Number, NAPX-J4-NC07 SA
U2FsdGVkX1/AWUidjpbE9FVfEx+IdymP/anTcJd+DxIUFMqUwx8aD5n/e4Yp+wK7LkUn0eEamTkA7Va8+qVDSbYY1YrFtnGPQ3Q6ii07dchP7DukM85nz+NGuGk89od7dYHQulWvcnzAkLXV0ildWc367rUd5zDDs3x7dDPbSdYXPtdwSsm9HqJRRnX1/erODPvH1YaSUaoNDHrA5q6vCduhY8SNLmIoVhvL4fj7NiOY6H4AHWZJ3f3KHr1GgTUzEGsiTEHEn5axUVPE66XhYaon3z09doTFlXtIiqJycPRpUg17F1xupfv1FDQmgymg+Os7euWRZWKcTkK7u+tOmrFa0M25P/GHlAVJpICNmrvNaaYzO1+eWXIhcXAWmM4mRiwmJ/RBjikZDH83m42+5QXqO8udT3EmaF8Eo+wHADEmX3uCSLw3h3ibHl6yV3JdvCwOPnhwi/w0m7i5IT/P0Ruraetmmlluu+MILJ1bUVvKlITgTlVrGtpuuHCdFQd0AuS6sltP4JinRgA9uTFn/q4wwT6/fea/esUxOiJrAU//Bm5Ims+Sb3rFg9NU7GNc5MSfqW13GYGKSJzf+XPW7IBrb6ZuS00YfcDuKSRWI3f4gYyY6KrEb6lwxVhVz/igqDkMR137Lm6iMOeWL0HTjxz5oCtbbHh2mUc9RYCjFmZS439fdmshqZ5D7zqaw/D0TVJuuQUxPj5OjXmz5Ck1DOD3DbARm2vSSH8D40mb6tHPViCe5P2O09+QLi4W8grmZzs30oGri0QEML9N0eK9FpfDYAsUQ1Y3kgJHBkcPdd+thbhC+qFDnahGXFdxwr/Mc0AukkQLKJdXhNQQbs2JzA79O7bKnawSH7R8P3QhDjWNw9q3CT8WngY3xWtmbz/K8K17nug2ZeDXQxkGubkiDkhOxJs7VCRNKwmG0w6kjgtEhsQt+Mey4HDfnad26WuF5FoeOVsv5NDbD97l6kZovdFNhd4ZQu3qIVWMSRxEIFviwl2FG0QWjaUfBx+AKUda7f/BbyzTE86n+NSqytLefMJNiExKYzHRfm5J6PU5UG93udHgkK3fXtE/MHJeFhmyV//HZodAukgOOl3h25HAgMMU77dAG1mqSJos4FC+XpoziNLjm9FbBwoa5levhpT1WsXoGT35fYOaujFgKVs6OakNWdmwaii3M4V/80bX9tAvJ9ZteBfq7D5Lz8Z4uwPxI8grkDz3XoNipEl8hUbLrGvsCkc+F/3sxjnhHBjB2xtearxJnxxFleDY/iBS7vR5y6bQmPRoNYx4P9whfjKis2AY9N9ViZ3KLXfPnwq92MVS6U9jTNVQ0Su5ctoF1YJDwMxBzxa1H317r7GEVECujmKWeDnkA2zLryzwxD++qhaoxpKtkiAettaWvwTBCoqj5sURuNZjjHyD/LPPTmV5x81mRitgRI0PI3lQn+iqbVUHkEqV+OZ0hpfn7fcjFcqx2MmrRCngUr0i8tCh9u/iPEQR7D8akcQJygi5svvqLu0ugjOlnxqibAyeQKOuGl8uj7Np8ViGQTPZumoQOBNVpYBI/WLhyOJCU6e7uaoxEER7aCXAaQUSc2huPRTH5lg42OvpSRZEUjUtDR4ApOui0SkIGwIy+XHFZgkoMkrDVwbpfqpjkRF4Sj8dmjYKlSKHpjwE6qXbjRF131yfQPRSxATxOZeBAqfKWpdi+CrSkctnvkEdc/QVrDI57jpcA7xzTmBfej6Zes4NWCAjW+ZvYa2WolWVA48HJxZnMqplVQgJkhhFUXNnYL6+5M42j0BkTdbGZOivS8TMHtnME0Euu87VXq1cJl8XxgaAixzVLwry9keIsVnOuO/lkGcnSXUYjjykatVrK0Ew5ltgxjhQ/rdK5IHKGerA/xs58Vhah+PAKrbX+dSMk+n7Z0abXOXqpFKNOtEDGx+LQ5jsDkXqrHbB9aVDSlOGcAItavH5Kv7Ll9BNCdhTTBcrFM5DP4seS2o9ulj+qeVG0ib8KmBGJILKGZR2+KJjExRcd1bAsgdISPPgHryaTGYPn5IqNFiCNjU0HwxmYqr5gBoVyJnYF8Ww+ikRo3lqsSO3gQmSd1dje8qHtOSAFT+DoeNLs7oYQnfcs6J4O4GoNvJSgNLjc5CIzySSNazc/xJkf4Al3vjYliM+B6loOL7A9hfPTFnOMFtjPhTlvVYpYIRPAGH/qddlnYOa6+U+HD6+hhISsxd+ykQpxKDMxtDrehrqKwL2ShEKqDIm2tZ9sY2VUHGBvD0kP9jHNcL4Yocs3HjJs1ef8ji9CG7NiVrPnFBtfe3LB3vyXJfeahsQv7/WHaq7WdJQJTaxTEwmwyDI2zb+0IqU2eVy6hcVNlBjXg17rhcCycews6A1CR4qwpq4DtdFfO4nCN5vOKydQCOyrfzn9nfGj9fxtc+5sunrgK62FowTOYdVNHf4DTcdp2R7qihane/LTJQ9eZkL0TAR+o2HkwZpuHvPaZgHOyY0UjqOF9dIdqnLqOf8zjuAgTf3CtwSHqunSd8+cy5GLmy6JbfW2dA2EVF5wiOmElmsqg6uI8Zqz8dWOB4exyakTujn8059Gco3a7tBOcaecXlW2QvPuCLe0ju+nnKQbncUT/q0jW8DoM6ubITlgBTc1olFa/+xndjr7oUOylm2hdeIxGVVUAofApJWCVdpR3bRinGZHt9rXVU1gBGxKy8r7VDwnf1RztrTHoQE8tcRj+B6xcmdD67aP8pFsHyr4XMazeTXl49VGRNqhbAxoX13+QONg8StfxgmufFqtsmrankl/Cwkt0uO6bPnQLbhv21XH+oiaoEXa+bS4dGKA7qD1OjO2+pqHhBj0oXiLBlOHOp97EzMQJy59Ww/KAo80NtOMaTkw8N0GE1QNBFDSokwmMB8yA17Kc/Wb6tJQ7YdO79+GDnhezcJjW9LKOCUxu040Gs2JTXIxHmyhL7zensRYFOCbufmqtBFLQD88aeXBi3ieRiSOyVdcA9SCGL6m+ntZmVgi5UVSM8S+BHupCO7iOmUumvlwDKMOMkwfoR0USFqZtiycvuk7b+1ekIrigDsV6F6/D/bMNbpdOMqY3UnYuMdBrlmxDZ6Rwgy4dClygwT3ZcM+56FMZFnZArT2Wpw+L3o0NjisYRtSnigTo5d53czWRUkb6Jj0OAX6fKd4GrKzC5aoKYqCbm5o+u8CZworNhX43/69APl9OFn5voV6Q+E2EK8xG7xnnkSVeEgoBEhEzy/QXTDmw5y5wWSH3LT10xUqhMTAFGFbcWpY74r7jeeMYNkUUR1TP5wVqZeXFoYQzCUD/vudIfRKtcnkX+ANq0ZA7OSdtI/8yNHzlslv1i2m8T+BVAFlNMaUvNtNJPKq5lTPCLPn0sq36l05QI3VsEoCUEPiqgG8MIx6IzC6P5uZth3Xqbyo/yVMkA2p05LS3rpPXXeEDNI8W8/mwQXQoRMusAOksgEcrjybRpoxQbhAear5L4jT65fuhVKvTNj2GoET7RfGMXMWHa3Cf3QUtcy7Rztl9bsblMOY09Bi/XA193D8gLl6hIQSNiPLV2T1yDsKAr53GhEc5zwhRKNTOl03sn+kNVgK4SeTsxCeVQy12Ajl1BN5qEBTVIPP26MTDFXNETYDZzOiam70fVzlSH9Oqg2mN8Sh/iVD04EPSj8E2kLPAeWkduSWz8+zRvcx47gOMRKMY0hbfEQbbf6nHboxRDqhJhYs+UrNe+OTulib0SIJEkn6yyN3y6uq1NBygIDRNhwaGiBhbFbwr07Q34aZnTaSX48I4315ObRmAv5smnBJ8kPY3TWiog+fShKZuNyDsa/zJxiyW/wcGDcgyBQaM8gbi7VKwS4W9SZBBuh29sF0dJPFLl7Uf8v6Oo7A+flSCz/E9Q0C0FELmMgUseWzi2grZJkAqVYsczzqxWC0RVGPcFDUjHKj0md3/ZiYteLmghWSzg6IUXfbJ5vUCujE45ZRpcNXj5aCAPYwwhvtt52EX1x8+EUN7tzE9BLc4hu2CUcuOouggWnaH2evl3aDgKiWgisQQpSmZ4ObDB0TqwsgQCvclmxueUTRXCPsOLnpvFA9nkSkrg7GPKRSdWz+7JyWcngcJCwnR39z+YOomYwMUruJrSstHvNai3ydLhUmTFzpEw1oYku7hF8RsKMmjaUDD+odMdglyJeEnZwjrqDaYyAw94gztw7qLwQjiKtWpbodwkHsQ0PAG7Q8I0vItSJ4fhODimVZYH49q4fLNf1C/BVJYPSGvz/LpE7o7hfBki++3l92Au18AEML9LVH6OjzcFzcDN7JqCfYwlfBIcB3kme+rnfLDXvK9hPqa2yqlf1RfBWgHlZQ5nFz04r1/UAg7ioLVdxtmocIzLGgSB/0CgiqxxSvwcAHacPLQ23OWqaCi1lb2959BGqmOfBUeeb0N7Q2tRGJKw1dyoa2p4iW5LOGJX6gbluzi6Qh64llGXQnrIrjY8bX/PV+vFy420spgyLIMMb7rGwR14M+3HRABNB6QWYYq2W4EdlCm33h5c/oq33e1cbp5Wgbbl2tSOj/r4iNHRypnHvy8+x+CO/ukebqJi/bz/0nGZ1U/Xvu04uiza5Uj+jD86qSUURPbrJGMbVaronehor9jRA5GTJj4EVE7mGLi2GXtx+YeXEC2nDpw2oaoRtFVJqj2LWsQahjPZZ9UkB52Bxqw3JxQ0g5CupuXfxvfQ7syha91k4I6m7hu3NVOg8AE+khtMSPNXthZ/GM8f46zn9iIBDAKr27AjrEoK4ORiEVkaABHxtDsWmgIDjGSYuk063NMUlfsB3bx4AX7Yzm3418nTeTjVimN5fsyYyRurnzKA8vVkWn5bO/BrfVthHGVlqyYvZRRfddamjR9m+u1EgiTpPsVRdkArc1gop34LBgvVRL6HkN8To2iEthH+4N4Kg977VjWmxi8poWfFgMWRGDT1O5lzIsobius22dt180piauavjrSDC58kUKM54AcFxYrU+lXoTUA0Xb7HUyvFViYSO6YrcB/A5PBLQ0nJJR6wKPkErL7Z2xIbi42RP/GFHrtAZ4PMfWdsxDCGGSNp7mr4SJbXOAf4dAV+xaXixZ+ptj3AjTQgBF4SnM4DUEgKO0t3z+vGJvI568fF/UuUPMcrxCbE8d3Z7I823jTszxCtgpN7+xBvNuvhc10ECxgqefYzt+kt3I5Mx9cHDfWa+0XTsmrZduCwVfxl4HAGPx89oiJLOIrFPiz2z++1yCeJgBGZkJLrewzp2On+IFzrTqvZ+9gImeIFa9KyNfE3/U80SdGF4kFrDz/kSUkz6VpVhSup7cT6LcpXFcJBO9WXnpdnbI2u3aQyZFUbQrHT1Ds/j2rOyxamnTaUk0AP1WeaxKEl/gJOG48DfCdZnLQ8jzqxoJHueMwpsyt6dfs7B6PF5aTAImJ0IVO52MciWkhByE0G+dhRrrZ08SlpowTf8k24lxpldnChNJbjjHNZ9Za6ugQmszGPl/f2S75okAixO18dpEsGnXeB4UX1JMpLe/fHhfS+/q6UwAgwJu7JNeM67KUIKFxZgOu15xtxOYBQ5fXwgkkVO1sKnT47tHHlWeT5gHGoWSZfuW2Np/R6UNOQUOdtZVUJkoHoEltBg5K5CagVP6RBtgYSC6/1eejxa0p2FqWpG0se8u5todvhI+i8sX0PJHs7oBwv7mKS7T54tGXILmPLA3ldatYHstVMMk+yNt2eoa67UjrbIaTKQuqJUFADacbmeqr5i7c+hX5bEWGMd4+dceBfhdmpPMC6duHkl7bpKmMjFvXYxIBybkmGRcS6NNQrVjJ8W6EYkXQtPIxI1nZpdI9HQV/OIM+4zc41E8HAlN0/EfYRKXGWU81HLfHJDDf4YTIEc1HcyM2Jek1NvWFp7Yr5YaBbbOVGfrpG5b+RnVYe1QcBYyVb13Ow3UIA3V0UxCkKdqIi2uwAnQCYxau4G661Q/gPxFZpjYlqoHcyl8ZpVRs5Ebf0x0di3kCzACTKAbK6/PGKtnDcPNIGbWvBmND7PpGId42q8uJnnd59SHG3aI6f1mi+MzWtT56cFFemAMQhEbmbfaRu8KR5N8rTfsVE7yGf1Mab+79fNnVArdcf/mY8UyedNjCABrZfeHH1FqBO+I9WtOj1ei/0vRlEiborx7xm5m1f5nBA5l2AhhKY4JkOoWLOEcHbLUKSOHYqBvBwl4FBdCIjrh+ECmIGZ8V9YYntbdfn2Ea2l3nC2DzAJbSrWjleExaQ48mkm7IfU4Kw7Z/4ohatH3HqCdLdN+nZ1icqTErOP0Y0tpE38QWSSmj9rUJWUvKdDr4XxOFxyan5tTmbrbUQ2Wp4qyt5OKtMgtZnz+M5GV94GYuDre4eejtIR+dTWVY+C3g0Tr9wUsA9vG9HwDzPX2PE5RkjpEVWJvtIvSVr+zCvOVH3BpqBeVpS3M5f/4QFpqOMljXAxt49WQttYvkNn1Nh1Ahx/aK+Cf0USehtxyiR6Ol7AN+/c3hfebGUOTBEqVKyU6wBGtGiTSmDakQWiV5P72dXVciYnKwVyxwk1Yx4aN8EDm5JpQF5vba114h3SBSKjdxJl8OL2EEaBg55i8rl2jIHpI7EHQi6H9qYgZ2fwsLm7ET3U+Ip//25o8lDLU3F+9kuGGjg58wXenjAr7LVlnA1jlAiblXRsojS+hImyrYmj9WimszWmaszsBJLYmrBz1To0NaskNHoBPMtpLgzPYUKFo/BE6YvI4SmRFBPtW/+hSVEeF3V524JfeiY0hK10AH1TrrdvwGQcGXFqGAvrxFVy7f6ME2265hgYj+IIBLhJg5KaQkFQJBUNUjDg4vDnof0cDHpvlyb3+YaboZaAUU9JXfJpuPxEigTxRLu7AFeJ8pc2y66/LFIqvp3GARikjU6oWoCOTd3VeVN2+WSZnf1wlNg/XN5Yea+qTFrI9ohPlpU/+wVYjklP2JQ8lqbDk97yHvkUxroDq14UJDHgXw/1vUko7+vBGsix4IA/EQFaoX2yfcSYMTwbKVTlgWmUm2qWugFF7Xs3aSmbqzpPPkTkE6dk4w98y36PiKP02iCdf4Vm3MHtVyObQlD8/5CyoHdh2KNoOG9QOp6OiuRBXavm7av0fqzfEj+w4nPJ4i43nkF/axCyU4AkP4txqB17sem/oCZayYvQN4gN1KVqxXJmYOL+jba4QV4S4zxJpw9+C2SuqliLtFE3L/zDozIcVsgPbXmfObaUqePbekGKxPJnaNIt+6AnHKXf3RyVZNhSN+D/paG+FqgMGqsngqykVRJJKTs5SYZjSCzMZb04POWwKP8DnTJH4GN5QGOoCGPfEbVy6H9pjyH0CuvZ6QmxtaiFwCUoqbFW8lpC3A3fQRikHCpJstG5ODJt2mbxISIVdo8ci/yBLoQBJnHN4+iD/uGvDZfVbp0LC0kGFrn0hA8ZIkbH7pH/CxbsViKyuel7WZdZASfsVSo4pbd+lIw274V3/C9wKoVgTgbrDGzK6CAjCERZ4FXnl8+fmyo4wSHszJ4UKBbktruLIu/UmtMOQkTEKfqsfqohKSzqpJVB1/UmIXSTCRErQmtr40rlb9WYPc/8o6Ufy0TdL7WZeQzEEIkSxJr7AJdjSbL/TeJCF48ojS6gzCfLegfsZI3yhQxj/CL06Xo8H/bEX+mstSi/3PozfrtIxAuTT+LKgAoJyYHYxJj9SkUIO+FXgPoVAYMtYmh//wFdHNO3X9jKv9U1Bb/V1HFXw4ndpoFoGK2yIaza1K69Mh3hr8UWil+gBw7cUNu/n1f01SUA57Sc+jsqEhun546C+CVQU9SyRyXUgXxjgFM7bqhXwMkqccNtDCIL/qut7PNYHuxE3MbM8LKbi3qriL9Z8JVQjaxwGNYhjoyRiT35fn7XMnBi8pHhkmjr00EcBg57AoL7FSVH7CJ28PGwtXMRe0MVZeJGbmphkpfmyIlzrVmzHHFJVei1Q0Lki08IwDQK1Aseuvagi5sMM2/9nn+PoAG4KTVyidMRkWbZyuaBEDGWq/Bh4Ui5tOOixMgTl2a1dtwIzmI5pg31atWnFCZvMIxbfhKMlkuWBSvKIvvXdP0ZTvh36TdPlBeXaG42iHS4KPMnrqcgijOzi9b5TeWVkOEqbL1ktFz8kt9vo25WQ/Ky4mJe3uyZ7TiTcDCvS0o720p4S+oT4N0QHpoTiuGoAvtEzSHloVT1iMQD7+xskLCJNeZzXQwVHIeK1sPwJVhd/7YnRJc33ZTcEgnmGPWs1TuwsCeTNr5H0kYMNK69hpTxFRm3JKUaLT4eV6nAuL4MWy+fKsJR0Pr//eSWSoJmsso0+qLrau2ksCiM5J2vCYhDJvaa93TsaKMheu80zL8YpbG1x6BHSh45iMa8ZdqEeiWRdgK3pt5aF/MiJ2aCnbyOts3czpptTTRrN/7mqDdxtWz3zQC1gE3g8UbvYOG881Y4BflJeiQpdGNqoYP3rHJvH947fzsfJ4TQUkWikpIz/YZbnbS+UqEfAyWUmpXVi/Z+FljrW6qols42lDd38A2Jb30MfZT6EhTKr89MmahLFtdADQOckM5TMFPHMmPe2rxPpPF5lsI7nw0m8w5L0tIV7dv9bgNnIdPallJM80lJsbzxT4JewCaGgD50lz0ZgutUVKw/EmqXkqGVvNbcD+7VXXscUXwCjPrfR0t4T89HgxBrOVs3BwBE8YZedUlCI8Y8cppYiBJJeibAyorIpC+t0CtOdqFpvNvePtdoBeRvJs4R/rN8pmucFNaGjdHQKjtPlsvmNd7FYeRqzVq8DoibEtiCn1r1aqF69SI8UC1cz4ayZChyK+q/MbErP2cnG2w63OH4zTaydyKOJYRFtWpOA3WZKWmJVyniQZwkMI6XvdcmI+c6a13nTnzcfbPm6thx/cQHMLsbyq4Z2Z6IAENxSLV3G98Sm9RlF99FzQzFHDfkZ2WewVq5k7gfvdqUcy+tSD9OI+c3Cdu4r8GIPwjeAdKSeLaDVJtuKFDQpHmskBFE+oX4Fln9rPfp1V724pEYCjhCRxJ5LC+4wbq0VXhQdT0EnYrR6KFthnu7Unj7VWC83W2TCPHCpK793goRThs1YBdimycmha0KWGrEJhe+8xloaI0U/ai9g9ZkYNG4TeK1ig9F0pbhQI+HNWlSVQa+DAoYxTGmFErEYkzrdUV6HHBj+spz0VVBhuOoteQ8Zfmf5Gmj0PoU6AD2XwNOqq6sdvAxY9cC/Fbls7x+XnAQJQhd/xOOlzteOSnjsFZzlUV7rLsAMj/uOPyY0BXuHrOc2g8SNp0WKnUaO9+qZ4xSyuysUv7dVAbDU/kgmETXTljs+7Gf89RybrUmx2lISTsmqerH9jBCcWsyqO1kUEceLxg5PTa6JggqpULbrMdniwViHZQl+RZ+J6i144uWAQvki9a0IglZCxA602+0fv6PC1085qKn1K57P6H7e1mX9svR5FsWcGkr43wwkWU6sJnzcSfY9Axoxa8Qftkx9G72MoLAtWVNtzyP+80uoqdGgT0XLCkg8rz0chYk8FH3Odl/cB4TRYj8B7c+ncVLoeJ5Mw2vFVVIKL0az52ozkGSOCoDRoIrzlOn0pPw2s7UAIw+lYzfREfKDeDtPY4O/r/DcbrE+Mr1dU0zDPjN2wCintvGqs2t2zPF+SAT3m16lUWDX+wMu0Z0f+j2+dveGkJaxu7KKy0IK+mAfH69kDeOG4jINx9zpLoMEkg3Pgx0KLEkRYwoebphr4OHvElFwvRtC7Ms4vgG69MxE0H5lfyidMtPLBuHylhHtlydl7CqUEGR2xuWZU2I+SooZXyysmMZRloBwThMkStTfTcBFl93XdLwMp2qBRoewsKEqPphDLMzlmKSPg0duY3rrUsBrHYkaGax+8+pBrukKZ6YE4cGuYxxfnpzdEEoAFaCTL/vhpI9JVm+pf9OBGO7aLb6gPoIh/MSEYago44nmg==
Variant 0
DifficultyLevel
637
Question
An African wildlife reserve has 480 elephants.
Of the 480 elephants, 85 of them weigh more than 4000 kilograms.
Of the elephants that weigh more than 4000 kilograms, 41 weigh more than 6000 kilograms.
How many elephants in the reserve weigh more than 6000 kilograms?
Worked Solution
Number of elephants > 4000 kg
|
= 85 × 480 |
= 300 |
Number of elephants > 6000 kg
|
= 41×300 |
= 75 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | An African wildlife reserve has 480 elephants.
Of the 480 elephants, $\dfrac{5}{8}$ of them weigh more than 4000 kilograms.
Of the elephants that weigh more than 4000 kilograms, $\dfrac{1}{4}$ weigh more than 6000 kilograms.
How many elephants in the reserve weigh more than 6000 kilograms? |
workedSolution | sm_nogap Number of elephants > 4000 kg
>>||
|-|
|= $\dfrac{5}{8}$ × 480|
|= 300|
sm_nogap Number of elephants > 6000 kg
>>||
|-|
|= $\dfrac{1}{4} \times 300$|
|= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 75 | |
U2FsdGVkX186K9iZQwKUUPrSNQx/yryrjoemYLhx3k2fzq4re2+3VGflk/7MKYJLF89+hC+1FIGJDyh0mRWzPDQm9J+3QczqtShVdE+Fn01gzUZI5UMTaosqrWwWwh4JHFVRa/SXeWhU8Uq8XLq0D5kP3PzyHcqrslOO5SpsTBubo9VoBW+D7ORDbzBmvLCzp5+B8D/SvyXah9LKPOwSgkhMNW2xmPkecDXwED9pZtSTzt3c4FkJi5L23rvMD9oXqplEWIh8Hp7WoCNunj2c6RFpMM8ViNkQlDsiYES+R+h8kZhmr9YJ92m4qTLOeIWNuq2E6RY/y/38dmavC4c6bkGajWzDapnriAGm55x5KCcjDnc61rO37JE9v6KfXwbfmToT6WR0ctthyJAGsbg5Xf7lnwavvbetpzRt+Nh5Vpoc14sYBhMGhsxExr6dI3iQEd4H7PYO5WO5IwnhnyG/4yaOA3JEpSMjyK1gEvHDYg/QxpwJxUOozV5Pjqoz/zNSESvhdQIBFGeq9tmh6I5liwYhN8Yh4cXRs9wgl4Xz9IaXDEZccnK1JEn4ER6W/+jL1ik5Q9X4bZJK7KhSfXHjZHnV0j88MJ5bSTX7NatE0JSHy29iXvVEnY77XZGIyswadIly5OcVL4hwx9HCWh380pt0aBgv1sz4bz8VxU+0x2foURrZSV7PIJvxvu4WQqK0WT1xwH3kj6pl7vzJ/JoOLQ1dE7mViVL+EayIcj/QNHV+hryEV1YcH19YskX98tGw1WlW0ZEJGxUemV8gJIvmHlegbDmwyTWIiAsg1agBAohN4avFcJBV5gqICNjZxWmDXoxUlK9wcAkL6aZaOVsRnZoNUTkYZDRgVjKwNXfj8byVegUzgNaEDYD4PtPb5k0VfDYfjr6mY1xmKwmk3Wb/51tl/JHJcbDLHrRTYq59xrMXp4PuPHJMFiU39P0Od+nRmQ8tYwWgDf5ZpxUTxhKsiNYjx8xs039lv60cjehIC5nPrnxLBXPjcuntWB9ry3SWaU6ZMonUGj+lpSO1lyWtCD7JP8ZpDQcxzJA2Jz2tdP1U/ZLM1+aLI+xRJdBIsSAJOt7Cl01FWCOE8tHSAvImCbRkH8WNT9b6oufZVcCpkaywXrQKeSmRlkhi6kYPdiSadMFFN7HTPIYH9BB/WwHl6mN0kggS8KcTYGehqZL3C0izbUXETY19kRMJ+Uv8D+1eXZganMB5LMAGdh//rk8yA3BfHeq8wjJh+Oykbk6kdKZ4jSptd3ZC+I3MCYgMnZVLeOeLczy72eBVbFMjJ+HQ2Nq1BboaBY6Y06dlQ7PpKPttDHAcgL9Dse2L872qg+l5JhI0tcfNteYo/aWMaK3gu0jUyAl5rTOs5fsaa9+qUajzZy2OIPJAC+xRSmQyYqp776slpvyPpIQ0HbvcxhQqfXhulRRVL4N/8C7DcJJ+mLA0J/bBSzcDfWIY6IrGOERoqpO3YKMAnmROW3QX+o5fJmMinxJGXDSYlmYuuFXnV0Et3ZRM96Z0EJKdnMoK4O1wh8sTh//FkrdM4h34Ums4BjDnSjcE7teqxaOPF7gNEDX5f/9IzHvdtzS8ip6YoYtYoyP4nxAdEYPep1fi1HRcY/Ge38L/YTBnmOf0o+OUY1H3NNPHf4HGvRcldhfaqlstODRFeq/epfq93KzdfFR6FMEeyudHz7FHUShZwzVDCJDAP6pC+CObme4axFzuJmLS1jLGe2vzcdgk3JghOQm8p0VbTyiYPz5efX95vfM2NMfCN4O71juopFmIF1AT+GL5Zl9ODqvhvKq54YbtNQPKuwSYrsoWqPgv6RfEkEIIcFKN+zYzYn2nxcgzx+hOyxu0SeFGIklJ7xGoH/X/NOARwlvu2+6M3suiHyRgXMh/MY8Deu7oICGTrjupSrr3t+xoUDq7cs31Xwmg2a055BlTkJnRXJyhQc6fWcMrWBBt+H2QkLW2J3NK2A4iL0CHfrYPNHUcGuAWlMCYb/J9GJxeJ5+El8ZvNpbSvRY+XDGYbs78fpLtPwpZPMvkuYoga47zNvOlMQZLWt/fVzAjhs8jZ69xixuwAalJXTEvc0VbhTWTeyTPm3OcMZw35/+Du1hWAPNYUirdxeRqeG/OzjyaGaInQdPJycJ3QysH00edNjYcrGcCmMeiHK9Fo5ZPJjvaQpYqmKCRvowoRSlXbxLV9cBuVyLscVdRVND9uPs7yjQfkYFuw+GOKT2UimnexU5bR/72LVBeoV0K1XIMS5TMBEkx5vaUDDpqvhoRxqy1w7tmQe19Ld1zRKdQtAShCsHFC/MRSq4LMZq4Z1SaeWo5751+rbpa84ZGwQ4kRRMk+sl0Mknp2jh58L4IwEMb+JGEaFaQf6R4ifp0iukReHVplDIKSmiL0DjFb7j3ak62Cpl3iiU/00Zz+aFOres1kJe93gM766eo0GTfWeKK1YfiRVbXMjOvVdNhJ5Li4Fa6ldTHy9e6CqGZzXbyZIJYrQjcFE0z7oxX8eK8SzsyJOG6xjzU1MXsFMP6M9iLKXhIZCc2+uiyJ95ZCTkRxzJPzk7c7Rl6h2cvMaKf1fvZp76ghbxufE5VduYgW/iUJ5ddJQ0BvHn7HUR4hbGkwA34K2NX4oU9VVqFPQ451JvYD2ZQOb0XlSks6HWag3uMYpkEOKskT9WgXWJ6bBsf0mP1T+degwkA0homiYHPRWtxne0hJzvohxXL27aYPWx3ux2/TRdDf2e8Wqm4QHPmAnVxAgJMfjy4/j6jJcsKMqoBY8Kpai0I65T5boY2u30xueHXDQVjphPM+30KZCL0RudWupLCj7BHFzkSrj2vrH2ldd71ud/OSpw1x9Uaz4GnEg0K9EL2Oktc9ldj2sWaIEP3uP1YP5dLWfXDEuNCxFzmUdg+HG9Nc0IGDvVYi89RiwgHZiUrSl31mU9F4XYBlS0njxZt2SnZ+D5geBWIPH1PDUixpWld+PJolf40RlrGuPRFfJstpG4a3rVdHZIpKGYYxTZr4u0rhNZ8i61DOr3S3U0rx0GqG0AZMtAHaDrcceUVhT9zJYuoEHUYVk9bRorpCRlKChlEwgaMUzGsZOXUlQ36zNdrNXsyHWdPaKW+WOZ6ASAleyGbT4oap22WIQpwxXhQIwiEwRqJFuYyQzoZXtKFFXHoOwh0mNa2+Fxdng9u0XwmSqY8QjdT9gkQe/OqpxUJiN3hoNys05TaPLBMg7MuyDXnSegzTshN42jy5HAzye7SVDR0rg1PmPkFoLsgChrJcixIMqUurY7aqBVu3pFYiw9bYqrGCF8q5i4x4Dn/DyN59wXha0XnAVLvdaVQYSmfkbJK+GRXk+RliEzEWvybkhTshoihQhegCkM4plM/7z3ixM1tBmbFQ58Lwb5lQzfHy3RcyBg6ha/QC6E86yn8oMs3WgugEqw3w/BSbdE6QGYGXLXW7VSZAzR8ucU9oKEELwnHIrPjQFKysqJ8klfBNX2RiyNT0r3RrYoEjZ2kWFxbb+u0EpSaf0CuulynBOvBWFyUTBs4thXOJOvBeTPSspJSSs+pqbbxJstvrmauFr5lFYWSaLnGQuOyfkwc2ms8mQh05JGvk47ue0ROgsVlVh8InXQwMsL5KFfQlOnWrwDWj8wqiPM0o828NZOAa+JOd1IjWoVhqbc0mrZJpXlg6OygE4+EtJ0ZQPumZS6EHEOaompKZv8W23ux9UA4SiTUj4jklsbVzxWlN48JH/oB6/EDxnmlRVdNbNmRP+hnvbdk435/P9WTyZQEIqN/9LFJFg2HRilpHMpC9t2Ud2ornkckk4rdhOV2/3Gmw6BfuDhxJNij4j+s3W+7fhwyK3cchcs63yS5h2mDI7LpFoYUc3qh6PTCch17XH0xO/lDMYZ3m/NppDH+QkXRHhy9ww4yDDaeAIQ+4cadm8yBKNU/qc9MhUf8W0MkPLdJ5XE/zCcT/dLnK869qScrU7uEeYCPbWvMsn6MmSk5xJw34M/jzZAJ7VI8WoTmVIYvxaeCJ0LIchPZyMgfAHAs6jR59A0mTd4jwpc73IsM2I7nFYQHpkeAa94coAVkHoeW4J0fcblNOn88UtOQcuYL0J+skoImx+ljoXG3/pbQ3M9Q7ZKGqG5QBiJElRwzVJFo/Qi7q1xfIkLc0lr1AmdEHYW9znTdfytFM2COodDgsNEFFVnYsVlEtTvC6V7p99OQIDBzfAj5czzOkEOWu/gtxyxnX1eEfHPRRSib+a85CFgjfUiYiEmdWcT96MCLXg8UzURtmO2kPIaTe8orHghqNqjjzYZhpqzuRe4Gkb9ntP56DyAPN2H8VdFzKDzg5dpJQ6fAYVOaP9iwWDN3W937XsVPmimrUVoXPYX0kLcP79wBuJTPcYtRGHS500Vhay1ppCID8VLeIgzwrKoUXIYqgX+fGxypg0KIpw0yBb/j+bWh2TyGgNrUfMUPMcilejA3Ix8/7eyyYzvwnh1FNVufmUvuRQbUUfJSCYg9pdPipawGiwc5ncqmEJ9pO7x1Z/PggrFT1MEfwA4e4miYfunagIaUqPZ9pTDvmqMqpsRwHvoXkM13zesRljAGbD9rj8X2Od/x5ytYwmxSFq7A3GhOiYuTXpMbzqA5hFUxH1MFUIvEMAWRG3OAHGtm0ofYW0T/4EFvbK/3+Hr0wrRIBCZ3Q0mHN7++ID59Cvr5vvCPZjEAw1+d3kO9Rzb7N7ILG+LTBhpVzD55wKHTUE/kiEVTYGTKxsryQtOuJi/QSpaBXd6zD6MJqcCdkn/v0xxb4Xe1W/fcrdKnHRwppkgyVTvspetiDyDFRT/h9j8g39hNy+z+8C0+uuR4LsPQR1ucYnnkCtxqPC/1UvdAiLi+oj+VdvsqUl7ypug/FbnKxnQwwXrKacbGhUh7Vmr53kSeHnNJwgmgI+QE8FjXrWtVd/eyEsdTZJ+7hkaLpOIhIDekZKop1lkQ7CpSJM0HawdZkaWO+Y9xea6NR6vl4o9kOjcJEQLBSrl8A5f8kAZYDxyYW6pS9tqFPhvo+42VPXlbcmWmsTubSlj4toX5xa7LFy6sH8ApMHTlvrPXL6pGE06+e4tMd5dmUo544by9QBB/QREdX9yjHVR9tuPjC1PD4YXqTqcjuFcH3XLsUWQI4TqL5flXgOnm6Xi8TH9BWqXPdTfhzaLNLoUpuaXXACxNCeER6YB6MXC6+y101xyTHvH8AQbr1cxr/FwU8JZ0JTyMK7BIWGJ0kq3LURJi6O9zFnvfGoszJo9sC1wKZwB1g3woSoHqqDc9u3l+r3MNNxUhNPRzu9VDMBPTw7OfUK2otnrdcX2WzSTY8rtl8eVbZslwCJeJM0KZ+h1SxZqcoMPlrYqXXn+Tokrk79GqlhE+3YPh/2oAR4EKrvmE0qdca4UK7zj7UmV+xKsRbBvPzMyLYQeWAJXMtvbTWWt7XRZG1alD2Pdvyi9UeA+lbm4/2e6uWMPp9y1+Ahppjxq03LDAFSQogGr7uRlwcQ5+D7sJJHwxWdLrbuQW2NYkmyPg1fhQoLSgt++qXOFICQkaDY6eAq0KO6XvZB6npgs3MgC1xRGuNP0uRdpnngz0Ist+8WMBg6/M+rMyIZGyTLXQphx5HCCV0nXGXSVSSE7egovjb3UY404NK5U9BVGoYKwhcTQxY0biBKzEJaIkrp12SSmdUfmtBG3JBRSI8JPwv2KkXKKrlXT0bt+6naV+cm+CIIiMGuXOWCYz7MICNhl1gxhkD55GyqI27oazIuiraKTyd/qi3btNseTg4CtzAHehggg81fDi5KhFLwmJMQ2Wp7THGpdhpDP/yve5Agz5tWYPyNARPawZX0shUMBvaE4TUxH3JHYc95yeHo2NurGwLz7X6lpxt2KU445mO9/gOUmtLPgkn63ezfD0Mk3QFcpCyH/uF9GIDyIPCvfKCmKMpkrLew5mQZmJBaCvR3vd3j0T7EiocIka+ghiBLgvyz/OdjBgcPlB1tE/NZ48K+bxvj5WnWq+EuOCICB4JVYdSCvOO0W9tCZDWy9UDSxr+/2CfGEBlmvhONUzZ0d0uqBacRtynmQqzXMUD53KIhmYuS3yMpclDtGyStz+cfoo7Nt3rBrJVN9a4owY2pborYFbNxWSIx+IWOXfD/RGP76F+CNR6Tjs6lTFdLCvU5knTaNhJpLCqq/2AS99BNSRgBPiYnbBHJTrlycOIQ2CBdTcatXulmKFTu/DhUOeYJjI1gEoffKBYrcOj+pLmrMG7Dlxjgwnke/JFRyxgZmUp6aPFPLMpswt+8Z/Vz7GEK+p7FziiZH6qsryLvDgoOwInFnfh6luXORIcK+8X/n1FFHyb43VENUeZlUmR5M7hC0gXFZOZV7f6bmHNnpdJKj+9p87UneFcyCPLdI3uCYZhMyVwV3fGI9PCdJjSPPSLnWbCXSXdyHWG3WsLG1qm+sP1xLaHBJTRGPi+EDQUe0IQXGjYs3h1J4zFQb898pmzzI9dJSAt7q/jeD8R/KIw8sK7eLLKDWyPvFFY5/AYmXKPzOCmJuTqJMHqBdMRUn92O9sqG05YVD6qiCiV1RELXxHI1L1CfqIGojDcafqf+GcwNwgKhY51Uj3jyIymJA3kphyUDWy9gzrJ01y3ngAi1oAIUebSiA8LV5tJ7m+GSUQhweQx48uZ8a/dzqDqz+hLceNXZ1mYqw0dgQIfBWowXUomkqnWVHPqgvoqlsr00FI2PJHhKquNMzM+w/jQRc8n1JtjKDopQAE6SGMlpqjPueODn/3+U81i9QFCD0yi1CWiJA56nNf+DwT07a13+n9MbJhfOvcgBEtG9+tD0xGD7PVynwi8CVFpBkt5TqkHW6X0MHd6u/bCuAvYYceUMdiYmQE0pYE+iGwgCjVVc6AZ27p3+NpKaqjuOEs+yM6UoV3ZcxP7rHGwaJYPu8gXN1LbeesL2vmvpoyppT0kBmAtbMR8ZNKTyt56jimIF4BgOpXcb9Cd4DXBAg5hsbXSOX7hVjrFCH1CWGJ4Uk5WfLk6yM62ClwVp37RMhT6siJftkTG2otjnDjlMLGDCiUjgJZSFj3LLysSGOKxjJjJcEaOReaRepOb/zu9Hu/Tk/LqOWLMVg1bL43nMLo//1QDS3bHZlDX3wWkhBDrQ3noqiUn0BoJP8lY8EduUBSVEwI1oFVRHEHoipTAkAR8qdJPtielhEDbng7YiulnikPgHV31+xUOOwpLM/rBCobOw+6KzE5qXZwP3aJXaQ3NX3cfwTyV+cMerDOVHM/IEQK6cmveosLz0zpUo0YarrvKGgNfQdYeK6sV1duPXKRZx9Cg//6rqnJVZFyBsff7+vXhLZ1OvhVfrwn77yevMvwEj8b/ZVEtjwOqdP/nNshDMF53SgYINrgu4k6xV2NYPWOsbBjcSgjN1TLL89R94E7Qy4exptif9+GfTL9h3DmGCtgsgYWIDZBhrxV4ZllZXlsJ06+wLC3+s1sorbcDFhHLnCpec4/a6XnDiMmk1EDnDvC/CpSrmw1q88qUcdQ5ZUXLvyGEfxhDRTfCVHZ+npYOSEDiwBiCX0v4q0c6YUmOhigE0FSxC+oe5LA01QPtvZyQld2xi2GP2TVbWu+W9ErK11FdhgL0CYe1XRO9IKjAeEC1+CXvpE7e+PdxB/QNy8UAyDp2u3C/Ajg9yD0GRqlleAPmib2gwnGzTbZ+Yg4yF/52ecDw3r4hM7aED9JYW2d0hoJtxECPBneh+hL8H/h03U4pdZx7DqLTpVfZSNAg/sevrb7dH92+InmIB5zl1nAvbyWa7Alp48WJnRyP+jQhVH24F7hpuUqXMYQIv1MIwzxgBmo0quHkMOAuhr27oTI2U9xwoRnFrqPoThX/MpHrbNg0vk+D84VyHw7pFY+X1d8vZLlcrc3ViVuMyZ//rsbPp+Mh+I9x+fs/HwzryfmukJzTJc0hgX+KvmeCAJ8a5mhae5WZJHW76ImogNb+T1HyBSr8Y5wInrSBXQl3SkQqQSMMsSmleNh1eLvT1wEyTSb6oLu1Lua3IgsjFS3sEPQGv0j4/FhriOxROo185d+xLxq8QOMNLEI5uJtI4ae1UEPZw2M2MfvCWhjaRvCg7bl0NPvOVC13GiQeZRVV1HoH8eb00L2BH5OU21tjkSRx7Dr659aRtStJRzCffF3GQxzfagdVNcBOIry9d9jZi0nr0J5HZNFbiw8rgeuYnr9XdwF/OuYyMjerVHvunp/CMKuSmH1qYL0dh4pshPVSvLrVNmfzB9J8ToflJBO80CHFTJ6AnS9r3k1ZVDFf3TEIxzkfA8vjf9gpmuiU+0Apc4yhlq5MHT5ug3y6Q3tDmxBKTNnBqF8NCpcDSmn8xvHNxJwzE4BLtaQ4Oyw0LM/N7OOnAD6FRWJbLdcuo1yPtfJW9tnL+qH3F3DUcHclA/yEWVH2dLsveFiBsjCk5LMonrN2VxoPcC7QH37XLUUUfzrVhAIgfFtaQ8/hZgqyhLOiRkXViaM1W/04qHXiDTOfu7Wt9MZ3B1D5e0rdmDNYIP7/NvUSPnjnrP4A6y9peLgQvGxu17PyYYbgcZzODXIZKabcVUZCv3172W6bzaLVchDm1SOcRD3FGKOfEeOdK/Rz4Xis4O4NUpoErHWU2q8lEBPACWkirE9rTzSn3uiazfjgIYYxKwa2T1LyQAtVLzZtwnTTfBvUlI/mxtoq6DXJzIkT7XMSAfs0qKnf/oq/JzdK6XV43YufOstxzyrZQRFzG9F3o7Em463GHWhv6yG5Gh+BHyEmWnNLkCy3qMGxD2orF8DGl3ddSLPT4TXUyIkI+JvhzRIo5TNchUgaHoxBg/H6KPt3Wm8U/Y+BlAcVC/pI+SfdrKyV/bEIWyJULlSMD1hehXJ4UmjmBJueNlm6xCcM5oKGbKBZtSnMIUZkX3xWlw2hwNO2YlWdYHPHt3rcEEiXWy8WNfCw1ReVeb3RADjOXS8mLQTHgM0vjwggGUVaOolCzM8ku3rUvKqkaLmicVtFmhDaOe3xYZ6Ld3wos8kkiseAaRAFjsNnof1KH8vlYUbR7OHcl5pl6bt0Al9X9mZ18FP7tZV6SSFu8dJYu6SiW8budQFRs8QlqDvAzWQwRMR6TsyLi14rW80RH+IR5SHXVz2hWPw3m7nXhx2kBoheHVtqrHpi9HNKJT8w5sLrkgb7PDz07GLkD4oaM/RnB59Zu9kbAI5pwgoHS54WAkL7BwpE5VnF/QtZGAzWg+ArsitsCYE3tdbOI+3f135F8dwwtAMhPLIMU/4VsK2vCVFBSPlo2cJodrwQJxj8RRcHmvT3qmVi4FpWriCHWr6uMMAMaX4gavv59eAeQCoLz+bD5g1ydZdYjTWqRolWGinO0FPgDlHkSEYCbDOEV8GknLr8tmv6PQfmsxDdjf86V/pWLIBFIUIxTGl+4tpbvEgn29lX6QOz1Xgv58NL7SDQpKDxw3GYQ==
Variant 1
DifficultyLevel
647
Question
25 000 humpback whales migrate up the east coast of Australia every winter.
Of the 25 000 humpbacks, 53 weigh more than 30 tonnes.
Of those that weigh more than 30 tonnes, 61 weigh more than 40 tonnes.
How many humpbacks in the migration weigh more than 40 tonnes?
Worked Solution
Number of humpbacks > 30 tonnes
|
= 53 × 25 000 |
= 15 000 |
Number of humpbacks > 40 tonnes
|
= 61 × 15 000 |
= 2500 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | 25 000 humpback whales migrate up the east coast of Australia every winter.
Of the 25 000 humpbacks, $\dfrac{3}{5}$ weigh more than 30 tonnes.
Of those that weigh more than 30 tonnes, $\dfrac{1}{6}$ weigh more than 40 tonnes.
How many humpbacks in the migration weigh more than 40 tonnes?
|
workedSolution | sm_nogap Number of humpbacks > 30 tonnes
>>||
|-|
|= $\dfrac{3}{5}$ × 25 000|
|= 15 000|
sm_nogap Number of humpbacks > 40 tonnes
>>||
|-|
|= $\dfrac{1}{6}$ × 15 000|
|= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2500 | |
U2FsdGVkX1+Z+sY1VvLtKXlmBkvtQ/dggil/b8WtjVlUa36rVXpIb+cXnFNq03KIjeDH8In+q0G3t8RFXcB9IG/jln5AoMhM2neKCmFTMvRst425ctJSfaEtgfmBmFSqfN4nSkhVm9DSROWVcwPFUJ0C+B/MkD7mppGVPPT3YUCs0rQOD7HGJu4sTw80P3t5fIjwZTrYtCN3QAu9XTZ6Idmr8kuuVzfNxtt32x5rAUiIqfomzEFcY7JTvxTL7It85p/74vMKJVsBahZ2ZnKCKOyRt0yKj0yddcx2pOodHdbKJItq9m/RFjoSkd2yGA13/biL4a6jWZmUcxdbRrZzi1fajxqen2j0N8AygGEmgySs2EMhS+0Gi+9iHrvyIIAnJOcvzVLGIpf9lKUFAexrk+kQv5xUpO5qz4gKVpRfnbl59l2TuS/SIC6wl+9HYgZZ7MDA3gratRrlDWa1kqHPoP3jZWCCnnYJRCICVN4cXsEXyNGvsGw+HlrPgTx4pgPdy3ad1h5+guivLmU5qBIjvUAxIi5R2zZY/M4c7I8Cu1T7wb0r6GeCDjmtILpNvmtX2+SmtB50Pq3hafBEsu4l5pWpShg6Zp4LHRic5iuTcVM52YHGgvPurQQIwx2rrGxxXh6bOhrHSmEnw710fP5Ya+2n3cPIOIdq9neIqRvN3QVPfRAaog5w4pkevvoWVKowxr7pwdIOyJ+UnyGmF1zQMVYZ5ADnbQ3oVDIJHTOxij7Gr8e3K8FKWXpCf1O5VVT07dDwvl+g69kmET3RyyADnouuaGF+jko52GEDVfsUQH7MkfblLzwmGRUkGsF/jOyDkyLBpsYwiFE3D49RpsNSFkbyCpFBSsEWXggats4vLcftqTLTZrl9ol58bjas+aYFjYFw5Ga2EA6GLkMFWYMTZFWCb60HTsyOwqLb7HvCgMReWTfuXU6YsiTxAoo6uAOFQCgWwewH0YgKLuI2MWYrJEus+/ycNQN9Xx6PfAE6coo5Sv0N2Cy260Dfr95tll0uM8GMtQZhAy8N2ORNvrTij+DPlan9LX09weIqNjhdMcQsCi/GMZoSc3bdNlbqydnZ4sWUVO2EgRgRZx4QRQwwhGxPNZvQo9/2Iz+okrZZNy86yPUPGR+TEXxXz+LurPmrfvFh5ZGWdjJWTaLN4GKFTs8epFtv6f+5rB6uT/o+1e+Dzn1HaaVd5/WzYAwFeld3oppMUv/iG8VxRd9frFCK6Sw+23KfM208LOrmf+dt9VSzyjZr+4AhyBt+OVCh67/4Ynajv9k+UXPpi2Xno9gGaZSKUnUUk8Q0YMofFNikL7Ve6yCFGMRvwNK2m65xpUBd1TGGUgvJue3E00RrHmuAmyGTur/NzcYgik1WGq9vVRRyuj7EI4ITPAse6ZnfMCFRWSXTERILHLKK6Ssj5zqxnLSeDF+2AardMrqsmWV8NToZ6ORZ1x8M9eVpfztNJTZ2h4w+UPCaXq2hBeTVGjV07MeUub4FaGl55JvLzjcvaI/6/ZoLK/1742ncuXoIXTe2jwpWCV8+ofyga7ir8pNEdM24yedm5tJ2S1ahOXVmTlNhAbO8B/Tt76w62601Aly0aVbWZesPTInwbd7vaEoVHMG2yi+J6+dk9qcLGH0iyPkZbpO4HmVjSpiTdpCRzXM9gmrh4PQEchv0W21bNFxufDtBBhjfvwG/443SGuGiMuSONOVT/F6RYELvDevUxsJY6VW92NDgmsqIQ45DwUrSzEVDi16Ui5uvAyYUJ5FbD4CtYr09JHmQTiM9fOSM4GkHKzPDjBF4fxSOOwdtqbCsThFXgJ+aUBXh3uXxnIlSIHzxEpMQeS6ixNO3KOx9E3oUzZEdAo2kqsa3qqDymnkCIS1Mm18Cw7KVMeONhQcuDX2iZr5Yi0Rnhf4lM0n+WGzMuW1s+Y5Z1yj5xKEoh0MAf6nE1OHTHOlIvEy/mKhrKhxbBx5BK0pkb+u/TAmd1m/vn8DVs7DQcSx76pwnYOP4Kc7yQ/qqghX+p1334iDsj9tkwk9udRqaMlm8/0Ur3VnzFtaM6SxxHl22nX4r0hQ6KBZs+eCUGpcGZZ7bnBq1ctSWMrGeR3W4+dEGHLR7ok00fMbb5b+ggz02G3Ixt01oM3CXqSaH1mOewwAzJNlbdeg+aJrbrK5HUltFo3eMrn9m+54kPuFjtlJhSebx2+wlf8Uv4J1mgd4ZTVz+a35DoGLKdk7PV3mOriwgY8QzgSaHFSDzpXWAFmmv42PJ4+pJ2vwyBfecRCz06/u5K+X0km5EkjxLayKMgfCZ2N9jppJZ0VElJD7Cr0l1xkZTlWquoY49VG06yG0VsQOIKY4XRXJf8eNC2HbfRIFXglnmrDMRcRlo3nwT6dd2ZPpRotvSvjtuHVfo9HgV3GX8K/Z/2Dc09MIVmCDCWhDAqJca3TdcOnN9koPaiBgzgAS6G8Xz+L81bzTaHzevFXvceXEQvF1nEktABopkQs/ITXmKrJ5u597AX/MkHPtEvq0ybTpWTuTdIMsXClJnfgV7fAjMuDaelAirr5mlLQ5/Lm307G5IBvA+kwhMM8hgvJ1ii2xTY8dWx1YSRx9SXs0jwpEi2cuiI7yaFVMHSUW7huUTX+MLRk9YtfF5SMwjUmKs+LYWGwlApOAYtmFwARJCBbgcwEMpR8tYTqOy27lNBJhpW0ov47lZa/up1NgEt1VVhEnTq1uK8gdlhg6+lwT3xDB68Xopii8k23idJ6QBXxesuz+NeDcJwiD1g3H/M4IGHzzyc3I858NKDXRPud6Cukoy/J2BiqnIKuaJT3RzicdEy+ExLaQX4CPKVHrK47/5TYczEJNBE8nw+Codf4OGh9K1QddvF+v0r25KY4GfFHzgjooN9Zzvwi+pwZerzci932lgJ/wOOc8GGDzPyWzhu/u9LetCRnEcv91/BS2KF5ED/L6ycGxTkDf92pSDOM2xml5kiLcsIiCqioBN3rbCFGYNhJAHcIFFoRoKkbCg36hw3C0P5mmehRq1eGqnmRLuQNw1y1vMTIb6ZPTKaHzSlz0YQS0MR4oq+z8M5xNutv18BmPJv81oamDSANV01HLjBFk10GZ/FTLrmvKr6yNVWWnbF4BCHsf0cygS25T8LyuFXE3AOhfAn2N0Wt2+O2fR8qAVyuKK8ocV5VzE+g1kTtsyvJC3XHV62f7TQfO0/s2z8VnUMzFhw3jyFVGMFpdbRNNPj3qnYKwmczFW5NnA5++59rUXa0O+LWtbLFAkZ/utyepurZgp2sj6dtWNNf6oMyzDHt2bzgSqNEupWizkjk7Zlpv18+ELtQ2OJI+dzDoeqtlu6qSXLY5JMfafndLRGJ6vzGjv5gk2Z++TaTKLRZenJjyOukwddnyawYXFlo1CKmixIq7Ea+aHVqIDO3DRXj5t2DEt8HGe8ubxQeIpNjjgKdPJI+nv1d2HRYDuoWEj5AbmbDXkFUQAKtcNI6UUUlib1XDiR7kt7GMsX621ReKi9ySdU8OMnqjZpRaWddVVIwATjtxAed8wTsywxUBsqYJS2xFgm89V7jvYmuPRWlUSGsph1KNAq4XWbDuE5qobvpC3llhKChyR+bfEPAsbnfUaDRdypkdxN+FQbNIpZHFI+ouhGXhoepxveiOjIjqZ4OYwoScCUaNoJVsESv1CdXVsnBnNd7KeqUw+LZHzd3dX4gyHyX4DQYGgxERZNuznQ8nX4a7HOKr8KjtKkB2pau1+/dIYsLNXheJ9fetwD65KLAYkFK9TMooKd6Q75PVXhywDcNtODY1sUNP1IavQH6QnokT0LdvIxvpCOea7Yx8JBCg7IBBOOEhVEsO9Bk5T7B0iErO6Z9QfXo9fOMSQGUAeEAVUlKdkeBzcvzFoUTgiyEiCJ7NOB7lHZPo1T4GjgLe5mw0vKEHBOwE9ETteu2vUT32Vhs3/Gr3gjm8OPhVLLLPCnWCv/r5eoAhuHT0nDMqWjjd7lRy/Z+iTXURUHwBHEKwOiz3Qq5M+viP83EV8Egfix67Ki8R6mxAhWqg3AAtrndiA1dc30Qncgj9PKmynJKqHflguMyT4G9FYnqUcmx2Oa6JVQF1RqRXhTlH5CS2/9CvWCUb/H8h1KixK3W7wFseMom+Hzhr0jDyK2OW+NAdnZsifmjqrKH5asXF4H4BsVw+aRxL4ijNp0Z3jhu8OHE0OB6h1UNritIme664JgPCAwy/O+1n8ji/rD1GoWOqSZBYnUCPmpjTDEeOtQRvQJURWPxWa2w1qjGDB8XMkDDCTlfg/YBdx/tlRJyZPptQ5m7gvqSfIJFNUAThXXjl+ojCdwLSAQO9gYTdnvSucJ24I8KL8QsX0UOsn0zA4rBo2ILk0DLpt4X7ih/B81J+4bMfdBjjShH1tEemh+icSqRWq811V9m7yoM7LOiRn4nJoxbUtNBV3Irmr1PPWBIFDvjC5JB3YJ4kikMsBKExlk/hC79jVvm9ANutuDSN9Xa5ntdyH3zsXII4fu3elqmd/G9+OWivVlHV3kkFor8LUkzotn4P8Ia2f13qbZAD2kEJ9PFeuqncdh9kxKa+DKviR/i0c+jQ6fVsFJlVfEcEZ9bmWa+PZrZ2UCtdk2UtFf5Th14tYAN0YcI2qWsrL+e4v85ROeVsRGZOt3gvSzRmHXQpIKwGT4UkQtAqQlV3VASQuORb307tA/+zb/FUfskSJp2UDD8bZOhs/EBreqOKWrZHtcxw4tas6+rYmg6gRI5UEWSzDKi4OE8SzBrd8OE2Al0NW5wkXUZrjnBAFQOii1+v7mK5w0Es6svfzUBhdOewT7zaP4E0l81BVnb26O+qVIRDGlZM84jrwpUl4edvVeZPRKW9AzqXlv6q/53RzuUrYQh/ncTv7h76C6cARiuNVc/oiHF+u19jAJlGZrqmKNEfO7wZo6ZnHyHB5833rZTAslNDl0/FZa5sw4QN4XIUfAE4Htr/sulagsECuKTd0wYd9gF69L/wUv/LvwjVLlj/3p9CQFjfz/aHmDgZ7dvkpFwb1kFic/6ku+gaaeUSaJXHq9Ok0bozjSLbV0YzRb4VDv/yNC2WQO9YTKgZVjNhu6A7HSqJuqkKDv+5j5z0ihzC5ruD9XLq6tF0mAT8ODObDFrSGVyosfp2KmHbyK/lES2AQk9L4ebwexKSwZEjvPbezmLln3Bz73V94vMcWpHVMu50qkaK/jzj+xxEfm+ivcKu5ywbO9wr9ZFcsg3gGSsDhovIOitZncd4t2lRTypU4GIkIGWDfoHAlBDEM6lSO8wgvOGfUMJKARVU7HQJ5qrY6P/CtykKyRPm9JIAjQk65FU2P/FjRbmwZmRDE0mn3wjTJ4WXHF5JVj30H96VqJzH6NJFcemDpREIjFZllLHXXwn7YnlrgbVoAOeyy5/TTv2xPUsPkxfwgZ4l59b4gMMYSXP9QjHy3kVai0l4bgYy/uqYRyrxzM94yCKzGZsXL2w+BrNWPY0uYYmJfVct1XcPltvFFIO/KKw8Nyd4E5eT4Sx3osIVyEESiyf9f0uxOIHSAF2S9CH9+YZw0G6hhRWebAHjG3O8ZR/hsRTpFA5gBEhqANDiDZ21Yr3cJRdQvm29hIaDRb7+xCTBpIxNpZgw4+XMwA9IvC2NlQJj9dfssBL+M6cbDcwx2/ja0zObecswDmu+SccGtU2Tx45KafIKsqBKC6LqL2ogLhNv4EC3s1RZBvj5cE87lqIUMKS2OggdSp9/MrW9Lh4YFu86lbXx+Lav2i6hWvX5ckP74evObxAPZED1uH9SyPNwhPnxxCqpvSFtVyXFrnP2iAOMxBwOHjZiT+5TIECRa7iHY+L/lDZJcjW8HOhXigM6fPhrMUdQsrSWwDjWj4mdoyFedeMv5tcl/bHzlorjRe4gJu7IuaHeLzBbCdoa6zm7AIh56IP2So5jtfB3diGmeqbBs8e5UI8PLnnPAwMn7OYrwhJ+WIqWin34/uA1vahsFoJF13UAnY/umDwqYQg4gCdFzByUv8Sa/Y0BKcnJ1Xf0V4Wn11fLcz7BylwqYLG7fmAGjMLGXfNp2MT3NmPEoL1jFAJ0dCri7yr6ZqL81nRcfHnZWMcX3Ha88A3mbPr36JOieSsdDNve1BUpNSV4nOPwI4ft7qqcl1osgE/PKN0naejm6gA4ntPuF4c43xUwhA8oie2CZfrrHG1eplyHK0xaaGr93tjmHx1Hk5JUmfAojIRU8FJqKmMpSM/n/Atf6kIq5reX4zJSjvPA5XFQWyQPoY2SFTs03kC+EW3U5WMxZE0HauvaP/zfbrQi9Mr5bYtOxo6REOXfTurp0BLiDL5b1CG+gb2LN2kmvJPPYzHkAb7g+my2KHUDisg8HUu6e+2jDweqXDnD5nsG4W5jmfAvQGbcsgWUunWWuUDrHo77U4txkwoaa/MjRXKk8FMtlkFz4nTtJ17Paec2FtbPHGrwLok4M6DYzLmnMGpjH75uxlTQCkDF1mpkqBNpQFAOH1yj440i0zCzGZaghw4rzOCPICpiJIP9hUBuI5jmAxg9Y2oXuU7tTX+BlOkpMlQ48EsEEGdJw5Ahc4nG8JutMOFC1qbBrEVTA1f65Z2L1+KXQAt0dH1QLWWeAVxZI/ZOF9hRoU43Rb9Gi6akB6nY8zRy+hTySXlJxtwD9xrazw8tZXFukPjrY3GVTDH2eaQhOzYzwJePZF6rqaGp3XvoAGidPfxGthYw+a4OkSx3oedAxLSrSGXP7+uoXnYh9zoLk8fKUbb/BDmPjXTKl5PVQTIRqvmdRL2vwdAnibyeS7mk/t3lxfS+Gy1jh9EQGKU/3deqOeKjs5M23Z1zhigsAu+BnsEtX0/qBl5gcL/G1tQFxJ/lfNni/TOLYDhippRuSCTQ6/Y11XujM3GrGYYGyJxRco8lJuwCn1nvMT9vU8Kt3nW0fpHnzxGQtwbtjmvzzalJCnBQ2UfPPg/+CXEXQZRXzt0BuJTiPSR/WrDqBXjHVAA0mKwzwa/gAGggttcTEqfIqxsrqasLW2zlwpvTY0CWstgDHWLuSoIszDcTdvwapa57g6t2TFhy+zgUsFPpUPmuzWWmPaG1LbTAmO5WY+y0KcinVd7/R+qogI9ytKDx+UEKhkHPStwks2Kbv6gq3lz1jOG2YfUoPz+nWKduwNya6b/z3mz9RDyIv24zBqRheD+TistQOxEjGHZ1qQCl8R1Fdp6YsaR4G95DMJPkxtmxLvm9K6qnhbKNqGSvuF1vL22X6eI34uUTJxx3lcMPaeI+2Os7uOJMoRaSskcksxt9LZsMMUZgq98w9n5s7ci3pJtF+n112FsS6Pyn2w5TV+zCSANqXO8YgYBDIrHC/ymlqu38zNjtrGx3cyShOP4Jn7abHVI1DNQ/qnx2ruaS2vrfldxMX473lr7671W2D6aBKSRSjECoLyVu45bhQ1WWa1bXCPDB6LDafG7ir4js+TGPs+JWKFJDYSvRfFgaV34YI1vUTeKqnYzOEBvJWTRucu0Jb00W8VCQDPGUg8QHbGw29APNWHTnMd0WlFe2g1X48nnvZ7hWIzMtnNAnsAfpLwt4yY0di2DmKDXOr66vJhUa0LN7vlMxqNj0hbxVEY0DQY6uK2vQ/z/6NMTHCAgrVhmPUSiq0psZerlyadrAKzdXJNlXSwBGpESp+q0qJXM372TcCH9UwtO5p4eNsVoO/8CDsFGqr4BSX7rcYUcU8TL29AZcIL5dXHrnTZP0q8jfVDj56TQv9jlE8T5A3UBdupocclhF6bQXOoycK8U9+ZNMEGPNvqG1T5nXG4Zv/OloUQzc8HTIWtl7tXmAAKbqJE0/JwMaacMxuo3LDQXw35Kdj1eQZMUkfOnKPM7J2nlXzEIs9mDDOJOdUqX8x9M4fgFAWntxoCjV7cr1fhB8EXKKup/ob9O3Z1NzYRMgVuhaCLB+QpoYKagUKWsMWrq88Uqcdsoc0hZv+dk8tTA3zlQ9dh8c8PTqL78++zxSLAWNlTFRu+cVgbG1hlPKSHVDYNlCYdqb/M4wIoN6lSc3xwWL9sD7PrTZY65b2ug3RiPh6hHUrhrhdGHgvTEiwmCt58oeXXDEWBfFBeBMEI6DpRZ9GqokD4hTns8MkjGwrdiJQutM2Z1MQjkKnOmc3hLsatbLQ+Ln6BKSqnPIYizW+rt6F9t4MtHvjCqeA7NkoRevLX6fGPMgfrIdpzD4U7G+dX2C5Su2127Ka3dHy5VbLx/QQ/V1qmIUiTa1FBB6nl1EnJuTDVv554xZ7cjw4Tj55LpV8VzuLJmVccpQYa2zSRZTcmZbcdhlyEnqebELgVp7TWXZmE1HE4slJeA2CScwLSB+0BblKYkEEeqLGP4DViR+uG3LAGcvS4dIBZVUWFN9VXtV/1kr1zolwfWiDrTGoM/dYq/YmjTt8XRLVoNLeO+s3JbZ9pm5mdpsh3vKkEvUDEUVWb88P5r22cc3L2cprc0zBTopo1RD/4+PPbZLVqHu5MEvkycqDUc4aOUfuu9sutPHqpqhAk/VRft3d9RZqVMcOParx1KlTvuQNTP3ty0twdanoI694uJ63sChXHA+tSSSQfiYNdOV3f8q0fpqRhAm0BZfX2fB7EmugkoBqc937GLNmKoxnZM02DBxBuWNGDdOiBsjw4gncPibpEUhWh+WhFMsunZCSqTfRlvVDXf62U/6HWncXzqzJG1xlOSVNGKw7V9NGkvqVmm82z4brfEyESOce/yLJETgY6u5a67+w7/q5sjOdb2mdLDFxXi9SqWah05auxcvi4GuM7JZ3UUaP01HAAkjKPoqZ5ytO8uoiDIa8Av7Irwoowdrf2umBiHgijAhF0Pc7cudED5aAS4jNFRECMI7I4XIK3tcC1dX7MoLycYUwj8o8Jqw94XR/ihl0re+49DgqmQLH2qOxEPzfUCy+Z+ouCLaLwMyaTfyOMmqKN3GGInuxsBpvqTmB0yo/cB4ddrGt7eiNMDbbsMRAj77d0ey0h8URHzQAIlaiYrBmoP0hOXvsV8BMlOCmVJurhDpMsJCZ0Ouq2WX2nS2jVMChBOVPAHg6/IHoqhCd44DVzRokQrWfyRzfaZSEaGxglrKhXk9I3KmXL3hDYz3KB867UHrX4zEd2IT07Td5CqW6aeoe4WTDqYShlc+CVOoiOS+ZSIq+C+20L5ctxtQHqA2uA/SSaEkB7LHetS3wLUK4O6PkA7cQRattihQ5hmtz5x+WliS7iu1GtS2eqba2nNvipesCpegF3Kq6375p1oqF9tIqegExq1HsnaNtwXgCrCQTa4lozgsfFMpzz0yFTsx7YDhBWJNKHxLj01+9tDqtNVHf4NjROeBE6gfITG12lxJB6Q1Q1BAbqAJyWq/auhBQA4ktTKalCHVd2FAB2lDyDNrBB1L0q+El8EF8SgdHP7222Z7s02XvbteGFt94PrTSk0OrLtxS3vSPpmhVIfWnwCqGIgWzHuNnsdPP63iKW583BJ0SJ5uUNLqkBv5s+EpZ20WfXxUHPt05NyKJcMYkpu7iWqZvwRoa+ihR/jIeUCJ0M9tQkH2hOFc2dCvXbvbIylYbMUee2f0m3lkuVrtpgEKHLa2bxST1ivK77iRXV5PjF2UBu2Xnh42cxjmv3OC5nmfQdu9Dzuhp1ZBhlJejVhnk+hd3aa+hEf74Q93qgV33z+JPk63ZbCCl86WS/SKjU5i7Ia58+cuHN6Ar4N9yMHwFeatF7GeWsA98Ah5uR9N3FnuG14wvV/DTK3kH4lhb6GQ9f+ixoEZUOs9siaqxO/fDu8BAKaO8t5AgHF4MiuQa4STAjvl33E+IvY1Am7Z1cinQZAYSoGTGsc4p/bkmKNuFBmTiBKKWTxVdpFLeiOcJzaM9Ltcz+Wvhth6b/MNYc6O5QV/f5VEUfjgAnKRqci29o+miz/kchiBjd3A=
Variant 2
DifficultyLevel
614
Question
A soccer team plays 24 games in a season.
Wet weather resulted in 32 of the games being rescheduled as the grounds were saturated.
Of the rescheduled games, 83 were rescheduled again due to wet weather.
How many games were rescheduled more than once?
Worked Solution
Number of games rescheduled
|
= 32 × 24 |
= 16 |
Number of games rescheduled more than once
|
= 83×16 |
= 6 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A soccer team plays 24 games in a season.
Wet weather resulted in $\dfrac{2}{3}$ of the games being rescheduled as the grounds were saturated.
Of the rescheduled games, $\dfrac{3}{8}$ were rescheduled again due to wet weather.
How many games were rescheduled more than once? |
workedSolution | sm_nogap Number of games rescheduled
>>||
|-|
|= $\dfrac{2}{3}$ × 24|
|= 16|
sm_nogap Number of games rescheduled more than once
>>||
|-|
|= $\dfrac{3}{8} \times 16$|
|= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX1+GLYfxvh1lQCLkzWrIpNrLUZyEu1nsqMSYYc1/nahNAWpPDKB/LjxeLR9UAwlJUK/wO5JjK8gRkuwaXgatV/CMV3YvoPNLWTM5GRSQMRAhBbDTi0oYZ3oPlKyFMCwRLTsLpkYXM3BDp26N3PPr+fpufnB8b9XrxRzOSTdZdy9QtoTy4zcbYJ7lWHy9Cy5MPgbQmumUm49F9BeCpJH1ANrUfl1i4N7RbwH8uf/3kzY+lPMmGNDwbtk/zd/1byBplrGNJRL1s3fEWL0FPBqxULBfam0aYvs+uoGXz2zK/EFleNHHJsDvAFNwj2cuaZvqEx5FrtCXIPa9jXdtjOMmuOYw7u9OuJeZh1HZC7Fc3jh/K5HgEqoRA1jUN5+jV7jzA5M1lOuRqz1lh8Mn2z2Apn9PsTnBnejUCWxS9CRfcKMVYwgfUL58BkSJDTSRiuSdRV/sx484xeIEOuYQzYqSn9+w0JRr5X/KLId7kVyZLFHDbW/JVywbhnidSCMdFK6/I8AnDpZm5DEKFjHIpa20VwGlfLq41D6RVH02dVCN/ap3SQNWyubSvXyhnpAE+XUDExkGR74Ap5rTDo+/lBCz7mm0Q8vUetQ80FlqIwuqWnhnxMp8Bc1Iroq3GMsT9MSDNcAx6pWPAmpVwPnMKFPjzxg0idG80Ccp5fqWQAsKgTkiLewLMDO+xYGM+9DjR87b7AoULRMBt0DAuSed4BB43bVHbmYyqyP4QVYxmSqMlkBpF1MB6AAOf8MIi1OhXhKHVxMYwrRqeb6ia6QjXBvDrlEPOaJj0MS24OAma16wjpRluvCQjmlLZHMBhKL3ZHvHBjDAWUNSuLxgKqypzWO5PhPkjjz8qQAD7nXQR/c378NRdJndogHefBOS5zvWYvRAEexThEy3gcKzerPPdTOC65RH/oVHqaY2xm7LvNbpJYYmpqOT+GJ598CeiVFXlNiccOV9g1GusIAsz1bhx/OrZf3kGkMyErG8PgW7iucuvZZwv6FhK089OvkwWUlVBf33XXmTvn2iwNnjtMmjaLWAOu5GKDE4fLX922UvwB82UwTF7tgXxdnvwVcOl3Q/a7+zRHOz4IkVE9WZAhzx2dQVObc5ASYJRNZfTiWXqqX2idtfglsR/tqaL7Y0cRsZcW2dkK8MLAlS/3WuAm1bcGq339E3L8p2igf5ZyWJD1ybjl1iX7ho9yePa64HEp2otRGbPpVmcQnkwVqO0oeDOZ8NzJj3arck7x26H5vlWaPQM8daqrbhjNti16SEV1Wommw97p6sVGAiS/IfNq9TIFfccyYqvk55vrNZEprCVKpbsjAmjwK9ZccmXSFHkAaSbPjooBOf9tVC61028rvZtmgmFtwYQOfI4bMs50upSZspsH7mSHJQE2l2aB+sZINQV6WunRaCzpS9aSFuXwP0VYRbFCny2gmCHfLDjEKzETUR5kdXwsiTLU15stQFExsodRtqs3pIQjco8TI4T6L9urpvOL9FShyOq1B7bJ2QcObcOm5CWq5cm9MLxDdo1F+hiqP8UX5KJ6+V8lFUv1+lQBe0lwrle7cbUVhi5zyZeug39PxkSsfPhiTJIJxpguAudinjCKfiDgEeUym9cZj3/PPtryp9l/gnekcu66pQjUdpU6OD3x3WJwzikYdtsSY3mmeaVquPpMoW38m/ZmG1Ka6BbHcg2KjXoE6oAsUhD6EtNva2SvHdRCGW+dnaaxRpRANlXUI1NcPmlErnvnweaiEmLqSNzNlNlO3GArjV9H+Ow6bYUt/0EybGnqo8A7TVL5aMtvaDV46iEpCowOAQcnRKYZiWB0pB/C3PK+3/ITqRBacfVdMxxxNom57jqmba9TdCSIZfUbGTDP0b3fg+XMbvEzenQsimJ0wnVCDmNd4CroHpgksK7yoKSePSPIGOxgcnqcvFX6+SvSbdAzIH0yb+wTLH2pdIFgb5mGgsYZUkSZgs4C75NDc0gTJx9T6dqm1PTQ5ltur38IKuhCP6sXPTYIv8watTPg+OB+kFAJTgio7tkxJAR0N9OJUMWDWWNUfjC0oF3RzoiuBQOZLeC7GtOzIHi9YPM8dOOZpV/0o9uZB6/u9rB/woB5CVVxn7hDyfedkFEXyRG8SJ8f6Owjw6G4Pcd/IiOoQaDII0C1rFPWQcX7VCQCr/+n/uUBn0YXypb5qdCkd5VBEX5MhESJjyh52+iyKsUCFm3ZRqmVWdWa4nb0CgraA8XPNUzbK6Lf05ViTGkc+ngga27RA+m2KV0wcGCGETEknYsnd0TNfACcmUA+vAnY2H+b1VXy5aYx6HkxX4JHcdr/gxet4OqJuFpoXeUNhI2zjh2/GBUNetaJcYq08k3+ccvHbCshHXOhAGyEysS3vZQT337FAEGnDCS/3pUK0JoPPlkJ/LgGODC8s6OMD0wtqwGzK9QfvNADXP2bxSKSpFgnM0TlL9gkMfnA3u11JD+I/j4tfv2r005Hcp47CHgn43xRbFp/yVyEBXrMY/F/YsQtBupzmBM/2bpZh+5IxMtsMZ1dk+h2Xvr9hifL7MoktaZZeQ7Co3bB4PG4byMxHYelsaA4lJgFD0/SBszp4Flf4b9mUJx3V97ZzfM8LN3dJzLboV1qVxJSkHi1jCR60Clqxgm+BEc60um7nfZ5PmKgjhwhs3bQx9u2esNFTQn1yhftr9ViZeC5ArPFl9d/j0RYNaA00uG+r7aRSIZVTJJ2zJ/yKcbmkA5TEdcLbXl8jAwykbdDH4zEjTY+OltiMbn7EmxXOzUFZvsOg6A90vHP4qx1FxX33veS52SIMGeGQ9CJ2y/aDmZwIVxcFEQDgTjmvU/EswwHZuGwrioVB++YFd+mwhxmNVkbt1Ie4UziovelKDNeRDPB1x1IR9FXxsEXMfitEgk2i0CljH7TNGhAgsJB429ukU1dXs63e6vx7QWs4P1UGS8HITcEMTsj/MDDTAVwIX6HPHMED2mbWXvbsAXXJcT6Us8xEgdCW//hEAHn5B/r47acfRCgZXCN0fMtbblmjrGzv+r06Eiwuq1OuQW19ch1BXryA893EURti5IMiP+EB11tGMIN5kaolwqYC3cKW7eTgSQUXSOQrNSWSsAS5s1jJIBDitfl6Dp5Tt25+emBXUKs83gL9ilttHRPuo1fhnipdwIkH0IGI0ebqkLTGNHiMOSqZqbezr/csXJgp0DETkzcoiyVDZvCpDrSR5WhMEqc7gr9O8jV9e9IHLhz1dEmhPzypF0eNbVkmaVfBBAGd3leGIocdJHUOuqC0opA2fswtEGeNTdr8XlMqGQBnPehG5RCcIBW2L+Zhf0tvW6356SmBHt/uohyxCKmcgVtPtzerbnfE7x/lbwxS8fIYZVuSuvUKEXNfAR58Qm5Vo/LeNPVe7Y8Kxb7mZr3pBS5BqthK0t/m0/nZpIO9KEl32Llk4PLp8iNP5nCEYJlMGzZ5tjgGyW/YHccAARAhOCY9IRTAZL6ciuxkECLbNyWS+ya335GHSWJZOyh1U7qFR51mQNkuIaKySxxopLuUBHHmB0cqEdTxCWM5zNAqqtPgij5hpFGk+qoSnSz+QuOG/59S4ltA++n+uzIVS/eKOyRL94F3NwsmDJIM+OWx5Y0x4ckFTyJWTYHJfeCNOh+s3gvBGQUNjdQYOcqs/mfXxL3WQq3I8cpu6sO0LRediqowzXXJ9/uyIme5oOIX9kgpxmy2N8ETHLNl4Q29kkTW5aq6rZoKgmoqwHlPUGGpLdf4vUf8DGbstli/jlDLznmQrMXsQn3JKKHi4kg6WwwViYy4FgsBtgKErgyTQgVzlmiXIPqjQKEJBbt1oJ/ZyR/A/4Cw4yFMiLfYia+KKpXzZ70E22C1ykUjTRbxT92crIKevyHfhPmQ4Yxr9w8ghi6xQgbwMkJ/1fxUYDwJVjrNM47zpocAIQIEpmqjb+Y6U0FRrxYHelhigKVoNrOB1pe3DOWgVNqyxelbdVqy7otZFR0RyxSCA9//w0GeY14T+OrE5LL2+yRIWGWqorVXZbTxgSRBjuZBHuP8UflEomTGnJnXsI2fkMqPjinv0z+OELurBTVoQUMLZkcwZclLslCMzmSf96Co4JGskPNGm6kVcJDXfv0GgoNGQLRkAx3FGcD6PIHhNIFBwF8CQ67ZdZ1QKUKHLSs9Z1lN1XhhYqRrvBarlMOUmYEV8bl7aA1lxNrTQqMTUx5f9dyqR4UraaaRdt75WixQoXiua5vVafTJQLZO2i07IpWTzlA7BjVehF+frxzmgTjZPN9DFdxl5Rh6wBbHZyadl34y9qfz/Vwk/kv7fHF91Y04+jzhIB5NA9AhGwHyd3qY6CcPp1ziW8TZEvf+UCOTdfuhqwA8/BTMVon0+mDdpQcdn0C6Tsx2LDXWcCcTo7mvBX7wesN+lSgbs5SqPrpaiNrHKBpM5PqVKQbq6Xff/lwnyvM4myPUD15hDmH9v+Qk4cajw3FUNBeY3B3FHWRV99MULOxbODf+2aaKsq29An+mnvq6za7NE9f+8OSXZuJzX+cC9cO6pW2nvuNBNV2iZDQOrwfriBOfqVfX3iWgGL8rhjIo868V+4kjEVsqIh8vUPUZdBTjT7CbEET2m6F8Kl4YqRZwWMf5zLLn5K/tWV5hxnUMyK3swmOczRG+1NoffTRkmyzonRDJcbFWJhUNTwVeMmX8qRR5KGfWam68zpIeUlruonTdEk6biXU2Rbwr8XOi3bJDO/J7EWnFwiRXk0A4dlaBCOUlrpno7p6fiYwhqUh+KtaNAV4WNiNVW3C2fxjKdD/2c16FIb6z6W6L7Fd/daAqCKy3NWUlJy5macWd59BAKGMjKVkBT3tKlXkUcSA1Qw5T7qk3140qJzjpNJIBf3w8DvJRrUR3o76C1TVs5dQa1QU9qmUTIrKr6cyU0lc/8PSvOjdOEAHJiuf186Tao1dPmR2XlNKmAwG7+Q+775j/iqBYc/NxRjdqnQXrowULOLVK48Ynmc02FhQSPpA8XhNugYZgXDQAgtwJ/Plxp8d9/68zEDKW7SVmd5YRKcK3a+tee8GYhmCZ+jCGUeInseywd11h9GO05BNm46/wtE11LkidPJTcr9G/QSTKOyoW1pv2d719qvODU7MCdE5ViCIEf89La9oQwHTCjTcDMN6/gLJiPQnuUVl9sr22RBHtjROGHWNmKk44eL60hg/OwFmL+1mXOjd/axCttjHNA1p2hGP4y4W8jym7NlAV2gExInAVUOVw0OIuB7V1lLDHc1GPVlYHX+3+acjua+RN7syxi8ntUwjXV2H5epdnxnnCQPwLEoLd2X0O4v2z5Nm/yB3sS7+tsBMXpKsLmAHAE4vcJ/PUmTpJsLTzcuxLfnnq4XQK34Qbw5YuMYi6fS4cWHewD4ygaVBN7xXQBS3LSSHyciomtYtQLObtezCeJv3GV5ndVpZSvkj5n3jbf4OE/EluA6XU4WKkm0pS0GUzT/x2x6bB/5MPHqtsSMzL+6PSI+uXM2v0d8Prd49ggZYAtahwWl/9HSm9kXkotSIBLHYAwdeNTiYagCoNrudzImr1ut1tTNm5HMer2JAijtMJuHHbGmVrg9ORQy56xmmHdmxCqJ+aXzIJ5AVAEoghLKeyalHC7u1ntfBY/6zalVFlYZYWvWnIs6sWrb4VuUYfhn7okpa/WyS18xeKtKPyqklxjZva2qVpFelN0WjGCx6GJwS+lMILuzFzaJRVkl64SsOE+z6zl7fT1Dxm+ZZxOQqwhv5awW5m1pkxmiXBucn7J/pPORz1H4Vmu2ucjUXdWNwWklwFBILmRXTKKDO6++ScrcLqPk3OSib1Q53MtZ1VD9YOSIETXq/sRLzisIfZ7N6ThfhBLWxq7k3T36ST1a8E455SYVmvrcWCIZkPjwRT6dpkV0x3B/1kepQEGgBjYkZgOJCrWKAjA1SECSn3LvVXuFlO1LKqKj+BdkfE9gohxGG1uEanlwEe7LoGSncFeMqfVZ+YNdAjvJBRhb6abkZ6SjxeRzVXYtK5re0lY/YNxb8IMwUwQTt/SUQ4qyyldbxePYaHfJVr+IRtB05k6dR3Q6HamdhoIXz+PzX85X3/U/B9bxfqV40w0HwBJWAR2pmklTBII/DAm3tKZKfw3Vns6/gFrRXjNnI7Vc25kAMK+EH9ugJ3MJZEQsOEgW/CuvV6Y3qBZ1PzmkxbrygmH02Y7GliKJsb+j28mL/+SZ/XJN3VKM9CoyFwBDlBISqdFWt5lphXPxJEhkQfyqEZeNCKd0oXCaRO3OfRu/7tXJEU2VmsF4rZp9cQwhiboaFf8b7LbTsLRmWvuOhvXbf65Zgc41EJPtFazSKXrWy7ZNMGRCBUm94O5YeB3WSJF00KWoAltfNUpreeMDHKDInJP/GlKKrZ3FKbieezsoqr+XyTciWw8mjMGl4Hxbmr479BfG1aH5Zf3Rwg+4eBeJAudy9EewGIAhUrv6OxV2ErlQcxpm/+1G/X+GA0dEMy1Og4/J9QHxC2jbLuYSwFe6DiXqAFGbVQ7gjACkRt/+yLehLSSLGPTCve7eVIsA63u0c428kL66NLnCTyTFHinGs5u+0UMDfAUZNfxruNCEu1XkoQRQi5nvVZFJXMakh9kAFQfCXpeV21+LMl9Jf+/7b1eicpS+pmtVbXVVwpwdV9K1VUUZvqqHXvzJ1JHDxEfHKFf2RPq3gzYZXD3+bA8uHHhmAy6i0TSZqzFDclSoXBgBQkevkJpHuBPUBzRxw0VbtnP6rop1cABgEnHsoNP2SqpNoUY7xPz8tGQgRqHBAr6M6yHIFofTRlOJrXAMayZqAdhcP+PIe1SQyxBYhqWptzuMDnaAud8WWiCuyog93IE8urA6paRd/KR/HPs5GBn98IzrEDDeRdPKWSHWwOyQPtkXyWCmvzPmEYCvoY/OaRnSThg+RAs+lX82mWl99Y1TosqDZCZORZcP0Wz5Jg2+cjYkqTJMy8UfH64QgeARp0ucBWyNMdcxxh5iDkER7DxmDFvcQfq1Xi8/jZ5sWoI1PhHQ5Q5O3Nr9jxzK0YxhyMp6h2UmfFwKiEk3ra3sl0ocUibKznY0MFQjoNZe5dJXZrZ5vtBwA2gLv2Lx+1v4/FZZ5zXEASvw1YLsoBSQ3CxYxXhIGXpAykxgJongvN5j9XRGeh04Qj6zxRsXQGHi12+fJ6RDfyvVK5fbTW9+kqSbANx9wdZ+IbeNx1AJ/B+edn/jxy2XZeh9Kh+nAM2wqVnfTBvXIuZp2LRsYNC/+hGaUTzNqSZCwTzIhklkVM1MveYFTVtR32SxOa+unEosz4kim104T3EwrBROrgBKrOHPItm//2CXuSmK49dtl8cruh9gyN7LgcGLkM0UZmzS6wbYMeNJyAxfVO1O+V56fPnACzBLNpEWmY+76Ex/LbUn+oiPWZDM69aktuTbC938603pdmKc3fUhXHFci2UdxtDChdaNzvhx8Vl388Qi6hf9fCVmzLoMVOfhhxQfwIBa8vsz6/OwsV375yDBzgg5ZvlbPype/r6ir4LQN8DgWCV9NSvcjvmMcVXS1EeTQCzE4bXwxnhqSKbAcD2FQzn89gLVDwQvTmi/V3tMj9kfH/aUrKMWcNbuCZKBcgDG7LxjzUe0pQgvgpcMXbBfNfQ9IVOQPgMx6rVttybVHfwrBy1R5AbR6FRawIOwixTdHlIsSi88aWILZD/4EKrenDDmaXsVl/FkfW6TbsLzfUzhocZ7N/hGj+9PFLCOzmRMHJnbCmKbz9ELINJoS8L0funxtJbAI7gZA/fkxCaWvo0iUvtHsSPfSOW2Hc7TCAn0GXIiESnbIk1lu1MVP4ptQYk7yDttci4q6UeJ1XyDrAvaOmg+9usHCt5ATYp78Sg9zASW2bxcQJRYZsYdX9y0bSZuf58ubnvFouo9LB2m5cTOW8D68eyYhXAkzuF8chhuB9tzC+yVNJnhtcL1yLVPqQV6dEH8KYLr9LC/mo0QRKi/mrYyXrMdn14xhyOMmP9T2gB1B3Y1f0V231n9lNCrbbFs8F/kNIFC48HXFOQiP+TEf4DCEGzH/k/bJ5c5Pi7OKLVsmrGiXiDdimYxsT2f//rjMGBA41lJDZvmk9TRTlzbXU6+lZCdTGVWcjADvR8rMCa0X3fP77AWhBobnU2uNllv7eHZLPNPszyXed/Vz58HvHIaUNJHFB+6U9EAla2H2u91Cyctzhxxc3ZFZ35qRjvLnTLo2wP15VN6dHF7NlBjHKQmQ7QYPWUETKX2z8DwywSAP5KMq/gsVkSl+h67o1gQ/CsT/FlralxAbKu9+6hDSpMMZEJDvXF3SXjMlLCzbj2cls4oEYKoENnsE3MSbTlIxEBrybv4du9whelFPZkhl8D8jVXIl25158RhTleLXVT98UN23kLl/WtpkSx/IWrKDkAP7uX2YwtvoP6nqAwtR7Ai1x+0oRWNpKzdfIy1ba/Js1Iz32k5MhXJq8xgH2/GG4YvpL6FcJzlYfhleFTWwiVfz9hk9T4biALj577qQcSvxV+32ELzxzwIZZgA7UDi8dVSku/7UaIvR8D1bn01sfGUmwJMhg30azehc7PQgDh3V0g+Uc3rTOp7NMnOhT2er8mwG+nfno7WECaGAkfP+hLOFqJDv9S8PshCBkAfNRTVhKzX7dsOPkEkBE0TFUqgO+ZOGoL4iuT+SJIGpC+hkPs6dduaJ6bOeKE0LXSb5P8krQITtI14i+M4UnpBOW6LwHRuD0lguAs8kZVdlQ5jkyeDhdgqITjFMlZszABAy3bm7fTzF/C46A1hooYiYtaD05fBDEClkKQG98nWaDNskTYhFvZHqV6D0rs6j9ona087g/o3LDMd1fA2wdR5H3SAyQx83vnh91vLqYWuCXzF7qdQFl6GL47ivJf5xXaFs1K0Obl2Zc0Pa77xZ4PS4rn8Bn9w9zUrSv/O3gerPuRQd04enLUqxT3HjdP1oWxWFwi8Ru/V60+rkGLNEoARxYeh/Orffgkg4ejera1luZ31aNuimHKpLaWnixc9X/Y/8oYn6QDWzjFNvDcj3sZhU+tVmxtKDvZyU73NfMVWQEUtDmQ0INHThsuyh/BD1/IJRmRQI40akUWVzySLOfah0CHN4/hl0OvZF1/x2DuexUL0C4H5mlzt3WN7u9/QPfJGWvfUPjTr1XnTkxQwLLHk9NkFyjB7Eiw2AkBOLztnsxRGPCXGoA9k9lX50YNe5SecaF2U4bdeRMdZXFFMo5cJkD8OT9+8n2AFX+9r/8NEbLpoMj0XaZwFA1HBPiaNWA0x/Qi8eLzP9iEXj6Vl6gvmXbFVAUk4V4k5tLoeDY4Lgb/tULIX02+GaH5TGmTqfMSFAgSDRpDSJf7fNmcBViBBURqEYlph79hgGDyTWZMeaQ6RhIwI84ZewJVh8E/wq0mCc80OS76xYyXPOyBkvLmjHHVLckWUOGdif5QAhgciTgnx1djv7tOXf8IUI3T+jlGF4qCRt8xWx8zyLr3B64dTfAffXG1aODPgT9g9XKduTSE46AXmn9E5F6Yz7L39d+PJsAdN/0p2iVYys0LOK3Rf+3FUQpSsDERwrHgNXobOCXxrHRkYpodKxUkBC+xox6tLswAljalL6rM5mTkAY606/Kn5T9DVIS/raTnZNYQZxeYFaWppg3v1mfQczF2+7GwNidHHWDj2yEOWCRdgzIoVOv/m2C3jusRje1LHPtrY9eFPiHK8y429iAn7BFiYx5uW0FFd4JTi894RapZtbSbCZMXsaogliaJIcC6FxSjHod5IXgzKEWE5gmkG+bPrrI6SjCqa9/Z+XanUIzY7z9HW7RYsPjAvIwq5Vc5+BOYR9quNw40lv/w3cuekki00/tXx2TylmAnfDqZMD7U3nt1/nmGSbzxFo32Wq/HrB/Ef65SdJZTYa9CFe+BKjwg+2cVMN1VuuNSiKwusaH644JfGSDnQ+c+2HiN/GWNGy524DBb+5HVsMa4C0PYQNHGrMQvoy8+ApvlDluJ5rxlITyPStQCLX21zVlmraq3LS1SD8c=
Variant 3
DifficultyLevel
624
Question
Last week a hospital emergency department attended to 243 patients.
Of the 243 patients, 31 of them waited longer than 30 minutes to see a doctor.
Of the patients that waited longer than 30 minutes to see a doctor, 92 waited longer than one hour.
How many patients in the emergency department waited longer than one hour to see a doctor?
Worked Solution
Number of patients waiting > 30 minutes
|
= 31 × 243 |
= 81 |
Number of patients waiting > 1 hour
|
= 92×81 |
= 18 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Last week a hospital emergency department attended to 243 patients.
Of the 243 patients, $\dfrac{1}{3}$ of them waited longer than 30 minutes to see a doctor.
Of the patients that waited longer than 30 minutes to see a doctor, $\dfrac{2}{9}$ waited longer than one hour.
How many patients in the emergency department waited longer than one hour to see a doctor? |
workedSolution | sm_nogap Number of patients waiting > 30 minutes
>>||
|-|
|= $\dfrac{1}{3}$ × 243|
|= 81|
sm_nogap Number of patients waiting > 1 hour
>>||
|-|
|= $\dfrac{2}{9} \times 81$|
|= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 18 | |
U2FsdGVkX18GFbqbiDUVKqA9JRblPTfoCrB5q5WM7qvZ23JGWgNGh/hrJ/qRWYNWo0vg01l2FLcefyp7CT/EDmyZLsizyj8e6hTWOD3zQc9h3PfloI8Q2naO9/Jh9KZbDal0rGiSqnTFTE4IgCaW0P5ZCinN1gsLnOhElyQW26ZuZq6WAIuf/7xzQPMwye3XNt0jFPNCUE4qliv5rM/Bk9Lik+FvAStuxi/t5uCrGHfvsQKE/KGZeK7W3oBAs60tTG8VnIYceOFiZ0rmRkLek2sYLy1X+E82pmvuvD/dpk5IQyDXM6/1itUH448Xkr9R06/hTLajOAa+Zu9jBGtTj0tCphmNslqj5yxMJdRgoqbXcPAMvSt3qU4lwoIboiJs18AEjrHZvLNBFRX2Wh6TrukglAngTRgf8qE6tOdbVfpYYe3UJ/tL486cPXjgaYxqYKhYhWT8XxwhR8tkiulAKDRYCt7/vDs9a0aWDw2rtUa+14du8rSQlFhPZWwWDEXh7zuDGi9Co8Jm20cBY4TDp7KTTEto6wsXkifjaeRALutEow8Hy619Bz8hKF978hBKcQIiyB6I+12IF2V0d2PuAHjRVWGna0vzwo3GZI6PunJ8rCty1Vzq3gTOzIvIP1lFwf3kQL/p/1of5TkIUUsXV8+O0fq1JfExFfNg8rsCwpY8KhjF4IQgYVS6AngdPysbwsKApSuYki3ZA0uOZFsH/6FCkGV9yYiNX7vwYBnf0pbk7XFlCkGSCKvHC2swYC+b6O8lLB5zL/+Bop20EQ/D0/1zBk579S+ZAywXwh5Sbxm1yl5Qh8hsdLNgOGZDlynKBEBMGT17KaWemPk5MH0Rs1waZCQBnuZzzEzQ7fd5vgcpTn3kaVE5sOCjFH4FyPrvOM5YiMRsABeL1OX1cpqPIosnuANJPk+jkD2jchNq92yWiRZwzd/KNsVuzilns+leo8aImgme9h+pqV6cu5jqv3M8oOgfwoNeAdmgHurOxGlnFOafVbLThXmqZ6GlYNjvTHXntZL/6CN7xcl0yrYDtDk3Sij5jUzGUq97A1r/X3HSPefQThvZdo+ICmMrBNholMs2CRcHFOVfpwWkBTS/tnxbpAEr7BBN5ujybWkvfkLYeXI+2shS9Hgf51xWG0WGmzCQNNSzvxqcD/er/4jZb9T9HZSK3wBtVVSSq/MY6DfBkAxyZ9QDGOXLuzKvy/9dPX0XN6Qs0rZol2BcAmIxBoGlrvzz09IKQI3t+xy1ueHiYc0aP6s1iIfkBROLlHEsDbXHlhY5oh0fZ7gHJakQnnMT7cW29E0VTrcCxRe2/j/eAlVAhOXzAjsfthiNbATYoq2qyJjAYNzuYTOV5jDWAI2ND48CdsloPTjON4Yl1ht9Aq5BhTRdS4AE5hb/P9CKZfmjGiNUYLprG6SxK1L7VBGXyRxb10Ojw+ReNaoaYj9+KLXGZay6AwplJlx0TzeKBiNxk/iwScw4Z9gDymzjGu6tBlwBpCXB94vnJw2UPMJJ9RAtP59a4djFGNS+I5XX5p7Q/+lXAzPBXLxmiczD4Q6ufAfOjSWtIskysvA6+LaM47HkFbymDTTnRhjV8/HLSsAmDRcy7q14dw9EJWciLCgY6tUAy9blKMLsCUbF3K6p64fCynJoBT62tONm1zShH7tGWRm2mIhqW2EeuP7A6/+2kB+YcI5qUPZQHUe0mP8Kv6y/A2Ft7UPAWYY39Ryf0j2g2PECrH+2dTXlB8FOf9ULJTWXZoNH5fhH6jnP/2K6s8I7qKiN2iogaSfuFStBEb7lNY8XpqM6fgXSxPozzCt8MMgGR7vllBWTFk8jWfwnEDgDjjvl5dgJkRR3eD3paec/6ofMsjaknVt1I/MCgtMi/FxPotqcHda8NUmYT7SC41dxSi+z121yfSSisd2DBXAnWTNTJD8XuvvBeYP6ZwPNZ1dhi/LHi+5LYyh3EIZ/LZJKpdXtzOEU3tX+pUk1Q9r8zHFXUqKAaJ1hFbnkUqenggPAPsV2kSDWDX07FHANb0Vb+ETkgitty0rqiqdoNu5S+ALdY4WQkEVCRYUkgAunr6ZyG/iwo7RGc/MQEKV5owcR9BY+5F8v+io0tIP3HADfT1dsNPwSiYD15mxctXsZg9dGozc3Ki/CORGETUjCMt/8S+cVmaoUC2UoAUbZpdLI/kh++FG/HSVwjLW5Zc4xLsoPHP9gYxxRaeY8quREywZla/3wdekkbMLhUcfdD2jCF7Wzk0VYG2bp+S+cPZHoDV7hNss8yrba1jHGyb8//frjyhxMc2UzQu4gCEprZVSwNbfTT6xn5anrtqdgslwKub0D9Epbi1qZYg6o+fYLpfHLrcD9uKOnDEQn4ae7lVcYCY4KigQIsSYZ738xSBj8NBzlrKIqXGNHOkoqGkPjQBC8/N0UQM3B7couR0Dk0xZpRIhoG7BEMQhTp6R+uDttgait9OhY3dawL8Wiso7gVz1wP4gPIey4j6vuppv+YidVR0dXH+R2xcm4iY27I3S4uQMSJndX2m3hHBao99644h5QZ0RQUj4SfWBHgCOXsC36aY4La0uoVJ9iBVWObpWYLpE/I55bLjhmdZ8HCubwG78xTbdyapMUl9rYnmCSkOF+/RddHaFz1JU2/C2ZNXSYdNC11qIiQKr5mk+FYyryDRr/hHBNvtLQU2Axk58WRHW0efZAtmFuoFmkp/YTpOp41jpMIvabFE8lzr2Hu3U/2ZVNpL/GhzOcWVsC/1gdjXQyGtElRsAFs1PggcAVA688IMhRE5xw96lS09qc7d6WcW3LryLec87KnF7P+H6bkCPGvqUa+aIhoFY+LF/vGnpzPj/a1v6mddVCC67n8CH3Vh5eSqxxqPc+ijdxZVqgT3brAehIp+IsA8NlXdK+31n6ZjhCavzTVJqSG4Jatu0iNodKBLZTxK5B4TWIxJVeS7n4plvefbLWzCY5MhaZX6SFSwGnrtQR42mo/dDyR6DIY6incRtC6yH1f8ein5aulnAsHcp2F7kGXJZV9HPX6YjVrAr/jo9INlZutBc6KnrfwDEnKU++TQZBweUrHPlP5ZpPceWg0JEQSQ9ImQXHbLrTTWyJYWnSVEyeEO9RVeEN0laj6qBLM1GZnCZiaJuoUQxd4GEMN3/4f07+xcawnHAGA9KCpSGwGvphuxKzna6VyKzKY86vg87+KxBjkCnfOvIgXNkEFiJ8Rr+GczFc9AAp2LTsH4CcNMlf8pQdkFjSakRLREYKcciZDWOrCPOvLEQiAeAEAL4GWRC6sX9szhAir3r5ch6wh3xVNX5y7thex7R75WGphWETpodUJ3p7PTy9y6llG2J4RX0DxvQiMnCcV3XM8X/rM8vew9k9Q0ys8FOcv+CJY5+kNFrMY8GkOqUGfZgggsspnPWfmXTnkrjksCGjbgQUfI6fmOzOFqxPsDtrpmXfNvttcnlkHLC3Qc45ozcOchuN87dDKtzAURBuE0zOdRIl2KiBN7rDIDpeyGWj3p4qnKMsKqWSyj1IbbsuXMCg7ByVMeW7fSLM8LHpdJRK1SXj91+/EwVhwFAiSXux8nPTBIJMemoP0Fzi7ZQGbz0Sjn3uIwfh5WB7EBFbs/PG/l7Q4mMqwF2g4oLYcTTdIa28rGv1FUb1dm4sAUCwFwCL+uWgroswcGW+zbUrQvidrRPdTvEi0V1d3f1riP3J+Qdlf+aC2NjzWc6sPimI29dvs0hatUX6W2JeV45Ru48sX7e1ITXjIWqq4dfFWhkXuR7eKJdJIG7NjdnJjO1NLOU4ewtz8sULJDrkHJMi0FK1gLMJxsTZzidIJEY4uyah7/P8Nala9Zn2Qrs39kokpjQgNZHGzBT2Q+A+JztpMknD0TyB309+dt8F2NxHZbccClmBp5txvIxoLJ59kQ/jJOGquq/K9PMMWSvL2tK8RuBnrvIxzwDJCJv6YuRUzakYdkFl6GimJhFr29IacUa0OZ4OwbZynqBtiddZY750CjzdLeRTkpNnjMsq6VQ+syj+KEYDljOrALC+KF/EpXW4sdjdbGI/cmax7+5dO3UK7aMEQUpMzAQwMEIwHpo7y9vD4OH+X9H4yBUn2+OC7Eti6qYr8afx/2OJiz5IeTCVJHawTuHxojcBAROtFo3chpws0Kjb3nu5Fn+X6m3MIUGjoZ6/OMIzC3WjNw5VLQQtKuyimY043uKiK93tujj8ojgkBWM0rKIbFGXD6XPunFKd4G4rcopjzqG2PQv8U+VqQ7fHQqEKupajRtDXoaX06/Kbpc1IS6EGq2KGli/IlVMxkm9V6A6dfPMoPqTePFDeFgN6yL7KEUaZUcPjB7r6fFKr8WZE0m1H9L/j7m96TD/nUrdqegR/ZNKh/ej7jCZdHOZPwm5irDr8kfddGNb34xIio5VPDOjw19ndJ+XXiUY2xj2Qr0RYf4kPYd7NKFiKJUPXT2KHqoyIv23wWC+FdIbz24MsP4eie4DdInXjuoxpubMBX3GTQlHiS6LKA4/DYoFOLNLw3qUHO1bG4imNezi9iMBwoN3CtZB1Ry4HmM/DGvQnam2rgxoRas8ikkdgCI8RckH5r+eUoDEuor5W+bkCc0Qu2if4+VKs8TSnyEbHgsx+utosB+ui0llFjVQTH3peTKSDgdgymdwolsLIKIUkGS+1Sa6SWqlt57Cw+qScAgnGqLuvKS8Nc68WEWkOb8/HFUveKu3y2ptsmUyw6vc2qU962Jcv6oZ9rEou9uSLQsKIbe4zfbnQ32JxNBBaC8nzZnCMH/LpVEkLH3mUWOJsuOG1g0isbwW9U+0ATq4YJkzPmiM5+cQOgi3Pl1Sya1x5p93eZnx/gnq8LtZTsulM5epPBuvvJRAzO/BXkj+8yFt0ONwjowl4saOSp7TPsoBBiFcAvd0AGMLYcFcRPfaNky2E+7uoFGLwxVmDi39MnWGvlO5jYMEOhdIObzQ4MTZoagACiEBRwiejzVZp1j316tZSQGLPlLKE65VTv3HguqwCjP+GhNyl9zLHdjhGHR16eA2Lgyfd3eOFtNvxcUXYjbroGnlOHS2t/rRkjuvrK3w9MIaZMYLRk+0acQMDJfYIF7YqeCGiUgn6HLkE+U8XbQriEXk53vMRpvfkX1x6j0LLRfW8g+6GaWdB8m/iSE0ouy5HNpEBfJcQl0Z1RDx6Eyzz8XUwm9YdK41Rb0unvgPOS7AyHd6jeTltbAy/0rq/XQ1f3PYR/6xSakGdgPy5GzY6TR7s3YCCgOSyR8sd0ZpJ4ODU6OT2+RBZ37UEfD/5hqIwM9hSHC2wuTEevKsPzTJlqLFYur2ZNE4psfoxRsH8hVzW02b+SOZqIbUppOaGlKWwZ81XPUlAKB9rOZHwkP7TVxJL2rnzsBhLxmV4WXP1AEzz6W5iYEBKuMMPZfhFHRgaAbFF4Ff758O/9xRmZ81xuW5KiKHST1YTCzE4iI6jinWnPDN10u1DQ3HHScZ9wO/oaLMpQp3ZlIJPSA5nrv9llO4kZahBJOWon2cBQoTesJoce7pAOFs1Lb/lxUZ3E0QqXprOYHdsXKUgf/D07pBl5J0YrK51h92hE10BvnE9b0aQXhI9U09I5oIU7PWOxylNJkPkFteiizJzxAOOJ27JSx2qGio+1aD1pVDhbAyobTmvif6Y0GGxz6JhO+0/aCmPQkEilMOLPvW7xv77An2jYWh2dW19acfB0KsYKCxJAl0vrNYuQONUwsAqsrg/0202hkPndpUnTW1pCrQ0kJZkfi/yMz5qXzL5rFK2dZa3yuoP3y3HbipKMDzh8I0jE8CWm8h/7tACuhuFzTSTv+DaY3vpiwvJYEndmRQcRlQM/SffzRL4fAUSpp22Xhv/d0i0DpQt6cSL2RITacRety0a77EzcKKrvu9JVdINaubf7dFYFZnTFZ51468MnpqYOg0CPaQXgKRbP2CqjSaF2YO1s++EAHqxlRkYD/Sla/uNQl79t5seZzMrA37rjdTKGD+/Adq/v9NDnbTLa7v05LEBZsSDKqNq9HtNMwbF1lN01NMG9ngSCkNR9XWoIW9jL+S/g1tlPEJN4JINRpDijSTYiFOd05vUkaB69gSTIVQizcc/k2LLkfutTQHDu2gCy9QmekjY5z4kyf0pKNJrAjrSwpolKF5VYuYScxSIN+xxmSjK48E44iwzWP+j4gdZNS+x0ullQz1mUWomZrDf2vYlWqfg0aGTxrMEhwcgRWKMdXqMdT7swoHltfmfi19fmBX83bueHBwN21SmHel0uOJQ7YPPRpS7+rgoONG1RG+25GPrL+e1bZ9m0Nq+J7dIi54UGQvJXEwsk+Rc66xa5QdD3oIpaTchmNkqRNzSXXfF6j3nbyR48PaG4G7KVFMQPXpCXpOfLw6ihuUlNZ98saO1KS5pSAwr9UaJozqAjzOPMQH32AzcQ9soHvDh7GJPLYtEUBLcBawgLe+xfhZLBHU2G4N69cFN7o/PS2ZelDtP3vOB6EtK86Rs5qPIkagb4VwjMTOnYfJkX3D0fTkbBTNW6uqWFKRxAvOZDTmJDezSfsncBoxFBVpBmkFkBLCF0fzXYZuxLWw5B1zhdeykpWrux5C6+7yIZPgSA75bqjwiYPB7L5MycFyF9y5heE5xLECxxRAJVOxN7O+E6jMbSW8UeUUCgGg4k23YjF94G/vU5P9SlJU4rr3dmB5hEKGUtiLvm+E2A9E1w33HzUb34ZXYMm1BBvLhFf2mMNYDxEvYk669HBtM18yAuWJFGMIIY6amiazrDAUJ4BaoNbpTLDqwol9DfchFd/RpKCJK7ouO/LbJlRIk9uKyrhmYe4c1in19NPOmbckUzE2gyN/mgY/OHnMn5JyMGpqEEMAQg6bxFgz0UT25QAmdltS9QN0ADALlDkzN7qwMF7NCZPz97g2kjx7RghShZJZxf7D7ltizkepVH3df81ZrytnHSK6/Axyq12HVwZ0GNNViiOMXvUnW/oCuqIyTgjnw+cOQn2RJve7NYwMkANQLHUwY48s7QYZJlliX/yepkcW1v+8PdM28M2VMLYT05OqrT+LUhvEqqNwtHOJ0Cw7T5Zp5cGN09Xl72HDXFjL/LBkNSjXcj3D7/er+8t1SyO7fA8t83xNbSxjDFI8VEytwwCHEqd10SKYCu78zH4K8FXzYaZMohOl9wtUicxdJ0gUPWK/3DqzMH3i2duPfCN1ZZXxGIxCMpSmhVZ4/v3tt2y9zyXiJXQzQpwomXpxrZjsrzRBcV1LIhg2JrOvueL5qMyzIh5V1i2ESkoepLt7zer1A2rOG53BmjOCNmEN0vFd2qNal06oZ4jBGD1ZVncbthXVF2zvTMpTSLKlnqonetD985vC7tQqvt2xv7g34RQ97Hvcbmx/RM/0MVUAwmI0GmCvY8bJ6NdL8mbMcmuwn8KQnNaqZsLctfVWxfyb5dX0xxkg/S/gggXGhCI+6Yr82tXsnanlJqc+WMZrbpkL+6rp1M9nINR3QDgRh6G2N/gip6oUwo7V2rOacnLfZGl99SzOlK98o3yzpMpQOXPF2rmGOxhBjyvMmTuZ6HHQjFKAA1iD5KG4GbTkwxqsY+8id6kOpe8rVprKd3i42aBwg1US0CmMqxl7nCFLpW/tXd1ZS28btoxhnSFomd9/0dlwzEqB6PIu3eA22IhYkAFjFwIonUkJSNGYdJs3eM23y+cV2t9U9/ArPWX1/FwHrWVmCZc5Xtn3DokXvafbKT/QnBvJ+6AMDdCNK1MPEJZLm90ugAGqAPt7IpN7oysTlEdp7PcNMz82K6m4dwQfBnDIs95Od/0tBwRuiWyMSRLafmXeem4S3vLHXYZaZbTSRsxYXN44pOGQRbrTwiORpOYVOtcQ/O4mCd8Uy6Wf1zReiToiiuOOtN4l7JyDX7iWTXTRQAcSC48XUm4pPPhcHQTuaECMOOgKiZY/r8rkDv8aynv1dPw7VphDYBqKdsHfaT6N2ZAI9sN4dB6JHdC0IybqM68VYLtk/eq0THdDq2vtpiTWuP9V9bXZ2ayoV5AX2Kfm9t1fgr68zm2uTZcfhreL6KHE5EEeKalaILO6WmPkJUu1LmMOP9EY3aLkwJpLktyUeHed0ZAXV9xGPGRRMakE3gbhYFxVoTi1g/CypS3oJVvTlvd9PJmc7kwfz7Nms3dMwG/k/Jv6rA1oPP/vqVSY/ZLVYz57BRcViUQcmlXrgX/0UwivMArvs31E677wdpyUEEwhzyamvtK3A3vk6VNrCb1e93+1tXC3NJPkxH+xlCcPh2WH7ia5rj6CvKBIc0sn+JJg4mbWn2EkgZ3pOFeInDJ052OsQU0AfNiD0+sLSx3zkNehXlX5yYeyiXXusXQnN5x6BTT5dOIoy1TWEqfHYcyrJPp3XpHYb9VenMIE2MewcWe9u1EB5D7cyRS2jEEh5wO2lkurNIZfZ6Y4whfeUd0S/u408r9ptAR6/5yYh84jJ7GvjFXacWbzWnoxMgokm6lD3oZvbvaUntLujI7TOwSy3NZBX3Oay8Hs3HYU0pfhHOTEohB+NiZPlQ+5E7WBCk2r35xWgMC9gZl/MJiwEXJGNLJ/ZN78C4EE1Nf+x8MzXcqPocl6y6hRQDXqww2gxQ+ZowjiVegOQBMk3oQka4zSKBZmioyI5pu6jZ2TdXjlhhzqv3ypMHvpHo5NZYaTJgOeZ34G7Uw6GUklKZ5UMNSUuPV8oWqhq5vL/p9657Zf/T6zLDqyYfC58wXPfM/1Btgq0xQzgDAeUr2DinzIkCYa6rmxfijjKWEEtPFEdH8yqcibks3clbDnacepObIrbcbNN8v6yRTNckOQtLOLeFAEn9RPkI1/2JY+3E6xclX/cnV8vF13ndlZ99BjHoW6hYnBYL/j3MtIvWkoDvbSdUUdI31lw8TaDoy8FAnqANzGIBJjfBfPMO1dwipM+cXy29IIlyKsMFw/1oTK1sODQBQQCjzDRYQy8W+V0CkjedGtTEFhR0fKdXEKp8mjS2pqi7lcMEwSji1NLN7+VFlKJ5cnnQ9rS+ZHdDdJyT5HVqHe3JMGgJ1zSjirQ/KjvN7PRGN1rHIzS7hMzNcJfbKVtfoTOZwdH7fTr+Q13rOD9zL8kIfsxQgR/rwG7R7Df8kpp0eKbKRMak5rJd/xbglYIgcaQNrVDbyl8Gs8iBbIke/SjDphQBMCFk3SCItSSaNK1z5lR/3AxLiWZVym4eJ+NPNq1goRw6/NJxWYkgAL7J1PRrKIZRBOAu518if6LbF921QkmXoNUHFZH2AYN8ZqIgzJxQpAD8gAty5lpPF/D97yNEbBWTrry/drZziFyPNY9f4+M0H6KoWBndQa6K7QwlaRF3zQNTRqLv/Kz7peLAl4CEcOIJSXg50lc3HpJmODaoLeiGpugUSEaGvh/l9ZOWN0ZHcd7/Ul9sJNz7DE6Ip1THx1Bw6ZASGeNBZut8P4FLq3IeKM7nxsNZvKALBm3YQMXyfB/mJBtqXtFdxM5pDURgCealI1BywHSn7WjZsJVC9dD3fhTtyba0L77F4rhEznstyNh09mW5eTgkqcQXukRUFsl1JiDMTmNP/IplTFnlMo512vFKnGlRS62x4yq/3qcnSyDCetO4L+se+mLOdOnPTfxGKj1xoBl/UcmZcS+z5bf/bxpMm59oNNeN1izhHV9so7jfa5pqzdGfHRdTsbipskcNL9ak4iMcDL8m+jUkzdxwrCa4f5vqi2+d8Svvn19uQ2HIwb4SZsV3YdIER9IY3uGZ71bcIM06B61rbORvFANRBx54C3j9/H2JWOmta3qiwoo6PC/n1VC4ke5T2IGG7avNjuY00Q55YPd4Bbof3xQWs1/hJtL0dl2jQRXJntmmCRpDRvlBCs3Ladj3rN9LTGCZ/e+rMzTZkgQlrAHfw==
Variant 4
DifficultyLevel
627
Question
An inner city tram has a capacity of 270 passengers with some seated and the rest standing.
There are seats for 92 of the 270 passengers.
Of the seats provided, 51 are priority seats for less mobile passengers.
How many of the seats are priority seats?
Worked Solution
|
= 92 × 270 |
= 60 |
|
= 51×60 |
= 12 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | An inner city tram has a capacity of 270 passengers with some seated and the rest standing.
There are seats for $\dfrac{2}{9}$ of the 270 passengers.
Of the seats provided, $\dfrac{1}{5}$ are priority seats for less mobile passengers.
How many of the seats are priority seats? |
workedSolution | sm_nogap Number of seats provided
>>||
|-|
|= $\dfrac{2}{9}$ × 270|
|= 60|
sm_nogap Number of priority seats
>>||
|-|
|= $\dfrac{1}{5} \times 60$|
|= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 12 | |
U2FsdGVkX19TeAewTb4Zskfj854eYUhXgKvjQ0lIvIs14rXdDb9c96Vwkqxt2ZLHohgmtXmaJfOdhYYGDtvQDJiKHqeY2IrLuhVpYGjm7icltJzDXNBPaP3SKK5zHWygZPqGxlk1yRY/dmhdlHTgsjtsljg0nNHfEsohW7BTuzcyJZNKWuNl/jpeHToiMigmKI+PX5u99wYWKwv8ua0CpctBcxgygqkDVP4sSyytuQARciJukfUcjazW9AGC1P/ZjP6NT01vPw7Wd3HndKjVLp4LltV8jMMgJbZiY78Vb3lCykzmD7ubBPJh4owRkvUI49NzX9Apx4XtXBGJuzYTn46/2T3f1q/QOugpFSJyGKlKBGGwfw3SpmHJ3GuPgUX3up6rp8gQXSQb5raIJMsvNJID4Q9Fv1P3M0seSFP91A4jI/LuH38DjeNVHKry7ftv+kNsNe/CKR6BkzkbEKeeqg8IiSG1bOEXgB86I6wglcERfWh8HwFXs+rXdQy7Mtu8+hNUqrGug8j0vOlJb1AYCKnx3V7O6ylN/RcisPswdKXzkqDyBQ35vRy+4Bi65Z+xXZY7Sg/9cdSvcK0nM7uL0FoRhKFTf5+Cl7hX3eHqCu0+ataly1dPwfMaqxZHZ0y82S3MBT/V2eku/L4nunAgBnl/hANhhzqYvx1ry9Em0oeInGTjnkpkP1Yb4Yjr1azJ/dVGkDbHOMXTE7kbA4vARTo+GbeKAKq5MvFbEpf0hRkZyuxOuv/dQgrK7usdXhI+YDeDHBP6AvV3FL9KXIKJLhgfue015W3H5W1bsvV4ZDeX6N22C4HON+U5qD729zEH/Nc84AWXSFkN2WATLVeSsgKYfbiaX2KZDzOQZ7+CdJlq0B6Ko3fLkF4v1uyUh/mB3kGJqA4GbscduTCrnEWLPaPZdFwpVKI/q3QWDEkEluaHbq14kz2x8IsgCNiB+qptz8zxjKw5uGQyLzTb/NX4xZHeejfpw/l01u3Ep/j+gajcAZmpJ4UYgCJmFjfLGc48lqEM77wDLdePRZLWfOPe8IUZltYpgpVoFCL8JL2/lBPITKtZCyUsWUixIQFnU4q23R7W+5NT3vdCsjCtPYOf4smhhPfWSGLwTUpU9cjlva07QyPbG6BUdQvTJj0mKLb7xibrzZI92dTb7qf5Q8YN5d4EZ8YE0E6yahNC4hwFV59X4YT42l3GHKgyvQ2V3FsCWQMPHiNCD3dk+4UcL1cuwdHVXisRnbENFbph/WKP34E5HVQ8GVT9Bf67wK8mkHMjnQQ0wn6wCFG7cpGBwcAXoIfXbciByTTFNVII+vmY2GWhCI6h3Xj0Ob3isLeK4/b14W73m6K7ym3JwacuFKz4ww25EWMGUMfKMVtDQi7zFH89sSwrZszFEvwjCkDEEqPIwhrzlz1/JOvO6M6s7IDohsOnlqv5K+fqdfH7nOgrpPZg0tdvYTGClzpxelQCc74sWCdZMAMVtgp23mOcyGUkZs2xHqKStP6aPQLOFrXhmnxYtI2S4eC12L9t4OF7y6JkWUxnhBzNqpnPzlbk9vsOmPeZ8BWsVfo7Va6qD3WwI9McAxua+aN/P8MpiAWxsFQl7mje8yzhYynRTNgzQuIqJMT1LdK6x3coslGYAPQ7F70Il02XVljSpQGfP7yyEAVnqyTUJ1jwO97elR4gAc96sbOytqEP7S1rAbcReKqeKDyhwCwkHpirrzVTeg9YsPBnxwmZY2joIhyuyOa6wKY6oF5jZHtsvRCvnUkMThoikaQLctXXMM2YiR8LxmIJBDfNqocWpkFM6oDvhd46c4GeoWCeKCUvd4ku9bRvvZ2JcUh+R8dp3X6g8i++WU1F0mR29fc42KLOH1q/b3MTrzC0uNCOWkLIaFZ2SgdigTicntJHsQKY5pLzry2SjSdN+RGy5xOJaE6mC2M1rS62OCE4S9+k9NYWX/20rpKYtsaQHQ7O3V/z03uebahAj2CpAEYeryPZBbQfdL5I8q+luPLf87L5+GS3BJ92bttHWcVTqaHA5IAj90VNZfQaYgi+mF3QsMJCDPvR9odes/SQq78BoW/U+L93YRDIZ9wg/oMr8MpRKo3rjDF4OIOi27uxl3erWYRo0Uem30oKHmcGRwFO6v5P8DNdioNnbQbT4mnIT8DtEfAsdYD1ojx2Zr8YNZ1oKJFObarkBTWsa+3PY/xftWcpwz58ML2obRCKAzw+aGgZXaUnSLKJC2N3np/DuXrv+970I/iDUerKF5EUHTpu1TY795HEFCN9qda2FW3Pv8ZxeQk1tDDCNBxfbETA9bDWwqx/RJluUclRGBeTJskdtm0oUP20upH0saZmgWI3rFojBgF2Mo7kJ1SMGif8Z3Y9q5pT9BNU4s3rLWFSY7HRvLUUBNyPEGLqZFNDSDi/YzNFwGbyIwNa2+cQMYKCSzRDhrOnNH2zE9Lxu8KHnFz6pcCnBi6swQr9paWx5kx6BRrmXkVAuzGADq/JGOFlaAvlLmW3xig9UOoEjyfmON8HhhMpprTGRfkhN16bZhcMijwoHYEkwtwdMYkCqSxe0zJYlK/kyqt+3fzUSY+3Fjqe4Q8B0VPR12DBoHpqj5LTa3bCCe89UDucp6caS1ZebvzsWD0qzN7XvTSxgFrzNdDQ5v1xcHGUvXouPUJN2nDtPS3dw0ZL7/W4LoujUYgc6P8dQzv8LJeZVZGqIMYHKEzM/OONKGhes+WsC69ska16q1cusQ/VTtruJATmZspgkWW2VNn6axit7qwflgUt9PHVPI8fuInaCq85hgmAamYmTpSCKuoj2rXIhuIkFV5Mj6WzYrv1diuG6AJjK+C1QlzI7nTipdmr4x45Q2667h9w7dbUSA3gqZ2Bm/YD9qVtYB5eUHfUELeu6cp4f9r1RKRN3WFNY0mCCIn1oaFjgO1JUX+iRBfHAb37p12tbQ1I/2bT3RRZpEOac/AI4Keg4OM9pNPzDyXIOk1EjWxp3U1V67T0UpvpYe3KJSjV3kLUUDQmx5CtUCy7d9opncxMplXVGzq/QpsML6oYWU8NATFf0Xuzkf1Q3E6mhyBnDmQJTNSL9kFHANS2+4i9GNhTiKvhVXSzUwU6tfX31Gmtqub5naPM/PxQ5B+/+jJT9qAHIuU+dJzcXbtlbT7GLdPo/uSpJRDA8OOBuFfLjmHvzDbgqDfLoKAOPIKZ1bsKEaSUcsgzz/2DqlaZaIVQ6zMWMEv0X5YDvkOnmB8O9odkKCvfkLHkEeBc0ZSyaVOpo9a9QI4YdfcQ2xguayA0KIpYoWNasw299hJ4GJ0witVrn+/bqFBAz58OIn82yRytlKrLCBGG4HU2e6nd2ZTBDBGHPt86XCi7XgSrgp1M9OYDtiqrV+4BW440q+IKZSUfdRI3zf9hRCf4eNbtJM3q3AUNqUla7ZwUXasJkPOwL6lR7Ji6mleRDZnVyx5BN1/AreVzV0nqP3n22bYGuQHo+TBZ70A9F6D6zUz6wHv3qghlqnwcOm2dtixjgC0o5TWfwNQyt4hTfcFvGv/4cSntnqKQjzS/xsJzbOTztoQh+i36oC6fhnMf2vbOufu6iK33WafDpR1tSMrecA3twMX8GDlo08RnhChkaSLrTGf+5stII7bFQBxxOeZvxEfJLHp76oedZI8ZgIJ/myWZzhvrP07E5gc1na8JOCX+6d2eefxnoPgd2/4b/k0YR/loOKCYAh6O6Xv9qdPoAXi4xK8UNWqqnQLBzHAlaNTyXE9CwRWu0ByOdoqCrYYsAkF+ZklqnCKQf7BlCivbk0p3ugqKlqumFMfCitoEgAXcweM1MJMY3cmzceBber3CEYiCRkt1oklKOnqlvpWwd8Q5GCdwzsY3Uly7tDYjZHGurpDxcWf96zJNSPPByGtBskmRD5oqvJpthVSiBQdEHPavfLCmgdgeYysBeMulxHHIGKVrlGIxBIVGJLa5lXnu1HXaVWAuG2HQwmeuboBf6mGjHMM103HIMxw13K0jtXi8B94B0OM+YHWM+EeEfxjF9DtIFilwqzuOLIw0qUUPjRYOZUQ4tq04dssP+P8NTYN6Gcw+1x6iqoix00ATylE9DE1yXhhXJWEhIHf4t/l9/dLo+il5Fc7DLWoG+XTMeAkp2k/Dnh6sq6vlQm/IjSEQI9l1JHA5D6WNkIqMA6MAM64kHqpMqen5d7wpgNoaE9RbjpZHfWlEC44KUIfhpPSy8TH+SZgDPnCkv9ap8q34xmBvRPJaImgNauhZwycuLSpurQmzaXI8nnhUEvtvo/HLpncAQBevjO9cLNJx+J0x86UbYNLldPT48XVMU/H7BfRUO+83NfpwBi5e2tPPIiJm7aVn+MPHwaO/DzNlQ6sJ4fq5JTWUIdzxObqv/dmTARZfTHkiXK0do+h22x17uBFHmck2+WFRD8UFuSzhb9ySGRYSYtIZ8KKY4RY0UeeKkOHUr3CBK6jqx/5DcPPuILHubUcT+oYsRHb1RxMSd7drn2HarihwqmQh3BJDdCm2d1IjjFkanVNaEIwW+gDeVJRZFpGWGdhIUV7LwO4tcpFX1Zus4YLAU/tr7wtJdrd/mCrMiqTAiBEwxHfHYZC/+JYRCtzEETT+AtAS7301+oU6z4NLbzd6bheHNMBAapTsf6ssyrKC9Yb706oyhjqpEdYAGZGGddR1VV/GMsW8DTOgvfVjIIbdM5tpky6EDtJvUznWevnw36fOeUwSgB/2MTlSqqX8/oNpLY+g5k3J0gjwVodAIpDEuaBZJYYyojCx4zYZZwvYeS3XujBzw4Ia38Zr0Ogl/HIpPbAqJI5Vtxzezh8T0d1V9nEwbmv8oUdLssZsyZLge9EBaF7ZpmG7dR0rRGdK58iVTl1RTeT9KRNCkYKSyIpyN84ZwJl/1OwTAvhru4GdSa/n/uULAfXzLkUrxGNDslLhNaJaQQ7tWc6vPX89VRh+zlWz3CfcNp2LSOXi6/7VXouuyO8uN51CfbBRCROcdOo+oI0QL7b2rKIwQRkYN5T1emwO3LhuKbk+228rXcHP61kjUAk5jTuC6S31jFJz9WT9CknAtX6aWFbVBhm46AXbILvKYJNlJIqERY3RmHJOzlDtViwR+rjc0QA2oW0yuC6Oi8/lW4jLaOR7aMV6lxuN+ibTaM77c2rRiPC2i30XPYynp3cPLmK/yQGWhAW81RKK6qKZKJKZG40yOToABpV6Y7r4j2k0vK+llP4K6H0RpfSM/tute0BeVZnBtCIQlpAiJbe68DACZwIpURbRcOrbRL8gQgK32814E4PM9r1wyIJz6MUNF6/XRUCdGaqoGL7JC8K/nO9nVjsHj7XmyDeVgp7K3QPeUy65m1esEDt5926sFLYGLQBEyXwnRMLaAnjkNNFm4mweJW7d2IRAOeewyU5G7blO0BD6TQPEM6QVWMdbqspxIvsqKFaLVrDL6PE73gQADoKeQoI7e1uG95Iq+FymFNrEZmbcNsNmxNLoVFU0UAJxaFSpL9fMhA7EuPPU9JS6cGnXLKhG4CaNrlfhyWXtRC6nE9y1aRWOKZ5h28ECHWM1aeGqyy/OBMpEqcoQ6G0ufuRaJHzzhK3GnBU9IjA+W4NjT6zKyBDv2RZz4yG/+3MEraq/MxNKpunjxluWpei/H3E/y/PrDdjy8GGqFCIusTehOXVfuDKkhveOcrhyMZjgn/2xxc4xZfxbJYlh+7f6dyynsWH6IMFC5sw6qsJVbimTi7b5Henow0uNZQstiQMyG+jezo8TqDuO1xcGf1tZHxXmtbTzKv/6FlLF7XMlKsOKkQB0r4pn+LweQl+BzBrKtyXnSMfA+xK0gZvlF/mekfLQer/PcPbz7aHYaexrrxjPWefpblyNFrCGPiI2xvjaNqlKfNqmEaN5HaCnC5XP6Qy/AogD8mQJvEJRHDlOPG75o1GfIyeBK5o1MsWIjKL23etFXOX8zULLBJAnKmnZySeAb72plIW4UkCcQ75XIknt47ACkVwjM43Uc5ROUFsjpa30wt9FYmtHOG5LYcjuoHYiF6hhkZ5jsSd2H5QF5TUERAWsCwpifiuyXyFzm2G9hZagVia0la/cowNtIqUT2Eux1CQKLR596mhMTMMVaflkQwrnsXDqrG6zX49dyAFHcr5wnq56AvzNzg40N1grS74cblgOkevLIod5ctoHBNwyp19iFHujkUs0kUwKWM780F9CeOSZxcHVwSn8vAWB+23j2vLar6xUVLSvmRtATn6iOphkrK0yxDbCOmjnsZCmS4Arq294tGNX9m9sZKEfAMIJimuZ/XwtdOCRqmWIduqm+RCZVR4PZtSe//4zDKeqHsFywLAeL8V8S53SmWgEfmJVzTS2nXDxDGjcspecwAbpnKtLpcQm79UEVogZZCvgH2fNK+NehBw5e2HB++y1/zIvOb3k5WYo7d1Kdm9VKzzlDo5jaxbS1Hd/Cfp7i/QG+0ksFLvuzLyj1nby770YTpV/IiULEM6MItvCT01BG/ss20zKOLHRu2fwaqC/ZfUcsIuCptoxbWEjv3dCfJBUbsct0vEQ5T6n6+3dd8ZNARVdtzZg002VbhcELlJkfy3l9fREhg7pkE+1M+pGX50ELwPSSLYGoLI4oKyiGoTjUueOWx3TpeIWEwO/OrZ9nrG4ULIHOb3odHvqAoZLHUnFnehqtrkg1iV/B+T1wp2bexoZHfk/28molMK2IefKEPI50ib0f/ny4PggYzpiinOxWa+35FNw8RxNMEtz/Bqh5z4h/dflRlQuZy/HmoO5eNhUrhtpUpnHDNFxfgRyl8Pfxncmt/9XiZurSVLWIdS7oOzryhIeFqNMqQrb7sCYsGmBW89srhwqQt79rL0/9uTzYSAGeWyDam75gRU+Yo8pgc9oNe70yqKE2znsPNTMUWrZAtgeOvEbJ8p8/bTghKz7vg1e1J4+LJ0JblAqVhVFakw7rRy7NYzyGS8YNskdFju2X2xfRbHMEIbFciXIShu8jJIp74r1XDBPZ//poNMYpaw4QUMNkQsrubOncD+2LE/ty8Zk9FIysYiHw0wGSPgoGdAWKuLJISt9JbLCzYrpZrUdpBHpHhxyJPdxx4D7gOpeMR7/TIvoL6nUi/SJdiXS88odk1ET0HxdiR563MyWX2KTmcyO1HDYY1qltwlb7bbroYcCCkDRLHEpQhhGB8zCdop1bKR6MkzYOJBUgecGH4sZM48cIvQw2bsPUdtYN8ovLaOzBcBOU4TtO4eHHC6oTlGesMgg+eQcA53HuzyhZsFBF6AcYQXonfYFZlSL72p1EkObRnzQUVk7s7bUA75OyewUQZ/gT2xPLYunQp+fR6f6PdbkuGgXlMvfEwGCRn1qAo8kCDaLS6/SQaHDLcKm9elFHDmZ++5wbUid3vvPkYONGAM9JAFvxtQ//B4dSa1ehk5PLz4kzI1p2acNhpoGfAyjx2GE6i+h/KPbFLyaUA3VRcjcy9B5gDKbgUOZXVBFUimAB0Hbm5/Acr9cd2U0cP/+FyyJWFOBLibjEUuxMJhCXQbw47h0W/iVNeWcqWJeepTWPmdpIR6DtqO2A7C4M34j4wM37gQOSuZTgAS3Qf2dKa+Po3wOhUlt0H2wKnmUpFWtYvmSbhxO0iuDN1H9k/dEL62Wx3wErK5nVNdsNtX+gR+Q3hWdkUDloeNGCpDW1H9pTqTrQUX+1AyL4Gbe26OtjFHMplBb1p0bcCFs336bQBOuIUniFz0pLLusv0F0s+3mQBbTfINAk9l0QEndwchrJl2IcBTK43PL6Q+XEtuT6Jl7GjeZtkm9frzrLdDbuJcggckwMjBPObTj+kKlzRr5AE+nKTZ7j3+ze6kNqSfhmNvPapNdxu98aHPtKsnxo030R58SPz7YM/QPW8/6B5fvxl+RbVUCtYEkqTHaO0GM7186LbQyvhGMYCunyIskdLPsQ41+YSDrkFYbBo8pL3Bc2Ci+tM1tl3miiMX9mm+l26GwnRHeOOkREh+UcMgTFzigiPU2bb6eS4QzzdOj604ReE7mT5BAlcbm4WKVGlDNLTiGbEiREqKD6DqHdJa26RD5m67dWp+i2ofDU0A1aZC4aDmFcp7ZBHx4BDck3tptZ11X7FQcC4LB+1zTUQU/XHD3OysREs5dRRmAl6Gk2xMHWaYwrOOuI+yYJ65vCDAoueuhrQxIvP8xOKo7EIAJ5mPEccRFkNnXwr8ysmSrAHCoSq36up9CK/2qvz3R7UIAHXoi7CDB/ZHihT/0mafBanNywWsCoqb7ep6XE7nJQibrY3obGWIV5dwk7KaN2NDxU301cEVnPPVdWFhnb6YtrvnV7ei90Ki+1JbtJ27Sa3Oxc9FHGTd6AucDIl6+CBliPtYK1prZWb9x8m6B1VzZkMbaIG2hJoxiCFJ02cK05WZd1/j6TyiEKbnRfEaGkKVbcwx3jgFGnk1WZvIUXGmWuuSnJbkV8RH0/Mdc1XFKNDx/WzhiDwWHPHebqCoXWsj9lPd+yCD6jW7d9HJuV6i73S8uJmsbX6AQqXIHnr5YuUwMPM79HIDDIcO1n4P/rIhMe05J1ZgT4D+qXDFXv7G8B5krsqiAPf36OWhrEN08BCgotrR7E+vox3n4TOxxz0Q5PaXgzSMS/Oiei7ZqPZYrScqMA1OF1iOHv+lMNlU2FbwQEMNCNIGPIf3AZUOX51+aZAh2bIiJ4FM9v83OptNbdhGz++LmvKaiXyPWCDPlecXzrRQckos2hqbNXHZCLZikxCp6DboH+exp2jQVCl8xzz1R8VomsUHdgv2Ot3/BfLYqq1L+S45NgoejVbKWlZP6c1DX65QawZblXBpeNyEh585iDEnMfSno/xYDP1s0IgEALf6FGZI4pYE4HM89+0q0ZfUh6XkJ83vdk69whw4zRDksqZBPjc6csoFneJaDTeNhAwaurImrenvHAr17Gcso4tTyrw2pqQgYvMkcjxl5AK4jaGRpF4iWviQLS7lfkrfZ0Pyrbli9L1msO7K0hXR6M7NCUmUdtbXKoYo7Eig+bc4UnzoyNIuGFvwqy3/P1oDg3pM9yxN+XdG4eputxvLQG50mS1LUrekG53sHefFAfQh+rKoR5OFBgQYmoLczvA44u6mNERvUaxzMVTSnK9dtZJ5IZAl5+XfBvxB6gukPU71fOs3v/iFhK/0lY9WhwrtUL90ctMfSJf6oyR+egST95pJX2pZtuOWFK/016zGeNvhpS1wdqE/1iHjLo0/c6FeBscTL/HINOlUyf1DoEcu+/6wsKYY9p8zZn+w7lxNLebmMlDZrYnIL1PObIjlhNtJ67uWC9s2cx/6Qw373/BdlS42PQNqpN724m8OUzlkay0xbSEecv04S4+fIN88ENcUW9Rf+5l3gaow1ckrNYBnQgyLaX5t28YnWrfCsfPPvoyUWrz31o91PjpZx1NxkA4+SdngGapfgD09jcQJ2bBTvMsB6yxFHvgLg3cUokfG9VkNvP6hx3k4ONw3p8roHei+HosE/nsVbZcKGUFbVvJUJ9kX9F2/3XKATijsqTyaAJ7n4muAKVR/osy9cno7lCIZv3T+fLfkktpF2AadOfwzJCcwWvaL10uQOBCEIOZOMo0Ng69hv67M7jzxNZmjJ7z4GfAKKWPF6WA3Jjgs0q2ZuqbqhyD8qhq9gmlKqbjiYAGNStRp5Ygd6h+yzCA/ZfwXVeVyUk+vClQ+G6gn6wWt6fp/vYoduYVg3eyiLNRJ+hoNF7IoVmvBjRTkB8MIdGbW/kG3XtFfjeRc9P8HPrUFwTsyIwMmXRUpA8s5I4KwUP8k/J1+Kv/WJ7+xtnhk59tKamJ8Hech8aAeHjgl2VpMJ8X4x4YU70jf4mGq44Xn6+THxcQaHkCzM5w7M1XRTsb1YPBqEDAeoSzYCwz/UJINTL4cmFQNhxANSoa53iAVdr/jdr0xcR3n1RkWi/PgRIPSeJfEFDtZUpfFb4n1weLPcPPcrLZWMmUSxh51bWESyNv4E14FvLLg1FWLGUH+xtguAJ6HkXaJJBozREKPrC1qE+6/ejr9ZSfLy/LhCOfyI0oPt53V+pydw+FvBYrOP5HFtuMfmvYsazpP/fnVyFLQ57Rl2iuGXHomr44uTpP9Zh/UBJCkT8U6rA9FrKNnkJ9j50JEpVE9/pWBcrG3XyTwwGQ==
Variant 5
DifficultyLevel
646
Question
A school bus leaves school carrying 60 seated students and 15 standing students.
32 of the students remain on the bus for more than 5 stops.
Of the students on the bus for more than 5 stops, 103 are on the bus for more than 7 stops.
How many of the students are on the bus for more than 7 stops?
Worked Solution
Total students = 60 + 15 = 75
Number of students > 5 stops
|
= 32 × 75 |
= 50 |
Number of passengers > 7 stops
|
= 103×50 |
= 15 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A school bus leaves school carrying 60 seated students and 15 standing students.
$\dfrac{2}{3}$ of the students remain on the bus for more than 5 stops.
Of the students on the bus for more than 5 stops, $\dfrac{3}{10}$ are on the bus for more than 7 stops.
How many of the students are on the bus for more than 7 stops? |
workedSolution | sm_nogap Total students = 60 + 15 = 75
sm_nogap Number of students > 5 stops
>>||
|-|
|= $\dfrac{2}{3}$ × 75|
|= 50|
sm_nogap Number of passengers > 7 stops
>>||
|-|
|= $\dfrac{3}{10} \times 50$|
|= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |