj1OyRseiEgFUK/ZbsKWQXwggDZ0NV0qExGQZ0PzBVVhZYPvyxK5eVikEpqHP1+a9nQe+tMc7jOxDOizMLvW8vKHw01Zxvkz+WrSEO0MtrZr0z4AjjKGwoA1OPZ8Enj2toznsA+ZN4UZoX8lstDSwKcThYReL2cpwcY17gMkUUoxyAs3W1KogUCJg1c3yhRWXKFMJcG+13pKz3Nf2EIrdQlegY+dr1pxaBMhUntQZI/RJvK7ts48EcUDu9+uoTWS89Doog6WmiQc6W0ASXJ7dgASU1G6rI5tpaABvNjleMss19a/U6gzZNKwMCeSGnM1LSIMYmZyBjQpP0MC726mKuHE3Pyld7NmWnDc28UDN+Bv+pCsJWseKPb3U9VAhMjJTzbfiAHlSUHqcSFzjofbGje/Vvyt2hsxPM5OkSfPbHuoE63y4ZViaxzytFD7sfh+OjMlNp6HT0P+Eahe1wmo1xdE9y4YbHmk4/v/ME9jLjsFwFqjTGckxIDAX/ny9VBEx2kzVPZEpMGc40OmYxwfmN+8usDLvnebOkmqvknjRG7AET8TaqYAEC869P0fsE0cW4qHwQNOmAm8HLS8WC5CXTXVizrJQhjZ0nxZS77pjWRJ5E+2UomvaPx9slRXOsorl3uzHxRpCda2Erxrt8O5EgXiR4zaOamj4Y/Rchig+eZeklTZkGW2ZmP5i0jrjiZGXuZbgZZfX0TrN2j/HWWSsQYMgaOfpg0RV8YmYXpho2OQVL539knKEUvrlsdFaG/Mh3f/BsTc8+bOvcwWnCAApbuNgGTNhB9MEFLZjEzrzGMiPNBOPdoc0hpaEnthmn8+KlDg0CbNFxfQgaPA/7Lqu1JlmcVZm6xn9BljL1ZK9mE0iVOY8w6wA+XCsu85L6EfzGCdXk05VtK+gFWxqdFOPuPdCc5zz5DNG0DFxzlvPJw6wFcLY5FY6u2STnNGjZfYVvSsHKviJ4pEJ2MLwpdgTl/GuiRdf6907A0VuRTTQUsW6DzgM7oYLP2bbuPvyWFYrSnqAMVpk1UkAjljgjUuhrmHM6fkAtaDsxcZY/UqzuElJh4SAKAmZKNe0QzNVR1vodfeItvodi8eT6PkZ3WMepUKY0v8D/NvQfrFQvIGPfmyR7tBq/edYmykphuaHZIKgVxxAkYiMfh58AkkCoF9NAh8qj9ZsQn08vyX/to3CBxwzdS6+sSm3NQvMPs9r2js0TIvJvbprKFxzTVA1Ymbo6Bv58UdJ8GwKYvuXLQrulOkiVTHLRrvE2ArXwQoGMx0XFxT4VY59jOn39Oc5Ma6+teCsxX3XPsjvAMTsXRzmU7qU6FB9uzu48mNdNwxWpbQwgJaI8nEonsp8zkYozox1XnJnYxkpBrCbIcY4H1rNB1qX+GFkAEHlIj75ZSu5OP/BA586xFSxoIOjd1EZBmAw439SwccblTkyr385G77ZBH49rIeI+c/Gsz6VqYKP+chRyIWNEhHTeqsY5Ch2VibfhuzLFLzumSOmMuiT1dT2EO21JMZJXdUiL1Eh4ZDx8dLgV7MFSTkJ7k1Kes2JPE8OSdDUPMDPDN0ES3lMSBBJRCEMXeRM3NDyp7C8Fxg5o9wIywFdMmA9Gt1pNXzJdIrFjUjE+1JqA2sz4zALDAl6Sg2TQeYIf80uhaFEY2MPC3eep51A8QAIZskZgpDugyWRwHhuyobGxVPwIWRy56vmcIl2DI3QEr0lCgg5EWFoz9xIasu4sdAxqAkl4SflKQDMjXmPBy8fxdw3vyK7S3etghDO/z2FmP45xQpAV+smdl/pSPP1J9ufDUwWHpgXW7xncGQL1llLs9FJAwdf2S7aUvNt1dxveTFd9FC/ZN/ZcJr6k4zz5oQslu52caeWktBgE8BlBkWfviSi8yVmesnIx2vXP4VT8GeaHWhxd2gKzGOf1ki58ZuY7VPaRQMUuv+KkWt+gkWvRVxMiNhxtpogaLpIjmx5YSHrm7nux1T3eSTxnriPZ1zWtGfWXuhxhBRVRF7as3Z7PHAT6Fqu3Vvg8UltdoMkE1yOuIttA1xtS9CinaG6WqsTQ9o83WiLi1q4M0loJbkI1OewDQTOru5z25xl+NKoW3FBTf3nQS6xaButpwgylH7avCbNvSDks0t+JMDD5UOgAojduA5XnwtEu0hGQV1jp9Ua6l0ddKG64eSt0nMo/SD+2Cv4p6wc4CoqGc5a26AmkYcJmRj12WtDAVG+g1yOtZw0a9J3i3eYdULaPMH/dsYeEE5YqO7RU2ehCNmRyFXWQXyWmUhQl8qAfkBIS3TSCkSdlZ4lZsUSfPA0rh2LVkX0Sw3GtC0UACEfNgT1Bxel0h65hTlobIzxgLJ62bS70RlVb6KU2C7T4n5ySrPkKJEljrwMR0X2jCKand7Omza+19UuSOjCl+cLzlmVH+rWu+Vx/YIHPujGXEw3wgOLpyPIiNN7/53N4IaAnZAeCdhAToYQ6bpxaB09/SF96gP5goAUE8ZDZUO85mLSYAZ3HofZZk/54NBvKoBx8Y9hNQMs6eUCThp/A1pYgmnyhxuKk9yW0jbS9cI+yz4fq0IMwmBQRJ30cC1eUvP5uQ3W3BcDxK5EQhDiG0lZdofBRptDrrVdqiNajeTGz8YVxhXzHQV44OQZDZtHgwi315xLukvSZF3BheC0o/p7qIBXB6+HzAV3UadEcumwZ077RbIFvXKs3PtEjRHWwOUyDlrVh/mH2+aANej7O27Un9NQ6gKbVS1Vx4XV2oV1oyjkltwJ0nhbFbt5s2CJvqQhvidEkwdQkNVdbMBkTQq85vIatm7dzeyD5P/D34J0A73wGlmcedXEhKdIL8SFuIa4VgSQpdccNfdRqsurAZhmtixCYiDQW4matBB2s1AN5RJRBlbM2Iw+KW8zPUfCJtfq0CH1/Ss2c8TlNtY8IVQyR7jsUmU/j0oCZz75RtxcmY0elDxa3pkQBicO14gv+zjn5VVcVLd4nVDbsqPeIitVdmrsDPfilDebIOJb+IPheZSHnYaSLIniDpeDmmUF/KEVSn1/6/ALSPRYeaFklsk5ZP1D8lFORnjn0sQWaK2KyVqstviG4196w/Jr1BHfokBs1H+fE/saBtfePUAEohE4CWJ/ejZoAc89aA447/NdSBMJZXxnRoWJ1HDJDjSkbFQvKEvvVgPG/Oumplu+lpEquQejrtQuBQqSkf2GO3DPs4GpaM43m16gQnCtKmEYkhXz2Z1APXwX5zcXqa6rydL5PnAMR0Ezi8A3kmPTZZ3DVNX6mqb+90zrkpNY+mcQqbJyL1o+W2yoBSfgHym4+OLhKP0E9bTKDV+vesZaQQ9y7Z1vHjjByO1ugbjQ/ZR7AC40DoKS9kwF6wc0Qmqarqr70R7T1MJQNATKW2sJBeABbtnQvkADlYZUgvu/jGC6gtvuGR3o+r/wRhKGgSHCyz/u/9stFPKZ+aEShLHxScdhSKyrwTuq1ZPKfu+l9nJSxlzYD60xSJT2JafJ6lmNELk/fQbVsF04YdF7cIfH/pY5X1nVCyVe7MzyW5c6Fm+6IVnvUnqsKaKerQc7FkDnw/8z04hDUbHVg+YXa1v9OQxH3FNXWkqBeAa1Xjc0PvE5ZeXu7T5E+xVE4IUw7Tonl/JkpIRrrna8YvdvDMuPiimAoOoa7wuFRNKcOkF5IPK59sW+rR79nGklRv72ZFHmETQ11L+PtVkMIb+jQc+jzJdI0sWBH7CFQ4hHBvF4qql/kmbQg5g2MvpL0aV3/jWuLWZ52PxkTrA/i5gmkc6kRPwEdvZTLIOr6GMvVLb5odpHqlZiNuL8fIl1MQftC4qWu1Tj9+ZA+0mXzaBEkkN7CCGyaWzdDXM2+dzI1nIV+VMKRA/epsCOjnRpaqVTeTnoNZsa+i1fn1+DUpx0UHERFpuJJsPTI5r7Mn5O+IqCBQ/wUP/A2fSfivFFzOxjMRbxNWlbObaJ4HWgx2WXCVUnkQ/pCJ/DVIesFqdASgsQsBQyd9gIGt2zXMG42MXWMzDrO6izi/pyTGq22MA8Em22jOoKPighso71mTVQWB1b4XHO6pMD65MdvcOQjfXscDlpQ8lsEuoxVqDUeXHVivMNrc83hOW0bkVM4JRky3ycfEIdD8bDUnM5KtfPTo93tIGFO/KswXcBCVlM0CdZnwvSnrpE+/V7UjFjS7ThrHtB45QAPr0CDTCHnI+lovDq/K6fUMonEfRYvykEF5yJyQ4zzWxr/6MmVK8YWfnbNOCr8ilH/9aDIUSip5GHGAd/AFVELPUtnZi7RSZy/5jO2RMoOQ6a5jdmiMjBXbH9HqALhk8f6wDM+09wg8Yf85q6uL5HsNNegnZz3kkCVvISf1sANGiFiVMlE6135PmmuoWBdKIZcLUFp46eLur2AXYtbmVpKRfhvYB2KiHZVfdC4O/u5l20MDcBAjcHN7ehbg7OP7VSb//1hxzCLbjhnzEDBIX00aAsEY0/8KBiZ8iOLq5T8rKb2BapeCiYiCeOd1bV+2YRd9WSXOxHQrF/1Vfc14hJNOwV/pM65ngK3ZnZfO/fkgmD4JHAJFj5geOWKbat0o0y81ygnRXhUpq4VES7WjireZV+FmxxSddp9hqOWuV5c+sRLGVgWAuc36s5izNVSKkwcIwld9XIW9Uny50bwheDgZv5vy0NBZH4Qxq5g0L9lJdx2ZdGEDm4CVCir8fDvR2s8ffcSdnfbc4b6kVDYj0Nqlsk2D/m8iyyC/aCHPUrALngohGwjKjbeIq/XMiyshejmS0AVBjk1sDg7EhcieUs02KwNyp8cEgE1AHjAUBD4exQilOXCDB4l6LF4d+RVNO8rFjDIfFwzdD2zYMau6jwvivDYbBN82AUkLUXyZH+f80HSe4+ErxBoztEMcynHEjwUNWv7lI4M29P0phWrVrWwegJaToaH339xdJmw7lL7y9gB5Gq/JYfTRzCj9Mg95rh42ZGCzrcYNhMUCjcFUO1avqMZwsSA7f9Op5OVeVj34CfNiBuKNXKqEcY4YBnhGKoDnSYU0AzD8Bf+pmY5yt3kp28bQqIg+KU8/bP8hEkGvcmVA+uszBz7tNh6UXMon8JvG88glN3LdTbVyzQmnxMC7x9ICYSsDLbF6t25fyNIW8fU22o68JNkNp9ph0s77g4+54WKh4Uib3p6m2peHEogsoZxoa4tLFSo5aoPv1syYL+EPDfbjnWfTvlir5u8dWozOq1WhYoe/RECwlGyHR1wXf5EQIkSeB+Mtd5M/x5pSo8P9o6opbYTffiS2DPQs5qAr954J/Nq4vNq49VRQzHOCWAQorACZRKvODzn7cOkeGKh/LRIRZiWOcnRoeGTGg3WVEgdnVDsbG+eXvyRBQTR6nx5zYZnAIHiuvhiTGexPk43eZTe3745wx1C9RTqGhesONvVS3tGBmmWtiLDxnTsO9Z1lxjFGEWYOUz9klrdkjK5Iv6myE/C8i0Iqax9vrAqohSmMP3TQ6dSg4CA5nn+iChvkx02bRwvbOhZ38QCfgTsG6gAyYXLJpxmxc4iKBbUPTPcBucLmtZrix3IpVUvb5NXzX8/0yqcTksZ1J+smKh4l9OkKtrBlSsvl/YDnQIrLKTo62r/rx+6GKbTSaip1VYNRsTwkbgwXy/8UAExH8FvWUpOGazaK7/h7P6Y4sHOlRqdDN7LO02heN1TqOYfiVk5EYwe1v8aAGjI2V8FFaBnT+85RPHSxqdNqRJJvk7zU8hSCc3+fWxy/cit5ZzRCfZpRRLa9lOtAAbpNr/upnvgy9c/4GSxE8SL3974lh6dl4TqMtUCcL1AWB/BTAA4zUDLM6BD9Jruismg8WZfcoWJJbz4+Vi6KnVB6DBiUzNQY717pjbzfVtGmHtMvJOyTxDD5QJQ4ewmG87SOuYJUJfniYTGw5ius5AymVqxrhV6DnTVrjLDd039ILuh3hijS/SLQeU6Q/b8Ca9ufxvciOdBOOPRrqARX4FU5scJpe8sKgPRWa7URE8tqBsgXPpX09DjCl9dXY0jSOiV9lg+7IqIHGkIRTenyAafgolOgInJu/uch5/s6Yr94zP3SuZUf6l5fzlJhHvGYNPH6KGmmg7JPriscuvip3jDMwbSIFRRvNz8OMW1+aBgsV1DIgyha5G2XHCrk05fEU4kaVoSQLA/HpqIwDeNyrX0HOB2UI4VfzQ1JjD/MH1Oj60lOexNR28TNpF5c+AL250PZYlnvisL/I6oiJZdDD2C7x+7L57VUeH0c9RjfsK52sv8TAchHqUEJ1mssElVVKtLdRcqe8gTv1+/7N8itFgV+kn8Pj6VL6lBSrePZLmZJduhtyxcU+A45dlWxU4kOosHIwLIe+x4utZiGd2nlTmTd1AV+UClsgCO/3UgBeMc7uPBnHk6q5p8ieKg4t9/jihRFecrmVCZMjGyMhqeohnTKlw2Fm7ug/5C/HIbVegGTkjBWpQ2ss3YqgSXOYbmCLqjSPbK1nkz5dQtWUiPNL0bjbo8l8qc9BczbfhTvTG5Lm1N/pwk4hXmZqsbptALQdzzM1CaYBvmiD20PgK5lHwQeQuOsQHLTpmOBLh3YXhDvpWHja8plO3gKlxsJJSQX9A/zywR0pJl0Ba1EPIaJsB9dOrPtUxb97h2PTMqIPXaJHJuhJMPTovs0uUBKJqD2H4ryaYWRCIoSA6+sEdGFmYTIJl9rKu8XhV4E9DRuhPbSKzf4joJ8AN3PiRgZgoUiGaOMA2F3ECOHlkkN0DM/D4s/knNWxU/i/7YEF9Jg1hmG4TiY0oQkfg3yBpmBuDECJDDzxeJxWqCp3mcj9FMBxbEy81IRh0K1sucYfD8qeDwBVvl98xC3Ve4Vo6jIq96CC8rURZVzbE/VxRLevxlslg5Enk9MNi/R4iSgV3T1OGjUeOu/ZpFAiYmGVHKcc5rfEpOFmDEUvCklqxj9Fb3i4UU+haG1rhD7EzFNzhPULwkVSkO1Q0GSED56E9vL8pSBo3TdDcGc4qj+7s6OmMJ/8W1n8XkfKJxnxwCstvPDEOWZv3vxE6yrqfDbrJpnnKok3bYW7ywcI8VEUq2RRemwTBLxxzavq3m61lLRb15qs8I3aKE3Fn9Odf4onUXSaAfHvLm7sEh82B2PMVaSlY00fZGnyTaSOr2+esv4ZOXDziOSTVLcocFB7bGEscjvZGbrMF7JXbI1nlLKBNmOKND3PBAps9McpedEiPmwhBWDYDcHZRcMv1C27BOTyRM3+xrmuPl3+G1cMCiflpuTbfn6jk3CNbRJK29UQi6dlt1ZNKhHJGp1lumFxZzP0PUwYG7wDmeWlR4HhJw4TRx3yPZIRZdpm1y1fkAulsAKfRCoibx0XzsZ5axnhqqpqjXjiC1PJj/xkaTknO8V050Pmm8y710FSDldl4A39uPF2KcyAa+aXQK1Tab17XW1MDga61OAPTpTRVYA/kVZHSLDqgJUCixHSOeWC2GSvNXu6gO3BY3CFGkKrsqxNZDtOH2NqZ2bhqqLJcj5W/S185cGZ+unh7lviJoh247qReMEoUZAYBJFHF/Dwtl1Ep9qlWfKnoAlZLkvZ694Sy72W6LAzZdE16EU4Ifi6qSZ8bY8Da395nnM2qhMHOlmR5mWDqyDgLCSzePW3PW/3WSdRDEvkT/EpwvxrBgFNQqwyxbm+Dawug1u+V+mCq3nitj6YizQbCCzm+aut0HORohQ8KfL3eHU+vKt3g26fuQMiOA+PKxVbqAdiWyZNnTd5l43QPUAdiFreFYxecolhM3GJQCi62NmuukhenDY6ndEHvI5b3JxNV3HRMxQNUregsJfKS1R2AZ+L/CKbo5jB0trukt9B0akD0qrJSS+zJwiT2JbucGGllxwWVx1EXGoz2hEJ6yLlTIaEE4wf8z0IuRwGfmSQv8+oB0mYCHYWu8bgVhcTCb4bjvXXzXP5mjtxKp31wjGwC+z3+G3Sn8oL/QO7G50chLTqGICXc+6HygWQNzeZB916nQJnfegfkDNrmYrHX118Xf0DeSzj3xr4y10ukcyFT7uKnHnqfQzMTEypzGMVjl7AVR9n4aGl2zPas4KFc1kwMJJ2vc4JfADfvPEy4Ac8TVqEsteww1z8XdBcjQhCRjDLhs3xJHQ6Yj1htvQtoRz9YXVJPMZlN5fMl/itE1mft+6Ve/j2I9Qc4vA+q5VcWi7y8q+tM+SkP8Ous+ixea89Lytrdn8zZ7+SrX860mgmMIxZ4WO0Cgmx6YQvqiwDC4bYKDau8szw3TzT/LvksnEsMTh4CKDQTY1Rj/9CkECPu7FdPiDT2dCwoXtX45A6wH2SS4GOk9Cre2E1IHJLpsA14mH3RcHsimOSFwkdzpCdnr6oX5rIVX2ayFSv5VAZExLJ3RweogVjTi5MK7YsjKtGqAIxohNKjLGgs5DLqlnw841oI0EedM1THU5ONhWzPGNRKwx2/VByYRCNvQ2QkpLCpz4frM9f5m+xH64esHnqqyKVXpZOE7gn34yh0Q8i4F0kw6zyDsXhM35+IphmK+P1ub9o6OEHqi2nAZb/ePlpoQ8C6hQ2YOd9CaISVKofSl/A9HSVhvil8EVDfUFjXe3p6voFvFvm1JScrF1Cyfub+KehK0Mo/9Dlji4xdIzxNB9vffPKtgTE0FXW1BQqVv1+gOxcr1SHkSkPLY+6F3a9t4qs8YWKLLUl/MNOM5lD7Dnj7NtbjP4Yn3KChi9n+l7nn8YHW1rgudh/WiYD/ThgAmAgotIUXvB/p32DkOODM+5GeAkk1onfItMuLJs5uhWuQ3Xwp/IJbAzYmigbpUO2o3BvF4RwHsNd/akPOAjiSCOfNWlA02kJg2YHwHZz2P0Uf2ME9/IvuUyco6s3pcLQ3CoSr0bfVQvuLWp9GLBzR1L9QE4b2W9osOrLsFfUv9x37Y5C5fppynVKAUJ1BpJ0iynE2I+pWTlfl84hR8kGLwVVoFxsrRP1Dqq1Y/dSZ0894KchKM9M11EKff1PmS1aVc1KxIleGXRFDo4m919KYLiDmBfUCKhRDP0J3c6Iygn29XIexl6mLhra9XSc7potRxMNxeOcP57qhJnnEOx9Y31SfZNFGEdNpKcRbutBNlmjCG202EbSssPJ8kxgGYsS8KbVQrA7O1gcBexOiyOGdQpaH+aXmyFXYX0gN5BbnEVty4AqBJniiyJhnkQEWTaOkUIZZVKnEuCqYjdz6LxWkgLrvQpJH30e5jZS4vm7nOGf+FZj+quJ+BtRj0RzXza+nW4YmzslahgjTsFlfLyRZ7hA0rEnHotHtDu6xsAAXRIrzYaXq0bfwkZffeFbPdccVLL8QcVSviR20y4mWoeRp6oadtI4iO0lrVIEBEtUkeFHbLLtlo1NsVGeFyz+swkAKJ1YaCJuUjJoPVyAFrajUe6sF2U8Dq2NyZib+jLXcOFjFGZizzXbArVbGOfZKB7AbmszDGVGBjj2f0udYIDa2FqG7BYSt2mohWnl3UbnfpRqs1DggmDN67N3/MqL/K+9/eSFzVChNzw5AidegUKun1F4Hi2TjbGhZUk+WJJ1ycbxFnLoYrKUqTEVXzN03ul8vvSlDMHmeddHJ2dlS97sK0kpTBcBKYNIgjz0V2ise70vlO8h9prmCi1ByjEhhz5fdconkC+19WkfMwPOoFY/n/NzvR3Edj9jOUJoOIFe2mO0UvWpklsHHDbMmr55kRCUVJohsE/DCBOtmR6W8Ywcg/TfqI4a9dipsdX7/S5ZJkUoGQDLq83Q/WddqUdnUmhL+sP4wfPrLFRA00Nx8hOZMLvK7OVkeE5MpGqRjB22+SmZ7WyDX+m0B79clRXty1z/9UQmfkDU2jedW0vc45V/NN0vEg8heyn+ccqYZmRPsJNLOyCmxb8t4oruKCMLfOnaNtT8jRkj3cOsixNABISMpdBtE359zFzZdtolkDsaWrU6CAPFb8age6XJULcVw7jNP2YFL+snduyZyPe/tfSlgvlju4qmSPyUzYou7d6DQIAtYXkOtBAbWC8vgz3PJyqJfIgaBj2aGPQ1V75Sazwm4xOJ8m/rKxdCEWlOVF982Gg/9W3rpSndss1KnxwJ9YU45l+N2omKCWE6PDvgepZET1YHeT3RraPMH4EO61dXgJA7bCksC/KRyFb+vyKYPPJKS+1KY4MiCbAHGt3Ogf6yIl+Y6dDBNQC4aIpBwfTD/VM3rp4T+U0T4sqIKlMwSLQBjzpTuNFSATuW+AT+3IIozd1h+cXk7ySdn0mpDTgtkUmhqEPP2J0GfewRUcXVB0vP9BgnPiiiTjb/7kzoLxQgveUCiEIk8ff9rwwCo9HyKjIrpEJ1slCBqRXvccaYqP/Z0hRVenNj66xnuE27xZUPKe02thj9p4FeIzgAjW+z3RHLX/TaYQoDXUumu35xESkuRkhgAhv7E9ZpcG9Cq9R7nUQSbHTq0qQX00g4/nICwOadUMq1/9zjBOsDQMAppHuI3VPxUnwIU/lpCUebzJ8snL8vKSF+LK5SrVsKv1DAFFDRWK/MbuMCxlo++orXl87d5fxrzXfG0LhNsFg3Vtr7U2pUx7hrnqXQs1ir6VkmVyFCMCoDfksvWjwHGjIlMt+YZJicaDMQFlHs4JeLwOJLXbMGwR4OawZlmzii/4q0ZfRpXVXFcvPlu1ydmvgcZQTC5Qr+YmvKYft7ElF0l7LnO8UOrMxEv5UqUPIWy8VcaD8BAparXgkpbt8e9Tp4w4WaV2VWgZJ2S4nFiPSgtnlCnXCZonBeMx9XLV0tERnMCa3fhV0OxRomoM/ErZjNbG7FcWu4FazsDCizwTTrqDa4XWi6nkLb1o2z2Tk1ow1svx4vmh6xZxD4TXeV4NvT5ZSiWMDTbA8RWre35uzhxyUuJWKd1mX7N3Zg1Aq3rREHCcCXy8XnANAZkZXdYe8P/3OYiyL60mZdzMVCf/tPdq+1fjxM9wMEKLDtynMLlMZvPfWEyl9PG0XtMTnBdqp8uL68jeRlukjpcq85LNo139TOzdbeIKz/tr83IsQ5QTez21G4++Wp+gY6JbxEtYt56kYi3j+utN1t7jtF8JyAXQ7O4rQ7SwS6B3PmTHFc9QrlQ4F4KLl/fOdgB80M/MkWuPCnN3EjLJ+Kd1VoQgZYu/CQladjTfA19c2rKrhOycKJXTqWTyX3bWeP1Bon/lncAf3+gzIN5eJPz0CBDdO8+OVC5M46fq82HsdtQnPfYxDrwNALJFIfHuf3AXShc6XHyRtX0YZYYOVIRz8YlnFlkBLh/uAqHQbYcNLmQftgXuPM6lEuOazGkZPgAH0XxeuyXI2PPHPVF+j3zlBw0cJcF9Zv5t/uPV8Sppr+PgfzhmSdPKi2PlwI0X4Kbyc0xpgKSquaT1F+PPCC5erOVXLE64YCgAs09AZd4cwsvWmiaI5+5pxHqssjFtzlZ7yYaoDQ2Cg+XZUVylkuZXNs4CYElt+i4b9IkNSMX1fMte0ygSJUFe4DLs1otCbQkkD3Pttv8QtxjCNvrhHCOX5m+OrIfvTCJ/wVIkfQCq0Hr0HUMVgIMCO34O8aO9sJvqSQP6KIMiWYVdvToDPRp6bHtxpml30Zr6kZ6HSn93fHLgjC8SDrzwB34IX4/ifPHA0ZkNNVeZKfd4Ef7ULbqqKuAJ8rRc2TcEgnKfHgX/ObjoUcL4hnZhdSAdTP+jGxCiB6PrGA1nMpE5CESpSFcewXM2/fOjdwC2jPh+xTGF5JqueTO0bmKAE3RA/fsKUW0KtUECuh0E5j+pmIfaJ1AqLwVWPo2DHMFqNwLGO/6T/l4UI7B7jWuDAiXtDrfibKEehoFrkGMp4CIAFEcd7lMbOVNJ4Z/aX5YzN/IxUAiPlNW4kn/u3MYz3nWGyoWuuylPw1I81mbyBAE1EgEnyngBxrAcDqT0IK0v2UloytefSE6HOeOgwMopzzYncsEIIy5pewbths9xPcRaKKC395+963EN0d2F+8G2bEK19HWDIhgsEuBjwkIKYhsxg2nkYvMlgTTHXNOa71yR9m5PIybvpf+2b+w6azctvRUbekVTezU4nZAcF/yp0VPXIm562/cGckkyBMIAYMZhGJKHs/dhragsIyWxdmfl8dvw78fScy5pdx3lMINAQQuhCBQgKzDKcfejJmPGoY6lwokOaetpKkb/1jAMylvD/o6avN+c3FaY8SEXp/joYHnDFBneCFFAT680gEnbUKBXzC6oC4wJOwtgIvKPdXjBPW3NzK1q+uB+uI651tv5CNG/EouBnjzricJZKPySEVG20YbXNwrfm/SBq3/nkAuHOm+euyCKqaxKKSIvcgTKpnip9EhqS8Eozt11BiPIYeyp7Bc4XlRlJT2DTcQns9RFVlcduEoUAfc+HCj5lxUnHCC++2RhmseXsmCFUrJe0gSUqkrS1RFGGLFGt8kR4kfi40rHAW1iZNu+90u2shmNr3uGIyYaP0pQ3WvWu9U9kuJeDHKCl7mSVn+icBwp47f6UMtjHA4MZM4MJJnVJP+4vfcVYPFWoRtuySSqpgxJ0x67A9bbll2PMNNxw1N63jppH+xJzT1Le2/tAwjqBdHLZRGf3ctGWgMo/a2gxkuso0KTkxiZg9SOQ7i/GCN57CngfPYmxw9hS7/2X+YunjTcMhhZHT0tTw83b0/CVcOqsUiNhXP6LZ4tgFz0useqAcqkGcSYcjPsqp0DKu6N5q+ULqwkhgJtlQWUqdxWZt2vRkYvj61bDYfEyNXG3Q3LnSMJsZb/Qtly/I4SYZCGEvPXq5AmzCm66BtjxhPgNOALchU1UqflmJviP3O6src9dBi9kVvc8dIXpOMtKkaVBEaEUxb+yeUckDjaeN+rIBpP97ndpoFpfKvyvcMONYkf6DJP7YyLe+a2RHHTSXkauzS2bUg1o3Usn1zWKzQCGfDiG7IXprJNnYDhTmNqh2TTBVs+lWqnNTVWaYAqHhKIjv5pWwptZut8LuHMwOQkjKbw3iw+ifIesB/LmdtzKpDvar6a0DUNEIVtPvJY9azvJ6/bqZSIMZ3HbdLb6N+D2Of8rg32dwpJ5KLHHmhhlycEj3YxNyH+wgtfIKbklj9ifjHH1YITM8mWYrtOaDHNQjpPJ2NK6x3sWt2n90kkqXfUrwqJeH+ZcvsAPKYHgA3d9B40nOCHY80Gam4lwAZNZE2RJYC2+nInMI8qFzefvCpkD6lAJjo0t5rhjrmIXcYbj7geCbeud4RlpYxATEr1p2mnnMXXIAiIYmGmhnUq4Sk+Fzoi7/F38sxqDMsJimNoZVDqNFj9QcDsW7MnXuQTa6WXjqFDEEZ1jGAxbO9nm6GXa9DgtEB5oCALHjiu2QUZZ4HmgGIQm0dnt2J6GTq7UaAUoag33HjuMJ5BJuhXeEtq7T5boNAVBkx3im75zzUsxxL2Cb1014R7UrHL8OwEAqWJ5iHd1RSpbVUb2+eRVaHcQXPVnVbXkWMOzcpBarTQxgIYxH5EyGngPBjo5l55TXevwIDsqQeWoJcB0iOybqdqDoEc41NrIKHA+M/hKjotaFzOW65ojxyNfRSZDeT0Ucx1yY3gUzydY3nksaP3DVeCletwzll2s3HR/bsMSBwObVqUyOHVhjMuxmOiRM9AXuiGFuUvKJazKEPfw4pvjboe//3/IfvpPlSabPoJkM5HxLGTyi5BpmTxj95tAMTLsgLMVh1zn967xfAP0bnpmrmwAe7Lq3XjY5dFkZHnQiK9SPl8BJifQ4usb9HGeh5PzulSyDHqIcBYs/4phOVp8IQJkpL5A5fKgrtfJP3fr3JhSbLl660RsqJn66c+XoofWtbJm8uPd+KpdQuYFGHSUTxAxsJ5LUGurJoEy4gSjrEwZyAAycqZZ469y/6uYgU5SU5cm+M8iFoAkqrqRV6EDExSgpou7o9E/2q+jLLMd7pieKhjAMcTIACjYrz6Kp8oujYos0LBbYdzhTwlXmyO+zdva2IKQUrV9jqojOaTbVNWrKZt+RbOd9mmgDrfmmAcVYebSJ3YbZH9VNIzyOKahfR6ot91HxFZYLj3G6jjX02sFLOfwTtG6/1VBDokQ9FGfjxhutYf/ttXt8iL0Fqg0C8Vz6UXP+CzDSsmOwT+0uH1Xgy9TrsH3vemdSmM2WMUPPHTb0yZgAlL08NvaByPsFKiI+WT09menyPVEThmot0J2pQ/+tuZkVDZiAeUZdRAEBln8X8z66rfcoDPPjteUb3qhmmEp3X59OsrMXNA83W02xPliTv+KnygNTsBbTr1DrudZnLbUkz3PLnsuW+znP/dXqdRWtTEqXeStpLIQjx11VO6A00BUwW+p+p+ENX28pvcVJMICNUOKk5eqG53cqDRoBAjzcSjyyG1g1S4huDbWMx4aWFXYHPjpR0zW7Vl+6uXLZWX0vrm2rsDb4DtneK1GpnyYlKwltcrC3EItWvGS7ArY587rhmrVAEbaGAcIi6pXVxGhONacMVTKcNlXKb8gCSW6605Hr3ZuS9+m+SE4jGqe8E8Ft8j3nkr4PYhRo9K+PH5Zd/Qq4qQn+uqfOE6phFZdoS3oEnqV6WEJZJjF8BxRhNJlbdZ4ohLUbWhq4eZKxeVH5DJ08EZh5Ev0SejxjXUs9Cm13C6LHycMsz/da7nr6T9D7CXBqfy4vzLpAeaRjDxbn/zitb8BrGXiIMEoYyNr3lVvT29hw6z42HLsxzi2nwp3Evr9w47xQLxTiou33h9wc3O72ZudgGhZWMYtapMVmoFriJSOhH0kR4O2sMdXFM1TnxbRquERFVrNnZqaiEBzzQEuKG/GahivksQ4o91M/pXrucieX2NC1n8nF7+4BVEo4E4NmTNX5wWEUpZD0fgdW7WlwLbGWE37r0tkdOan0vBWXM6NSmywfpmj1PeeO/uh85E9OQGnMyXHcEv1HzOY5siZ3Su2rplJRfQ+i9H43Ibx9Qx3qw5lvzMVI+cuKdlQoQ9T+ZiZjA6RacltyfkyQf5nnqVb6Z2HpcG4yDGKZ/geCOl8AUW6wJwjF/R2RRH6HHDzhUt2V9ysluqF9y8LsEjJlIkhllbxVjdflAPNDYwlWpyTXT1ZVS4cwPvzUfOgqTfaOiXAE+Hq+qO7Nl67qCCq7//RJVaWMGbNJ8EKbeAPWltFTvrZinuzFAE7vCL9ljwP8X83x/bk0ToMi8owW/IRCz1tWm2qAHVeyfo3ldFx0tjUIz7bnAtm0R3EzN78pKU2mvu9qgM3EkowwShP7LgvUVFEKvkYFpswYVkCgm5DJ5kQK5TIGCtcmf4Ib9SUdtI1BKFtXxcImwLK9+qbdpL5uDaoEMveGOi1dZ2D5QVtHJav0Eo7UMhR0kT/UMckyviI662RDG8x6vH7Xb55BfM9+kFTgGbsxFAcf0u5stB1kndufDT2N3YGr9OVmHcRlE9UQcGp0z5GkJnvkSp32M4/mD4deevpsjBO0wN7s0IrQry9ulacgoaDowzEgIfgNxRz5xUjxUBWJ4qgonN1Mrij75qpHHI9NpLXMi+xPZDbb9nX8YMrluNIygD/FI+oPKkokIjnS3OjiQkYdW/Z0r5Ytl/LrIa2r2/lOyhTb5vptlG5wnOP85d59722pPiv63tkqlA2VvGEVHs+iNULPZ3BJyU2NT9gbdB/NzNh+P8MR4Xr23p30w9MLekjltzD4F8ortCS7EwgH4EMhJ0Oiam0t6CVcHOw6Y8KUZEPp/m3kXiFjC7kVVtViVoadSR01d45gGJXVbOURK5eD90Z+IOsyJL6grYlnhfMh+mzfyZ7mCP/oVv0v7pxJk4EATYfpC5ZeJLAMR/09WyGmR/P0OUCLwL6X2Z/yuHrzFqlx0Hy1vo1Q0RaUysTUL9Qn1L1hLg+bdlQb6JhO6UxLxAUmvrWUcC0IxRDzsyeSUJFfSMMmFRU6TLZTLKTtQtc/wArLc7/ios8Fxs69hVSKrfetCGwgIMZodbfZDLR2WcS3HnmppZa8n0zM8kBPJUHO1dHPlFsQe3DZrPC9cWhgM8jiHrUBwcUGuzkUR1Iq8snwytKbiMfpvByFdUNjgpEKy42OQ3UyeiBybD6gePUmOW8Flinh6OTzduZqypRRVGEwONBf+Nesjp4irkJL7USLCjjgkVC94eeoabMoBm8uBL5Au5xarmkJ1unREPCXTJkqfftSfhfpnIv5GS128tWcN2juasWWBzWYBtUOGRe75CpXW9hccTplmKZczUZ+w67Q/0qbuPf8E7WEPkpV2vED7flDxwson9JuIch/uWd27CwaQnyHbNzqaLg3Jihx475iXmodMO3VRaybThCA4pSiR77PttWfmuFqp4Ax6JITSyqRyTwJFM/ar9Uxj9fAgwPnxta/bfZp9SN61KZAfXFBBT2qo6tCEzz1pXNQ4TVT1jK980OQyQVsQs7z+19PdLai2kBOg2A1zMyvYzMVh5yoIhIVfGHH21NOG5QWjtNUmfSUcSD0EwBW74zIdmkWaZ3e3F3PS0eIqfvwV6z5lCaBPn1fBAsjfqFzi+ej4QEae3GENrSUz6XoClcNCeknDaUGTGZnblGemBz+kBKDYJoCRiSyfTAnBmU8rQQF7f2GNjrxnA/sAQZBBNHnApUJR7sh6PgT7vriBSQdwTkfUi0FP8YY0CfYG788FUAsU+Gw5GnJ7ZikscnWWNpWZ02P/GzM+F2K7nhyeCP2JIJhyO7tirxGv7RXKNUemPGsYNsvomgfN8+y7Mo9NSLAH0pkQlT4hNA7kSMkbdFv0U0muOgSqksLUOeIwH3ch84xy8CbbuNV3MBrjYH+1giNWORMRlI2E06RikHyIuOQAs9FbI372BmQ7624HA/HyU8LJumDdoWteQjhVe0AyQiGL5e2Kbxni+13b5ZSGH5AeB+rarFO2m3S8UMeRBUI3uHHbqJyZPRVgIDn/6AmT0YctNjAepTbb4va753H4n/YKx3FbAtixwdmpQI9Q0FE1n8hnFrGCQHHIhAM7fE2TK/5hne7EijBbXhfh+EZzxuJViOVCmHXQ5N4MYpgPRf/W1wr+hRn4wq7WIKPgvufm5B2btmZm6CPfwwl6E8cMK14A10Uwsim0Q0H/IdcZSUc5qL9SD6P3r9K/eOP1NTKJF8BZ2BT+wIiL8zqdNJ4+TKcfzLayIW036I+czf1ZzzkkVqcZxA2lnHt3C/P/hx2G0cX4etJEU+UwpgMggJ4uFUhxON8k2Pz4hHhJAAJxH5Ux9eubWAxlukBvDJ/+9yzaOECN+Q815Hl1KZ7hVIf5j3R1upShD3pGlueOOSrU6WqKUOsAWq0zUOD8tePDmeTLIZspES3Z6+YK30WLp9AdZpXTizF5nn2lBLymwypu2R8iNqLPqPvPvb5I5sk//19oo36oIDaDad/AXRHwIkJfJMTp2osGkvBar3OTeHk4He7+unQBOojRmEX0dCR5cd8B1PnEKLzc5UuH/xKzSqV62ipYmvNETMVIZ5Q33WUTtFGeU5cw3lizDjeEWOobRBbBzKQ5qj+8IGAhW7A4/z7Q7iUwKXCXSghBdLbyCnPkDM57+oJyL3ayHohV05Ng91Kfy6cIZa3Z9qrgR7g2LuBRBJys7lYVpXepBo8xUujzN+RUmS/pkccJZfk60urIf/IQD+GWhgav6H8D3RoRDcvMkm+rZpXu8FL1bAhg3+JIKxkplEmsYh51jdT9nHLypgxROyuA7D2hWMlcEGFVjF92qE0Xu5HhW4iCcLg3crVSTiaQrWdoaVs3QkYKsj9NHmxSSmPoA3kDefHXWX5g8bhVnMjgbIUIK+xUrDE7qA7/JIgYe6U1wz8FWa+DdLhty4eYhu1Y9siOCkCblkiYLl14eaNzx5OuZJUx1yVU5UBriXwpi8/g47IeoFBQaBSzE9EfSnIa+h087xQkkLWRDMiDbhicZ/HzMFPTP338Y2Y5GOYdUJ9eS9355Z+N2SXlZ4kexEMUuJimgDkSWVW640Udg2wdQxe+17RqzdG29BRKMcNIKYN8tvMOnBWnmfx2ZFlA4EDOEAfOKeevDSxlkW9vaApMgTfRLO8gGhY7F3rZguiNz1MnjJQHZw6u80iJakb549xQp6Z1pCtP/l4g66wylBDi1eO/u20k0d65F3olAGaXIdDW7Wn4idH7odC7M/5d6BSw99nOH2WeqBB9ySgVcbHhjWYMfxOor7l1kNnLgrwerX1zBn1rQLlTI9Lvots8G5no8gI732UvSv/m6kuHpxp/JGojOKfxXM5ACKLp7wKosmIQVC5ONjv8t7WBhx/ymYnuiCl6V8cfdpjPdKV6xzrN+lAYM9Xjho1nlY9GYhhcL8gdCyvNZ4gqNt2Jl5ElzEsMhPPV3IL42l8pV+YWflNWU+rWEz8j5rm1nJeyt6eWbIkhknPBPE9/JsK+Qlc/zZ4UOzwdSw0Mq3hp6jG1XR5vj3GBw7UzVl3IK+kIA==
Variant 2
DifficultyLevel
670
Question
The table below shows the relationship between the length of a garden worm in centimetres and how old it is in months.
Age in months |
7 |
10 |
13 |
16 |
19 |
Length (cm) |
253 |
254 |
3 |
351 |
352 |
If this pattern continues, how old would you expect a 4.4 cm worm to be?
Worked Solution
Continuing the pattern adding 51:
Age in months |
19 |
22 |
25 |
28 |
31 |
34 |
Length (cm) |
352 |
353 |
354 |
4 |
451 |
452 |
∴ Expected age = 34 months
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The table below shows the relationship between the length of a garden worm in centimetres and how old it is in months.
>>| Age in months | 7|10|13|16|19|
|:-:|:-:|:-:|:-:|:-:|:-:|
| Length (cm) | 2$\frac{3}{5}$|2$\frac{4}{5}$|3|3$\frac{1}{5}$|3$\frac{2}{5}$|
If this pattern continues, how old would you expect a 4.4 cm worm to be? |
workedSolution | Continuing the pattern adding $\frac{1}{5}$:
>>| Age in months | 19|22|25|28|31|34|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| Length (cm) | 3$\frac{2}{5}$|3$\frac{3}{5}$|3$\frac{4}{5}$|4|4$\frac{1}{5}$|4$\frac{2}{5}$|
$\therefore$ Expected age = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 34 | |
U2FsdGVkX18eeLixiCpAZ/DuQgfQdC2fOBs95mswM43wGVgLgZl0wCVHN3PG8NnkXRu2klP0skhdD+AjbY5ld87+gttYE77lTl08lIvKJ9fEd2Tqe7v00tlgOAkrBMe7y6FVqojoKlPvKjEKuFalvWc4Ua9IOtBat1xiu6G6vCP1aRZe7wR+LDuoDCPD24xo3V+WIJit8C5/Js95vJG9EwjKbxjKqn5y5p7gARji6iorGWLoBdodaJDEPFDHnvF8uRQquJrNII1Wdq6PhxdOVp2Esu0Xe+Rbw7oZMr77lMr6dkXou2CM94D8xmEtKZcIRIoyhj9j7SkPa5Pj5z4xR/RE8gdcvmagRfE1bvwaC5+3SCLCddJPz6yFwbyc7NtBhluyVpvYEZ4irmYdK21dPCBqKAGZm7R+LMNHwxsyFOTHYno5xUiY4r07e4R3A+BJSHhRhKHkOgYPR0xDfECPtehbnTKRb/cPJP1/jawY/V0fgVd7UYr0NSd63FFTONxRYO3oUOrcx5sL7tLkE48RhGTDaMr+sQk03j5nqL5iM+y/IRO9fQUtfy9k4O1sVl+xlcw0ARPh/bz4ZCWV9sXqyeLKmqBmCbOo1P8pVGSdAxKowk71uHvjligjUQLdumnIlIFH8XhJ+TAfaMYc5KZyplu9tkHxLUwauDxQAc5idlcIcIkXtchAXrSbbqPFyMYnt+eFFbpkWDWmYO6NEW7OQmzKP1VOBgIzxi6+OiE3rTol5XvNmhTsDr9DwgiTAVq95sATSnmDfJLf/HOAvSC7wE2AcpSdxma/m4Wf0o3k8oChv6BIzp6QALpHgOV0ZbczQHzvprYMwJs8PjSRevkzFVLLREv1uKcrIYAzP2nw/JMTSc6t93Ot+pk7tYPL4ClTIQ3hLKhGPgdaUXNbDOYlIo+VWvFeg8XWGm/9P4zBTK63yxgUoNkezaGSgM/INx9ZZwOQrVcQMMDz3w4xjHFcOBWpHdSQVemUFY7PLyqE2JSWbAQFYqxxn/7KT/UbLigd4r9UjE95XHaKCippKuMM9iiyo3EfXp/AfCD4gT5QLIeHSfSTEztKfmiRqRDOZUy2zrBTr6hXxSiJBl+9LpuhNgM1pbrRMqwZNL67oNj+2vX/X2T32lh5IAXLzDQeLrNiFxUESJC/Zap+DHE8WlO14OweL671F5rdnRztTr1MOvCQJBD7Oc5obxHBZvtMWGTc1pUgnTOMw8+rFlCuS94aLTmh5fZyk7hmY1yLv89EevOkunLMzZk4tSYG4KjSpE1smxRN8Wf6nZe7QbYLt/1x8bPez3KAeFOm+iIs73ymzfcMU+9gjW9XzeUKeh3M7lZxIfYnG/L1Vys6PhysZGs32KjAhVWL+Z0aYPA3jGTVVFg9NOyu6A8NdbBw3XXqoJRJ2FeGMamVfWZcp+ryHh9ZfNsauZgw18wXz4k1vTo1+Osf5gLWkNydL6pSMabTMLBHirwSkhCFLo7PCdjwJvTtvQlJfUAQsqK4bPcpLrND/76QgkjGr975WQTQIOXUKWdYMDgwUA42zPBpIeOgwHBN1dyEZvbA003Vjb/MQHlIqNtjURe1Qa3tTpprdAPh9GmhE/Qbo/SirJBxLTYUA33Vav8HomJLL+VY4fT0BaC1DGEfK5y2fBJwoucIPbRtyEhtTUO4YdwXTUSXBkLKdIvU1l90AMqM0209IX9Jdmttt0EbGJ3PuwPR5cSK7jom1HCDUPfIQb3v3lEfJMSDxLG3pzZkqdy0vqLwag1O/LYxGfPZS0jLb3UXw58A9vVrxivfXIsI+J7hP+BKS8UPFsPGKedGtW0llt0Jx+V7uMSOm0LQNy1svWM7sixSjtcWYLcACbyJ2AbwDUs5YfatJFUR7ITUuJDa9YcU4j9Neip0zDTx2pl60oMkjY5FAfXs5VwbJk8cUYmN7UR/KDL/88t2dRdLxVZKYW9xj4X3lcslmK7/6QXhGRTzRZEX/SDMAmSF1lA5eKraakGSQZMMc1PTdph2L27/mSLaBEFtYzWwazWOkFMwgNLZSJ+sL/9hzAIu9+5sYVZI/S+rdNExqszIAUSqgyjQV2Fce92ghS4KsMsMDLYC6xfqAyuIXbShwCD8kFUr53MkS/BNILEuHxwi4Nn0OkksnnYy/Cxoiey4IAUhptSpm58mYJb8pBEDUjGKjO5UUWDGeHMSzsOnNFT+bg2z1EqZlWxP1p0clT3fbvZZ/lzqv90z7Jo9J8KHeKsZ5rU4qsoGMahvECROhb6+dDG0C1XmlBU3guQUA9F3DqcvIFjJ7NOzeRty7vWCDURnSHku6rjIdOKQ7rYbPTm0MRzjLxsod5hZhx3OrrJD4RWMBMlYiUCoC0MRm100MdV8hnjalKlDoQbDN7B4SWPidid2jOhds77y8Jvv09WdGK6QmXYdZlKn2S3Dp2h63Ql0TmLZ8SAP0Zx1saRolMFDf3gaUe8Zs8mWzkZafTvFNhbElGQzPCHtpm+kCVfJbkLcxbO6qca9wWCA5VGYrA7Cxy7wAZJNd/XEs/jYC5ju+u1Oe67QZGxTQphJ0S5urFAym/r8hNyrVzJHfburWqdn3o8dpaAaA23KbhwGzP4i9xe89eHDXOgl7IDzzUSocdpSPpFQSXH7QlRYEr7Z+meS3kvvL1E1Uf7vfvsFC8nD9CxPCua/yvqke5EG1ho/7Txt5dCcx1Y3eaQIqnZCzl9ugMZA+w6vy6QVoNGkQuhSYJEgyuom0fX06/N337DZ15a0ZNMazQs+WQ6izBvUr70Vwz764SV0/HQ4qGsQlNJn++EZ8R8EpF0X45gjqy82AoCzb3RphXHES46xLsFfv722MYabaku0TH7YxJzVd/RRFKdJZ5vZEP7+XUjklKDR7af5snzEgAKUfIvzahV8c1eVZhPBs6jRCgdfejgwo92iiLHLf1iLAwTJRhNFkhVD6S1hIuzO6iIFzpsl5pScAiwG7UOF9NMzxqF8SMKidS9+rkLhoPzc7NrBSh4T011jHOKwLM8tPvlPkaI/I6bxzYYgKLUScb/f1mONiULgbcqD+97OIDS5+peTI5zXxK7sNCMZvWLRH/6A+ej+MGvG08eZUi2NjRSH0+Dhqf4haGEnR/InJ9MDDDJ8kDofLoXSE7OvoQMAfJ7ls2iAO9LUz+Z9R32ysSd769dUcdp7yq3CUIPrh589tutegFmbeQL2lgGU56jl2flLgUPem1ZneB9AIa8IhcK2rCbst9g0wS0mEmsiBya37MFDkP5KV/DkY/8+69Pp9VN1bpeHIA3vTJ+09IAHapvHkFV+Yg8n8DiVTTXE74rEkcysok4caD850k8GCV8dpr6MPY0qI/NBoTSThSwjvPrno5PSofnBIBW/T17inke8m1uflnZ45GFjgblsDRn/wZAHlSnN5lTa5Y0TwIet2xTN9pZbYIQT91WeJKZXhxU0AnBH1YGCxB5uvPDrwI6Lkp+DIy/k1qMGJIK1OZOU56W5LArXZQ2P0ciRd7w/T1kjyYjZJOROhXk/FnvNyMcQLraf2L+H2O3lac6uVGcJxahXlBiG9JCwi8TmK3vlWFNwjpfrjUzFYQH5Rl9mCyhFVnQ4eMGQ/ql/RSJuLWSOyf6zxiRL31Jvr8ZUjE++8SyBWn3FudwBelibQSVqaSHJnSFUds5Fkz2N4gRhrUNB/vFQrgoWhr1Zs0R/mibFxAW8UyF+Ry6eB2TzUfHRy3mn/dRtE84Ycshpkk4S7hqAXsqHxvCKzyfWRTtxFpHUaIVelynDp517j5kV92r7OPzVnm9xFhz51X1PEa0o8PrXLHl9S6FynvguyBB9ZBlfyq0474EaKJuum3xObc3Ps6HcI+Isux0fdS4xnMzgZXi7tcFOLvhLr2ctKO7YVoMQXByKQ4nDdEzCRCEshsos4r2CpNKjCI630YRZtzfcThAJ5QLhK6S6UXcDhiGZFAWNEoVFPahGoMoIaH2oBlyXVSWgEgxP6NIaAsXYIFgT84r8nM4wOZlyF1Y1f3LRH6m8rBVyJgXhzQjmfqstzMoGEEZDjEq1QwFU//CN4Muguqla1lGtIJnLp5NY4csQiAjFnHC9EsDUDeo6zL/D18r9BryEdzd97tOTLmUhUbK5Wt0oWln3sqDdF10sbAlTog3fISFFOWTBtGhGkO3RNPRbojAz19rax6cmdKuae1sBZCb73DoPKxjIQGsm4GbIZSyzl+4nWM3DuByqublWI9K8shFIlfyLalUv7LDUgdH5pvEpu6ee/YUaVrgw6XoX//VshC/OMU+Xx8WD5lRVOQw89gNSBLwddQAW2cvUKsTuaXgYeSD79LuFMJuz6xQubPqb+bhg1gsbwRnYzwDBLu0JMuNGjI6FX4ZQIgJex9nKuzEl9/E7tXusyrEn2cmnqN6gkCrn+/Sqmxx1105TL54t0n+TKer+VPZ5HXFyN/X7/eeGkADlgNMO4QQi8B2JmygSEN3ou65ux/J9XbyRfjIdNV3dQhibAiw9x5DR+cLIwhsjQgvgem3dyy563f5yJUnfXq1zD/WY4eHPVkUPjikpONuZUDxsRMD+eOfUTCUxOL8iUUvRYp1yrBBQvkXAbNG0PhJR7NmyaXG/sIirH6nc7kmSpvF1Jij9y2UDIcbRjhLUyuvfcCOm/V3OM3ypRb82hNchcm/tB2o0LxsDGOHRWJBod49jkDLB+etOVtYiL0e2F54fsXse20aauNQBRlpD+EG7ljy2uLS+sgDlkmohulFOSGYZ60MTUANnoOfnaP66HRBLsszjhxYa7u72NVCEOMpUJiQhDVLaUpeWfW/SD4JClUoV9K4Jteg9MDDEKf/JmGh328E28uxjV/w4+9h0Ri3IMUsZ6LGvUlz0yChN/V9S0ZDdHf0KVa6+iq/eMK8RUQppdiUSIUBejnwq0/MWNQciUWidU49/uFHgvhmgCZpa1pTqv9hdp9WCvAZPMe42tCPkH0WL+wQhQqX69u5jA33wNvZigqi+Y8YenWx+lcXTTWpAQ/wRf5dQisl/1uAehYQC9nsf+i++y+/YHmYRunUiydSkbm9xFgHHCnFKedwCjqgDj1xGl5MZlGH1Q4dyP7SEiVU5SygUf2fsYKDFEjWxZRY7TUg29+P4jnZTa69UfMitdlx1OaYTIOVAp6VzslVb66z4x974XOHl/Ech/+2VS2qr4ErcKAGorvysMlopzbNQalbyIc1QOPWljTv2nxdkKUCfgEZjUdhkJlGRMTBIOn7gltBiSvrjpkN37mYrcqUL/jkf3e7QWOF57OeCxyx1gLPWGHe38/itwsGQPxWm83Z8D9RtqBRA798BviNnWc9feq6NwIzQlMCGW93NFWGhv/Z9FOwJatcFWKIZmQ0c8UVYyDvnJVbl9p3t5IxRUgZp+bN+4n9Bu4UoxGzr7mryeP9tWWIsOArAyBywcnCzlgqiOygHDup9oUgoqrtf7zA9Vj8hee9a/6shVoZD3yMQ9aqP4n3sIAxIEyb8fATffrVqzB3jC19HD7Nc1WDV611QOs+dfb7ZfqI1Epyw1qVxCU7SJ46vXGMOZvZbya+LxEs4VD2/CC1B7TrJqGtLu9jCYEuP0GG+UhDVLmwLH2Zl/gPI0BbbBMzrfO//3hLD24y0RPZgdS06z3QkbqGzFmy9v0sZrpllB3Vwhfb4N6o83Xsvqmm9K3Pmn4c+BWjdd8u4WAIovt/nX0R8AJmXjb3rZoqZpYD3LxKbtxku5+/C0LoWHOE2eTylHPvriaKOr2Hs9PH8aNqUjFml/78iqex6Bbp3isS/qODRetnOqpfaoUh1uk4ldp2lr3LgHX0AvzvTmJOsol8pycoDhDI/bop6ZnH69bRt1tR692TRK+3GuPmCKdpNmZnQquSgBJD/Uz++R3lOtMnMDQD5ivrE5xgLmSv3F4NmflNzkglG20mvTWUho9Tv/2I1CQE/nb0Eg7VpFctaIZDvs+40UDnmzAcc18BlfqtcJXe/+9X+Wvb5xHdlGpGNFaDF30l90ZHyVDxhf3CjfQiSAAjhirTCy08ZRKr0O3qRD25UixJNQv/ypmNbNA3xNgTdw839YuxBcPtHN5+3Ph1MB5NvyEWIHmhahziTjWPvL3UUW3Jv4zJ/GDVbaG9jpH4fGDaR3ELw1lxVV6Gc9OJBNV65swkPoZyVO2ivuZOHncNPV0SjpgK8VcEeN2pXfAhUDURKPlLbwkoAm7BeGmpfeV0PUhXvbjdUcIs0gxEkLo/lkD7zx41yq27WBaLkpDlC3ZO2u4dB9GeFl1EZklAjJSVDc/7gPKGJXj15EKORYEBP15SraljrUltx8FQnqQN2jDvPIjsUtAfqe+xsV6bkwIuqBU8GK5awQCezhczTr4hKFtFZNCALGrJqsBu8njhRZL1fXk8z03MdoS+x4wYu36aMmTBZHeuuXLv5nzjz547DGsublP9E3BJOR60hFsoUfw0G9sS45JtyOHZo78Dr8OJ7mtSyMxl01/MgozfFD/XqAFv5RBmWymCA4Qn2VZDmh264hnG/mOomNPtpelial7qHQv9Ka7In2GnysgCg+8y68im311DtHEAi+zGTWRGCZNbmxqf1TxO39Tf1RIGh5gRUtFy3/rd+FOjGzjL5p+LbmrVV5Su8YjSR0iKM30BZUAg1EN5VM7VXOEZbhGRK/gGowcSsB5Zg29nvIM713HJZcDQiiW5JXpiK679TY9aHHTmKPFgtTaJrEwXBlH5ur+OQPS+Zn+DOEBe4/LVwffleVGRim8uBTQFJ0iz4zAdoOw2OUCzgHM5w0lKgvFSg7dBleNdjGa91jRgqtpI4E4fCW8Wi81BV+oK1hXGXOO4ny28HZ/z4lVq7o2K2TSx+xxNxj5H46RCgqvDo6W6FybSJlRAsf2Ca+5+E0WKkNWzBeOzryvNer1hDDywbYDG5j3OlUOo20i4MWFWmr2wxi/jH+qwSyxTmVNHjbXoYk/ctyu1n5JP+CfvGDDXLpiLJ0O4ISwa4Qx7QvCnJaTKif+O2cTl3273Rg+KON2VMXZNvGEKtN8qNitUNWiiAHOkiE3qJHwMoZP7f+Bl7gwu+ELxnWymidxE6nPO+KU+vbkvq9mvViG0mR34zZMPha61YPNXvNPx/pUQUMtyh+l5gZbjmwSa5lqWm2KlPX6enBBt4SQmMGXmCZF8j9IjomCQwQ6vOSBmYp6zKaJ2u0TYBzL9nLkFD6MjrrNiMj0abCqHgwd2Ybe0/5Ph8it/10k2ozDPnMlwl/71DjYeSfOv0W+jUauut8r320tuQ1ej6txeIo3Kw6Z4JFNZnrjrmYfSArm1CZWlcdbpvwfEKh+FZx7/f6+XLXl90pcdouMbI8uHZjWICDR200RhfmH3MMjIl6M9SWnGTqt+tV5sGE3JZZVHVF3wws3itX6ZY9KJVGH9ZLmlfryVVVb6NqIcEF7sWjho3UoIQPceg9yNwvhI3knVKIB0IqXpSVhy+Hvfa49TmNX95+xgNoZfmXtZbT4HY+SzqSdBAOokI3UpH+ab87eyF56EHPY7mJltzU8gM1PDeK3ZI+oao6zXyA9/MnyYDlpi9LF20/hSzGdNlfkJUQrt9gDr911/ENulsQ4K7opGNkEuxuQwfsanDmg+/KD6dKA/5+mYIHtsUUl7gvTcTY51g6dhvR4ZcpnTfHvZNqzqDmP/bLZFf/d88UbbBXIBwL8MxjkL54g1QVEjfyk0eg92fDdUF9kO0fYaTjkDISM4Rc13+MYX1guynM53EzUl3idzpi5m0PDMQUfHa9Fpcx460ACy3eIVoR4KWhhh1/8NRWyHVfIgRUOEhk0U6z5R44BMLpFA6a7lypWujStW3fJTL8WERWZMn03BNCYVZfraW7WnFUwaDRqvhgRlzVe4cg6iyNUbnkfn2xi/d1EL6FfPS2EDWJRDIEzJkAhNQlswMtIFpjmAUtLTKjYZrWMKemEl7TZyvDLu+1ErTd/oki4m97RQtQ8lOV6Wem7JLNMyjNUyNJT6J+xwcRpXRUfB7MXFqFdfVsc35yaI9y2mIe8evRf5HMkjr7yetSqPp8yjmGHi8F73HNZTZZShsnBTldHMnMKJXsaboXpWjEw8GZOOpAvPbfqWVLSRPXvW64DIdqT8WDzarQqfiH7yOtJdCduh16OjQQAYQOKmsD3B3nC67+Piy5L4TAzEPqy+FLYD9eMbeRK50Ldi/cct9D1ebUcm/rQpVgGOJVgtNeKa8gs8dZLpakyAgRu4HJj6eiluUeJK6/w3F80FsXlorx1sja9h8siFDO6Obj1vhTD1ROoMe2LwJ6sn5qAyB+rU72w67WbnGPSRa/WEMGC08Vwaayq+I7Qfi+jtNznJe3NI0Ke7wworNU6aTqj5k3f6P9alZT+xaVt/MKeUDppncKoGIPgsm4/NDAbkYa5pT8InMFgjiASmumV4tUsjHbhEnfClYC/Tji2NqJyKkCJLgN0uYSvTJy7A5C7GtXoFVK5VKaFtvRDKQdY52Cier5Ek2aIZDDNhzOszMhyILsYMoN94ocAT4X41xzH0Z1FfFyW0gta3jPi/VN13FKBHtWfUQpZJaQGexy8yQB7KaaKTGUNbibP1BvyVGsH7dI9fphBEAzzlTYV6+6YvrMyNWNBIXsdMlc9fNJtYWduIhXrhrkT/JCeOsBBm9h7czZDI5Ble5A0HIqpSvN/LMt9y8HMa/LPCUPXI1rm1E0jt3O0PnvLblTsMdSBRxExuizC8jAy70iVoYNfJgqOii+79GnocWyYWYob/QddyNBq/Xadj8d6BJQda70Q/yKB3dtrV0tML8Z4vwozMbdroTV6SD8onqfzu7AaaAd6EW6OCk2DdsKaNRk7dlXvDREx2AcgDIAPRbe4GfuapkG0Dl+Io351O8cuebVg3F1c9DLCZP8DyiXNPxlruMWJ4Zqab1RdVeZdqIwxF8bX1aqAGQzWyTJ5zYDyI8ykmsnoI5emDvPpBxXX3oR7CBUjz7JuUkcak9hGhkAKJWhHo6UkT8U8tnAA1o/og8JNCT70jZPTDc7Wtcng4KgnfEUATYd2YhHnoxuYRpKoyvUqL5hM5or1mLsEZt9EPPS86y5JR3L0HBYeMGVZ9pDywGvxLAQagIuDjrVEaOtODmYU3Mcml0FQm7uNY9faJlotAVYWPTysUndPLuuWIZ0KfwW6Uvs3duCvCesFvMXLRClRI/WW1ytJbL0npmwFNoBbrClJfum/wqR1McddZE8VVyL3WbxZ7wleimCvM4oNuJWs7S5jM9ePrvwD0CHdXNs77UXzEMhUHXo2zy/qwvFjc1LcuG1LLBsac8FKoCPSSE4Yy7ufgPr/RtBteeOyPMY9MOYSrHDcyeNhqVXwXBtn1BJbQt5IqHD64dvprsGRPKcZ+Js5F7hYXcpfe2D+tRuBnEN2bLTbqlWQ3Zhm6QoRJ9b+56W3Riq6+AENdDDpsmTWLO7ljPI6FInOd2xvXLXMOk8+gXSJmcTqeGIy0t0jMemNoFPUtd2qinrEiDD5OElLPfxzmgjvjc4AwhBPNTGIGiGcGDXPcAz8mT2sDKZaQrqPJPh4EJRuk1IJuuvNwZLPzpXVpFJ8ezKyuWiW3pE3svg/eyMAGUF6z/bjYjTtwfMzYy/JuPQ+ORAPg6op1TFV0x01o5IsY+Srxdm7jYF57hqiwKFC2CsSLxCum0u0RQGBCir10rkYPMxmsGR9kBtbLdi7EyHSdFCL8e4mykETEou0cLlAKTkE2Ln2+HLpApSnJsjhrYBarYHAPLa7Mioy2sN6DusgmT6MFwCpdmETmlN3g6Hxuusx2AKGvSUBJedR/21mwaBszRtcCy4JLyhrpstwWEwt9JDIGVg58lKbaAAkmTNI06oUtIcrG+A9YDGMrlxhroI5hHrvdWdick8tscu8a0wPtFiOR2WO3kmD7R3QGqg4u75Y3H8GZcpUUUf5aA7H83219Hm4ZS7AKvZoZE6Gtv+Jq4R8gwbxxc/3lWY5x8QtKT5HBWYR5mxwBnLeeAdU+E/NbbgU3wUhHLbbT/XJgUziguSf2VHCYFqDXgyhZ+TxJ3cdtqyXKj+5RlMkReCXvDd7siOzVoJa9s+gqkbz2LORfnyzl7AAGNB974PayP85y8xFIcwItehk7w1mQY1+KxKYLIpYNFcHpmmDe6rPWw7zj1wTk8KeeHkVU8V4x+1CTxpkQqFhP+/Ep3Tsm0dbFKUA9dD3JUUfynrRysKR9Ue8ZwCa9taERMH5HsuP/kfPD0YO1rkALA/fP58DaGyuXMbzKcGxi4kyxqEXJ2Ex/+1OFOSJoobL6/rM1x74mMRR29hcShjD/3qffcLPbRQJt8kQ9zmrMKyRyZw1N0QOviok0Ff6QOQI+k12MOPo/8z/WXjVfnS8zHXA6BpGr6D1VZDLtrD0cDQaoCd6y4x239Pjj93g6e0XnaIRy8+AF2BC5a7bexVd4Dp+Gvl1DR2yZzmoy0LF58m9hJnyC0O/vElSo2AfejbBLnGuxyaeCq9KY4xiIKXIlurmiW91pKg/mUpt0gDs6w4NoehZJYn6gvZAP9KQIbbbmuyrq4TmGOn9s63rqlb0LEvhh22vA3fnfzEGzrjmawDm17E56n5rFi51PET0YTjBPEaD7eGSxsp+YYyo+bb5eQMLsWHgwfbI8LNj0xUhZExQS7gVpcd7mwDKQODGsA1OwMWsjduRbNN/yhJs+qEszKLtXi1Bh7n70V9WIr9fTyPIzHoFR2vws5fqq1O0zQZxlYJZ8YTTI3kljpSzuiK5dODn7eCatPwus96/bVkJ6bdvrn97abBSej7e0PonkHx4sVMY7kxkD2uLm4QnQGVgccC8VarxUjFosg7VlLulq+3n9iO+x+tp+v4EHgsCaJOpen47gjdmW0HrQaKmDgpCEdFeix9JUzIuCPz2Vm4BAKiKzRAaTR/LYbpvFDhhbQ9eiFr+5deuZ3YLyYOjUgAcV53eLpGpzMIKNOslpjJroPhja2zTSozbP0YnRFm2V1USTces2qvkeE1hkFHPpI3AcNBRnQr6qFnJgaUkcSJ+yWmI9a9IPCjMFiAhI9jWm/a77llXWe5YpHpEs8qBfWCWjrCyurmBsbg8Yp1Id8n5BQJ8mgv140VHg7Zx5itAS/O1Bx6n3e80TbyLkZldUGVasPVKrKo5/+cbyhjSYqhhOKkvhUredlXSzAzHBE8l/8vSYjVUBquudJdiLf830kDHgxe6xH1h8px+zhgpydzLVPsnp8lM33bf2tuqMLpUgswKsUHlfQB111nM7qOlVIyzoOrrRIleGccsKsb0xHZqnaYAEBMR3uPzSIdxsfB2/1qsGyjc6fHu57ZyiT6RXmTA8bqbOvgmhxwcIf0UlZQc8OfOPVki6UWHgOwgfvMV/azZhZsOZNgK3yjKa2UYxpGOxDrl66PIBM8khrLk3zQuLry079ztezLPmG0380DxiSOlX9buSViRXJhgW3ZNcl+Wxwzz+WcjwzjzW1q+3GrMA7EgW1RIk81PY9YUODIqSPGKrXABYXbQU/Pc+bDYiqbPDfnuk8lBgyHVwN2L9sEl03bHsQ1j1SZglKl62gikfu3uRPCa6Z543EkLf13ll7YSdU1r+WT41O/zkwOSIGjK3mfDNj2x5vLByTAqIwS7GKx7DAioyT0lQCVg/TKgAys8sqVX3TmxcwDwWu6YW3MuKSVmCPS47T7om2nT/uRYkn8ZqZahpqrGv59RdTO7uv3i34E+DrE7nlacOvpyRY8RZFj53QmKL7V0xqJ+6dWuYNPEwMooEObVeFg2bz4nrOya7D41PhoOVka0QnVK612/Hvvl+P9GFHpj/LYgUVP4skWZM5MFr+UebOfk13LWo1K0NXZqD0QC7llNLJOclQEychTd93XdRPZyYGNvsaelTKYct+XaEJnZ6xmgFzVQyvJRrw7sJ/1eYB9ovBZgdGJ28rppI50arepJ38CXiFs3D7t/gpkGHzmlJk3nXOyzP4nuXuUNdTz956k55gNHRS3eas3RWjktnvL4yCWLv+0cITEkMT1h2JpWaSfNfqG1pthEPjKFnzsC0RQfP9AYroEch5K7q953a1ykxL3oKo8TQgICELEmd4/aSkIPVAi9eHVOst33Kz1WyjXl3vAZG1WGtDKBYRR6n+kkWDklwEk6VHCf75yXSDRoc9ojyxw2JlXEgi6u2gG68X19B9siQNPVCyZCVb37dIQ4ypXLbA1zSeKMVbgW2wfUbYD/vuB7RcHaSCQUxhJ2juntey4y3mO+tcC9lTjA/mNG9Woz1Ys0XQsqmneA1AS7B1dOmFjkiQiQflkRqGV8EOB0OOQamYveWzVEO9+SCiD8ETRaGsRe7TNUC9KUb0dHK3YAjvKODxaRRF5Zw4t/JkldTkgWio0ltRJGDwPcpZKfOVVQUeYsasbLxBLqSRO7lt33hFvLryatl6i7/MufZYWVZQP8nmCVIhgDuoSyIU8D1RJHp/qiQr5iDP418KSkTuQRwK9mLj8lqyKwHyezmME7V6vK1L1ClUL1x1axgevFXbsEu5H2yACLY+gqdHmHdmEPH0qMBJJh9EPVz512qhOOawcHLmYPnlzp8dQ/5R+oWLA7uw4isMrP1YEVnlHz/FDikKAi++t54mtwThFjIXMPHA4BFHkJKg/cr6qZH6vbN0kc9Lsp1KFAOfmRZKVCLBaI50AnhtLwa8EtYqe7UQ97TmXxfyhJmLjZdCSN0HHNtstvz7YWfRtmvFb7s2d04vaVylbGCPoXsspyyme4KRsSaLfXN/NnyBcfQSja5Rgsw9fhLzrgxwT/kmtrnwEDTHIPgoZqPD/vXKi1gdWDAlXLUptOb8aoCMUKEVOczEbnmBczzx2VD43aV76XlhIjtd6f1Upm7wT9OE0Ex5YY+3Mbb4IXn/YXR2B2VV8wN0ZRWdcbfIMdkXpfnmN1lUJcNu8OAFDfBWhhstR4PPNiNUI6QPsoKsjlu4/quwC3YAu5racB/g1MtR3mDehEqAxRl7DJW6aXI5R/9vEehHbb9RcjNDX3hoz7e12ROxYzjjX3RZDhnqxzU3slnYsboAlzSKJCmJ7oIPd50jzAymBu+YnQLZIpaApZ/vH2b4Ie9TfgFHt4R5qgwxtCjaiZFRfFlHToagMwOlKwSWd3CqEmMrj8AYw3/GxWt/r4FRr/KZtq1O81LQ4tb9PRLu3ZV04PKd22vyL5MhiphkiKYZLr+v/OmfTjZAnZmzag6WrwOM9P6PZk0rrM32qWl/q7Iu/RrCd0/iAAWHAzxl+0GBT6Z/WCuVTdxiaUoV+XIrvilA71X8tKGiV1scXc5bO8VDCoVGFFxQcm4W3hB0+BORO6tLu2L8F1Ovx7U/IkGsB3D03ypq70An6xkh9lLWiZGAeqL1jKnVLTcBcOavj8TcLJEdPyloG5zO1og5P64gXnAh0Gx4L7TVToCpW+hpiS0bxH2nHpRNxJ/XnaqheRiahObP18TSipWC//B3E3dXKRVnh/NJn+4RiJ4kxyFQJr1qula8+6zQW0Tiugw1Wh2j1xbhq8oCIp9EAjbQSFLkpSG/MUAfaH3xS3kA8aXA/6+2laMjY6oKBTaiiv1oImrTiJivmGNylO1wvPr6xD2J8EW9bUFPiQvykrmIJ+1yJssudEMPOUm/78cHRJcFwQpeVb27GSjyUoea1dO2Z276Z8PKfYVNBXeoPYTB00PswOigdfRWOLP/zJR9FKgIio3V8/po3/Y/qvO1kDclgkRd18inWlfeC7KFYqe+KqqG9PXAcZLVoCGatoyhpyFS5u+uG45732iz8Vk1ny4+Ge2VREAzYMtZvOgjCniIR6dyBfIZ1F80fD0HwfVD78uk+zbaCzVts3jKGm7w6RcCmzl/Hyofgt/czx0vGe2AUwt4hwYYp6PRxLUUX9XxDy4q/FYCUKdUY5sAqHhxrPm3Xzl6yHM2dO/tvx8yQrf+QcE4TFWrHftg/uY/xx4c9LmHXvkFkKtpU10jXm+kLUeskaDpMOfkky5NjJTufzifeoCjvuKdt/a7mPO38Zx1Q9SgMivim+vfcAhlT4L6iZ8XQMeELto8OE4oSCTE7iPtXn2+zaWIs7GGpIYzpp6jO+7jlN77ULGMfKkdDqAGcQh0+hwXPzHcZA+DHPqp8Hw1NcA9Nh+ype75Feop7OILIYV/auycO1djEVIvBaF1Vt/VDoY3e4y1PdFl4NVCqToTBcCRAJZmgF3HEl3JOUUp7FO3DoV6S8rxB+HdfU3cH9yE9c3DbhcmDWo/3qUsYuBaauq8ii65tHWdqnEbvPOWP+jRhpCw46AHk012Eu0NWhFNeNZHzgmc0E6BfU9RPXmQkxPBgccb8VjlEtVgbfKCbuP4CjQ8ET/UV5b5fQxzuCuY9nvw1DjtfXC6IrSw3TH7CcSF+YWRn+b4GlfBVOnUJMLiM9g5dmuIGjABFgN8jqYL68shnM3hwqNgrox5hrNJ+IOduZnfXAkkKYYT4oZjquHi33k+fzPnjRUSJIkeuB6NqEJsXnEpyXA7clTmxLEq9L5BaH+DgORbmEupKM92AF7u5zQbXsJip5L6Dt0XnD7CV9M91ka7ePHiS6mNAIjY8ZH/Czh2fCdEDua51llhnhe4cl491viGiv5LHVA8TpR9z8J5QmidHGWm8xIPDKUSyLaQoxagIVwNb442ZHj4LI0G+z2u4S+vYAPi5EGvsuYwJViEHXIrkLSI3PjuG0sPT2NSprjY456hAog/DrlMnh0ZDQmqyiTeUcuo+B0FaaZhYVYuBHnM/OirQON9izljthBljFzcKq81H5BZxcNo7ukWLDLWy75Bl2uLCYAk7DUxLNjeIgyuZjTyIFi3XmaF4/CFv1zXXd1Wdkow5jQ97KTbhrA/ICYf1AFsMnPnWBLuw2wVvbZ7YDIEwOBEXZ1fu3hacRbRn8ZPsO0F1O8yJARLBoifxMiNBzFRd6WUyU+VyLyUHo4rifM0uwn2NYh3/gsN4mGUmi+7ncMhhM3mTj2Lqn/yD81IEfh6CCbllZeLioWIQWGz4o/S04Z5jGcypfW/MzSgSiIaTyZIFHZd8lz8sPFx+g0Ht4RrTGFz+SmdnzghLzDTgsTAxgMU8HptA2F1CJFnwOPFvC3vkRMlS6JMhFpjN+wZ6/6y5VES5HK2vctGGasWjGfwFT+U53k9XyzZmD9QoEPOFxssg8VFsB5cqHevU4XClBl6z/qvexXzNdp9AoQN1+d2KBsgFvCBzTGBx2Vcy4Qk4l5w5gwmjilLXn9bSGt1DPAksf2cumWZr0oh5x6nOQ+Vqf0YbmwqTqiUUvE2oYq551rfibXuoCOKMjhN1Cg3yhSXoQ0sL83UqV+Q0aYHGOZBbAeWTc/MkCtJRHZZIteJOvtLISPUXQ9qHmt0IUyiJDf+WLKyYZAJ2QcmcduXjH4wCO37dBPGHUggW6WCiOIoOw6BtjU8znp6EUAoBJbOkaNCGP/cNBEB11xeX6e3z0mbugvGvoM4zNSGA/zK9SANH/hl7EOT9OIZiGDl1vhIuWLFn8BEWZAbbW4spS6h9n3p6crVDG4KLno1emHL4aRCsbwIWvbBOEhFwrrvrH8JXXQUZTW2c8CNo6sgAvk2TBJVcdjp4dJ9+YeAJGYNROjLweUVTNSPo7ZgK5PckDcwzBEc2zRpqFUHhEquD0EQ1kaD+3eDjakORlNvD2TDAG8ogGpA4+SbD3mu8zIMBvrFeqhGdgCPliwNqum7BJ5eqkVHRh+imVZ0QO12qQwEyGqum/ccGCg5cREoaJEVP+K6C9uu5dsONhp87Zu+tYfRcSiUcfUWHepStBi+tBqk8218/j9TIHGNzqJ5E8f80U2ADXH3tNf44nebCVjUwB8dP5n/FCBVIiSCmGYTGlhx9nRU/kOlR/k8V9CJEIL2Zsckp0ET6GCBddHKEwnRK5xRgPUtRpKtIM7CYGgtTWHJkS6Urj0VPfOUXKHmFI1pnxBkfL/fC9apj0idpAjT2CHwzYhxClqkcPZNjPtqshrNHg07EYsvQNGiBe+O6eauZO+m2R7ty535WzPOInyCyXwpTQqesqvasw6UVfcePnPWT7KtL+G4czHXKpd8jYFCH5/uWIfMZrf8QwQlWV0xubaDVswkTO9RoVlIXg/iai439uCTfWOI1V7RzWyyo3vZaqa6NAdBXlSrHO5CE5Ol19IBWPE/knE6M5BT4zRg4Pwhb83rcOupVzuXCY8FKIO4fm3sYF5hDCCSAq2zZrtJ5qVVX6lLN30HaDECFg6y5je6PAP/wFuiRH2pX46R57yw06wII/aYwmgpJf8R2GQNQGxljDxgjBI4YjkZRfjSS/lFOGxf8Rgbca1jKQCSYBR/IuJL2s3os6C99kWdgw3m7tA59sxOQ5A4536zJKdq3JTQmAbLHOGzksw4ftIqFn2TvXBY8fBPkja3mvhTPEQdtc7mk2BxX8lF7JSVfhEAMod6ukfuZRrOIT2OV1HCqSrK9ODfjqCvXlEso/DMTGAos+UTWMr3ZuPh13ZVZOsibdjmceRZ69JL5TNWko3ZVHLRiw6SbCqCUcI5rIy9/ufxpskkmEtOJjpG0IoaTTNOq+KhUM93rAM0Ovd9I0FM5GB838Fra7q14tshB+ra/8vHXxztukKS87qw2dEiFVBvlVYYJAxRLWSbmSfr4K5ABWokhdeNwOAd+eg79VX92uO/uQ/BrM5NDTpP8+5SBloNXOyrPESYOIVm2/pDyY/dYGdAbdzN5U8TDaXqCznhTjUcCyIYJVxmzdsUIFSdxeKi1jtd7NmAk7E8pVKGsxeJYmDRqffXFaSNa6vcKepEjSEwki1VNx6x/B7HGq0OkHUInOnIc5+y0jKtzB4WfkLXIRnJARkUkTgQlmkL9OXuCBlANLCI0pU3bs/SeU8GwtRuTzB2Y2xfKmdniUIN+OM3Db7JmCwoYDWFbvs8OaUkkro1PuLyQCK6xe3weHE3MmVKY66kwz2lXDLGt+Dcgkz0YRWCi8eMBVMLJ6f/N6cySvR2ZS1Xv0byBkmCm9vbyu4b0x726g25rnYtpDe+O3DZcpidd/aurJ+kiVYMQDrjHh45+NALLhdKs3LVgSEPG19f1JX2L6zm++J862G0ePKfjGgTODULqJ7YJ0rSo6eW1seS87RX+CaxwpoJSKLrb/3/EqCdnC30Zla5T5CWG9FAYSrhma3qAtnV9oD3pBpk1xAEWlJVGvTOxo8zH7WLjOyK5etpzMbL/ArHr0FDDNnP6Fd2wClIVumizOc7AvIyRIRlzHWLCQDxBPPboLtLjK+uK23nNGmEIICX8wzOK/yUzHC3vQrkGXJi7m1fhysLPttxHFdY4xit6Uv8SrSQgxIYHo7uQT6hDMHYy3emL1vs2vWByVdRpXWNH5NG7v3XdBg2yx9aY76JQM8rT3r1OKf8jlT3dMkWLZ06hnKw3ZsG5FXG2AxS876XpveOqvXNXKqDpvcARCCvE3kYIkVoBHlfnlc1ahcS06itBF5wVwwEYe4Mf8oMtLNiPNyUZ7RkYcx8mg8lWQ4+W9wE4Gz5DZSSTo/v2XwUT6RNeLx2yaOTnVfewp/31o+BFMGgGQoRcXqYwkcHfCL6/0cVnFpYlpCfNB6flo0/YY07VWj9J1HLCJe/UFEecbDS2QiAea6rUSGhiHZEc1SlMqU0z15QC57MNb5brB2Iej/UcTTYrXrwAPfLjqX03Kt5MEzcrstD7MfFKncUKfUEAQmLGdfIvDSAxXGt8WgdlYm1ccvp7CH4g5cbwbXEwPTilkqJnfaYZtlxINFXUcytfhFL6JQZXSTvpdDvZHp90PUBrJOhzG2tlHpwpb2R8X2n/RGleHfoe7ZYoTqPMeUoQyINzz7eisrS9ZNaISappPt/FyOP1L69dcSp1g9y48ePFV4Sj9xCNhpzopeMdHN73y+tU28ivUXo84nSjhK2rFDo3aR8LezAgZnnawWSwINMkWZVfnD+rrZOF93xC/UFOW2aXm2wJZwcRS4dGsDZlkw+ww428t3Gfjzr5P2mKWogxTJ44idGLJ41YqUy6V0T4TdWijbIcQ8PWD2UcvEj1HdU84Ah+rriZYBJ8gbP31mpPOzctABO8PuPml0bx7sb4dG3IZnwb6Rp4uHxDYg41oobmPQa/TaURv+v9gQQl6rLORyxZLopdIAI+Si3v/mrW1BLV7q6FWGySTIXceu0zuc9yT+1x4W7QmWMYVkXrKma9uwfqo6w37ZH7kK7HIPXzszgJ294x1mjcfaweB//TTn8e6d2jbrdsKrQqG5M1EqMx1+VYvn7jLTky2m1fG+lR1k+skCzZb3xDDFIafwdez3Gf0srTOfzbzURFm5E38VEtLX0EgcRiUf/uznWCyVi8yqVUAJcXaCnjyH/pIDTNvqiCiUgVzKIQQRz/TAfYtKYNXFIP8S5yzoI4gmFV0n5ERO+YmcZWDuzbLEJp9ttAKHT8lrUJkfu6ZwOAAVonKRlKu3lmmLcXOOjYO82Y5blYuuIDLX1HcDnOvi1wV2o22Ze/N7mXityIcpNb7tLwK165RhYpCiHzV23zUnI+SQmxGxcj+8o6SYmxg2HnfwNjmVwlb/BJg4BAr55XWokHwQ/MNRqS4pY6pS/mSL30Jvu9GE9qIxrX9AXlMFdhibElUDHi/BZ+K2n9jfVKREa5g7/SSN2S7XUnyBKqXv1vCj/HkUaGp5CjCPL0S4b/tEopQbcrt7KVwl7oS6Z5oJM2SQ5bwKJGYSpBid0AVLin/kW7vNhKlK+OGwwe7SRFQctXX1yhUCDhBLHIDQozHBCnsqvefIoFBURO1rEyJYkVxCrGrTf5pj8uEp+O0qaXJ7i3bXwL0s1HXGaEEVWoRWgOdNyu+LtMXhczu3bbCTnJ6sooFXzlewjPj4m4uJYadP6UadhVTPxapfZ6w2UKvVewF4bhFQ8Od+yvIx5IrekI0bNg8a5Bokv6JUDmbJsu1chpgdN/7G0wO7Vau92ImNhlLMLpLk/M36B2eNYLqMAHOqv5zrKnXQ5bulJfUW3UXZmUhBLtTUQxUDSF2wYOkNITmx1Zqh0sSF1fxhOHAxAl0WJ5E77pbRMkZlBoAp2OV0ELHdHk0H77cldRpeFEnVx++iUL6OQ5+xkXWunf+zGedHrnOrxCVT1FUmkPa0vIqu/HPp5Eg0wNzN/jmYPPLtO7+7OqJEzNNj37myOJltno2b+eM7f5z+P/fQ61dhYeG7Vnh5TRGm7Q60CWLxGrRfbD8pdI3+FNvFlcygtNe5kal6gxnYBukN+Q/RDQIFYkU4+Mkt8yL7xDvkAAxI9oASLImPr9eKbuY5jdYthV4+aV52PlHJ1YhbD5vScfSoTLW+ZxR86y0XF6x68jxB929xpqo72CYPHTt2kASFonkJgl0NsStmmQwPYKqOUrjAHZ2jICVVTahul+A7eJA3zjYU7NnjFyROW7J2SAXE83YsIYS3yQsGGtzewv2vguUtzIy9mg6doFVq6nEc07xh//SdBuY3x9zLz9RR5161vBMdMIzxG5FuGz8LJpujvIhwlChMbeLO2Ie4a0fYeA0j1CFdQJTpl0YERiMaETu+n8yuOdKubNknX+qAO9T5AN0e89v5OuNpef7tRa5+76INhIFnM9oe/fGhGO1kQkCsYgLOMLFq7M1tmbr0USxlUIZRLYBT7QivLS6ohWuyBLRCLGFbqj6BZle5XojnwRHBW07glAJIie7iuZG4XBFxf+nxEYs4PisZuashYGbRv4HPsPMbxphSFJpUrstBZYgJs6y0PlravyPvxp+geaDqmDTpp1iWwwxaZZyT4chWtuVx4aAoMO9ZtwZZLgSB6Y2nJIke75zO6m1fNDriR0+JY6tSjwdNFQZE5V3rlE0BpUiefMlxpwk/grgo6qIAkSWHsvjlxBmi43fbjbw9OkJkLwEc30KeGLJLlP0Ld95RjJG6imlne6EgvdU/b3HkVj2m6mtYGWeGRYUjHvkaJTMkbOvjJZ/9cLIZ6xdDgNGVA/u6/3LrEC7fRtfgSNHb+AbwcEB0Fghbs3bPqu39tQQAvjBUX26tD+sEsSYP4MEZ5m3ncrJV+ML6cVBttup4M9ntU3nstYfbI+q7UlwPM+vKBPqQpNy81og73Iug5KKiRGPHZskxnYDN5fJKFhwfajZedwFE/9+AGYc2q/E9qQxunqVds0fJFjXngSOyRVFm0jiqf+QCvxT6Pf98gZ4kg1Kj3iZEWxjJzePYO6QW8GfiuQfj5lrzvXl6IqEFiNaHtqBEziezZc7iyIHU5v+V9S/D7U//uZqL5NmRxkdbXe4kfuWng4dGhljAE7OP1v3UV39LouNdohxRMpH7reVcOSYcS/CXmAm/9kg943WkMtJl8z0ctWs/1vJLuUMrvyTvGsFGN4icB8NwHrKZ+tGDcOUMYFFFkI4aIjw7prp+3NrvzsG8LIujiOdL5fyg2GSWk1USfeC9YSUCL+Y9Pj1SIEC0LNe/ATVYUEsw4y38NaHKUZZfnHJ4gwWKp7dAzd5aiwWCBMWGsPEz/H2p6i6EbduC1MIuMdZBeqfm/2NjMjgJs3do1PL1VgNHHSTHQS/482yYtXOrXv0Xumeb6+UosDmhlPrslc/0ez1ev0BD6/wS297PDn1ky33bTr41HYYbes+IKp3jHeQXpr8VMb0d+vOq0VdGsiM/8g5UeWqB+puNIVD35i922TeQtXiKjxxOHBUVRJM+cfTQ+AK3NA0/GRfjzUS85mQLQKDGdln6egh64khK1j4wAuKluN0fusSNKd7oNBVOB6xuoHNev4N8Be8rjGiokOo8WVEWU6tZKIuNXN6w8DSZj7wyLZEEFNmuvoh2QJuH32ARAkfD+croVLNJYKp7AGePvfQE+9TJoIvafVtiP/cPMp+Fw6Z6WPvfdvn+N2JKEljH75sssekYL+FN07V7ovQOudoNQMSdTaUVhQPnpglsoPBcAOwj/4yNPrPYnOBClIqqnygtAIwcmdxBMy40OcvH4NBCeo/Dbjt9yrGsiVwq/RWc2EHnjNRNFFLjMdzrO8UmBX4rAQbWQR/SzSr9bay3viLvmvBj7lW3hvWp0cUA6aV6eQYQDxhOjUG4m42vAOQ+xWfvkWc8qCOySUUfZYzh2xBy/WJTAXPoQImhK41IPezTfLTXYIH5j42c0HZO6wg1Ee7e5fknKdqT9dA1CR3IXacq//K6qN3EY9u7VBQi+J245NJBK9JwCxdtiIeEfzEyXrsBTJo5GWmCDVFFHfM1/8x0fLl5ieaKgVAbHUf/lqWrJEPmEeIXPwWzMkVAUVB+wVobHm476AfTZR5Ie3TwO2p20rBgjCN7H/yIM6R4HAhP1tRV0agfMEvH1YtaqzsqhJILNXrK71XyJkrw9POeC48QLHKxOeL9ThGYssZdeGzJzcYkK35teIdWSotcFDGmumhQdv6/aMIkDZ4h3kmmarvJbIKAbQL/r+1AK9CeVaebhQBS2PbW5t+4hEVfJHegDIIoDePIVOHE5BL5Dogkc0KZqXQ/S9fCb9ew2hMj1idzNlPoIjSAnKaO0gQMGm6wXKXwZ+hxUYVzD/izPfDqJkSrMOorpLbV5zHeoY4s49BcCX5ITmb05+QyC
Variant 3
DifficultyLevel
691
Question
The table below shows the relationship between the weight of a sea slug in grams and how old it is in days.
Age in days |
4 |
8 |
12 |
16 |
20 |
Weight in grams (g) |
1954 |
20101 |
2052 |
20107 |
21 |
If this pattern continues, how old would you expect a sea slug with a weight of 22.2 g to be?
Worked Solution
Continuing the pattern adding 103:
Age in days |
20 |
24 |
28 |
32 |
36 |
Weight in grams (g) |
21 |
21103 |
2153 |
21109 |
2251 |
∴ Expected age = 36 days
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The table below shows the relationship between the weight of a sea slug in grams and how old it is in days.
>>| Age in days| 4|8|12|16|20|
|:-:|:-:|:-:|:-:|:-:|:-:|
| Weight in grams (g) | 19$\frac{4}{5}$|20$\frac{1}{10}$|20$\frac{2}{5}$|20$\frac{7}{10}$|21|
If this pattern continues, how old would you expect a sea slug with a weight of 22.2 g to be? |
workedSolution | Continuing the pattern adding $\frac{3}{10}$:
>>| Age in days| 20|24|28|32|36|
|:-:|:-:|:-:|:-:|:-:|:-:|
| Weight in grams (g) | 21|21$\frac{3}{10}$|21$\frac{3}{5}$|21$\frac{9}{10}$|22$\frac{1}{5}$|
$\therefore$ Expected age = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 36 | |
U2FsdGVkX18ELEnKgNmZg0R+LHL1NMTWTtfIBXDqXQ9+mvXMjTPIl7fAXMnjthbisEidAslnRda74UfjbOh492/38ExY7wyMlMoMoy8fdLYSQ3V/wlNCLJIFy9zJ0n7jxhTsv/eFUwygifLsG/AVNxVnGRfBZKFmXKOhZsh7wI/RbtxZJMwqMii4abJS3JdowAmoGskzFJbzJtQHWVX/Z0tgGBUslliNhOeSBpVxdCn7lQ5yiJmW3IHI8z2pWAoN9M+cT6h/80EZe8v+wX/+HgoHBpfAXP26FUqTZCQps6RKizBI7JtN1I0w2AKL+ni41hHNZHv7tM2+KCUz2oc+nOp2pAgcrmrM3FPeTQf7Ky6eLcPP0IR+/PCOFZO1bj0V77xLpTWbUiHdn03jLs8iMCHho4fFXia/fzmWif5aOH/VQ5iGXaT2Dl9vqyS+NnQYkhUjIim1bT2X3eLkcM+461in4+Ni3vYzz37zR7lNhAdk5X5CGF5EmQtYgFjJV4gibi26BTcZ8ipxX1k3M+XIluD4b5mW6AiT/MHOeGnVGONnt4odxLr5xAyutDRQwO+DetTs+Q45h6mzMxGwgeLpW0i023Qc9YS4rytOX77Htx5oSxNhwTv2oIOPcN797xYI9/hROtl5JSrTXYr0Yex3uBN2yAQBvZbaD8OcAlxs/rpoU6nK0oVdk97zz8CEl3hgjBbRhssWlPnRlRm1pdcU+JXCOWmZn4KJNVqON72ByaH9AnLmSKMW+pwLGgwDMbXHEyWO9SZtu1NOhUuloiirrkKJC/Igp4034foiitEgcLGIf5Ri0jcgqJNvCxQa98hE0KA9PClHeIuiaTRirTwE2QwHCr/yCZiZlT44ctj4djjETREq4MZQDftFNdBXlgMGbzzUfyPja92EEdAjUUxk3JTMOkR8ebf0f3E0yGoA42QWMzOlizNcxan+uLR1aDwdu896+hoajFS5UaKOofe+oyEIOSId9E+0sNs04+wu77T2OS5Y1B1ounZdGmMMaTlQKtDBuipsY9hazlBzZgDZW1uX49KJp4j6YIsp5ow9XnYxrjZyBB3ctvmsnPjU/DtfSzbPzLWLWKWKN270xbdmIat8Q/Et4rGVLMJbPa4yzvFQpgPd7jWDxb897nKhGZQZSEWZ+LdR2HQFLK7LeacCOk2Hchn+5TRChmH8UKucdqnyKkCfyL+YS1jeVXZ0fja6c7dBjKS1njhN2r5keKMRyHiM1imTCuDMGVJzLYstqBRRiPE8RRHp3keQ3kTYLh6+77CM9Y+X14N+EHL4hxLrde7Sda0tbtFTejUxSoxtEHgvoKhD9Lgu14FX+v21RxNgirRlfv6+Ds9/SZe7TbpVtpYbohblbbhb2SzmrztNo+3XCjB+0MzKrziNLP2NU2fdXxPn9CPf/lNTMUh9dM7+TfEROKSTab26dmlrioiup8OvlmRHPiUohC5Lq93IaMIVwKNzwjZYKGIyJjON6v24T6j21c9HG0teKvq2HHMHItk4xvcTfzmBUScsClyPHsHjsygEjEy9hMgckTKhoYV7hZrn26oua6Qz0UoJn9SFuJg6bnfZXKoNXrMpbFm5pTBDf+jSjnnihJlxUb+LR26j1WQptM1AycFF7fdYqhyNPfYbSZzfsrRLpgdupNDerJamNCDs0l0VZNq4zv2qGnnk0DZ+OR4L/iCWdPMnBtZ+rAPyLJFxHje1i/RkMbeS+fbr7m/FcPPziBMsNwV4oJ40n5aDGJ5HtL3i6yoxALGS7mGfEIFqXU8MavLvDlOSG/UgiaxvaTLTMCF72aEwD8Uvj/rz8mk79Ewo7p9HAcS58nU+Ac3QCNJLx748ju/JFcUKAaWsrcdgcN6aDYAY2O8hRgVBVpYyy7c9/um3eqHy29jnXMfNUD2nD0jR0eCnBzf6Q44NQfbIQbDZ/0se9SsjZTPRo5R582PyU3EXSzZfIU/TmIVSP8UdfPFqEPWEcVtxI+3wpOuQ08bUAgHGYyuGuDesAmgbl7spRr5PC5lEsDYFebLQZX5DM96svZy/oUNKWt/WkHCzxvwiUTvDxYPuZ6lX2EHrV+uHc/pLcqq6Uss4ZPpk5FtVAonG34pZH3gGopkbEXXrRdKVqsjx4IJwG7efsCrLdka708AHl/4PVmRLnJ+HPs7WzMOG/rFnbuc2rkEQD19KfPcpthJeNzVV4MOAUCYNxqAxg9qndJ8QBLQS+kbxvdXsuqX111qlm7LiiVeuYw897/T64Dv4KCNh0DeiwxeYTpxu8nGoX64+p6oEInMdeHvxkZEmby44ZBqYzmdsKGrNpNdqr5XIUOmd9iDjfdHfm60DsusEQbjtEqXfka12Ph/ZUkJY9FeoSwVjXoXXTlmhawrhOdYBWJ33Js541ViozwU4L7Nz9y3BQjAH/jkbTGqb/zhcx9Thmu3vv744voWtldcNveoBScn08q/wsd06/DSE/vKce38cVFuaiChbyl8z8qjM5BvPwUZtqcEGB1EOqPpwnx2jRR/3oZSSUf2T1pABcGoLMOZJw3zfA1W1ghNonqcFWsA22KKEUkYPuO5q4/lYRD6zAaZoeP2u+EI9lQjWuoNEZyX12yQZ+VvGDmIIHlTaiePCcSYwqAt5XBQPHrKvAsSU43YzYqMxk0CGVU99oXnjR3Q6yp1oh+vrTtcFb7HjhOwKrMeKcUSiGoFGaHKk2aJZLeJO1HBsY1Pg8egStlWfVVF30uObBXnAQ/Vc33mHPjbDCt5J2K9WU1MDt7PdAehtLHnI3abigttyZymeTCBoMymyKzEP5Up9Bh7WikddwmsTtKbXg2fr+7m9w4EeyRKUmiSVpWIMDuBzH7AvcnGUwAhliso+ZtPZkDhaKWNEuGYil+6Lxyw0r9tdi1w81DP/IE+Op3CDFYRAXoHjFvawzu3fKEtblLj2coAhUfj0RAabKrfdQHhHvE52cNblmGFRogjY2xVhUw2FFTiG4XBngvlpTaaNXcvBNYbDw1byd2JKXw+JzmKLMqXeluY7itMBjivUZfDRlHLbJxAQPSgJXAsxI41v6Bb70FZXGH4g4G5eDzCAjeqzg4ix+NJ62vuLz8ALeTKCPYrCBmmY9OkdI41ibbl4SJtoHZGJo3WVOLEvYT9wkWfQOcCqHjVsdkfYJzzF+6eiheVCOyIVenDqsLDCKjnennmY614/5gT0+FjiEeGNbVQyAleZpZy4nxNuJqc9XVKgbmOM/dx4V1z/DbZBU4rp+hjgsMVlhUNtNNKCgavz3YZnCyw33KRh1Y8k7LmgEsCsKLKlasVzvIq2a8MPNX+VM1hF+PxIdW+BpbLYTZgMzjYoZdSjWM+1fIloTEdq0TGvATMWwqR6l2z29KeQPjjiZfsoZVeRBdyCy6ZYn1AklW+Td6ADr9k+GQUaVjbjB41pimN5WF9MI1X1fkDN66sQofsPByN9oK+87WJNmrlwzAqHd6Wzk0sRQ0Z4bUrGUN74xNtZuCYLjHY0x2bcOM2jUhWHZOasOLeUWlEqDQCtv/bUkQfXC5k8zHQjKZS9KoI4jTKYRVOD+059yHe0bFk8q1uLTJBiQ1JvnzfEhje1sJ8MPzGkQ7rHYJtxnKJumhqmO47aSQjHcGHJ7uo8Sd2gsEv1jQxswAK2RcHlxUUiu55Cq3hsYpG6JYGVD2QZs9XGdVULAKwhtxIoth6ICV5uxzxwdLDhIKv1K2Zwms2TH5iUrdx+643YUK6Hw8V03O6m11JBThuR93LsySL453r2v9N43lXeuR+2jw9Z2RFp0nTFSDVpx84Bf6Dh3jiqqDdDZjuiUgrrUxa2LdPWmHgbr6la88JqzDGP1Try5dLr7OCjq+/QTrEpf1rFYusS/HOhWccM1Fd75dK0HzfUulUpFsuU0ceoOXqAMEPJGvxYogNXoOmHylwUVGuNcrbcGSdAGeW1te+Q3iqQwyCvhJuE5G7Y193Luprhc7moMVotx9KGXG7xieAJ+VvAoAA14/1NgG7mq0DbAl24mrpnhDjeAf/6Bg3Lex0NrZrOXh50qqbpmxOfB2CK23NWr0M4+zI9LwVa0bmJyVGor+tgkhFO9Tg9xlElTkxa6MzvS6eHwdBt49JUQZJd/z9MTArGP82GQg6fbGJj4KZFnRZc5zdtA1h+SVplNejMjLiHUPv0vW4kTzJCTxwq92vc50kP6LIo0JJ0dR+6RkLwWgiQq5jqju5VS53UMRakdkSTWPn3u4ADYm3ut58Loy9OvBL1mLoPP05Z3KGoaqm2z5d0TgyH2iewgr9i4Bh5JbOhF6CmG0XMJtgn1l/uAeDvqJAWqaDAeLKtD1XbgN+Ga9WbGl74mhWGvdKShD3qJQojMQqjPk8nSmEwvHRDMI6IO46hJymp2mfEf0x40lXHTUibw+f2TNXdKULtmOlVfuabD+xVtZyb4ZSjJ1f0F7cDwVUbw1xQBInW3NEcexn/Q0C9Sjykt+SeR1PNzn+s5b9BmlWZiKDnIi3kU8AX0EH3mBRdCU0JCWtjUKzT3Wbx62kKSHTmAruirLrW1AhmVNkly3UKSlX8WUO8KSnwRKX0+TOaQaiQBtOANh67ogOaP5L6EMT6kJkPlerFgKFcMbLJXkz6moSVqr4W9p2ZsJCoeEZext5B+XzXNqgNRDCbFa24gyUEP6TZPI6K9jNO9KjJr8l1j0+vz7OEv9tAcIl8B7ln/3nv2w/sx5r862Lfr5J5OMDlw5W8XPZQLn6SVOr/HVvAHjPx93PHBpdrk0tXrOS4FInv14cJU4PdcNJNeqfoV4DwtapGPOJr30N8wY0wZVuv2FCfJHi2Z61aydEPZ780EKt32pnPdpofFbNdRDDzmasaTnJ+mXpHUvdDtHwtaBYLtz2SCsPk54hqx9k1OE1HZriElsjDTNrWDYzRO8l898Sejj41xyn34EoXxTZtvHlLrRn0mtnChxJa0lr5SdAam9grDdQOlb3C6/b+ivOLEq0QNdZ31vIIk1oF3Yf708ao9B7RV503Mmx2c4kPCTq5G59vbn5GAtsVIE3SHn5wdh59lrC7VNna+f7vwxYsWsYwHN9wcqOsAJid2TpUQ0Rpbr/StFc31Tc8aFEu8x9IM4wnPOKx59WpTtPt2nv6N6lNLsNaGyjWYWQPKy9ACIsFBOs5G37LCfnHBTc5NeFNHQtpwNm/Jl4vVRQ7Ennv5aicZUDhoZBUyWwLdlF15vm8/7o78HPKbbZuepQM87VqPRzea14Hmc+mIgwQPgwp2NtC50RUq4KqQcnS5wwVTyRGf8iY8BLd6kz3SuO4iPYqk9EusCTJLqoI1x1ljVVuwoWBnOUTUyUpnobIodUs2P+agWme4R1oBVL3X+KyE5XHnEkSDniCdg049JQnHpFUh9u+/7R1wyeqcpqZl4ccwDdtbryxRd2CgGMBYGt5t0BDp/DDDNfLUQ0vA6KR0lbREvW00tQn2JZwRqkZHcqGJIqsWbE4O82NR1WX9jN1LhPqEN5pX5SRgyDuEw07QZsZWO9b9mSvIqGMR906l4gni3IJY/Wr1VNLIM+14BsCWErQY2tf5nMNDxjVi9y75BuWX7q2L4ajkHeCfKVPFGrgjwCCXpgSTnzDAizGtqs3J73EvLzpcFCGBB6eyCIKsp36KieuIDLJE54tyqREr60gnLu2ZVtOdP0ZaxgTwfYTncQiOOC1bcow9krZK1hsoXwP61S9N6NMLu0ZfU2wLz8ycC3SaZ42V10lzdOWMh/eX7xfl98vyItoGk751A5TTUy+rObI11HwfSsha9EcjWnGE4Tbb0DwLTH4weTegp3ndr5p3ZgH8J2wpCUZSE+xcRqzUdHiFr88lTxsSpYuuAT09Om3tmFvR1WTRo+3DiQrO6JpocmZk8lz3S6JS8dPUxqB8HJ56c5QvNNjvXJyn8SqxnHTKr9NR75IRkFB8Z8pJaIdf6pyQ1YGKHcIg0DUvhehXnUz0URfgXenDR7Pu4ro6aL3bzBc2QVLWKO0/l0kBffQXIT4rvtb48rJFPNQCNFWcoVCC7iVNLfdJqOELJArRvCL3Vi/C6h7VVRNJxlebslBOgtqCFtD0KcxeH/jOKr9o66czR/fdGFYg0EpESVCkcmUmcyYRbiIzoER8nON/522wZkv/jp8fCWOJDQQXm+PasNZRr9FYh4wt2o1E3yOtaU6zq15qAQ7Q3c1sufILg+nGiSIBXOXdXkhb1I7yfeW01cpRaZOWxAIbYS2SET4vcchSCeoR4HSb8Wo6jJwlBpL2dbOvm95z3BQRDqC7uFKD1BwFyRAbQ3SnK1fHADoJLN3n9FmtSe3tYRxYjKoqQhBzpQd9qjeK2KepbDR4sC2ZFdoShlSe5Vo3FbCxCSkIj1r+V4LlX5ciFrJYy/9fIZk9trxqiIEngElLRt49uZQqHtMCTqx/nXv1eq6KykElB/1V7ieQYGF8GTd332zX0Zl0otCQTjXpRhuD9QPmxtmdmWwMTNcV+aAqCpXkye0WbGcSK5YP0ch8snBm3xrsN+4eXazMp1WbfJWID4oaAadddQr5LWb7AJWfUiEyGbGGvH+B/ghOM8eNG02IaKh77eaJXbJ9a1EjWcKuNrUM0IA6RTFm+X7oYHcwkJ2waf93eXUa9eC5vm7Pm6Lsa0rCBfAhWjrsIz4bpPwfO3y5PXW/yxnG3quRp9ErxbRWcJwwRi1LnNC9xbM8QF/26b22AFG/zz+j+AvnM9Qnk19nvW8PZJZsHj6y5mbd2DOsE29CW2/ukWMNLbucGls2H/1jlzjbY6ThN97Vm4W4M1NfaPfFt+Z0tkEwv7XtZm37GzvbEefTBi8Ae2MjkR5dDuSGuU3lkLJW3B/aktdPhO5U9UQ5QCnbQ4StbSo3hW7b99GWgoG5fHggICLGSbB7zLSDcViKdHMxnetAHqSetptgWg2U31dzauMcOa0yceDicnuNLhPq/+HL4wD45KiKTZ96VgXE3O2C3pV+CvUvPie5ibfIE2uQyJ9sN4k8y5kgQnjGy1XCTzTNnqXhVMMYSEtm7Ct360XRSbBFVxDQqMnLts5TdyTXVC6n6lHLizR/T0YL8B5EKI7mVi4tpkVBYbUDEF/1CUCQy0gFa+U2DvT6xGOrivqOFgmffeqs5N2X5C7a6xd7H/jNwGomHcNLgUPK3DMoAmfZtKwQYdTLHw8rbcWI0R3ZbPpdjipHAtCt9ZK71bPo66EUJ6Vhn2kuD5Ln2DgbRN3s+ZVpFenR9dRPoXzGr+cE+O/pWeAwQ3rZIj2to227iHDX72MKX9rLNg9MLG1auJeO4JOo+o3SLoMF3xq8XpHMYHo0FbaByLyftx/ABOkdAQUH6AyCWiTuodT6gz4WvN4o9VCPYiDxo3jn/zqniKsn+y7HSYjEhRnNcsmCHy8w2Sb7QGE9ixomB0ay/6ILRG+tNqPvfkV70R18KrEyQ6qKRhUV+wy2PHjotOMVLNQN/uzMMkea27NPOKOeqKFL/uR4//5sYFLTYwQxfn1pPNuMtllfCH//+1uZfs43PBP85qzrDNsDth8amSD8CNDZwcNbg29Nw2ZXLjQainLCtIFO3/7pn34OSipwiG6kFtULLeijvfc/s57zprMprayJATiurnWkgesiwc3SU5UzTooIURUnCNOfCs9fyHLvgFn8g5a4eDWaH/28q6zSsZFM985aF6dA/CTdubsY8sOa6q6KQeBYoUotg5HEjvaBUUkkcdZyOjoX4/NgSJviQAeuqBJL2DQTirsM72ky7Ay62cxBUYGQo9gcbSi5nQHRFZz2v3AjWcMDkrguBylfEMG6U5eU9Flu5AR7EH+opPu0lQNz41uRx1ew44s8TjKbqlOUxkkHUE7E+A4TauRACTOrFiCklZQ3V26oUtNFct1B7k0cBfwaBMrThyKOfqoMjAf3rp8Tbh8DKZnKxcAS7fb33iFqXF3zpjxt8r9SeSqiXu58bctu8qVg8OB82jldICtRDc1J33Bl2ToBghzcayb6t3iYF/urfu331IE9lsprtFrvBxer02+4cV6aP86AjKBwYOc7PPiW+2aqIDR5Nz1b6Dmv2DneX3PyhV0N1qaInKlWJGPPNCjcAdsMvSp5gBxS182afNoLlr9GufYO2v8Arv5M/w8V0mRgrqEQ/9gD7jENo7EY+DozVa0G9wop2jBfgB1hV/B4TPgm3fkHow59nJHq3lCby6SVxb5gDvoJlHqgNt35qjt8wo4lSCmzIJkOSZd3tG1f3XB3V5iZFnFFq+R2yCIazoBgqq7gJxHOrqpbMA6TrsCos77fgXAwkfHjlsnebMZmRnLA8EQMWDX0XbE2Eap3oVfs9Od5kUAwAH7XQaYNOJtguKRLnyc2IjjGV7WYQfBdeIflFTgHnEqhwl8vDVdnahtFm9dsxfiqyrPtvYo7nbtCmqJMlqeTt+bFN603AjwQ8vBcn8TYEpJxxLXanmjItyyM+1O/OAavB5RCFrk/fbTRhFdxO1GArabpd4DZ8hIn7LUjWnLPnyr7RNs23zbYYGEhF/TRjXkGRW8rVJkHenOLXdpBLylzLbhnRvK4faGMMlKfjnTAT3tbf4wQ9qBIt/LpGbS4csnh504iaqkA+QEJKreR93qt33q1pguZjTdLNevM6yjdp7gqMqACPqH8dWh6JKW73kiIZQO+LJizV5vlVTPdrnYu84ClE0a/O4uRh5uQB2kcge3sL5Tq55X6uN83m7Bscmy4bIuJpbB4zVWSeC9WIWNPA3elZtyHet3fKAapwD1rMYMy7GUxjCJmZanthKuGsJQXmyfg+YfvE0SwtdYqKZTctYhkwREcr5lnuvHaK1EMrnu1v3njLIWSdrSt6li+epDhdQuKIN8Pvs92T5bg3LDJmYUBjmG+xfg1mfLxnRb5RnzWQcA+ef1zH+VszjAwD42y0qG1T/DYjBvKrVYkSj7EtI3qlylJTIb/JWMj/anknwJ6eJdvCqLLvlImUHVXuOn0hzI5lywwahRz4jY7pS+QsdedcnzjwC5EYIq3bGvyNZCNuxeJv8CFz6657rEdNMlXb/S2isqPoqhnC64naRuNgi8PAGBRtOAN/jctGJDGZ5spZ71mn3b3zUKiKkyHIsgtnLT5fNODPIjE8lEt/SHt8nXcadY0o+Y7zCliPI9Ymx9jhlz53myF/DYTcEK6852BtwnKdmml7w7osD5+o5Lpzv5vZPoxdk4IKee965+FdzchmbIsADRKLUzmVKleRBvbiHV2q7jF2nxbAflIuiMY5SE/qe2ijtEWfunzfYJF10qDKzhUPEyxa2LDf01/sD0pweDuyogkKiKCfjpcDzz6yAXoOTneE248UT2RefWMMqQlIMbP0U8jEKI570b5zY9PrgMIsugWX7ls3GbmsUzDf9PqUJeAmoj14mh04A3N5SNx46q1bWdTTFqyzTibmPKU94iMVeQhu+SHPGVsHW2+C9zte5Y8qLp2PCrh8ahYfk9QuISU5uT85uYIxsLTuk9CLzhfGQYDCjAYhE+g3EAst3M8UXOfUjGvxDPr1zt+CkY0Qg7/LcaDm0WJglOGCG8oGnRr7hH+5KCveGHWAwf5fTCLY9MmJm+HCAk+UWnXBh07D9AcP7fx+hFWFacpBZncgwIGnJBUO3/LExqlswfye07wtCfRZiFjQPMD4fQifBRzHy442So0otQYqsYFL7dOMigSd+6bDL1eED2JZM8pv2qctTr0tvZ4SDPbIScQGVwdDML0hbsABkmAOPsgD6HXo3YqXdNKQ3LQVKRG5tufc9v39I1NxKf8tFA8sim894ubEtbfik3FBs6n0jCdoeFEiXjXOlcvsezeU75lL2+iAg+MW4J9OCIiAsjDQJ+NU5RoDp/rXMJVXZekg00CdjwSwSoJe51vK1yVezceTds1lwl1aVTnXIQ/lQtWgaKXHTMvxnDgnbrmvxEjZ3TBwnxqCP9nTEZc9IkibykLCcA1ovnytn9xnDT8lBB5HuwCSJPfGH3XSh40BMYVNzpQysALZu5MiYJGo3ZXu4uXZK4KI5eHHjXA90hPbSsoi2c9TLBxlP3iQpS+LHEV5fKvt+H5TFLXyHFKNRFOMVyVDD7H0DGS0lSpaRChqw4dls6wEzNPO90dB6RrjfmgFimk7nrNhUGUTrdoVNCBNLgOj44XdH08EY+R8qcaAcnuuU5HS7FclB+NJoD6nk+x/mViuyAq7bqei0Bi/ycjl5C93Cmkh3OKexfua310syNkXOeuaZUl1IQM4v65kTYVt3No2J1nGkMhi4v9NZ74GAKsY41cX0a0c4GXfbMeZM0FpZDVFFwfB6/V9h69chVYUYVbyyiwlMBmc3pF8Yu2DErUjeFR9UEhp7zvt371Q8u2OZVL4Te0fOd/XB60F5lFE5VBAZ+gYTMLLFK7HRLDWKwaGaxE6FfY1Dtfad3vDhXvsUpCcmqjSuAMRHt6hHXbH+gMSbdXE87Fpf9vZAH+45i3yprM/+p+drWArtgdBNDjSaE8VBkT3GW9vbw+3yfItSzRpbETnbEMBRlzYakfT04jxYu44cKGSEeq+kr0GcxA1YYWEN5p42ftY+6xDkCqg12K4fv8o53rRXdf91+XMntFWPul6bwOmDRYvsNsyxkRBNO7p4J7wmyeyC3xvKKTIhKm1qHSYKHqv/JeTzHdS+BJWpJ01NChktmsrTJQthfzFm6OIQf8N5sL9lXeQI8zh71ndKtWyKJfqJTVAG5bXiCPnyBgducJOohAA7JSYHhUj1YK0DQlIxw5+e21SZ0sGr5ccOWBWblNZ6N9RPwpieYLDTZcqmL0zsuEAUb6ynMIMgFF++Ss56er9sbahPz7nmc4K20rFtYvOnnUOqlq89k9CpzKBoGLpVKhMsvQoBqB52xHpMnwnMz7SM8rQPhz1QuGLES2iVPHl47HkZ9s8RilYMSLSYeoYgvy45ygVSQp9T00iBYuXGn8WhomL7Fhu5vXv5y3XOCUoOpnME8JTZ35gxxOxhr4Je31DYKfzKRLJEV8yiyNoVQ8V8gl8/GGobs2BXhMp6HmUYRsStU8TGwSboS3PKdB/1BGKCFO/WKVOJ6iz526BhbxoiUxwwUSjKw3Oyl7FMaAvE6oq/ZrGgQbo/GU17H7JpN9gUQb/WAzlruemmL5zP8s7c5dQLLfNqOJO45QTPQ2RCBFUAxBbsrjS4Hc/kKdhptAsiUaWw3XoBztl377tVz15sWWFS/86ZqY3NzNCxLct/rimqRqCc1VuCxM96HAjDXyjACJLsXkiqhxDFYx7JTK/CGTIf+q3lj93S6bkpBJSfOJHxrCnKO78cznrr1m9N7xZoStVOersxxTzj8dVUDlN+1kJNphvo48vLXqb0I4ZXe+aOm5B0ezkJ1V825uXXP0j/LzWqYo4ZfoC+++JBQ2pApawYiP1wk0aE2OTYFaYGJWzklD1WoaJ2xTg1D1wFFmEbbxRwIfQ4+sqJmzQjI+49S7zba8DhJkLp0w8ccKINhDi1w96538TgusX82zOW4S2B/n+o7R2UQM/Vu/GKidcfM5B4FnbISO3cmPdv2qgdydykXaXN0B245Vh3Li4JgzqZ97iqRZqNW1N9x+nifSLVQxIaeGQC1TTTZLa/VYCdXhrmxIxGJKczMleRYFnwfyNqDvH4yAMXjfTNN3Lzlf5MYmgbCl6KldHiZW4lnJvdKjxZSaDCfI/rc52CmHvwKH3x8nX/HXAbw47VYVRlFglvqrDKD/T2U+0sNXJaMhTiIjK0Q+jXVafNPSziuFtJDlIB96PS6bxymWFq+x+aRLRQ1HW4ORm+4mMnj283fReGgHUYbLZeRd5io+U4cTCg9eNh54Joln8FD1LmchLIejWRYLa3osB/DB2wk+oW667IORdqSPUbJNTThL1Z0jSCIpeOc2zRQEsg5LeuQWUygk2s797pStwfhdwv9r+CPGuDksNYDmNaBkaoiZqyh0InLRruiDWxjb2CY+3gV4fjS7Aar3hf3UCK95x7Iv2KgIyuPBxEc9EoL62HEAX2FP8HUHMsp4UDxeFH2SqMYpUKQF8Ms24fBoafaEXYtCxEgahGbleDpfdjGG5cJT/Mu+NZwO8FSEdCP0uvcXK7EGJREVGpU07J/DHgN378RPsb5Kg9EtXVu2UYXcBq9t8MAJOSLgh1XguqOM4ujR7ZQaUtvY6rDcY0CuBQY4kzc2A+KXvRRja+yh8bzECI/m2q3rJzloxVROEzqo+Ln5DnUw8GonES4/Z51aBIM+Cr0+nGrvdzKfpwvz+9TkXCDBxNyuGBKqxYuVZLkJZaDnpkL92ipBe9VPdNo/KXrKwnY1nNjucF01U5OhHQLRg1HbL689eY4F1OWTd+ZvF2epasVzHOqTpNQigOkSC/wsEdRIoR4Ax4knzTEEZJrO7E9leHfyBRepqM/MKbzDiHBOB5o9IPpQzzbn+zA78yUFjZUtuIPQ4ioiDg5ZH1aCFW9O25o5ksik/Ic3RaJdd3cI+k8AbUqYGMxFrgK+JDK6aeiW9Ybm490piPdEVWByPt8LOA24APUQW8fu5bs4cFNiRlPRec1E/e1q/GRoy8cQz3nMHfkWgfpr0SXeYrEuR05HuNixbqUpNANhFYCVw0VO1LS2Y3TVkjKSaQuTWc4SmqN9OQx6PodM+PZ5XWB85ctUUWgdQboS78316GqP9V0H7qqRPz9ae90y/zROgInU3Jh6EhyRHaoNgsI98HUMKKOOzK7rd9bdwoDAJsbRbTXia5+sAAoSLppduktXlC/lOsQsigb6+JWWcLPBwot3hmSm1hKYb1C+4/1Fk7uAqhTe+6gkX+4scRNopEA+TaOYfxS7l/FLWus2MYsReOopy6J9Y/1EPgtIM02ATIFN/I7Iw2HRqAEHFRdhz0oBNjr7fVL1Fht7OiNrR8yMW1A9is2xze1PB2KGjCWM7jtfO7AoczhX2AfwhNORO3sWLx1ANMUraGOB+Ix9WVgcKWdHwUplsS3hOU19qRwVYUSIalDw68u+98MyqRkwIWXn8DyT99172d5zLtQGY78MtSEoinTFWPPrKxGh8xIJc9SqtW9f0sXaUAsPkSu40MiJBWvRda9cSVwFSElWD0bmRr1+uUoTJh/Hhn0xmdh+rX9gM39PHeVY0sA0N6Uffba4QYySeT7PFKB2b50c+aXcESD09dCyGWvV2yaaGxAfwkc23hic1JetaSUFbXdiJo9dOqs/vn39Ux3AQuOkDVzMDd4QTDZ3MEs1KTcj/ihJYmBhiJfZhmWmlAwKPxjuoXniOW5GZMeqOC617VxlXBDDLaRBWBpDAnEKbY5KMfOAnzkfNpsjHwv3dzQ31aRUH6HnZHw8YqGANqSD9/unsPsrLqeq5JmMHm5Es42/fwqBxdmtYeOgRL66FyxIFhxqpuEQVvneatfY3sbXV1rNm6vOXeqh7bO5qVCTU0WH0lFPFJAczIIJQZl2y8p2RTfU/RmJtGTVli+g/Nd/JETJQ9Xr5jZBxJrH8tSyCG6QUJdZv0LUomywoLIqNFgTZfvKfUE/O1dQWBDHpP6yvnlESnxpLdRKFR8z5dqmleLFvkzZCWsIMu9Pv7Ae6jhg5tdFtQRk8qX8t3jW+/bMo5s54Z2+PhAn3m/VeU94RseBsD8j/mZ8j4DYDss7lnU5h+SjxVHqcTMKJPEdew+92agn55R5uSx+dZIs7L/xCuodi/dU6+vGNNkYaZPZwAVfcL521FVyrTmmnhh6BuJ61IBnHYTCLYeiRExBVAbFbuWRJhkCZtpLqMrc8hu0jZEz29XIeU/JtXvBFjt9qGZ7kLx0JSwfJDzCz4BgIE61MsEryOuXQ5dUZrBrZ1UDwdw4U2Tbzv0ENB6UOIn6ZhakFtZICcWM2bs9PWxNgGaPuAGzeW6qkpVGKKoiENqpfYYP6hCvXZaHJ11Nh/UlFbwn/D4h0vNUX95mZDX3gGJLbGcIlwkpibKEQdfvH9UQMwhEl6LWti8UoSsxeectKnLesMf6wWSfUWvAbEciCkOCV8q6GMDYXd/yMMsu/+/hWK+TEWfxOeCj6bPMCIU3pIJq7n2cHkQlV3L2E2weEwdK9GQEJy+tnQJ9EQasszckx5I0M4FFDJeH2il7AR26BnBD2TY7OnfkG3B+icgZMLNZC3axOTbWohyTfVqyPjAZlzcZJvfIhfT/Q7/MGLSjzOViqvFUTenaOgAlq6fMqtnFpGiAYzSS0DUaryblh9KW8Jv3cIcjUU7mPUpKSDAQpgP/FT1yPUHDzYEQ5gkXU7DX3NLofjw9ZanvG6vnjwMp3KvxSYLYGNhQIozWKRTDkzl8YWEBAybYxEEHoBjUmcHJlylKMELB8QIYgWjPk2zmzx/j+Ml0ouy9QNgGHO8OpFnOwK+s+PndvD02dszshpMZyU2XgEBVeHkwFWLLz1e/+zLDj6tM8WoxKefGPybxEcI7tdUc5X/+0uxvU7nxwYx+TsD+fGIDtr5eJTqdeJiccWHXGb5F25mMGc/NFt9KZoV02ei6YwapXjwPOVM3W94/JrmoxZhuRnD8rqv5rdSqJoHA78nUjV7fokdJgb9PHPMomBQGIYXaFOojnCG1RCQauUicq0H7BmqdeJ/igc5a9f2dTyJn619qUqOX0om4+0e9mxzcw9TeXsknoZj02PAGYKEYGbWnWBlPno87AKxZyyQxinO5er8Opb/VrPb0NqcYo0N3YKxJiLuIZka41RMXeaMtQmONNTdqyxJc26mtPY4P+UFr5AK22MDxtKmi1ay3zFyDulcJgzP16b8SYeVz0qzu6+KUgxJWwK7uMX+RGnFSQyLl3AQp9oJx1W4IA0HCEXnIkaYlY/nhrX49kvcH1UT8V/D/p+2lKCu2Z019oRwtKDpiCre4g6h16e4mmk7SiYgUNDX3zmzwnaYwfUjnXcZjl5PxutNJrtdbQ91OcYutbSDSvSI10ApsAd5fzm2dGrLYoTExF/O3sXvYdXjNqUg8EGLi/nCZZetMD9EE7S+6yB5D6w+4Gn3C17A+OsxWuNtjHFKXesOwDKF1zfex7pgla3gEkDYY3KlpzxW1jC/dQBxCvIUKClrzs2deBmrsiBS1eThVOnGQ7vuYFXWDdhvwjtfS2mUBp0WjremABUqhiplV5D6fdpS70kWBfH+oPhZmy0kYMzHHE1t8hI9SXZygWohlu+kkH3lnW7RTCAXAn/y0xoVgflaacTOew3uD1MZWq1BBKYYcuy4E5ynaICZCBxagsMro8e7vScdB1ppnxCdzdj2yAUUMNz0M17T84P4NeY5LLbK6N2lDJaQu9LW/4/UN5t6tj5H0eJgSPCFkdVoMxB9s3CJ/LITABCT9b18TCFddL9mosCnbRFweRIIoJaKP29dKl/+hhu9Eu6wcqcdC9fL6gQcyo6dlx/9WS+Ze7q9zGA1CnN1AbZbJnsOXGFyNcEYtpCjLgy1nxoXivgnhwNtDsKpSv5w8egnhnsX0ra6xK6uXxn2WdUUOsmDPkpp70W7r8JU5+kF4RLLWirDl4JCUR11OTWWcKXZFcwTZSQTTY0JpV8Zod3HznKwGlEzsAwAG3rfhJxrtImNwfNwxkohlZPmxLIYdStjwOTxZJhj2vq2cP8DqrQtpRbHP03Oi5KTPUakYv7Y4aeQpVFzQSTIn2pxu6QIgOZQTs21F/h7tsk6r0/j7N+o1isvE0Evf1u45UaG22XjBUxsDa96G7/aSEjCYu8R6e0lCcma2RDYZ43tl4QOCD0dm80DlXckm9sT2+v/VAEZCQo9kLAmA2+a2FezkjMDwmB7nsqwuiPdtCn8fUFwJsvTrh44tCqv2paIu8FVbnaq/qZ/MujxCDOEAWfvi1n0KGxWR3S51r3RvwS+1i2HH87JBQU4L71mFKnibIhcWOPQkuHMvGF1YZf9XBw4ckJwDqUn7h9c/AbCE1rAFrIRmhaDplVz5jT2R9QnTnTDayopgaIFxOBx8eE3wG40wtMURpNL19BekwLi2uQjZapP/HuPOH4vpCYIpHFLfilXkg94jcGa8hnzrKVpqcT34+bPwkBivS60E6dbT34cKMOfzk6DHUVhLJhNhAg9IRG6algaoF8k1GR8C7u7mJKlNCJVLQ/k3uPIWSUgvefK6tP+rgjdyKnnKn9965Oh4lXMCOOq9VlHboSw4BL9prWW1u/QoCwchr75+hsYbKE1WR/SrB08NVVVtmep5yshXQaJw1TWKSL4hmyqV5ydO7JjGnKdzWnACfCkWkhipFanriJIbkGif5cbyl/eiTATkd/A0i3foyeTb53ryxl6qKUj7B2CMmfiDmDFMlNeE4BU+Mx+lDWUncsREps9FU7cYqXXAWD+9i2+tHi7UESq6o+v3BlxcJJ2Dh3FVO/66XmsOAdBAXqXLn6hdYcYz+L2gMDQIiRPTTn8akACOAK4ITWcWJkvRL5lmG6PEZX6VBOsYePvyR4KdwKp4F4XhnEii5PpULzx/a/actuu+NIIzXeKxvnV10w2zOmjKtXBqI2v1CYzOidOwTh0KuOck/8NZC+PslBWxP3m4843qmeXUPtADOzsZVxSQJ+43/J7WxKmaf7WQXSQi1S/hzTwGJ1FqyW6uc3MrQ5NkoZEBF1G7xjnk0oFZ5fmQ1fKJcsiA84M4Gq6gwp1TYyPzAdD/zsSoFrGou0bh63iUhn4My61aFkcwB6dCy3Aifw848brLFvsQJUhftjHVMrmeU5hXUaGq3uAPqY6cpAp8Oqs9nblnTXeHrC2thESaxsCz2fqPncaz4DN81CrJvxQv6NViCgpSYgh0tl5SAVtclwkRfCoXflmvMa3o665fmIIHoXzgwaK3UxhRmgP8iyKw86axYzY1lVNRDMCoOspYby/nBeyiO2fO0dDnyAQEW3L+7KsUjm4LzwQn58La02LFeS0UJooe5T/KZJBIigyJPdTJdTlrch8Npyo1VTHp3Hdb2Sq5r+v9Qfaig8xSLD9DfC5fFVL0OlNaF7PUP8BZz83ftMQeGIl+O4C+jwVuR/hnk5kb1+oWGeMt8Y/CiiIBtCD6f+dqfS5ScuIC4BPrzEMYpHCZL8miP7wC8nc609Hb4UxoWhCFLD8cBbG2LxvdfPvOyq1PZf+wjnRW8pVcYoAL8bWxXWmaPbJyxzoGn1Vy1eV5xddqsKICrAhnCbG3Uvcoe6TzYjKTztQ9LVpUxElrxkitWc6EuEStwkjGV7tgft6jKMfT8fCKcZbTVP3RxLn45spemfwWhkHkJWRITN3SGJgBMA1lYdGAcMd9JuXmumrILNSLAfIDN3Nvt3T78CE9N90D666lg3bOzTcbR2oSIXiyG+t+JfxdASQlyBjFOyH8WMsaMg5Vdjx96N+e/3A+GZLrSGpPWE5BEcuATo1kD/5X52SJye+66e1apPlr5FA9i1dZgzT0++FpYPFhhaYjUVAyCaQf+RGTVX7EekUB9HUGSqKEyHiD8XlasTf8kX/N6w1zgJjYBDMz3wVTfoVLwFZ6gcMs9LWlk/HU/aAoJCeUKUnYHdNZ+Pi5dwgU+PuOILRApAGRov+Np2Hv3DqefucVAy1nkmxr40F1g4ChFPQ6kaHiXtgrTLH+QwW9H5vFEV8qE3Y6IE+s5I8x+ZEXR9DzV7nnL8ofsm2aCGHLFJ8l+JojMAEwm6UsHksgg/AxlE06VTi6AqoMz5cFwsT+wxNo39sEukl5/mG0iyqGlJxwbRDB28thr1frekgTMEKG5Sn90FMWw21acVtS0dtJRX0JU1yvat3+DrTNyCUd1t52JMx58jtDityV9UV+jGM3kXJY6+9C95wFBjk4ZwCP5yM9W1V22vIAhoOxDfsFyAk3imc/Mzz+QdOXLnD3XeHAvkG7e4FENQkFmk9Q+ND6slpvi7JHWRlU5Uxd8ZQ18AzgynFwUSRUhUi3kDilCVtJ0tdswknDuYxl4zk2V4BZwr4aROE4o4B2Q0sRb/lIeospgMJhjlpgSdnFJTKF9NRsQ9aKGdmmD5L3BoZda0zeh1p34nsiizw5q8BtmGuVEW6LvpAYnubBptldt/Rsdm17MxhvUZurj+CPUddRSQOhfafdhmFiQ6mnIQFJ8itPtAS+o3BoqBsuUJNJSTwfZgUZlSaWIm51gsQHfp7KLB1hitXEZlS3+5GPmUyAh9M+dzcB4xAm4FIc1qH38QyqpD4C+FXBXaRkLE3fFgdh5NtPl+Z33xK0eCzs/nvS10FSH2c9DukMvQomA87MetolQP52uCZMHVmf1E1Hg/baWsyqjB6JKWGCXi9eMCRnnMA3rYX9nvvEWmPL3WVaMRMCPaHl63NIywMddYz3/zV9txvE12yncSG86I2h4jEhnQ8vch8MTQmEiFfwKkfAzrprA1IW7U+6AQzYOzTYkHRWFvchI62UmqfmlKQHyrQsmQJiXhZHkgXqjxdaNodqqHaCZm2qUsctiYOjxvLXI7n3RynM7nq88CAINF5FL/ZliuBps6vO+BQOh9wck/PgPl+/N/FpV3u/kQKifRhMOAxQFlkq+28N7emChzc00kL34mddmE52w8jn8Wt4J/BkAM2UxQlejqNHy0aleDh2lXrdgzGFi0Stn3fpdr+51e748b0BdVADslHBDZUiurVRHBdfj/ShDQZ/OI4c+Q1DmSthss3YCY5tv1L6SlU6focjiXd8ogg6i9h5czP9NQPfKr8i/QqmEsSMIK0JQSE+NFAh4SOB2xVvz5X9mASE+GCNE9yDrEF9h7IA/8i1esB47de0ecSYscSDTj0Xxa1YJBmbmQ0gCIAU2XDQP40uJZ+2O5bsyY5tC7yu1Tv57oso/8cfjmmcjKiBAd3Cj8yUx11fPFFQrOe830M+BKvCdJ7YrlFDUH/gi02t6nae7cU/obmxsFb8bbVLkX76WnKI6omTsP6ktyY1cZT28zJMuFGfcwR7JANzaBO+QkI95fGfApOD6hlTERCUsxQhti+/03wNq/aajb6Is6mPUJrapB5z9t0zVTnIQHHn3SscXuD0S09bhtUI18B13D9qABjyhHrQax8Bze9MYS/blwkdRwFNZ/RwnOoFZplfUujV5aW82B4oPBCKCATz9qpz20XS4/XivCYBD04wo06h3ZXQQQxd4MfdIodSW0LVQD7yzRMaRcgQgQfVAjiZt1Fz4l/gf2/YzsGMQP0fA+NL1bPGgRKHU5pv6ZW9iBHD5sMMi5hgFBeZ9ACotE3Y5SrzxdLyQL/3Y0XFzUVTfsD34Kk/zlhnQsfb21rN3I//oNEOP1jcGRY7Fht1t7n+An75fdVfVPLw84L0gobF2vJ2Qmva98N1RBHKSvwaXWdcCNJWPNy4XLqsi/z67/H9KaFEIF59JU71VgrwYCBYhJAeM/kPeEHAik2FiRxSdfzCz+4gnHZvgnu6EH/q6Q3RX6OHFZOyIRK7xgqiYcupDWPAGW45ZU3Ins+sGJYMLNCGwPyByiA9E1E6yf/5J1CS2bIZsqqRrUGGVgYrGCBcEeAI4mw6uywrq+TfSb0WwjpVJAnKpLUr+5U3xP3EUU8KIp91YofgxrR2RiskePnt74hhyMfrVA6BzjPkvjsJg5X4QKN95+9dxcL72SECx/Gde03r2K8q1i3bLtAyBux4hHk6fJka53TDzFXhJMe9yZgGzIc3Xl92FimR5TduaxhctTbq6GiIGO7bBnvib1HLxY1Kmq0/1Kux1bDcZU7+6GlA2ptJhSMHephDkqULCYrvi/0wwXKNVhZLhPQQPYv+Y0hJU3ggYe+Lv5TjDCWHCaIy81HED2u79pmY43auxFEHw14EfbAZ16o0+dvtq+2fq+uRawBbW3dB7FdTDw/QiD/tlyiaB37LANDhQYe5TZCjUHzK0avlafkEK51P8oBdTfcvijOJywXPeryTr659Cu4KTr1rUkUeC2gdP8u0BGCZ6bsCKJBP7H1OsEYl5b6okcidKHv2YCPwmybSU0FUleV2zmshuWmZ42yN5K1sXcGDgdM9r/O95RdXn2dSgQynF9zz8N+TzDKjttTWLtM1uZ8XfTKi7zEnAxwu5gxruBpzkYWH1CFtPcIOo1DAWLsNksAkFiL1uUPi041lWg/yW/nE/J8Gt9geeLEIh66pGIh0zL9Y/0BmbVz7sez8oQmreVgKZyXcvY++xQilwW6Gu7Mwjbil57Nq+NtIv3GjA/sQnXAuVzkSHIvbK/sl6ec/yDlu0lqJYy/whqbY/MYKz1t5pe+sODPPRFLSfKXRv83qox0lEI1zotNe330K66nrNfeKYzNoc9PQb4ZLt7jwNm92PG/kTW+fcsDiB+LKDUKozM//rB8XgslVGuzuhx6QWca9zOP0hTQ+o6Cd2dRVl6dbfAgX3L5CfJcrkQJBRMDS6xt2PxgDc+Q9VTjDMGUXF188DNL0zTH/v70AFmev1C3NGvV1pfO6bas9N1nRIkRQVgNZBu2QOMAdM8UKqPHE0T0ZGLLeAEQjGhxN4AuotyiEVQdOC7p8v111Th/IgI21k7INE8qXC+m1mhym5U8gNeoDXYCIvVJmZHqPqMWfnOBaKWHU93jO1Clsv0I6b9+Gd0ZnC4u3B88rl0ti+hMhm9N7TvRmwkg13mu/pbb/sXA4j3khMC4Y7U00UZ768wpxrMdIX083fmF1LJr665BavTUjdjWctlJRZ09k59s50RAjxJSDOUpkuBVA1IBrq4f7zLsMbgqKxHjS9CfgmLMnimlBvfwxbJx00ecusatP09NXbDzvPGwFGpBBOHDIVXpt2p9PPO7qCTv5Ry5d1yA/en4/owUoLTo9Yqlut+F1b98rX7eDo3isT0qZYnGUdAFEmlMeCKCMRxk3WqwjQgtE4pGvsLyJeFdaOVLqazlctT1pIpotKVSTvPhd6aPS39bTETd9Qfauzg49sLDxNuzQy3jTX6pie7Rq5ZDZ6JMpGY+/o1WHvPfWVaffFGpGIFgV1tJ4fvNmCVvjA0mLC/JFp/nRqIkbRyLYgyGZVSS5ivwE8BDC+uIqLyDhgGbux7qgx5goWt+mtLo3/tt+fCb0aE9xDu+pXFBx5XWHVccPpjM0PqO/RAFqlfDbEBzQsg62cTzs+Q+jBxtO7jgOzIo+qclLc2BRoJiwcY34QM+pBmDCXGDAaWKcG7Lc2aezbOnr0qlkpCyPJl8DGB8X87U4kDwaZFps9e7Pt7R6OsNycF+v+AWCu6Jw8lHbVvqlTZh6sIZbo46jh4iXOoBmPQOnIeAXGXI36LOkrB9cVxlrUsRaGn78Ye3ybj6ABxi0IE2+ka7VctzoPE0AXYPa8nfaoN73kzMehanqOpk+ay2SJeDnh0eyYyW
Variant 4
DifficultyLevel
689
Question
The table below shows the relationship between the height of a seedling in millimetres and how old it is in days.
Age in days |
20 |
24 |
28 |
32 |
36 |
Height of seedling (mm) |
4087 |
4141 |
4185 |
42 |
4283 |
If this pattern continues, how old would you expect a seedling with a height of 43.5 mm to be?
Worked Solution
Continuing the pattern adding 83:
Age in days |
36 |
40 |
44 |
48 |
Height of seedling (mm) |
4283 |
4243 |
4381 |
4321 |
∴ Expected age = 48 days
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The table below shows the relationship between the height of a seedling in millimetres and how old it is in days.
>>| Age in days| 20|24|28|32|36|
|:-:|:-:|:-:|:-:|:-:|:-:|
| Height of seedling (mm) | 40$\frac{7}{8}$|41$\frac{1}{4}$|41$\frac{5}{8}$|42|42$\frac{3}{8}$|
If this pattern continues, how old would you expect a seedling with a height of 43.5 mm to be? |
workedSolution | Continuing the pattern adding $\frac{3}{8}$:
>>| Age in days| 36|40|44|48|
|:-:|:-:|:-:|:-:|:-:|
| Height of seedling (mm) | 42$\frac{3}{8}$|42$\frac{3}{4}$|43$\frac{1}{8}$|43$\frac{1}{2}$|
$\therefore$ Expected age = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 48 | |