20183
Question
{{name}} is a {{work}}.
If {{gender}} needs {{mass1}} kilograms of {{item1}} to mix with {{item2}} and {{item3}} to make {{mass2}} kilograms of {{item4}}, how many kilograms of {{item1}} does {{gender}} need to make 1 kilogram of {{item4}}?
Worked Solution
{{mass1}} kg of {{item1}} ⇒ {{mass2}} kg of {{item4}}
{{{correctAnswer}}} kg of {{item1}} ⇒ 1 kg of {{item4}}
U2FsdGVkX18AVQLcLSCcmUyn+f1vrc88iOJtG0lvvGtWLP/vCLMf28rd8A4feX1JF3ZLTd3xqQlfxxjvQH0c5tVK+CjsH5BC3XEHxL1GU7lZAwPrbcZIuxUoHTp/Lf9/RRSKl68ubVTx3LXDdEycSSBg1KSUUh5zli4bOAPLcCq83SDyO59l771XE5ILGi4syll9WQw+3BiH6zDFonVmD8w18BII+0Jc/HwOLhin8wUsZKLkIimcBi76rW6To/loODlHPKDF13OzcEw8sWLOIrdsbZx3l8eR0SHx/SzaVMzF1TGO6aqfSYUxFN7Iz5t82QnSystmHv1Vu6+mUhqaTssIqQ9Ol18yncxs1LyNn3fwYhxloY4Koz6KGqzVb00AF/3B0Hyo3lGtF+Ny/GYPBm2M+yLJsHUMeoouklYsvW2IloOMuNMU34/SK9ZlaBwC7ga+LDqnv0ZiCGl0I3OMxD0bD4yNUe+yG2jkKfD0Kqjvs3zTfMa/U/HYoDEyUmIGVZ5HSkOV2/KPjnVI/IcWkXTrLooEo2uFbxSGxCjiIREQFakxKbPiKtYAF6+H9f+KaRI3tSq2niqq1wFMYkY1SE+fhlp/g+M+scVhAHp4vBbR7hwc2/WNi7RaqBOhpOv1TEj6bri8U2j2bkdwPXezBeK8MQi5hWFWYvNbYE53ss/nE4xozFOHr3hSqiM6AN+oia2lpqWwyrmPfuz72KdaxCvk+rMDDKxWiWMQN/oipGHXeTcXR4xmlv/LiLpK0HMka/YWsLB1T4e1CSFoM/jOOJN+HrPX3L4Huhjl3Hoeo83JPKLCUgE9S2+mSlFXAce1hHiQaSDwIy4zcoC2vWr/69EBT96OShHVCqaVtgwBcvanqN5xMBLkbdYgYqn4LaVFaPSO5pJDnRrNq7Q+bew4Lh7OKRkmy7GPFWluS8xRDvFB0klZ9XeBf18U6rZvyfCZ46zyHm/2vaiQIirVsGpZ3MIMtbHpp6giW/SW5e4347nPnmUIL2icczdjQKxOCgwe4klHYaAnhvx1ajxBDgcLHIIMCMyL0EFplfAUPY8A662d1fUBLnHsbKnzVdjCcVUo63O9O5xUmIjdPgOFpVXnf86vd+OtlWLgNNhlJuy99RYevPRbgol4HoARqZGyNvPhMym4kzAAG36G4IslUXlQshzMvuWlxYO3G5PZGYRXuAHi/CWMow6pW/Ncur+8UH2vm4onXNMWSAw+BtTxZhCs4I+G4BvwvWL1bX05PeuxOfi/KXRm414XBD2T9Ympvj5C8NhsGI5nNsUiE3JpeFht7Sz8d2rerwfjRMvqTpRlIqH5wwJ6i3cSRAWP49cPHa7AnMcYD7sG81zuxM5RDTX8pF4xZsoBRp7uafD/V7oi6afEgRFLEzoawO78iEgybZBqluaryZGg2iVql+9dA9GN9r+Kw1H0WzIM8g/cXYGQB1PtPxKoCFJVQy1dF026K/eYxFjYgnjTNdW/w4XzRgWKPbhCrBu1YUEpehQd9aQsquGs8KRc0FcP8a/bs7oeXVEIa/0syGz0C+xzHJQ2qcc8gGaVAcUqODfZJRPjIuYVj3f8psvbKtyTvPduphFM+RR60obnU/iFpiRvrtZUcZD/RpFAbq7QkoWrIKJXfv4nqZsh9ieJLlSBDJ7/qWwyBB+Dzz0hWYJYPdA1tLBZE3U7v+ig2wOMoRvnMCZTJR1G1UzV2ehogBha2Qq4SBPvT1SjBENsYriOJIjIxlTsk/I5pun4/XyGdZmcfaPl3dUVXx+N4pcjfFAEn3W7i8139QsHwTDVybDGz59+cJo0qv5B9QGFMCOccSDWNS6lavDgK4YKItHTebt8rTFNH2up2aaGnFW5kYTTdyFdYQnJBmcL6aokDy+eLG4OIwv0m1PJP8pQ6yMPfe/6QH9jHmYVtR5sUwG1YfHvN+HkIu1BOEvlzo7Iw3sH3yOWi4oHDtFt5lIVMV1MlUPiq5GIK+9E/5b4ps+ifqeXIlMveHUoeLZ0WsN9wuCHMaDhRspTSrN+q/6azNswvLVvf+3Zp0+9qpitfRumSqn8AMLju8NXUwibB+xUbKWs80nu8SzF/i85XAI9VqlJ3IfJ6Subfh39Au4xcxXM9KEMEJ6+IQ/4RvB1bJ5sq8xd8s8e4rD3R4LOlXEUi/OaIN2jZIrV8Oz/5ox0f08enH0HegGaHGCxUDXAqhPGUNpbUiPZeMbqKgwTFuFhfgfern+YyFdX2y570DIOUOq7ru12cS3LRY6y/npmVI3yLuSVl1nOGPlJmNrvL4mS8A7xSC3+0gzaoiO9z48ouMbUPjh1xNwEe9pvOaMyEx1s89YM04CsgsUuliotU9MyycNDYnlN+4vLUhQE3PY0oqv7L7leII1RISlNzlhEQvVT18NRdG9zuxIbArMPGRoy5rSX2Mow//nMvGS9EDc7SKLKwt4jUfr06PN5b1reYmhHNXZqpVbRfKQgEdwMh7WQoLVWdXOLoaTGh0inXkp+kTX2xo3Bkr7h9tPIcKydgNKYGkno9twUMXqUSklvliAwrwuhC2BlfteEOODh55Y/a+bhCBlLGD6sIAKci4DQ9PxkzgSdD1kgvtIx3ZAVobgHePcvVYjsX/ySJ9T8qJey17ULJCHd/16xmwKU3FjvXfOk+OoTCH/qyW3Yrj1EbzF7dFBA6cc9OocMZIevoCmPXp1J8mSgEldJIWsjh05nxVgFwbwFTQZ9ZCQ4q913+NGEKrXujyXTzMUXG2dd49vd//hZKhBiKyoTXiRIkJa8VOzvCNDPanOT5Xyi7zNWtr9bxNkY3DkJLXzApzF5QPS+T07pKHnfPkt30RrZ+kf6pNnuUspFTH1Pvu5Wh3D1kgizlXbBCDThZhdLG/R+gqQz/BXpYMQkw0yokZbvG6jVqMamfiqNS6daNRlkqDz7fQ6bvcCKW/y8BfmRXkow2Gum8c2ni8qqVpO/u6agG04omLLUKgh8pN06hct13uX0O2S9oxqLTQQoXZhE2j0FtZAXErw/0A+5Cq+HjPVIahXszpAqgwyMjGZNlSS0iIOF8HuuL7GItJYvyF58Wiry5xlJXSrIM2B8QEUnfP/Hp3RUutKoXrAu6KEWLLOZqZ8VQ28Q/00ZuW6izkyXFCfiVbj9TLb/Q8qBUfil8KlhWNlv5PjhnPwK5WZiUvH3EnBy8Djx8E/NwSBUFuWoxZvQtYP4w6Rue7D1mfU1B64wxUbGkJsFLA4J9aiqZwDY2jLXpp9+QXK+t2ThHc8kF3OUmTavjEDPHasJrPpfbsmvaZJbhKUfnKDUZK3yYtvenHLqRNQxCoEMv0DxMcXc9puIXZuW7gswJ4RMS4wU23CBSFGlVznd4eS7z5UBc3Wf8A+bYfU8zfOru+o+AKD3IyaGvAyo1qX+2owe++Zn2Wzgj8ZQ5vX/pC99Oc2DIJvNh1APts1+lccS8o7MukdECy8SR2TcEwXQoaeXq2VN8F6tzZm9ZpklysMotmTJnvIO3/p+t35Ewpa38NOSIgcy+9YU0YzhEKkuQihnu2q5Eydxv28ICH+bfYY7POErj2IBfyMWo9XQV2J+0SE+3LbgbWuAGaAUeLM0lItQkF+KUeOy7MiveNBzu8oiRG2ojf8VZQtDS1WN7aXJKDPNm6Pr7kouqVtF4aEJ3+6/DJGNCQREf9JFLsHCZeKBsrx2RJhyrbyU3g+ZA00pTnIkXWVhDq6UNlIh5IVEk52uBSR8E24Y5XkK0gH7EbhvIky8+D9UhRPPSr5l9a2eheKzhkjIAmzOP5/r5ylalErGFvkWNGO/+CsjFEzYT+ea+szo5lPMFtDA5Scm9SSqAOcoeye6r6cBk1fIq7u1ciHvFFHxO20NJ+anU8AI4P9eGRkKYhrOXaJGc1F9SMOMjd/qS9D2Dd2EHhKqPHEVt6yXQfXUISJUFNN24ytOlX42ICkKtfLMeJrunzHOxl7nUkr+zgMiXL7U71PAoWIxWJPCX/4WSttqkyoSiO7FhJb08wnhRFReaoIHIab+CYW8j2jB0zgqmn48nPVtwuvReg1cnoOnaOkDsSaGjyCMRhqGdKU312pc5SwnNrh5GPR0N27nFeeC4ith9Tf/yMT+QvCCHhYJbXvX5PMy98Uhu9VD88faoeo/jUAjSliLyOT5JpYJsHi+k3Zs1P1JJPTkYfPSeMvtxpF5zzxKSg1gE2BTCkkW+jNoO6s7ebB/RsujuUvmqmLKB16DHTV/UvyqK3zkTER2q9LibZlsqczxKgB8+YNm63fc1xYxAUnuoYeFYS6rji5ZHCzSlBwgeK4McF4XUBts2Bq21YV/87DAuqHyb+ZdDcMq18K1+EH/i3FsTcr5elwWeXcy32obxo4h0gzqTP4C6N1StqkuDaSOGtrHsDbkcncUQCxbrSXIa57bbyaJvIPKIGEP4HAKjOPOPLhymd07Lay2RT5Dz3iuBexxGNXK60y1Zv1takjCzoFYrCrf+z+RdumtrwEKKZd8zTu5RF6fL8TTBtDKZo7QvjoH8BNIo4buo06XnpANoFU37M6E6UsN0FOAo0AJknbYLiLO8xkfgGhGCLqvS9iZDIXjwCePRTjTMz5Is4ITRX+9z9oDkjb0p66xyLLz+0N26PxYFM7dzd8RMrjsH+z2Nz+10MDQYIqpl3LKcq4QGonL+kejKWVK1iVaLiQC05PLNcwkeeJ9AgDnT1cBR6zf3wZBBi6W14zXxBfWIulxPkNqd/SgMcg2fAPcoJRdECFm1MG+joUPVxicowY/8FmKOmebeyfKtBvT/zYGeGldXO5kHZRUDtNeug9+W9QM0+zxIR520pWPOmkW20NS/0Ec5QuKL0Z7DmD1YhlxUzfqxxepARyNeYFxcnDcnpGCsLtB3WnDbmAiCiPwTuW7QpfFXTswOIIUT0Jij2wESVO192hjaL9DB200RR79UZudzUJL7/kPlanoX4puvnvMExALr4quvAxU8SBxMR08R1TwrsD26f0jFkozvordG4FAhraTHhZ8Mu0jXDdg5KjtgXR8XbRtqrfpvNJ60isE1WIdiqvFtIZgj11xBgG5RKUKJVqXoWktILsO6hoazf9X+fL2KQHnse+9kZviMLMD3+ainqysggrj1weujd3PBKsGi2IDCULUYvRPMjhfyvLubTTGgGkSojpFuyigmDyfHcsPcIAzEjigChRGUboJ46RoqJ3ynHA5Xp1WDIlR5n30Xn6VnKN37QOruCOBSLmDMrPIjPoNA0rxFzgEacMjzoc2yj7jhA6GL08t40VKyYq7j8eMKWbsdUoOi9y7M43N4I5pT2cjpDKprvJJZqgFr/uwakKcBIr0/YJhxjFBFYzTOsVxe/Hd4rmMMBcXtCothX4BM8tw0EirKNeIy6T5C0eIXB5Hnt4U824mm5aMWEqUAfxOdsx2+9gQWyevkCCIMWprosRF/IR1yMYdaAvxgU+a7zm0Vj3uJ2Lc4M19ZvDsDCh9Ne8MIikr9NcZ6ASexEwgUbKf2txhH80m5PE8NR9jPYtOnS7+WdYJwmJkthPrYuJY3s5Uh5gTMKv0sHPf0Wop3pUhMt6scfspuLoCze0lVy9DZA9GkPIaDQBTR/SFHHso/5/IQeEUieUWj4Z2KJMvDZQVANUDHR9GtllSxABWqB7rbsT4oRTpRGDRYWbu9pW912J8U6hofsNT+uZDvAkT7uaYSRWX5Yd7W/m18ud80wHtcGvBhVJHO5g0b3tcbANdbf8bvMWPSEch7neTaooP1Xf+AIxlbvh0JxbJGZfvpktOSQ3T0gPWKxsUzB2NZ4+O10yvV0s7+PBOoUTnI+uKGv+J7FmJ9jOgd9PedFO1PK/FV5NUUw66jcxciJN807cIYNtKBPnXa5qWLEwY+ocNOOatHL/AHb5zF8yjZ1vAepELpCK9O7a3FHKv6T/KLI4kNXczAKW5CYe4tvxXx/RQY/W8geah6bk3vbcIpeVaY5WqEYhRxkz3ZULW9VbXcD2T7Qn8Rehm5r2rjaWgGGbNUmQZM/Wm/9GLOYSanmrwkH81yC32WzD8/VH/aijO+S7jUseHaqw7r5npOB/4h9v0she9XFLCQCh2GXkj9yLfuJVj7d+kATezBcu81sXtNrqsbsufX76+c0eqzB1LoL/47YskNeFEXcaTay3wtyzEMzWff2UcEjFsZki7xJOu5dN9dVomGTlsFGCGUQIACmmhVhyF1gxtmBuabLwpH0FGIX9RV7La9Nrw/KufEeFVH8fvBB4gyV6tF6XLnpaalEJWb2K0nsKUWxUjo39tneE3mDToIPQO4w4oVudiSQBp8u6TPeMwrKORKdKX4+xdM8ar+8KgV05QO8Sk6kKSGjS8aFEwguFVzZ+rJhhjWop+Bxo9xm9LKbI+4HOGsKGU/4Oc/NVtk/8xIMt+spjNnn7svUlZbNrMHFyDGbczI0N66RBCj6p/JVmNJ83uMxY+jvJtmapTygrGRxlZZOysWAy5wBAVgwCkkiR2/PQDA66dsuOXf6NTPrhESRXTZUrl2QEbb0H64EexNJgo38J+FTFyhyNZZ+IXTE1vQEyKs2ihsYQm2f2k8NBdHtJzEJpby8FvMs9JhOr5RAvUuEfLnGmd0pBmT+NTygF6EkQiTX7naleu1AAgkCjvQHrvFxajhyQd1Q3FSWD0o5cFi9xSxF0ioWXQ4OlLFCnrgET1t14zpUTAGIMelMO8j3koJXKs9EeZu9Fy1o3xwyTO1BIc2PXsg8x6Lu5hDudpHxWii72ZGkdm9xlxCypytFrX4QIFGOVecIap8vi61VkpJo23z5Z3JxRJb+j+kwAbS6rf5LKMs+31owySUDpcIi2QihBiJXJwlYl+oQUaHE0ESoCMz9BmTjFCgUXb2BvKoGqPcuD3TbTykmBgxlZvgPMntRJsvXiokzppvbxuUe/j7khhX6n/z13hkbLVXdxzYwm2TlmfbpQqMTPkEA/BV7fXPsGDPl6mce3+ZdCjpAZ5Ik4E7hDRGUSa8l1CyGEhwMZd/L5t0jVu4QqlRktQ2s+Pqxjy4LJ3KkydJ5+X5oe12qZBYsYNtmX4W1TrxsWs0cl/x5karP+yqVW0/ErE15ir1sPy6EayJT7iGpoWBYimhFWqh5XLEgDv+JFaMcBR1uYZxy4Dnra6clxpByuVb9oxOrQVsUEq9d8kbSXLmyHmFRq94TZ1XVcelENr7zIIJusUc+5w6S2bLvwlHQkLHuJRUTberZ2hmp5+R7aMm/Qcn26MAfBewdXxz/IIkn/r3gBgQJvrmSDoOnLaXiKrzs2WBBNZe33Nhb9GvB2ADyvS78zCmaBjEiPv1aCEFndBP3bzEt2tm9kSPMYX2pqKlu8ndzHVetbTYuIhlFne3KX/6ooe3pFt00GO8I3r3D0fJBesuBf2Aky6zZDm4cX7oX/y9kZslhIZuqeHrQMZEprRmamJrv64tTofCdnfDV7MOLgujf6c+Qx3DVSELGnuRRBLJu8x3H2H86M+PjRgTapnHAQEF41VBMqIZvGZS6JYo1iHdXE0C8jTn/HrHj1D95p11SY04SJKfBH2n7/mAFw7aqkzsV+bUg9haNrVRVEfmoLwcPCa8/kayEUHxBPKP9pt9bN1KtimiVHBEskXlm4leM7hks4htHD5pN53Sz98ouF/w9r23jY+LC/bcQGjPnA2XFM/Vrt+20vnFjhYAbCYIgzfTzdw57KCSgf8JWyXBRpNleafue8an6eAJ2h3IMtqvafrBf0hKSrGf43veZoixEGgvlBCk2freK1UTn30zpF4hQAjI0ucw8ZdjxYicYh2d7g3c42/FsMOpDVeOi9Jb9SM42Cj6PFRg6qTNw2H5twByQuWjzXvTaK1VNspasYyAf4+pXbOAvPIZ652aZKd7JkFa6j0uMN1tCAo5wYkTOW3/Qe0gIGU5gcfozWzs8dDJdGKilRJNYcMcIZM6EJeR3e3M36c1nH+fRfek7qkpk6yP7778MJUxTRnmD/Eq0wp1VdTB/JP3KTiYOt0PEVxk5DvkIiWJQ/agdLOH1FIuw0IiG8HkGg1aBEiz4FLAIrTm/tXb0qYfk+I9oW0+j9XijzcIZcUG9ikLSRwVmFOg0lPcr5is7OhvVUjsr6WMexzq57Kq4QIuobSt5AgY7JhwWe/xWrRL5qGheVYgLbQVCfMOzScTcnMYoFw08LE/mh6po23L1TCXVvpmiOLszxJN7HKX+zIVZPEcXCYLS2tLP3R67zTR6YFVK2vXBHFiS/6r5ojqbHPHn1lCPHu9WSvy79dSoYFtyVyShxEeZQmi1xLDapJKxapKmBNEuKxqqaeILL7W5SeUmOXlabPke6o1lm2GtGvJhkkDPvknbu00Jjc4ftvY1ARuGFjyArxu5OzhAuYGDRDpspnkg73Yw7N8JJHTF92nY5E6+hhGqciSMrzQEZ+YDgIycyjOPNdJ33L3Xgff52ps7flNPzYeSHFJBYlaXSZxceVi7IiAi9/VV1HBvCYB6VeJt4FqLEayXa2s96tr1VLlFeZE5Z12bSrOu7i5cFfLisAjRVgpoYn7cFMflcWOvnNStWDuP5rAZ2YTxuggo0TjB/7dd3x8cLWPOVEtdllYMMJOWRKRrIv8Ylbi8SMHM0tj7XdyWRMoOJmVmMRBcBmKRLOXUxxoZ52bDdo/bntQ09J5JizqXYZYVVaMPcTY2ZiYvTyhdaOyKQ5f+0mnqBb46OrzrujoXr+gdseFIq5HvwGrgkLU1K/LY9r/WtEEjjqGC6VTunujJxD/QUgTU8r3K1JSO5vggH2VfzJXjbG28g7VR7toYy71mG0j1Y4CIBtnkpbnIoVVbHi7ydq7z1CHdmp8zq8ACWqwiDTZ28y12876X7q7TXEk4r3vca/A6plSvjxaz6Kzp0SXsmoL89hJCqW+2bjCPG5LuF7uapj0JgahxNTV2Mxsf5K58pZVcJ0oRtptoJeFd/XSTAkrKtGv8PvBjEpW7fu5ZYDJjWiB+jAkwsJIDgbfQ2/2eqy5/u93xWhdKlB5wnZ4w2NOf0AylViMJSPnOqcU2HU1n5QTEHFaR5Gyd1Q4b+Ju9Yuhif4Ln+ulzsYAXcUqht6pA7A25GA/hrKa0ykCcQteYZ4SHGisgt1FWP/uZLYFa2HPVqXEWavzGmHl3vbBH2RzZEBEu9wHUJv0JiLFfEhReH8qR/17sVUtFOAaNIWQP6YWy/I7di/Jiy7u+vNR7lE2YtVKeA6CGVlDgO1McJlIw5V4MUOY6PV5NacKj7uceCAt6ntHMiC2SdlYjkrxUff+joSg91y4aH3xRUO8fhKYGv1COQ3KDCMKi6MvEEDqjDp3EbBaM6AbC7OvP5CBEqnpn8tDqbpuvPrjDRK2aRKoxnlcT/we/LpkZORXaRbiQtBStsdIMc8mPNwhOjA+dYQJzXMpWiREsfZb2l6QkeGhAJYSwym5prXip9PRdZBrK2I3sXayKk4ZBbc8FZqDH4OyrSCmX1aRZdBqBcJLtUW7Mnju4tOHAR7e+qumavYJEpiHXziG2dkRCOrZXKibroMz2Q5PqBpwD4TpnZmMLdkvLdhDj8rKsEBxTFI/5iJMGLOwvuGDGeLJ17vylC7LO9fbgtpMFJ8No5os2ZTdErX/8KUtHPyJ3J0PACTTrNyTjYXmAQ3qidTBTQA982m/0TYyNfl11r/cqCVQQBtTWUWfZ1FOtKNJjtwk/TvFFxyZTyx7e2WiG2QHl2nQ9JYQMc584V5eS1TCQ7s4WTQ6pJgLdCxmnrlY70dgsAu25m6/6d8mZorAd2n5UPw1LLGdv91vTT8nm2UtpcW9lajPgphm7PkRcLmIE2QrGR+u1LAgGSzASJchuCMWSQong04h+ujnJlRsDLxmbkIcDutpcw5Y7KEv1O9mgiFRTYfrhXngLa0vrs7E/0dXFeB0QDbBAVTtBMHWUrsriUxR6m5qM8rPUiJKo7VqAm45rbO8VZS28GY41CVkvuuD53/oo28kzaP2L/lEv7ji68uM21CTu1PT/U9u3CMzR0Mnmexe1Qv6MK2f+ZZ0152B/M53hMENCYwxgdDdXY79eJTC0+OEG1hv/7YuPqUbxjafg5+A/djRk547jfV/MIcjaxo0i4qeIpASAkqJV6aSf600hq58ILy0RC4656JTnbNdLLuJBW4Vm3LkokTmZf7zIMXP01bvNAyeckTzHquEujaB//0OnIkxY7e2hOe4XWfqiyts7LtQywx3fhz1MeqmMsnAbyAKcOcqcyMhpLWPpnV01l8UMlmypJ5FHHLls8pp/K/O5Z4+RSO07yfTWvG1aScZUUqLlC5m4RHHKzmF0Gy3WxF0gzD6ww0qmD31NI3Tf8XdmD453FLoQg/HAW7+vvLEXWk0sV6JEMPZ+IKuUwP68W+yzp7U+sjwFmTE/8j3AEJA4SS7erDgrpRXnZZ2P9kIgX8LHxYoSJI2rGeMXH4Yw6LrYyv8alWXt+a8H36QcBdX7URY0Zm0Kh7J9Wq5Gazy6TfNAJwDKBgJx4K63d+qYm006rHSwN4dhwD2+QFfXs1o/a6lWHvxQtmmP5HdoxBOBSa/cpXCRvBhC9IdPmY0klLr+Jj+3PuvNSbIeK8xxikjD6hXw1hCTBdMNBnPiyowXPGOiLj2VvZbSPMDHMAqqxfaIouLTad2P/BokHQi/nDWGcCn4XfzD70N7c6+SL5+QWbrFiIyiCTn8/4u4fXcV0n90TJOpDlsU3kedK1TFc3JW4ZCtIR4u1ClbUbkI0DX/L8f70XDJomt2Qd/VKtX0NyleAlCsRjoPmlfjLjaxBqP1fQi8HYxpPadeXwo1WyZsiRRBrav8A83k7bqCJPo9UXPkOsgjFZjW8Bz5sv8JzbIvUK7evgKXpcowGfLD4uwI5p58jxNDeLPp/fDgApPQPMwYvtjZnmgqv1KvKITiLdqp14IQV8zvtXHzlEzsgQZEp0ed1pSsTbl4bgs4Ix0qKAHGN0zJIlkjzszbT4TlC+wKFzCbdQNRLiZ/NzCMbF27GnjkoMr3ivbJCO4QWvXzGijEyUzRJhZlBOe9IWRB6d+mqww2PdpEcy0jtRmuvMtIVFTeSJxbJyEBoBrBj4rOr38tGELBFvedHJuiSspzD3VngM75b+clZy/i+JxvwA9Ro6AbuIa7AM6xE2tZQrZDCEWvZvsxKASSW+OwM6lleZPCF6EDptArgKI6E5wGkJkiE1bJjz0n+rCjZKxxR+Q7z+z2RHgU3p/QM9QBJgZdhK2kCZ21lqMTrB9PU6fJkXiFSe0OBN8gAk10mRyc2KMmR+2xrwE9Ca45JUEYdpe7EbFt6cum2XFkDj7ABuBMJFgFmwXtal6BJtvUh/shEdFF+jHR45RrdhfOMZmTOTSxtIEOhTNkvgpBZTLb/cvsURR6BvCP73jvcIzn4zevoGrrjSRO+2PHPBX972qKJFAv84ut2zzZeawAXS73kYtj2yjmaDJN66ONurfRjHxyQyuCwvIj35JjrnXuqSIpfnj56i371lvnMAqigawHyRrVVZAtHgjq5q2rwjJsgVjuhCBd/9N1F7BRy0K1jPL/akuWeR+cRAmXuQtiAbxezN/dqAbmCXL06tJox4GlW4fBZ6vTVxbp/4TYnlSLhMjfWTvlIZoy3Ok5cFVVmrvrVIppfLwgzZLQHs2CbtWDxMhdYN/D3VOsf36AiyqYf30Tn66bPMl4aKPaRSOcTDfRSQMCoCmVBaAftb0Ro5BXsHZlOD4FipS27U7aQiqZXVpFqepy4m1sHp9/ckKmuTMWy99XlwMrPLznjUrzeBlJu2vnJfnJ+OdMSY347SLY7VGUqV3n1YZLrrPUNFvBxHFwPFC0m9w7HMn8ETuyYGtebJqvSPBFSicS3b3jKaYv/628cTlaGEJ9V/VGP+l98xeFhxjz+Lr7CiJ/IPxvHs/A2JYuVZlt6jloXV2QFTi8XNJcTRlUNEpf9Y54vqWeWFLidL6cJaDIvRzaFt1u85TttGB1gHXC6CVKdEPGwGDfFNaNveZ1szMlSjpsh3yYjf8WF0jSiupGW6EQg0SLTVTbCA2BlaWm97JDH1JHU2hdm9IxgJFUy8xRRVnrSxAOTBmsvvgd5hLArhL9iPdz9R3OJF1akSd2tZkF4nKIj4KUfs/KYqShmvYo6cbeb4crcXf0ppoXGBUSAq8ipovcgNDZw1c2/pv5NomSPgxCX7UzVq9Qc26A52cVWhRnhj6132AM8g8wg+mOQypgwTjB13KaRWFsiZ0aUI8un+FxvP2H+m4w/EM4FwkNDEmYH6HnuVQ/NvFEmCnehfQtarwq0WSx9DNvti0G1wvQdCpEL8yr77xFjjHXNOdvfQT0qg8EkY5OvUAy+dyIws+okLvDlSj+/q4zwe5oyUDH8u3mJFu1798Y7l/7abzO3WYx8C0S3eCI9H+9Dfx+MNbKezEw3yjgydBBlEJgaS9p8wiDJHceKgU7BhJWUnNSZ6gZGK4QPg4FgN4i3phySukEM8IIWnbxF4LcwA0k4yTzveSdAXf5os73z05RLXftP3lhB+Ck+CenLaPXY6Gki/4RSlUd6wLK9it1Z8c6SnGpUU+Ly2HI3XLD+2Op7tpNCTI7eQI23anxS30JDJ+RB1NTkAU2nsSK5HZ5znsYeI1nPK7+qIVOKGsH0gjnrzcZbdoWuGq/DNqaWEWGb2pZ9giYOh/vzi+1O5f7w1FTtWJuEfBY8ECWQ3FUYphsJ18CNzJSjZhgR3rO1ZSB57+Xh2EApLKhn32mBDuIn8VqsVgLqLJwlVUaeUmDn8cH5chgfztIPmqBs4LEg3JEbeFmJL9THgOGB3b3Ynhq/YWjsL7UMmVLrZFolhSLalS5J6p0Dy5ZXpRy1WnGoRbHqK7dMCRay+fWYPMjBkR9DEDQZWF27wFUGZHZLcYC8m3W1T1KkUM/KnHzfW3XZnH+IixDAFaKeGlAmXi6llNOFOIMBm0nPnoYNxPOVJ+YqnGhdUfnKD2rFMIg574vVd9G4UlgJmAsYNs921QP+pbFafQe7x7WsJln0P7cybSabbdHQkwvpLq4TBJVh13mz2PnlGjkVcgGBrT465sVO+W0G4Z79yl5ViRxWwvFb8mujJz0lnLwaucAFqlqwWkNEEPYGVyaHi4D4y/Yjd3SMxa4GMCe4Qh0s8zys31I8c6CyrgGzYyxPNZMLyqZcsdgoVvaluKDKMp44fszV3xddMfcHL+5V7zR+sVVevln9MQxAh9eN3v2aScMt00/OcJee41g8TtuprBGYGju2JeKWeGkz3C29LjmR3udRWySXibjSazu0kwYocOH2nyonMsxUhqu829hOY6lTnnGzm0ZFG5pkzqkjeUIKpZrJjNdwdt4cfUfxJ4jCTSP38Z+fzWiYa7f0EugocYGUp2x4d/G2E+B1efx5M5J9X6roE4z55a67bEMPWVxoJBgK2gznmPw39v/J5Qk8s1GKn4N7E3fTzFq8Y2L8fLLkGQhwbNMX4ZM/4WiB4u+0vO9dfw/4NnhApBgIKmX9H8bZqUrRg0DIwrOBm8lI3OxcZ83eNxumibKRq9UV/NITgYyUMHhQW+Uwh/hUl1a9G4TxlnzQiJ/bchAfkkQUM57yZ0WU4TiotfRjdgcT5uAJgxBkjyK+rCdJI6V1TU/lof0yFJ6eO2g/IzMzX+Sj/PPig4m8y08qTKvQJVUiTCFMAsZGaItgz1w/JSctTPPyl3RnfwCV6eO7UeA+AUcP4QNyMVp4FcZHQqs4VlEfNZqYqyAPd9SaWY+oZwfrvFvDerKibhDJhOAVlfeq86x1RRGIndjckzuFNGcBEvFFmpw8MER3P+x2D2xUFSf8QI3Zmn32H1xW99jroM9m9q61hRbGqrcn+o9CMTbDELOPLApIwR3XAFIV6/s4Kv1Ol2va9XIUNTFYXABRNA0YIa5s+0jook9MgIhRQND2vBqr4RZtKsLVWQ0KswWY5JxUY+tEiRArldXsKU1Q/qMkURgyWwcmMlGO5SE9obiPust1zte0QACCkg/4jiZDT+XZaWe95j+ga6BTZFZEttuILZj3GbdgKzaqXVLQdhnFBjFHMLaf5+X0Ulc497awN4IDvZ6pOhOQPP1agMRdLNc8z/bDnJRA/oy6EKtSTWfR8uEuh+HtqV3TU1r9MBbbAzx+EPD4j2IfP/GB48265m5e3snPBctsn3zbsuz5zMpuVu5kdVSlZe6vg6frOXncuRjFkuLXAgZ0ORm5FGeWQYn77ZRf0B49CBh/YApJYF/owCmZn1TiniZ2XK65Y9qTRa/D8Y4mC1hRO6gewbVXSR8Wz8RY8ubAgiQoW9VTTr2e1FIexbYapKbgDSX7uatagffyNjZBzTKs55pHX7fbMYhMa12zs0CdnSCw1euIKToQ237fW7v4YILhSgXLt461rOnbnBn5fnpEDYfSCKFz1320sCUBLuBHMd28KK5hYZoKxJmgIefUaSuxfsq/k1Wcs8dtrp2ZIh8JuCKsnsSaKZHeAqdWzxPP7M7pFuXaJf0qBJRR07byKCAkUVNPQrnb+1meWBWxNWVUbhd+vhtAuYsxdLimTr7EXIt2fzLxsvjTTVFLlqfF50XDQGbDE2JYLBCTe4qBOu1CVPqpC7QBCeESWO7zfbqvB+mwbdG95o/lTcT+a473BY1KuGoiW0Poeghg4LDkT2Z4f1YNhDjD1EiTGlPZUztR0dBimRRvwAuzjnnrqh6crGlmt3b+wldM9bymHoODxmvZTQ04xGv3Tih3/MUEypx+OG+0ADmA+x2w7Ct7JwumSiX6Lppca6CqdKox+C/PWbJp1AbhaJM/PSzQNx9z5Qhzf4r/QrXH3upkdj7os1iB3xrSixteQ2BdNHt1E+b7+gRridmhb7k8qeGBxA6OHb8Swh6lrX5ByHREwh8mauftC0crbRXkYoF+CXvBdnqTg3ByAFLMgxxUhCLS7WBbgBT6VrhkiiiTlnOc14g2RokvLBu4Jl1sCdU/BALZiloOSjzodxWvtM7tgAQsDcGsyD1EIvYiJvj0ma17rXx0lQXttHLMcttylkEQyRp9awEoPVCQAq+Qfd84TsdZ4FBtXh7ccx+om6uecUdNanfrPk7vXNMWRLdExICTQX4Im8AoFwDyB1azwkmsPPV5e9QZZljeGLDz/Cnl1b81hZBVL0QVA+czMM53eyVhEY8nW5WKCSNMhMwXwYXUMGTmx4Rw13uUBNuC0vD0IDQ6AjcI5SHisChvBWY0+VNa7cN/u1KIQi7DcbnQ+s1fNu86FXWKTpg2u6FEnpcLEBmTgk/b8SGhagIi4U+vFsuLLwuhk5Uuaovjz96TcfmjUod20TTYThL7Xy7sRc9iG1c42VB2DJSFI7XKHfxVmnRQnmjauuKq72pNdAkD6mFIdjEdBsID+Qyp1oItnZmUjhKryXhFYsWFMyYkyf0s3mx9gdzDpc0+W2SYmajmYgLXzE/NtUbiDOU55CjMqT49W5/EE+vv3CejvLeLoWaTFia6iUbNnHxtQycN2lBZpoUBN3wqN/zI7l2xdnY4LBJou+A9z/u6CSYbR7eP2ysW8Kv3OOehocRkqtkyMs2dWsOs44gsILYVYLAgNWzEA0tvbjsw6Kfa6VWVFp43azzFZ+aeS9+IYgYlNRk1UNGeHBQB8GNCcPs+fmdeGji7RphhCF3+8mjFjRozD8Gom92pUnz7kQo8kwRO2Xvfd0LM3AL6v4GbZQ/OOPT+5PvmuihYTHWshvdqd6TYFhZyjIXL7W6QzmXQ2f1Piv+GR2JQXv3Hn9syiNr+oANsqUPxB
Variant 0
DifficultyLevel
575
Question
Guy is a builder.
If he needs s kilograms of sand to mix with concrete and water to make c kilograms of cement, how many kilograms of sand does he need to make 1 kilogram of cement?
Worked Solution
s kg of sand ⇒ c kg of cement
cs kg of sand ⇒ 1 kg of cement
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
gender | |
mass1 | |
item1 | |
item2 | |
item3 | |
mass2 | |
item4 | |
correctAnswer | $\dfrac{\large s}{\large c}$ |
Answers
Is Correct? | Answer |
x | cs+c |
x | |
✓ | cs |
x | c−sc |
U2FsdGVkX18cP76tCAo5lc2Qnfmn3ZuOCQ4cticg1wlURskSVt4Pu34hEzFoIOG4F1sU6b7xMu+8bKTWyLKQKfb7CYsp84M2f4j8HOgamGC5UEdMpTgH9sT+q3CRENSARJyi3zLWJVXqxXWThMw80vlBPArCieJqR4mj3woJTYIlf1rl5jegC0WbKE1OduhPTMcdX3LeDfQ8gGFs86RxJdw7e2cIAdG/pABg+S5bIYTa/Xem7ZE4Wczb7KOy2iNxWBwv2LukV5BqgMoXCMUxz0PSMpoC4G8Tx5tnm6ArgGk3P0I4ZcPhUglisOXRZppGBkuGNI0wRWtPmAW/uqBOKZq/hh8DK6fPRliE+5+kgsiJ5PehySMIV7qzb7GVY40fLcLFezwW7AjzVKjrhaiT3t+EW2ZnCwD8yKGvCBAUSeIBwXL6LZoDac0ZCEd0s8Wm/tBYG8WYdxhTK9aLlEsKMY8euDUrJicOJNFxhzEkVEvNAYa9KLKWRTsjkNvtmiPSM5C0G7+Ie1IqMmC9XuS10Pr/94+zlvlYwWB9FYPLnlXrltHGOeUbRAQg/xv5uwTOxo1Su2ioMlxNamJLZ2kQzA/QIwJ7jPwp9kSJkOyquSTw1JDYWW6yyIkLiMyhhWOFgeNvPOOewFd/P/0xEzqyCqBCqj0Y00/4Z40IQL+0G9Ss7XTWU9GwojA5vteNVnR5tGxlDeg8PkytS0aXWS6T7qmkogdySQhdk38xQRiqmAkrsjHrfxdntvGrYfwAtJYv41uONtvNQrS8RB/bw9rdHfb3154KB+F1CSAEYsmh4+soJNS+ycb6KEmvsJmZBwTdcuXEa+WzrlX4FaMyblEGDBf6FHuK+RMFFVHsZ6ytCHjv9jEcD41OAVcWfG+buBZaOCCv4A3Kwz+YduioJRFczt2+4KfU4CsToiRt9PfMK/x7Wz5pJc8v+KVAv4u5Ymbl/sn9bpoplXholjKDNhZgg+hFnusIz1+yiflzeLjUbHMTlWwmU8aHWhPVTtsLVoQT9ZJizGZazo2ntWS3e2LChugue0KrqukI5pdoZU9FmUKbbr2mC0kKH4aLpg733jIuuvRavSOr8hpujtwy5v+Jwdu6X1PUfnfTveEQGOwNb6X2lbWPTgxwN7z+CYwzzTLnwe/jsJ4JgSiv2cWCp7FUYnOdWDfufoRBttxeYs/gQhMQV5i+o5/NeWRVQ/jXyG0/VZ/0OrZ4OeA5fvxMEGiips/5dmsLvcqXum0c7R2p1L0bT1JobXayrzxUsrvjHjzgPn0NHllh96eMzKZXUis0155lk+OrgUjvdHuEUUuz7wRIQvROYc4nJsJPf5D0D4DAkA1tU/QKyWb04XPsWgtDuKHRKjJ8+6amXrkugNuDauExypUWpXMrpCHsgwkEkJ7so59QwlfhDjQc6SdxzVRjdfgeKgSq/A0cjx71ZnQJoDKOiKzGMn/8uXinAZpk2KjdC1i+WjHfKZp3OgGeHOpo6VYfim0GiOf9yXaHwB2aIwdgHaw94NayZ4gXdIJqh+4iUZCtPggnybZbiR9yKyTa4kvN6bkHsCB+e/BL69WthZk2f5zjmR9+Sq25HvHoPOJmQa5M3dOQj0XkseNQlL7UgnutAvRC+UswaWPYoD8XToVWpfHurIGUobDULppZOuu8zbcsjZRcmbL/pR6FM88g4TdOIQPNBZN8LfchpZ90jSaf22LFxqFqrl30LrcyByyvpRrS9oeQtGn/+d94ATm4pQacA/TL1axyHaJmCxAx0iF2cNBTB1x54WZulaDKsp3UMOx0EV6cv6JQXYyinhC0ahZl9N6hsOoIFiXABBo0jazt2PMI27jICw96CMj+x9vUpljJ7hc+iyNfU4iuri92XMwBVlcDhxNlA3Xy74iYJXjhqHPEId57u2uAHDOH9wimXtNatbu7VKt1E+amro/SRQbCJdvoJyKu6LWu+RZZiMj3P/HZ26dYJNUGWJ78G9hvS/5F5QSgIERHt/Odh0Z1AEyJ1p7K0OK2WsyRft3WHEl42s5GRW6w1uugW2tP8r45lfTNqJinY9jAXyX/5OhWi31cKrj2x7UtwddQGg8VMKS4jyZFZVWQ0YPnqKriadKlRQMuS6Dl9rvjXKh4iA4XXQNtd8Li5gN0ajoLzapskxb5k77+FLUr+OIOdvptBBW/siTQt1S/GMwOizM9PaLjCXYZwRByWn+JWiliYpEqXWsajuQTOt8qpOvg5C7RqwrnBPXAWkZryCpJL8UatPrwI1mKKHr02omAxQfmfFHLHGrAdpAPleAnPMwAImETT9K8NRfrsDCCKNMeiqW4MxMb/K6OJLf0GiZ6gvkTyBysRPKg5mpTEGI4mR+FEuEFTD6hzNr42DrS9twlr0ZABXv0fga9z9qqLYqT1fsCr/nHmKtHjKMrobKpRAHxjVstMCXVVCrnxx9AqfhBnqmo3mP1ff1fGw1HvhhHzApMjHXk5Nc2o8Bcv0ZkLhG5jU/1TLXu5gxHTfXy0c6o98+dr1s1vrPFu4ABSnxcZ6QZLh3HBHNNxIPXfc74cLViWzwhqoD/gafpviH3NUHLzkG1Ib6+I4rHiyfXMsO2tuHvqWHXZFmm3uqG0lB2WucofPuko2NloHS6d6md1p7FyAAsdy4bcJwzKIftxcngXcmLcb4Epsx8TK5Z6ycmlBf7swhYALpBZC/xWX/AlbUvudWXnxyeBSsej9uX/Uv1G2p/lmB6B2QpnaRTiRxPW8AOJatmjrDWbYs2r7ix5h8o/TPw8GTmQEnOEE7QNHGvfamgkMDow1lLawgsTT8TNqm01FEfU7veRe5WQ3c91szEAr4QblYVApSXaQwoNfNgOyh+qin9WOcFiNTe3ubrbpZZDpgWzAxwaahYLk1boY07bhocrxE6StJyAohkrIXZgPBOGV+i2IqoboxoW2qpGdc76bZ/aatC4iYkrN3/TTq8AIXqfnMOSd+XjxJjHSlJkvuzfBalIf7LOwn9ASgN13uJqPcnlF2kiIFkwbXWQrQWeHSkZkVfnuEyytqD5zQrtWqDNZ/T/SzxDvPK3mCBHYtTNvRZdjjB+v/es56NqxxjdNiEC7CH5DqwtRfeV0FnQV0Tjo8DKtpEuq/wvu1j4Wadc33DtQYcRToohZsa/7/pibHeg7ARd22y097mZ0+QTlaSGvsFf+OdPlSl3f2XgNIrQ9GJHMvmFAR8dwpxmwlEaAPCQ6xftfghLGworXkF6dGSdzgm4kjBR3IdKqnTtotEbMzqnJZw0VhxYjZNWBcaX92TGxH8xhASLGe/KEmchrgokZKAQpbgy2rof8etGOc7VE8OgY7p89XlEr6rI3c4CtXvyVJklREGBFlxx5W+gAC1tARCJKF1fiS1Vz3fSAdGlOKa9CigL7M3bwBPYy/jyOOBxB1zue+MCazdrngKYEP2IP5m3pDcgUsfhDOnJSrrvolzlsOopimqxnRj8aglV/XgmdWMNmOqUnmaPw3bHMj8N58t+WSTctqefxNNKLFSRZheDldq75kz6FEdWSh2qjJPwdUAVPQx7MSNBd6I5V60Z0l7eBe1fI2fE7iq9EAH/CarEMVa33NazDjFeZXrSEBGRW8pl/WGPIvSv30JVoG+8lWfKbWKguTERPbAKTCIfpmGMyVfr4uJNTZqJHgwmiI/e4qiBwtJ/r+vKE2krRXXumUf2frEawioxCm8nvpZUVtdzjGEhfFTl3pMHKafiXDyFVCwW4907en4OrZx3v6VnphhLKJidgCKVIeyRO2UfyJFTOrOrUKqkODgvsu1EayrPWmk0tqjhySaR1mi+UOJ6aVp1DJGeI5lsAIrlEgkzh/Dqvagv3gPcaTWT2eykyAz7LGKnrgtJN8PNslKRstt3IJwATXTzJK6IfqTW4okFr9w8H0OnWHJ7S5HM4ux1ZixunV/Y3kDo2IkqCC1ZrVK+OqeVMsB0KvhU/BMOAQSisQZtfAXhRxuWeeJ0Ch0ChqL6l7jqG+HrSx9ckDg8uyw0EIViAWz84rOe7QRnRgxAttNi3B5pfS3+6LuKkdzyJfmCuHnzMArkK+dHeqHiCoiW6afkD7L4Lw87jj0hBA1DUo/97GN4Tf7trwXaPMCRgyy/y8gHAu7Pg7j8VRvPg2xqXYVGz17V51NJw8o8gO/37ZQGAockJtgxgxcLASLsCt2ZohEn0aXX4ylstGUwrX/dZdUZASr+mPuPBnG9NoxAJvJqlL/Xy8xmjgOB5umx7jzZj3HIxEF/+3RLKzkLqSetiCB65my9cNoss9lBkUQ0usxIbqHnE0KGl2hpY81oOxTOx0j8P5oUPtNm3yDBU523RtaL/+Fq17RC13xeYrSF6+xwPaXhM3vrWUhI1HDkIOHnn4HzrT2CwSO+3xnkjrx++p08LTqKhgPhk1TF3qW5aXgNujeqY5pdvD7Vo7ya+Z/r1PZ5tG/V1GnzuVuHKVaEGRwZx/WIxE/rnsekX8/nLwnTvPQyZdTJlLyJkBtGcSZ6kqqcyrT9T5OtX3h5vS5aREv88zjiUoa6DY1rPCwsCniqrZH9ygZKdJQiVWgtJvnj92+2l5KA2fRbRpt3bVAUPIa9iJlsnEWgOWQ4E2JE8rW5J1NesxgnPSVvv4/fP99llECsidoC3mWc8N2bdAglxkQFJbI3umbY4jcj9cN6VZ2Bmwnupp7bdmXHFW24IC2f6e0QlqJ0yf34HQSnrIzvKySypJ56lbhdGfOgO2tWB/rga1zPbNeyET27fhGqetHyMl+WXwudj81RdUBdc+/AoInLTTEfbNuX7XBoB2OYS/leT1R5KyHhv+qWMRQ5FwGPSa59pB6A3I3ZohdoI0ulANEL+Rn8vyvvJlCC4vEG6/gJio4emqJg0xbSpRgYmq8rmtaIZbAm0qEOWYfg8hnywmBazigPaQf+OfLEbsRj66Y7vlvG2cBCq5KBKhKfXxE3T4eSUpQcnKfBSkaOPBYNJLDS/uN0VFZ3lMypBkiuqUe+3Uhu6o4py0MEf1BJOfthEKfXBDrUuFXMtGAQTczYwBSrSIE/bRTxjxDQV2GcKSwpbkhVa+scfAt844JDG4UKNGS0CO9IXD3AoEakdNOIAfOo0d8f3GSMpy8gH4hayk86dsDdNF9Ap9FUylC+DsTe64eB5cflkp8xKW+/IIiT6oG+hEmxwCtF8ivndHU8VWSPVn8Os7GNBStGn7H7Ee/pvSVhPrha56ETjW4bnIqMP8A5wbjq4VYH13luOJfJr2SMtQbbZzfKMtLQOGZ2NvZmeMYcRKDSI6sOlOBMdri7oTAJ3vhsKY/upgBsXx/oFwbS6BBDxUfFjpXY02SngzSy/JF4oiKK0OGZSejjKz2i3V5BKfSQla6p7mXDbFWkc1l+j0UqDc0LHsyWWckz1KOgc5qi+VVesXBbEAqVLhZWg7qvlg32lVDvrrE/r0BbMGdeLAWeSLLKmZaS29r2agWUP9CYLC48kS3dQhqyuDfyTf84wzYC/mvMJwkd3CCqONxDNrbWnHLNr5ldN4vqdGbcoljS7zAUp36tyYINaMEC2ZzhNfcJtszLIF/GQLQ+LPiyxXJuNUXCP6QePAbHVykXEa0gmdYc4DSRtdD74pk/7ecK8gQGGqn5fVlMbJisH1dBORXlPFhNeJ60UYg4Y2eAIWpVGdmgUcUQBE5nP+NV47ylxZlC0qYG/h6qX1ST8l2I6ymHS6uJ77ISbIN3/MO64CTYt+7YsyF8Sj+E4aYDuKCpSnfDyoJw0El5fGL9dMFSPgHu58QethxFfFigUZYpiMhHuCXycHCSEnO+7x1xE+5rcCcP3YPrnO8fWL/QUbX0kDixTGpc7AFAGzm7uy8YiG4XG2yWmzPkxPU+Wb2ToI5FldiYau7EpoNK6E5t98dgwGA1R9DRGRyX2Lz00Y9Gbl75iFz8uObP+km/3Xe5ZHho8pJRGBoPEZ5BHJh72Hnna9pIKYfRIDZoF9Oj67mQ6+OJF+r8og0mbsDU0JZdY5Ri9slWiWW3zSlzXQ3ZWNkksgxccnxYLU0UyHXmqc4dU86NXdK23Hn1F55t6eI92lJKO8fCJXr93fsBa/bPNbh+tr7DByrHwGPHiSzv/z7zJzgmNl6TND9gtNfS8zHxuKIHtTtSlZz+n4W7HqnUm4Fp44mfuK2DzqUDCgGxMJG7QStstZRE8jjTmQtw03jTH+rznCPSAeCUXGZn9M2cl+Y3ohUZ759mUz1UQ/lkwN33e+NzJIT4V7xzOaaYWiwyz7hPSzE3edHoBE41vmeNyn234OxEzt74FQfs5yYZICWfIpzoMAsNSIfltw3SjqnQwKyP1yi7WSz0t81vRnHK7nIDhdTwZpQ5feXtV5Y9BOMayIda40UzTbPPO3U9r5wOV/R+YGgqv3GkDK6Mol6LXsq3uPc+9FP9JU/k3nSm1cdjCulDF1qOhDNaDYGlizK7WUOgnZzSjRS3q6MkOrqIZ8PsrABRvjjDb+QBBRm4t16tFzgscP99Y4BRNjatsrjlLoO7UoMJ4/T6tBbRtUv2rWZ4GIv57nBpb6rKZN7FQW32gMO9l4R1POaOUP+swKcQqAU3mdoomXJAJr9JIzScXjyUDGS/6FsFJs1WuUHlXDyEUgJyxzK5RdSWw62/cicPC9rUUHJscltbtEk30ATuce8mJE5stmgkbW2f2VXYSjaniFDxpkareSu7By9Vk12onx5NM/k2DA7NRB6rIF3eB6WlkJRbrBAhexMX39wqsl1G2miC5upVzAmAC5RIwzTnJNQsGMPc4R8AEqjkfzGWDGCaARfh+lySJsVqJ/eMAyqJAuq5ql2XYfF7AGYri4tMA/Y9wSPEItl77UEXkmYyEL7MK5JpB1/IP20h2DmcKrdLcsGawIX4kWmfbyvyEQ/U0iyp3XGnl1xEX7xu4g68eVVYfDT8w/Xo/Cz03m0igKAkPqSo0E9TQyp5zT2REq7sx11mvDV/+QLteV5at1UeLL7+WQ6pL9rmqIdlE1L6d4Dixes6nFBhRiOW7RCnmkQ07vsoCeI7ViB+k4yJL2rtSkfA5kCSnnLq6JsjPJRyBx7GsHmPAabHqotRj1nmYMwyg25/rE3GarvvOCjerHde8w21xmVFwb4har90JEvtj8dJ7xbUrpZ6n5XV+J5NBbik9kIlDz5bbHhov1nHuNv195LlXUxpnuByHZGSpsK2Oh/FUzQ+ZruEsh6aZUFE9lU31uOjZFRzBf2FrxJPEH9XPUxKGoZ9W3Oc9/v/zTyS+zrHnKhFOPPqdZyH0lluWauOYsHSGPNkpMFqoNi0VqkpNgWJWD6s0NekrvYrkufJt/XJ2n0+75xxuiRvxQRL7vw1vjPeWJfm/xOfS1I6rkvAQngn1/NPr7a8/gefngNRrSJJiCQG107s6IZVzKhNHkaPqUIW4Q9PUjZqAlP8YVFmoNeE34xxNT9AUMZ6u+7F5RVVu3eHQsAvBD0lWjTB334UJDgRP/IgvXkwrl+FQAUYkUZspAt3utDojybWydAp7YSEUPMpEm8OJOisGzT6pn2mkDW+cV+Cr/b/l19kbeqr5UEoXIjuBFpQxj8M6CxUh0eQ1wnwXsX+vxBxeGEZLlMd/VpQRZhNM0Nf0hZt3GScNX2QpY1b6spojjsDkII0CrkJRUi+2S2BCAkLF7EwqCTNMJIPz85KM47Xqdw+uwGI/Wmij+6uO8AZIEYjgZ41WXnMLnitxsIhzMebMmNig59POEwEtHwEXBi780Ufx+I9XeD6fJLHNL/xFicn3/W7DBIDWDRlbUMv06uqtT0ih4jpx3VsxEPM8erUulc2ck5AmNdCBQbq7VbaM8R3RHaVmngmjrNtKZKtQAHcUWlCGyhjHXLsX88pBZx4eb1Q9pK5CCgxI+84MQFA76xSiE8MHYa3PVn/PvOcJ09aByN9WCGPiz55ZOCWW/1lnBXHrT+g/6LUzDCIN43XSVxS8UJ8Gsv2416Z+W33d65tuhAW/AK5aOQTs+OEgRupb+pjue7SCLinuHd0vExEg46R7xMdFB4Wf81uateD5r87t8Uh5TrK9NJcxUNcp4im990ozYohg+awybH7HxmqG/oGNKBPTT/JTPI4EVC8CzvdZ5yPvIHlrjVVRLzt8drCLCxZMlT+q4UJLV3vgw4ivbugZNiWJxS9T/Q80EF7n9zOvwbC6lunqUZFXPx7nGbNI2hxodvJH2ZMilWJPDDymou5golUyS0eePeefF6NNKYiy4iLaiRGsGX0KN8rvS0F5X957mo5kGeFQlOR6/8SsjvmnyBYx63RXiopxQvQp4Jzf7iKKfbQEKUlatC+k+p2hcEsNPQXTxm4CRcHLURemAqDaz/8ZQGW1ohbTZZQGqTr0lIAUcffi24qlKJlwU06I4xqLPZN1HSXvy+366Kd06FiIGMi/H0lpqaoHSf1OVUjxp7jAI7MF1J7VbusEp7m/ouMd8+QXkWRBj89w/GifD3lQ7CXq+taidmaYl/RjJrJEpkIo7CMqXp1OrR98Bl23x/0OBRxJzzp9wfzt1QHZagRssC37GJzxFWHj7EHRhkIe6NOxiPnkOjgvv2/2ySoOE6F4W41ntcqrGzo1w/+/ZisVFQ+mKvEJ8cpQjUZnlFYS1tR79dIj5mCrdlywTbDBzCpFIe2OymTarg7Bq6L2Z3GaB1BMmAVZPaAbk4eFOwY8fQBEVFzuVOzjirs0oT/0K3YwEzv1FnrLU0m/V0RVmFB83DhV7ehdYkzDlwCD7VKjY+U7yBUcNrGWUTG53WgGVsjLIMJudBCSAFbt4C6+QA33bSDqXrEergbsrI+UZ++3IUrBw59stAfG/u7K7Jj47JyS0KuO/99annzs4X0JPofN5n+LAZveseBO6CrZhVDddHCGE0eyDF3lBX28P2AHW4Kv8lm0lTtdYEC1SpNL/QLZRNnGv4fAPxqEZRY4J1H+PqJSB0CPQbrpUT1Yj0hPiKa/WgE6kNmlv2tG18Qz3HPCZbmABYYkRKwHz1H/tM9f32NpaqE5TYkoCabA/FoL9aM07yChrMpMl/Zvmb04etqNJafZrjT97NFhC6yz11VvZCHfDdg9IDzjh1P+hZ3TEFIN4Iv+BlVRhbwgSb3ZaVMbIHp2e9Y+U6Ie18qrzLYCT/p+pIYXJvh+1ywre30pes1GcjEQNiwv2gO6W0y+lrEsZ6ll2D/Fu8tg57E9oTLrqzde6Iz82DF724+DbqZtBYCDCQS5tbKVHepjqDC19L+DTpESLcuBozHD1d8Y0saWWLmDExXAehjt0Km1UvVj3Db6Z8kAKkmzX37v8Qt5aVWCxvKGI+E3++/ryPMjCTBBz55x69bt+33ZlvPIVOKjoYVb43Gj3+mvP4RBqW5ny2vy4MrdozpCxRtLMPxHA/bF6psw7ishnx+fOrYvCbyCMp+w8oFwoo48w4KL18AKUVlJm7gkDEHoRHAXmZF8/MZ2spqPRhEM+vv7osW5Ymg0Ub/YYmR37aFU8z4uD87tBP8Oh2FrlOMTxwtk+5KfywQD0a2pINvRAsbeK7BkISBOjbCak3B+/bSR0Czvh1PWpMgz1uKnyWgHD6xteX0som9i7acYj7lBLo4AImpJrRRvfAhIWGV0IfQ6k7cQDQF5EDb9KohlgYFLaXAy4LpkJQIXGZ8HYItT3tuhN5sQ2gXUpbUbjCecET3WP8XOX8Cf9u4ZBJae6YHf/vVN2TdFUE0j63I9naOPlPaTCkJJSfi6+4mvJDwALs4wKi1HT2Q6dnT3fNwbrOjakGS8t+NYV0oJNQ6YT8oCjbegS3OGab8u5QS+icv6D/CEoWUpkIoXBUUnpN3tk/mXauogiKcjYU4F+b8+EdkwT7C6Cx/fgGvfyg3KcDMoTpUz0rkSYqYSGAtGMjWIS56DA2ZIUl3g+bPnszXHP63af3ABk2u5iD6jb6rOqXnPYx11rYGfZoEOqZx1cwGAoOHeXc2zyRJ5d36eCIV1V4b7f8tdkugWvJkQRDxvpIUBjj4sQjXTnAfm+9EkhpTha7ggUrwpT2IAlMh9fvKsvwlbbCphJzvZkkTSMtd3zLltXvwR7Rl+f4eA/o9iqVUIlAVjQ/O7L00+Ws46W1cYQSWzX2mbBnnJZ6kn2UwKTBGbgqkZEI4+HdGgMHLuG0eFyj4c/dOyPXEFv1A6GcI3U2XB39M4V0Kd+RAZbQbWVxlVkqhhnHl9MzkITuEkaSQ3+/k/MuG8R0jOaiOkk20+LaGc7Nv1uqk5t6rrK90iiwrsx90MhyfA7kvAJR2/ourtU/NarVac6MS+JgK7PGxsAqG72QptVCbWqaTqCmOKveZSs1x/eChRjtp/QwN39UZuOpwnHofNGoN+Fw3hsDC0zgBXcS+Bf9ZREzCfnKILd4jndQl8FK54+5WIANo01SLi2YhKOc/ZrBlU/VyD1umVsy1GkAZh51mDO0IGAdIVrFzcEGRwtQDdCkgaoB6kuOAVFwaDHqDPciX5qGUtgHnYfFXiWBafBu3lEL0ykt6SCJq9VWdkM4TeIke71nb9QROxNA5y7W2pLlYjWbDtzaxv2Fm4TxYBMh/W4cQuULjH1SIhHnZ8i1Oq6iIPVX1zLLWtvyrUpKi0FJbcg1Ej4FwNX4DR3b0i3LGvGKqFCiWTa2/ZY7JqI3P4SuguVNJEAuvDKVF+QqtRuC8WY4i2Kj7BNUp/72vtaCfdNZVGJV7q0z0hfOn7hXH4N6G29n51kXcvwmcJ27W662IkAuV3PoSilvVU72wlZ0UBX77Fz3EzdH6K52rutnJpO2XeqweHgWOYQxI7UzXwkiVVhtWw4T2sXBkXV4i0S+36m2ry77dYDGoDVPXM5k2Qy7F9FEp78c1Dla43J7WQs7Bx8xlsSnbOTAAG2jiuh5Hr6odVrkzk+HdA0vHBykWUVB0mqW8jnOyK+W8ENuK5RlyBBpV6JM8oJ3s2yckpSQ7H4t4pt+JRqyyJ/hS7qtBmWvDqColKc521figgfWqh9WmgAysxuElDeiHGMdakrK5ato5XSXEx+IPoSP7d//oAM+ovpAbf8cWez0rN1yXCFA/mfXYMZ0oHv+YsTTP5Hw78Zk71QwR6365WdsDcZr78VcV/dhphbBRKBgrAq9U4BhB4eYrF4O/pjoYvQB0d8kvjxKRC4FwJSBkPF4x2LgrNsZzLcbkCNqNSPWNTzapvp7Ys1b9o9fxw+4f5GEiem4keV0e+jZlSk7OGrfIglsegukxEzWnPCSxrlIOgHBfLxpp4VtOmlq4ZZmfJGfR83jG2cUzuYokF7Jek0dmqQn5GXCl2H9h/N3vp0o77br4h1o75fkaOTuMn+GOoV8sxU/tvKx5lTsOXBOGCUOZbsvLDwwXMEMgROeNiNMDXgJWfYLTC/gDUCRQhfxzPrPXuJa4h0lcCVpFO54dwEtC1tHRYqClv7Ohko4RusQ7W9XSvVNXyVX6/eNFcWaQf3DObLnUYDxSI8/tyVr0cZdBlr6RpCgiHg7iNQ71Uhp2r5dxnjGrJIeuWq/cD6HsbATEff/h5wONmRPiVOrbCJMh+kZuOLUP/UPmhIa2YpHAzpOQ+Z2qBXGtDKw4CSWp3fifhC/ygNuxsCnQOjQQ2H4zRTCtk2Rl0o2M6p6vBdSiCrkuIyk4s4aiSsPjj2bfHgt7H6aGsPK8mc93Erv8KP1DcxwR0DmDaIVMnOorZ/tTD9vNgM07XYBmhy3ljQgdZER90EMy4T5h9dO7DH1gBhiD5jruIzEDcmux80pZxCnnaPYIbxZ+J6mp/0d+N7SA8SNN2ACQCuv2BindqYY7RnfsqbTKYp3mcSSxFkj0Bfpr3UBWNQZwbrMfNOeIcs7D0EtCXPGWxqdDBc1i/VNyUjaYn6nL5UjX8yfeBrBm+s28UcCMS1p/dn03XJAiLyst83k+/Dzy44GZGDVNdRUBogiQ5dv29luuyvd4soFTwm1mKpzLdkM1V9a3G84FPedIbbUFyTKqKM8C98Jr7+TysxK4BCZRFN4497zpNXQ+FyhNareYxbFqpk9e+drBn60MwBwSX204HL6CZErhiiduvtfc8MHarMV2MufvCxoA4IY06XDNga5o4Kxe4uWBlBzS6FYuR1AC/gP14oVPLfSR5k0LXJlwyTHsBylGo8YakAJrOpbRxn+ZUFqZhfbuX1/DaD/9mfQ99ObF+lJ0Xche5CoQcElb1+zNRwZCvz1hi4kylCsMl+siEjNz+voB3BtX9RBFWyl8Wni+fm5Ne4rJMXQGJskpXvmTrlfdr1CJyLBpWYJZWBI25BZs7Qv644gYQxUaT2cr52+6s7ks9AkV1vh5obR19yBCaWjxTSifcQsnAb9nSRTkljAOWLOXSSSnmpZzuExODo+/jFsy0g8KdUNxsF4JNu3sW4PUKGCu+PdytiWQzQAxzemt/LLTYtv6nzuorEWDi958R8lcu8q4VAArw1OoW2titQLdxdo8gVyL4bwzsb0lCHKAu91sRA8X9Oy9n33hO83AC5usbYpp8T3z0ElIga/YPM8Avn3ug8x7Uy25kZDy/eXpweD/y+aTKOrP7hMHBW/CtHXEKhdR4XLcpRJrTFjLuIG2Nyqs4iw50gQrO8psYFP2Uhph8nUGifBQ1I40R3+4ONXzsKguQvhwr+PaNiK5QNUvpNwSHOXXljRmw+KT3X1roCpkM52+KfLYXi6kfca25mveuiLMQ90azmkYH2ED/D9OluilB9amoztKObwEeFZftQYxaiMy5RsVUzl4NGcj6vywhQdsOq/it9eNbx1n6Rq22t3YQdycoB/iH5XzNxmOG8QhMwaOanXNfiGzx2i12ElUvMMVnj0YKa6U5TL+4rFPYIxsWQPIascCCcbH9+IsNrr4JAREWThlo8g+N2aoOlKrmVI3mKX3ir6dx4ecRcXzNex2qgfhv5sEMl5U0uYNV3DjZVBS+VfjwSrtslBmwW/NoCX10sYxzUvWftQZ3AMfCMascDwIniYsQauCze3+nEpe/sMAgeawhXJFpgM64gyicYHRFf7cMCBkjkGa2MufFFU/CK4DUV+TS36Qlkw2YeBigXJWx7tM6aY9bjbL2GeR5F5iYpKb7O1NKOgkCsrjhe3ZPLhsKaSfLBVWrz7jnXKM7CfEgMmBDSw4A2scjsrgpYJbrTZ3iQh1D7Jz6S7kWJ/3R+xYXkjWlwZVkn+zevC43lSb1CTsoQOowDX4L26JcQgBOu2/4dUyTczPV7luGAMu81vbpCM9eVPCgNSMyxSn49qYCGHfNH+PtiY0FwjYDzA+yZ2Twhs2ohdfskLiUyLi0iN+ikQ32AB1FtzxBxKzbgQB1G5hBGSiW46vtwbJ7huUH1NV158lYPp6aEr6fZ3NLfqEzov0UBfdXy2NJPpORtAL00McYAFpvWnwiA3QtFgKAm6Tz1rXiUi1en3x8vgm0rN62WVK1JFtSZpPgbT0suJVVXRBSzZ6lKt+UrqYm+G0aFER5Q6x9/woSzflLiHvAu0lD5A4cAnE5ujrXDt4vIIq4za5hGAa8xwttXOPBq8dBxHI8avp1l5wuqnjfCn0Vxg8w8LkBONj4rmhq2FpsvbVnPzGvPYHpbh3VD9A7RZycblzB3drAeHlVq2RW0BFExL/vRIq1+BfQBR5AamEm5xf/A3YWjTWQI2bb1fGtwziZLI3RnMf1PtBBcb9BEbDbm6x+dAUe6nYLg0qlq9qqBJ2Eqo6gE4gEfAjprJmcDINgshF+gTRbVDTYL212ThLvfPM4/EuuX/Y9VnTr0S0PQtBgX/ZcJDBEtXvLEsU8IBJM79LSO4mz9tSN5apSA/9c+4rOJtA3EVapcaW+2Qq0JMJvE/uTUhZ9v2wP6MF5E8Vl0E48mz6Sdta9oeWzNxKWNA5Q11qLEYBc+cOz2cmpGNEby0YsYm59y/lx9301ls44Zkk11v//uERAZp/nbyGyq3S6WikvvCAHuIMY0LAI+Iu3D00H3RJ8FG90TDW0iNX8tLGmL9Uz2EhWeobzEIIWAxVnGSlDDF0c7jeQUc08WkbIDVnWAy7BrR5CaR2JiMgUAYrXHJ2ptwx3VrYqvunpeV6s73nlATgxtNXfgM1zOT7scIalCTc1HumN3HKlErNY/l9BEdoqpCB32Tw5pXKoFONHe8KyapkQPLfjpeFmwBz+1RtR12Zg5GkDx6OGYnv1sHfWP5eEYWb5B00sRq23ysTNAiEAJihA+1lhZ76s8OZWGLI4CqkxXLPjHEK82xn4Xp4/pH9kGi0KDE+6NaSBAFk7GIOC67LqT3hVQskmZSPNi7oBOBoLEJLeHw750r9/yJogWxIKG95iuRMydIkhPPpXzCN/EU/yA6OMKEatTyonnIVeU5AdUKhwyrPEQloZ/qeuIJ9WAhg4vjbwd8f8T6xEJPaI3jf0MNWPrR3ePHQkwNsR0Zk/Dkd3DBonaWlEqylJNcbEbhxcA+00jn1SRr/dudeq+se57BOWsKJT3Badqh6F61cDZK5WfOEVJWoH/mu0pd6hYa3EUBmBkP7bYOlfu37ttoLPEgCuXY5+1QDISzZxX4H9dzQfubvcx//E16EWlmMauVvWY4CN0EXJgceuKiyLkbjtxXEWPwIi1meLmAcpiposKeWUWsg489qTl+SVxtO3mkyrUn+D2QOOUAKDuU2cBuuVA/TYSPAdWmV4FkrVFE+rjLQsZZ5pYZ7QWaSdOmIf3bkVpu0/KryVTpa/akVLxo9Wuz9tvTC6S8LvGhbSYIbbAkPwd7plrr/QHo8HjhK2SoKgYxjZ/WH/eT++KNFwrJTGpYOUEkZMjcKf/X4Jam5RBlGqzQLdmECI3Z4z+3JAlShov5YOBlGFDbh8zntO9i5hWQ0PEqqxkLp0xHQg9sbR0t4DowXWEwBXrP9HWc8k0K4PwIQpvM7nh/7y6z+pbI+A4vV/WU6pY2X/D2cJ8VAFNmj3IdxtBIgW61AoNef8+oxJgbRKZUW5iP+QUkvm3ObfNt6EYiEF8+71PTiS64/gF4Mup28ZSNbnG5Pu5XhkAIL2k7/8gdi7k5qRBj08mudauEZu9vCqwDRezpcUMdKfNtG7iUMorgq9hNFiBF8SNZukFoNZ/1ReE5dWwFSsQkjgTkIelarNhAPPUIElhMpXvZSCakB3BDWHdIUDWF0nG5F2xV4Bz/SL/Ji8QjMsT9D0fqOOVq5CXGw6HBvxOAnV85911W1FO2JIL6xgOVBfAXVVqbPsvamTBHeMFgRUHMSYOAScW9afkT4pVKQRo+NcZcmOXnfNkO0TBxmooNmNzSaag+b8UUFy4iaxvvE0hBSYOXyzkItJ+GU2R6mxMQXlgagvLiyOXFn4EzCWvV
Variant 1
DifficultyLevel
575
Question
Michelle is a baker.
If she needs s kilograms of sugar to mix with flour, yeast and water to make d kilograms of dough, how many kilograms of sugar does she need to make 1 kilogram of dough?
Worked Solution
s kg of sugar ⇒ d kg of dough
ds kg of sugar ⇒ 1 kg of dough
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
gender | |
mass1 | |
item1 | |
item2 | |
item3 | |
mass2 | |
item4 | |
correctAnswer | $\dfrac{\large s}{\large d}$ |
Answers
Is Correct? | Answer |
x | sd |
x | ss+d |
x | |
✓ | ds |
U2FsdGVkX19dSEql8areJVrvUoKxTWSPtHlCY319E+Kkb4EFSNnmBjzbqjorw5J9TYVtwO+BnYXWJkX85stXMXe3M2yN46C0oezwMQ5FApp/201lnKbPDYVVxYOx8UVAH6wDN21DGxnV6uQkxTTf5OrPmgIFRw0iqQ8KpaBDpZbuCVRcubCVmca9D9SB0vwMr78e9MxeXuiwmMRDZiwS67VYVRjCBG8dg28dqc9xjo87xhf0mzLJ/SU6yA/fmde5RVouuKmnqvY84l68aWtkADCgD53mm9NwOztpYXVwceyz8lXzK2CBmxcvNUPmv/0K/25wcRJn0nzRZ7W8SlSp5yJUwGgMROGHAjcERmpbGBXWvOijE9EGsGo7LHYrgeZjLTztivFhQLOfAf0AYipWVbNo9ApthJzuy9lHPCq1lY+w0yAjbLEztB9k+stbKVGAcFVkOEupNw6/aKrxBa/QjSsIYuoarXcSIhwe8/TDJPJScn2eGDBDrz60C9zEYcmnqPCEsTgJ6jJx7Fuh2HEKsuxHixVd02GLb4VmkIMRtnzQMnJEZdYtpDKFC4BIx6qla3QkWkVzqQFm6rhSXWz1XH3ZW5dIuAvtXBy3hC09/wFXo0jXCdE3tC3kmXo3Raz6meKN3JFYOUt596PBc8V5pnA/ztubgFDMHh6zwv+2yBFVQzy81TxaWwfUDkgVPg+O9r3uV51VmKv1Z8b5Ft39uFErLG5WJ193qhJ/0nqHOozOtAWLCIGclZvldmgfvmK6PQNsFMF4WcUT8ZgO93XNUXLYGytSzYDhSebeOXgwO1gAg2ULhvvVQsGosanvMGEyhqYrEYnidYTB1kKY0lNGlWw3uVamWR70TIIEwhGO7uRx6Mtpad5ku8syVl6qb0uLx9hG7hhnwc0S1MX/EH3NWIpHR90Dhc49KYNwnKvhkVCAfl0IDq16WXB4Flg4cTKG4yUfPE/eDDbuUKr17GDZWD2sF66VdpLApnjzpfm1FulOm/rAzavQ/Lr4fBL8ksT/HPUKk8beAGeLnJlE6amJBxiDfkd21zLxP21EyJqr4DR3X1XKplYbxK1GF66evSIp0i0Z6BLw5TLhBwhbD7fCFgJ/TH0tkf5IHANFTlJ16r82PBP6ZWSgVq40NFVBv+A93cjth1AM7uUuvnsH8CEEx31HgaJtTqctPJtPjcYukvuTQwHnlbZ6LNISvYAgGSnQgPbbjJYqDuwhuNEHAqcDsMMJ2PuYNV01DdDOhduS2Ey91tBeJP7gtxr+yYcxvCWvVVYm4RwQE4vrS/gNtt7x9sPV9EyMelV9VWSdoovSQYN4Mdrg2bq32pLIVMIAAtNpB0mynLH7iYyEdB0eSRmLCEzvqLet0AeZ/yWbNVWftgyQYv3aV4/G9z6mFmFQf3lOFdWAdU4pZSSu9hyAvN4jRdxi3K2BZbhUhOTam1ZVkCu7S0fhtyMuRqvHNesej4extTDTJV7M43wTmruj8feHHRwgsatyayrPUHSTYyOz6sOe5LV3NYb6lZTGENQ2SYJo4NDGZ+5SJ94+guHR1LKi2zQmVLfQcHduJv7siWixg2xb+a4vzoanXuOXCxmFZO0DRm1JBTuShvPXIXuoeizhO+Nmu7d+NngRWwxnsXDctw8QNdwtLCnBd9tganMN2olgkZvmY93sX0lCuyvHtvUd7hvHIoY4hKhaKZrepUsa4S4BKthVA6JPdGFLYWL9otMC2+HHYxn1oV8wXU0iflX6dXh+yALBYM4foQDwRqj0LHH+gz3HdpW/cUDmjBHaS9bGBOKAmBlCyj7cK/rsUShyJIM3GQud0oweVddg99C6jmQHjeuNh0bJvy5nUFVo4SXXulbaTHnBvV5Km2GPPYfwift5ThFlO3vL5ATlcAViqwSRGcORlRIhWdtjEca1/a/S+1WFnLAoiDEEkIjvFRXJGDbWiJPz9yysoDV7v9KL9V3l8KuxF5yjznEjj3CMTywXaC3B1lh0vPG/Fw0wUmDxVOhtGIv1Ag9ilz9c9R47hQ55j5CKXzyACrZQAoZns3KYcnSgIu8yPSpH5AIKSstKpeGC6w/LzlYxZ6M+vb+1VgtJDADlNa4XxhjHHoQ29qtCuaXOQc3dh72jiSMfVCfgl9iEPTLk1ANWcsKBon72YdXFcyBY+2AL/FSApcPxrVitBqRg1DloS98cQ3MaOFF/dfbk9IjnAfCieTCFSWqPA436ZMHBPniB7SC751puMtYAw1TH5UMQLvNSfzDKvExpaOiV/cupztYgRt1J15uwlPWQ0aLrkWtmsP1wTUkqxQ41+8lxdvu4OsdU9c6GtpuFgp2ZmZjSmT5VCTbARaa36wd2XZF72X3lea+FAt0AUbrbsIH+vMJJWTXpojcChGI/f/Oz6jKPsmqcxowa4bifuwqG0ZsA7DDgBGs9SBbhGHlZGTg6dLKTH+akyGGSYvEcwE3SnM/PwJG1YcOJ194LDRy5RN8SCOb1lAGW08a0mF0CCBlnoA6lLBVZt9xFXq2BIgXJt/ZvKJAHTY5y1zySpqeqcnF2+pZAheJvPWdsIyaVSRRHcMeP3AwU+ZxDA4wav5VuDbFeIx/zQPyEb86pIl28MCzvbqtkCy2tQ/wrFcyatozlbJZoF30y1iN4lSGbztTVYm9nNEQFNw9Jp6+F49RVoaAlptyTKG/XwpRogPjNBZXXPtwPdH+vK0d9tj3ACjOJSL+UWLDBkeQVRiAvCbmDhqc0xLc3Lve0q0p2FgJZho5hq9knCafZF+Kc21YW5CgtafmwJJNDHzBoOYSlh/AV9n4v2MyMkm/4vw+ppuukGVVJUjlfyK5ETfFazkRrBR+cSHGjdtv24P1Ovq8jMRCChhqm1PpgF+cBblVPePnSWwZ6zbs3jumAgIrQLTJqVqqziXy4u1w5f2/Bm7SZIMRpPGcmHuPu2cexsIbzXKtH15mMCtMkx51pPNXgT9YaMyFzVkdN55sMFaDbz1lbTvtqSmaFxjfutUFFxbEnNr5tuPosp/ansIJ0vtehkZEyRvf2oCvcP5+v9ln/s7j30jgpvJwpDkzNqDGAtKFQ5PprpR5PpEIRbfGrwUK8kRqVMF5A0SS8fT54GhMbyfkhOQuDdt/9vH92bf/qHxHFgvb+6jQtMy4Z+Ws2sCuA6nLm/5BT/t3mKF7u4OLWLl3QCIDwJgWKHxvD5TVmyHpbt6pdswMXv4MIFSDO0hTjDg4yHAf9xR7xumDIEzn6sXuZED/XYs1XoWY1Arqh1nogGV6dDDXaUEeHhaijNPZSwgR1gYQTuAwfT+U7s1BeZ+3kIGBWpg4XK72G93xL4Z1KO+6Np9GbhtvOGgMvnPfHv6NSRzm0dAN2r+wfsRP4QOv9hVQJJ85uWwfIFRLabSYwdU9+IWC8bMIbtaMhkHkpzPje13icIjbaO6kFa22AfkPBItut5fo1/XBOPn0vaXWl2gti5yk76F3EmSiZxQGY7IjdhGCSUis39T9niYuPomhE8rCvLj4AsUqucQyR/ZFVFppR5VOVHZLvwm95WdmcZj9Tw+IBbk3nkXrCmKBg3n6W7GN/tBibjLDJnRpnPZSMDwUI6mKncIiatgzyoteiBZtQrITIV/EUu+RCmv7jX78AMceoDftOXifALt8ktIUb/1oP3LsK4Z1bvkdh4IAadQt8b2h8iyppMLH3WLB/sxDCodheuO1YMXAgz2vYWOtr7CDXdt6YwT/KCkPLUv67OB6Bl5yqVZTscjN5FwQYplSs2wDENVam6K/HbC9I5vYujCr/5GfbWAH7spH1S2D7jgSVgFzvLmiKXywUDi6oo/U0oFLyFE8AZqwhuqjfztc8mmWm5hi3A5+whQ9e/8xZyfcj/Bwc6Co1IokHCX6H6jJbks+cEsJtoESljIBp6WAUrf6QMWH/vyyblStfKLDpZR9u98FQq3YP3JAh8uZ2VSKxIpQUsQnWe1JDLha852/Lya5EZ/etrSh2ycWw8mAjOcLVHa7QWMsbH8ZiYF+14VrxaMRN6qcVqD3dSWvv7avQUqAPQiORJfhLH8rB6fq5fkbjmddvgmmaZLjcZdPWfwgpb5mFgTGIB+MMsexnDZWN7S/I2DrPA+fx+1UZYV4nmZud7z17mPNCCw82e0rkJPLKfcG+Eqmj3YEufO24lepLVRo0r13oca9wrznNAYm71ZXcyathIZPYv0TPymuWu4ri+8Fl6xylyyw6tgI0uBJC3qIqhcd4Tn9ha4GF+3whKpRX6haqweo+lB1WOd14QnnUeJPj0TxcOc5oLT8oRrPKt0zj0q/rsSxg0pk8NbzcHAKEdHjvTQAjDKzdbv0G/C5GnrymjIvV8mq8aPFRop1McBYmaxRQLZ4UtHUPRvAIPqM7SqE6GK9EuT0q4nloDQ2xj7HBuGjupM4+c/D3jrA0YfcyRT3w9FtLBjX6VMzgwLmpEji7V4W8su0fkKsUkDWNG/7CI+rfAa0g+dSQZiBTVdD0MUm85Z6E2QdqKCdnlB8ZObJodjmq56JzQLpZCMr10dEYxT9Hpt8uiXkKZ6awgitH3+wjr2sailjeUgupW6kCWBlrF09ef3QqNqIpU105XxlgwlUA8Bqi6L2HQA485Bm5n7yNTNRO0A19DtlqwWaKIeY8iMmLC7bovv0nEf/UcGovuBDUmRRgyMqlcj64WhfXc9EhcwMawr01hyxWvcdOScZ9Vqgbh/9Dt6pXODecI6TYMkGQfc45Gt/Jhq+Tvx3YaN6DnvRUULsZtHVfnOfeTLoTmnXqfD3bPlWzZbkZ2GaxfTb/roQK1/ysk4wa+tXdeIc9hVTT38NlPWdLTmZ7Yu9Dz+6H/YH2j3rzRgthkB622DpfxbQJDDh3P8MaZqT0wimG6rwh+UxjBTFKGZHUOGFS5fB0ngV2HEds9ewecwjAkhq4KYV1pjgHlRuML6EZXXhveuZI6urV6DKrKM8xpT3Za5uSB9GKUvd1YtjKZOBRLSB+awU/uiIHbg0watqoXaxYKoqaJj57AhI/Gwsh9Pi0VkxccW26kr6pdhYEhUaZbURcD1jvU7E3t1WkPrpHMNwTFFu/iIkalReuYPDM9JyFpbrJerFZ2AMB37K9rldp13dSjOK+4e21ZsyO5yDVxI+KcLBosNlCJVfTXSHmF+l7LPKjJ0QX7EHrf7948Gjoj/1vNeY8ouz8rhOSnn6jyMtiAdqCySX12v72TMXgvPPjAhzhU8AHtfp4BIVdGxiQ6SZj2npI5DEOL4EX+JlHCbIIMZSpVu37y5erU5wHHz34xuSZhbhuSXxKqKdhaeB63LaH4SS8vXX8yNGmbwXxww4spnQ7UZ1Xbky+UAlh+PplHp2l1M3MQF/2cIGDeIPcSqNDTvDG2VKWy41G3ShgkUXyPPee5h1yy7V1Bvje6lU5PjRYtR5k08GpqMxsnaFGrlJEj9clpETKslA9uKRy0BXDuHK7y3X7hJY3E2/zOR+yzj/rkPlrB2R8ktHiH5dbbVSB4+NbpLHxqWnFU1ZrmavzDRRaJ7mJDuvmiujq2uf5bhwVheeJ3J81CYK74gzQgXsTN7Gq765L/Y7JSEtcHjJigyW7CXU59mI23/ABVplvACUbNnjGjqdhfatds2YVq4Ft0giMeqodf0NFTIsxJMP5l33ItcOEXZ9GtZLC93rr35h/8DWjrIDxGKVB0lv8NiQJac0EwSHsDxBKaNPLEirikZA7J19cgaJBLZZKSerT9J6Fo9BpVKK6fUiQJe6Ia23vyV+IRWQaXxm3t8njnW0WZL7gqUytjhJVUMcmeEcXSVYYaAcHy5qd2GRzf+L1oQX/EY+XVUhWVVY5H5emz05pNsI/J0iQJCpldJDsT3WVGbgbqWwDoBiw2vrpx81M3O5iZ0evB6/nLsnJNMFQzGVWWegY9/EmjEj53b5Rwf542QKB+QY6AjCl2ZZaNlHEfcZ5MKEtRLv2DsE7aIhFYeecRWj7Ec21R9rfcT8hq9Iu54kBlIma/FgKWMQGvl4kqA3cs6YaGXblOIJts6AOjHaoYs1BMw6ShYL8jTMo31+HSLEh+UPMyIvM8kKQ+9K8/3SRxs/wduYRni+LckcllWc12Ajc5RiPB3XzgK/xvtVrhaWYNISu8dXLLJ8WI05A55U0YasuIt3AXJmKHDJDycAvw8v+QB/IZK2lOr3Dh5WYTC7f+U6zsevM26TpPGGNi7Hm3AcEr0GJuMlNDinbwcY7fX3d64Wcm11qUzaaZzoG2SSIHi8g76WSbfjUrb42Zz2SPFg24+8PfBb5mNBIKjGf1elLQZxHUAFRHka6a2OoAdro60md0Luvqah76YtbUh/AVwLO9D7AYHtemx3hW6lrKtl0/WMhLp7oz7lec0TniWdNwszOMwylGSktJO21MG6c5m4k0kpQb+x5F4y6YNCjaAOlL2R/mdSHe3aTWuZcjRTT2MO4bF51iPtdKiLXoQhrOZCVg1Bz7ehSVB1fog2zIqCBYx7dLbf835ncS0FFtWOo4C3D9rY0HC9vivFURNQ6uv6l7exGVRtDV1uWNNAoDtFAmSoBHx2FAe3536ZgOVi9P+vCgMaM9HE/WNj/hkIa2TuBfjalSd66ausBgQAXfm9lzlu41rIX0LrsuuLmJWNouGY/FBddOcqez9uqAr+t2W1b1gHRzTTRJDVnvopNyxni/2Z2NIhDHgOOgncJ8M8JJWoA9+O5TuFIgv/ZEIQEReFc0L/17q748eb5uT5VQ7hhs1Mhd+PDOsNVEizgApGk+PatLrbSe/G8O4KSqoO+R3JzDoSuqKGChrN1yvZFEUuLcddbrObC9on19mExV+leTvTcPVQdqQc+N9aSF4lh44sWf9Ykya6ux0s/ybXW0Y87H15Gx1M8iCow+fSoIIOQz8tiWh1Agxg0Zc0Gahy/puD2CmdBO8KHRx2WxGJ9YH5ZuUUmRpl+XkJEQJibOPPu20j11O86o4CaC/45ttIFFnMlflA/GW44dobJRUgwLrPj84i5v9bfrOyiHsaXZ9zGUYKmtm6nJuBXyz+wPU95XqD4CeW/oLhthAbtE1u183wVjys46xV/JKhOLkGQo90ReCegzi5lvNUGkircAV02wy+aMh+Pa11j0jmkj4vSCsDeBlz+IEcceOWgMVnESIcG3LqbNGFBY40vwpsqtUvS4oWn4FdIyr8ej+PQRmGfKPHe6Kka3iNlYp5HJXPUnm+9X5MS6DpM7e/fl/C2NoVycJm/gLzbtfC9YBmmWdnYeGfS8+KgSlBlY31T6KOVouEFz1XFDQINPP7LdvkwVqg40BDzMhOO0CnFVKIs26gDeJDaZG1AgnkJdqGCjBSI8shRBsFRhR8Sr9HlqEEZicFhJ4ULC2jV7zKJPQMkboy4Jc6dbjyeRYwbk/s7YL+h6jV3jGRtCOOhO/J0q2wbys9MuJ8BT6lIKXMz0vMVCb/L2w35YcOtWojKotJ1QnFYpz/1m+ratyQm4IKL4NBUDt5pDrHyFEPmgjlWl/SfEoABYugC1g80Jd3wBJIgb1V1Poyr5gwSjWeA5aK8+7AjBQFXvM9rLPT5DGFGa1TyhXcF7afeUxItBo1gPxe6pFQPqZHB/saO+fB8nYM9qYLYb3EiMePww+1OT3xp123nxa0G1Jm8u9r4KXPSOcv3/SNK/aN0aMcEoQW91rf4+BvVr1PKsqAzSTAygghMqIB9zwRpeZvZApMhy0vGvtDbhhK/qd6/Q/CYMcslUhsBFvDjkcYMtWD/IbmuCZtQvDo4Sld0fJy4b5TSAZjgDMK0UVJP122dyI4TsWEf+A93oAWiL6mHMbCo/v/QKu/m7RRfZ3GZrVxh+iEwOyxXM0plNeYVzuqqjlQ8J6b6pWtKALDONB4k5i6DwwUKGgLyEFe2C4wYshhorLAXkXov+uKnqf+zRJiDkayM2oDp7uY5D1AsIL6bwGYmuY5VKI1vk7a2lu3BkM2ahw0/dI1dDd7kezA04Wpd25tmHZABEtFaYtYztaQ0RKiWLTmUjZ7LbNXkhUSe0FCAfr6QlQdwRCVpY1daup1lTpDJl7z9BD0KcFVbEGAgNc4yg/7XekfWafK6NQMMV63VyqnVVd9WyGCFN/J2xgRdkxt4RO2NqFwC00UTzo5ZPLWRf8/3QJaS5ZYGzVLAedJRhjqdERNiKZ6FnaW+qo/Z9kC6hYPguy/iFCw8bFhgr9DxlnenX3l87ba8O4Wi3hfWwQMc0hb9Fm19+FtslI5709H7Gvbw6itPh6NHL8Dn7IviTIsu3tIpdqSXSxBOA9sUKmn/2uJ9z7m5YuhK6IaJJXTQ3iv8IoRTvakztG7O64Zf3dhlpRraDikutEJPWyMNbKLzQIxQm1jj2hr3swRwuVEnv5UagPc9AocwHQDLDGasuFntRn2uYTdy/eysXcUMSTk9TxoxGNWnXp8QbgbJ8sb+3xCfwYCnhluQIQiW1oV5O4Lj0Yzi37sotrEBPe6gISHSNQswzvmyiauluLuNadTXuXQLAVM6EzRMToRi2cDG8AFr7Xew9xijzYzoGRsrjG2ITY8Y3c7lzFW7JeEM3iMsa0VFaLnriI4k+OqpUXXy51M+KIhzqo4NK/wlXrNHu49AOy3YfjmcvTFpet4VevGKKWRxuWWqIsABwmEhBQJ6m1VKW/vd2noQ4w7codTlztcGOFdgav1i0d9s5NnXSzf/Wmhcb4FrFelNCtvx8sOutH99hiEnvbJjoegfNXVl8U/xGfrOMy/MaqzseylfT9q+jIClG+ICSYKk7ERPKNq8yBpLljoS7BpOIRa+0tY3b7B8hquyyX3hkC7mrEjlmbRYuftH2z0wvS0lLfBy19zzo3KyXRw3OAb8TJ1f4V93NgldR5U65DTSeBeYIccIDawpmhlkFe8lWGhSdHbTaZ8QcRTQQP19cr6ERvfZofLrcRqy/wGNUWXkt3ZbSE9Buypnu00/wgsee/Qh7LwAEKPMZHIanm8Ll8jKvLAmoP80v7mPfOmiXRoj3/yoHBg9mDsQnV0OXmExkwHqOaSu4NfxMb5uAQ2u1UFMMkF71GxQrwoZswf64yZQ4bslk6e5pdiBQSc6FNT96O/cKXWyJEDfaNwIsGGjJJ2BNeq+WtssrJYPVheZjgEKrJgrnN9ysU7Mc1HGJILEnY4Ex5M2/NYjrCJJ+bO5BdywAonAW8Drtap/xKLjntOStlCPJXxOZtu2r0p2UEJsm+XXp1Jv3IaXFsigvqfzXRJFxg3WY8FsoeBjiZky0q23pAg7HmcEyG8Draq6pA+FcZrja5q7TRrNGm1KSxiAym/dbrto4MPju2H0wEsGwioivBAQx8/WjPGs+SOTb9SLBaKA4+iFENs0qTSiC8fCybInCf1s9mS219/8ay+4gCYkEvFXcvE37CQY6ybO+snTx/3XlxWO/mHgY/g/w4wu6HtN4fEBX1rNEWXykvKrNOeOIzsZszKapP8LxvEVuMb/KrUVHnZr+Y8BnS8YfsD4c7u3a6lJL9LbThuRT1M/Hc7MEgL+eJfDq+74NTfaBLwm4OPPdeql9NQ+vcF9G0RDA7J2k6p0xvWukf+TnHq8uXOhUJH8XBiRToNvs/3tKRqNelhgUh4XCwoEk/Zm6VYiweKa39d2QdX6vPPIrdpC+YUu5CMzatz40OtwWPoUHDfrHAaUl5Cv2AP+V62JDy0WEqLGWSqzFPHZ+ttMH0aXsV4ttJYvNiqrXkXRTnZj5hsDb/IxueSFNNzqr9XbIXG76zVU3qI1J4W01384AkuKqYI/w/n8AOMofs6vqeZKsQLWqfzE2dglvnrSXsQIwJJpORbUrcfeuKKzLLqJMgqHjHJOiXps7aRm6yJM/0izeHb4/2ceCKQd2PBYgGQhAgnRr/2vzOBPFYbM94IRrXV5t2SOIDW3y70Gaw9Ra2+1fKicfKcejnxIubwJ1+4E5C0cLyoVPNR/Zh08UVYTLAudLb2caHE436hN2/kYuCKshnAGFJVSrMTwZw8e/5wqbMnAwUpJXfT1XdvjMu2N8DhLOhaU5WGuylh4lsdBiJTg51YNmI4mIHHc5+AvhvPor/oUE/6EB3UdAF3ymCQitT7g12uhdq5AJLymMnfxEkKWC/Ib/fJgxbv0eikQRt+VL69GQ5yihvIdixddXu90NFXQgMfV5KmddTSR+dRh1FB0TCdZrAOSILW8vCA5hX946d7DyxvApkXdV5LmcloSYwtH2uqary/M+pbVaIGYXYkghFiJE0ahFujKSQjLGGIMWb/0frHan0Emb731c/fUuBYSTAC+OOJXO6Ctuqu9hVoa0wAUxcRh1VI9DuOKZn8GAMOIh/jsDCndrb1fb5oHgsSDQ1Ev9DSUmzXpjndnbZskrlhATIgFP+qKGjgAZV8g90OhT5j6Y8FYIUwsWCC3SteLoWnUQWo4HAstrsqJ98RpSoAMgsi6ARtcjRjnHU4aHz1JMW+NGpMSgjZToZrenY6+N+J5Tc2L0anfFLh3ZGviRhe7mCQMGyRODsRvLW52mGBNqVyaho8tfB7e+XM7vIqkfMfROP8WEZqgoVUA0h6eKySaAseZM4grfXmEO4bijO9HqBZudfVK+bkBbcF8jRr0ecFuukKRmeWgGjp3E2BqvNkbzQ7wcSgczVKu712Eh4shVY/2+Ohhd7OnufXrQjfkbgnytZ24402MGyrwelYztw0J2RcmJTV5UMHj8BCdlIRKbusyUrRMAzIuMWoG9L2zlZBhru0hqnBukLTfOB5ad8Jl0QogtiFXkhJ8P0diH1EU9GtGKmVw7tRkH6mCjG9VXNGcLDIUsZ54ZfnHgcTbdBCPouzHo8mStpY1WXQjm2uPbM8Q0nZ4tCkaKODCDE74UlQhmuwiLI/GduXItuVm+H8ZFxK9QJ6dvYDwe0oHWb8D38ZLkjA8V9Sf34SmFZZ2mlA91WYxz8vCL4V+fLKHu2Qtfci9QjBzeFBYicCTsfSknjjZwktRjCd9GSiO5CRCZvlyRjHRNI02VVHmJTTMQfw47KnLjRB/BazF8c+zuXyiALuhy+EeRCDsZDAV40w2eIgm+CxUN2980L4NTTa5D+bQGJ70aEN/Plxv9cNOtLc7KnYiuQ4wRu6qQsBXNnmEXB4jN1R4deuD6G0lmEhAvtM5lYtxtkRy+XOyHcLfiEFOssoxTHLsbu54mK7hCyB/fTjXmEQJbZIn8Has/OuWXIiqrhUSbdRp2eSyVO33XRcT5i8cvUKuNBuj/Wtm7zshZqi9JyDm7LXeK6qAqU3C41fMLOLsK0At8RhbC+QhclAo59VbWExgMjxRbOOxtVQ2degPmZlAXpLL7qdc+lA21t/SaMe5BI/QkVCyEfG+ne3yYWRg9krQ0W+taSm6P7aVx36auVAA1pH7JWpwjMT/5fR1y3MxMyMvOVSrAAZYhfW+kzSxSdJHml1xmLal+tLk+BJdpQ1SCpYghx3b2Mu2MWosiJaHHWdr0dNappSRGd34ldQDJrNK7Qo3IQyzB8HSXwc1z/uZER0XuznqcaEtvyy9nJZz5hXWM9EyHHbGJXtYJPXMl++59HQoV8gQAgUlyvQ3rgwVNttCh6v59VxCas7IEMZjQuf3VN3RqqG3IINEF55sGDM7fBvqZZLW7V1dCiGiJN4YC1iSRqdDubEevXbQoKXjqbPzrcvw02PDpv6vWvj9KDleCQASPyd/LAsOUMoKbcmxOs2ffq/sMfKmcRVef2YaZNF+7ActpG/qBYKBCxVQ773SOnhW0fqvNloNiCpIb3Ogr5p8EBRGsuYE4Ok55jJECba3k3eMtLf135f2DuLtie55C1shcLii43eF4Vudr9OeAhBbwl5b5Kkbddf3gZzNX5bhNUI3mgEkoW4/pSJDur3C1qAisId8TglHiiiA3sARcAWtTg9fs7LLSYMCb7YNldRlsR+LWDmybT96I0yHp5MIczZHdT7euqKnkxcY8C2QgnzQ61TkJbG+FKq5gOHpDE7DBjJvd++uLhEoF/8tFf/T+iKL3pR3HUdOr7BpdiiHHvCLUrvoUYikschQwBFhTz+zsjdUvKA8ISQGsut1U3BqLrAo+Lwzn8i2vNXhpYD7MfAQK9UPG3cl1aHDwPL6Yery0QpFfLr6NIM/cagJ6Lba+G1s8Vuj4K0iPausUDaGRG6Ed3T2cVX0JiENlufnt2jThkmH+88hgxdxn5DIEc6OUqjPQn67minysU5g6YJy97SynkJlVTO19kAgA1FymE7XZVZFG3jnR3s9wK9TJNAtAVOFxFtWOaV9krL0RUhMSl5/qIMRj+AEeP8AyjmPOY4AAU9Dsl22dnihKiDFgRDho4ajt9zJ02LSMJbb7GDQEvboD+ciNDOR5zvAQLU0kyCd0Bc89EgZylrUoLvvKEztKC3nhORwvzSpNt0bJaP0h+fVtUK3cZHZcENIujH9TR/yju5Pr5MMcf06JOHN3JM42r2SyQMt/0LQoGQ2U7E7h0pCALoFQ26rduc9gQ/gdq6CwRcIa2e0lqMu0U4nI8R93AHNIPRVN49rNPfAbvjBisGjH+YVudKYHlRTQsAw5GyRwUgY3iGaLLmHLGJLvJ7tuEhApehm3o4E7F5yvKOr+zoovslyWbQVhygv9PFJyzEPRgMx4pvMVhB7RyZVsnczeExLGFn5W8xeOI4XHOP4raw6jPINPlTsD5JjN9U7GIEo/2DQrL4b+u2fi6qPWqSIWqFE1LMkKICB+XwpELiFM4kUzMxc2wFXFLAjo0B0oyi0dm3svGQI0FCPk+G0uZf26MVY3+mU8ucSNBn1yHxwSSS/0MGoCdGNyKegF469giGvkJjeb31ChlvVAz6DQvpRrtR5taqcWH1myLfIlkWy6TW/ezQ/EVq4qxWTv1SBOFI5qOtaRT0S5Orxpu1x4TlQYg9lP4MYNgbNEme5I0hGBbOc0Jdh1U6IcvA5FxOyJSU4t55z9ROJIv4LjeZIvtCuObe7E2qKtAinLk81BwFIEx9g2zoISW+dD7XHWRXbIU4UJyWV3BWNtwqgoTVLN0JytPbUm1/4Ny+D0gXlD3xHQzDLEHVzcF7KyK1GdIbXxK4kSREk+IBmcILCEGMPbIRlRTicpQ3Zs4ikVVepPKgL4xoYuaW5r1r3eJwTxxmK5Dc28Xz7LTCqfPcmzdZM7DuI8AKJ2htztZ9lFE5fkVAq/dFzsYazHQDVpy4WS5N299WdCmRen/G7xcuhhF5djMX4WPcUiON18yvSS/ahIwx6ttkbQFNNnMfhXWgHu/8jgHGIww3wpUG6mTQrSEFXw+U5jUYOyoqGq8lFIsXqvsprSnFr6yP1uLRwTg8REqoVEolguIvIDqgt7GqDtjtBsvq573tMa1PTyxd9wX/4uOk9pehrGY/yAiKlhuVwoKQtHF4sva2ZFdTxuw/+Bb2uAhHvuY0Z2D3FAv/oF5CHyVQ/kUR7pKx7PlWrzDytR1hwo7EzkzsQh76JForYOnapmu0h/EUVEZxUkmR6xjDRqExXrB3VeUaBi2myS8kGT7ganBGlHw90ae3QIGW3WgqcXAeNCrLsppbNI+VPE12KLHvKoCAF4km4Xcpj+/9fzz7w6dyB1SoPdiTXu5GW7xPSlL+5ccZCYkICV6W2x8BxnuPHOZ/QK1kvang6rpmVwTl2ayEsxgnFLNpZJbSq5aX7t69po8RN/BjMAX8fV23EqqgeXMET+gfcpUAy+6hzp1qILl/0KCfVa+FnqmclJQAJAfsfMgbrlFElEYIzrjgjMLYq0CEigGS5ywTVX7PyN+sXqVW21GS8jJ59aWCfEXV6u9eJEGr/B9ibcoa5l9dBMXLGt3ljPu0Yp+/2G3JzVgcLS2yrpvyBrUIrCi38c988eV6RDMSdlotkHJNFtav7KFOP309PT/swTNAMqN5lDTcxHUD7ZLhgX8r8v4ZYwllBDTz92jLquQRZVpOI9cbwvCrTlFUKe0OTu8yo7xAk8P5RHTvxzwk1IKOSDLUm7271y70lkrgogDm/IvIZa+wK6Un/o4u0q3zZH0YBGnwXAIzBnkuFJuUYLX33SmZ++f3rmigzUt+srof0sRheCo5fjUpHCFUtr5rQjlldEJzf2dNeg33eK/hVCg+9wHC6TdUig66yHFPemTbqj1eXpSHLXTjXJ43wCObma2fVrvPWM7mJ9M/niyrhapJG2dy023wqbLhZnFzofdcZpbQD5/G3xrmx84SUxoPCvGbaq/zOH+dUVIml33Ur80sML1daDo4zUfoCsjrkM1u1O4Qz4s3pKNzj7pSryQPkNAkXXQPC32jVr4Lpq3EfZg/ycBBCDrrYFnzpgHcpSIXkln4RDtXNL4IMilOowm9qMRnl2HCifqAHMM1WYSAOE+LUmLGvFkpm6BPPF4UXIiSzt07kUgX6OQCHUvmZqHIhHe8sikKtGeom+GmPi4vm22qBQ0N5ADNSYq8COofBnffPGL72A0tH0jvWmGcnN1WeLXnmy+IVWAPIewWJUvR+u2aAqEYvAcGf9F1vQL7AdUT6/XWeiF0iwx3eNnonC8MpsTEuvnC0jRE5QSEVvKzj1zyoFDta82aA3iypo8cS9C8MxqsMr8E7qbLT3i4DqKA0VdOybukDE4k6IDpFlyuQFTuC/SS5ygNgTIw3Ld03IEcQXKcd4rV19cQ9dJ81vubb++Vo46uZCSBGf3nHxroFaiGAuY6tHdqndyLSpHP4r3XTnOSX9tCsuWDcnvtn2iYA7l96THBKyLWG9vsISPA386uWf7APDrxMAFr39vF8Y/idNx5DiuzU8+ES3VphHekziiuwvcMjw8CBZzkI2BOL99bDZYPlMOvUpjXbHzYWmLzWEddKgLnDdp2Zl/9B28B8/v+flV75Lk+RPOVV1MWF/4rgtTLKOS4CtfBShBuBcfYJ8nejFZb/i6qhLZqfsZeYF9qTwLzGt0w8Ga1P3wZK95dIzmVcUk+r+QgTT01m5iWE/L+zpdXUy4qsLDclJbtX0i1gCfMPvNCdrsBTDPOp2BFgzmx1upy4HbKzwAUKGwi7Gjc4OspRC36vTp5XsCNT18jbPq2DTd9tkzPSnHpChtFzSgYpNTio88sdqzliVh8JBAge97Syjm7di/3NtTMBffAOrBaOvI37fn+beFVXbTTLKwtO1yEy8RsfHhCgr/cVUxHWyBnzLfcemAFk7ozybXkTZvVrbvFcLaNJZA1vv0rwRvShID+ey25aVd2ZL2Xh0O/gQsGdQ/x2aD838O+CNn2w5G1912trxWChoHflZEnOWSz9TchVxpp4eZQAOrctnLGtrECSs+GAW4IdmqcOBOIODQaXA7llKAdCQ8zkajQnuG3WwNEaSooJo55MOanTbeXN4Mh5M65PpFglBra6PGLJg90iFGhPp0zJ7UqdstqAH1ei3FxCSzXQbyLs8Lkk7Atl496IxhFiyIcBYRnR8AwkScLwXVw=
Variant 2
DifficultyLevel
573
Question
Bob is a pie maker.
If he needs m kilograms of meat to mix with gravy and salt to make p kilograms of pie mince, how many kilograms of meat does he need to make 1 kilogram of pie mince?
Worked Solution
m kg of meat ⇒ p kg of pie mince
pm kg of meat ⇒ 1 kg of pie mince
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
gender | |
mass1 | |
item1 | |
item2 | |
item3 | |
mass2 | |
item4 | |
correctAnswer | $\dfrac{\large m}{\large p}$ |
Answers
Is Correct? | Answer |
✓ | pm |
x | |
x | pp+m |
x | mp |
U2FsdGVkX1/kCmqS2gaqZsMNFTiwo0R3NslNKdDPmIOd5EsYYzx269ZeMsiKABAF0NqIUFFHWOphwkTKq7t0as/1K3m+k56NtwTFxYhp1LbhoTHPeK05/y0CYObmNPqXOhLYcuWlsS8b2Im+ZN5IOSk15IXTDS88bmVUrj46emDitb7dHqA5vYJHVjdELuhY72PkvtD1eklCpAQ4PZdVLzjU6gHtyOf7gxjZJY85IyzihLqbK/HiMBpLspV9KR5Oal/4/Dln4zL5wydcoTwstSfXMQrdzd9Bcy3lkExclMNnUFQuOiAIzzHjig2Lzfufk8RObky2Ds4B80zGJdHXaURs0ZasV+41ttQva+ee+wsOoHz7SX2hVHFMW8DojuG6LIbO31CB+l9jVIUTxKFIIDazgMDHmWvavC4DLSxpMI130Wy++4g4ExPrBDVhjeWYUE3tT0WjueIQ/hseK12lKIz1h1c4ThPH6bbSFC+Q36qfsci5IU28kuOo2zmNwM+lafTDXf8+FK6UiC2Xmh2I/UGcpBmie0PagNQJfXmVq/stQMRMcPSNw4GJ+1vtvCxWs/K8gwDBVBYARKvluK292Cj02d/UM6ecwRZKDqk6O1Z2xvSTBIelcP0796UUbu6CwRcpII52NtbbrVZeKaJj1iIB9penqN96yOANimWXKcoQ+QT08KD6asweiX7VcE1E01Vx883KYm0mK6iSxhdCzvG1OT8qSxMbs1nMSugFXn32J1MDegemEMwxBIalM6Pdo/jJK2QG+dV5nko7CilKRrRxkMMohkRevWg0M6/ILhoUataf9TxRGlnkNJH7Jy9gJr2M1hlhZMjVwfnhK9ZILqWpFqDM98ihHUs2wEeGErYKsUg1ROK7NJwJTTD2Tsf/Z/gc6iXtu7Q31sQNvVuNs4fzEx5KOPAtQUO37H80ipseo412GTd9PbF8TsA9+PK97+OtWjSOXO3kVgKekrVtTpNlta8bV+fXewwAcCwxTII4YQFoAhwCNFlzr8ghmHk9ptuJiiJt43fCRwz5TL5uz9MonRcel7JWdp42pRtjgDgokhIEwKhZvxPJIPCosIHKVKgGLcyGlwxUnwu+34vg3Mbwh2U0gONsCN88O5LBP0TW3E4DkftgFhR0NS62wmTsP5bPfnx9LWRJHFwHNqsI4T2IGS7o1R2jjILHxs+Hzf8CwzF0EZzjdI8iJ4ptWgX4MmmfDC17QRrsPIAp4f0hHzJpnJ63m2XmITIJybt+o3j0ZB8xeYhuuTpayBWP4fhPHI0WF8qfLo514WkCfT6ydgiEw7x3btiMqPg3ccAEouqZuQY0eD/s/FmzwVzzzWA7ln0y2Adht8A3UjJ4BKId8b42fWkaEnVxWRoWzj10N11lD24ZorQ1z+ewkxtkqN6fGeaGq05G8lrEt642BKN5mMkOGDY3UGkLtus5esUfb6zpRqP+IQaVBT38pE+4evdq//IKv5qSY0icthu0M9t2j3oq88ZOVUDpG+2l6rqXpRv6tbEzyGk/mHI56oyHvJHEFJ8uCyRegmRxyDj3/0ITovdKmT5sMJM6/AKYxOQxaVmewHyXO5G+R8tg/QtqJUoFDJ/Gn375yTmcSmSVTHR58jYdiMsrsULlo159sBfVmupmTQDRGJ2JRIPJQ9bqJrqQLCoCM23Meeabd6i3ZWp6RsrBjqC38PKqeJYZBcRexTuEZXYxBwBGFnuurkMsF2s7XtT33Am8srjjPJBZN0EX5I8jz+v91n9bFA051OdP8OVEjUJCQCfcz/wTgU/wyOQ+MjeipzkmBmCv8YhpBAVGM4cRK/R2MWYXXgN59+Zyn1bsJA6iuCRpOHcYol8c/UCfPmKh0aHbXbri5V8yxtToJPPRAWGkbDFzfytsa9PilWpwA/P1bpzjtrNOxyFN2xGK24u5jpFE7Y/7AAnKdPFNYCKfwl8tZJx0yg8MXk4GKQIYyNuggXLmY8HtrHbzA71mhID33FuGfqdiBlSrXiDjdtMIrDXz6ze8/TlgJXBHqI3IcwuxDzWYVqbysOYiPZkduZqsktEXcgxgZz0KAVvTmQAQlHYGk5wGmBiXSrt75qfFvmiu9iXsu0iXawurNx4/mErdhK0sB0nIXoEyf/XUJqHBr5wbAi2jaHfzzmWq06+a9YG/8yb+5LxRGkmZ0+w1WNE4mvo9cjL66xRrBbUF+nsIQtu/zCBHZ06st5VNeLViE7+0rMqhDFfjLGqH+89m5t3aVesrhplykmzm3a3RTQAbgRkCsPKQaaXRpzouVbLhf6XnfIV+EWwp1xb3z87tT+H0uhC/CbnuvSFD2CQxyBqwIS90gwpa2wNJ/CKI8eWwNTYxb28xR65gHAD+DlykWLxdwsMPDWHamhcvb1nNqplQbXH+B973UNKEhIAP1WfFXJNPFpL9HvJUQwdPMJlItBVnUCKVx+/Vk6M1NDUkQzhcC3/keaiT/8xjQoCqly+NNVuGUcqJT8AbtGuMfKzh+o8o/Vee0xp43h5OCUCslVHJgDunrlKRV8pmnslpqABizlQKqUD+7gysYnjUyxJqJbm/hlDCyxyF4k/B26fSv2KlhfVg44lABAuI2NJjH9XaO/MAK70ADtruQo9amyZ2feT9qdU8gKnPI5csUcUfswKlr+j8EB/GIWFYb26l6TLEN+mVqcXF26t2GWC9RYTxCkyrRytMaTtucZGV1K+V/AvKTwZ2MQUC4+ea9+uYo5C5bsbIWysi2NR4ZAXsH8syl30kS6XphlaD4VFg1Va39GuNN6/ZhWl82nl8fNfX6CWsTaYHMFsm5yuxIfLEKki311kwIRRmoy1ZmDDs2OyyC9GDm7zy3tP45TNkC6qsYLMjm8L2gYAG5dVz033oCyk1fBXeNqkQ0fvcJYvJDIbAPrzJ25EbpvgpxCzy7UCb4fIL6PBnkUFKn98RfXeJSj/WH23fO/F3MSNSCNd00LDVg72lE7soRPk2g5dzNpXSzSIfTnJQ/rm3aryAaYx8c/EsXdv/cw3lHYH0eXE5TxI6OjuIDtLnZOV7fSNVmeafXmSIvFk7uvOTvi+EdljVk7YFZ1sUJihFYYC9do5KxxDF8UuJW0xGrvBMwZEfAbLMt8t+WYGDzb2LjRe86cOf0vMImb7H4yB30OvFVZKuC2NkR6DS7CAbnTjzbOdDSy/nnN3GelobsJRbQpnhTpZ3xIj63xGBJnh2LN9SsNTQqMbS9hvqoMMlReePe9pQ24wvhs+KUK+WIkwJJAOsy8fg/wksENKLUUnFtp04bY2jnt1Sf/BpMtFHHk5bg1Yq1IS86lD0xOXCZej9i1lffPCu19mYFq+xldtEwzejpQaQtRogvZVre0Sz5l1eek2HpkPrvkfdshCF1fGbqcH2U5qQQ5cy9QWKRje7j+5v/espIhSntDKjaGmdA8K+3s9lxSbTehd8WRPNs6PrdBSfootcoeXprjdu6QM7CsWI/XqzZQHp+mdQfZVjdV0Rnucv9GuUoXj4LJNS9o/L0Gx532P9KQGiZtMym6tTPicnx8SEjj1js7rNBUE6j172XN2Zr9uxp/O7VNXWsFu1dxjqbhQ3kRnYUCW0/wuoKFqweo87y6Z4dBMIRRLFiemRsHJlxSrkgSBX5udrHHkp1KxSMqgRvasBjIRpY4BxOhYf1EFdSX3cnJxBNy9O9vMD+Rw5jc9PdBbCYhawYLcZmkD0kDwKsX1g1eoFuJGHKqpVZ/XxHw9c0VpHaQQeWMwGlYwUErcFk+wdkV32e89lGpK7Fpf2GGRxm2LXhJ2/p9yD+7VsXLrwNpwi1wulXBxBI73Yy8D0nnITzpzZEUAPRMGwk/0Uby2X8SKIwI/bxmqBiMjLb4JbZFEgEzp3uzXrbWfah9sDMQqVTkgN0Nqd/FZvAJCCwXYuu3BQAlmJcKFO3dMMk46evAbZ0oKPPIhln8XqZgMGPmmSLAgfmfpsutJwm45smmqc5/XewhTk8OZ2NJLXZP6Brw8M7sBG78TpO2eQqTLTE3Plbh/AG11iIQZkMCcEpqLR7CjpOIK2jIXU0nF+5cypJQlHXZvIhzDMfNvKy2mh6DQpuXGTjMKZqV9Ow9la7zgpEQhdfxdifin7/MQmD+ZbvIq7JEO8n85BzT0j2CGG0ToS4SeA524SmwHjBJasdUjB+P0Ck0N+QYzVILKGDdkNmY4zpEFevtKXlGQfcNcA60ZjvUU2FiUNpMUYPTneu+OdRHMI6Kway4r3aO/QUm7oh00LqF9z69ds549j0CRXvf+p/OS5yjIRUxfBJTD/EloIdumzBDqOIdZ7ZDOUn+Z7PDvuUhUm4nSEvSACeJpaI9lZc0DctzneZtMSAdNSGyjQWGS66Q6yul/VIOcaraENGv7UTylaIBOjflYzyONnIvmftj4TqIqpEjFBHQoS3KGsFwsziy0E1UGn72r1eXi81WxLE0PouocwyXr6AHAfW4uB7G3PiJcLNJYrW6RDFOdB72VqGlJSzf2BKfXfw1OjHofkMxkxUk6baKC0ya/6S9fxH8BudEtNDDQv4sITUkN6wiykvCpHg0cxDOw5uGld8qR4ZtJaZcM9ry28kZh403rzIQ5Bo7y4xM+l1m5p5MUFnp0CDGxmE2sPj3sZy4vo9u3kYXc4pWiKkE79mjEZM22zCwZTNi9PiD7ThXID1TeA+qPphFHbGx6lU5QzNZPv47+CooCtVMOIbpSXBZIHBATze1bqbGywzKufAz/H3sLvsepr9zqaG8B+/XcMUTmUZb2n2jVOQ/Bte0VQQvJ//g8r5gx5hf2yDlTR6ocFR7Pf6d3QT6scz4RJZ00qMAPrTg4lf6FqTRdT8WjCXDxAO+CXs0bTNUy7iMVJmDjjUDc4xUmTBLaChm74H80AEZYyrn/YgrN8sSZG91Zvi2YZj38EQyU3vkGtQj+d2YfVfncWeZrBNmrNAY3VECMuJdxRc0Fbbvk1pc250xbbLGy6seiauM1mzQtneF7Sx3EU1vak9V3MDJHQRPKp6ZPMKLPCtZ5kQbGhmjjVBAnQqcWiAEdhlhNKgmxBNo0L1XHuX01dfTBGHlGHU2TAbzYaFWMFk/R9xEI+i8D8IDoomAt7VQJcjWeCkkN1Oq+3zc9vNPnt2evzuSpJg4v6qv1BNXmnaZLxXqPsRrNrVPqqEyKznSMUytp0u1/uTxRHrzgEQqxPBhd3PE0zF+IY3pUT/bxIHVSh89BSythF5FsD2OPMRsp0+8wlUQObFxOAyxsPdkqYvo1xPdlUhN5sm5gK+hYjkcSZb7EfoSDAfHk8HShNif2ARdkZ8PnjqjhS6BZGymXM1vBJaEpHL+O0gl8FoLWPdp0uz50pdK5GiwT6CRmvZa1+sO0968+bnWAHcQkt4sMIbiBBlRtXMyW3xKQtupmqWppBDHbimpNo3xzzMx53MTkR9gUp/XrZSBzQHOP7fJ3hWGwK7vW5FjNeqAty/T1n5A6F5o+j7+IbZtLpL84tjGYEMoQaOikQskWI3HBVoRfVM9zoj+fUOlKy9SE5Qk5b7idGRoC5OWiZ1toOyKoVAuID1XbZFLnv51Nlv2ZmDIvniefszlUH20uin5Ov0D93I2TzSRQRPEARjIk9d67hbhKjX9Jkc40T0azRHzwV7SjV+fHJ/WKzBxfL1/LUFUEFExypQcnlstUavA8xlWfe+KhcVJzjquTivGNZQN8PCZHJ9Q5V5Aui9TuSIr4cieYq/Dwni5hukOg6A92YqYOHMcbOlJ8urTmDmuBq1Fqt73Nd0LrC0lFaIwPw8Czfb5VLUciiwvV+RjyO05CLypXtO5RhHuPTkbg8N0Mwfzo/tmFQg8vO/1HDk+m5Dw9idzNv5SwJnV6aS5EvzMHqdKGs5P8g/Rh7mHOOwtjTmGHu+EEIEVUoJt20nBb/P43qLFzVLCHUJ8yj/+bD12sSQYjGmkH+hg9my+agX3uMCp7M3E8jCinpNmzBJnKNLB9ZlJgcJ/uRs7y3Drpl6jz/aELuhWNCHQozaL/96xF5kJTrIUw+sRFZPjKe+yEKBGoUKMs9Dp2o2/MMG+k3P3TBxM/DJ6/JMd+sBka5QIjf4QCLFw9FZ5DrMn5pYswuvY4kAOiZG53q3hx7Tmt1Hv0vYFyeuSRdXPvs4tLyGND8P8W3+B8/v5chXHyl0rNbUoDAygfbzSWoUxwC/WHkdZV7bLwwMbeYO2+qNXvWEV40Cd5Alk0f4Hv/ewcwat10wxuUUdZ/5nwWHZGevHlmKy9DewrIvnkjSs6yoUu82bVu2on6nroEwvBqg4U6DNy2Q0malOuTbMAlCCEwdCGi4Yzr2McV4vNdpfrNTlqtOWCjN+YU0gMc4wszd55PdfjoBIg5y/g52aa0KqHJQJw4HJBp7hWTD65eFHUKPPuOmTku5xBsH2U5lvn6j7vqoXpkaL85ytudJXYtWKHw2FRvekYukPuM7bkUnnvK65GXQc0YXL72K3HiBkDyzpSB6/7uDRU6OsQAIf/y3f7DQt6w0lla0zsKWNsa8sHVDwIbnUZoVV+O+lUmJYfGxtRRt5VAX/+3LQkqamelTwfZEuvoB/uKKZPWOsIoclbr03tJqQHDuQ2pjM49WrZaPI4+g3oc/7acUehl+nZliFLPub08joWH8Sarb2O1NoHTSEf+JDzcVJow/AFo4NMqYqPUgqCvYPlquGYyjKsd+HBbqjfLuAKPX8n0ohrCF7ePLRJ1H7m1/CutywidD/WJS4u8EZdglD+AZeSLQjFfr4qYECYWNFXVyFeWk1ltaB1kZ7NB8ohmxgL6J/iimFbXfuSR+kRKFcu/mkTiVzj1BFGg8iRpZ8Y2HUFGiNafTzFsgDnmpxkZc9iGkD94GIqPkHmvD3drxhEGsQ+sLvLltm3Hk4SGpSPJjs3wAyzr3mszdcYAuZVCrcS2UpkRDJ3ls3kVHivfCMEqJF0IYNEg6ZpW+3koyxU6xzjBtOcZRc3SVjaINglkRg9jNlmqC1AfMsfkoJbrE514oh8uEg9wXPAqsS2zAva4qSdbyuExZgG26s15Z6d9mBnwc9IVKSwZHP2uWYTN7NjSfz22DzFAFzcrgJlT7P7Z5UQrygI6XeeqfjJ2BAE7FJuzrUPOmf48WBFrh8oROj+e9xrf/3kgJzPSaKFPkR2azzlN5JtTsL7d1r56y+qnBW9d774a2NN8Z3H8u1BpVbMCYoCkTF8QhkcgWMoSWq0VErzJENw0uoLE6OVuvtQSbP/UgJyWSMxUukvvSVotGiwhS7/p9U9d4Xd5MOoXxf710bMV0lS9BweGO6Vqv0FEyB81BHk8nb4cIyRN8K6GqGdbfPq3XC/JwZ/HZIJujto84YoS2RdWW3Ac2NntrRYUB7S6/Mpf9FtFEdq6HiSt9nW9A6KDO4vSATHEkOY8jwpMY/B+EdGHkmP6yidYMvxjazwBeQYLJJQzeRQ3TDjI1qCo3s07ydYayh50g7hwxEP/KxwOGeZ4wpxgYuOvQkq4QUCRYUxodU6R0fTBtTEO7QPW4quDWI+/G1kOeDOfkM//NnQa7kQMktw8rQxuEFnZ1kbuUJYVuTbFwicybnwfFzUuCneBMiw3CrgCxdd+ffb55gZVRdct5BCdVH2mLGqeL+tmVCDt+CzdVOniWXj08FDqqVRd73LkoNUGU0aklWZgorXJ2GlyFrODhTJNYeEkGXx9VuI8sFR7HIwqp3VXkjtEyy5SkfNZdqmY6g0EQ7ijY8KYtYRb33jP7v25V2PxFEIi82YVGxl1s+jYeLSge/TGNCanjOw/k1UFf2Wi+xH+9kmmx4sf0UBEdH4DrKApAYBqrr8YOUl0rF4kqT3vveq3NOvvtM+fk4jq1w89Bd6faL/Iq/1/anUkOLtPwJim5jOj8PR3vCAXnUrgpVr26dIo6D10gdZgvlTQD1WaffNZb08xLEh3dzVSLQsqsRziakijT+wYjUWn9/c2TXmIzC5DdYx5mU1VDTqO/FdNw6AssIFNj7jbVS2W+SDgfkjHbK0jgCgEUqbYHFWd4c2ZGJrIt8czi/JNiYl6Ir686vpP/N7ZXJpVDsxpYipcCxPqqrfnOrX5IrfqJuraspzCq87QCct7BDZP3Pz90dTuazKpaObmhMSTJKznrQUBZ+YbxHbWv+fYYQ8qIrAgCxjO5yqY42QdmrwkoqMupy+DyB3Dgsy1/QDT78y6QgPXPebHHPG3u4DSfiRitUhTzNXr1iB0Pfuq/CiOni6IRlYFFycBQrFqXC8e2dBX1zNpWKAnKekFjtZ8i5p0cABqf5h3EYbiCwRpCoovBRwqPUVBsqnjcxE0r6Kvh9p/Zj4p8sctAMIYI+RAkZQkOb9OeLw0a1tUZzod24L+O2m8bkomvZSPh0NXsYWTg8ZpTk45B/+we3J0KxWxnFEOy8A3Yo2Bcbywp3mh4EiL13Qf6rJxcOD0buOF4InHeUOok2SBm2ihxeOrW3tJpAmiyzOF6ytbW814ge0v3+4Hfu6SbDnAm3aJYf2G9+3t9OpXdO3TSzTgF7/f0XJyyxumlIJp8PKF+eNKfhyb8a5/YVRbto6TQSHig68viJli+ssYDFSA72A0/puHU8D9h6I6AinmAzmESlg4PMODjh0RkIvQ6ko358mRNuGzjj/RYGAfHqIWkb07qXiDplHYugSX88Vzuo2zpyHRm6gB8bU4WBm7DST0tIic35KlGL55VG/2YGjm3ymjBGeCT20gjsN3td1nFKU+a6EuPDcGToDbwX9d65g6q/OmK5ft9meM8EC07WfunOy04GHVey4mEJuGOx2BCL0SRxX3ky+TJJiTEouzEXz/sjGw+JPN6qaXIJk4SabXGJcIZQX3Q3MW+vjSrEqqS0Epll2zNHUQ5bkVFhaS0EN+Cv7B2NI6qeL70ViAAuNLkA0++/zkhie1KAPPQgYI09qa1c8SFoRwGIIeo+w7tgz7AsrF0UHGnfjvZI/w+ytroxHREz+Vu9trO4CIrEa8cjUIUqCwxNxbCYefGdwe6uo71fBJUn5Elke6bsMFTUceyPlG5naWYvdys45QoWeZ5rjbkR6hcIuf/CqE42kpjxWecukur12ks0KLvBvHm7pKbL4zdBvwAXWYix2/3Zozzhgvjx2Dpf+EcFPsjsxabELUCCLqG9PxNe3vHXP9u+QMQxTSm8iUFnPNf09g3elYKHMJNv4gITyXvDbJwtTMjBjiVjhTb7uxh+dSoFV2UpOOpUeAq10fDlxCaA73Iy+4a/hqoFiO7xAB44Cp90SjvE2bmdfxiieLK2ouxyOvdxac8gc5BH7+5j/+pQhC/vl37OhhUPTYLEThV9Vqnpr2EE1FPDQQVl03WVz+dxI6UJU31G36t7iq+vSXxV6kBcXTmv3D0nw108/n1nRlEWiD9/Ooq+koFO0KXpNWEESPV0xFoqgFUOSiqU/ECjONMM2YoNypC/eaYCFGd5RAvGTS5ze/2ibEYRFnbcBMYRCiOfknoUYwQJEG/7Cvka5VzfBFHwdFqhDaUXnCovbBLbzoR1aSqnSWkjd6CiF4nipDWoWjQvHjnOMc+JIK+I2JNeTJCijvCzmhjRREFawz2O5jrOfMuR5TfmWQD5hxsxzFWbdzadFJFZ1lRTpSxjGuRAkH0eK7wuXAjLhmVDmChRrAT3ep7OMtwoKmRNp0LYMVs8WyxU9lcJ3AY2WlselTIZzXOnoBVgsH6w94bFSpewwidOrs2QM7Fu3S8EhOz30oqk+oq7/kHvG4IimlAhXRYtwjkXmnUhNaWdJoQvJSS2vAxjYmRszfcIWCF4+ymw3+CnrKrENIdT0/VRREvhY6f2YDkYyyx5c4cG9syxqtclcg0IIdlJBgAbof8Ds8oU0r9tuf+tb+Pm0MDSWMHNbkCRXCvPCRL3Jc7iwVZcHpJJ6h0ZgyQvBc47/8RZNbJoFZ6aFULktFbQfMw3vxECDom6NWBDFsXeouxa4n4XGs+deMNpS9efE8YGEg48Ltq2o1CUIiu5eDk+UPzwwKERBedWzr3tIHRFZ8pJe9OfKS8hURqrYoHTO5Tj7EGNLRgbLi823azTJhy+PFRpNlcdm0vhx8nT/NVluigs+lRvVm0i1T392jDaVhJ26wClvxXQz/R+tllL1UCwtA31WwQO921S07pmp54CAtrM7gzRCL4UiY1H+XpbhkrOBHJTg1HzPiay/9cNRZk6yci2MDxolPRLnVe/9vOM5az1krEjFW0dUu1dfJOGvRksp4tPDsqRt5QzQqjMvhBiKtxfbGUbwTvwjK2Sm3/Sx2Y3keJ9vXC9z/Xe9Ss05L8WTl1uOwTl9lT94DfryeUeeK7Kn0w/xfg3LQNgsenc5TMAxEPRtbtxjHzW1y3nxYQW0ZxQXZ2j1iQplwNW9xqrf/r0sCEGHquEJNs3BONqxba7G4mB/Zb4m0yN8b2Oo3j8cTQd7Mujj1pia4lZ61DxEIMsilVmlsvLxK8w4a0R8QF1efP9MXpDbuisWdfqPSYcmWOJaVFNJmrM0oUb5/ILdThSHgxPdnJbXvf/XhE61Fc5b5eUJA4Uno8PY4Mq0tcw6mZR9sl/0pLamzfEuTktxXtWdWjEr8F6YjI3f9RaQy9WHWzB4qNfnGufCZIILUgUbYwGqBnoYwX2qONoGZ12/uy5kbbTFhW51VcoxAnYxumRA8mqjwy6Y/WZk5d7EMnOQ07ITGk5NvjRsvi2BYj8Kzt+P/bw+lpBZpF8ZmU9jIQ5qTejMEbire2LWAzdTU6G1KIE4V4B97spyCnmh6icbkkMXDpOuI7Ylo/eG5m7JEe76FBo/mfYqtjQIMkLPRmtPUJaQOZrhqEAfgv7hWnCdFxR6QMplyFbuDGr1PnV8ZuCLcEsv1Ff0axEDQ2400nOZOjpLoHd5X0qNUovUKBWi26IUj+Fubul/kcW1WsLjHW9u3xvsmziyDh6RSLK217cLjOAoYbFu/ZLtBU6IEduFObgUOs1CbWi3vNnRql1NsxZNr3INbzRMi6Xvyl2Tz95+3DqwcZHmiPrLK1YKhDqxVQ4IWSTMQ1CfxW4YfboV6UUXDELTuRHmDSevlI22mg96zMpdVjatt5s+wrWvr6T0S9rBPtVuo22FAs00iYe63pQclr4FI675u7zAl7lv8JN/JyuRDWrF8ITY2vSRhQKaxmYS7u102llar4tUq91anVzHxrvXEcYSKutoKnmwpoobMvVfjuMOnzOe49+ceR+1R9JJS6NYZLm862KEXRES6yBI096Ax+ePeFaaaW3X33cMaJGznzpFPa/yC63xvw7FeNbT36unIZsmeIv6Wd7ufIJ6zRlHS63R5UF3DKl6f1Sn8DMRllvk+qsuwg/CBoJ6y9bDRjoWj3uBi5pA/bT67K8RwqQNPiPdt8dycMb71K3Uoxx52KqYvu2nBU34dppbLvfQ38+M0Idk5nmBh3mQKaUuhlP7z5N15+zsdC6mvsWi4DTOdG5lEGk1gxmJ3xUT/br4S+kKvpa4ktDYOTQMclxXL8i2qNmtGWpPpPI6OI9CYRLo+tjt0Qfdj06gJVKWtyH5Y9kv2NZl7fKUpLXqJ1hV1emUG+hLK5ATg+Juwt6cLVudu/j7U78iXVNK2K4OnJlnyIuNZP7vMz3uT60wTwnMF4GlDKzxPXE0YoT4T7/V6Uu24ynPVqr+TqBvebI2Lh6QoTtkfgzqtuKvU89T0gkzXy6JBfJUEo6WRvsxa0nCeChYGlOV4v+X9D9/2lrn4NNN8I9lFju50FrJPmZTt2H4o9xj4II/PBmEXxlKbWE1C+NQk8ujvfXM2EyZZ3gDuE9C4BqR1BukCG/soUp5Dm+afJ5/aTu0Qud7tNSGtIKAolzPm89m30KMtqA++w+jIS1+TbLx1SNP/iDAvtRhKeRhRqFtEX28/Oy8788QR+6rrLT4GP5yvT+W68EscFDv1bKNL6Bw2kcjuVFXhB9aWXHFHSuXo3VRVe54PRguYkqvuQrPyDXnS/C3+Bdf276OST8ZYFV39oiEfvY1n1ckLot8PJIoUfTPP8g3pct/xW/tBo2w3cssVFAPlas0g3U3AB4WKoZDS2PbNYEFtibGJC6PwmQ+m5ek5gYabmWPt+axzWPCIa7yxIY/b9QuZfuD41TgdxLszYsZnfeNXOQefRk3wvouo5AXk8W6JZQJIjnXUChZous1J4j7X47r+uwiy85qx9ZzO+3q0VIxtzlqczOdQ/DZNp5fHj0wy6NgCoqlFWxCCwqLTDfgm1HYtZIolWgN/qw41bUJ5Fu72Zl1iZZ/lUE/hN+aRV7lX4fwnRXuuRf+pU4fSsAfNCvyKHqZdgGFHTFWAj1irV2REZkXjIUKJhZ/jsxe+EjLV2e9oR7qYDSlNeoKYYpTeucyqW7F8vNtZzXGW3vPtBt62o1e2JuP6XAni7ekvBX1zPc0h7+rA0OYLo3G3LOIp1yCrM2zxJmNO9hCFvomBygWB5CSJ3C1signpJBDUYdTBrnscFj9abawHeVvffzvvkugIuzGZA08yDCVnk2UL3bLj2oCLrTh4GMoKNxQ1fLXr7ZOJWybkVUjCM8LYW4qk5hBi+llVnhB6mplagIu6Rslmu/+PkZcE4ti2E9YoJgxzx9pDTJzH/ERXzSqtcSpqZGHEpLzic/kKOIucvsTuHEdZ2C/bklVXGCcv7l7Ieb/bbUaoLCweFN9JQ+SHi1pZubsMaAu3Y4wZX77yER0Dos1jDj4rX4qIaNFGa7lihly375vkRGY6jO48TG3yct3Azk6Ufo/B/+c+4HjpHkfWZ7G3Ccf49XXAPgW8iTOTqzR7Qi3bB9ehAxBCnXCxH93+IV9Ca2+EjU9bmOpBFoMFcIl/kwV4rqvf9IbsNRvRsa4DfbcuCmiMfkIPtjbYbIwVLdob+hScFV0F/xPppF95aEttdCOl/h6am2P5r5HvTFvbLRg/dl0U1HuIbhsN7n0vQAXkIOy8jMth1AeGOJ7/lATejj4/Ly5hAX7lX8Lx3PvET5fzFtSNuyn+cRGwkf9LGF+Bbkj5NTlN2TyJDnMQ9/R42if/BsaP13J5P5hb1EGOZa2AMUGf+vI0nw4z7vfkOkbfV1KjcKD8dhbm4SGEcbD9WuDr80BsQenOvtxxtiBqn6YaDBZesmY/StUVODyZwwwq2kSWb64Yjvy+hZ2VIGRWqgOicf+67Zr8epUw0uEIXWYyiKWJitpwU2Kqgx5PFmX6ea4CxRsOc318KDHvFIOnPiYxaqNgBMP8ezgFAEYUkEkSgwXYzywoHAjyj81n1PLJ4sdvW3flyPnCOJTXXZy1ZrazyTN22KDHS47VjKsxZsUD2dStG3s5IJPVEJMGsE4qaBNznfTGI7ijuzGxF+4iZGE1ZtBJK6C0FdpPrwWHfsai+RJ6stAQquQoWWbrvHfWiXJAPgRO+ERXq1QluD+1TsaVY74svvWrnMkVj60KTYvr2CP7dg/aproxciVTB6c6NSGk40/hUm5H908sKAfjFrcdyJ8B57pJhzAVaT6bk2PkTQr6eJ+u+ZBmy6mQ1VwgnA+NZd3moymFIPLrnyku6ZkSPfhK52R4wfSPgxJtD/8mPoZvy0OWV8J4OcRKo+VMn35H7rjdBC+qG59pJoF5MTEbD3CKEKRe6BCqGS4TAWUgoCDCZw5W+SK/Dae7s81p8nGDFvrj3Zb9XdrhSfUdpig9sJZIZA2DNx9Y3dkw2hVWJ5El7/LEK906SXKvhPEOAlGZPK7LaDHKla5QgDdiJ8sU59BMGtOADLu1USzbnRPc5HFPbqg4I0CrTCPAK42cXm3H/KaYPJB3LVbyGLL6EMhFS6DxFNf4rx/+bYKgfdFpYSTdz+1a3/ach5D9DRlooyKPjNA0mIGxdfIxJ3fdZxvDZ2Q9w5HnN8x9UyS5UWvAFcm7VyyL+6VjAI36MzyGBSoiGb37OvomrGcbpESEIvCAGHbeZrmZeww19SEf+ybbmbZPvZHaLmh0fhRQry1dTMRKCdjsSHXOXPwEfv4hRwAyRz2eyS7wpFOOy+oWHCRhYCy9O+0X0sOiPySmmk7YUryQrM10kGzJBv7/S0DM011wNbofYjk83o6WjCBc7SnjQIpvidvlSQZLsQRrAmE6+64UPlcpKpsbFoQKUp5eqZTlH0/NAeZRplKBHVUiDM/i6jOskq7Q9n4wwy3UEVa1dA7mQxjv0TevAdcYfqbArJk1dM0oyQdw3xf7Au300b6NqQOTjAx2vVa8KvJ8yhIEoollFJL8Xc10dm2VAL2q7W4Eee0avStZLRKaMWACTvELgge6yUZyAuJgUkvyN+m/oIOqsDw6z9QYmXE5W0UjY6aCCz5CLaOC1lUkPJqzMBVRX4hHOmOQeeK38i4i/q4RTvRDH5dhk8RnHzRV7BQa222oCxCKz87s5vNiNF97lF+sxodQcJMKqwOxQkh9nicT0cNPHPGQZKKEIbfv9G3/TbgXxPfktLy769xPgnYHEvI8AgnJluHqqkXsOTsrxjNf6xzeaMh72Xhc0soGvrEz7r7AGVlAdsjnLwUpJ8LPAl10oM+bej6NezmoyS2eiwAFsV9e/RZsCWfmO4l0GwCCE/h89ZfFJk7kRjZHe+9cM30ChGoQq+UPixDaA5jZc3BQ44/cbph7iEwjyk8RPcj6AXJMFAGawluBM7nydaKdb/3pLV2mzwVV5WxVZOCXIi3TK3vG72BsW9lIbFFio/Wy6DO+a2KAn7Q9yosBSBk918c1UFMGfN/oWXZNaKR5LLTgDzN/BUBr00gCbM48viADG0gRxTxt/G7MEcGGXKASTaxVtHjR50rUJml5UDE4P1Wxlllumk5wigvN3UNev38UC/X3/rlLaxKKtYTY6DA5G+Oui2hE2BvrVDAJZXhCw3R6RW3FWN8lzWHLWWXFRunuMOhVvatrC0+gVO3jqKAbJpm57KCbrWM3V64gLGDRirqa/WJK+4y5wKScDt7WyXy8QfLULRpN4AHAuu0e8Uwtn1Qa9AEH3HpThKbEXatkVjs1faq+eJxYVJmSf3xMLv0VTF8o+beyp1p7CkM7Mkp4tIWvx6KD3u4wB2ld4n7+XVCDkWSUmTOVv/D28Fp9oW2th5vcTZ6EUaa3dBL5zLTMp/SR8+WIz/qDJsxVoXhJcn8zVRqZjlPTdUkH/EkMNfPhvVochdfIc8+ZM7hh6tEyh/JEJJZ2KSaELh7nJKEgZnF136bXvG6phUi2+Z1OsdlyEjVyTpPxrHaGAw6IrhXGXen4JFsHmP1tFykEcworswC8Sk4f+j/ix9IebB3ry93adoxaRWXTl3wn27iftaR2K82tv0pemX7scCNK5//Gh5ze1+aXXOe7zzdS1ESNzpu1y29DdwSNb9viCQ4coOGzi4ZdGitslxwB6GnbeKhkzUcpJ2+9to9HncSpyqdPSoW+phf8g4NPqKszT9PxwTlU92PCUQJ/eITO8LHU+h1EMt6k0N1cVnLSgDUJh3w07A4HCzFkg6rxmwy8sJVwmLilY9T+QNTFevaB/aNaXRd5g/qnsVT0nQkRWcH5BSyrIcBBZmw2tWXwgfPChh/KRcIuK1E6p/VpkAJ4Q7tlRysvcSGtSJDOI6m2WGSGeeW8IL7+K6vADg7Azs1thTBUKRn7urTJVWWfHMFvX2G6WbtJT93RLwWnfL+w2HKqeuAb+eIvYaKFgckfgrKhjdjQjCYBOq8JNBiCOxXLmhooSaUcSUr/22KlPIFDy+/uQyplIPthSmyGQ2ZsDWUSdY2CPP8orfZOooCqVt/Tz/Fq4jS7LCrzeYWxaV2WWfOzg0yGzS51whvBqRPbMogrLAqM6kLovMM8l6kybP2VjDOv1FUK2bnQ9U9z30x0wxPtd6JVHFFe78L23ONPCEMtYVmu8NirDJTul75J0OCT+XSC6hm8tyio27/T3podCLR+VFEKlOm0U+/Y0t0STma+Qb4KAV6IX48Jbdca6usAXBYRz5Z+IiCDiH197D4dgazkhwAsRi7Ght78rKLTkzl64+vz2U1cguBpGsjQnjSJGHf7goULm1jWJsDtggJhN6zUKgEihKALZ8AxXobbFJGAkIZ0/Q2sAFsHq2CZtEvCrV1xvkbuAxouIOj85FZFaUrbTzTRfSeZBboK6lggv6vLUphfd4dbZ6slPGevEDwPWK29cH3i14LUkRtoeW+DMhC2EMGmYOhU0wYs28GdVi55zSe3Sgk5GLEwKRwiFWTAwd39Cmd2ZSxusfc259zdtlNEZvlLlQybuEw0a46+yHCOo8KrNz5q2YELDun3tARCXWoK1LsPUvEDW8oP7yEmRZg2TGKEV7NEK3TLwe8n0WLtQGeJL2y2Ll+zsI60CJ5SEZfs1Ywc/BNOogxLJvJGjXjlGbAlSftOsAmWj+3hYYssHiVHxIK7QAm2r4jTjj8C37jaYeCrUoK+p2mJIFRMdlCCIj7m2h4F/nGYxJaEZJRljHPugitIGIA5fboUuo4iQiNHmWXVkwWRv1+OrsS7w9tt+e7JLNiQCMo6B7Wmj4IxUn2mhvZy+n4dq+ltqbs8AqvsISH73NHSksnpcJvpjVnTHTQ9Wbfj+zhAeD646TahTFpkpXEwHf1H1o8W0XvS4rXnuI2or8cw88ZyNlEufks5fQUu//lTKfxEnqPx9hMjYMGIqmoOxOv/XUGUltmA3lmjnfqHc6piYsKPSRq7/vmklerbmkGgmoGTkSNJr8qWYZNnRLdlPPN3xGk0gp/mRdq/+B7vSvdVtxcHlIUdZOL1KrNr5MPmo0Xau/qjncSULnTm8FBsJA2mxBgWGLv+UqHL00UxLSeA9cO0DpvfKEh+OXyAjWsVgVYfN1EyFUYnoiaGsixJvNuQMTfRMKad5TLI6nKGHaYkU9bwtPzP8lHXSuaipKZRKCfrmHgKk/mKe6bs5NJHiG69S9Amj1KhMSRU2e7obDQnxY9rMwKoy/kXcu5jIglPjC6MAmktVtvspG/WopGp5Kb8DdyVyaIrFImW5me1nUiua3WN0pjfcG6L10Ny2hKIFLbID7KCubjFSD1kYWYp8n5+mbsUHF/8rS47oXvk1UJkmG1pSbbk
Variant 3
DifficultyLevel
576
Question
Leah is a an Italian chef.
If she needs p kilograms of flour to mix with sugar and water to make q kilograms of pasta dough, how many kilograms of flour does she need to make 1 kilogram of pasta dough?
Worked Solution
p kg of flour ⇒ q kg of pasta dough
qp kg of flour ⇒ 1 kg of pasta dough
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
gender | |
mass1 | |
item1 | |
item2 | |
item3 | |
mass2 | |
item4 | |
correctAnswer | $\dfrac{\large p}{\large q}$ |
Answers
Is Correct? | Answer |
x | qp+q |
x | pq |
x | qq−p |
✓ | qp |
U2FsdGVkX18b4wfS1+UXWSD2fiKEiWokIaYeH5cU64Iew95Sxcnkd0VCtTljNLCOCeNFOSjWmJINqV/dIwlzgL14vi54oFidieSxzGr+xt1oTsweL1Iv+75KI8r/iD9kJ57KWchLKrzrEqTa2RhkPkpS/88vo51WTW80+CvXEtfyQJ0QsXnHFn8NOxmWdNyqzd8vsgYx8DiG92gUW7RfiVELCUNxGMrqy9zSLnpSy7qm6oYGZ/eeJ+KzT5VZxwifvfHQJY7oPirH10vbo2eupiufV3UKv79sWwHbsrVfn02pa/qd2WzGgnnBWFtpgawgH4qmgTGWWvivL7E0DveJa2wiS6Uv/yIIXzXLgiG9D9bES32ey15Q7VYHbS73lPzc5aBWOh2fLv+6TzxGZpBbLOUOGNDql5+D2M/GqcDjUaDNjxXcFRjgzdWBGugX7RgEKcyXyruUOGKC49pRsIqUdacRPDgpt9Kj+HghB2YtLhjipXxbVY544mRwSBxERgIedP+pTRQoHiaapG5hzgeLSYrVr1xu/2sNdQQ3r0pENQNMk2ef/1d79y05FN3Q/ZeR+8aa/KLnTlnv1AOQpRByUR/P0BT2jXHIyJ3HNOdvnhQ4Jn6x9cUpb2dH26QwIwq4JTeeEluZBFcFfQXx3diXJCz4qpo4GCghNw5CILuBMPtRQdGHfIdoDqOhmClseyh8ZpR+exsjq0XvU6wWZjmJYDpNbRBZIxR4OIJwU0M9Nc3RXM0pUBjaRpMr1SAZ1diWK7hlhr9WN4jeROpjLLRuK1Hn3bgL6ooYfLKf1hXSzpjREYwiAK+0lucYuhX0BjQotk57MpDsmcKbBLg8Aa7LAcpBI5GJ44ZzDTL6t9U1gYftUVLuhcZYLj6q9WElxJ1r36gqYGP+VDk+n5but4HmHrXCm9CxGTVpeZNcBx6h/l56A0Njpg0kQLwHq6NAMET78+EOhgSP94xvSKgOMTJO3OwyOAMv/gQ5BATc51aIslxi7Q7g/7W2pj8WFRerNOB1py2E3/pf1Ile5n2eW3CLesABS6pb8A3RbcjYCpAsJYnFpl/gIHApDKwjcLcN8za+SyDOHGLxgOD15SrP8DHBvOyqfRrm/a6fXhT4wGci5MvRRJxEoNZ2yTqjMMPOo6RnORSwNaNz0gdRuGQMl93gbSgaiL7sIF+b51bIzcjSyY9kawwQzLSz4bP8i4dQFjFPdtHcdzgVR5bJncoN2gcRpmHOjfIM048m0c9/XlstTXsZdxWq1FJpg47JTZE+ZNsCoJZgWohp+o9GG5vo0hTk+Gej5Xh64ccfD2/MCouBligj4truPb4iI4GVUFhUmY0d8zxyyaqxS0rIGsiY+2fHkDJJyCx5ah2x+scZIywbVanXbkhgJQgfqPDy9ZGFthvWU/a5heET937caL5XvWe/i8h114ce1z3smM+Fi2C/2uiGVpPx2yyUb3uuRNink2PYBXGxdvHxS8w6jcxamSMjAWATo69+HTO7qLooID54JF2868MnY3IJHMeykSAxOU58ea61i2tU6T/j+iL3LxFRLGsQBFxLJQvuqsVtj27nhiQiQOVJoz+EBQC+olszexpA3ZldwfZh8kNNkxtvzj6+455S8lITiwvZ4n+j/Rlp3jKtiks54KDyxMC2m0t3X9wFHN5zCrZZxA/uBxBqRgPq1pnr9naLTakm6UMTjb0mKqbi3Z3QREARB7nPANp3pbq8vIGQ0CFlnpbws2KeI/70sXsveLBBewinoT8DHrhURo8mCbDYeQY1EzkHzGmzs1YHokkK9ick/kXNyPrFPLAIeiX7k4iEzc5ZXmkmuQ54XunXHIg6DGaodHLckStTeARPcuFY9WV3q6oYlVfQmeoUXlX+ZxQRYtnJHTYIvTKr4wgz0Pt2EbrqZ2IrcCRIHpNHYPCjq1nt3b1gQZJB6XOPdWKm6U3Ecb2neJEnhjOI0F3YCGYkzwYfCEWGGSatLqfHK7zfsAdmWtQpNpv4ZMBVUJwkDXZA58QBIMcmtvpAsiIFRIosurgKmUa6KOJNy7aqGsOuhnK011L0lJvt9Zq//7lkcLNJVMJ40Esly1JZThp9lBqj1q5H0qTr3RtsK3D6GUrqqjGmulJyJE2prUr3CrKA+KG92q16t82TlK7SFoJC2Hhy96k3zvRLviJ/Q0cP7s3Goa8HL+paqn/VmnuhXpwhs/x6PFwdfQMyTMsC+Cgeey2H3TkFfVfxYLm76XAODI/dMettSJjkVlc1543RPtuxg4F+DWP4k45CmM9G58kCLvV6hZNoK3QBeD3yDQBWVVgA+8v0M1WHZ4yXSy4tILhLH23CPmtGj9MB5vL0SSMTJXAFoKk0Ac8eWs9sfigkwXiLUZNB0afxmDxFXNonB61ozdLSiuH9jEk1cX+sL//BqXn9uLhJnFYRJd1RbXm5T+lva0fo2J+HBLB2aBKhPYxvVkotAzjLGlARA6AjRoj6TAkjUMG8oBoH1KcOthSjilauJLybPzUlpe0U6yv0lqWXsKSjDIMEOhxZjv0vk77xY4VyfqFmA2AbL8xev2YIj9cFRK8Kxv/1aGGEOVAitrBgEUqm1q+0DPJsW3ibI9vnJfCSz8flwF7QWowvi08VsVf5pxmqn7cVaEOq3OtkDoNRn7jaSv8CAzEPYGM00Pg0KcnFG5rLBc66k3ZDRB6CvcnzWF7HlfWxxTMnU6bnNgJG5LqhQQoo9r9ATXoZ96gkhXF7tmizaCEVFPW3MsRVFIKkYhuf6To94q9hElU/mzsc/1NGK0knI4mPR7f+AEq+2YKtNpXw1F/UtXozOM3hvVpAgUktQ1JHEgefOA+wiuUqZ1Q8jb9nYP63PjlvA0EpJsN3Cvc+WmzXTvS5QpNppStPbvj26aOxa4kngwZpCIb8tOQHE1gcM62FvJMPBY0GUxcL1fbrSpWtL7eeZzGjJdXXt86rHx08wLdwegEbbSsnR5hOSDK3RHG/0yxjVeu/mTKhPFufEVdC763YwlDP6cOxCOUYWYJfzJmeVdn07X1lF0rHXrDPFbCZ04A6RnpKOyseS/NfbTNEgaZq2e6jS/zY7KlHmg6RavQFCeqR0crus42uJelbiC6aT62Atvph6yB+51zvte8lNlvSgZx6j2IBX4gqRE1YF3xb+X1DL6xcDnb1lyl54tOiW59tQQwMJmxNt1QTGr6a3x/+XBUghZocx8FrJpkbnOjNKp+HfYfBjNmTjmk4UKhdMIyHuRcfUCIOU6E+sPbsUCifH1c6g7beELKGLLXkfFWk4c/Z1H/uw7XNw7POQw3SWNS5gE3+c79P4q2crbTCzPwJhp9fBetTnfup4Glw/yOfw0d+9ookkmqGGFiyaeWnxWNpU1dwxHGtnv6TYszqA4kkXNrqYreuJhG17F5A/dqwVfz/FqHvRcz9u93q6iS+2xD7FswSEqK8Yv03p4a3uTJruWEYag1pnrF0b0GiIl+GViWs5RhM5wTEZe/cR1dPydQDL9cnc/pbXDaw9hmXf2h+sPW8gKqdvHtAYFXG8xsqj6JyO+R/cXq0hRe3ssLkyG9/9Jn0QPpVeQgrddJI+imzxfvjkOfd5dJ7h61Ko5xExW/mYaR9DehSIOc8NzXsyp7iaPGxY+Jg33r/IDCR5uybYKWfKG4JHuuluRckA0lZJFEzAl0G9ukKJHqaKRvgNJNUJi5fbn9nHNb6g7/m2uvPTrSMfVZxdzsD7PoAeLOEPs6AvSjHiOQ+Qmewf8u4eLonHnwJMr5uKi7pmZuFFqXFnyxDdAH2qgKFvunXFO1IjfPRFLLlxYlswxH7JhutxDh7XLr2Uko1YUuyoLbxgewRLLXfCJoxkrcZdXSXJe3HSc99GWc0+KmeH54ddXlac6JMV8k0BxVwDqHdRcxVCLgxMinfAw5YZ84iHf3ro4gHVK95YkIZgyhsqvvDyMfKbAnovaGAXnVlOPsedMlEJqNdcejms2pC563WL3jl2arZARMYtT2+qv5V9mWYUhilOfGtSa2srYC7yUV7VTN0MuEjxgDGMMthD4LRU5arHc4B6OQ8/nacf7TYz9N/fwBOLMRPziSQ0TspmSo4zh4stxGxBCkGqBz0GdPuqU3QIPci9XmuRPzBAMfRAdAn2ti4pPsMfOymDufpHG7Cb2OmVQazO5xRvOn5F3UoO9r4gs9T5yFerCx3Xkumv2B1OLDbJNdbf3ZK4RdO4BLLrpeWqQ/PttEDAzrkzB60d0UJ2JMUMQgIO8Bn/ckvau210+qLWoReb0yRN2IFqqDMsKD7yiyjErj+M8CBzxHE3bDuaSeVxzTWaKwdVYTAgpxpO9AiVUIe2RWuASPwGQ6CZLVuKpUc/l612O/ZlJV+9YS2uZpARwQ/YIXsJ+BX1Prd3/klMlb5KAqXt0n9rug0VLG6ZkYCVz7Jc9lgYSswgAxnAIlOvqGm9DRZJO2e3JlMhipxUez4HNzkr+7d6E6EbSkfeaEhe/ftrS47K6OUGnvePeugIMsNKSjpV7VkLbAFXVxwGHiVjJKQ8cQpEQYkdyrXb+3cyEr0xUCCCft2Mjz7/kskWNYb/o8FLHCz97o14fec5gTzZj4XAswOM+FPCDH6lf0txjHrgZ22ZVpYQpViRB/A7LaMojZyE6UcN7sdPBdQwf8iGsgc02xgj8GPrKdQ+yBWTzid4fAtaXr4Tu0LG3uBZJDWUsJC90AndMgtL2MnXj5WUs5gooapBB7Ts/Bozsi/uNq08OHENS4Gu5kwuK+hbPWU3pMr/2fsKPmm3fH5pk9wyQOMe31ziPqPVLFv/OjOkPmxO3N4tchgrAvOLeZUqAxqignxLewvyQUy5BOI8AbsiO3dd/ftRXL1CfO9mnnw8THEkk2ufGpE9mLd157JPsF2Z4f/SjXI1g9ZERwGv9nwrt4t0pVBuxTXGXEupSutcI47X+CnRu+NKQs9zWjgM7MbV2a/6LA3U4bbbEJsMvgCnPmTW2uDJZJyWJwbZhz59fHcCJ/TdI3hXLWiEOEbJEYUQNsjV3OqwmunuEjQz9RCgLKRIahWM0id3wr8F0BtV6EN21YGwi5Vsh1T1hp2r9Ol24/iSKck25SHlPIrCptvrEABLmr0566Wyp+uZU8ToBgxiNR+t2Q63VGyCkX7XuCt8bFwkwR3LSIJiCBQ4yAa86ph5qhognJZ6hl2G50TXgz9/EPCWzdzIVM8YKJhQEJ53n54fJ1M4n8jbVi9fAHa+fPC5thb/M/RjA+GzfD1Czc99qfyZGPlfQApPjA+UexEvXhH1YFeUqYJ/znD554rE2H7K1Q3WBJekFXsghkoE2Ybu9olFHS7QJRHTqZGzBEPNwkeO7TBZ0Xce0XYKVOiReW86I9Jn+PJFQCqkqm1Zm6zNtIvzfYQQ8A1+IXelb79nEfSm38XsQ1HCEvtWZXBpERctO8hjy0VtNtHXxbThO9nqFik/MrlTDIArqG+8CLeor2lpcmTDE6MfTC2NcYV9stQXM9GdwbEKPtlHvTkzyvDLAnNuaQIcmklbViSSRnuiI5yL54GCEQarDZ3JS+S7Q/22lYWOsuH0dUDfrsy4VqtpfLD5piAvRYmRuHBZ//3cD9Mp7++u0Er8ehVTXS4QQDmo7dStOtQuZT+UngoiN5/Lkp+PEpxn9kBls+BqbrF2hMvs6U12s3ntXtJtcxG9/nJVq5L6giYxL1F2BTckbMlSgjqxG0dIH60muDh/iMC1qrjPwZMuqrvoC1zf6vDr5SWDlPtMnGueMjD6B8f6qGn/AiADKOtbEQbMOj8i/8uD9Rp/2IdVB0d/XpAlKc0YrD03AKY9vVN+YN8c4Y3j6CTIWE7FSuV0brMFOQOoPMEg++eba2nONJeBqWczj0gYLwjV/FcOnvDaHkFTiB0v6qpJCtEWNe3VJM8MGDbdRGG3LB8b3LgRCPeqxaonn4iEbFBQ68eBW00i+udheqLq8M3CqigS7OdjXszRDl63jI5YWb/rOiCMWt514bmuwniZVwl2x/QDjzoCUcKkkHgtyJ7+vePuGnPIFQeikyYIolPG1RVgkUwgvv5+G0DVYcfVlLd6gSErcBChtwPD1ntPZL3ZK+iAwzMAMmwCIXbd7yVqp8rj+PI+1LS7shAg77BEV3P4G7GhQXNIKsUGnQuWsurU14cru2LVYbdYWPJd7dp4X87OejxvKH1lbxhSAbs3uY7h48LyPBOXl8DwT/eUAbGij9jm+qoqF2o5UEDbn2Yz/sJgECEV/c2oQaajV9WhkJQ0puNJ6U34eh3+B4t4eF6QvznFxZ2nXFL887SYI1mJytZbCQzeMKj1TzYoouemCWOxWrIT8vKordV2LvV9zkGqr/k8ucKKcokPb1tyzPo3anWes1SHxxau9JfxzrCC+/755HP+mcpStysCM8xBu002NboJTxwicMg7rg+n+W2iKNTErcADWPMxpox+ytDM3vdnESCIPEi1Gn5gSl+5QtitnUxycZtC9ZVpV0p1D7nPw6Qb2Py8UsGGHMkxtRki4i+VN5L4mDQ54nsuv/gXdHazHbEoCaNcho3229/1us2ODU5PgwTPviic47J2720on1dXO8XGPzmQZc4ML5FLZB3kLGsAhhhBSAxzbXR+jtytmYhGP9GPUdxIjd3YJLo8V/AwPaAbQ/DTYw98XTRIWpUgeaZ9/aScZWeBUOVyqm3zMKI2icMsduY8sHDgOqzG7nPi3LjrSeJV4mhp37hm7qm2Pz/7xtnHddGYliUnQO/ggt9efJdOnZ74j/rzxEj7z4TsKxKhM2vg4ELZjcP4tUa2pMYtUukf0zFwrApnuHCs0pYMMn0sbwbnbihutX/EOOYWvoBUs6383Q4p1CtuVbiXVNJ84Z7yzsuJLH2l6ne0f6HO30bC2nBZ+ZAsijMP7wLgi3zQKuNg16JE8XZ2yHXh3t5sjt5ylvxtSISnNg/oUJ/iGF+ArH8Jsu7PYG5tZyOEvF/Ulgfp9tTaq8dJv1DQMgkunEfLE8QK0+evPAiSkeGaTQOVlhn7a4Kpgi4XmOATSJpoauigzcGJNMV98DePyaDgxQubcUqANB7r41hx7rJOoH0/GtuuMwry8CbADR6KuZgZeazQng9QOn0fIX8nIERds7l744ru8NAOY5QmcpqTPswMMWb4VPNdzCpEpetUKzXKJ0J35lcy8X0PmdFwZZWS4CoMEkM4SAkMpK/7MKXt/pstuG1sFxtDhlJOqDjOI0/rLDj66JM6O+lwzdgHuMjRZuod+ZMyxTtbFPc6VUg+wgM/TVySAZJVKlenTY+3GU+CJ4Ht6N0Zokmx6nlMK5VlTXqSz6wvO9voorcp2LPwN4qMm/ESq2FgaafMi61/Iotk3JLRP02wV8uXNrUeJKLptUkdrANj2HbWNNszOrc9KUij+EhW7L6FBL0CkM74xdnZKB78mvsx7RbT7f4hdc1uUctdDw1syVF4ej1MhQK+3KtaWQMgOV3eObNuzm/K1MSnHhP3yh8jfHrtFTwXhBnRVXbz+9LnSM3kD/W0PgGpiCr3tzmTGRCK1QLw2OkZ8nzDzv0i3ZdEcB2WJmW3qd+VKgqmaxaZv1Y0RtkgEy5LVd+h8a+ianFzPDBbUdlB5QUHeJ8nJTXGrMW5bjp1izGhhZK4fcBemvaZhKyA7JDXIYF6Fa2hjtbaiRfgWyfvCkIcrDAzeZdPJpGsOvVPfFdl1PEOxGPTMN6HNioJX/TFE9bvkIpUAh0SfXaRrh0TF8OSQ5262F1KEj7HK+r6EMD/kr/qz4kD8Pg5OSKZSTJp/YN7Mx60VfO5Lx3G7ccqSi/4LMx5y9/CJQKkPwZMP6Ce51mUT9tvbzF1ifT9XnQRnF0pMTrVRuuFFiqz4tht0HpaVyxXshGiXe1mk6DUAjNqhbA8ig9LOaKJBvGDyEh2fQri/rkDdopBRyVSJaBIFEbHAKjkvuL+A9nDTDZL0h25HucTIwlh4UBb4GqiligxC1Jk7tZm0zzf759YnjyFPyIKynLdRlTz3dj+5ZVXdM7/LybAQQ2aHbnjzTvvIS/QMub08qRTIEfe1AEtHpUGLJHSGV49E6VSpOSaIGh6CkobJMxYZGv2AAWlFjbjXuL1Adre6sYWPXYoMFS+eoGUyj4ROtaE+raiAww+AufkLQVHjrVQqyZPEc+PWWuoUMvhjjhynO+SjEgoeXWHqmGIYPnmEFNltLmg8UIXP/NM0XucIQ6PubhRY1PfAyPRChtxVtjTiL5r77s4k6QcDOBgqgC4ZbhgLqf2w+AD/eTbydGUWwthwGxpd6/DIj4/CdKqgAq8fD+K/QoaJrckLjkCq9ksbOZxynxfdeAUgClGeU+42WFEQMBGt6gOgvwym6nce0Tk2bzQzn+lBY3Z+oP2v+v2L3DU3SN+jlFCp8GzviKRpBGDOp1i3recBaiJi7wk+bf2xowJcs45TudEeYOOzdI2t1Rk5GreVcPTwyo4haWCJUOvgDYDKzgPUmLgtsvNFhMJHf2VQcavgdkfKPa8ZGM52EiMnyTxsau5yesk5JU7Yq+dy3eFyqF166fI03u4WBAfcJCjfLqBnGjuvMmjheBZ7/wMrVoSMhWgeYoVNL8hBP7yD04c1fvXpo3ctVPJ7/ivcZS5ajVol7HFXxCCcH2CT46d+UpizZ1URkvZr80hI4Gr2Vd9Uc7QDvA1n5ZGiZSmwRnE5OWcTwuK40h1lr4UwmOY9VyFemKhJbsVr/ppCsD8PpQrihNuq/r+KYoQ2EaHO3ZzYtV+k6ObDMumjLinrSn1iMC8X7FREGdbZgp+2coFAcxkhpSNcv8h5fGNmugrKSVl1qiJdsBb3lHMW8PZV0MpzYJB0h76FPWgGPbo2a/VsuktlAACp+Afi+y9QCTREdxiguDnh7PEWOA48CLSKvSRuiLk75PRKtHCn7Y1Uro/svuFvID9AHT/woI36hgzdcchp3XUfuXCJDoG9SL1cmQkSjlO4IJjIeCPHHNL7aAkfC46gpVKCxDj4j5ArPvAUJe/7Bd1oZ1Oaie0Ck5LSJ1h8SaZOIm5VXdrONQqyg6FU78cUsogg5Rpx5anOtYaQmnA2BjbqbPhnuSr74jrt2tURrG0fuEiM5Mf639kNjqr4EmD/U567ZRgstu8uu8TgVPDY41ctKYd3+C6Hbw9fVWOqlti+EiqJtfHU5Svwhh3YmHBSJP8MjjYKYErJJoOrfzdmXd3wVXJzp5A9YWHGEpmDyXvU1rvQ0/7nzrONuqce9qCSxfG8dyC/ZJ57hVDioqkCv1XxehsUHfTQOjkCqP5OcmA8cZYb4arlrXcNb1q5aNTyTiVHA0Mxpc2zTbycJoNKpf1uk47AYqoIpvbK+sICfC8qEt9KYsCySoC2t5KcHGvYtwlejgB67+6iq3E8yjT96F1x97Qcd3zja+/h1ih/V7C4/bELcwR1/jmqXrG2Q3iwFADfP42TvHA6BxkdRQGvBf3CJFzBY9cHtO6YBMsp39E+Cvg3fQHPoT8dUiMZHIkNGnvwqIwXuNnXYFdjR7B+XiHAoVJuwST18YbCOuHCtHyOohMzdNI7cuMaHk40Z0rTD3mTLS6vt87bBLjwI/yBC5yQttwZrTgQk5bBZCtuD6W9odYeWNRLLxBY3PmZ6SjR0qeZdUIe76FKBtNkvPG9rRjScrwPma6ULsyKXc6xc23QEwvr4FdvcgzLnjGrbB1jzZenCPXC9uEt9aOgiespm4Lq2uu1d0eSfMAkIZYRYFuLL5BwD75zI7qiL8mdWgj0CrogIKVnK1a2fmInrUtMEKAEmU4iI3DJwoBcXrl4DcBxmqVBkMjcnsjU6SJuFVkA4h9YFJYRvFWzQwYBq5SraXk842wP5mjrAqVQxsSGfD7z9UVt8HfXfPe08BNZZSEUUHq2tnupuR8F8scpMc4AMjxZ2KNFz5lEE0HXOanOKpQijUrF+V8atN3+QimmDFvNhRx1ubZkyIl8bKjSl5/OyjIXQ6/hwIAHnZ846kCL5NL2wKZnKpwuGqJK4SUT4ap6w3b+0t5XRaG/FCnRgIkUYG+/q/bySFNMZGImXF6sM0eosT2AVvlMfNmyR8FAj4cnozFSL+m12A3MJys7WP+1kUOpBzwMDX+RIWQvJUdG2jwmBH+90TEhyxHEU1m6rb+CTfo1YSU0d3Uk2aQhSi1Iaw3P1SrSfCCXCujchLblurQXlf7ks0PGFf3NJsWXo4ny4RlPUoFL4F2N2o5TGr4nolpDZRu5BSRpdVUPmMesxV49DmEbiGiHVD1zKy4nAxEAnbfqiLsDaS0EAAIEeFn6XWGpNzRm/7JAAp87cBIL7Mhc/vgLMY/9FAk9IohqqJ1z2QVctBtsb4lViPXJT9a8dLjnXWGQ1vcg82aQ8MIr8HUB21nDll4Lk/hwVaRo7dflkFlfDvwK+BBlPzDnh5FaGZXzyp2bAGsQXdKHkQE0KSytGs2Mfee3EzCnR6PeOLhSTACqQx0jbj+H3B9IlupWmNeXRxMC3TmWLyucO0sceuGIvpSDptUIfK49FGSO1Ymqi9UjSeolXZooLibMR3IreDKCq7b7XUhcdNOJKECzRXhrurUc7njL87AxsjnLR3fz4jrpjkt3qTRJbB9ZvjDYexDyJ7Z4kmBZGvACa4pDUUGk7L70gaGIwlorAQx1pT6TNUzTBZ8uNY+fwgTnns0R6tu6q0ZpWjcnC7tkkdqtu78GeEX5JAH/p8+1JHOrgkrDA1b1NgQG3CcA1pEfRcohVquGnQyTLhMwP+C5Tu5+E6d8H4nWy6zpFqd2EsAEaD2coFSyK+CT1Z3s/rpMF3iGkvXnd3bZXj4NtfGMauwaCY5ZO0o6mXnZP/mTgpgOt4DadH3XNzWtpVtcvnaXLhP8SEhoS6OmzQYlXpBo47FXNYsRebhC3ZmN/zWzG+ra/7qXB6RrQUI5HWS3VSoN9RACWVE33kJE4kRannhdD+YNjOrU97nXqFj0qH6qM6y9fvzwmegMmH/n24nLCBCvNEUjGXHjHL2FcXrNeUUb/f+dsZpRs3s+5/YIC2aNs7sOA4D6LlONVOGSd5vV26Q8sS6gNYnOZ7nFOZHXaiGrpQWc6UabxAMWBEKZ4SOAWTXvphUjB8nJOA5ZTYW9lLIXGtT3XfOrfolN+X7eLG+SEJOKe9SxzAQejJ7wRaMYEDEv6aWzNbsqzAE7J7pNIHrPhR0Ijb9KEL8NV0dJzIyJVghgDvynmfkBGYslLx/yF/D/7oke1QwfhWsbW0fA9TBmcKJq6oENmnMx/oaGWMuWUkGpa/QGmST5JmYLc23hqcv6MBmhbiACAgw6Pebvsx+NNrR9Sf4gQHsd8KrisBAM+D2bILW/9AnUFmqTCMbjzp8MP0Qzu4hluUBxZwnCXvSQucAIfZqfREmTpBQojwqsNji/tmIdufTzVADEjB6MhZcCo8t0x1KAvPz5mzglSGVChLL00W8bvXJOSYRUDyW/IWRYoqSruYqe3+0tVJ8rbxZzFUkpQm2U65ilaCmVPHq1cM57dGtk/U0oc/JFrtb1eQsGKLj1iBnmixPQzIHF1mDMTX1nYdV3+pWGpi8+LMpibp+QXQwLKhVPiDg87rHCfEr+Nsg9/JLS2Bm6YDBFR87a7/eKg7X4l0cxhV8+zuvkmqZ9+Lbpr+gsal40ZuWbgCopscU3gOo9noTyx+0ubNwsDGa1W/Lem6mxsKSPcywZ5ObiPRnv3Y3Xx4swiNaAtX8p6U9+CNfm2UsTFxeESiUz8GYNC3xi1jrZRX/GwaQP81+Q2wyPkWuK3bDuoWslig9vf5SoMj1KWw7UzR0h+wVfTPBOP8pRP2ajV7DCxZJQQ8i3XrDHIeX8NwVTqeGghd2P1haJXjEqE7qjlPc4MLDyOV1glFmmjfDTLzMUZGGLgmedFOB3isETy5AB+Bi38kHPZKSJ9TR+9EgtGChEJlLOv1gn73CSuVMdunvC6Ik+ULp708SuzHoVS1OsCsr8isdCjXlITvvEaJCzpsmomR7cjHFNwG6zhOFoSUbpwJa7FC4IhxH/UXdXVWp80KRgxYlQy2S8mo1Wk7DIO67MiWLG3aelvaJQqWTaVzkawN/UEdYaWLIFoumeX/sEUpHPormNEHxemBlKgw0fgmZM+yzCQFWRJ6snL6VPQ97VQcC8uhoX8EqceTHGKjPYQuE/vXXqQDmG6VgchIsuc5FbcONLnMBRU1L3eEe8XJCeu7tcG2dQVCEsnSmmYc80GJI2t7cs9Z8sGrrDQDaGRxPWfLQwy+HDdkOrG+XbFU+ONbONaThwG2RJnmOGiK4Kat7mwcoVX0jD/aOATnO7rWPu1FFBobQSjNBWd2/SHjkJMFJy2h6LyAMkTdzGDXO7Oq6ui/3LMGE7uqz9zcfu0jYR/djo7udpY3bjdZQ7B3iWLl/UtRsH5+fJwbeM8dGdypIZJ6N8VeuerTmal303nSVXfWUtbDMrkPXiky4KpE8CX1DUvflFTcBI5tdO569uPOcbsIQebozDbp/R1i3vDeRIYwW+ONAEZed4Qp1T/XRN+nKzB1eUFdM7ggqUdCKpS+k7hcKdk/XlYwSpWthpdI1Y6tHCJh2qr0CAzYg/mcwKV/qwI9Zmj/En4eqj3cuu+hiQTiM62nUPmC8c14BJjAdStv2SKtNEPXF5iv2nsXlRzZFDEqkFR7Zpbgn7xfd4FeCjIIqWrJTkJsKEdwpt4VihN0Gijia3pGgxldIgb7HGod+t3RS2eIVQwLuGppntF+wNiZlYhSHjpQPCIDNvNnzupvoy6m1DiaitYAYXSO8khqFxrswNSqMFGgagfaTpuI0cGwrS875sfG9KLbR2nnWu/AY01kymkg8mizm6S9z1zF5cSlj3W+gb+8uqGXijubsXipyjFKwNi2NUxiEWZAOXh/xAcOxpimL5+HaJbFjELJGF1PbzsHuvE48ZRuOuQv9QIjJeV+vLyLrWrgPzbo/NQa2ze7XJnlUqvnnW8gwCCfvRMHcgXuTS5kcR3t4l57tJnaR3jrtcwZM9RhKBtp1OnMJpbW7zlM+ZykNx9xv/vJQ2tfprFdpAx5ijsVmDNhzjafiJ9dcc7g3h7bl4k10BsRdBqHUjTnMWuX8GwhDl57h78st6gx7CTg5KDgUMZnhmOkDObzYhaAoxWnlaxZ/wuXFMB4jj2HQnyB7q84fUhZeBKU8Z1tOtIiOd54iOhBRs5D6GLZRk2kvbDwUD5GNDW7NNnJz9go4OBcfSLIP1xmMrsPWlLhtmKyKQWgim47EsGnp2j51HVD0+zGeUebZkWGpb4oDj2BpjbjrqR7xUw9sHWuIEtW8uIBEaZbUOVU5AkT/IGCnfrgc24TfXOeRREQd2no5Uhgmv1iYqZhHKvtzr/prH1Bsc56IjOlcR2TshfkAMSiVLdSiAfTvF+TQd2OKD/qhRKLqjfYw4gL2MZCAzVaIEZTKTUCxR49uFmCtnHdjezodP9SU2YAd79W+j0PWDQWePXoKmsB65C6v6ZOyvFdHlw40Bn1Bt9ZWpJS72Di3Qa8wZTroS7jcsRaS2yuNBBw9d0I8QDg7NXUtIHR4cWR5VOE4XKBlTC75At2wjG1VXO+5sOb36G7guPBVxfVJL6cWRlCTQGYV8vz1Ur78l8sJwvOBrBjEtVa1I2nuZy9eULznw8HSE85tHz3Exb9jWZ6KcXlcoDiIKGiP4uHjZDFZrJTAtLv/hUuoOdw8MVPr2swM7YxYMQkLFa/Emdm/LUapsoLH/Ql6zqP7vDdgH1piuwoHDyrhs+MI82yqUu/CpJfafQM15K5rBJQOpTkqMrlzgyinPuUNv9xm7avj+N0KDSVzNRp2E0JcJ82kL42/YgJU7vUuglpw/3lS7p0ETj5uAeyVCZ4VzOkEvnMwtK1P1jgzYgHGDuBCFp6C3ma/q7kFoe3kS+ov3JSNVS1gn+lzR4dxO3UH64ExDLS9c8X7T7Q7ONz+5TXMMIQMAzxiDg9rjvg1NGT0fUPToHC+I37i+dK31V0ufPiC/wgHxikw9nsCH6lz80Pf+v+EFHS6VPT/809FkmcuDgWobbBG3+2clzcD7FRy1C6/T3aVqgubUusTdsKAhm8RI+uXxjz3fFJy3ZnYYB6oaVlm9F8IXBt6H/ckT5G8ELwzBPmhCO6mYWAFoY5y9a5fzbjxY6x9umelyqKBnNuXf86zY2pPDEQNDQWZy5ldl1LVWzxjObsWIYg+Y1pwuBPj8Mm9klGN3pgrrzn3wqrWcgm4S8eAMvKyh7uw/WyIV89Fe2yHXpbvssVXH2Z+pjW+KEf9gYarIdb5/vXPQDBHYt9mHgcerq16tbj3qbddtVz1inllCQI6AKsjfM1LxU0uAYt/lesbsXuld39CAEA9WfNGV5pV87MEbJJ2J3/2mNkVf0etNqZRHLoqTJ/IuFZOyNHuahrBfLuzHTr2HBTOJOL6IJfqCw8pQhp1QU9zNcKiDgF2rklrWs5gm4pdn0vAgoebcODbCMkUvuY7Sv0Cvnu6Q9zI3faN+9TE+QD7IpvCrFdVYaLyD8LYFv5DWO9baDs/skWDp6lPZ8R5kjDpVHvvnDz1SB4iR6O/ouit2GMx6vCCfTeZL6bi+YlsK4cod/Bv7eldL5/B12is/Gp5i9UmrLvHZ+kFqE7QEx80fuJFaTljmqiEe9WTIdT+8oTHsG3nms1Q1kTohGYVC0YGxhxBBUpxQxvUJnx9wEsVSgx8l3s3kfqydS0pbv+mrRM8sK/TipyG3nOgdTWViUriGS9cG+x5uRvsisHnZAaSdniI1j94tHJl6Wb6CKxcH9CdCiLvj8PHVSMgMHMNx2DOZuFsoq7aVoTNBR93BkI9sWsdxWfJqF8KDpoH0STQxgdxoIlDmPZsucPaR7zxby05/dUq572QizoYB1AjPKwknJHIs2R5xd3/solNJxiykPtAzv9FQL/5xMCsoFdE1agobxC42kZOAgHkkCKUOrSec+na/jYGpdSP/Dw5GMFYIlNkWnNYygAMMJG/tyWehdwjQu9Ws/IZK1xAm+raqD7DHkC2WVHO8G+z5vCMPZEQkpSKFkcCVXs3AwqJis1xUWUG/4cDnu1X+HONEoBkkM+Tu9Z6alQSbSvaFK1eFvul9tOtQX0YKmq8cKQ1WEUjDI+eD7JlK9q1MJWpcsSFjNQJyYgmvzCi7F6lIKu+BpVb/etYwnIgR6c1wS3TDIVun0ReSfBCd/lB09B1a52zEsTGxEYD97aMwntYec04vw7IXcnKUA+ToHDbCyOpZM2BReRSZec1VVIo3mZxodBeeAC34jZdj94XZsCB7mdWPHifGG3nm48NmDw1aBw8nIwBiYWOW6ZCDKqkxcjanzcv6i8NaAbQg6P5nWW03ZKN+X9Z0wZCHCUatuesfAVmymPdA+a6gLqhK3zLCIBxPT2LnSu7+MPQH1cSdp3LKNoQaHrMSsM6xZhnO2qIF7NOk11w7qU+ccYu5m3AcHM71mSMlwJyXfUOwT0OONyBKIhUItfoHRlzmNn3GvORLbMCvjUgcbA0Npoth89yFRMvEVzWS21eRUq30OnHVYtffV1juEweGToFlNcdhvgGfOxFyEr+LrS6b8aPedPKV/pzBudh7MvzRFL0e/GMIcmuPvMzxWq+qUuWVDLRZMGzsrOoqWmpSQ9ZWwbOfuBOY3kDO1Cgyhrw1ZFqr76qRIeYfBLqfNf1qAEQcNeoxVC21WvfFp6uance9Y5ZyzthVWxP79dd/+Jt2mhBT5RnD8ZGgTXY7kLNqV6l79vZDDD1olKJiI1sj374i/fezc5WwG/kO27MhmVWxfIHqaDJiSUk3R8kqwGMY3Q+ig2ND80xFwfakZrccXlOlTakEkaLVLTBZrfiXW7yw==
Variant 4
DifficultyLevel
573
Question
Jamie is a chef.
If he needs c kilograms of cheese to mix with potatoes and cream to make p kilograms of potato bake, how many kilograms of cheese does he need to make 1 kilogram of potato bake?
Worked Solution
c kg of cheese ⇒ p kg of potato bake
pc kg of cheese ⇒ 1 kg of potato bake
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
gender | |
mass1 | |
item1 | |
item2 | |
item3 | |
mass2 | |
item4 | |
correctAnswer | $\dfrac{\large c}{\large p}$ |
Answers
Is Correct? | Answer |
x | |
x | pp+c |
✓ | pc |
x | pp−c |