Geometry, NAPX-L4-CA15 v1
Question
Grant is a town planner and needs to know the angles between streets in the diagram below.
Grant knows that Dooley Street and Fittler Street are parallel.
What is the size of the shaded angle on the map?
Worked Solution
Co-interior angles sum to 180°.
|
|
∴ Shaded angle |
= 180 − 130 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+MKYLCbKedoIKvAhV4wweSUGkSq5GQHizD4PFyGZ31tfBFCzbF0Js8C9sAKIaR3KCusd0YN4DbeXaY3zuo5ZaDczyiGD9tS3sQVZ7hUXIN88SHlM4sjqFRAWuAFCI3e7GdbhDt05w0upvqoB5+7rrTbYUT321uOJlXrtgA36P5A7RujkezrESVy6GWCLFKOiPzfHq8Frd+aeqJzFu/wn+W8Iqlh+RDIn+UhdHRftSIAbt5EnVpi2+Zn8pQKJBCoG0FSM9ngfrQgeb5AH1mrWIaxwBV5imsaTY4d7a8boanFKntAaArue+zEBoXYGzyMlDg2jp5lxq8b201zPjpy/+2lxZSPdN/OiTEg25m3YoZMUmDIfC3bXjYUnqFx+u2YE/fm7iGGs4HLhvNEPLXIiUd71JdSTkPNYtuKwHoQoJ6zRn1PCbalPqK3uQL8sVjFguC/KE8mGCGnigBsXOCgEh+FYXOrq5zoD0iYewH0kpgTnAUtYgsykZy9DERgXOSjBOZ7VkC6WaAiFmjk3TXbBBs/xuGz2cofTRBydvpW0G09T1+4MfUYj67fXYhgdEQp1Fw0JaRpGQjZp38aym1z6NRTFrXUQkhrp6uBcZkrrL9OVi/wXMc2aBPey90qwhy9Q8Wlw+phLupPC0sIu6P0xpfVEnQCYYCDmW/lCYaK3GBUMR63vBfjgLjmQjhInNKBP08Pz/GqpKJchqNeuqyRpJOVLmq3aloxPhlCnOKHTm9IsjCRh3zye36yQaMS4lz9Q+N5P4SBjZMcdghnYgNwQO74aLHFUeRpUBQfPoqSlOFae9NNV9PJ1ufj3ApgYl0Pz/MZgcBA4R6e7P0tUNHHYIBymXHbJwJ4qcmbrBK/+vjf77PD369xZy5u2Lyv2D6ixmB2F/xipmSAXzVynsbnZkoU0lxwRroeUHMfUwc6XLLg5R4XEsz7yZEPitqrbf+QpuIJGbCfBhD2d6tEF7lVzFhdethpxTeiBIjwlJNDem2VHojYEJtbbXEqd7XVS5iUaQYz5YX5gc+McUzCrvosXIZsy+QX/3/AxGtJZOAEXvICK0cyN3EeYsJu8VikMwTqsuxL3gnWNsGmqFXV9arRHGD9JNJcNyvh+j/NrJS7pkzwOSNxT0nZCxwlbS16uqNP4OD6DxRvI48yQLV+xlx0zss92XgnoIYPqMVpVfueZYoj6BKTq1QxXgA6VvTTnfVi2N+6opCgCQ0N3+XybtTRbHD4yD0XA4NnlihoFuLzHdDAKRB3ppT5mXmCGe5A0HFh17Cwy3rnKf5e7FcJbNYCe3eGIEKxiEYkGvx/VisgF5imMT5d7zyJCrYZjCC2NzmngPFX9KyvJf5laQbYACnxBCpzrML2GWn0tMdewFbvzcP7qORCzUBGYyTj5Hv1JSHYpcklVNQEZe4E5YJ5dJ0wrTFm2phBtcVdqNMC2gZsKNMZ+fVxklMUn1AOLTK3Zt9Qj18ecfU8AwsO0JB+aVi7nl/UCur/a9wk2pZffXTChhdlVwth/e+cN0tCT3jTSp4frQ6+vVIaFOPRRUANCYRhyXlLSoSF7WmDOkecHJkSTyvn1nCzJrYoNi8SCtXAUjlUKBG9uCl47DCH8T61LfQ1n+dSf/iQm2ti1sXol0UX1odg5KHJFqzBZGFeRBqohHNrvvRFdSxB3wfOeeq7OYPGLfzcqWbWIdlrIc+lUb6ghu6LwlBifeBt6+Yts1niqTfVNoZezDblEPPyuZTFyNkK/cjQMeKmYniwbRS2hzQZBz9OZBsOoU9eIi14AEmVorDZ+uE1UNde+qWjLoaS/YBGjoX858wN8So6QMuNTnBPmHFK8bUAS6ifWZPpGPUsDbqUx1JcpR556lLHt1jtpCZOzB94DyoBAbpVokqFwXzeNngY/S7hN6coKHy6+Wnw0krvH4JsvXIu1XeCkpow3d7q8CzILP+xKqre9XKX/xefaQDQWOdQPVQYsvD6lcwJ3e8uwpTYJv0CpF+x2mSsNih6Vv2jYMeSZeOGTsQGiV/m5CCn+ZdgCLt3ZbBZsDGbUV+SrcYTvBI6ZZZHebvDh41oMTXC4MwHm071rzux+fprzjvB3l51ctD9xvOuiNhh9oYmBxjLfscWlcvVgEs9OQtEbIpu0p88z9609Vo2R9cbq3C6YmzjF6SMmzvQduUoK8q7OaLVFlGLTLyxBLbr4NDxkktXvXotlCr771t9oL+9dVFm+L9x6s9KokwDLrZj5Y83d12+WUGFPup2FZOB7+uADJoa/1cK0salQsqWRMOkZFP8XXCBjQ9A+lwuJp0dG50CCrmQA/VY2TPYZBPsEq3C8VKy0EMMO3c3/88sw3xQ1bd+uFnrxyNL0/uPGiNVSXSUZXs3UX5O+epW4IoVx5e97nFRfI0MvXwyW+YNCP8ydy5gmANYKuYrpCJCFq+FYT+MoEBko0iUyLff5/t2BRP21tMXnDx5zdICO27QVwa1q0E/teF3H+6bPbIGK4lE1Rq7gBAr/oJXPcjMIYsFhgSK1DA7eXsfcXekMDJ/7I8bCBDrngI1EfMP4O5lviS4TEgbdgTyg4AiHMKRCWjdCBu/PSuaMinrnl2ULXOfKTLArsdPgy0Ye1YERhs4tqcRDcvLXafKfmRMF1Iosl339czBlEu6nCvXCcZRH7A+96jHmswH2dNQO9DYbf0m15tWGxQx9j75+lDC4gJCXRkGiCCMHJwUuAur4VS88glGcARS6bTCkjQZBzCK/u09udsw6bQGW91tynoVVldBloEhnPxkb+nX9whSlKw17tFf1fnpBX99hR14/ktHb7N5796nJuUcFz2PYFMoixrCAQ9tFQOgjXVPFEoNJUSMJLGd6yPLIFONn4/I9ZtIkVheWtIN1LEWeIrPRuqz92pdK6G2YIZIeKS+3HcK6jbH7+/AGJLu63t01ZWhg/1znLb3sGhthD5YxgA2PU3IvZvyrYFwQ1541o9faMzACZO+tPtgn7HdjTs6ZqjpjsXFmyW5ql/jqXRW9wHeM5QnymC3KkOwXJVm9CODEPep2oeQ79KSZf1R9b3jyaYTc9N9o5qL9+Vhe0uxahtlNJC4p6tsG9bTP3hSCmoa1Ve0fr0GFbumodvQOXtcs/zOUdnxe6ckO9vV8p9H3/Int+ZLo45JUD1llutO/TaNWpUt7FAr9N0xpjnabOhq4NQnWghHDa2vwVW47acnhqAdP5f/yj86cqvezVoplZSYDA9D142GH7zDtULEFMMe9QhD5t2dE7SeZco7v1uTiHxe33QjSzUyTrcvd7BXTyTF4TF8UnfM2VNnQjkIE/JbvCuok++VI7QyFNegv1jIYH54fc1kT/eZDYPrCn2M9DXUSnUoy51Ms0qX2SRcYg+spxojoMnt2W+VSaB4mjIbIPXtMmxyf/ArObUpb7CI6wtj18P8U5CV9SElwRCqnDl3ZAkJdnufq0RPaXYwXgZyqhXoagTYaSicMo4MXfoIyB3Nfc/ay1yqB0ebHQ8Z0+xLqKsjrxbGFmmlb0IHIwdO8+eGDmj5b62iQsEBTLSy/V9dBilUwC32Oy08MWSj8rYBW0HDfD4b9MybWy9TIiYu1yE2UP7ZWnWZvUVymUNJhyGuJCM89tlxZOkcDOsih3chWfwcsXVfcl8749DzgznFYJsy7RWKIPOszXgbTqgf7zP6YiHFWMW4UosBlmgTXZ4saohJmYrau56ZkfkhIGtXFLHDYwnb8PMgF2sve9jTMOItygT1QfHM0ycSEzbPnELdMvhCbWc8SyZSIV4O0iIs/eOQYymQcDRJo89mjZy92R+7HCXshk/qZ9xQu5vXXs+pQ+LgMei5autHaClz+59mik5DoNUTVehTgcIjaTmraXdGneXpVw+z1My45DLk+11FfcqiuCKwqejRgKVU/mIwFFCgc2dwuHMfNix9ZxYYb224UryRlLQReS9HKPIh3IjeBur10gBdxRZKPBQpdcMjDK++ahS+eiE9DWtBbYEv0oWj1TJvGYZezvANEzpmm9IwKmSIQWCqDR7KHyM3ecnoD9PKCa8PBL/Euj/AirWQMKmwVCfO46WJ+sLCRHaup9AkUENn9JkpoNcmk0PtDjGA/WNgHuLJguaxctfcq+R891buk5BcFhryIJlBBdl0jiDoBS/EF1Exghsal+iJ0Fh/ho4wbHMheSJhHBrXIve9sVDKTDWTYkeXb4x2TyWJFk6X+kos2mRU80eCp7pov2yicIilKXZC6rgGYuTgO3WTq0wZw3BSFUh+W4nfgaEOhdgf8XTIv6zAAPhyg2UbDOGe10RJ+Omfkk+lGDRN4wDWuBjTI6bwjSCtoZQ+XJxzhe51jM6gUQQp8clgJJY/+u1VAYqUr51iF1aIjcE0HHaK2iSp0SyQK6WPbI92+hi01eXBPKR79K7Lo50ENpCOtSe+JppcOlS6z+RYPz8Qu3KzyqWEKi2TEqeii8XhY8OWoTLf87GRWl+ia5+Ya/sk1/VPIZCgo0oYFW1Y7+5o2ImAZnsP2OGUoVwxhsWEkTdPD6SBTrkEUW99bxew7ACsaSdUMexBf/QzgmygACxO6bntMjEHYiC4EeB8gZrjWx8kzpDbZ5gw4i42EygCm0+7hEZhrOkzeT6nTreRZjM6J3Ha+NNcaadIVfVL37uvuYEbw2sUhvEc7EsHdG9ZhDHQwITt0601HKKCTIs14j0A25AbmJFGKdquS5OYgxsrQKmOsX5aerdM3IdcKp/aLEKA2kaI4Hij9bPPmrOj5WWzYWbj5oLxPhhbiUiaB9jGo+yPs36tQ8xpDdtIeyzjo/oshthpwY3fRfTvNYbIG4AnCMnvQd7zQspN6Yfl8i1GGvqrGs52yjH/8nsl57j6k0/BOa6DUcsljXW8gHjMvLgUPU9o9h/wosolGNBVryUGJa/DVmF4Zr6Co9RKGy+5F43a4B6ZeDkBXzJJYlvcMwY7AAQrUzKXNv9bkfhwbXks0c0/f+Zxx4/6ys0dFZEFHgdPlUQ02Ui21T3WyMIQqNn9bOJjaY/9+o7/jD5T/UNwT0C3BbVB9YFGc6OA8LTwtHzWgbDhr+vp7sbut9yw7ihojJKejXJBv3/MEbrOaIM0vR3V3lWElLhjtEBTZoVqgLqXFQjIrSt/0pZ9wHqzhxmQt9wpZUf80f/BJp/uK5Wts3r4HALx5VdrkybP+VOredKzciIOcHLjtVqNAvks+7TOkbgduArUavrCvUX6tXpIN6Pp8IebVH6JLfH86oqvfSJJNluXbL+3ImbOJd/6PtvDcJAulMn9fCamtfLQNB3IaNTJfzNMez18zBTyrYFJ2kHANF+9KmWLsIF3klc0xhwU5X63409COAGEX68Uh7Ir94DlGWg9R8AT+S7/b2FTcVsAB8gWeAf48f3zA1Fp3jIcoro/dLJ1MsLm5+mhjeDg+AS0NoB0fbovUxRQcGPVVZ7nB6VkginsI5WNGI4x+1jSzrqtpFua0ZprwWd4+MViwxxics4G52TY1Griy1kWk11WiaU2ZEqpSXtmQatQCc9VRGgrwWJ9Rhj+6vymmGLLrDDC9wsUHUz+mdVUQPjKbCP9wisfqlx6AoMuHjf1q8McSlhUiTY7W26M6LXNatVpRPqYoQmffjAOj/vMjnbSMz5H5pWb5cYKQKBcc9OrsNiqMEdh1Q4KDXSwjuaWpaUCjKJstOgVl6FCv4211Rqnc8QAnaFCk4BQvfAlcLLeOm7EDXFvaGF8qRN1Fb3p16WkMEsbQpNFCP/0Dv8WEfvSRZQ2G97kODuflQECUXBRN0mbBWvBR0k/Y2WBejo4RbSHHx72vrQCjI+nNxYYgC9jhqfA/N58/jJCAtpq0N8gSb8gSNnRJz6phGTNYyu7sazQ47c172nUEy8RKBx/zUd9k5IjjUW+z/2PwNKPiO4kjZiAmCAs0cqfzreZelPDukd5+G2cbfDbk9baO0ZXjVrCJxgHcIq9v8M+7p34Xixw4h9EjTBIAjxZB03zQ9gqk9hw4u/6bUSNjZC6TLgaC7O030f1uDw/9eFf1ZpidnE7g/zZOPn8LPc3Vp1qOyrpj94M3TZQh+Z9VRTDrZyFYgmuFZQTRFkoaJvACPNE5fWnmpOZWjr5tJFlxrWlvPxwyAfptuNmWjiUtG7Mi9xkXzSgIMbQXbXv5unE9APXVeXfguq5c11+qB0twCjrG6hl64=
Variant 0
DifficultyLevel
564
Question
Grant is a town planner and needs to know the angles between streets in the diagram below.
Grant knows that Dooley Street and Fittler Street are parallel.
What is the size of the shaded angle on the map?
Worked Solution
Co-interior angles sum to 180°.
|
|
∴ Shaded angle |
= 180 − 130 |
|
= 50° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers