Probability, NAPX-p116547v01
U2FsdGVkX1/7M1Hpnjwdtkic2rA611/vTKuJ58gIb41pxj1SpBcCJWBRIdJy6cAx6cFQFjw+RqsYs/YkWR/ddVlqPLF5kV0ptB39VUMoQd4EIHuDuGGZTpBGNUjnv3g13+EynX1nMx3NAvJr0qsZ1Ejkc/TiMWmOp2FVvQgPB+aedsQ0kH+BQiKAYpofrYvRPav5BS6clQNv68gfDdcJS3I1g1G+M7LSricaW1lWxM2Eq1kz6JL0UeGrBzUUFRdtfW1hQfN0YrUmYzP/S/lJ6BoomUY0TC5z6QBynLfThr8exZB3wRlFoe66Y7+FxkEhUHLXDi0Vb29/nT1rZ3SiosQpWlPyzNVdQbYnBZO1XPCNi4GCu2lxBVRZpPm0O2u0bAfpkdTSlxa/RCMxACqx3ihx6knYMGuzVE9qpot55hyqa4tN9BwrIX/xfv+9ufE0jr0C6Zh5IvcRmpS1yaxsaNfppUgG1HVaHKEPmTmL53gtJS6rHEkQSFxxHQZWICH9dMi96nWbR+blh4LssFUmUSGwQimC7z5WWbe3/s0C9N95ne5jGmYBlfoSs3XiW4izm7MTVyM1YvOBozN4mywXt9q6MAhPY3ygg2kctm5PivUMFcR7nqt4eI18kzXo+XvU45paUQDBOJIN3wj3cwIL0yp6zylo621Px51S5v9RrCTpficSeb+TYvcBnRn447YB96SED7uwm8JCA/qUeftGu7HEK///Nwud75RWamB0IZhy5u/269JbJJclEALQiLv/jBvReffl6iIraowzlboe2k3VESm5m1RzokMkKfh99EjUkI3ORMzidOy9n07IodLMU9y2sNSvXYo3h7Rr76355n1CS5cFiplyXbKV8bInTFQrIi9zH/KVmtg5ERoR+35RSsZB6fRzuFyuo0Ws8KtT2XeKnAnCLeFAlS8VJtlhO/WzNH4VVlS+4j5mb4gjtwQ0N92zfJshOx8GWmKT6nLRrdv4vtcizLR1v38rfWlhmcLxxndzhgBR5F3pOpbvWll5k/eU/yoJw0FaWFJqUoKT8CJ+9U0ImlKtzqKcmdS94bJYn/+W/lyWYGXk/+EZyrGnAKsBWn4/hYLmNBNI+FgUfftxzel8L0q594aCYABBUCmDTO+3O6+DdIRAfvWlrVqtr5bnxlznl35ZMVGdCUEhVdRzqLCYpgqc0lm+NVrM73SCV4uWhxO7N6gBfo/ZyzUckmb3Ts63C+0fifVSkLalFxa536zzdko34qhxuq6hmGt2B9U0uWyEDwRqwZfeOz/ylZy1qYKmjtdQakfUdJ0+7CkofHPkwCHLGFutvT2OnzGDDcd2Tx36+cPtOmAIp3jui9eGYzKyZWTH2V4qIvs0RqsD8fQNgP4ZkavGFqvlN3ibElxcgTkU2MEVtZUuxmu52pg3cAWO56JSM5i4G++JJNe99ajtqDCQ64MbCVzSpEUd5gUaKP5pSxe1ysQkUcsdW1J8UZWGrAJWLxaEjunEx+AY/t35osxNRkE1tZtmc1NuJlzeEiMX8p5ybJNQrmZEqugzXqBIMNFY3WeAGGSOkm1T2WXMV3S24mZkzIgljJZRdY1I4omEh4/AID/43er7yCTE7w8bx7L/3hmsyP1UslvbwfKuzjTH/jJIQLXXoqe7g7DX1JpJ+CyZFf0OCWS/HlbbtjiPkI2qC9eqth06yOIlzA5KyfRm3SxyJhTREPWM/xZo5eZhoetj7fJUAQw9rpo2vAxPhtPJR7OovxgXnaAaoqBPanRdPIrfDl27UUcmBctUkeeKdUIu18LQJvHe5vHCL1kisQcIFmArOdkyHKfcOG6FTrM9G0reRRToRxplxW/dNX/TOFun1dZaAs89aXbevnEMID7suunGsUZLaeQeoui8nDHDeLDN9sOJWJo1368VhT/gj5R7SdxGbJrW/rlVIrHM1awZSqITEaV0H6x1YLv+WX28AzahpG7SP3FQ433M42ZAOWd3+yCccYFTdqJXcGo7ELlRoAkdp3Wi+rvh1zJXr4rTksEij1PErApQEB++H73A4bvzv8exdJUGaWyux6DJospF8l7gu2cBn2Rt1pd06H2hhk/7yLp0pMijD6yw9hQxL7wD4vKtrwfzT2eMVPt6La0CnMCQIIxzlSAhprbYo/s9DKsQPUpxJV6K4yTcRVpZH2yXc3CitQXMJGor+GYj0HX8PVjW+Z8HVqCkiSxayxlRxk6jJEiEqkGo1EGVy6MN/cYxfogpO+06oS9XcN/khX2F+BNPkt8GZhinKrOqrfPNEYJZ95aaqpKllDmf9cX6gWQ3Uzp5Nl6DewcdSQc6RXPM7CTjT6ZmZgxlwHi42xNbSlMci8mrs/5bz2SIxaam+givBQqZj/lSlsE+HHrp/8fvV8lCDj/y2Qt4MyE8UKW3vppAjB+0KoeIsR29uwaigGk0F6l0vr1D5bJe1b+DLUL4gfyVP7ZOL+CDl3NntFI04gjMaEsGMZMQ0JtE4nacJPAmKaZulK9qIiIzXfPrXyNk/HMLXm3hcdeSqP/d85pPgK5FquriTrX1FY1MNaMaIt0MHeRRBOmtHi9UfLwwISQDijAc9O3lBjPTmb+qM+PL75LzCU0/aT0H3WeQpRGnD1AkBrcklS34yLZvvDxqZmgJhlB8SbzM4Mw1cTJXYQf/6AtCWk6lcjFxkQSJp0nNhKcl9U3IcItFuZRcX2Ax2KUDTm6uxudblvXQvN1/28GelhNYu4w0RR9nS1qiEq2snTyevn+Hrw4FxAv/6ljBHRvqhWYjQZJmdgcsYlTtyNnlYbV8veFux5M4HK9MY96ZjNpjG7/o6xAsh5fjUWnWVLpifQy/46VUI8tDVItzWqYVnz392JvrHv7oZCYUuWGyMKBLqB6fL0GY7Dc/MtsVSeuI1MBfNGVi1FukpxmaYclsG4s7Ljx/xPVZawjM71cYhvXmwezRXRYilzkEEod153KPV9dN6ixWB5y7Lrd6BLaCCziHU71aanXzVNx5s/xPJ0qsmN/qOczH8iqJKOgy4xAxO5VWvbVjrLyAEW0sXd4wMKDHr4T/ajNl/Yw6ZFjO8vjemCfDIPThWby2gDNo0uwG3+kB4UXttkZYuItOeFmh/DtsMyNm7QZ3fdshiOlOk1xhmMEAlQkevNL4JJjCDskqiB+Jr6Aqx4X4FuXuT4GCvpsMSVLoWO5vq1Efg319jIlHSKt1Zl2OrAFRevPmApr+8kxIQTWU2SNoOPaBMaV+1Ne6t+hKiAUq62Nc9EsKwhMVcsvldp13ArGu3q/A7RwWTQl518BhAKQC4SMnOgMNO79Tlcg4LgBbSCttgapmLp3s1JgA/JU9ABVj4lXPvGogAoiIs45s1RghE8Ve88UI7dUpbrZBfw2zDjvcF44aqFnqSC4qLQ7rAP5VwtxV2AWkGScqn1wchjUvtVDqYrswjvlFYoQ27TuTtPZjsFGxtaqnJZi0hCFrKLCXPGwkVQpTM1marPM/j46q80uhB7TseOAtPZ8esVWdUUNoNstzrfnPeAetcLcSW9jZ74CL59FrudJy2dN03VMAohYH2hnfYEiQ6Qzt2Nniecj5/QbcSOGCDEcDMDx02Ac/LZBPW1h7+dC9/Lpzh/3I7RLlqiDjtQ50l2cT8nODBIrE+KpIbzkVxvAFIdd5cfgxKEYCySpfHIR09FJ5yvupKLQDVX8uSrhdmSnE4PATx48DITnH34RBU2JNK15Fo5+gXaNVyhHRbuPGp0G9FF2XCjbX46UeovPvNLyVyQ9nVjt53ww4ZF1Ti1UV7V/LnAAQJjWAuH72lCuptU7kCZYOXUCJoNmOq09AUaXC4pKFgXoMvPqhEIRuFqhih55qJAzyDuVAyreY3AkSxmEaxmW73eyNBJdso3pPjSND+zj+MuE5zt/NBV6GfRzQrcSBBrBrGSeVyX1/7RUO4th4Aqvl2uptX76hfMXIQD9/4Aqft4flqIhShQThEYJS6Tz6WO91BDLa1HxutWcquc9DVWqMBgHvmDik2KTjuHwEDfjVK3hvk74myA53gL5zJKS0mQVM9KasqJDBqCbqRD2najuJlVz5HDcpHpzH9yBum3ZmXGqLnD1MF4Y7lVjsmwsEKy9ERrqYkARmmvnPFj0WScaB0rl0WPPYe3NGhwolqG3eSf60zR8/2NRHQhEiED4i5xg3YlLnHm2cnMJuLPmXksajckTUmrPQjODaaaeZgJ3tbSwLpmLnMJGA+uZrFO9/FCbtmZXjnTjD/48VdFcBcNbwKvSv+PSi1ss+dq/CEMxjbRjJOyOAh8kx0t+paDUyGtJZw+ojSU4Q+yPgqg9jncVN4gIGVO6tXd9I/C1zZdaUaqrVK4+cZDum/xjxRRNVlBZ6hW58DQZcca8a/sRSUyBBdhBjUTqrVvFFEmY8olJpQzYPK3KRO8r+CzPtXZPfkez5JSU56web3adlz+nxdJRTxzm00egNRrBjdmBmtIBYUCsnn5uqlkAQKpW0rqLhuhlDsmtFGI18Y1jA5rk8WQMLEWQZZXQmE2S44SLW4uezyB1yUlZ2EFv4GuzLA9tTQATT3wM5b1jyVPLX6wFneWIFFBrQ/miMnBSNX0Bp6PNBH2Qz+O58qD9WBtXcUJvJCiBxLGJjm3zeXAyE9e1/kATGppQTKhEHR5vzN2jP1e9f6cgjf9q7qkbhsbf88homOI+tzF30qKpGAJ+9yif00qC8JCm/F2+cUuxWvKruNPgHYKvZe67HfB3KsRUTgFm6DfhyvADEICiM+V01lwtpnXN3FPqLm+XBO8IfRIZ0bl5Kgr4/91NoGeRFiGhRK2VvirS6EkLCkthWQeoCWEid8yxBSXOn4CB9vhaWIuOs3TJQ6yrpEL8qItWcZvZPoLDw7c3hxtS3Hwb1riqFMesWUkFbcRmQtSWq/EahopT13kLMUK/uoolVJlLSCyP2UfjeyWiAHjDRm1Jjp5n6J9xhqsO4YyyI9A2y2WzJN8MJtKgGySPCGVdwo+Xn/VByR/VT0D544H/F0hG+YLhXGQd3Tu4lWYnGF6XMv7rXV3I9UTuSkQf17F51uRec62IfTMgyI+ia4lUqDKNx9lDxeOFOl8mu7F6Y7Ts5Bdq3f4tqEHl94x1zHqG4bNr3e5QSGlYixY1j4Oqfb9jQyjHAGJFcsKW8IyN04mVvdCKwiJbuLG9wP/+tj7ET1OIxnk6km4I6lQjosN9wCBtmASIyRHXi5oO/20A3PcUmLXvvE5wcCRFe6eXGnuQoLhemtq+GS2lP7tjYBDE1/xuNhuIHatJZmLIcsa1rBirlEAQHwr+OiXWKSz02WHD5ReXEtu3yrlw15Iu289Qh9uDyUzPA+Dj1u6Glv5l7W5fY0/+rb51BHdik/F3sMyK4xDlX6ioe1LQzCLbC1H5SnIbVd4LD+E0q2edQ2P4refqgnt1TI72If/J8nb2ll/GRW+tF1TIlSBY53EGvuAzAhURKEwPMSl2MDGjfM4RkFmfXKvVlhEOEIJWrO7RPKOcXUmP4TuwPDxTc4SrO+3HJA0y2OgW6ppwwEuA+3jCriHO4WjWcl4mJmQjqhVWnEk1NZOm3vRyAaFYoI/OI22wUS6+FUVBIDUQHswv7KCcg99tj9ZHnGoINSv/fZVcftsP0foCh+kbNx+XUIqlk/IF4Hl2BQD9rWRALt/eM1oqhBd/EwsbhOm+Li1t0EJRjRLDWZ5kuWc99E/qLc7KlAcMFawWRQMTSCVOj+ZVu2SzTpyUSbgeFzxmGWbyNDOBW+xOGJJJae3d2R7ptQwIHi3qtnDlwn6Cjy7N56bvDAZ96ZhW36idqMYJS7VS07lR9VgSTgOtWIm5w8uEsiSqdvwe6K7nS02ZDSvnDM7QNwAviRAdBDPujK7oGAF3Zw/gKSxYfbjcltq1OrtCMnDvT6sOzBxxKcvbSftqIVvgdPWKTHZm3AC1B4TdIHLcMGWXqs2fzg6K0LR7jZ1xe0Chl3Zo1uvaJLmouWvUo+xNB2gb79G+48cezFAENoAh4ONi/GrT2WZfymnUA+7SJoyEHgUWcdwW++9bUZXPvILCjHkD+ra+vuW9TB68LVIjjOFNrmOahppoq9zHOon+/xb9Wmz4OoU6bGQ26fMksKEiBFIeq86XVgc/iLKHB/4kvolWv8tjf75moT06cBKbknTVPcIqGwqGEaH6QKmiynxNQfZHyqOFWLlzq26146VQmL2O9WJBuYvX45ReBH8RpMm29em2KFJBvz3pNdo/FpV43tvTyZU1no5EGpLlMdm7BhxT6E8+mpN9blsbtFys5/1+ikuzuMpDXHVQZENkQ9z255c1f3DUctGa5qZIjAXs=
Variant 0
DifficultyLevel
370
Question
Shapes are drawn on the balls below and placed in a bag.
Billy reaches into the bag and takes out a ball without looking.
Which type of ball is he least likely to take out?
Worked Solution
Counting the balls of each type:
6 × 
5 × 
3 × 
2 × 
∴ Least likely is 
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Shapes are drawn on the balls below and placed in a bag.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-J2-02-v1.svg 300 indent vpad
Billy reaches into the bag and takes out a ball without looking.
Which type of ball is he least likely to take out? |
workedSolution | Counting the balls of each type:
>6 $\times$ 
>5 $\times$ 
>3 $\times$ 
>2 $\times$ 
$\therefore$ Least likely is 
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-J2-02-v1a.svg 45 indent vpad |
Answers
U2FsdGVkX1+nA/+ENUyPSJuEiAJWjmL79/sbExyTO3g2E3gWHg/tLcwgYTpg8eg63LLwHSXmRUzY/p8XOXXgdV1Bx/xuhZIYyjB6PbN7+yYmnSRnnq2zXmmNPCEciRS/uB/T0LYE2HLc6JVSzJMAEY3fv83rstcgCRc0L58EV9aQCocmfV7ipFd8Djez0+E90FuPX/JYbLMroJsY81ydDv6wkqi308V+pIzp/lBN4kZ2fpNhHE5stAMTsSQFbtNXn9GakWDmOoN6ghG4HvG5JLrKyRw94c/hkOKzCt7xSpF/XJMvk4OY3pikYqlcm9myQPOlnIEmgyOz3q8+DTpbdeEH/6TMrOMcbXy602nvX3VkfKzP3N00+t9Cp/47FTwYvuWk1/vazuvAb6QqtGaSUvRNG9FZ5Drmoc+A+a5r49H0BOaq0F2bSBHdEa4hanWHxcd4RDmh+EW/r4wfzFrXYG2pwQ+7ZhbzedEVR2OPYddxdVEOSKNt4A4uZvbLNxfdFJ5WeU9izBVKL+S0NYsv261FH7kOgq6vS8XQcPEcgYmC+uGA1YUmEs+FlHfFcOZIo0aka5rJyTzza2eIdUpn0iQ12wnTkH17XP/FT+HetScVjS3jCIfyj8Leo3UksS62U3giSSVwyGIpuCuFkQPU/ZGBh2ahNE96OfHH+O9ZMMtX+hvyh9jnIVesq4B3ptOsBpfXN00XBngL9zPExowDdLWf14X1Y9t3+3wIzNsi440JUWcP7J2hYFhI1+QDBZBfcSkHnw9vFBvYYp2+hRr2b+yZHapfsjQXri+iY8eRwlM+HROXfvU7JPTS6JSbbu8lGezbj7GR2weeAEyzMrAufdnucL1RVTSolsIkCYs4tRx72vTAOsDGiXHHLkeXCqjWSCFFXTxctA7fiE9rJjhdgTxlSPs8tJHj+lPthdtc0JGQC28+wfcVT9i+M/HBfDNrbYHSz6v+ykViKWSPecAFlZPHK+Q1Xapd9PUB/7zLJtt1pswFyvnwPjojLCkaCpOTakJ9ISkRU8qC6ICswMY2zB5pkR5JoSpcYKycTEzXFbQN8B5CD1J5acl6WLjZ/PJrzP9mRDHrMr+wyrafAh4Ou6IzZRvTD5Rr1ZjKhIFCT0NuZ89EIIuMJBZVHAfbhVfdztX4sD2ezH9EkWPxQcYLYOakvR7EIqpdwr4HxxQkkhDoOV4J1zO7vYzT5JBkO+TVd5FpiJFe5HMw+g05pYOdIB6b+wpvFUn4X0NUkGQU32siFaXK2Xky+CKGdLk22Ug86CKTJN6EHSb27QW64qTCJuS2ARNJ6FTqOMsbUn3iA5PSR1aMEYZO0oae2G+iu7zjc7kGFPcfM5vpHkv/kGNi9iXpFfecXKXK4wM/FMqKflIntdtG5daA8+4nY7jeNhES6A9tUs9xfXC8oA3wuEWgkplIzUqQXiATyCrhnyOBJS9IHxgPnHHu4cp+Blh8vld+eqg/y/T/QEuMKRVRCqf8YJ0r4QMMlhw7JfXcSuuBsPJryNREy1bnPxjMNubMlEX8TV6/E4OiJ87SSfnpPLYtzyU01XoUyX506j44XOCohVotIzCARWLMDTM3Xri1VRW6bhTI3aOMHXn+6gFvbDS/bYsLl0GYcocZprVfbYSKkfiDDH4n1QcwICtT/5Km9DCvPorRUpRAT5sXWkM11mDq6pdUJUtJwtZjpL4FKMvhlRCgmi/QCdfXV0JfWZwIti1lmuGyxa67+908kNIMK567BFmyrTIlE/IjthJdbhCEx8xRAwMVvyoVd4f30aW8ImM5jjoJYa69QLnC0axs6/INEzNE66HvDbpJ5E+ZrkX6dkRjvxicxDIIefNydOeiZ3Ea56K7dp3CjxuMvtTAsMX1CdJ8vd8DKCch71EN5+XzXQzFOLEJsQMozC3oP5De7Zc5AUdb1e0wYxM2LiNdG6ajrguV/9acPDcfY3bJekp0lU1UCGH9tHTlRwuyR96qZ/zlrj4IUBnFPbtBLXK4MdJk1ybilvkjKm7sIkMmu0Qf1cHsS9POLKw0PVA/HYBOcofp/JNHbyt9nI8CryOO8q3LRjrmlmlYljDAgwFp6qYtYTCwzeX9DTb9SrIpwjQbcaDyLipZnJ+y/ZUMYgWjvK8/OBw5t3O00TewGF6JX70eyvKNsgBxh6+i+wI4mj+dmEVRBtPJlK/IWSZrXRlxRZGZFE4LToTe+lMfABSlqlOo769mLIgf5B8p+fmkxT6dy2LL2+0omHdyfE4XiDzdKJB7EtagIjL+3EudWIZ57iipjIH6l2L7d4C0zUtZloO+FGOv60VRjlo5VwiErmj/jEOOzBvcCwmiwZBeDCi4xCR93ojJYFM0MxuOwlMZRVNDQdF3esH4UDY+FR4sz03WBOVMU03P8AGtGPCJVgYDgKwmZY4B8vKZqcXg6RMCNLs4ds6JgN08TntBZ5bJc1a7qXOhJrbGN5w8eOhV6Bpq3dN5X8ML/A+30ChGRPx2CnpwNF05kk/CfUbk4bSu9rKMdjkeB2bWiht5Zfwsjvv6yvIY2I1Ikw0pwqSScB9RB8SpDZ65la4dtoh1LCBNOoHMVGBUv9uTPeoTVDm9qnhM5hKSPGMPz3pupGcKePad4fngkHuG1GGWJe+FGbRDdN3MdMRTJY0MVU7SX81HpVe2V9aX14zGNSN4QmWotoo7lbHigrkzHmg7M0wIpoiRGCEfT8ePPjVeHrkyKSd1XSG+iIE1dFz29Lwl7vwFO4LbIj1SMSjIqSll2Ut6CSfiPv3+m7V7EcrJ7OK4OVrDXiY1M6+9hCYNEkoEXfoiPtrYeFe3+3qyPhdX+BlregE+P7+aVkOfhLfq48fhQ9UJvwAyvQj1xAfriDgIkatPl8H3zY1fjOvkZM+M++Sx4q94VYFfugr+1Xk7aAqcUo9AEyOS9RDSCw0NwCqGWF4BDaMYRXUE4fwyoxELXYYnIf8O8zZqkVLIPgRN744+8yzyhZbp3NRht/vvwwu8giF66kL/VQxLNLqVuxhVjc9FypqpIM4RQjr6tf6Tizw3rsQuMt0Ehc5rg+BQnvTiQd+iAVOnrT78mUh886I6bqQZB9zhBHwAp7kEmX7DTAFfAKZTst7pkDSNReG6RB6KdK7v5N2UkyzArEKRLxOu80TRDm21cBDTBLT9xOxqN+BxNs5PARw7viMG3IcpAtaKx3LIew4PFksVW3b6yXn4SHBaWtJV6LY2ezMjBTr4mUzUb/9nAVKk3ZGzL8Mgrbq1MhpFihk4vBTe56uoqDwC0B0BOLlpLEoLcqYqUhfo4s8+RHykAtAuw2T61ht6QquYILOwxU25s+7WEfdeiWAlS/239DZorHWKYsneY3lFkjkHYbgk+KTbMfkxpGje6yBhfXXrjaAh7TSrA/yBJ0Y62ySadqyx4L/cuYz1l9yWzM0uQOVdmjFOzvgM1ToUgBmP/t4ahSaPiY/sGIhW9i8wy6vG5CipfW43m6pNnSwH8HFcQlKhl5LC+fiL7g3hvaL61l/764YHiDa7nuAlR4ZzPU1DezVdCXAH7ejn6RKxjIlYIViNbNO7a5oX+bVmVUt2c7/mA1P54H1Z3Do59rhNZ9a3+82kLzI6fG7zKdgAFUJOLe5KblqQZiieUJuYmg6s2YazHUBEvbBpXx3RuPsbMUcVmoSZj+i8k7QUlVhKWRkgTXz3Zzqi2EDgrAKrJSvEvvR/MfKFCOJmkf8D0X+5kdpuG6zoH66TbrQDJl8mdvIYTwQWISfkmvQeHgfkRUL9n+N668Khu/ax2SHEB6XiOO/FoLxKuFlUgwuolojH1qWZv92e2b7HUhxBqLMJeJTVMRo+H2zMkE6HiEAFizipyXu6TYYiqkxfBDJdNEamabUMzX0ZBjKoxrEHpLbPABukou/bXsHajDXrqppV/NXZRdQxO26vGw+Z95tN9HBxvTyJABBpMgm25mt3uwGYfRWFJij4yiFHyY4Jf5x4+aFUfM/PSXZ62SZESd3QJOvC8lIkMcB0lnYpui0UL4zmHhdcTYvcXq4rSIZKpmxPCpgcbpK91CoOXSuuudyrydJp5Gk3arYJHkfL+Rs8QvJ9ny1Z75eKtRLtHHJJnQn4UvfDYPwoiTEI5qsKfwmgFPBALkMhSB+UC9YaqpxY69KUi1+n65KZx2uY0+hi3x3Jw0P/O1pdU5g6L6Uh4CxMOKW4fy87+ncmKEhP6o2/zhdUnaVK60uZHhksB8Oqj7ym0I6aVVUG68be6/o+d/7JrAIyFCje/WY+TAMSaivJZ0jEoBU3uqUZehJosa7/y8QyMLzStxQMaGsdfjDmSWw0yZpA3ILwH/LCpdepIDtzrsLJLrgpPbBxhaIYDF96x15rd2Bws6zPa9vvLcW93sLczGFFIU46VYKMBgHAQPlqSXZGEe5R0duRoyWhYiEn/V/GHDLEF1HpnAFtT2+Qyq4Dh8A97rp+7cj3ov6LRp+LNK/WSdDrvTp4tcf67rE8M5ijfKgqD3TwpCMzfh8lbAjp9K4hYfUFidDygA9v4R8yV0MQZIMtica6olt1gmQg9BS2mYb3Gy2YmEOmi+CxACuwQwRRwItwaBVwrBcXmYWrPdFuHZBvNrLbw5VJSCiiGcBQstk93lRUalQvdOS6WIAUXGNsS+fnpdKD+MU4blWYZd/Y1d1TfJVMh+qwWpmEs5Hq3Bt6vT5fdTqC/5Bu14ezXbd9DJ+XcGZiP0nlCFoV+Cx4aVGExtlsIW2ZIvB8EYeWFlvEkNEcxZBy2gvETYXxCva2xySk5kVEwZUkKfbfPioXtf3Br+rK9lFEsLonqTTJvhvIrhHPK9UvclBabHRQdSin8TLUHnXc9x98sd+DC10GQgbt+JMQ6QeHhcDbFwG8yLDIbYeNSXxrLsxnFtaKj4/lIXnAHaQqDyGPzd0h+K836aS+utahvGbL8WR3x1OI2ucBcMxNXQM2pxnaEvZCKqI0kTqIwozu6q8jOdNsgalxG9q8rmxkL0nQow1ELGFFIAWMz2GgqruEcFaTiit2YbLPwVjZsYa1QatZQtmbFrf7d0ZoIu0IMvb0oL/1VlTNPUc3mi4hF4q3/Y4Xjd+q0o+TXLo02xD8q/9iAmIvSv/wSnm18D0oq6WxwyhkJZo4jmGzhBm/dSURo6ixpiLxiTa3WB775zK34SANobL/Lx74ViDbpVY+Ht6Crq0l50TF1zNAsj+D4aw/0/RmwXz8oyLTfoah/imUyL1B2PGzxTx9zL1IFvbh4Nfr/W2ha4piVTRbB8YHnnHWYHECEHgbeXHO3GHX65QCMzftVCfMwfBXTqA0k4HhyEvmpMnNy2fr22NgcFvte9jfIWA1AkkzNzb87iYcNImYgDu+5Kuw++zB0hHlkO3QKihKQVfMCBnbgu+TA/PAzK6vnDwr25RSH1eF+mtfZ65cQqrnGP7A6+0zhGXWcbu5QVq8h04e+CvEv853mcVOdX9AaAjK1pz2S6CVsabFsgKssbHofUcnTR0MsEimM3tFu0a0iDM/ckQ3HwDZth8cBl1v3snWocZYqTsVhGSgP4ZuT5eE/U/AgK/tuSuISzPD//++2Dk7HMUMzHdj1qgaCNybUXee1KZUala5a7eBTIL71lsQKzUr17vDmQv3iAQ2FALSWNhS4ybbul5fLhaZW6BDauorMry7BQuqbuogqGdn5iGIWLC/n6GBWh46+qa/K5bSzKUCzvdPc4pZ2Wll0Zgx4X68trJrF0k97UNA7OUzRiDtxaWTHWj1jAwc+wQniBFvcQchBp6hzG9uwE5m9HuVhbTPNfKw+rfnhgc0iZMmL2thWNHIsZFd1WpC5O4xZdT9XdvdluOLSHfyu679qI1tXg9KPsFHK5xKeRae+Q6nRMVWLvWdIfJ4tp4SFqN8P60e3me+gNz5lqolmLJIrBWZFUqABkle3l/qaqoox2SyFr5raoatC69KgJTi7GxaAGtJwN/81qdZv8je8BP3QRMLvy8o/O1wEZwv/3Ah+Zxo/AhSw2i5gtAgE3VwOhKO4yLRBFmoDQUxatmzD0AnW5zDqOlnYv+wMomTH5Dl5LkN314kZrdJnY1LasKUBNdgk4yRcsGuA6P1BsWgbAv5obUglc8dDkTa0WDMc/ZBuDGLQ7EsASNo+cICvd/t5O7XjgkQpdgEsmOmgMLrQVpmrXJuxEuF58j7LTONiMpnEKpPXD3o4AiM+vdFAxLkZN7AZtxwfUSXcK9fT3yDmEWirU4rWIaecB6P06E/FPCvm7cL7NjHcoa8HDeyDy3QA+6HDTJlNg3Qx7NqZJc6FkIpahAMkSy9V7Pi6eQl1Ln1mW016VLoTh5rIYE=
Variant 1
DifficultyLevel
370
Question
Shapes are drawn on the balls below and placed in a bag.
Bigalow reaches into the bag and takes out a ball without looking.
Which type of ball is he most likely to take out?
Worked Solution
Counting the balls of each type
6 × 
5 × 
3 × 
2 × 
∴ Most likely is 
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Shapes are drawn on the balls below and placed in a bag.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-J2-02-v1.svg 350 indent vpad
Bigalow reaches into the bag and takes out a ball without looking.
Which type of ball is he most likely to take out?
|
workedSolution | Counting the balls of each type
>6 $\times$ 
>5 $\times$ 
>3 $\times$ 
>2 $\times$ 
$\therefore$ Most likely is 
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-J2-02-v1c.svg 45 indent vpad |
Answers