Measurement, NAP_60092
U2FsdGVkX19sqjnz+o0gEzlgtswb0TuXUQoiI86cCc7WjVCMLiiMIAOICf7lGjm6jbINmAVRfRwFtFHVFE8NDV39roQc4UU9IjHBetPpBa9aL4O0Q+qhPhogVF5rwCCTcq+2RY+U1NyYr6FIhLPbm+1TgfDivxOp8HOHdwNR7eiTNa+FjpGA0jjwNMl7377hc9w5WvfOUg/PwiYxEeUinAr3CPd7L/mi+0uRoVmIWQ77sX3eFDxYoFzEFpyaX66czVFkJcsCMG5v87GJ3D8woXZzqTC/R/L9UsgO3LufgecX9rRQZD0bKEzlF7xZI9YKpV0js/53hVlfrswsozEp+o2O79znI4oMWlG3MFFkdyarU6sTMbBrDCOUVqCdD+HGxvZasPtq8ymRjk2b476Av3WGbxIZNS9KvLDk1gJTwoqQuwgv5g0aBfK2uJ1K5EYcxbHqHlajTxQhBDGyn5IULDLslr1TQsG9ecwgFX9ghDtXGYYdFfLlHrMUB3FfVZqhOH5B5zThbUZTCeG1TAwdc/nZqKYV0NNHQjOl/jG7I3MXMQ12gcINrLxefccSIKztlRmONrUwBUANG7yeNX/FCgK6k9g8D9pq3YyNi6eI5wf0eA3abvC/ldK9S0IxIS632vMNkJmFh8nCYeh7S+/BRiso5J+CMYxdx3pUeJ//2ioitDgw4VBPfo2Lz5nRHsjGMyLt4uVP8nsNscimXQWR+WOB+2cXIC8d6MALyqKbPsvWMCsticjelyq/ickvxWu00quMmbXgYr2F16e8d8iyEIy5btn7LgJaN5pR3aFHJba+tIU9NxdNlZuYaYCCR8AdvEBu4RRJXnfHDSSqm9wWoTanpDc7E5w5Y4ucvBW0pS+21q+7P52diTcHGP1vXVi9RDP00CviLuDhnrYUr7nyGBBPNc/yXfnrjaOPYpyOCSBRT08GTjY4npO/fWE/Kqo+2DXss4R6tcFPLoObFz2ekTv56zTc+2bjRcIm3gJSj+F9D9iK0FnxgVoI04suVQskYhPanD6nYHNq1Zk6AoQiKwDkLBQWpj0jMt5wxFiPc+H5vBoLlfXmKoo4iK0yCI17wwjRPUu+w1GxRWWi6ttSQrvo1LC21LcpLWlMqyUjTbWZu6nefDv9DbbU7Ehrc04PCejlZjf4814c8jk94UuPjeGD7zz0JlmkoVsL54OjRRnVe2F2tDvbVTki8/f5ACTrw2P2jDwWAUGIzlckEF8+3yrViVWu41mGAOpFpvxguS1qQtych5zHQcBEKoG/edFP+XGe8FdwwTesVFZFGpCwTqgpf3qe6vCXSE/Ak2NP6rwqyNaKsg4oMaDvvoa5UEU6/XsK82YFtbTh7oSFlRHotEraQ3QZBRd3nGCuPv3FvX+3Ame5baWg+Hv/vf3G27AN6owg+dNdllzLpTPAVwZC5OWXdQb0M4b6VgQ7n1NBipKH9tEK8/4QMBckRtmKmq+LncI5AXFiMLMMMsoFCutt+H0HH8iBYV0llNyj2Ik3IDvkDoy9TsoG0GLy8L0OlMd5tFdhqEwaYicv2QnelUy9L+elboSXNqltVk83ach6tVtULsIPNXjDKlFI1rO4Wywb5DGUT6b+Yr6iEpKZ9FdvB4iA8r+VJq2AwJtXTOZNAEQsK/l7hOMku5b/ARjCGGHs4X80MV+/nPZFxvA8Du3OT91AhzrXmCcVtdofS+rLZncCoasb0aXnNXabij8RMhaBpLXCdSw5f71wm4z8TLYtAy9oyqM2f/mVeb8uHQ44+IAC8XT2B//m+cBme/zHDSe8B9vac5StaTiddfGsXtKBgUoME8evXA2MgOGz4+bwpfoSIZ2DfgVNdSB5PVtSvcQ/stgsIkPRwxPXx6IqhAqRwehQ1lrUD3cSPsdnsXfOyIroS1R+AOdsvHUwBPYd4GL+oIleWHDz5/nclwGaT/iQZNP1vlebA75KDRdPqNEdkpLJpNvqB4HKfGvyCoHS0W//5lcMPs+XU8See4h1t18sVXM8ViVb9v7s8k8zjEzE7mq7I8YZQhMz+bkK1q95AXxYg+13oKAuUrzrpCjWIgmRc0wIwsmJYrL+Sz8MfiZjrxftCjJhfiXWK2g0QtBpg+wyF2FnRCPgWQEaAWcgxt0ijBVrwRqE4k4Mow+eB/UbiN5E5jVRLkj1a4kxg5TbjVoi2toTeKMiqS6u9TdZ1Titg4EiwmxicnjqMZEuINYf6iRPJumahqcLHWv9J1Tt2JyEIXtkspSy51XWXvASal3ygocbniOApOdTae9XXnOU+ELtW0qKEXblWnH534hRhEfbCjTY0n82nFB8ulGMisdV9cH4Nc2O9rAw7cUTBs+4gU/lKwztghMrqB+9lB1qtsjNalNSfaMaPB5QJapa2JOPU6qpt+YjLjdGjJKQTi2svgOXW09oGVsl6YtkfnBx6GNtkdzd/ulJ1muH4YrIAZrp765dFAt4TBEmQDMCeBx1YAmIwjMXbS8AIprDSosPgjZIrkl7rmNuHAm2GYZldfiE3XjLVQwBw3CwdeoP3svO3daFW6vlSI7ZKv+HWmvnepOIRxtVTStsWMbuOT9r6FthEsq3nO8K1lkVFXvdrim32Adr3cjDQFtpwnNIiauqxk9oYpv+EDrWqwg7yig/3okN8KfqJBZSR+kvZ0d0YkCTqMXodpg3xCsyOQtj8saiN0ajknaR8ruUxkMx6ljxf+NQdM8jEuPwS/2Em5/Myum5447C2GEcLZAVjVGJLkbYlDqt3uQwEDs3mCeG+ZhX3EOkbbWez9KwiNSnaCSG6Dq+ao89HJ7HNG5LY8yi4swpJdkmRjNQqZZJTuJIBNBMq7kAOCoEKNE5COhCO79RKgDQLdlkuWkjiCgm/k1UltbHEiyxB17ncnc819+TlM+FTkBfCBN7g2+Roi4+sHd3iKWW2pRsNC9DXV9ow/cMYxPWffygXNQzzOk3xrfQhdi9Q6O+6eP9xMVLCskToRiSWHT+8WXPwWhy2i2FsoJDg0UMMXJhqXQdXX42dESEtNJApktKthWEZ23sx+4G844CukV4gu6rEaH03Vvvgw0m7Oh/SN5QvWlbj6RAw2xMG6p+qK6Xbc+SJdZicGgekRkuNC+OwkA=
Variant 0
DifficultyLevel
340
Question
Which of the following is greater than 1 metre?
Worked Solution
Compare all options to the conversions
1 metre = 100 centimetres = 1000 millimetres
Option 1 = 95 centimetres is less than 1 metres
Option 2 = 500 millimetres is less than 1 metre
Option 3 = 900 millimetres is less than 1 metre
Option 4 = 180 centimetres is greater than 1 metre ✓
∴ 180 centimetres is greater than 1 metre
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is greater than 1 metre? |
workedSolution | Compare all options to the conversions
>>1 metre = 100 centimetres = 1000 millimetres
>>Option 1 = 95 centimetres is less than 1 metres
>>Option 2 = 500 millimetres is less than 1 metre
>>Option 3 = 900 millimetres is less than 1 metre
>>Option 4 = {{{correctAnswer}}} is greater than 1 metre $\checkmark$
$\therefore$ {{{correctAnswer}}} is greater than 1 metre
|
correctAnswer | |
Answers
U2FsdGVkX1/HEqTkOmKeL3SMdU3rityxU8eTCB9EPBde99dQtuRxE2mOh+gtfON0URoUXdNUfnHQ42kRM+IleMlK6pmJM/buwhfOOGZkrZl5WCsMwFWOf37BunhER6g/r2s/d5jJwOIWjfx0nKIS6LZScJeW04Xg73xSxtF0vj1tZcGEeQmSB5XoduI7ezKCuy9r7B6BWasZza7NlBvDduGLIGAoTmvwiW7D34Rllv718nL2jn3EFuMbf+1eJOyTWaDE8YwntjWvazBA5xJqxXGMwZKJGOAlDfoLJg0PeI6Gx0EMRP+dlzKwwaWNtJG7gU/etrPizF8/qr9xIrAhyvbB+FOaxuV4TVIWbnx0RVZArwC28FGAxepTz+JCGVUrViExKRjAoGVNwckaA5LwDjg1SD6s+VhUkhJQsAvqYRtXhLqR/rm0sTdkvTRGFhY4NWYCFxp1GQMEW+xM5+ku3xwBf5QKUWZLqJXxpNAjHHLyTnA7LPMdwhLQh6rxc1AWK9PBIuj5bF1kKlnKaZC/nOkNXKCg7N59Qg/l1idF/LKXxXpPR16R4Hc3AyvEtwfPZBfD8OHrtGfTznhpAVDmAWs+RIlLxIz/+TdRvFlijj3KQwvRvd5lHfC1izEZJmnJcjfYbMNSNjr1DcGNz3Be5Ci7YHhxsVrIuOhtEzld3gP9DjUW8ikgT8anIo89eOl0vWPeG2Fn7S8ju+u4xAplP/FsqchJHuoSgCS0GZX+fS0dgOnzRqe54jhH9KavSWkA66Yr5FoioOrJlBDTOYPYAz9e3rFEOMVXaPgy9bmZymeXaROt4cHi8fq3wxeeGHr7WUjy3iKzLQtzxZ5wrmiizXXQW4j/OXVTApPOe9njTgLe6detDveKRobxOIYOpWEu8QiJhr5+cObp2AH+viYK89iZ8ot3lGlpaFrkrmDEvllbIkJYoXs8O3Rc3L738ei91/nyceDtOOSOhGFGqg9zm07/vf46pMuHaDpgPiJYLMw3LPeCICg3FPDo6X4lT/NZN5hhwooUHGBpooPbhYpF/eae2QU2OAWI8acX8wFpqo7ig9jYEs340gwroO61k4PgLOH2qZUhifowhVkMgjklUOXMztdsyg3q9fEXSdNH7l9od0aalY8MFNf30NPmRiKIMgEzwGL8Q3r7WsmFVlQeuJHV8vJaUhtDEyMyTN2RKPd5gwXdOKcOgkquH9EjlwPjniFozevmJmU/DiAcWE5iUddi3cxOdP80txoclWhOpYqHx5aOUG0aBh/XBdtoVKpRxP0z4pkwhwwCyExw8yh6UOpNwwwWT702oNwqTcwTdwCAPWYEW5SiStIsmh2PDsrNwmGyGGeaHAcr2GthyclsrjVGMa7nIoOqMpHxxZ734KYy+REfnXeu4o+Zo8I+KeXm+ck3ZnYk9UX+OADNKRBJSCue3dMBRd1S1mVymK07FI+NPwmAW6FzjARyuhzQfqUBxHlotkeCtGsxDb3I84JepXusctCyuKGT69a/zEixRKcVkQpz6l7yw0XN3HfQ+4rWE2+ufzuokLa8MOCwmhXgOLbeMrGuW5LXdYcHGQrRiOodvQVM80LEQGDKNeDgJ2poiOj4andjjjGHXQ1BCRtcon0RTM75faIJRVlYYWceS354qstPBSG3bQL01EF9wgMz6v+Exr3ruQdK/C1im5+eT8RCkgVf4fEM/qFGyy6/T5/z2LvW/Fpcq8PuooUBSARrMKhaWMU/rRTWP+j4fOzjD7+CkZsAL7dJFdjQm+Lagz1VLBT5SeXcgVQNE7xMPHXAiM1fyC9KUOVKhGyN1OmdgURSdiAVNtM5zA7LZXLhkFk0juZ6eL5mD/EBxaTeJq7C2eLJ9CKWFKlWiuCEoiCBFArAxo/SMyxhzu4hK1G4T050NliEVr3Ma7m18Bb6nVB6gYzrHZquErmGhr1QQWz+4FUsRo5n5RP3QWwoQU9a/HJJuO80k93XrOWRtu2Di7dLmECnLWWY9YJqWUGRbzhOaSvK5fT77enNEaSOSqC+JDvVbr+XCie50zLl/KXCKpHg/sulCGq5eXMb25rj4uzSX7vznFg9hWAqOrUCQ0RD/1tul9CsgqU/DFXu3fyfhcbKNiP9OCdbpDfvVB9NSgZwZPQxc/F/SMzov+O/ji+BGEeOlqM+sT6NwIma9m6mBdpF1Q6pp/G0matLjdJrSR2/B8RSsjkB47+MJTLxxgN+k1oKb7me+UqROBHSQmVUqk7lCrmXigi2+dH4DfTDY5W/4yHugeqLo8Ttzlx8AGOIsYOfWwWqVWBILttXq8o4W4B0D8407NrRT03XNdw1LIwkRnr94Rt9nW17dpCNqL6Gza4GPScddzBJ6P6iD7cBctN9t6hPW7HJpyC8LKP/XvfAmsqjnpmmcLiKsMd2HNwCz46ravCWgtNfypqwqwlCY78DXHCJ7qSILxC0+9pjZC85lav8TDe2XdvtCTPIc4hsrQAH22N5sBtTZk6nzNqMtDq6Qy1mAHtdK/esJEdPRS4IhFO9HbgqFphL1gHT6ui9s0evozL2uNr60M0VgOZOV7x5PpsekXiUOSCIczXgggOnPtkNj8J7UIIc6T91lFrgcTJ8AMrqtQXC6Ers5wR6jtyDEkj+6ri6DftxU10zQEKZWy5Usm9ZRpxUV3barGOBmMfLNG9CvMXD4x/9ZNRpkKCq6wLnQn0emPNFYvAdQtQ4HSF27bn/250IOV5+Yqn7aO74gx3o6IfqkwFww5XylCiIPrglDO/hv8tr4wnel7pDfAnOkV9yPB+i8CFFwYrFuj9wPgT+p10v5CqHhfDPb2PepRkXfUwx1kcDdyql6DplOXwpM7RqNbTyVDlQPyRGIaIZG2jlU3SF87cPj/BKAJ0h5Dfryo84FkXrLRSDOG+04VF1z2WAxPpZbBxqKDBw0tiFFajVifaFJ+Eo3FpXjiaPtAC2XCMPkh4/ANciuAWAON7tJCRw7dJ/oxO18BgXEm4n2tkSblNP7F7a7NQ2Pq8bcgg2rzl3GQjbyoh8KwOv9AGqJAHOVHXOq2AaozKHCtR6b8AEnxu27RuM3wbAWd13lmDgL3DUZmt12LRkNPWlWjgsS5xt4oPXSL3cUFKCWm9i88VRXxDNmBrXVNLcfKX2fmGSN5aqFfOwl0X4hyuB85Su7rC60ubNez/kc342+tUfKgKboZkGE0g2+Mk5aak39xbn/WJtdswLy6t8A2z1lQpfwLlJkdxHxM+QD0Q6zEfBV1VVIyYClhSD4yBfHO1rbKtIFf3cmitE7Iu+xXu8iQpx12x75r75k2CLRgx6U+6/Xkb/uRDGfh2ocDAQ9F14wE6YRg1VUZDp6N1WNB6UNFQgikCiYPfrGwvDEBUjOLNnwWPY+XRZWsrz+0SAhByeWASMkKxoDVrZRaISDOdPCIfrCenXWuDo73D9YtNVtpt8S4XmE8/fPc4u3F0awoDb1in0cb5w0jbiQcqNVkC/TJT+mPyvQ8p7VvNJ5r8iEj6REgutv7Gv3PRjpN+fFj3W2SLd873BYpJnVxpVl9wPnj5vE9JZuz4WfHfPXUzGFQrvapvRjXyV+7NKzChOqH6gFNIfRrGGPMFRsab4QC5ZzwlOgD5C9/+iqaas1ZuIk17mWjKnypy2gd0raeoliaSu4FXLOePTzNlEq9l6+aYW2LzdyEhuuexcfnt1RP2YfyKztlfP5KWLREeC5WLOQKDh1WbBHF5VtPyc2QurNj7+kLpghCOGJHVadQbqA/rhVsckgGJzqHHx+xTjlgMNVzs9F1cNO3r/aBeQ7QQdJvqBk8DvyGVwgf0zmrMCl+wjzM80IV6O/upxSGOSxaNrAU+oXhuHFaC8NqearmJrNuYtAx46EZoXdUqFh57lr0rhY5yPBp5hZ19yyAJTB7Ra+uu0MYIaTwx+NG9wt4YrWnT2qJ8UZytdcY6zhl08BL9Sk6mfMwW7wyOefou/mlniqZv/Rx1g9QEwrgDrgCgDA0Ygo0G57RAcnyShsldgncUVuseGnKM9KkWshd97y9zPXJtG9vt1ksJ8dDSMd8J0EadfDDIuDN/StcTYD9H17h4wMneP9nCR49sr2ThNfOfOjnvJmezpnCT/+kTws7le30bLD0AEIUrHgpBHKVWaH5VlDP2iTibsxiEfooG8nJ4MSjt9ZNZH+gAhv3XyT7wTRgLOzWEYgyKhqziEJLx/Y9G3T/0P0YbzaLoGbKDAhrHjN2zw2lD3BXmn43L/fPBb4UumKtwPTACqrG+croUMCgPBmmWBo1Q6g1mjH3GUcALL0fmgpNeXVwiBOUYQ568dNRR7ZOplEELILg+SE3bB70SUCCOAzF6DmkpUiftyZlLeeKTkzBiz/knoww2LJ0PckAbxOS1MQSayGSGhbI/48l7RileRWLxEYT6gR9ql0EOVfBtW5pyhdvYd2UMO2Kw48etcX9bTsl5OBtWBgmHkGIy35qdaxmSpsDxP/9NicBX35aQrqccCjfVuV76jmXsJd7auKgyfDmScNdAjcS/FuFQAUtyCa9cXcNGLGfkiEBetUdLdMIhU9NPHfM4vYe5HAPeLU0XBujXNQqllEfHA21Z4xDYysAXT4o2AROO3lMgo4n3ZTyfz5NX+ZHwdR6fHsUU2CzkTduKrHqqr/Sni3m8OejdOolG9xuE0vWGuslVI2C+v2eFTB2csSRYjpCLPIMmusnL1as8ppZuUjfsQMWPsH7WD9LpTWeCHHh/dSkj39S+anLj/Ggddf6OEifgrgQkb6GY9/UKqEJ1ELcmdyXK/EV7IZwcHXcFLbpeuVU99jxspIVlvmtws1EXmvfe80xHSunKPuZ1ecUm7tKBuhrTamON1T70Awpd4OEjWf56B8wCbOVkm61SIQTexC73SaI4HGrXS7JhcWd6Q2ctBHxdXOBwO39y8N3eixKDv+iVYPg5hYgapp61uudhej/63oNaE9+zf6PdNJ4AVVj3zQBo2HwI=
Variant 1
DifficultyLevel
341
Question
Which of the following is greater than 2 metres?
Worked Solution
Compare all options to the conversions
2 metres = 200 centimetres = 2000 millimetres
Option 1 = 1500 millimetres = 1.5 metres ( × )
Option 2 = 2500 millimetres = 2.5 metres ( ✓ )
Option 3 = 50 centimetres = 0.5 metres ( × )
Option 4 = 150 centimetres = 1.5 metres( × )
∴ 2500 millimetres is greater than 1 metre
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is greater than 2 metres? |
workedSolution | Compare all options to the conversions
>>2 metres = 200 centimetres = 2000 millimetres
>>Option 1 = 1500 millimetres = 1.5 metres ( $\times$ )
>>Option 2 = {{{correctAnswer}}} = 2.5 metres ( $\checkmark$ )
>>Option 3 = 50 centimetres = 0.5 metres ( $\times$ )
>>Option 4 = 150 centimetres = 1.5 metres( $\times$ )
$\therefore$ {{{correctAnswer}}} is greater than 1 metre |
correctAnswer | |
Answers
U2FsdGVkX1+6FK4V4MPDRSqgy0+08Fo8FymLd+8cTtVHd2kf8D2LXTybpjwFCHaJp0qKY61NKcHwIWmLpZ4kg8EIuyfu03xp7vDokc2XTJ2k4jmif2/6zGJcp0EMYjol+ASeCnGdOxOcceHTScTJJSQhFlp17Pl/MitfSepeBMieitbhcGUB6egwKr6rB1wpD2cd2jMykt5G5GQwqwGUmSMiKpUQogmuCFLhhyTFutfXMjnpNBjkk90nWB4wCl1s2aWXFhRk6Q/MHF9LdsuMho7QvYtyes5P2QaMUcbVZqJoqe5rdnEA98L19Qoqzz+0ejIeNaAnGIEw8p5pxkI8SRq4ASlnWqswhTZoliBSO98kwTlU3obAYYY1m5HUr2sxd3b78JH4GBwUhNtKm2O+Cdj1lptGlPp78nAXJUEZ2bLLFBGfxOFwLKVm7HuNL6GceTNh21NDm26Y55s4RiazBT0fP5D5i8KGgmfkALxBOLxPPGkd2biykHIgbFqB3AD3cW3MtYM59fxOXin13Ljf6puSGoqjlNlbURIbQiuy8AaH2Rc3q0FuknnCAN/8RvhzryHRqtuVXRhRFKg5q9cLS219fJTaK0KVVNysXmN0yTBoFl9oit5Sl2uAYIsKBwKRVJKG4DxfpPinkK8SHpZ9O23tQeWGoSnxXp0OfY/r3WqYVTIWtYxLpGNhUZTDc1sId1j+BOhnLSe23U2SIZ9PJq4wDdjstD7fJEa2fQ7L4oyaSWAGBOy3AL/Afs5+AeLGxV2cQjwVoBwvaaZQxRYcBwcXA0L/L6iwxg5m3KfBW2zpLjvfn4RhyxhFwxZcfebKvfemb5sBDgCmuaS9kbGGuLq4ckT4HqUPqLxekiYhHFc/wjrS2f9klClFLKvQXahhawqFfyW+CtQp9hMOcHUoQcdfft10v6tNotdUiNuKzSXxKsu5JRiMWZsAtBrTSD1kmKVexYvL847LJ67BWBT7yHzn4yC+88e6Jm8LYym14zEAs2ytJjAR2VSZND//xIWKPv69t3Sf52+ie71pOyFsgMfQxHZUvSegSG+3PoVqCvgDQ8RW6CC6uOjibMdXzLHqEsY1HIVoOiiBqmSoev6io6IS89WuLFdxM8YNFQOZRslonLb5FoNstNZjIm+uAVvVmEsEFRjsu88I3LEdWtcvp1i2vA+yogBUIPIllZDUl351nO3yBG93J9a/RMjUNrjdEjVmvoUuVWUf1i5bC6l+cXGAoyOzwtCg0mZSOmCDr5/1KJd2s78UQzrvUYAa6RUiTFA3WgYo8MFGMSKOPujdI84Qd7nbqBzaPSJ/9yLKnnu71bPX3u0pXUhbJqQeTe/xQiKvGKHSvvEUppy4DGVUJ3OSsoagyQay28jnMfEBOduKsGeVCqqyuzG0s1wzliphxJdTkXOyruEObQCUKuRtBPooGCFoMfAdQwGz0lbwNxbd5icS6GLwDsgKv2s8FsisoOB6qY0mnc3M0fzntfqT1/hf+gGvTipPg1zofz3rVI/+MsIgn8vOgsoF4YNfS9gSOmEdKlECdZ0Gm92P61UmqKTbAFFoX5yOTkIkOr1VwdlWzCm2xiy4Gz0WYrzCM3uhXeczmJWWt4tMNisTs1J/i7/dOnWdiYISzEzDjco6poAwDX1fjBqPM4AXct2L+8yiHdYjtd7XCFwK+iuyTLlkXdH1npdZsDn378tyENZSNF01n4Dly1RL4gW46MxDDgJryP23pEvbNkrBGYNA4OdfH1zoksyIDezBJ/8olgPNbfxwQVGU0YUBAqsC8SOKcyhrpysRmOnwWxmJdLsmTZd9I5Dg0wRkHbYe9O33CPCQcnzj7JCcIDZyvQpDMduaQvBN3SpYhW/QMQ2IfqQQV4ewAchI0jYgcyI4ndoNKclFS2pvYxTiXkKc5lpozxIB/pPpF/L8szZMhYBgVZzBF2JHZdTYP0itlvnr50WOCQm/rp4RfyZsivfG3e4o3jC5tFtilPWhyxBfUULRsLkNauz2ekul4xGvOFG+bSOAtcNaD8tDT5l+G+4Kt1iI4KJOYmw7FRy48nvDeHU/glB3Ew/+agfSbXkJDjq+d6wrCA67rSEBNI16U0DDy6y2cJnqtjGOsGacZ6Z1Z1w5mf6PNbwA2C0DCqIPTBA5p56q5vX7lwxmiKbNq82yjJZIjI/5LTDgt/3If2taHNK/okqlMjJYRKQgHdI+79g57pahGgGMgl2Ou3dBOSKdOl8cHJvZO8svmQJiyuIhwBhux/La1XoDJYD2G7LVH6F6hY9qD1nPTHS1rj5mOVETyhN/3lbehAybYNzQfkjXm2l7LtHFnWh8UHJswg2wW4unniJTE/6NQ4k2/coC1mbVuFb0pwVGj4dz0kAajI3gF+/G83bzqXs49WL1U0gXw4GbQU0R/PW8ZJ0mxrZDZlqY7HZCEpr3zgV4O+7KTTrPAhGuZ7+AkIp5D0ILg9O4XEXPScZarTSgc7a+/Ph5aH87RpQoSLMnH4Cou/9rsITlQTbNScmFY6r5FdcwITBZeRW1zuilh+4IHins+fv1zSuFGYKQMSZTDKzQ9khNyE24OoUoBmYXRKDRIRRdK5uiO5aia17tUT3P1c0NE+0YlXy7kDqxUSllt7AGSfeRnTS6qr/QelvkmIQlOg6886HnFQjFsA8+d+yEUG0/5L1GcCC6i1CNTUvVOTlOMadzwhzpGfn1zkAeFAD9YclfYMLqcPQtFYYVfD2pSHJofvpnu8bmMyPGceu/MjoOg7EE0d2eG34rtr70XD3JyRhIw9VCFhhWge31uQiJTlRYisSWTbozOTjj5zcsxGqdrgjpdaJwTT8UtWhiIJYREgsPOiLtU38b8jajBfqRiJJrX8gSkLMfTkeDqu23g/Am9RKrK29u9kAOo7w2MDdm9Fy9YlPy1r5F6uPPMrH3MfWqiEKycoJ5pkIYlGVEAUVrK7ELZaWs31YnqwIB6omH5CiGkG4KIz/55AReoSg6YefizgXD3RWV9MRgABT2bf8Azj4dv6cDgj3k/lcBheveR5ngZl9C6VpaM6WQNAqnGuS6X4BQLz9mRCnwl6dJfrVRCnzIV9DQ4dQB+XGMApzN0BD7OwKyDBZmHegshRf+8qeKYU33Zoi+UntgrbTDHQ7u65jWGjt69FYeJWEHLYc5esw9ZddHAm/WNmdz7kDy39+FqD4TVnrLaE0fBYyBi2lGUvlLno0Q2LNeAsDmYpmhFo1NvaWEvZv7WdeYDD4YG47GNzJh0kRNagSBOcM5KrGmZPKVjZIuY4xRuGbXua9hpeG9iireC/erRLxcxn+IrsNcHj0G3HGBAR6/65EcY2Rqe33NMAU65n+QhKi04Hy+oWP/CM5B/yK4e3G3+eeBf2Y7NQsWLIDG8zZJa6+xvG3ZqP96WzrQxYOPqLiXKg9mw0Z0zGWGhBliK5ZeDIE89bNAtiNRD9Rm+CXFyyXz8sXh+u6R4xSdqNP4lImLLpQDNKtDCnsSvz5dnICE4hY8Iq/GmBUknNHHXYEvFJtKrfDVO4YBO0/xnpfcH82q9Rp8zOfa8l4O4uyxBZIREJnor+0lFdUOgG33jYwBkf8GAU+InPceZ4CB4N2ACAa/XZMFrmuckAgGhQn7eUc8ZMU+Xv6P+pNB8uta1zJcGE9v6M6ov+tfRhW2AqWNh9jKKgV6I4VjCGIuZsgR4oVJG2zlrpGhC8IQNepAHXQGrCnpr42/RxTltN4MaEQaa1RaYgzuxhovvEqFuN9sreSvIdAHUgWpdQSNmxE6SFYybi8oxJ8YfcM15rm7X9eVx9kmjyGf0d80YD0xDPCZX/uykQvvzbPHM3n0odK6Nlo7mzzJElXZlZ2hmFEmF0nYnRlIFK+dAOZcVm4cl5Socx+cGwIe+e7TLGdMD6mnkX5y5yYZfqqsn10CPoHC8Tdsbe/w5DP5ntNFex0MsS706onKeOEO4ifjd9RKb75JV5wvvaPEfUuVhoTUKntE93XMP8T9A4vSD6LkMuAw0Svs4638VUuPHoDTXNktvJG7P3XDmecK01f6CyPHOzZnwo9kK7FGEJqRbzyNCnQva/GReMhDj3A+5acK05lIpB8KE4mcvtMaa1aTItlTU/RaXtgjB54n72+zZsy03j62tT+grsZZFuq7U5V6kFkOsjBnCcrrTtiR/RZz3hvfAqyD1g2JsUnn0Wa9iQrg2CxBlxbrH7461p9cVlIJb4JQtBTHvcusQaxAMYtDLJrv1a9MLPmszB2cqMBsv9LYGPYMblR80iOydc1j+FUnqr0wBjEv0oF+0DuzTj/KAeHRfH5zHrqysY385i1/MvK1tAoQqcCOAXqun9NrhgZY0rbrgw5J/v0FxgEo0Bm698cfHiR2BtR19OYs2EqpK0Fle5tKksiSa/jYlhkmxI4ITQPmeXjuAdohoL6HOzOMsk2rtebiYGnuI0tdQEbx+pE2vdh289YozyPx3iCKBdWP1+mu/t1xaejGk9vPZT7ku4UuB2nPe9mGKmcK32SrJf+KWo4sOFGigjP1HsgFmDYnzONokK90p5qCepBn86AnxQn5CXZci6EqYiz4999020yzwHygGzfiqQCqHwScsR+LYwc76fQ5RtGPGXPPzrkPjLZpTwWOV6PuKMCoNW/vwEiJaFO4GfHimCfZVRSpWvMZnkhUSQ2iwEqB14ksANwMmyZgnKOk4ypTxHuIohidf9hB8sey7wDlrPmmys4xS8NaeCI6q3iT0oYjAkeK6Ro38P5R4bpqMWbRwxpfh6Tve0oBB2/B8noZzoq/NkhdkP0QGGacykVQoR6d+Nq8tF4jp+kIhZWI3g90d95WSR8Nm1e28rwiy/1frFXlbj4jAgPkKFO8yUomNv395zrtM6hywwZ5J12hbt1DrprigccjlemHNUusJEnnPIau+miWT7U=
Variant 2
DifficultyLevel
343
Question
Which of the following is greater than 900 centimetres?
Worked Solution
Compare all options to the conversions
900 centimetres = 9 metres = 9000 millimetres
Option 1 = 8000 mm = 800 cm ( × )
Option 2 = 6 m = 600 cm ( × )
Option 3 = 9500 millimetres = 950 cm ( ✓ )
Option 4 = 8 m = 800 cm ( × )
∴ 9500 millimetres is greater than 1 metre
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is greater than 900 centimetres? |
workedSolution | Compare all options to the conversions
>>900 centimetres = 9 metres = 9000 millimetres
>>Option 1 = 8000 mm = 800 cm ( $\times$ )
>>Option 2 = 6 m = 600 cm ( $\times$ )
>>Option 3 = {{{correctAnswer}}} = 950 cm ( $\checkmark$ )
>>Option 4 = 8 m = 800 cm ( $\times$ )
$\therefore$ {{{correctAnswer}}} is greater than 1 metre |
correctAnswer | |
Answers
U2FsdGVkX1+eisjj0b9pbRL2Nk27YrKQn2eS/VjIErseFj2Z3P3va/ASEjdmwZA9nmedRo9vcPAGkxeSFma8fOwEm6/LoA1/uBRfXII39E2kRY34tZePdBGrrtZ24jsGJ8OukgZxld7kX4QCSgvSsXVNYH7l2dinx2BHtkLrAN1UjUwaEB60YEiNcNOKU47vb+bgUywDqrihExmwLT1VcytMyEnptNCZvET3XG7Z4Q01wXq+bG2v0Jk7QYH0xugPEnA1Upb9Qejuszuphldkb1gsVClVpaXZ3WnbYkD2WlefgzgV2a64DWprRc+PHT6bgfqp8dHB/UWHn8YJEGWda+ANiOUiYd3gRJnZkt06UB2Ogj4DAsNbfsFOvwe5W7z3dQ+lcxVPa7xyxrjZjwDhuZw0XMmEyAv9LKp2owIMJY3OuumaDTHTvhAssAnRXNe5M3uPgzkgCsOfx4yyzh42ipbWRIb+Kyj7bsOlL/JW1HWoNewyMHa5e/O31JRIRCAmtlCEcHuePMRY2Wzb8H6AaPKWgu7Z/Jbz1r8JcFYzpmPZkMSmxeMngaBBHu2icN1j1ArSJeneorCpA+alFXL7B8htgizlK40MxLdBPKorzW0YjVhdxnC99sdCT8GdrH85j5lkxLOt8RHHTT5bFdICD0eWCtj2tMFNF8Zh1/yQhBIj3r96S7fIHZuMMdUJazEMpE6cYfub2pcK1pN+ub2V3qImi9Y2Bzqo2qeBE1ROnu0Z1wNXJETnffFpWO7RMQmNcmoKu50mZcI6QeiOW028exTNSFfQiHa0xH93VGkcFbRxnHhty7jBCrdzN8/rrGdiL/j7dsO6vXLug3iLZn2ucq3s1Z2JwFXkhvEzkzG0bQlSEwZQrKhZ4zGbYa0iRv9TrLowjZKN2pU113QL8s3Exp/FctyIyFOpRhlO5kfl3LGnm4W+18bEvZnemjNDcAGTyosMYhYj+Vb+tWJjfmIjZ/9POws9MRfXb0CQZnMYkImq/CHdGL157cU8snuie9WHk/l8P30a9WirFKckBleYInHXXSGk+EOAabtuaJEInw8GhSsntcumPZMM3JN8hJ5efITNTRNkAIGhQZ524fuFdYk1E8triZBbgJjvB+SODzuUV7mWyu7etndKl7AZnBkrp2MBxhftGot+qY9kZ4ZF/QPX6tqJujfsMZeH9SalBK0w4OycImpyFTawhy32Y7/3JHVpI6B53ZFdW5TKBxUf2Q8K6iwKKfkWaV532yT5F4OU//NGoH4cP/WCFUWVC7FDwcU+/dbDJwK0bI19kqNwKI1VV/M20hQudL+XtlXxIUsijqIFSo6UnDI9jHe4/LQ+AGHkHfDTGS+b+P8DHV/LD4ItZNPeHztwPj/9kOEVoQAcOlYDWwGirVAOsSUZJcLxX4WqCPDO1BcaMwJwBS7geWQWte8NxDIg1xnZ/ME+/mG499PT3aqGFTxUgHYTV0Id7bf8CAY24Cw8nHYQQTpA0ZTnnfOIWbwP5WOw7QDQD7aGzSszrtanMhTNPCFZ9FBgUr0vrXUOcjg3tVt5zSRSgQHYUHRLllKLXxz8K1FFATOEDA1Km9YCZ9Z35HifVe4AumHSuF7A0qL+sccWJu1SojlFJOGiRZSbcT8QA6TOqQNCuAJXj2IjKmT6wv0fdSAq3g7GM4HEh6XnR+SlqiGWvwyRJcfNhbb9k/yJAX6sOk0oCxPsi5FSyFxtjNyXrck9qCxkFMhi0hMSJulCSW3teMSwe5+v4CbeJieLKEeoJdL7AZ8PlULy3BAUnYSMu761LpWuJp0E0hIy/n4mA8aEZhH0pU9j23MSViUKpygYyuMV46dLeRLVVF5ROKpcrgzOx4mUMBr9zvqGDFjPRhZrVBWejJP8Lx/ojvf069cMGHyPwKbV5Z/wZ84y0tT9VRluHn34AVFJTzuqFYLMeptSLcDivUSeX9bAKxukp5BgJJ1gXdmUiUT1x1e1SoPdm3Dh4qrjVx6bRPuVsrX8hvu+YyxXayLV7yYfuozk/VKXZQzoyYDLb0VjmEV8nxslOl9xAIlHIr8TiFZ1KxfukpK5VW/02fVZ2JB3Mx616dloGbRpxkmKxlxJvlPR2XS5OEEqM/EyWxlmzO3jBxjJw/3WIMa/3PK+zGaD34l2PPwNK/XUHbJV8eVsY9v3REIyXNHJd6dheB8ZoZu9fyhoT2GWDsgi+G+BDcxwOStTY9hCMVVNVe/V/6UyD8sWlJDiPPWSDFIg1tsDwHCB2Qhtp1jvW4FK5j96Ny5NX1FraI1NfXiPWAMh40zXs+3kz4BHGcZHztxqypPPMJkRGpsq2dMostlgJ5VeG98zjjKAWrwcUqIJeUCvnCHVWjeVAI1GXWqks5PMSEKo7UWD8vWCQt9cAMPCs4WEUrCyr37vMKUvU3iCEsWuJAXOX5Y322r4C6S+SqH9P2y7x8sX+kmOS9N2E2gZznYchDT/ycqvS0hN3mhq6GDdlGLCp2zYJxXWbLTLdY4h9Wyo4wuNPvGlzXJfHjicqev/7BdWWLnm5wPWtMsdYkXBfAD95yBnM/pvuvqlxjrrBpg9A383B+bYI5J6UftpvH6j6xq/r76Sh4ZJfw1bJorp3AkI+PVfIsUK2wkvOYOJpgKvtcW/LPJeOY2KSdgbpXu5Pf6J2aAoIOnlm5rrpBcT16qZanvRg/xCLj/lxtDj+3wc79AHUfZ1hN6Zi6Y61I6671beFKTcxoYfnNsIEmkeYYtAXZJqBkpUGHmyfSiZk26NjgOpBMrqPsbw4XiImPxMnXgWqfQd8RciLJ2SoKK+gkWIKACz7rE4rgMW9lzG485N2GR8LUtmnrvU6f4uaPM95/0M+75S9Mi4dgSBJLMqg66pjGtYn9s9wcZIDArQ+8oeqee025gJGzlekCSuAztiXmejNfaD4rs2YmJEw/2oCHhFI/2LOiGV4v6ov5UGqViskrK6l1WmtrbLX/MUx/Op9o2pAkt6T7xU5xXwWCh4csF90+Aq0B5I6LjbsBO68PyYEeHM8DMVzRwXEK/sYtlI1ss+pMd0S6qj2sAuIfpXgi+YzvU6mq59MRWB3wBN4pgnfvZKPRSFK2o9XwA4d1KBwvhIDrGqG+zybboo+FXuxoiWrfSeLwc9wS0/LnwOLKtxftYEtRlZLpNBCzctwqb+3QlMoo6lXAH+kT+JH0717J6BwhjWy2QX/6DOclm85HjvD2cSPyW1xcTTUDY+Sd0RlN/7sJB43BK0dJMCxJiJ1yJ+xxFb6E14EtjzrZGb0G0yCGzZOh5HAU9nlvqUaK3jljiGPK0MFOPXRbvZ8P6y/8VKB/O+HDlDV4mMZAcauo0wOz0OTMfRwzIGiW6B5P1mWto+NBEr1DhvK3PFAa78IWfHoRBUGIiZ1lHBch9zHWGyEL0eBHULK98LB+silb2gZwQWmVxHMg3H6Xg5ijfWl8ROPm0T7OEr1LLOXcjmBwJUXwJw+VU2rvTYZUff0O0xSWr8O5qgV7tslPrnFxKs7qTEzaANdGIgfpD1p4cYiPZcztTuvzrmHDcaf4x8b/XSjrmEY7YEYTX5Nhxr67s4YvaPxN7Kj8qAWDDR2hN67sXGbRV4joH0uiWnc5Xs+RAiDHQdGNvgJhSzaPgukDl6nWYcj65nbPGaNNXqb/MUEwofrXsWQBgrt4uAamoOJjVBlo1/+Dup7bPLGd9KrAJkKOqWOf5sw+GmjzWzABQ2k+A5l51rZRsdcLZBlYHqDW9LxgQH86gfZ53GEmKZxdkf43GySnOBM8kE2KVHsWaorODUMMf/632HCLq3eNigSf8btdVXNW4qqU8DX4ie2S4Km7MWcQxid36lfsyz0WxPA+mwTdie3eQkfv/EPWLpFYzusU0GpAib3hY6NL9YyCB/sOdoSYleTVZQIP3XfFievEkTRypB38/xAxTcDUbmsvHYVKGGaM/T3+D6FimRwSI0J6Mpl0Nf5/JLBh8Ar7JvPqVtC5IT9SQU+Y1RVpXqnpwq9QtjbWG8np3wxrYhjd6SI+nfBZzHp9lxSjgmTGfve6K8BTl2wVlXui6CDDy6r6NR3tnmvYG/32RKC9axrFKR83Vno7AAVSw1Pk96apMqKhpIGDEXFqFBrFlqc6deYERxxaBfW8httpQi+U62tD0qcDlM9CTKnmId+uCfxbrzMidwDrKHYhWYxZ9j30gNgIaMH9MyQS7WIgj/SC6ozuup0tXrIDztzCa3YI4ZvJeHW3qI+iNHNvE2E6eGoT+j3Wxd6jovIz/Rv7bTG8AqW6+oSvRqtL8SU05n5Wv9OTpibuJHdtZ5t+zPEzREZE5WjMgrTpZZXspIuQ6g4Oss3bmdt4xODO8Mey5YoswkGA4GamyRWAGnxJGeUHcrfCWfG+2oZ7HZAPR0S9j5p0Peh4MGKzG57XaNDJJoPNRowFRscJXNAXWHK1j54M1EO/u8LnD/pACR1zQTyNluPTbCSMeblPxLN+NfSAXRfv6KEVFLcSzkW3RLQ7xv2QvRNZgORFhjv5IzXOlOacI010dko6axiqOquYFWEgf570Ya8m2AWXYUUMe05MWdunwbwfCHjspBgWuv8MGxD7aH/mxr+rR/V4VDu3E9fcnq3+nsREM97FfuKyL5kRA3WwG7YHEbdh6woepdo99r16TBNgj1m07kU7zfuODlUbyt+XJlxWib68xBSPfYRgMUaCobRdUqupgIjpYEmvFgcCEovsQr6Kwyd2wpXDcchWa8evk73cFUkDGZIxS1pcq10dvp9cWvqI/ry/QGZnRaQDW1c+DBfjRp5+wNdaUAdiSH729suGIWkPq8bIsptQCzz5l+Oqg3mk5vvR706XY3bL5l6GnpgGpO34fwFdl5jAguyrKos0frhMVBOXFnU/nYV207R9nGWcgrc6VDes5KbwgnY3JZP/VcsyJj4BaqbINdyLNc/1cI8U4jg6O2E2rHRDO8ckAUP2y4D0zhBsFcYNrIAX8d77Tn1cOsCAw8lZASrgDBIWEZxksqC8b0JQP+B65t7Zxn2VO8jCeVxKe+fh0UtE8aQbvex9VxtQhWEqO17+Iz
Variant 3
DifficultyLevel
345
Question
Which of the following is greater than 500 centimetres?
Worked Solution
Compare all options to the conversions
100 centimetres = 1 metres = 1000 millimetres
500 centimetres = 5 metres = 5000 millimetres
Option 1 = 6000 mm = 600 cm ( ✓ )
Option 2 = 3 m = 300 cm ( × )
Option 3 = 600 mm = 60 cm ( × )
Option 4 = 0.5 m = 50 cm ( × )
∴ 3000 millimetres is greater than 1 metre
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is greater than 500 centimetres? |
workedSolution | Compare all options to the conversions
>>100 centimetres = 1 metres = 1000 millimetres
>>500 centimetres = 5 metres = 5000 millimetres
>>Option 1 = 6000 mm = 600 cm ( $\checkmark$ )
>>Option 2 = 3 m = 300 cm ( $\times$ )
>>Option 3 = 600 mm = 60 cm ( $\times$ )
>>Option 4 = 0.5 m = 50 cm ( $\times$ )
$\therefore$ {{{correctAnswer}}} is greater than 1 metre |
correctAnswer | |
Answers