Algebra, NAPX-F4-NC12
Question
A square has a side length S.
Which expression cannot be used for the perimeter?
Worked Solution
Perimeter = 4×S
{{{correctAnswer}}} =S×S×S×S ≠ 4×S
U2FsdGVkX18F/wIWhO4rBuiF3nkUrmxL6JCGY2CtfCGQLM/2ogjmnWS+XstUBcrKfObCxbHneC8I6oapYJNpbdQaS9PwADMhbAv1qTzRHzpOV31WCWu7EmpuDXrZxKL7UYbg0ap072k2nr545shejyBrjB8fXme+TvKn38t4/Cgj7C0YAtg5YVIL/Rvc4Vd8FDTF35UGKATsHis/BJq8Ccu/t5gVQX+kkQp2TaIIsqgGijWKFppVL/3rF6Cy9/ZD4XnlcIMXCTXv5B3L1wQIa9qKfkBnTsKt8+oRvWugQ3aQk/ix/PaovYYdLiERaG2ClM0WK4ou4dntwEkqMoNsjqCBgql5b03qxU7LkTG71Fj4MZrX6FrFecJKpQCsQ0PSlMrKHCVUrZRZaHQMeC0Idj4wnqHyUVkeyVhAUdq1QqAfsNUsi9XTL6hbmGZ+wbRhRYezHjJueR++/pMdK9LgzxJ/ypcKg2fOawLjmeYKPECE8EYNbtlNGoHWnD8Xx2tCF77p3e+su768DiPVGC2JKKUAug5rMGyERkFk1noLvToiRure5e8gV7Xyfga4GTkhajXNspn1FTwMwHbgkCAvovf+RJYAqA7/UxDOXAcS90HB6znN67VyYMn8MTYrAXZedy5viKLjHRKicGK07e0ZJXuXdbXUgifwK0XYZt/jEZCpTg0D30MeJBggi5dKC4kEf+9OCF9yARTEIWTClUDZs7YzZv/ua6pHu2KMSedLlzF9o0zVeSqOvNqxdnyW5HRCAUXszNjynRFMzBHKE3aGS1cx4sX5YgQRWuT5eh4AjHp8VXweyjWZJQDpeDDkNd6dLQaqUlW/YUxa9zEloHIv4YkXuMM1W2sIrd44UoJG3lklDHytaLjphD2/wu2bbN36v5MVxE0+oZCzcinRLJeNqKakMds1ZWHlAbUePLrXe/5+bgYuIhoI9BoUr3iC+LiCZsvMVHlMch3QJHhGRVj8a/6s+tqMA2hZ/fC4dNeIWO3qffpOZWypHCCdWXCRseCI9e6td8xB2sZ/DtljyT+sZDt0Jrm7d4qmrEHnrLH7XaR50NEtxyHZR1NkjSUEvxtIUPFTMQ00YilL7Cb2MShqRj14RhEtEshUyK3GlWx+3yOXfFrS61aiWvpKt/QF7CsxNk547MZCeQl2vuknfmsDl8VwSOZz5Fa8v40ofTNOxIbndfnvy9EOk01arxgZ6jPvm17kGNOVmuXzNgHMhagR55HXZln5WWTmzrXna78NdqXpyuGTKFzVvuZFW5Vsc5HnOMKYbdVh7P8UdCXt+MMPRHPIGSbL/a20X//2pvgLRN0O4qUUXFxTUwy7PwQErJ3tvygz1yPBM0EIx4S81BDakb0zENeN5+Yq3t8WhpTwbp2UGQhH7aR8hZSYH+nFfqgVcC23U7C9pd7iif0KgQjyyVBc0AXpagXYkGv99fNSTeBDsanZHneoB7WLbz/zg2TFgDr5MNxQiXASpiUhot5AOihQV6isA7FD+zzL1Mumndxr5ZD04cZNL7Y5GlcxqEev7wdpLfHI01euzviYbHYyjQpE+uaISXk2tHp1hsAX3ymWd4gX6n3pYacl/Eev+myFPU2gWVpO7JFN0S1M98bLy2wAxqHFiqQlIIcCCG6ISC7AuT0O9EU8onFdb8A8Pba2uUahJhDUuZLvxSfsl/32T5aP/3TX2F8J9tQiQkwgZouFnSGFWloQhck+RKLqkrJ4V98TzBV0U8dxoIjDT3eV3+bnmmQKDu3ipiUVUW3/YlVoPkNWp7yw+XEannrqNcHHIdtCzqIV4gThoopcw7xtXeLUFjFiMpehxm6teQNcPcxUQVBnxmMOERuOZRsoygCw8tqkszwcpIYGqMOrvtXto5/bfBYMdN6O8CUl3jzlueyGEjCuiKYY9O7tHZseWs3vGf8tABsDySbIbyesCNErUmauGve3fXE7EY6biC2ybhTMeDFbPD4YVp0Q8b8UI6tz1XmWL+7c/i5BPDWKqLXP5PgiwjYifZqzrYcnwPiTvIFMqxMMYV23YKEl2p3tvE8KWDl9RDmjaMkZYmdNG23OA5einUz6dZZFiYeDoptFqaDJSnftbrswaGwnOiXVj5NX3QYFr30R0+Zlimo9LFdGU3kbouIFlNi/7mhKk1Ex3t5smVFMLdV5QrNDSUEVmmzQcGRgdY3BUKXiVrGFq6RST/ao8R22RfkqfM8zIv+4Je/klvmtq8RHJ6DqYZyqsKuDRKrJ2PD+m2V1u3II+BnWAv07/3IdF7z/vUU9x8dn8RRqUsB4RCOGtAajeL6bbVPKQWsbX/SwlA8Ujgngj17p8IeBIhZe7DosdXfbXIKh3hZ0oC2xLB4GkX02LKdrs+ISeq5TWuUuKaj0iMnpbjDtEEPQte1Ap83iF67UZGhlp5vGO5mHJdqRqJWL7VrzgdXs2XshVwGPuX/QPZgdgRt9RNAQpcWyKwyQoDS3QfN9D0/W5B3Frd0zyoH4mGASJHQpPORfDVhKdtTvRrpQ7aAdM7xIoveIV5m1SZs2WdPzV/tZdBTywf0PdkXHtbTUac+HfXy/lSDpV1XKtYaHymMq4b8Z8bK6Y8/YgGbk7yJ6vuUK6uz6b0dqJ9yiBQlKB4rsJTmT4TmXGlsSwt7+xYrbQnPxXgl7Fgvjs8PL/Uvy5geLdF1ndRqtX3FtfpHt84PFjRzYO+DSoYTPRHS/OoR071rJ47/L+JvbXBzfaZv5X1eVgbiZD4g24xLQQec9jPIBouq68Lru4nlJC7PDqc31i5pUTIVa0sxDqwLLb4TSZbomGpfQvLuEjoj0gM3t1UH9vmwX+g4Z8vwyrBflZR0GjrPgipzTI2SYV9awHS80iKJk/oVlIIjOi12drDw75Oz+2vxwn+f1wjPWDoHC0PCAiTjGLikhQW3bYjNyaMv2bhDzF3GBkkv8tV+/K8YPJ3Ebv0XI79G10zlTmvU6q/UWo1G3MhOzz0mfusNq8stY/I6B9Ey5GCWOZLyLeBC5pubS04exuKYCLT/yKMzx59LY33l6llkPlTfELbgHRYKwlEZyPDaMYT3+Xfr988K1A332w+bgArTMaQPYCBB4KJEOZC4aZjRhxiAJA+KwLpp+qQRmMkW8l2kb1q6DYVXO/BG7EZmqdi1jDc7lT62hLxun+VktQgsW0tf7zvzoOocr8B4PTrz4gG9llekI/ITdWCilihPioR72SvAXsDwTFR/C8u4e9fEfAj4f4Xqr0+yJQQh2B2FLpmJjgxJVuKF4EgH7anOFvYCvDpVE/Xozho/qnPmVu9/T5YzQ8SdGWJ88KuOsrfoCIjCPah/gKx6gn8CfUi+wtbd9bftfjz8+BhvqxrfcjYCy2lrRaoCp+yrnNeOd5ubsuEgfpve2GwyAYe1sNkcsS99D72O/8YwcDI5Am/8Pp3ebg+oLJV/4AQjdt4ATwEoWhlIxhZqkw3wKAIHpPFcgFZHmg8Kp41IDIF8G5MonNuhQii15qiL+tC+RxBA7CYnjrUD0VHVI8/H/qFhfJddWFAFGzE2TQPF5xG1NZ1/c9uIKfbuK0wznopS5wJX9g4Y0oFOxW7/alJ6wfWkIjrPD2iNye5JVvn8PaT44YNN/DiqXmdCY5KNA1MkXQhuxfgliCmdSJBBB3dMkf9FEJUX2E+3kVq4jYPMTf7niDzi/2Iva4lq8MUnEpsZsZjpJlvK/o8gMVdCC0BPGr3uQhtS6dzgifwOrQ1gWH0tLSQmHOY1xkPste+EvrEzuyH2bH29BU3hdEEzbIvJ3wVVrsbyANOoweJE6axt6eQbl/Xpko12S+14QhzGM2511HcLWPv+JU9zt1s4ObmYibZhDkQSn8ekPwRAknnLQpIPbxhJq11aWHt9UofebitbhkL7zAAeAGZqckFGCX7Gx6ughnlMTIvMKKfbWyMqrwiwMnk5qQ19LfW4pmhbMc+ueV9BLcS7FT0ddCKmtBxfU95PZPaMjKnHe+jePyMIinX0t+B8LnFg/5xoVi9c0MVnim7Xkllaw3td39XBCmK357G460NMNK22h2p9X5ECtwuboscqh40fdpXE+24unN5jLipF8DwWuUpggUgui35f7eELgUNP/A7D2JcOSPIrJMlOp6kfxSTg5NZ8Q56054FJzLPjON/LqKVTMhTl9ITLDsE2fbkZaEMGk8Rv7qJ4npM87Q07Tc2u3Y6A3KTdpwgEcwNE5XF5DXU1zp7QZ3zmZ90RYkC4LjboBD/YYTf8KlUptr1VEpLrMkq1hesV5HLklgnBR36v8zrXTVMveZ4VEzneik2+VN9osRdTkcQ0XTDrWUSwCgk+0tz3yy6HE+XC3iqS8FlBnZx8D8m/SKjik+n4rXNl2Dear/tAk2H06eP3lnglrVrZqs1Z0TZ7oFJK/poeNgETTVl4kkx5MhI9mPdOH267S5coZpj0qau9tGl6guqIAThidp7A0uNChEK93UQ4Fns3sVWIThdmAujSnujcUDdoS9sJelQCfIZEaZaQo7ZmKcKI9bQpLm9hZruVYavIMp6DwfhlT7N3+rtct97zHn6Me2qg/omEgBfeq7+LRBt+YPanjKInzO64O1R//vSioF4XuAkf2xtbwdmCdQBKoJCwjHwks3e+mqESlaepaCpHpuUjMsWpCjoxDqTj9fFYz6WKBcyvqpOB2vSi8uCH8P6HWKNaQDnBPAb/GJUXrqJj+omAzuYtc4zj/LAk9jE8qj6dFGizgHGjPDkoQ+eVompqcO5wHaqOnZ6dJjIR0FNbuO2wa01YX5KXIEMGTvYDU3r/8Ppqj6ipygrkUeAglPs9iGfe/0jwYqkkZoJDUrsYIM1RBTBcVkmen/obZ6WNd+1k3rYpJNEg3RdX+rVrHv+34D/0grfPvrCBDQqFmilYb3aW7DQ9Y/duYZqQCAnSfRTlsyFy+EisiRH9A01hXcFWqZ1gmz90cnED8LkaYZ1JLtyiCMXjw9X+hqwyMrlqXcasi+l/bwXUg3B/xtci4ddc3qnatXfoDExvBlIw9ocjMtr3IG5zTb2Dhb1q3DabdPJYYbrfCePZib/fBXpX6EOdmChyBnOOeYHEFRvxvN/05v/xqAloBJi/VsjzYVu/s6UU8IyvENWz0/thWZ5yBHHrMiPpR2ubpeDibA8GgV/fqDqlh8B2nsJTXDftsQfKrFGX5fiZ1fpi4ABpyuVHyNIDD7CASmtdfOLzhAeeAoNqWVH//BPYaApC/9rXFP4XyJJP23081dkQLUxrlYReXPP1F7fsp0nKR02pbd7CIp/6GdaG5CAjVK09Qn7LbhhvHslO36JtYgKLMlSvPsbBhEeeDXjB+7iyI/ziFbiYMG6h9few/Mn7u7X6BMLxqwScYha0e/tdEJvqjLyj6XvFw4q+/djj5hY76EE3+HVa1aGm3EzH2X23VB6oouil2eaLyc6Vphd7Uqls7SCNZNEuFj4HtnLWKhH2LXmvxI6i+Ltfn/u2VnCnfk8Yn403orXuDfN0ozFF4iOx716gMi91oDvgiopB8RQ+Yp6kDyiTSNTpkcaWMuci/TsAd69jKISaYdW1zBPhq3AooZEk6s0w8Ug4UewyA04TsYUIulH3B5VX/JQcfS58LPWlgrrG04nOLmusMv+FcRCOluytf+WTrdE+Es9iCvVXUOvEDmC+yosxCkqQRJ4AKHSzFcfc46EWLusyeAKCKQ08rE9M4MNNRfG0auPUjyQToHTeRCsadmxyIcmN2KfUrsNG5o78BUZ9JLO1IUlvBZBvApsWszrLkVDg9dpUvGO0AQKHgykpF9cFLcdyGvBKNTXA+MM/RiT0MAAkJCrnachPjTAp6xnMHdzQ0FHDxB2m8ekS0QjEDR5rNNTQ6FKaJtra4mueF+IPtBwlx7KG4n7ZGJMOgtiyTklS7F9US0/GT1efWXk9gX5pBYv1rWb/sfsRUj5VzgflVcmK+nKIWGHKrBoTiw2ZPFtJQt0wBYNXotGBvR9DAy8S/1VFqb/vYbX2rPBDpBPO9pQy2DhJ2R3TOi+SRKDme5TxHG7l3/4uCkSIrKQ+8iIUMx1ZqveGd18Ikzl7XZcYDYLFILtJF2hywlfR2KaF9vm3TSYBTcr1nPft3LGgpjMuzodZ7Ztgo552ValJQPUkhpEHSE0nTnt6C+uGfEKxarIj9TqaBA0EyCBzioBYOb9PyCmJ1rH7obi1ysz44Cx7AcfDuaZkJoAmp/7FoAW8emWgDn73vEn5pdGvzqEryDmiAxiUBH/bfUNbjt1pz4s0bFJNrwuVXYPyjVuQI8kY39khG5ZUUOhN8+MsWJSWDLF6GtXnohuBty0AOSRe4+WU+McO65DLHHs+jv1umzBSMJgqjDvjJmoYyaVUMdPQ1LSCGRaw7cRvzdBmcZXhqE3mpVnbguS2P2/3lTTlazSzp6w14Ek6wokoTPbNW8wcF/p17ogXJOkHtktgsCyz/d/TKPPXT6FOBe7bXHaSWzfsXLINZFY4rGzn+2/TJR6K2Vj5SUFl9zFLB8Z4aSuZBoAJhFx51eUUSgQnh0dFF7b7zDaz386yBJb05+PDSCO53MJ+dsaXi4VKR5MugTQ9cuZQq9sj75H7+H2Zvb3Dg6jv4ez5HuRyuDuPnOjARhECIRtKX9RIdsRG8OMX9ELOjgBvD7JLl5TeVxLq5rZ4JRibibVNRoxd8wUM7YNc5DBofQHDkw7HZdeWlE9VjjdshSABIs5OkDngkCZYDvMHewe5R90BC0XbzhTfJoO/B2nDXTGDF9/ovKx8lfrw9TDM+OKFpgy5dgz0AziXMvLO6yCJkkzYRv+MgBJ4sWr2MqE0gIGcRIRMRHzLSUyzXEOcixGLq82MpEQkcaBpNSbVnCnfqZ2TWhK6QdWqE0U07Im+XabhEhQjvq3JLEhhHIoYdtG4TerATla7s0KjO7tL7u9r8ndC4vhF+wPqQD1UYJAIOo8SnaXjpGT65Zxb0RNrivYeUFIUTqDYeWKP2lxETW1ew9iXOjPClWdz4iy85LOA1NY9VqfvLrSfEIsxYE9H9Uh/d6Ptccoa6FtckWeo6p1uhiYf42+iK2CITIxNFbPU9GUGu4hs3DIuSCCmd1J45oxeefbJA1tQliegcrq35ROM652inwdsdPQR4ECY1UgXsOdtTfAy4VT9klWrPzno4j/SNb+Ya0MI7YyB8sK87+04Ad68BFg9XlXgRh+gxnjnyJvVbjW0L9MrT+Z6DNk7QvIeRI9cMOuf9w8pQyVPUcFIxIxjXPty66DYh7XF4p9y0bP7K30b9DwHjeyanbT2IirlCjm431Pu024K3XqRUbTbGc0+WMrVcIGh6M3A1lNATI+C0EQ+ckx2ePwuwTXwRfDfk1Et65DGK3d3Z/JMbwDW1Uj+/9FgNtXlgmMmOkAZlXpsPQcS8aoOYkn8UQLYHYRrK7A/hRyXWKu/aB2CMxUZakq0QQgUIwpMQ2KBOQEd4iQV749LKAewxF4AOfHnoi61LNr9sGRLyKltsffnfUHBLwHTfLqOfgRAXMquoXFP+hREGhjf927C4NUlyWteI12tfrEB8gCSJfLAg44c4ymadMplE1rrzwf3DxhClm6E5jQCi7UDMHMzEuJjqB3J2LpZ2rbDSET4iiGak6UW+9U2upRNesev9JhveUdaO+RvGRUVeDvhKBafVyv/EPeW6vVRk9u2xqPbQh3KV1zdDfkDeKflS1W7vJjRfhE6dz0aajz7DQDVJj9496I6e1+v9FeFwEKhgwWY5bddfi6BCHHhPh0CwIAQvzJcX54054BnqELR6JcJcZ9GQ7BUDl0fhj1BAyUd2e4Wd3Z2+KqYxLQ1yE7/0nJvSepC2EyU/xcxPmdys8RjMA1iSqGcca0bESkceIs5pieea/R7nNnyXlD7NoXI15jo0Ysz0TmZFxRkV54fWiUmc82H5/syA/fvJGOkzbkTsZkIsutFlLsx2Qp1GOpMPbddMfxNb9tyauhERCo4MQ41oQG1Ip8mBZEpjQy399+JrRojKP0fiVK2LIFYif3Q+b/JxvzP6cxPjXLPHMqRh+qqFoPWDV/MKb2y9Up4sTwsSpNUDHjJQo0ydKqLAPIdTlfByX34wrGNxlh+dT7AuV8yHRgsV/XCS5SB0zAVkY3q0GN1kYE4/9HsO4yLwb7/kmO6ph/ZY2J7c8SML3CuAOzGDm1LkFywGJU1sSNmTLNyOZBKWsIx7j2YBR/l8DI+51ImAw4DFDcPPiViA/Gacoy9RN5v+SqMTcNAvT7Ba9vPyhQrs4ZVSyW9RNJksJ+cuH2opiWfzjQk9+PtDe5dJvnd1+VzcRVp6U9SfxnKCb2UmrwR15yuGEILzA4rw9TAr8MFtp2rQVE6o0buKcaZiP5i4aZGah/z9GanqJtAsweKoP19NW6LEbicizE60LFZu/tI9ZeK0+EO5yt42cPia8Z2z79KxiCqa5BaeRoxrQ20Oo/kyHlQ94QMNkHD3RApSzXduViSM1swYEoibYKZgzSTR9yYMGUyJBrd7qY0za89a2TGCRfShZkFobR83DPLuqN4ubxYQfCi+bn5Og6X4q7ydi1JiPAck5LdrwDDcLg7OnNBkKhOPvk5gfUbjaFIpcsVoTQr/Yx2Swu2w2475+A83TUc/0MQJ/iLhO8cEbnNTfWZQ00hLavCEI4ZViGtlBJ8LufwuvPZkWdCCjhyElI1GIWdfWP+Cumw4RYJb9vsPCkHXeASU6hdBu30IVSUbOjd+2BQ55Zj/2m5YRAA+1tWLUwbBloVmatL0ijIlAbBnfEpcGteKQxX3c1fGtfLWVn5ImPZ4CtQJf6cjfDEps81Wryg5c0ISslrHZPYo2y0Xi9W6Jcr+SdeUIEa631uHfbhOZtFGLZHDj7uaf1SkzEoRuFYb4daePHvSolS/8kgNT9jDPkszOef6u2GAd74LSKeH8mh6tc8PiZ3B+CpA8kyhEQ2Dc/ndLtKSr58DIu3+LSLbU6BxXVBZrPg/z8lOPjkvzr15GQFgLimyITh9+QRFXFu/o/Vk9vnwBNsRMwxLS+TzDdZWruqhvsBC0L/WX79HR2tWrjl/lnA2vFir6AaPtd/WDtll01jEJxWiZLvWAH5oOp+vMZK6h/g4tSYJLjVoRbtIJlNhKiFnL2vuKTWqMm248j2M9zg105ILm7URS1xM2M/YonmmOYQUHtmoO01o2aMF5Il6N8PYUS64oEv4pARfHE0GJ1KTa2vEP9SSPCL6ajm0lPBaYIfrWvf/wHOh8cg79Mk4WU5Th1bV/6RFzCft2wcp3ucK/9jpB49A9mz5PGuaWzwG/1wEuLhIbxsh5ljpkBKoBj1DoMTaOREaYz0uYQaFrI0ByCfJQxVQeSbyuV594/FtIKkL98MC0xhw91z3a3Q9Be7rHjZIePVZDuUt8/VvitqF6NsV0yP2Gguy1LQ7YY5uNGbD5CTRaZnDerQzI+zkWNQnJiiGr0LY6H8YT3QXTE5KBWNRzehRpDiNkw+lGB0jdFZwW5Z1QBalQ66iYPwt5fxaQe4CAUSQQC7ODixwhfj4FcAIwitIZH8lGFU6MZ6qKIlfxOlFpWj0DK7boRBR484lzUo/k9eHw2j6/pdAULKeZzDXB0VTftRo/8+RgQMk9l/RyDlpDbkmVPtAjpvvNG8YfhWDaoHvA7fI/ZSmwGFHGwJCtNUKwjYdBQ5QxAYxtP7kXLngwRhOeCrE5nxmJx172ggbc/uAGIcdKcxKDmdSd1DggLl8igZgTVHlbk1E1NUtWmf0+kxrHSOEddT3/Vo04BVlC48MN7wj0+qANdqNmviJYafVgKucy75IepaWH2+wWATduQ7UnCxqxndax4zDSbyJ3kLw+SqzArUpFXqwfiwEkYtRKbh1/xMUkla3V46SOhThQKVy9Zr84/qLSDjZ/7DRbduMtVtA+QtWm1MC+WCqkrHsMLfT9xwuTG9F6DN2zaXHgGmUNAGPXCRtMXts/VLypRDfRBcIZX8oa61OgSXa0U/kyFm3jON/3qkb071TFEJK/ejCMrL0x0ZIzcedp6KePbJfNT/W2Mvadc3JOJZgJ7eS3675SsbB1tGS95YVENTFVKtpiq92hY+p+9xJGQD93gHE0FdY6iS4VAhVkmsHQA467DHJ8Ay2zlzNgCH4PJrlVALXAlkdyW2yfaGz4PMzBuDXGJ++vGRRcHo0yhGc/pYmWLfUATzmGjC8J2g4DqHEg8UqwSk9hjgfIVwizXUTxMgJLMVYIOuUAtHZL36PNMWrpra6OUwNf/vV/aGKdbESNWYmSaQaNsdQGqQe0aOLCUnWgCWv3M8ljMJD5TN2tAdxteFUn+9OG0KJWICxvvebPrPc9vuBGZGJxDe18rpMWYDG+Qs9XiiA1SOKPlN4flZURCGnnj3lt47ZOcTfK9YEpMiuyA6hqLpwJdqA8hmtZ/e4jRST6MFiBsok4yF2EV12Ge9UROlHojCRll/NYq4H92HC9tJ/K5/KF5XqjQ/N5+ibaB/mSzeT+b9Yx6O9zW9yaNmWyHvb+qlWNUrVdDTTRQJjNiGLpyahgDzICOY8vxjUT9NKMEU9lCQ0Djel20drg8ltFUnKPdxNz45CE7V+b1LCVnn9N7usYqrgJ2K6K2W9x/rYls3bJZcHKgywn6uQNrWD45Co1tEc928P4sRt2+5JOZbS9atBOS73UiW4bHrJU+/jbnBl1zTXQHF6b4tCXjMj4LDnANHyhQcbOoOonpX4zF56qMYSMHOmS9den7EieLfzbau/l18mQHGdosN1hI7+B/AbZbdm9feiwbfTt+aIDUQFkNOdT6dTyfxtjadcRnf6QZfz7LUDrU8fqvG5V7xYdUjnsqW6SjLTekSbK0HzXURnv7qBlqoeTMdgvt9PG/hXvT9ZqJ8smCyr9fdv5AAoV8fbv0MUjzfLRMN+qBXtidWuOmgy58SE8nf8+N1w/xM22w4AT2md2EULfbOsr01dWFkvGf6TGVuBsB0fqCV4H0uYnlvfRMCkYMgRGt0CgKB2pfgtlL+AhQ3erx0/60ibS/t4d1wF353FuP3RJJfo41n0d/1fY8dKkBG7VdSUNxPBbeY97GsGtFaKiSNS1UAYuXcjUPzCLq4dZ7GHAI0wiY7uy6d23kgm4aCkouSvjuJU40TyJesiHl/Oi2fsopcIhI0g5Z0GnSrGcI3hutQB6JbHgkBJg5pcuZGKn3gYu+FRXSmeO03nsC+cFWzfA7R+gztFYfE/MjfErf/O0mK5wTKxWw2y0Tf4c6EjAW7UfXSaleYII8UhFrx2m63ucFM4gRP3n3gMZUmTWN5Hxbo8gK5d2+xoKZjb9LhafVdDJ/XtVmuJHphu0F3NVGGdgosyMF2WqP2AOexvgQsFUjHJXBChWut6NpoqMNQxXlKmFLM2xawr9859MjZvnG2qdAXXuxmXdNwNoUinjf2li04xDE9/NaCYdwTRJisDBq7LVHVPLPhjD7Q/AUIHi2GnjVu4w/PqOgHiyMP0hbPgz73T06cWN9ROJcgWn59uuVjkg+CnhlMoTvRxN1YIBPiP4+UpGfwV0YCVsWWAAXGBAkj16C6KLpE7n2Oqhpgw1fll+pZtYGiwrbfISTnGllWW4NMC8LfmbkjVBFRgZH8pHZdKvNHi/XmIjtigsKhhUu/2oDfsJcWVhIgLsNApgoVHzNov/9cESQGt9Sb0SXUbjORczf2wjZPfSbUo+zCHaLp6GUMhVhaPzEaiS5bGCnQ3fniO+0RTf5TsvQG141K6qIfPf7mgi4djgR/VBelquhHwjxap47Om+S8TIDucBVBI1ynTQfME9AK0oU9a036yYZVYa5OiaqPVDvqUi7Z+Aq1Mr6uuIyZit2QpWPJsyWErMIbvPpc1KejXbJt1SEzMDFkwJHpAkj7lLCUX4HdkoMXPY8+/6JpjjJF/ectJ2NCf4CQYxVuQlp1wOTkipJ8954upUzXlTRG0byJ70nvnStiFiYsS4xO14xmzkensTR3FhN+cVbp2E6TsnlVK46N0MjXtZ42VODcC4rhgBPCFVU6qa70P4JdS3Av74dL4THnbBQ6+k3r7EuKJRXO2i3cmYGEEVKchzWz1nd4UenuuRiLUS5mWb2Ug+g9lFcfGM+7Oum7W1NlFlL3U1aoHnrigIUe7VHccwgRd8NaMx7Qgtl/rJKuJGs4gtgT1l7wHxMVqf0Dbw0WvrcfHrRtH3gM3c7pRu6LqsDn63ad3UODaETx5wiWHONd6jd3jGa5MBS6Nvd1POtWkVEwSRcP+QxasWFDYbi1dZ1YS5qZKkJ1szFAISxzc2oxcpuDXXziZy/tnJh1A3cukC15x+Qgd52Fo48SIZq7i28sonUO4Q77BK84Zt9KZcsqvRyru9TTD5fPOlIyC87m7wJoyZ0CtXmH4Q8VBD1MoJnp/uoQmCg86G3JvJ6lr3bHB4IUzTZr18oSxDkl3IE3iv3QB/SkRVQ+BVYD0OSzrTvxOVYaedUpvlOAOobKK0bFgTKH4mPVakS8T1q0dCeg2DeO3oE6yAyLlzhbq4QKFo62wwtN4zjKZJ2R5Eh8Wc5kGOQlVboV+/GRetrEZC89QmNw0SUas+ftd9lBUsZcgPVwg3VvxKIOIccH9Qtu/UbWQtl4y1oL0w7EJ/GrktWClQk+ZdjNi+XjxPKn5y5Vvx3+g9NWmBo3xix6dUrYmwt9vSNQWUNQijqsJfb8dBkga5moSupw3nCceqPpCm0XfqtG+klGhm35lQ97YqZU0qse1lHMuaWCa/A+M/xBt5UlY62TGEPJECNid+nGamJTm7sdppoaxDKv2niKORAIuXsoBjCkRFWcuqlb8NLveY6TgNFIqXygvX8u9IjNpRIio2eS+QLuuzNTUjxm7ZIjrG35+otyTTSQI0r5xUesyf12fAc8n9X6Y1xhHZ0qzt0MC4KnWJfaIqBl5HldiAeBy38W+ZGgOPbbOevNuVb7iUSgLB2F9bepjA6Esg04KS/fMrWyVjjiwPchtd0ZouJmcxJaSEshtlol08K6Cknnstsxdq7hG6A7uHfZFynhwps7dZngsZmqjhqgK4ZWucRwoZju8mu+QnKnfHgWmeGFfgBt22PwdyIA9QqKH8XKJkwpde9IG/QujLBgCbFHwOyauS83DI4cEVZRDpGDmJKXNCXFiJE2OfJliyYNYkXDVBDIuWbvu50aOlPPubF3eloCW/zb/VoaD9pPcXn4pmX5VwmNECnMYU14iwxlIocs3O4hN+fhdEGgR/PAAD+kspC4haZiQK+k7zlcdUhKJgGT7S5EctLSpWIqn
Variant 0
DifficultyLevel
554
Question
A square has a side length S.
Which expression cannot be used for the perimeter?
Worked Solution
Perimeter = 4×S
S4 =S×S×S×S ≠ 4×S
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | |
x | 2×(S+S) |
x | |
x | |