Number, NAPX-H3-CA31
Question
Jaco has a square billboard poster with an area of 9 m².
He enlarges the billboard poster to have an area of 81 m².
The enlargement multiplied the side lengths of the original billboard poster by a factor of
Worked Solution
|
|
Let s |
= side length of original poster |
s2 |
= 9 |
s |
= 3 metres |
|
|
Let S |
= side length of enlarged poster |
S2 |
= 81 |
S |
= 9 |
∴ Side lengths have increased from 3 to 9, or by a factor of {{{correctAnswer}}}
U2FsdGVkX19Oqv6IRMs9dNwzmAEu900Pzob6TWqyXdO1EhlzvYTaZbAF6yjw/WS9epaP+WxhDtuKWrF9q5agap1qJbUDnVlirpjuSZQMjSCiyz34Neoj9HUAuwVz71rXgwOkPUKOdb0331A/QufRY14uAQ7HtmTztHAz7AIqkgSH7MNuKKUX1lwX/Csj57i+Z5aQ7wnEIiKE18xt7Y19yRvEcw8YOygorf/3E0Rt6rV49XWZKscQMFmgJW4hyUkkpEws/3iTXl2/gbn+NgdSm8v4st2cvpYsJ9+eg5IiYvYfxZoPZhz6jK4G+TsvGKnEWjnkfE92m+DLQgdJV1Rln6g0a/Ze0k+GR3VEZIRIW8C0rOZZW7LvRv8JTV63CTj9Ddx6dxMAt24XVoD+iDVM1u6PR3DUQqxrHT2XGFDw8/tMzn0eTWtAXmbZfyoUpYPP7sDkGnT1N1PwqpT2CxOxcDFbYHK5w9ZR8yne2LsLtmvmXl1yeBFA2p5noBr5A3tUX+JaEXKEKyRDOMAnP8PyW7mNDfN4ppS/DK5iXfO3f/+VcpkJOfFysy4Tx8n4DAUORZBCuiqFzg4p9ch5cAo5IDzCawhUYC7MvOh8H0gnQChPYNFxQMzhkbvZgicvfV8IP2h+vGXaj4WzJYYOTxu6mW5ed8jdfHUI8hLHpfUU9kAx3/Av7EvwnT1d+GNnxor8Mjf1vOlfjloZGgVGIRNpWM1nFVBnol3gr2Yy4J5a+phBlv0/1i/KufGYHF355bjd2qNcZEKm2NMrNnqs8PhSOvwCseSR81Gh5OOp6+3AdZG5yelfLzqbLBXyTPUUFhu+b7ro/CZNP218QKUwMR8MyyFEDH1B2gZqO0AAXz5Js+IVNZg9xFtBZBoFqrfMULbYlMsRmQU6xpKKzRAXwsUuCvd+ZHxKMCBJIHHL0V8musti4vBMURVnePD/Z7M3WgokbBWvktSRK4TAud/CpGwQN7bFGFg1x0Hhg7bLlsCysBNL+8TG3wIUx/WEFDDPSLu0ObA4T4YnaEAd5WQBL4vkMfNlUR5OjxzeIDV9NF4AWZvlG33aIdOAHxXq9huO7yLKlSeUA6btIyDFuSjeiXXfcTXG+tkEros/GWIPky9im82s33Zb+gqImmoBt9/L5kblA7Yndb3TxVmCGb4y67G3xZTYGtrue/lOrwSJLs/hE+4eunTwc37EhL1gDrIYoPImKhwA36NXwYwLwt/OBkkOS0zzecLgjTNxT5NGae3VTiXBts/EMXMfhn0oXBdSTGCKKmuD2dfghz+2HQdevGExgKDFWtv5O6WiVOM5GRSn0TeUyxgfP+DFAhao6u/e38iSWf47XU3BLp47EIT15FFQEAunBmWivwQ58+JlJAeESJQFaUJYMcI1P0gakjm6V1an4QtYEiWV5RYmkRkI7Ykz4/BxNxcR1hZKxUjSuJN7bbXHVBoR8mEB9qBbxxpzx5VCj0u2nUaiI3EW8pllh1rtmQW+9r8tEWTlEZFMau/RBrhVNyl7J97ht3O8m2T0DYkqHKCL13/M6bQQw9yXJB/Kbuk7PT9G7HCHaIG2oQwHmGdNjoeVtlbYLxCGbj9DA7wHEjzMEIhzsZZ49FvwT28jGUwXreVlp3hOuOBiiJY6TUdTaWulR41yXc90ArE/sdQz4RaAPBJedlUbBcZHfCmwSS+X5E73m5HrtMtYEJPVUH8xQHlJHmI5I2SmdySzgkvXEmNPC7g11h4NkVGrybm+WTdSav+iY4CWWB9b4WpqY9HaExWHGfxL+/qQRPP3AJi01ol54LnhAY9Am3wyp5B7LuukNrFJL3szZGlGZWcs0NcqOR8N3ZQ4ndjhnZkGOsaFhbVVv2w0Ic6S/cV3q5XphfUqH3XmW1uK5ML8iV5zzlqmhDKcFIv1GpVVwi0nWHiCpd9snIvuQJC1KBnugQDT8YB7KQlLkhX1GXMZ7RAywwH3+LQiEWqq6T5qV62KIqM+aPBpflJ/187NYpktwnMkFCONkSSx3/MeYPEkSa9rq3UkKPwMlubokoeN//IzwYSoaTH+H6GfYTf7r5CqvF928J8JD1nS6TRnXdwgQtIoJPrPz255L4+EHtWukkThzJk7JixJE1/KY/RTJMH+8BIgpszi2x2kmXLR2caKid3Igu2nFf4JDzEDskg4srYN3rDN0xywRFHJWxOE9GA1rLFFK4JmHyUebPYo4liXQPtHLMsarDkL4LvxeX56Gt9oOPh7Im9rue3Z6YqoUkFzwQWiWDrOWES+8faucBJfDZ/VV8QvRrT1+rhqW5q4clDGK1RXKYbOD/sAEmgOlCjiZAIXBxiTFpvVSz4M4PkutFgtadPnicAuoQV2k5R+KB3zL7v1smkvpRNlitMlfWzB5zxObnO6gjEO36Z2B9aH5bCMyR3Z7c5MBOM9WzL5kEGDzWZRh9TgRW6r7gpUzU593Bj538etzp7ZkdlfTCA3RJArxrUmgydI8PiYg8LBq0B06NmNWTaV88aFOGs0qIWw2OMiTw1iXt+rVCslc/934jdNrEaurTyVe5XUnU/8X1c9qk4Iy1p3E1Wg0JmUZsBnKZuC6sJCURgedNEcpAionBBkxfyoXiCbRQo+JTM/nw40I2jfUeTAspNOnKd4664R7Rv7U/od4BL+JVRKARxbpGBmmNZSN+gSkQL28ZvpIeSp8oZHRqCEOAbPVrCsbgr/1VUQjZKr4ZfjROSiOBjyQVfxwXJHnSm5jGVCRG2mUzVeeaBt1QHgoqgj5k7pkBL0cgRrjCdk8wRibrU/LIQImQopUPUz0FhD3iw0Iv/nHEGWofbPd/4KYZ6OIvDcs6NzGomUgniBI5LBVCfHkxwwTi755Q7qdZtYntoOcCFmWX2z3INEWdTgK+/JlfDngs07ea0RusZmn+tX95k+XTBaV90KGXO7IbjVgQ0E9TwAmppLa1J5vteZHRlyRQLBHv4AupPH5pPMOlvgGAak9dGY0VEXWRu2TicTczh18eUwWfOQay9/YnpvcSfrDIm3I1g3mb/yyQS2wpC8pUBcQIW7ADudDH0PATKGJCJSGyzxQAM7ek+icmQFEeMVTZxncLCs05obrAH8jCagk8mpp9C+EA/3DBUZQyHyGxjCBy+fOAmYSLsQkQBY/62XZMAxjEi8Lk6cmVFNKAXouEADjlypN282Y0zZvW850tXoK7q7oXE0O3j+TGJgjHStzAGMXiN9rLngfT2WdjAwUY9q9MUu81Uj4qeyBDH2NDWC4GNan2UGd7AMovIWHNTZEnL05Pdx+JDJx7hZtH1kTRzsffhHRjWHNda+uYf/jSYU4nL14cBmlTePO22my9yZV5AYz/49gGRSFJ/bRns3jIKe9/juCmUKKcRV/tr9tEb7tyO80K2Ypt5HkAtDB/Rpmi7lRC9tMRVzmy4XhZhHSzoimmW9zjbNY35AbSjROuF87RmvfHUQ7IOc9TldMPm8E4Ut9mFOS9r4I2fSw+O81pYx5NyUgG2kUmpqRD1et2zFtBjQuwiEf+Xa0IukgFAxhSMYwDpJCG5IvUexmA4wMoz2Bg/urHdctFFuBVR5D4BkFkJ8CyGIQqg1vuETLlnK7A4xyFAJz2yxdMc58WUhsiboxNM7ikxw8+K4FGbqJACLC14BuLKt3zY/uomPfxjgGKs4PDVZowkQ9McsPoGN6Ai5tu50QXYfd93N4u9ZsJIBicDBOr0bzvnvPnCXqVYoXXv/+6FxezWmY/qz7WDbl6MDSeAvINhoB4Nl8WmD/nzrSjeO7AxiMHP38ErGkqUDkkW477Ypu7WqpkN9EaVTpZsOM8hR7BA1ABQLk7/QvZAgMODqhyBujT78+pppfQhrBPEtl3gbOT0nqF+FR0URIADk2bIHw7fP9ZBk8RDRlJVfLn7cHq6ybfz40xETxTTFmSd+NHbmO/ZcKfbM2Vj480wTlEsEhYUzb7PiKY45s0OGmx8shYHWDNREUVOaeVQlGmBBIKqjvMrtmV/ADUn+BrGikzRB63qpKlTc/fw2f0HYBfX5dq0VtKAThmmlfk40CtBRbes+omw8jZdOc2HCuV4owugysP9vqKjHYhBuuPs6cAa9Oo1HwAaeRRE1ALPNXMGbaGFaC3nCqPkkt0O5ATZUgjLSxDbDqEfYQ7lp18PltA2QiTC/FeL4zAP5YHQEjg0JRJ1hQmw5XMrtHX8WEdGg19SZeZoXysUUWpHG/8VsEb81wV+ZBZI4t/fWJjcgpQNznQX26KSbB3i4abLIcWhsDIJJk8hbPdT5tw3SASDnwRsAxQM2cNm0e0n97SQWsZEf1ReE5IzEvU+gGknALENVbhc4G9cIR6t4MgOhglsPWVJJkRCdn2qTNidM8gcwHZckR0h+VXptGp/8/bXWsXpyjoH4ToxHOBVrq40rUQAQCrRgAUK+4+BamUPgOROiHCezDS/mzXibN9xB7oEQ4wW+YQybt/wmV+3fWKuWjv4p7qvL316L5QKsLd9lk4OBpxt6DWjycSl9El/AOTLXwr5BNphLRpTugS94UUXFivoBEGfRRtVmYYuCWts63sTB+BlZMLJ+yeaDu5SzN2QKOT3+8fi7ROKH2Rm3ZULR/dCepPTIckBO9TVf3u07eWaCQdU4pnXQyLXjTqYEPJL7y0sFvuQ7rBZtiRcD7SZDosPntUHOCaqXi8Ry/w1f/WVOxM/QcKi5szIol61KY25btqOKlJfs6XZAI8ARJ7LOheJtfmknmub5ZHKYuFIj/XZ8Nc7TFamDVZs9YKabpXYQ6rmCk3cl8QkvRP4CL5ZiZ0CEPFRrVt7kRzBghfhob6IFobQ7FZoGL8DFbOihZQPnZPfSgKCpWEdewWPOYfKtSiEJobxh1R2Wq4SsvuAwnfYSOP51BafItckiifGJ4FIFnnFIxkGKPcBoBWXHnftZtknL/c5hAklrkY6HshJR5g9RCaLCxN059StddV+eWSF97gXOIbX+Dotj09GE0ACmiWA+EOoPpgZMfGb9ryALWfSnPoHfi6w+JJcMXHnG90wzAMKLlLDtps+7nIKVuCrACeCeHbZL+jDXYbvnCWyZRQDglv8yBKgxAI5i+Y1NLH4fHN88XvGWUtW9mczk3CpIWN/zvtFQ1IcNRdZoLW9rnZKuWwFI8Ixo0TvPeXRR1905c+E0J+qbFeM3in/e1p6nm68N5UcMiL3AqMTW/tE/sUNJatUQA6C7BBMzQ1wWOcs/+FcVpYnEu3CU7VYCxVmVC7o71Xelecyj1UMSjoRpyKbIi8sa5rLy4jdZpgCHAm159pCgCFbhLXY7jTspWD+sA92a3Mlff055nZD4NdHYGU4/QtW48ihIkKddCD/u3Sa0lJuu4M9BH2+GKPGuOEsy3oYDSkml70zquDjABQ1GtdBDMQhQFCJ6PUYRKiQer0Li9FOsBYkxIei9yhnBTwhCSPyWxsG0y9iUu6QCRt3proMRsWSevH2/UxKBqcLpweXuDmIVlPR+KvOyuJs0ji6yBSfi25jBk6xNCVG7dN9eGQQ0CaiplSu0Lno7n0q+tFZ4tvnC7s+YtmYLQWsfPKFTCCeHxk39s480Jgzr5cIiqVbYK4SvoGXhaeZoke2Wn3nU32WjFDP7kRBtrXDeWjrxTbOhbmlx5X06Dcx5muTm+RdvIkCza+6FT1Abwel6p0QmCk8fUJf5DJt1e6BmeZGdqbNZN0x5C+n/0ZcPbUSARi5MCyYVNlKq02aXUZUJ4xyaXIpL1/ZsLBQzmAH0UVZ+Umc2ijYYM2fOJVigcJK5S/DEEqp5Y+p/G3FGMcTtAanm643tWqJp6YaLKRtnkj6HhWf/Mqz5YiVXlbIbTPSNmrATJc2tezygKpuu4keXRz9rdCZQxn64v0iew8+7KqfYcTVmyV3oURLS5LQWktCgIoJTyctogrwboCtxbxmVPaFitLBt3GAMOs1TNZ6BUx1T6v8hkNnFrRzCIw6DuZwmKEm5OD0CRzkDhJzViE94bOy6pr1bAySNU5vLvPgwTyoYa2+3S7U8FlGEwcfiyFPRBy+KmRLhjYGKmjKAZ59dBG9meLA21DL81yQdQ35hm61w+y992NdsAbnFpnxqNNPQGvX4DCP9hyxzK1zIR60mYL6wzErJDyjbe7c6ajzuTMajfwh+OhUq7hlW22GmO4uaruCoLhYi5j/UpH3qABlF5/QQrlmecarpVncv58XpaijAB7E+Sr7/jgoO+IdiTV0DVilZ0esKxS8DeCCYPnTCfWCCOkjNE5e6wjDk3leKHjdbu6h3xWGrc+aCPDAdFHx66Re8elF1nJHrvt8XaD+PEpx82eS8ePyeS6yvDXto0i+0C1pJ0hXyadYV6OZsCs9le/QhTDlSxYHaiGcgTAhV0wZUNWGoDGzlIgCA8jDNedli6gYrrInE/5DgpQYkm8MyS3T3CaTVB35+tU2/47RjBqzrGyeEFI0Gi9q7yESUJsuXnJzws6ycTEb8HH89ERpabukfpeiUHNa0Qx2luHWTAaGSjs2v+lGDZU211iZjUlITgDGcUWV0qxnfZb3k/l5akHFWXTEhhSP3CiSYtYgrreCCS+ZZBi5NQ+I3zO16ewdNqVJ4C0MrV+p5awycDiHxTTaG1sHxakJ+Zpp0Hh6LCC4mj1Q6YN9tIfkhKdyZezG/CsVmoiLn1yJqP3tPMVdMy8Him2D2bjYRNDr7zZWgIenNSiKbW+aBMBGt75IM3LXBDbifgsTchqRFMZK4SbCd8McPKP2fYkGA5JxKzpmyzcVp/ycsjdjyVS+kjzgyE9FQp2I2V7/V8YCAZzmz32h2JWkreA/vZP9fOJxx5XDbEnX6+dzOO192yDG3iH3gTW8ThOcPre/wt6Xteod/l88B5HHyfeh/O/e4OTk/iPQO7HgHpvMVU8IAk4pxyVdh4Y6kAqevH/JU2B4608ZCPg6GH4GD6aQmAUZC/HJpuWkKnXwxSctsaYopLJP6hXFvTk069AIKXigi9XITix4yHm+9ONMuZa3DX9bFhY8G+9GQJi3h0vznreW9Nuk92OyvIH3VYrolXpHXZEV8HpZShZyiMGc42pt56BczucfwypQ2feMr8T8WEFkW/Cbre4a6jJWlyFNp/p+tHSluHi8s8A1F/5wpqcuvI2zgsGVKRYlU3krUES5Zb+gOcwi1VXa+Ezpa6be4E2BKnRbjab/JtqGIh3Lh76k9OaTUn2xtMPtjIzbaFTCjGHY6pfnCwf7P+uZWKBD4ZAuGmrO8NXukza7mkM3+fe3A2fFEMjsqDBtOSrpFobpEQkl28hvW5lIaGwFpFY821HdcxmMo9SG3ayfaIoz5bBJyV2w5uRxKfuQKoyQToUwqWaJt/LQit624X4pQMc2ycQe4+dj6idXLt+5RnvqyVWgDGNalNV44rkgnHvMcW8nNKPIIReHLgfPBQ6EX4hk5p4t58s9xfmIILjKIuiL8Pvr+4hQO5drX7beV9ZXIC2NRV82V8J2w8Orhh3CiJZdWbNZKv9+K/XlO3OhN616NB+fOsSc9mNz0Kz7gcH0n4BHhNLmNzN8FoFWH0p0t4FuihmXqvnDUJ7JrKGBO9KhWXiNgp4mDN6r4bADxVK+r5NKqarmQxqSNUdkWKMYPA7yH/VZZj2cn2KHhJw7Iec8lnls+utYLcvUjabvNyVwQxmC1nHT/2xhjBCpRpb8NBUdnepzfQYEgZ+FdLg8vQGHqmyOnjsknxFl6rHuB56ioFDsc9OdlcpUGlIWG2brmERsI5/VcxhEkA2d7hVwVR9Nc8gii/DcrjUhyY2isdFi3Dl3YYM55PZmALmFkNNlj50owDzrn8X6cNcocGorgDUaTo1zVhtZ+TdTgPgMgndJRvJ0IRvYYCbMQjRxhGI98veiYLA++24tisL4UwTJL4scyIx3nHPOeNOwL932KC5P/7u4DEYc9XpTahQ63ORWpEopYlW2xHktoEnASO/we/HI6a0L9tTpJSz0u0elLCvOztnTGlyNrv8FcFnBhP+l2CB5MeAwXwgcCO1qdevpVhewMTGFXMh/294Nbr1FVbqCFx/ppmPAIa04cqp1PtJUBocn7utSKH8U9MMvwO7692nY4t99RLi0qEI1A+AmFZTlc8glXCX5VBD606eT4P/lRJdEFpGMMIFnnuKlotcyfl4Raf6bNJZS+9wGTrIcqynZL73XowhHr/NByi0yp4SYdw27EZUJmxhxHYxqcURQbIwHAerl6cjY4PVF4v0t7+4m3TvRgEm8X4aJDEzrdu76psLJWp5hJaXcD81Sn+HPnN4t6Pvox+OaLy5No/w/jkr2Gwatq5h2ZLzMG20LHQbDqlzkfovu3LrC7V2iFcndKBljhya6iN/aen5UoUqX2/EiY4AhmyQpMm2MGqCfoBG3eKT+G2OUZBc4AHboF//oi8tRPWW56YBwK8F/MMd6qMphxoUnyB5bxHgRKVeZ9kxa+fm3q5n6wTCGvV7RQoiBeez0DP9uMvh95Z9A4FewY8zAatw1ZZNWAMvPaiCDF9z6TKyZcxT5LXg8KWo6WbtVZ9NtSiEVgrevyBytDvwRcJS8D7oX2D+7Bl4Xun3bbW97R9qa2PJVVvebHIoJQvwb/YZvnBcmgmlwEnk4Tcn0EcDVCAvGvlEMBLfZZOwIqSyoyLNJe1/AmsFDWmw1Nc0LmVgOjzeq+oZr1aFgx9HxfU/r9lyrJk5Lgm1bNxw6XamgWOc6wpR306pHg8cEm+FVlx2Iw/dp0yW4fueBSE7AjoCMjvFQRPS92Aa3lqmPvsrYOOLFUQd6K9k6II+c/hs9QflK64Jj5URPA7VYoJJ011v/8buDL9QadA1YfCCMGFtkuIE/E6Jx+KU3Pimlm
Variant 0
DifficultyLevel
719
Question
Jaco has a square billboard poster with an area of 9 m².
He enlarges the billboard poster to have an area of 81 m².
The enlargement multiplied the side lengths of the original billboard poster by a factor of
Worked Solution
|
|
Let s |
= side length of original poster |
s2 |
= 9 |
s |
= 3 metres |
|
|
Let S |
= side length of enlarged poster |
S2 |
= 81 |
S |
= 9 |
∴ Side lengths have increased from 3 to 9, or by a factor of three.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers