50052
U2FsdGVkX1+N3MTIpONslTMQ9jGh3Lhzol5P8GMGlVZ06EUGVaVu/Qyuj8jU0c/7JJbLDpan4ljVEvZSLhZs3OdbdMZJo0mM4V5nYnLbDwFnha7rpHC8Z81VATXColmyNMy+qrl7uGhUVsjsJg2cYr0hpoIyNnEzCl8UpLmxOoQASvtjkKzvtppUyfBSdRK+ecDGntP0cM5n0glLrqvQTbL4/bm8cTZTJxd2DRBHg9rw9Xi2eSan3NM+OQ6S9nN4ucnsSkdA8Wb7XguBwh+RrGMHkbk33T7e0MDgDyUe4qQ7FkR+8EKwz/KDD/moRQ13vTTO/1VtDppRgUdWSh/2plfcese+knXIschHUnEcOWW+yruDjzBy267NcHoT+/lQ7HaNU6I9HewGy4jtz3rQcpNXNI5ksZpNCPaaZNYAhaV0qLJqKW9iVECgH/R8az652sNhJfhADO5ZHMH+KjC12lTC1DjL04gt3/ZS/HhaEnJUSI6wKx7lD5JGNfnn0AB5QSdzquzFPecSTUbagyE2uHNRvqFE2cesMWEsozH2L1dN21fD45vxXto/vra3dXr60UL4StqIqSFLRcF9SXiWgCfyAakXlin6zjo4NAzpymUxY0xhRfrZIXBRsEv2NwEwFr8dU059yo94Gs6S975Q91AXKJvHwBo6gzXgajxQpJXywpsVsgPoqbCzG5p3OM0zaqKj6eBAnVUNyjqOLxHeqqdYZcC9DmrNR9gqzOwXsVMyO7Blw/kEnPeFTOSBqTBQnv8Ii2KgC2HYBi7VlyiQ0nrjM/03LLqbsFm+jQRxNeSu99QJcHRynmwPins/oaJ9WiqhFej76HSArF6PkEEjbJHvY0peyXPbqQFOfBgVhYu8NSgpjLDA4q/8701DqmcZYRSEVxAVbdbv6NUK1l1Hq4y2C2iU2dt/3Jg3Cg0QBRCfQ+xLT6AyKcKuDhuGBdnIwXNdZqNSxmfLRW01BkN53z8oLwX3THwxQ8RYfGvySwyJ+SNc29H1SJBXCSUAOgKZfdv7/wacY/ffbhuOnhGOnS4lpNLHoNRysW44E/AZZpiD+Y6SlbU4q2NoOK8j+p8IPutMdoqMgrY5KgiRGntkY5wFV94hgDbGzqelNnnEkNeR5173wS/hicz/HNpOBY4kwG59mRFFnmkhKXTD712pggo9G5+wvMWr14y2kyTGhcs8+WuiS6H31bNVvgBbv3WeOLwr4fimciLUnjJ7xJ1M6C304M4JG6F16r9s2KReK16Ad5nV15zEmrYydtaJYZuWj2JwPMIo5LOuYr21hjLo4Oxd8ujPO1mPf8PQeGJghc4ZaFgK2mYomQsRfcJMF6TIAAJJaSG/13bgkEIgt2lJqoEi6EVCFbt3e7WJkR0/r3QIHCZuS3Wq3XwSqs6UhwC00j9U1rsd6e5w3eFCo00h0pKaJmnNny/RXMKafzxy0A4tFZGz+g10z8YLS/0OKNvkGEGtM+zi0RHEEOwvfqKY4Gy1ucAeVtMstTlf8s7Fe9MiRdpZc/28CxWaSvTBwP44MOwcwcnn7yMctMLSfUfaMdIVEhP925QBTYz2t00uTYaJGlng4CG3tM3yn/wWfvvh06gdZQ5kJYgJOdgDakjhoUQVKLw6DJca8xX8d5jAi0nTZg9L2KW7dNe1Q8ORzEV8k3bxjKDZxtnOZYafaiA+dwDEQlgqz1aR+DU4a+61zY4sLTejUg7fKzZBCYKLzZarmB60r6PryIZoFg0+npXHqGszeaYurZ1RU1kCwt+VcIal6imutz7N0D79Mmx/dEHqxjlT5taaIHgrl0ffSL6P6J53D+2pxvrWaKwoboIWp2Bmj+JMfIivhd78pvs+02rw4a/Vst0rXbRwa+f04s9cNgC1YVAt2Zj7GEU8LILJt9DizMpFlazsL8KsGOKpqEsM/Rm06V5a2oIJ3yZZIODbGJNOOxSIT0of7F6mKkrzwXsM9dOzYE2gMxVPJAyJBrILheQQCz8N/z3gTQy0FQoD6mrxpHne52YDdF5usf9hbkA/J+7FvDRIFor4JlR8dj9U/sJfwylp/YLPgQ0Z6BJ9586R0zN8dUIHLHPvqpSCkma+Gcdm1VTo2VP4jHdn4a6fZqakU1XwVdvSzVJHvH4nnxkhBjeBDZmkEfwI8iG9mZ0LDSfi4b3zZR/jI5qK9srFwYoZTVGzPhlnx981mHBL+3FFIXAyi8KQtL0oJ9ZdcyaquoU/xnDad/4X3m8sAfB5SUomqYArNpL40WK2PAcpw05kwxF9NC7rKDm/7BHzZupnrJOAzPqWxhU/buIlAzj1uy1P31jPDCzOVFvkKAC2p+1LxR0CESXmeFWu+goAEmCAWeFvUwF0x6gpw//e79xVe56ZxEZ/otuU1hD+STZjVgNIq41FGYicO50yG4iz4ofmFB3zdDoVdtvCmCTq6M+RHuVzr93s4zTkf0yLnSfj+3TcW+jMGdaYv2PQr0LMa/f/xdsW0fcT3rsU92cXnP6k/jZO+CnfJ4tHCK1TAaoTnbGOYlHcDfJN8QiRvKDCSAQ58qZdseZzKYrZZifqWjUgAQm7tZ/c4FsAX9/MJiOd1k0CzXbe0UaFcb3J4r81RjTALYK7v2G86oX7h7W8si4KzPCx9oA2g+Swm1D8TFywaW5CYWGqFakBZWgpBGg6jP+0uCNxNZByEcs8GUjknzZYQ/OZMImPADHYaFzub5qYMcIU1HEJcPcscqn1i0xUvd+aAmhK3JTajmd3DB4fzvy9bWJG14s4t8R7vSvMX0ldHG9goJ+22wAhY4q4MuovwE9vbjATkLaWG6UCMOQSK1sRK93RSNcobUkHDL67Wu1wh8qlMDqPebTOpuFxGIASIClg+GELfSzEJ8qpXnHNMR9Zy0l/7sxUjXJ1+6GNX8CoiKwdBSZXBz7ma4ttjbys0j2t0u+EfvHAu1+nZgfYyMoD+5Z3xsqU3kpyrFTju945ez8KMPoa3S6wk/VYyxS3/KUkqDEAHUIYYB1yOrMq+B6BfhfjgXEihKsWA75Mh30ErRDHG5VCw/jUZTl38rth/iDrZzvGRTNxYfMgsOlIbpA/69NTWbSdBwCiFW1lRcCiLjSzdLyTzDGzjI6FzB5W3HiMigrhcgseqJDLpl/8oZn0qqnO0my3JGjZy9SPqjXtWmwiMPQhHDyhFDb/N/r1B2GqsuNGh8sqPNTQiG1vJ4i2NWgqxeBHicDrdijuQlEcXPHNEO85MROeDQX56STsF1aV+HCmrSkB2zeUzUNYoZEvZg9ZCR9B7pmPsEXEp3bBz2SJcB6Zo6jHY1/HEet45ZyQEXzbUPhwGjElxRgJSR2WdkXvnYDTrN//2k99OwtDMAEmlpy50Sjd2jmB+2mWdeE7mDL1xW9i2UqzfzBxDYZ7ACxiuorXmIRCVQ+E19XGMZQUJOlIRoNbGd0UKj4Ik7JshbnqWV9rG8ueLFsCtHmF0rNA+24IBB4ugpCpG2fSEVtfletP+hkvv1rUqqakFJb6MCM+2SypQjyW5pd5vjVbaeHxiT+Y+i/X5i1k38JVXutyUlJvTagTZSTIonw6me+1x+B24oX8cdCyva2Dq0tPheGyW8jHczyd3q1jCwrG86V7YaFrkqivP3Bc/a0kxyoT95NkT8671wViFSSYx0hkQBFeFOrPvH3VMuaejcYkeIhmJCr5OSdsk648Kwfw9JFqIhLnkVOs8ZNq0Pjl3VdkiW6xmG62SGmoJC7SSTj3L2I+zUnGGLYRXxsxSkloHrfJBaWEEEaSs+GNMuQaARPllZe2sp1mH4LlieOzgum7yANBltiWBOMaQSpb5xzqdmK1Z1V+jEZzOURxsIZkP3xmGWGhTGYqRcYrr9NWpfjVCyravcBVUZp2AkHQ9VFNfbO9Ofy38Adm2FZl4wqqDHhlOOMZvy72eV0pUReC+1N8vKmZ2xwpTSy5r42RtRJFx8N0twBff4absy9QNAa9d2W7c5rbxeXT8oA7OV+336E/HVyphf+twcMeuho+Ka6pT7NvObc5bgI5TzluR5SMXUT17iwjGyFvbwT6r08/KS8XxrX5sWmvzYoOgp0szl8qVpPwB8MM0rYfYSbh1+w6tnii9rDvdv7gjE6NxX6BMjDq12qxhctGiz/s4d9b+WFgew/MhqXwxyZXCeuHNZtZ30LR7jAvTuSBSxTkZEd70kqvjyV6TWCm2TeHP+SBvsfh7A9yc0lM3JxA2P3o6fktwQDinmbJB4Tfxmy7/pjg++xQ5YLVYl6/t7Z+ZU/ZgHGm9+4WX6Y4PADN1unHpdYNjZdaq7+Mjd0FE/HGin2RXLVOBST2X6KetIs7S7R3j7h62gc0NS9FXl8cjnJfsnLXeLibp+wQRp8Lvib634yP6887pJ4sDshuMqDOgRigUO1pKtdkbLqXDcu+CztckFcqOSTQgt4F7u6U9yrj7jA5x2s3ETBfwl/GB7/qR1RwIxXK0JNpqrG0u6oZYaXNNH0vQHEgjvWWsqCA1TIUtt4gb/7S2YnFv5Gkblqo34uAkLpWz86p+rercIV/AU5TzNfQ/2xlQ4haMNFLE8ITJOiUwpX/FlJScTXGXq07wri7Rub/H8/dk3A4P0f4MBwSs5uGaiYT+Tc6+XVdeAkWTQt7GjL0K4Q8gFw09yYGpQhyE10YJtgObTyJzklwEWZn3k572M9cznqDop6ercIBkm0cb7ozJ/0NbhvxIDSOM0tcCEdua2VGSeTUK+mnQyO42ryI9MXrMIOLpQhFODXFHBcCI9Db0e10cNj3hK+wVTXFWDUXCpDq8iJ/IsfjAo4Rb2ZP5lMC6KYRc1mkZ5PErLTgi2zdTbtkPxWtbJMq8XgVO/mjBPopbFU7oetnc4EgTk3gEHTYk4TlN4CX0UJrW9vNCaT8+VRaRcui3VmclwUB8JPZ8ehNdKUmfHd0G91vRGEhnjV7K881HBn49XXLYD1h3dXGMOQ0dMLNuHgK/CT5MmhOWGMLtPq3YcaWwWEUWf2eQ+xWq5PIxdCp2sz9qn3fJN0dEJFq1Xv97rJiO5rLepbTkpvuSwcYiPtEaYySXD/iFrMIJ+82lIeOI5et26O4KjElyQhKlkM/4eicCPG4FoKGnMH/k0kybl2ziGCAmJY1uVF+eIU6xTRyWcoHIRw1arKSulFpbYEV4pWuqSa2ZCH/JvTUUxL6BxK6w0riIu5oD9FyrYP66Ycz9MHG+1e+UlX24q2apjjERi2u5qlW3RFpa6I6Z4ddbVzUTRSm+aYQrZPq4t72jeGXIAZNiPq3ceD4g1IESV371ve6si8vZua7pOPjRo//PcciMOnWqwrhL27zu97PgOwRIM06UvktK0NerqN/o73qa5QYJQGc6H8edq6PrnO+jbnUA6QBiCNWDbIWixxKMWggGoQ3dEezezcskp2r1nV6QTO+8C5MY6JdEccpiDB/bPZ4XjlX3xoaTbA1tcnGrDhm9OgC0s9Y1RFXUvIcP53EjmDlyiWOJRhuTjUR2U7TZ1muF83Bn/TQ3lOkiZ8gL4vK9l8z/f81DaM7UFP6mMv3BX/SbQjfwCS5EldNn24so9dcds2mva60rHWSbwoLhhDXLEzeTyLi/Sh6OiWu1BeF4nCoySV64Nin9m4gMp2y5HBbNy0J9vk/8/SbXhPD+YhIJCdo3R9gmPxLCfRr1hMUBbsl3wuwr+sgx7jfHJJUiuyX+g792DZG3GO4lqLQAXDQZ0yAa5ySX8EOfI0/nSOBPbFyhUwlyN1uu5ImRXFqiHzyCXDXe2ViDpdeIzbu4B5AT4Pn9fdHxl23sZjWia7ePYqo6ea9LpQpIefKfpWCsV7ZCf33d/ceeRO/3oNfQcWnMQnyfD8IPG7orgjmgIpOQkQGmopUWmTDp6Zl+FL6XGAlwIowezflf9HbtvoF5+mX7FEOA6KvENNQGQFeABtnD6ES58gkLHV1oRATTV/LL6E3zvg/wXJS1c/VXAE8T5JwG5hMJpSfvyDTv+WYh4JSGc9tiwFBGmfXDwHI5inGCUO/PiQUAaZTt0PhNn23kgIQsXlHxV2m41m9H/BynK8NHq4DutOQnYZa1+8vJaZhIHVT4DPI0sV2aB1yqxRwChV4ypfQeF5/gZzAYGvoZbRzznvvyKOnlEx370S+rd2XDAyXhXi1gOwWbH9QVZT7qq0z3ckS69tQS5Q1UzyyG7kfW2S1myp9ZtR48X3x3W73KvYuXLXu8s3xXVTnxoXLQNolia5f1ZDan0W6wXvlMUuAajSZ28I6jyYG+D9xVHY09z50V6X78DJyZMwZqbQRU24kZFHtgSqYjeOfiQqsHjtCQYzq58L6fhm8FlDGsOdj9jW3vlW3buITcmMDhOwI4N4eeeoMIylSc/iE5ERWKdikPAAeuzsOMJ4E7vjGYPHQOoVRzOZTQ+XUlZAmr11BgR2qrqHMbwmwPt6/1k/NzH4XmMclsbzmSkm+Y6MACKvHCmb2vAsxwTTW6P0GpeOvFF1RKg/ywuP7MdiWp5vRhqSBuSOOB8B0LMu+8rur0eK7Qppmgd/KvgRqkE6kHoRXJ0MYdhRhwiizuD4vKgwfN70Faoj0Y80JAFrIEHkADdJ1sCYFkA26Rf8oGPhyEl4eTamjtNdE9TdLEHloM4mdfVlq9v0zGL7IXKJlac47iDOZR1lB55ZsktJHoyM+zgQLDbV/kyxK6TjhMYM7ILPfq7ONKW2sfYgNVSS3yhivo16qlul54GQ8SV4tC0SC
Variant 0
DifficultyLevel
579
Question
What is the size of the shaded angle?
Worked Solution
Let x° = unknown angle
|
|
15 + 55 + x |
= 180° |
∴x° |
= 180 − 70 |
|
= 110° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
sm_img //teacher.smartermaths.com.au/wp-content/uploads/2017/02/naplan-Y7-2010-15mca.png 220 indent3 vpad
What is the size of the shaded angle? |
workedSolution | sm_nogap Let $\large x$$\degree$ = unknown angle
> > | | |
> > | -----------------------------: | ------------------ |
> > | 15 + 55 + $\large x$ | \= 180$\degree$ |
> > | $\therefore \large x$$\degree$ | \= 180 $-$ 70 |
> > | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18MF+M5oeX1uuxguifyxJWf+9rxyS4R31I/Ov1bxSINcoRHtJ+uocsSZAg5JGt1/a416f0+sHutUOXjAGm2g6pq6CBLdUlcr4vZMF2SqneEHulYF567g/O5AfCF7GX1kK0rayJgYC66/eGOsAAfwl+Hjh+md69D0B0a9E3XBdlyF8Pj1QXgHW21EoLp32+c0I2HZbu9bArTV6iRhdzWrIbn8K3Mb1sE7E5Hy6RsaDB6NiK4p/ZeA5E7qgJIxjSpaGnmUhvmMOUK7w81w5a4bmXvYJpi5+FiQiebC3bhzAU2aWqwTZ8J+DhS0vHwHBwoi+5eInqQnpiPezgjF2ZiYYXxYv9ICniAYcEvfRNcFR4SG4ocDj3kOehfKPUsLotTTzFIfzA1EkbowNyrmRFkg/fUpAMpysGj5yLFGJpLtwzK969UM99iuqsEpcfNQJHRe7JxPyrsQIbUZa//Xx39swpePVeWJewYx2M7B8QzEswLSleh2wzn0PcsrsZrCZy3FGH4k+TFpIqeL9+d51Z7KReszmwmrlM3RRspL6Xfz5A3YL4qGZwURnTG22vOfKvF41nmwc1p4vsCkZAV6jQiKS2whnHpC+9lgDYlK0XTCNReX1CshYjQa+wdJ5/jzjCjj3BaHetK+uw0mFowJpy2effgAzN0/npK8j1pR9SI8cWSpAGh/+ji+QP7jy63Fpewp45E/4MtHsmk3SIo/hfRKkrusEEjbNw/29APCw+gTQfy3NcMCJMtITp4jLZOfx0BB7Z70Mf1H7S62veYAfjeHmR8E13IZK+IwsC49H9SPmeVdehzaKFl1Y0Zwggqq8gj8QBm3bL1tJxAdPyKqDH7x/8o5XR66CaK8KCdfLBmaaupaEYyaytaaV8CrNyWng3ApmRN7EXntX5Art1spUdW+k1EdkEjX7HTQyjIhQj+8R+guCtU1DrC1t13othI2PBE1yRJKM3dJdxGJqgqndXhYPVxeQv6oeXqrQvyF1IWHvaxkDVxnDY2Cxi6sKVYTeawik/216gSNaR2nyFUSyWRsuWMd/3E/qJQQ3KCKc0iR5edEipP6njS4GesA89D9SNKXYh5eaXCWYa0vYffzLEG6apGOfllBFJQhCZxRyXqFfcMdjOXupLjoc7K1zO4HAKp388D78q4XJj7epEGz0sZ8dSJfagof8jUBJD2rafJmFbN1fWrtzTO2Yksar6PJExdBebeAsdZmEIS2/oUkHxcsUp3hfmFndp2as7O47lSzkITyt5+l78TdOv0Rx1n+FdkIcDD5WfmT2uuzoTSQ7h7veD8fCg1iweJAW5mJ7QkRht8bSRVYcA1SDhW/jAYxty7k55tccYLiTefMLIp7qcG2iNZjyE/U04zI6JozeBpE7gAfr0Mu86KnjVaJtpFZ31OEPbhzzb/XpG5fCxRzShqEK/JcBs32Wqw4U2DtUQ3EsBhXxPS7NowKwBVdkdwNOEMucyu32Ok3b+Q/CM6FL9EXcH5Gor8zx+KyyhtmluwyUphh7J70SX1Y8BxkN4pPa1VilI/JFGeQy9fE9yznKCaW5+eMzpsG37RvRhXRpd1SSSC3FlW+SYXlhuNv5/dd1SCDB+QU1FLvGjSj+3W6aFXQ+vJfT5zEYcHXYp+cVkUsrKE081g/u2C7loul8Aj9qfr7DWgXnQPYBu2agwdKcreH1dIgaim1VD3NGK/aLaodpAmTGKvTvJwrxYIwH7BkEOFY8xP9uYXGBkqFnuTLudFVX0gxFOxrTeCqf39g18x7aj2s/xBIi2KI1Ri686Dkw29PjbCKNyfrgqR7DZCf/BZ46xXvjZzgDzJP7AZpyDciZgDjRflk/FgkDxxdJIMTq6FxMvpRd9NNP/65GsB/1x3oqNd1PfnKgqhjVwgE6r40dq5HwhSaYF/GbIuiWf9aQl2sL+PZNfL+NIWnw3kEtma/ninP7OLgTiJ59ZhEBO1Wrh3sjn44fMKcjoVfVvVuW7ihxkCdC0qz/g7slSMbytKQfE4NL82oTwfIHnhvUv4JKg+nKTFw1i+/r/kGwj81+UX1EfOkHgArEweNe7t1DS9tHesFIgk2NbEfdc4/CJUbi9ef61GK1JLt3J3GBLhZa1Y8bTomFOLhd3uXVIF5qt30yw0ViJNsSR2HZdm2eKVUUApCLoZT/h5TOA374kEk/DHflzrZ008SLWYX9LVVadV28W0cGd5DMb22L7RSi4QjFui1ONOT1/365hdgCOm4VqDoYDJoiuhWkq+AVnrnDQvSyODh5kbo4lqmS8xpoNzqCcGPXlVM6JVQ3sI0LwPtHUYQ4ca7//DJoM/cXIBVDJBWcPBhnxkQeuWAmhq+yN0EyPy2GiDbadXY8VaT8MjGEi58SC0V2VuzUefUBKoeX7EzqHuf7YmtoR4djI2OLhLTGybYfuVNApYayS0XpBWuZfFVefjpPBF5k/ii3syrxtGUy9jNqzIDyREZHqzIfE1f/1Ugs7wcfDHfTWKdhYkXiSPJ7IzrmCeCC+aTpjp97P8Ad5QzpToBerYOeAAnJnyCgft2aVataIS+o3mKc5UMi9yinZEgkYoID7huyZ7SpHAsKYmo9BhkXgj7maNeHQ6Z18norjvdnpThF7mvVubyHQNKcePbKewdXccj7PMD594kaqrfBCxBy95Y/aQhWRujRJnnlOiet/611VKZVXJJGHuSfqusNOFiKzji373JbrrstCTi6ykARNx0kXS3a8FmNWue660KanFgWred50XaD7vYvJAFVSqG6hTRsrlR+w2tHOm/D9+xGXhAHHQS2z3U8Ll2obWwraiGFGl6c+1qXCWZDbCcex2xFFvUf71tA7wxYncAfxqokC1ShUh53JsK6GdnY3d/kJuM8qK49ci2HRuFTtQ/YwpK8jaRnclqQx9Tdl+QAC70KXsbYoCaCpqIyoEfKjkVJMIDT4VUMU5RG979dVOY5SieMJyr7loqpY0qoCuDPuJ/A48MyrXRJU5sRxm1iGOjmJMc4hVLkilRpAFm13v2PL95ZwmFpwziWK1q/3aHhPLCyivfUaZ4oGdfkWji9EveguGAda1w3OuMQ15J8KiYHqLgyMI1gbo4Jy9EtgYQOR0TmOOqn/TxjyJrmzcM7slmrgWdMFllfBDHx2AKavgGy5zA3/0EZzTMf2gXtMO5raVonb8cFxCE+sAGRtQo98f7ojhT47Soq+SGyYcrxqwnrKtvtF15CekkKpzUoEf5XNxQ0b/KEQM1XBsUFq35qFUD+6mdKOLYhp5moGPSHAc54nur5cuXb3qMzMn7bUcEOALdZfBDVCiR7pLIgPQ2pkWR3oHH1GlURGTcO5EjHwsgkpX1SBb7gSGnwECTBLuW0/GH2L4HxJNlJhuP15FA264pWkaoT7+TaX/YDGsK+D/Yi0rNQ/o2O1+VkNoVhAcanPs2g/P3eBemQMBua9L6Z+T6OG0yWKnxbkAgm/XmbueQdqWM/mPdYeCaTrPIFJgs/o104xnaAJQsn3pcCUwb0PkiIKR33fhxtPIpZzhGxkvOHFheXLhOjwcplx9Zamhna/xAEmD0P8PIQdXjxd6LTCM5dGUOETL9+CXUFSW4XA1l7sOnPjsyk3A6Op2OW0OOSH+q0dXoJKDhziprNU4h9uVO8XsHmzS1SFx/Lw/cYywmnoikgqg7XYgxeOg6I5LyXtNGTDb7pdu0NqeT3Up0iZkL3Bj0jcB9EUeC7a/lzRJFPzNsDJQk53okzZVZdFzsBP+IJh29Hm21IhC92vAmc41e5fh0Iy2taeULq6P9iUWGpeEgZm3JGS6VbqyjOmaLLs2kFlBVx4KhJnkZOLSlzGz4qrrJii0f37Yp1AYLsK+4v+VEdNbh6q0w6J4jwgsWV4+5bH7P2ijIAFKstuDfQ+X9pVGWuqvMPwsfMZFGK2qmV0mq1vhohbTvGjku2P7zhgdeL9LiJMLRYwi2O2LIDkNaP0LEvaIcS32/p25bwfE8N5bmudovH6leT7C40VIRrTmE5t9q3zah2MIIaVD1eS3UEtdWn8yK2BI/2A/Im4M8r022itJay0ElyUAXNrotDGTF4p5JUslJ+BBQdAM0dALwJduJKOySPvyZXEsSGBoDysYtHJorwp1QwbS+szL31wMoyvavG0x46hITBLqfrM7W+rzoBpNp5/xUE+JTtcj05Nqmu5Ooz+bQSuZDjDi5hAEHmVMzONwWxnTdRvlZrSLlE+O2gGaTGVlvBnrbHxBgWLYCYDxJP1L28h+ciDE1acQXmJghbx5Cp/TCF6pWFLYT4jWGDxX3WJ8ysG+EcYrn/8l57G2XDo3I5mCWuwLseT6QnJf/L0mm8D7bAQtXqCZs6EdJcNBnNa68p1x22AjiY6Q82Yepa0sJtuY0f9x9fxcrRQjcn40HpMfoIK/9z04zAkMxdeaPlRhcVYHx+3XAVdiw/hqJF285tJu/izBgPc0voNdgbiA81FMRhprFEwPp59L9SGybEo5mjLC/rvURsKYRPJy1QbGm9G051hgI6iK6BPu51qMFCMWa2LF49HMyTNHZY1aTHBHItuwaf+LRzmer3YE+wEDfgDX8JicSnd2w4jZOyFLm/kwnM/1TpQSJZa99B85XIdbiXk1iRxKEcM4D9Q28JHZGBB95SwyyIMxzZEoUWHelepUuXulk1Hw8U3cszkRyZLKKm8xDp5Wq/bqSHEutv/gq2nAKtUSDCbgKiPNclYftyo2B3JVYW5ACh9yPpJ2noZJb1ROltp0XWpifqrD4r5jGq7LKNEbUuWW7v/JvzvMsYUF5nqLWsp/8k8xPLzzlT9Y/L1aVanri0UFgz0JJhnNe1Up0oPAjUj2goK3KnXR8P3TjnnMxCRvV3S8XaoEhXLCXMEZkBU3WyO3GNiLC3smCSYG+ubNtWQIdZMLk8w1cmhhqH5M7pixOb8Qnp6k3V26XO0ZBwLpeusDxoalxsVDwlmN1XzDyg/ELxGAM9FzgnMnfMNENkm4n7fo+OX+75kPHA/zaNxkzUsTJh1RfEnRn2qMkAzAIcqPPA8wlqL3n/mvzK1b9X+eos/pTYDMbk0VpKSuPBHn55wJYR/7bVq9qgJTX5OEtt6lNfOjaklwowRq2xvZsx6ACbqjBMz98cHA1t8stCwAUhsEPJkwfgHB++TnKLzKCjcod7vj0wAyiru1YZEJTqNLBJxzaIbjDkCHsHN5nD6Llv7N3afnhaPtLKw3FtP6+XXk0a0QThsIrZEjDeKp+nJ9ihFgP3NZqVxzUUabWuC4JDzEZjHJZbgHW5dzDXTM/43NKgDJzREVyk9Y2/STiZLG5HD13fNtWkIZJmj52aaoiA6DAZvdlmscX+5qjVOI83TEbpRaK1CL2mbLgZ1kpgbAv0ypnXw3ZmtIJA8MCLp+sxrEJB1W3fOEymwBCZnH2f4T0ete7akgeMrLUFyH0+W6rGqWPnlLQLmsy5BtaYEh72hFFyGuY+t4ujxlZcLGpvEfwP6oUAEoSBAXBu+JgR3G7UL5C3gZnLKLN3IOLtwCzGKPvx9j3ZsXNYdUABMop75oxPq2OP2A1YspBxAviMGm3jEh5sYCaPTLprEx1nz6OA0LVrs4JiclQUi271NRvMFPWvIuoLjHtIthtY4S5S85lDuwX2OtzB57T0dMlmied9qzrU+IJmXR+MfwN3V3AU2U5Qn3yo2nfpWUK5QMZtGCz8n8ITrsXyaoSvwDt8AaK1WHAF99x4Hwjnnu6FqD8wOiiwTu4UBPJ4sjtUQtjobgWr4WjTEfyWiaioeOKNpJjfOFOMrfsUItZywHkMBkX8CXY/A+k6YpbPBmLANUc04WEGKamhmhvf+4KDY0KZ2/noVoktqavQGeHQX+R2fqXxL9l+TlwtDEBR+/JcqvuuIy8Kl74/0QVh9Jg7aZenTojeK7WT8sLR9yB5JOFGlPk5/VADtRiROIyBjtU+LuRMc1JxkTTu/WAuxKAQcyVV4YKhv9E+hQJZey53LK+dL9gmjUt/qi5IiI6ngdgtlmu9TGYPF5ygu6M8qZEabd9+u4mxsLaLPf/SYXLzJ99DYufziqFGMDtfkBmvvrSQVfcFtYYKnL/pkaI/4F9pe6rHRg0NEbAPu4kKWg5RJMaSanB7oIX34iPIqr6tWiBF78ETj4REdAuQ3/6UHqqWr0DdIBC2OB3N9QyP4pggNJUAyClZgXl9WSXn5r4uLrG3OK0ZkW0fW6QeVt9TzHH2GKd1nqdBHcgFeHH/0XPijCoEYJSjeuOrrvE17qm6lgKFm1ETUnZ6w4oV7UbtTqTYiEgURWQ0mijvJiJ7q9JrfRpP4jD4L7n9elmvScKomm9dpQcwlEspxQVCupmDwImVoU17kGMlq4pcduX8HInxuxKx6sY7s506YRWbChByp1FfR0csVzRgA3S5GsvKvrb4XXYKL5fmi+Vaie16YBCbZuPgHAVC6E7as0CDW+1Dua2zhG3h/0oxkRU8+17eLeuACo9Ju+bOuGP21Xysjy61CVJ6xAMlrSJBPU0Msuuc6xxY5ThlreKWLPf7iu5fPu4/3PxI9ldOb5w0vCbeWUwCtEr9/+GuAY2hbq0rBTGNRYYMD3QCYjqTJWAlzR9J/CLuTzILtSF5450s40bdsPdopM3f8o1dkImQfSKmE3EZ+7riEUBPMXcjuHnqCRHBUQmGc3Cw/Qt6tp8RFYskvnR9lVpLt1KaCJjvZ4h155PB0bDO30b39XMgzF39XYK6EezPGchKrOtsTAqttdL4KWPXYiDdOh2bkLtobTqaWQQSmMi2h3Xh3VlgrFm9FVXTjfMkGYB668qIa8pUDn31y4KUgmekklwEYWWE2DIus9RMLV6BZ2Ws36kxhVfxxaaZVfHxx/5m/Xe9uD8GyEzUc5H021eI0GwngcNU/ZbU9awLnNvaq5hO/CioCGzq+6YrtcwGsTThG16IFTZQrLxcxjBUzNksMlblNSYYV2ZO4BpSn1vBlRqjlf7gdzii0PXTu8j1zYkMS4c1+ywEt50ru1R8qpifP8a0ymuYt1UG7ipbAOc7kp1CVnrE9UOI/tDAgggfXHaNYq+Ulgmo86vl5CAs2Lh7693bCSTXcjM6YHK3PbkY2zAelzq4kOjLZHlmYUAnXNOGQdoqHv/0PhQIlx43X58mzMpFtMYG0D1gIQ5zUcRon/CO5wQVgETKklgaUbAVwocM/JOEcenmc5XcdQFQfdCIPF95MiN6SnUe6Km5ervvNutElGaO10uqPLbJS1EewjhK0cw9zQf0H7YnD8CAIvE0vD2IDxrg6L7FjTqMCo/8ZM725rf6fxU1/o6ML1wO7HcNduNMVY2LZeyKxgrglLYVQD6a6dMtzKezu0Lu57Q5BOwrPGQycQ31rR4uz4POpCOiMLPXWnq7UKYA==
Variant 1
DifficultyLevel
574
Question
What is the size of the angle labelled m°?
Worked Solution
The angle sum of a triangle = 180°
|
|
32 + 110 + m |
= 180° |
∴m° |
= 180 − 142 |
|
= 38° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50052_v2.svg 270 indent3 vpad
What is the size of the angle labelled $\large m$$\degree$?
|
workedSolution | sm_nogap The angle sum of a triangle = 180$\degree$
> > | | |
> > | -----------------------------: | ------------------ |
> > | 32 + 110 + $\large m$ | \= 180$\degree$ |
> > | $\therefore \large m$$\degree$ | \= 180 $-$ 142 |
> > | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+zQswLvMr/2KyGVKzgtuISRPqHICGFX0DbSbwU6jpyHfm7lRxc/emZidRwGg67WtnXPUR9+kFJ/oyQyoq5DnKMIA4Di3lz17kOrpRCGNvCtkfLf9P6oIhUhDb8Cl7pM8cY811z2mwB/oe089W26SLhuUGRafqM6xGKSfuvDFkfx4gHYBwCE7l264MeTxyqWgEJAwK0bm1qWurDVYUSyc/VlAMRfrTJO2jNYOlXxVteGqwOiiTlT/FJcGgveUDQxs0J74lMcCzW6Ab1IyRxE26u73x4bDEdEGJK9vWOD4Xr9OmdEbkCJ/LaqvZfg7U+S2Y0Cg8DAxssp+E6Yb5lOdqyrbJ+EG9hGHD2lEsGq2z4QFsdsjQ2Wkqq9vrJWourgwMxgYyMud2R2Wb2nxOHXOYiUc3NaCCwmnNADlNN7+X+wJv+Z5XGGmon/4dGx2+Yln4w7T2PLNb254Fg36Dp/m0IUyxXd2ig/ZcR5ifaJhGa7GZGVgtbYZlyiOlbtgaaIpmBVFriGOuwTmM/mz44k5u6/db+KQGqHTpN4P12ZFThBMEIp4qq51NAdrEFjfKkZGI4qEogweNhVTujaXT7/OcchYQ5RJhp00zmOhnCZlwFh4UrkildO8ohm9Jyp095STDPP7doTyo81ZsgusrR+e+myzIgqUwY5aEa94kLeA+ujalF0wxil7x11Nd5PnuPicnT7tJj0v0x7FpjF9BfYmulwx7LldxDqg5tx0wBZbjmk5fGheYX2b9KPIyCed3EWNIUrFpq9vMelE/W/afGj/F9SjXFqBovoJ88XHtXjcW81k7pw79jEEHwEsv+7vkHjAk/CF31kW+l6p5VxOQGrscixDAh+A0sapirL08Cdw2bSrSvV+G/COeYZIcVWAsVzoo90bIGziNCrlUgrk3z65biiFojUcUoDX574hJsFdDakQKWZPE1QqWCDF8VZ5fDWwfHMAD+NnX0vUEqVd5PjONrrMdZeWvwu5ji2N7FgZZ2YtsO3IB4icJPYvcaSKzLZtkQbqr/UCgowpIgkiMlOSsJiviowVNtevHhvjhZGSZtjjvpakk3SNlHwNq46m9FT4M0POTYhwJZUF7ux1KL0dc+jhFuJsYZmj2JhyCOyL+fJPNphT28qQJlQSg2XiyIYVfATiRwl0PU5BDd9eOIM2cONhiTl1ieCh6VX2OQc1ENnQfRvCFhLZ6PLMtF+9qg00L90Y8/Wts8ebDxnzJCEbMqHENOylBjLRb6lPfYF5l9Bp2yutg1f/3EqMAzy6lIf4z69YBV5k6LNq7WS15bklbiYodhAirFJ9Lqojj6polBweWMHIRSV04JwTn3VD8DVHPQyjPfStz5FPulEbyN14QhbnztHJhedCTiKAQeHAo9jrKeyL7mRcMg6IEqGFLI6PwKkaIZkwJNhZnm8W24Ec7rAxN81ChGx+qq/r/2VW9hrLGieFgoM5cO79HKc6XYkW7mSlohYkFgS5uS4Ta53tpJunO7adIEpt5Ou1RskHZcze1DXWgKpunRgjxHnck3ziLektMIDtES7v12YMiZT9YKKEX7dSvHuzoYuD5GMHcNfzeZVbc/j+2KOaoLQ/0Val1OLKsb77HTxXRmG+37uZWEaBt6RFizjcED2rswZ4Xe7MBIQJlf/1t5LnMSI1678WjDRiDXPHwA017vlHJBb4UObroNvO/ygqwQwZBd0M4h12yZ/fi/SWrQbHH2qnGpaT+0s5kOv/FdD7YnTc47ArzA/BXK4W/zTKS/8TkcjGVeMqyNL+AtxJxI5WmA3nicfGeSVu9AFapKcL+zK5VDx3t4OheUjp0gH/rTCbD4MOJdodR5bbAC44hY5MahpSsZocqnLKNSxq704ToqZDxyDVGEXkEp6yRvJJ540FoCnwAmc8XuoDjQ+IziYYqCXc3fhUVXeAZkEAog7Klt8/CACX0uINtuUPv3aN2gK97arY6IGWqJ+FiuG5t0blO2ShzapLcIiF52ffmGKotRXQXhpuTqyKghZvCuvgva/qH7ulOIUKnPT2PYCyrP1UKfLauHDpWltBt5KeZEpBb8nI9YpfpCdsIwmWOjUotg299xNmY4mi3f1HOUt3TmXM6KvQOeiuWy4Kb1gw4GVvlygKhfoO/e7ZjR3NVDvMff2YMlFOaFPRBOB2S5yrYV8G7ochfcN4yv7Cm7L747+fauzgXW8uZjNcGUQkSc4NvA5wawrdeX/Ue61xZR963MgUkCpnQ371xmgmbkFO8AjiXF/Gdk3zxq9tVr7MmarlMMmtH7HkxVJDXFahZju6u0xJLEycBsCOIpJCwPwF43aN+OgZj0B/wPl6tPi7dqwPAn9ket8fsd9jCtl4F4mjIHg74cMBQdamw4op6M2ZAx+ofwqKZUh1bYtwzhogTueCGz4y3AN+CV7HbJoHSXN5ZeYLYiPCEBdCw226SYxHxyha19pimkXs2vgvue4pstZmEbKIh9CJJmD4ocPqjwl7CHPZu5DXrgU09PyoNH/rC0n9F+quSZ7NIYaMFEYA5c5jLM6H5r55aorive0TxYwXWGFo6/mB3H+bBVarUowGhxcp/fi3epBdXmQbJgYhX05hJRjPbS41uj1yx6L1xq8PDi8PFRxer0EDHNDrmBgls1X5albZE90ic70tmRt/SsihVVj7ao7x7yb4GVAKXm2RUL0wQ9FmDKRceC8MtneLfqRM2O1WH1aGPN5RomJss9HWZEhgy5KF6GF8GFQJ0TaIwfrT4sJHUpDkaChgfcPRKIHMsnz9GR39ctw5kIHfD7glf4pQd4J8WitChousEWfc0bGWTXmJWA7ASiVw0N3UXn6Kmpmdm6C2Dk4uEAD49Xv6AvPVUtVaJYFg6V+T3cfZeOKOU+6FXvkUtw2oxnZ7mKVn/xoalmnmdcpF6tnVIl4KB4qhx/rkpTgN2aHdobZttE7WxekWoiFoOicRYJN9XXIH2iekY1O7o7LTabzh79loKltLIWLXtLMRNUl5SS7vKk53I4ISIMijPLRTBxvh2O2fNrteACkuKNX5Odp8ewa7HAa9sYRR4jCKNBaI3mAgv4EkYZBQiCSZcZeMaUrd2pcIX68FDOmV9nctof2f+Jng0eCTsO2XeiOLGsdQh8/2PoKpHbNdmHq/ShrYFEwJAzPnk8wIzpAVONiGe9y1rpUpd5UmBs+OvdYx0v+MRsrN+ZDHPHX+xP1j6+vcJ8D2TRJxmpOPea+Fg5jT34GPVdG4VyizSS8uUgYPA1EU2F7blTY0o6spFmx+hHPFhi30MLEs7HVXO9WaqGVxF/do+PeqoQXVy8rE1PuNbNNSOtSyuOyuIpK/Qy52hc3vRlY/q+k9+F8gGv9o7evD0OdA65GndAz2eQccskfhdEyd9XuAq2nbZ56wxDQ+zhxp3kqNLzIwVRvolmyGWWl78X78r0DDHB7nXgNx068hF7gCiNHPL2+esn67GLcULpMDG6L+OxeaUsOCWc761jemzr7dAdj6NXJ03msS52MYRUfulYQGZ3eT7d80gJyaUhbzFGBJOGvA7zFjs0k2Oo8wIDY6T0BUlvecQPghRO2431MA5NxZVxYYyF+VoNCf4iV+NjmNEd+kWtRa9StiRPL6uS+lWBvRhjIirF5meIbyzOVe9Px4laBUn8RsXkAghDMhBzTSp6k15XTaM+qwwBr7WQC2UQszrVyVScnSQaiwAnp9DmeOPlSoDkOLJzP0pjt8VyaX8ynG2HJYRphFgdjsM0gI59eRUs8IjjE4QBM/yg+Ifz43BWUpB+FjSzZGAINQNhB3NktYDvDHIOlvxLtIty9d0mB1/hp8wx/nBLNh3Dxw1Xv87q835INTAtBmefwgW6Fzyvp9yhD1vUdDbnJa6HlkAa7pGnzpM6hoOuqgRF1Hv6sMVx9dNYoRoiEQfS+eEXzc4zw7+QQkbcY/SSezG40+Xqt4CKi8A0mbPxDjEEfwdLiSiGdRQ3tZI+WQCswchL/m0cfxL0FkvtQabpElFYZ0QgQbAW/R1d4Fc/yNA7+DJYEvbOBgwbX3wGE+ldsUGr8dDjevpDAbrrtyG8Ac07jHzNVsZ+TI9CqSZK0NaZDSo3M0AxzE509BvBw3+TtXSac7oR+jtY0cGYkbjVJSbIf2EujnOUF4pOMX2E6KlzuDQHJgG6EhFBEqUBkCckAgjoRiVw0gszMLsIhywQ2Ub+ESvmEy4g4GS9vpdnxuCj3G76a9uSryv9NY0Ld11zmxtpvR+ffNssdTJbzQunHN3m5LNtWuVWouwuTx+bc46+BAHbUh57a2HtX4n4e+LwH38A1+eGlKkc7a5Y0B+ObJIwYff/tAvCe0Gs1JvhyPRNu5Fxxl8zEDI00qEaaMkPDN0lFGw2DAaaw68HjJm1cFRqfYh2B+iynjZGm+vJ2tjXVykTsD3uOCvkgmmgaE0l0UwSP39YxvF+oMWU6dVMf+YuhQ7uJZCHiEF7Su5gNCer1d1CdXYh36mQ5c15p+QvXpy1d4U0VeKJiVSPAlSeuUiYo9ReLBTVlNvkBUQobL9+xKZ0S0Kw08sTezS5zx8dmn9eSO5xdutuKys84OksBC4zeNqikExByNeZn1cyzjxNgtsrTYRLC3SdJNuRBoEmBMEwUxgwCzzlfrJdpVGUz6SoybunHp0c7MVTnDmV96EyaIP2d5f6/o6gUQZxQxumIdX+iqTalnEEPlUbfGW5ANdYTteGy/jhST/TYNNWVvx6E9Hmukh/t42HPkvfROkfoBoFzYgJejht5WOpjJ765lhx816AZIxhnqFzE0X8n2n9nC5WDQ+aBEuYXEv6kckEyW7xaHUcQXffARV++uYpx4EhxuA9DtL4AIguYc5FHKD0UJlhVBeJH+gdFjcT9yONSmRnLcaYNo1Mxq1FHSsIzdva5OkHYp3YG2mUTeCmCHBssZl6pVtVQhKz7jRUs+rUMKP5uHtD3BVxkfirZGuKUzRsICgxYkWGDqtLlMB/0zRzkmB7kTkvK/mIbLAOwkrn78vqSPOP5AVC5pxsLMkojXqLiFk3lvi1wRRlkcj+uLz7GS/Bv799qjlYIWw88DkfL2s3QA8jOer5ATuxPYXuu43a+6Lo8asTcPgfP89TrrxUT2gDxzalV+mX2i+FvnxTEKYCPI50AIezS7gatT0ii5iKRG2CR11gwiGO/wUtuw9AbTSUp0NAGHaatJiFGstSNX3+AcFRqVMlkiYs7sPUUTuwBSGoaDMTtelnTgLsD4gyIC2rfuQthdr9imgYiKyhleTo+Bi53sqB9s7fuDt0QPuUzXSu0pG5oJMa7XDwwBVhTgMCBBCnwHemZKqyGjvd9VphwmbflGxJ5SFEVsaaQYpf/ZgKym1XSVxHa/Wkrk4m9nNHJgyq3TnQUHG9zKg8nHQAqK/WF1yCaiSJWfsK5fTgSYTzwtak2jznH3heljSbG8kMEEbH7Ttt2IeinmGHF3+eUBgXg4qc+pDJr9vIWOkA9+fgfWAgb+Is/c0tBumz7jJ8HxmvZ3i1wXTh/Qy0LPnksMbAylIaHddC9Crt17t3QNPLEuAFLhnIJMVhRhepAIheH5XGwXHIb+DiJx4hkAvc1l+I0yvoJNx9HCTPvVL13KK2hVEbF6KTMbX++j5NCvZb20L5rOWVxXn881KoHLRDfQf13LfTn61Ptm+Yr585rmmfwqzlY/WvKvQ8tJyWOK+EdCTXR2R6f77z/jPuoS8PbjpoUU7hTRVZGSMF1heldUabNGRZdJFcvhG5oCIAhEoed5lJ28lbQFV/HCVxqrAtPAKiHBnHa/WKsSty3JcrR7Vd3U/hkDQVeaB1yOh+FAf22+6857F9//tp3DPwaF9WGIgj061RCgOwLfHUVUFSuDKyL8HxD/ZeUHKB/rVW6tH4BHAtM0JgHCQOYjJEAVAkz5hGyl7cU6M/4/8we68WokhYGfcytkVd/ybu4OhZQelHdcGIZFCeSVKfIk7bILWwE5eDQJXXxAQvOvN2QodP0Zp1ZX0QI6ewxj9HZErtq592AcD3T2GBIIi2eAum3Dkbfeqn+pZgdU264zlxxuq8HZ8hqJXE93ZFXHl5IjHMBgUHuP833IQw7KElXZ0k+lxC1mREvpuarO99c3fA5nPeNcnt7ItgTQVlkzb0c4LhJ8K12/gov68j5wlHSrvgrjBGfP6on4jgrCS/EblQGpqu54RItPk2tKeHDYwiXn4i0f53M5mzsCmqccRCw0nPusgjvC1AvXYsNpFreDl5zxugxhkhNVYfHwgu8vQyvPDRCCc3nGKnGJrx5m+KH7MDErfhXqf/xqY+nBWDhbrzNo0gzDy/kpj7l3r1Q0hm53Gs5Yj/916sCujTJgwIYMM2WARFgDnWIpn18mAblC3Rn+4oxu06pQlyFEneYqEgAwiLbQcNRYEQVL/ZwaXDRAItHxzCcgUxTaccdiEgugH7TNFaIZfauTX0AtpWZgiF1F22Uybg43TLpBnvrq2LBKSDokBQSykmyYGGvXJq8qGyxoNlkJYb486eC9RkPpxblkUIjVTP8e8ZhO/fRN9H9KzsO6bNaUiDCTnTqEX/CdsOUIUkkiT490Ox8kln1bM7LUQlVowrU7uGTqsijIZAVQdvo2pSGnB7E/CSMK9RgKspa1WXlOASVZJuH1i8hF1btB3/oIKHIOFWhgJ9cz5hnlsF19q6SijUb6ewT60CgEXzOrhFy82aIJusSz4tOVie9J6ApLVZscbMYLCuGcA6fXlKGGmcc7rYcwwObHg6oU0qrqXzET8LFiosHYs/wmJKYBU71d6SvuneHexZaCGYyWgtXZWTVY94hFjL8P8CzvDa+uBcpeXzGlAP4F/MQ+hhi9N85zu2je2pqbTNR0DTaFz4d4mDndXKhloa6aa2O6e3fjs9jtAg0oMh2PaDY8s4rGmNGudL0eUVet0wOQNIOPGSVXSh60zKOI0kF/UWXQmcHN+y98KOeUkji5B9sV3E8lot39dQhd+Mf7Xgqf1gCBMISKK0OfGICSaKrlg451oWjJKn5tiC0PKRZc0xSLjZMkuBiVIswgbUgvsbENbXlb1OpwukA0I87rpnZsgbHGQMt1+nRmENZ1vjw/aa5ERj1MgmnapfWkfE9iZHF10heSMJ7BVUwSo9t4Uku7m3xqt8kUdkFlkPnzo3a4/0lNrdNWiYoCZx+dK7eVP8MAw1haaHpgXva3/xQMEN/QZ0rmnFIPa162uWEt+7pc3z9TTiU901ehP+ZuolVvVACI9tYGJNt930QrRZui9wpj4ELqF7SPXj5EcBnuSLKiQ6+adlZ5Ri2vnGNjkogrkA4ldLDngq5S6p4XtbN9T6oF/RDzS4+z0mQzjkiTdnX0fU2hMVU+kmSghWFvENweLVzH6dnhLXogwMbLillA==
Variant 2
DifficultyLevel
577
Question
What is the size of the angle labelled x°?
Worked Solution
The angle sum of a triangle = 180°
|
|
92 + 53 + x |
= 180° |
∴x° |
= 180 − 145 |
|
= 35° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50052_v1.svg 250 indent3 vpad
What is the size of the angle labelled $\large x$$\degree$? |
workedSolution | sm_nogap The angle sum of a triangle = 180$\degree$
> > | | |
> > | -----------------------------: | ------------------ |
> > | 92 + 53 + $\large x$ | \= 180$\degree$ |
> > | $\therefore \large x$$\degree$ | \= 180 $-$ 145 |
> > | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18zhBrU7BC1pC9HOiD8MOFpRt5lQ6vSVFCr9Rp5s7CMcccOvvf8h65Sy/oWUZ7kpbFbiS3sUNH3VFLRYcSYPmNpP9UFtpxzUaQMzD+kkXaHcPwOjAqxf/uoZ/gxX/67+CIPSanrSorKqHmJZRXmc9J3aRk8GYu/+h0eNqrKBwkfFWjnc1uCFnejN3B9cK8MOCtWmMZ7vwF2Xy/4JB22NduMFcAIqxyXTEnauwN3+gB/rikvhpcceDzCdNEc0wIXd4C2lJ1hnu9MM/Y3Z0CFkkEtDtVltcaizxDL3L/FEvTd6rhOxU8HlXXEHUWyztTNfqcjF2WiHg886xd16imDNvEpStne0DRzEr1E7bxo2gLJCHiqowLrJq3/iT5P8ptH6fTboltZPwxCtYtAKFzZJgyaXBqunfwEGsF0BlpTNM/LT1tuZ3UnqBynzG3StSA+ZpoOMwZcd0XlVv7zfMr4EjHzUxm1wqZnoH069clr3zS/ll6BkEAZ/6IcO9bQslQYNDvb+ksjOdDm4e937yNNkupr4bOi0fCoSUBArnBPFOIYiZnPA/vxfWAeVElNbANYjT98WQzz08ccbTyZLmf6oHLX+Xzk8ilRYuAQiZBD5dc9wVvphuGLkrIiUo6Ei0SsrQMi+ZL9fV63Vj/Dd8ZCAn5+ZF0QD3g1rqzSc0DeKdxuyzHNqHduL+nMRHZOXVrdl+jAEeM3KSp3yVAKwcSKnfCFjFoklJnfGqo/e4NB7u31ZasK02/yXZ5Ty3nCm9S45ImlWn60EySEy+fdEfSVgJRpqT06LNX2NkEMxdy3pgBPG24mKMCOUsL5kA3VvdoCLj5Yo2uBW91SyqOzUF9hh4FM+xBl7uGzvWvZfXYTxG8gWVSXBGKsL9fBoJ4f5eWrHH2sVs/Wp0rigE5PfGXNS0ndAaqq2TBoVawX6Pel3NBKGlJHmRK/dIHME/KNPFZzeYNY4O45XIHIOdATL5jsBr/ixX24qs1FqiWXQXLre8NtvaddBc9TlupS7DEccSTY7w3HsLbhN/DX97EdtHG+6tg1bRLoikGvFxNQawKR/qqMcpTPVrwQqcOmqrysyqZJ7dgEUGD2BvVFCLBqKYKRbSomnkLT8xXq78hO15N+y0alrPgSlSRv4PFJ3hyAUgYOsZFOCt6ipBXzuYhw0axZx4dOliAwSrLm/fgMdztRTI8xY570psdagr/uTWzfL2V/CIPAu3pZTPrwKprNzupNkUrT9lL7qA2NbYCNICuIQ6I0a1O/jRBjLy0jOrmycB5MiSmzq1CMXppc9L9bAR+1xfjUon5ihgIFwauzfurIRV4edlsMsp6+6gRvI7tli23sKSkc9aw5Tu4IpMFPUQVf3GfHgJdowHk3gF8BAmoJ2n1KJuAeyn2ryMHvottuvPFmvfi5N7ex6Bbidl97qWpHCTZAM9/bkEU4HXvC2VJoI/4KKFiOyerz401FZQUyqGJbbnSArv4hfZb64VuDqBZC7/b1H7DQV9GzuOS8/Bu845M776JjlKMuVmKMo5T+aNNDMUptuQ7CTo9sJSVCC7wf8gUaHEer7tqsbHbAuz213g3XCL+te0kerButLNrff8f18ZYHgYW3BWXKvb/lXZ3E0ugE7Nc1ROzk4bIAd0efXd3kWiyUs+kyOeFUXZtLvzthLLk2MJHCqQ9CKGBtS+jHhVmHybBU6CsNd/iN5rddEA1XMmW329dUasRyQh76LGrn+ll5NtaHKgu6b9glcAxb2Ni4gb+RnE4Y1qhk4+EJQNXV8r9y6hoIyYIL0EexAWef/On6EqJ45i0AyV6/NTbAZxRblBAdrvq5zqRQ31uxBCiXwJ6G3CWDI9YKI+rQLaAuDOl0ODQppF5yrXP6I0dvZegYYrui/GSlqmaI3GIYF/e2w2JJwtdaYbnIAdg5iwHaG/DNBEPyG5D5RVSOAZE4JRn2oBHs/UR0Zl6dqicLMG5sD0Gtg1e9s1Dcc8vcquLZmpR80bp5KG++BDg0UoXOTR/ThIn1nEa5c7J0LjH5Bw5acF2BSofnghvcS83FEwCVlfokD5n2KoEah5eT8WQDyenhSmHt2r02PTI7iWrQsGhWqwbninoyEMUyJpPr8ubNe0edqKp9cir5xZR+iXBHk/zXqA765WsNq5rgdYnDCeYuPuEK2l6PjGLN6UkPyaYMPx0YJ2Wtd0sJNFG3lk7yl14/j39grMeKnb9khgv/1F8Z7iHPb2ZfGgd4vJwhLu9H4AEurkDfiKfRRQo6yYE2FbwKlsvCHOVZi6+o5uTt6FByB7Pcuutmoyq+FCpc/XYEt7X8hLXW2lTkSERvWsuyxpSJ+6l9bSJ7shfgVNWUXojRlhNhzIh9QaBFMjorpFE6Iv1NRzMQLEljtDbtk0I1QClxYJpFwEPvJu4AagJKIuGUJQHVg649UX8v5l8QCKM3vZ2q9ENVs7FGJO2BveBgMa/BRdxssiuxZG2X/E1MhA0BIHwDD9wEmlmFbBuik99TZcsswoqoSGjaT7q600PbMQPfB0ItBtCvGmdrSx4xJaBBAsRqf257GjaVW4D7n4WnASQzmIB1O0Mn4cKGnzgtIHPdCMEDB//zQKnpkdQybRgV4qmi4XL5jYc6ShkdDKC932ts0An7OA2YNE+vvgMZkkKZBasr4juWIZHK1+pEneNNGPaK5PpUnbyY0RzKSrZX0CkQX0Csqo//T3ijmUbzoDYuM50W+mcD/XCKbJkRP6qLNfhXk5KMvTD1CWFNsQJ+/KwQaaBH8KGr64YzVHu8UvSP6Qvet+UpAMLalN+DofsVuDvuVBYHB9EttuBQvpR5eTrsZ1b31MpJ71A4OU8d2oxFy+bu95W1pZ9/CcJfoffEVGuJF7XBScEhe/d2lAuRjlElpgr/9239DQCt9rryG/AxAYyb1cN3D0yCjatT9kSnphkK+TEUofB573eQhNvPjtSREsJbXkDvbPoNfKh5Pz12uJS4UfvdZa9PlO4YQXxH8G+Kbv7eUPhDljsX+A27wKSwmoC2IZgZkAY7qRzJImS3kS+RE6IKjVD2NfydPiJKKFhw9ew2gav4xgLwQETTjpT6zuaJ2iY6j/M77KeOMFL1dfX9enfArprA63KXTWRjqH1WJwaqJqoylqNNABjJ1D/MPs6CbDD21QiXqwqWtwZAtTrH6FMQ3+J8q70iVenuPBHzg3+QvCF2unuVTFy2Cd9ca1yJunCYc7Bbk2bdLY/S946v5EdyggK1KPnfGgvvTKV2lXnakLR3oado7wXcx0D6iH4F+lbcAgSYYGp3Bli5MTUXpE7PKbW1VSElgHQ5OvdV0mlWFtblXRelhgCEMtqEp3g59WLUDNxFnq5yQCFioT3zNwfMdy/JM65AqcQeeiYg2pCN9SCw//LVpSxiQ+TIVBmqulPtDOVeqNsL3CrJsh2FmN899bpbn9Znd5VE905EM+CzYbtbxJj3SPhTvrWrjwaBi8j/c36MYGUO5AmBWhmvdc3Y98R1BCnKlxDCl9KGuhM9HvnXv1A7WI3UrX2nicB7l7ZbDSzsNde2Sw3cz9QMymEUr2kL4ZfaHj+N4VwUyRmsCgeeJrB7EBnYRAqGyjPoC30idiaTe6OBiNYqbHABZE7TvfRcNysQlWEYkB3jQ4sGSOR1FMWyEZg5H9S+bN1lYo19H1JvWhr/+CVIPiLCSv/sLhMhMmROZEuB7Z2v72j1tWcXsiO8H08eaLNUznvz/das5kyWy5UlRYbqvIQpdWtFNf7inmc6HbLBfiKhW/ukTvXtalW6N2UaF5gvHjpzafNOqVLI015QJt3l4DlUkDLPRh2YHINmSYtbxIhaDCLUVDI/OtRsmWb6qRd/ak/BNuSEk8+YGKTZyw9MiUCexFqc6AznmcHU+Dsggz84hT8MLIsxblrguQD0CCZCHaPdxI8G6vvb9nud1B+r6BlwG6Hs8WMJdedubH1SDhJDXZcAApLwwLrwYETgatKJe3Upj6c+Sxg4VILqOXswsS6GSllX5XlJFfsPgxU7g99Hv/qae5I0LNelNzPJXYe5qmrKaRqI9uJC9h3PkfRiy/AkKdS2ojTH4JzLz8dji18IePDBaxl8OsbTgq2YUCQ7ZJs1K44cOSAEY2XLqd2OvyDYfBtNM6U8biRC53mhIgAjAl8kQro20oQphrPapOGxrzeZFdOv0v3iZl4yZbA2z1qt25UJSQUMgHqId5QIGriOLYm3H7oWAks+tqpUBFNThwOt6Kg0zGA1iyh/cFjvgRRT6LmW+saDPRafHY8ELm/GBpcy+oZfukK5I/wYwICJBK0v3AzrfkdFI514Mkzy0/iv1jGMfFFhYLKjQhTYuudRZFMheptBrAFWpx1PXhBoPbSzIebtaV1lJe7Hs8Xh1Y7rVX5iJiHVXAk5LEp+0mCwE3cdvqoZ6J6EhVlyVuMir3o8Nd8VZARzmJ2lbVLMAMJdyC8/4FTYJcjtYiXJPSC+o9Z8LIAI/EcEBj9TGto3iljemKpCFnLV5FgoXnJ+EVfGej0wnhjaF+QFbcAc8ctUb9tLIL+5KmSCNREUWH8Ur2I/HEOA//BglTomXtJjicgZgUD38gtZL1ORyQzZCOMeANpPv8F/swKZHIc9nPdWsa0ZDDuVznodTtHl2omUn++YxVwfjkMUfbwur2E2edJj1jgz+7GB9KCGKfsie4eAq8W1+EX8UBf08h3AhK1sQaLhlbhsb4D44hoiGAAXaSpDUQwkhuKfalf0UbtA1KuOZeAcitRMR/g2PEOY82eRk4EMGIzubPVjvZMpKDy+eo7ixuiwaYmkyaS/DxsKpH6H9EoI0LAWXgfkOxifk9qHmqbEQuVAfuIeSS+PCOrEN9C2+koqoYNlllDnrvkeanUZiJErt2KWFFLAPBWOKx8IKyPyqqKMC4+wNVRALUzE8dUq3//Q66Ai40TW8C/hKSHFBZ7wMGSkCEIA8jW5a3Abqo7GATr+kkpWjgGMtIt9u8wZ6j58hx4XaY/jkgsThcHioqZmwoR/ZxEdJhO+FOZrfKJxO7YRSD5hn27t6fqN4dF0kGKWdAEEPzasSK/2kK3xNPFipazjVrQTeGn7o601bK29uDZ1o1BT5E2fRjcF+StYNE6dXH3l6jHllgebem8MGrPMaOJvTEheOo86IcRhDFAay5xlcZX3ZIJnEtDix/+paR0FOxK2RUvaem6aMlx+Q8TZ9JnffE1Abi91o32uGNssHJULP1pPoVDcOM+KyKv3ttqqzrnXrIC/QqIe0gMPAjElbhkGm7YIjiqTJ1BnyD+m3gkaTaR1K/iPLxHV38LidVKNVmW0AlAhxZeaYlYdaSzlQDpQeW8ssd1dfJvp+ZC13Fo9bGj73CLCILjdrfGfGAGE6vq/xbbpCblll2ZlpX+U9OdhvllGmr2RS3230b0K45UxqezdrHsU7iR630AzkMFwmgpO21vJURdUUp1RyTzVIzOC0BOJ8iBjC7lwL2ESYYIHr+IRcwd/Ae+vQfoV3QxvUOLBllFMjp5OoUsUaPMm/1HtSOYzxPgkSIX3J8/qv2gRhBHhHfo6pxte0jrvbuECDgpsYOgsinJNIWrek9tojR3IhdOInfxhNVMWwZFS1rjPy7p4/r+KmEvxQydLui6zDfUPbWIgjVIjsW9hbnPed2WEvvfYCtVjXitmMcCQWuGmwzphBIkQZJWpOOQR0GBelzEgLBvN8aUV+h0gASPc+UEw4uJZHoLtjRHWmg1KLv4tmnqELHE2SMvcqYeX0SQ8m1120yKGlPzw8It9flVIzIHtw3ikzVaC1GHNXzffalIXmFQFNk3YQzKmq4gnzP/JraUjMsezknIKCMSODK4OP+tYOIwR5B8zvrNFcMWcOPBJ4bOjJCBDCsceAFHLS7qfLLcmPGthgchpXxUW9Qb6Xq5TI8xZjTXh9B9xHN9ta2VNMnZuJ55l1oc43Q0CgYQp/Ayoo0/rp8QGvqnD9WMgW/SRfgnaeeg7rImuoQw1+p21ZlhPOUPdQC6fCdwPhCPyKv/TaBjqso+Bbbv3v3NpT54DuIKpBGEbdrn/vQeaU9fI24zEc30DmRmniN01dJ528eOFYG2/nfgqAMcyh5HUzJDB/1hOAOaNBvK8ByC19bqEJXxVWPROJYP/xsi1gj/RKXrPiRgNlNNj8JNYOLbpT97ZAP5QTm780TYH1FQMYMRX8d1PEt7tlN9VSp89TN/Pv358f1hNlbjAs7rIPDn9HRB+wV0i3VhqPWIBo5TBDwoU6yeT/69lQkrpVByVCBBu2mH+9gueP5i6TM0/23ihQG48CwQe9eFIJEQvhbso/hHYaJQzfcxHc8IeyD+ASFX1S9Q/VUtBny2zSHJ2r7zVK16QojBtYQk12a7po9dDciCEolhboOynmTlmnhJpmYB6NKHEUME8NgmPGWpdx+8DC9tE7OwwiXQ7oV0+rqEVRg/B0kMnLXPdQlhroB319UI5I/q4WyeSAp07MCDT95g4DfNxxlv1RJvJjFGNhJ3aqt2rN0RKA6Q4reelAGGRiYoUmlujhDLxUTwbG0WnsqOj+aWEQjgs9vmZ7IjyDgwQamhCnIpvFTHfn1zJ3g26gLZhN4SFDQ4nsmlNBEOWKPGdLqqFHsc45rA6/4duVH69OQPbcVt631IJYCeZ1dwVeYORkLAgKJWihfiMYjWNKc9HGC7VQbsY0pNkg+dFdShGbfxh6sJqrr70TW89EGPjrryfNDJZRE89fnkQVCvzFenj8o7BNFLzZVSablbUYbFKO55shPpNMAInEJarsxoYPeLbnRbZqLOztRwdwU2kN90Q7iSjQaKMytt79kIVHeHMCHyQ3AEuirj8JB+Hs/8zPT7ak6VFKlfzT6bT69X1wtru2GVM3V6HiguhPvxLW6fT+Hfujp90smTMMLFGDC4h7N8oRboqNOX2RvRxsxTkvoM8hXE+Fy0AtM7SZuZoRU8hpZhJsmxpLnGV/MdXdjOur2WiVR5Kmnm4LKbZMFFAt+Lx+Rx80lr7HVdqRJ5+eTUBv7n7hVqMNtXUPejO9VbTofiS1+XJaflkdoeD+E1j7ifM3jzmi0ACceXuPVagp+66Jkp5KqnAYlj3v0qGAJg/MCoovb2vt3bThvFjQtIW24x2CuK9eb/dOYPQ1cccW38EnAgv4+vj40aQ9mPZTJtDGUP6L0O/GBjyD+pRtxpb6N9nEQkGRVr/a8kA2m4XhlHS+B78SbxuWEr9ELuGZvSyulX4mfNQ/SD/X0RqrAEHUFSYkHexRcz7HBaZSb5hXj0fZVCqGTLBVOvQGRG7P83BQDl7PDLuRbNGMkRPT7ULXNdBlwM/HhFcbenEYha5KBq1pidMuSQzqzBGg8ZNo+zyuvFkm9OwZJ8i26rUFuCVfA6uVZ0Isg==
Variant 3
DifficultyLevel
576
Question
What is the size of the angle labelled x°?
Worked Solution
The angle sum of a triangle = 180°
|
|
120 + 19 + x |
= 180° |
∴x° |
= 180 − 139 |
|
= 41° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50052_v3.svg 320 indent3 vpad
What is the size of the angle labelled $\large x$$\degree$? |
workedSolution | sm_nogap The angle sum of a triangle = 180$\degree$
> > | | |
> > | -----------------------------: | ------------------ |
> > | 120 + 19 + $\large x$ | \= 180$\degree$ |
> > | $\therefore \large x$$\degree$ | \= 180 $-$ 139 |
> > | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18y5ibi000iC9CVXu1X+NNNEfUmsQAPdNfi8muxN6CuD4qmVcfZKXQhk5vSTJ4jzEiyTXQTbEHbJFwaPehrfosXYS3wHWFACsxS10r84mh9L3arGttSCeXeJpHHQywwII7M9q9F+RKSmKJDRH2TfKbiF5EHosWG/bdbRsAr/D+gnLfmJ8FTfWpgFfXgNm8c6P1RafR2F/Sb/O0TL8h08lyfeOhNQlrWtGo8IyAGsZugtW5GyDf9S2WYbN2Ycq6NGj96RPdbz1miW8bxzx68Voxjk+pPSEe6VhIBzZ4LRPIosjso+c8qx+Er3G3HGMIXj4k/6kY1d5W/YVs6u8w5gyH2s2ViT3vCzovXtHQV7+vqG7xzSR/ZgllWNBcaAM1tUlrS/Kv2AEnFmeoaztT/loO3422rzW0o4LMI33ky8tpgM70/f9fz+qC2D6TheRAvt4L9ED0C5DFymNT4VgEBxHPfsLH0dqmbPB9NSwSCHRIIvgFZLPw7Z2lN6VkM4xiNHzCJdTZN3pGR0jzrsnKQnzlxgreW7sK5usURo3pFml4oNTm2nMwJcb+cjYfwL8OPcD3VBZp2R6ndAsWR7zhbjD8g/BbRlPqDNjqj6grgxW7XmkU3Dq+Db3EqffZkSExfaoe1qTBLKclCzFb2zOx3zrT1ERPUW3uULek7oEsQrsSo5FTVnHqFiZIR/mCtFeLXHEtr54Pbe1YV9lcqPc/3ZoJ5PnHa4eV1ITPFeCsBrbZtdFhbZMT7JaeUrcsihQdlb9Z09/4wS8Pff8PwIqKFuo4KbLBcwD5pcS6dJPN+93PF+b37jkezYYRmugHFYCxHgzFBxIKZIGqw5A5SOf+GE9lZ7SoARU9+y2GsOMU3Bs3sFLcptvL7a8IJGxQeWgRhivqwS67cNJ44PSD2zaNPVT91aCiTwHmN6Z4D3yhvWenV5RwA4+ChCXGH9RXldgeM+UQtDbYZPNDRltEqpSrnzEYaNdmTHyzc1R4Yz+duijwXfuJLhDnSyRUpXKueRqnijpMuhkscSjB4nrJuaGGClu4UNVaDOWJGhYzkzE58SoOHbAifZf96eJMWvBYxT0oUa4OKk39rUIUNI10PHxN8uW282r+pU2EGegt7n3VN+yiD1l8T4ZT1JJF06Bu4Ggp9ub12ZxVgbq25xCX4Gc0YL9l+/x0VMuch0Ec2n6oS89x0EdVvH4Kongiyge3j6A8D103WzJ/9j8N1D1FAcYQJAXNno8mTgT+K8clwuhyIuf6A9xkla/CnFMb/JKUbU0GDihunpi9B04KsmHgPeVyTABSkTsn8/EpkJQfMYRqnJX1NYCA5UaoDMIokehWwwDsdI8XmIjnEgo4+0WuSLkrBVoKusOTO0XE5LUrTaUJhITwKC25eQoGH7hyxMbBwKdAdfjMZAMrEUrwwiSk8xzbEIFRSTgrv4wvV9m0/hVS+OgR9dW0NYOxdt5DCCqrOU0vzWbyiaQGzBsKoQ3DZ1nfvVOM4zo8VM224vLJkNNm+oFCRIZI/5jknqfsYWnF1aUiaW7Xe+WnjR4L9T5NO1ZHiaVM+plghZIzAE5vOX2ofVDWgdgETmFfRAbLB3B+hKLm02v5ivb5Jh4Dzyzuj2JvCIEKMxuI/9yXitk34aOynujeCGDScBkTjyR0Mf6OLRpVPwweZD/8vDuo134aW9fORnRQP0XNvj3WYxHha0QrkBXOTJPY+RsWuaJC9m6uPtAraa+eKNL2177quTEBMUkUfoU1Stj60tVxZGk36eo9FjUtCVEFycEQ3V97FUiTV6K4bqZ3vEKy9In4B7bXfAu9veWlfoxTRkioLf6CfBeDW6cQbpK2D8T74LFAVVw7mowTJnOAj9/IPvhp9RmOXbWgmrGTiAZGymT5a/sthwn4ciOzZLm7Wq/vE7ilIXD/u4s/jQM7WodMqpcoKRfxFStdNTWRzqgmsfR48PCO3mmDIVbRb2eAe0nADfQuVo3Zeh+zq/hGxBGLBuHvaiZB3i//dAkp4oKBiCzw9nzsakjOMWN/UikmscGPUXAORoXbLCsV9BPH92RDiSyRCAZWx5jxOlxZtSg5mAa0zGDLcplAnOaKNeLjltJKA3qfI5SXnn4qyfSjgibdv+9iwkASIT+epw/kIZ46mzhvgqYxIEu7hwr+Cwp1dKiY1nu6IW6f96Ukv+N4jh2BRlVa7rx5oqY4Ytex/3iEj7gpVGtwQfdJ/uzL0GaiZIJZtWB4+WzmTe8tcn60vugUWOujjsXybvDLvXph04XQQa8O1Z5hwG1NX7go4M2dRsqNUPV5CcEDCXdtQ8N+kttOoyvgMkVQy81d+dwm/YmKYamq1+PIOKvV3921Ih7MO7ziafwc8V8W5pO7JiheS/lOn7slEMh/lZos1GWk8FD+h2z5XVJZ3mtqLo0q1bldpL8FVQvMDaT0Ag5JuyPcYlazLPOpXz6W76HS27l0CmwktOWuL/S+zI+sPtDTxewELoDkF6ekju8d7bQbo85HBpSmlOktXY+KPeRF71Ts1aky2ZdtoBEGicrjy0e9Y5Bp+Yl2fHD220NW8X1W41jJ3Ns1AmdeQLFGZV8Us7QKJIQu4VZSoYXWnVpy6panTXBefEmgg/Vsse3AuPBt1O4zgLScRbhu0mED8PQHH5+3BXY/lChrheFxwN5dFaaWG3Mda0jkvr89iaGhm3WUn6kBgSlTQ7eRtb2eb/bdkFGnWik7Vc04Txer7iRcQq2BaKiItdB4aHea6SQRDYJD3skSYUq4O0s0v/HJ+h3Fgg1HXgdNUlLiUN+EJxBlHkDyHLzYWRwqEhMkim2kb8+T5EtDN5V9K1wijFZW3nJRr44dTRyrDctbBy0zx7p4yDUg2HA7p2AUxG4JTMaPKJK+aRWrMTQcJbVIpbZX7J8mR7Rn6YimXkvx0JiphJhhPIgpz0RtZC/cEGmmpQCe9siVzTapjmt3oyzJVW9+Te+H04WKOsaX+H+kws+b5YJla90rjeMBkZxMg6Th4+3QIKLqAa9q4lylAO+6Y+KNrOSfNiGttX7sdQ997a08e7SvGIKL6G0UtbkxQZ9RRfpzhkzro8GbTkX54EB+Yv4FRbDr/ufCpgTOUKdxizrARyQs6CclhNuiBl6BdxoO1FYSZ+7hQDwRlmTmBpN0I80DYe+tsZBtnQGkc4dw6eVU0kxUiRm81/ptix51dvscd/zLg0Bw5FFPQXrfQU3bSdt6incP4mC6HiQg4FoXgPtV34KbIVHAJFmqBe9vMzk6ji4u0IK4jScoq22N6PRWNFVPJ70oAhB8CmMUjM9Q3nbLfLEBVjZmr3gLpFqfHSWXSkpi7fKhlpU9arwO+S090ILivSOibSobiec4uGR1pi47fZs4F9nVY7Nyj5lGFKhpNsXUV/t3KfnleV/T/LuxBDQMYsdMOY5+mHXuiGsaQ0jnNQP3v+yNze6OUeoKQRldJ+Lbp4eYJaH7WNdoBCVxs8ty9Gq6SKLJPMXHe+wvf1AtKa5rrvq+Zozo0AMuadjYV7zn75QmxWEEYytrMkBMQTf7ye7zN5Z5KuFzpVTHl8rFywF9rGTie861Ng7iHcia3qKUU9DTKliIjFNPjxaRtQDdZnJKQajaoa46iYKCZzCGnItkU+vFUiNOpk2HSgv26QqZUdOVFRr8JOM96ld90X3xG+Z6lEcNa1VbrzEp6NUv5jFV2rRtlGjDtM1LGxnXVR/NUdspW64KIrDdGAr1Je4r9cElAhsXdP+aXGSp/nkBGxCCGLGYOVnC6tY6DY9V+WfZjf9GTXfStkR+6VY35P6+BQguAfz6doTBEK8/9D5P9hl+4u6emrNI9XL6AAvByYiq7PPomx14j8xgsABkZ2TtOhpTh/KDHK9GiI+nu869ONgJjRgGrt0yE+Sp6qLXVoJ1VGNHeLh6iYiYLRZEWQ+vKIX49IuOyGOWDtxXm9n4P22B5gajW0YpY7Wii9PmRpXsxx2WGVdpNgw9E2BYDqvu9jHFRr0IGGFOrGwUYw1mSfIP0B8s4QQv9DOzsgqoV7L2qn72R3IAG0K/iDLpUiQcbrFlosekCVw4vow6qirhwDB6k8uuj64Ah3N+PhOSM3q3QH8NZqD9AQ62f9WlrebXaRXNN46rQCsbqjdhVToNmZxQOElMeD69iP1Be/lhVNDXjHXkKzcfz+XQ1YN8P+zVBMe/1yc91G+hBjfoGcsDKEFI0Q/MYWLUiU0TOeJi7s2p8h2iky0eyk61pbPYx9BfsfLSolZl56WSrVmtxmvMt6rdOpHY433g/dPkWaYnWnAaFtpdlpySTDNHJR8fm4IXDaU7PF/hcyubwUerkwL+cEGDkkeHqFiOi+rQLeCuk6YdD9EwGG6FaVXD5ahxi7j5b/BMyK2KPE3cAoS+4b76nf/6hfOm2XKWNqe90mTa7jaxWmbf7AgYNnVxqKx2+Puxubc4dTuZlwXhx2A1RKquSVoZw3cc4RoO/zEv/2YDKUPRe6lp4bj+UEquav/2eRPfl1lzI939uI1ua983gmiFOW7iG6t4bX8eQoCO3fzjaCy3khEfJz8Vj7iweT7Qv8+xPSZra5FeOZ4X9NCENN98NfW8mvaVrqGb/y8WD4+Gymmgm89Vf8PCQdX9tpl5Dv0szSlDoQS7AyOC6XQj4BsovCh3zwAEp8OIco5o0co6udIQoA8qCjhMR2c46IbBpEw/Q719oI/409Dh+0XQdaElw8aw1Ifh4S7zJqctceLOm1ptjIgy6yGb4TxBtun4UiNkCaZ0OHHriQEs3UED4fPmz0b9sOKKhQXrciVLOQcj///eLFv/7nF81lIHHl6yA5zGPWpfRxUC2oYAo0u3vLXLsc7oXPUmAqJQ/kdQ430fOIBmaNuWW6Fd0DgWZRQ5Vx0aVzwqqlhrXqfxXij6T30fGF1DBVBtZFnPwp+A8IG2pIZ2EaJJLGWlA2mXsfm+AAtHZ/DBPREQ5t0j5+8XS4mphSRz433Udr43gEnnwp+BO2cx4GEZ8WXiXUXMUxptHQzXhc/LgUTikSarB2iCEFxtNb6gtfrW+LtIlsWBCMDv9Dd/3J0/yc+EI+tE9n8Ik0E+eh72xMgAcXF7dT9X8wcJv2lUQUmzICU7SX/g7BYVijaVEZUgvKR4wWKuBCJLaEflk+ofStyEy08JWb7YDRxJHBAHKBF59rwsU7pEFKlHJhBmh2f7eobjWfPExNedZnEf0lv33HiDjZ+Qj4taMDs6nbtFw/YipZRikR58nQfNSbjPJ1+xDqKkQA3WTp65+KQNTlJMmyZ6CWTLuH8j97n97Ksngq30VOBhKqxrn4lquRLKkRdlfGlqC1k8IDVI88MMZ7rBB71fl2QABvCnrabodPrF30ifmqHrU7VSBzEiHxlba7jhBqnreN+tHIVd8LNQdpozpcKQHz54ABwhISDFqakmNoz1raAsFh4dd4qGI/Z5WSelQGD/K9o8OjJmYzKgDWVZR2df8b2J7DFRADgvFyz3w4ihjIl47okQEHORPVxufcilKCDqAHO8bFr06/R+KMBaKbYc3syGsGLKVq+LGx3f1IA2Gv+ycuPVHiPkr1i3XMfIrR4b5UlNRpqdWStJQwZW0WKHT0QvmrthLev8E/oY57qJA2ZWmPST7uZNAg5PrmMltw9EHY++BQADrb4MByQviNPCD7UjnUtTV2rXMkJSnfmoK51ggRHNJAmMj6+T5g7lUz3Y8A/ZLMxpGcizrTHVYJFhPgtz0of0nUfxDH7uUSUg+Y+7gT4uHGXjLdC33xTmsMlmHJFoh2mWANF2Ccy1+xJ01WCsUJDokRLcpfJueioPxBXL0BszXPPQaTJKyP8LstRMU/dyK5Lt4CpBwUn2LrO3Z0iKiJI3Q1yjs4CaOsuGELvOrz7bK/9gYOonQ05Sh1uCUZskNNCraFvhEI8H/j1HUWVs4dY4Hz3q6gOPYsn6WHWGNvSun6dsUZ1mLwdOWdt/IlYH4jv376Nrhg7x5lpdGgUL1VG/OYKD5OY3Lj71LKw8Joe7ZdjwffRunDrZ5zUKbDUy2MdBNGr/tku2PctpJeFBonKQUDJDV8zn+hI5L61P2t9anKhuciwsgGBfmp36rf1AuKb3SJdaNIE1HLf9A4yWaD27eXCU1g0FT4Yxe3zuYLdddhp6JA7oxDKITmjJphM5NTP0Gkykf+fQxHSo5enm3ocXrJhaaRBv8spkQB5wD/z4MYySAADIvRcEKzvhzHvHNdG+kLgab2MXPQl+K02JdHqhSKTOrP5F4EgKOPThWARr2iPo4/7SODsuRMtL6HTYITdfgP2rA7hpf5Gv5WytMCZtAahItj1kKOYD9xDQnjOuUTyVKI31NYNcDPWNBPVPviiMIwkQ1EC0J+4CRRb9Gnhf1oTeCTT1yKUU1FfVQhv0XVJQ4WlEEzqwf22QBurj9XFL52Q==
Variant 4
DifficultyLevel
575
Question
What is the size of the angle labelled p°?
Worked Solution
The angle sum of a triangle = 180°
|
|
59 + 63 + p |
= 180° |
∴p° |
= 180 − 122 |
|
= 58° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50052_v4.svg 200 indent3 vpad
What is the size of the angle labelled $\large p \degree$? |
workedSolution | sm_nogap The angle sum of a triangle = 180$\degree$
> > | | |
> > | -----------------------------: | ------------------ |
> > | 59 + 63 + $\large p$ | \= 180$\degree$ |
> > | $\therefore \large p \degree$ | \= 180 $-$ 122 |
> > | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/q/foTLJ9hp2nRFS+v9IVplk//Vs7LmLNaxm7Z9g8IJowTlcnitbWGAXYzAqqEsWSaQs/kFrLyjgBl6jFnaTUWh1hkJznUHf5mMqyobyQU25fApxIfJsfJFei5vixpwrz1kRmWX8xkKZ/R4lAsD3J0n4MejdEe6UHh18EXrXDWzdWsewMXRV1+2igv81B8FuWwWuJZWSW5jkKSFIUfRLRzwCz7adoYMD/Uhq4OxQoXzkHcuz5alqZ6Oi2lh8iSLsMRDYbg+6IDDh0LTi+iHCTC3taewJf8ZM3/JmNzhSIvAtKNCaAJLr0djRTVTv+dkqmfrJqQTTKzoxTiu9mNeCB4DTm4uogN9wnvcG2FWYIBoDMMgNrKcf4Dcvd5sfWsBB4yDrU8VyiY3kwWYE95q4dvJPipyhx5Mf4PqC3M3Lsqa8GTpcmh62zUPHy/s0KGZiH/8hhtSPkMgcgw1jKlA6DFgFxbjqf5OVHBanSDufoRP7XqEF/mQA7Me3J3A4QPTpqXRq9bGjowAmbJCw/3m18ZA4gF+ocNi3wDZcBxnTROEp6kfO/IA0F3m9J8L/gjysc0/aA/dhubKBPM2o6SfUD5hCADIobhZoe53BxOxgHWl85zsqUPv2WYMLr9/nOK4fgLuwhQuVQejd4tYL8jDWIAXg4GMYlI+g5MTks/ZKj8Q8V83eItqobdQ/BAc5hNJO83TO8Ht8CoCkIQJEtVq8ARsR5R3ZEdBo4n4K2uMGIEfAjU0uLmfOv6jJ9lYPzBAZSxU5hhsMzcGKYYc9dUlltg4MwJDV4S/ouyscMAGMkiBGOmfR7Fj86PqoipsBG6E/1bEN5azez/rwl1T16FirmKf01BzPOWJkeskmI/+b4oKFcRGteFuGGnuUH+5iB7Cp5bsMyQMRBXiDUWq0E2JLJXDNTCqoTO/Dc8GoVgH6ehJGE9JTf7m9hrGlffHAlFnB4fQ1nRV+c9HzIFUat1RRA0dwQLlfBUkBpr3U94f3fCMc6C++GPnmG+JHAc8nBBtGQA4BLXE9/+4mhNx7YiPSrIBTKydGgKB9SMCP5gfhwi5tC4fKoWyWLw+KpgCr83MmyjjA44g7MtWvoETpBZUEAMUSWtgyQEqlPZemgYU50gIThO5jom7LMFImVzpAeUUpsPPGrUqqIUFNUzJoMWb1MdTyywddhoYsBpX5y5JHc8HjpCAGwu3bxpoVxQm3yvegteONBVbQ+QlByhYxAC4d5QCuzKWy/1hNnQiwvji/nZ/ThNBs8BZOvmHoSq7WYfvxrHwCr/Dv2BaaqCPAjAWUh8sb2HufX3V3OG0f3Ay/Qne8O7g1s79pG3/pl+Z8M8WH4VbvuEQ0fSVUniTuguYNua7ls27gwOaiFA95/D3n+kH+QBPpXWwyxBE0F7vpRCL5LxKHy//Z7DMD0A+Iq8j0jOlHk8uIy58EWWC467w+9pNae1o7VqDNXBaEY3KxcS07RTupUSNwsS1IZUcr3ggBROw56ZDccps1h++RJ1T4dOC4+OjPKUrrcm2lLOLNF10n9znHs7+XQR/XCnOolsiuMb5xgwld6OqbhOFhmDblxdKRd7ZcPGD78qACq1JMy4AkygOSrF2E6YpN8eoyD/1dzNJeFhT8Z9M9/NlBVOJRjN6niCYjL1vIyoji4N7uEPKaBUeab1uZDtmhpAWmDseaPebsgKocYVezakLJ/OkJ6WGoQpmAHU2MMyRTFNxBgMjz4Rt671sRd2bfhN3JJY7Rwf6kU9dPZJC7Y9HnGqJiduUCjjFxt1bq3r/NpMeWKVgGzholip8Vpqm1UjFhyQefkQvoKaVLg/BXoYHf+aFO6tIJxZV1qo8t71CRbz/D7JzIcHhCwmqTTeIGEj1Y4saYyWsF+l9uonK6+kpi7EcsZIM4gSAjogVFl8nxSwbCYm8ksnveZM/NfJo5jFZh5IGOy4dgLK7JjVDDjF9fbXw1GB/kVeH4aPNTWciEDo/tb5/swfnAuiKCpYday1yxocSae5bnWSugS/cuyWh4OdGhv5KHrAU0I1oaMYun5NuEN089/w7kV9v973OgcOxaGIbmH8p1tlmyyr7d3lo+DJLm974MVHqXHzWgOvXyQ4zWafPEtReqfVOpLB5BbK2S/HstMdRQ+yhtUkVC+5NmzRoQa/IAQX+zRMA8eNVMCAX5pCJENyjn+F85ZJrh6fqc4ucBsI3cfAYjAfMsQMpqjjJO3RMjvojeQWxbxBKr0yFT8F2ToPbXflbAE+Kkjc9SQBDOGgV7bLTLbh9NKPwc5z46pLR8rtsrGT8IgvXAZ46pnWWjXhJJOoOdxjM2SXtotS9VKusR2Vnh08Ct+JzHq5CCRW/hdi/9BIgpuqtjJ8Fh0yjH+pz8fNQySNo4deLzoQpD1N7C58Y4XqnAhPazg7YxOY6H5Qj8Fy6b/nrqAGPbPqbGk6QM8HbGKtGAYpdEjea1OR3PrXdcvK0hKB0eihrKwWG5863LIPnWSgGGoNX74k53lmZZu0QxNvSAWvrA02BCzwaaNQmeIlLISnRn57qCwlQxm8/D22Rxaqsz8u5+J3QpEMx3X7hHBK5z+sIuvHXDVJn3IdwFi++sS/WOKWIexr/rLcMalYsAKwgyRqGDvOhdVf4cNL/9c+kG7/jowev+nUgGi7nUQe1PnBZMp3JDS2RiVtGqIxUDzGccuGeSMnM+wd40UCKo/4mxZwPv0jrKZs8OYTQkRVitbLz1HQFGPce8tpvmY7Suzbxh79EMtiwTC3ezpd1JiBDsqFmyujSKwjiVzjn9RqLWzePP80M9CfQq6f2vUNzKvI5SwqVmGJM/YGamyaTUxWHkmJP3nl5NUyqMyGpe48OVDQfUCSgjiyPPM2rw3C4mVH7HVbdmmiarbMsNUIFSrdSaQUBLSmcsk+HPhZTJjlLXEVCIDY9dZk4tfb2YeXQRBqWhKN5O4TBbX7shvPm+tLpJwY48MNCd8ho49qu0kgvbKqeN9f6P0ivIKyUbNDOe390jQjFabYTx1/8sey42iwZ8bE1zXMXRfd0HcpEcisEn08Yh1FyP2gU9EePUM9LZ1ZdynYkwK6nYUG2cdF4x5TYnFa6Ladc2cGLQLTFcyDoZrzXKweNFgqL8jwmq8BcqTfTxqyXPIMG9FQbglut30oIztUSWcElGPmOejUPbSgO37NxNGgHlpdSmacwrSHTFedd+LiIE3pMeUbUWCbUaZR+CHUDdvSkJYGESqItrArdLW1diVG2OoTICbYY1YF8CQLJhmLqyreALASNh7L2EOlMk2/a5PkifI/lxkZWOuk6mBUwSJjN5T4gAWZRudC9pl6z/iAq9+P3UIQfSspf6tIhrl5Xi3KtXDeME9Wqcr+LqFo0QVVROzSUczyUDd/w/jI7QHZ6QDeIXD3ApkHPzKSLDavGOWu/YtGsaNqNNSXcNuzIHUNDtIUN3/uzSq6bBrMh7/X1aHTqPioBUaLhHbaISFstBLxcYn98nnyRs5leFLiHXqrPpjmWxuyp2j8Op1o79nNCST++wbgMz3BeN3pJmz93TcTWuXPlp8xsRz9mRcbEggxGkdxudP2glBTcOxCbvySltRTE6QJ5ZKv0fBwBmywGLNvE5bDy+uPWUpLCHr0t+Sk8YpK8aLL79D7dDHS40TxxTDvtf9zEYmBDtQ0QlBOKvyAsrzjC1YSVwb9QcGgzuy25S8n1z6QhwTOo2Iv1kcI1zLs1bIvyUzmBFo22HcVBRExXnlwl6uMX+NXjU+OX2roqPhqp6lxg5P6hnRswN/AiEi+k1X7J62Ntrbh5IpxxN1Gg8OCNYNCsUR33NgMysS2a2rSNW+oKGxNEvh0TkIvJ3JM6sflpzUAuiu0heMcAPQUWkv/kZP+u+6mDpk7/xirbOG7a6sPe2Vwugy/nM/mN9fo6Q/+nLvObY0ROf1d2EGOW5AzHqVnjY6nKSgLDvhaYILntys0V/dkxiaz5Co1u4JjKu557RgjjQvjLa93mPy1K2K6i5Plmg2sJOHjpXH5FPe6bicnYD3ORIGkucfjLX7tFk71ZNTIH2GNenRtKagl+5N04KGxv5cOKMTslGWSHe3qA5GbQoaO9AaqVffINuv9nuxhNy6tJvXnCr7GvuRxjmZKV/kz7X0oIaZqGOIsBxLTw+P50A4cm5IoZutORTzxD/+oXgXfSLvjJbVitgX+UxBjHDiCM8MmAg+U9uANW8UvFe0QmXB6pO0m8UYCALNnz8SlTva8R/78/O8Bbm7/RMHmurZGWQX4rq2H9QPf6X1RbfC9KLvvt8nD1Ko3as+KyLetX/P8FfRT867uMnU7BPbruXLNPLjSS60Ck/XnY+dqLdYUxcd0rensuLFFzyIRMzoD6tYSbXYY1WcuhxqxrNRrDrTHkAZYje1t3krMVhz/Bm8ney/5Q1idSlXRYJEPwzkKLaRnAbM9d/Od94ClfhGGEl4IVCY7TMEZhyJ4eRZls8RHCpn+qgVc77sseZcn5A9u0v8F2lgH7sCvX3Z6J2dGJ/IZpBS5WA+XmrbwQ2qUUd8mTRA09VuB19h49vXj3jKKddbaesY63rGHZYDzcT4XQuFe1HHwWH06ow9oXxtXZuVmF86XcDtekpMfykGvG0owzueCrZNIkkG8zx+UlM7TzPQes5OTgSjL76jwzfERgqN3NWObz4cNimMBUnSImLh7BlihxVSNghDO+eez6mRM1wwUQrvk1KYZou9NNiwCB3xuwGA9iNL/nIy70vvP1B9PkgQHIcxeWKUHqQwABEhyoHP6KqeVSC1LYsKwq0VKnvjErNd4vWlFgbXJejhJrGPLadYU1dmEuM/wxVp6A9cP0cb2TDIN1hY4o2DRHYdEgNM1ix0wpBVAKWGO1OBQnqO8fgCGcrYW+qGeZPad31vXMK2hGWry1IemheQUBcmJgbgZ2Z910YJICXk9UHKLwD2zYBmRX4AbL7wY64fbOyd0hDX7BweFtGHsXAqOX0MYsdm1mAy9sMRTu+pKk67w5YOFjEchRqAj4csh/ZwMwRrqmEaFo1PfMSJCOwsLlY/HIiulYQLRDA0xZrIWXx9kivcaovmpVxVk0IHjgVzyqgw0ujKDvlChcUWKPXXmZlFN+Z5Cg9lKj+8/3pj9p3i4hq2ZQRTGdn16IXGqq+Wxy9bp108klnmFZmQ0aehOgWgFmACS5VteTjgJqDjG3R3zc+IXXyPa9agE5/9JOb/Hgb+l1lVE1HXsMAgtZeYry7YZR0KTmz7Q5R5uw4ebBZfe79tdJ0ytFgkslgu0AYtBqBwtugZzvZ2VXnFLEfHpgqoLVlbfYYOmM5FtnWfWxRzlxe+k+WLiNIF43NTgZo3D/of7GyYRYds7msR8DYJ8wsYClBtPP8Mrg8RZSuigM+hHIpurVTzZ6sZVEVwB8F+NO3sSJO//nSkdwLTnzojQ4G2eakwczwVhxrNibCdud6xke07fNOYR+Kr6NApk3mne511DSBBkb2KsYwRS3bb5NHRC1FoAirCmgzeR3SgEDvhIL1Rh4wFjhETBmYImPQMUVBI/hgFloo2hSsCXNqz0lm8GJ0k9MeQApFGmfUwrRwF64lL3J0rUVekGDHSqw3SYpA7+uFofNh274X7Ee/5N6h8EGRzcvBCtTozu9YKqAJPOAGhctLYE7pW03zm0NFfba1VZKYI0Gl6pLIBxPi9BXtlZugJ7kZKGkC0KL2yLzjBvCrcs53nUyY6bjNAKr5mo+TXGQ6eYLG6VAKfZJkpyweL+wDBrTlLIJedC4Lvmex8ksVA6adDW3xUO28/Bwmt6q7EKNirfzMch1M63SM2r/KkkeJact3wfDRQqI85GTck818gGWUvz8Y2AdyBuI2aTbqePIQtg7jssiUN1emkKe1nFpAPEi7nIMoJBGOiU48OCLufO/YgToRa9Ml6edWOu8bZheuP8kev6q0ypC7AzgQaIPXYCOjHnD/q+RnAtEC2hJ3txq6LhC0Q6aA4p166XQdEAECT6es+APSafzde92kQMNpHDhSjwWc/YUSBqTNn0ysF+zC83UyXbcit3kdkRDp8jDhJq+SGEp/5a8l3QuMyb0Qeo4pRYRQi2PtDX67qTg8Te4ayUGkqSKsOsQRGHp1NLWLvS6J7P545hB3v+/FqN8Z2Qm0CkLsNvYj6gVkAbJ4GzdCwH4XWifbO9fW03napLyi9cEgUYUJDtBiE5b3BpED5xgbKmBV2bKXHUaVqHRYOSkdmBOyxGoqcX6X6KHf8Wo053xW6MLTI9CYulUonV0vqt8Vm/6skWeZVrf4Fw4Ax8OpAyey7v5lMnAwEmkRC0TeNgaBHBuG1APhTrNkaWHaFpMFvEf+Xw28VYvTHoNB0MAbplv+IB/lKbFchFEm4dGmrA1S6gih6TmH0bvgNqzT4+UYEXw2dESqmnKM0MVXHLbjamOIjczR8yj3vUOcn6BTJNIEExqWKr/t3pk7UEvj+N4TIi1EU+XxRAQupftfVNItiu+N1miDEcdC7IPSeXkOz01QJdV233glzZjIJiJ0SCsYoUWGOMy8FOABTJgUw/7HfyRiqnGIUbYeQObhYINT1Tdz1e8kHkA0xf+nz02zrMlMv+KxiE58IsHdDYKqswTzx+ewsZL8f1oteikrh2GOcio+41ifhaQXwhDclftwMKzT0lsSxI79biUvK05RTFRRzrCOvJ1K8QC3yw8lcU17DnsHxFMkIiFHfq6mI6FXJBAEUoAU47uQF5ATHXbQulJBLkqVHcDAhGIjvRmLQJXfNSLs06nKlfRzK8rBnjIKqrOK9DwLPM0Y+jkCPEnClgGmsn6Izq1Sb5UlwIw4ggZ46BNE0EZD0c+lrGu/GNcplbmWeb7IsiKJmLfpW98QfgWgtDMNv1wTF4ubsV60wfhcTrhwk9pl1rv2raVLPaN0NpPbweKvAceGmf/Bt6bXj4JH8FdLt+RWg2l6JEIglnfXHEus/pq9obRJm998n2fNDj05d2CzZqf2hjftG5mhARuIBn5aXB0HXOeFT0nSbihVBUNeoN6HnVcEauTqayJiuvdNlaW/pGHzLrmv7XhMoKxZPHcyHg2DJu6f0b6rHwWSVOhkH1m2fUMyRCMVPpHGkPsd9TXWMBYywgGMTqFElHDAfw5lY1fGmk8MyzXNHYgfR2SoyJuioDEkisrgOa5gD+scCh6hn2FTmWXjA6VheMaDKeArAvOl7ZPJHvJQfHCbqf4UP+rAg2rt4hmfjdknY1M1b13atvQP7Jo5GrJga964VpYI8ZpfgWYUwkVtRIwH2lby40KCvzJg98dk81YX4OFZA2LtAldhxNOs0JS6o2K0fbJBi2Je7xN/QRjGbxytw5SlLQeDj1Z8MKtdo+nInTxDsEvfJm2U13S1BbOyX4cThr8V8bNQ==
Variant 5
DifficultyLevel
574
Question
What is the size of the angle labelled t°?
Worked Solution
The angle sum of a triangle = 180°
|
|
18 + 22 + t |
= 180° |
∴t° |
= 180 − 40 |
|
= 140° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50052_v5.svg 380 indent3 vpad
What is the size of the angle labelled $\large t$$\degree$? |
workedSolution | sm_nogap The angle sum of a triangle = 180$\degree$
> > | | |
> > | -----------------------------: | ------------------ |
> > | 18 + 22 + $\large t$ | \= 180$\degree$ |
> > | $\therefore \large t$$\degree$ | \= 180 $-$ 40 |
> > | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers