20178
U2FsdGVkX19P6eR6LOnLuBMj3b4LJUz6R0fLa9aoZQoABi3YjKfcatUqBvcrwGWMI6fM1jLBirTu71ncRU4c16qA47hqZJXxbDBIooVUGvaKa7kgVh1BXalEQhGjhioSJmxphjU8337yTuPtCARmhOUPEVxsfJ8rufq8HovN+ev46fH8l8DSYIRQVmGBCpVaUy6KgECFG9lqY7xkJPSjRZyxaOUKIX8H1kYULb+tRzO/4HSTijBhSv0WqEwRZvlM2NW7ZSojDPKXCfajfM+/LWmfHQTgw+bw4kGXsUlMfLFd8h9mR2ak/GEUxdtj606ZveN1G9kWjVzCOvEVmWNu7zK9DQ0kdvwvyD0JMrq7Qc4hKBfvWx4KCQQXaoqt45aMZ4xOHU9A+T04fuJ/9HI+P+C5qH1VIxGYHfHs9qtLSLGKZSS16pSuA03GExGcEtAtEPMb8zPXHLU2hgeDolZcKkP5sEzoabpQcJW0fkRdZMorgAQeB+wQa7xkWRTHI7NMkm5N+9RCqolAKV0uIkta/B3/2NAml9CQlpalZjSzmvp+f8yvsKvWJX0bfYaqHd15/wImfoMx3C1Ktb0Htutouh7B2T+6imL5T2MZxzHn7hVFlxGcgsfML2t/bKDoqDvZjH4/rHix1qYU4Jf3qYUC8CmD9IvZ2ClJr1vE1js8R4maf3ez2QfJPL0sUx0TsHEtWGQML73g6HOa/arllAByv+r3vkhxMeh61Pbco/EjAaxTgsz8QAy4gu/uJxw1LTrGRgeYDko3jZN2e3q/c/aAi6muSJiFpTh1kdA7fjfZ9265Jv3JIsZQt7Lf8pgaDeI6eq0tv8ZgxfgdYeXvU8IQUbyDP5F5UgIU1eQkxsJqjfPWuMXdL6rrReFiGkuxdWGr8/VtYd7DYoqujx1JPv4BQm1h9Bsk0LzPdY2lGBAUujN/Bkkon1SAo33HEuOBNrnPYUacGTGK3JqijIjZa8p3bzIl6GCi9pLPak3puScb1n6oauR0YjfBcC/nkM62Ttwl4D2OKI1NSfsNJMXVo19XsObuxywHILO/TNzFb+doUIHZE8hx+J1SPB/g/gKo5Lpa2hprL6REfz5ibePAuQGkP4b9DiAJdW8DBZEpqjJqF0yek40ArdAb5IRNF13+AOzqkry02KkCQ3WwdgfbyvmipwdAFKmHVrg5xbb7AzzxB6IySlmVH3vKBznqN2p2Hu747qDV+oNU0eUHIdCZO1YXMVd1DkYEjVpQNjNtfb4kCggrZKDmlAuSesyPe+ROKKG3jIXX2I7io4zartcEAflfT2GGB5ta7K+jH94wL5+n/RDwtjcbRVkueZqONzt/PguiH7TJmFZ8Q9sbftjnw7c87jwa0V17BwAyh6C4oIM+FmeTiXFFcs8v+r+SQJ7abdrex4W4EIUSrVPx624ehqJpsVmw1QWEr7h6fG2N04hF/DWQNQx61z1RwVPx/F4K5C1y//ap/jcwfVnjsyvF7WsoduayblF37f+1imBRfIBiG7ROERmILu6dfwja4rge9Tp4ISTl7QC+vhG037iqeXHWO2hGrPogW9oBGkuFe4FclmQ0mIc9rUw2LFUtDwcgJNml2Zg29sg9IxNi2EfQE2KwmwCIaPDYnwr3a/AYm5UQjVBsa9jd/DnFV932HPFTvLM/ljk/debBo+kQTotyj3/TceeB8oI7A3ZYg5kgW6T0CzU5u8TmG23TZKOHqIBxaOjiFPEIhxmT2JVnjunM5jllqaDmyL8xGz5NTC//95CqhpfIof7x421UiBm43XUjyzFO1cdAjAr6+M3GlyzpykLyUBp08fU9wjrVV1QeafsBiASfA6sdFaY4whG41XfGcaBdIH6RGzSMe6qlzezJpjYC4UUzeA6Xed+sDVEpR7aqCOa1+ceW74N+6LDcGFTF07IwTUZm1ZccKlVrnszcHIatKs6+8kiFFn7ZhSx64wS5NWdS1oCY2H7PVvbh3sjr5BMCmqBhPt121LCpXvuPGPHxsTAjF9vjtje2zPW4WErH3aY0ROVd41QfZJ3qy3sEzAUZNMGJYdCs1MltIy20FjKG5BnYJWW6GkvPbIJse4+Wr2PncLne7q+AdxA2CClAc9G3UjIoh6/VDeDcKFCcNMDNTgZCii76uNZM/7Za0EeG3oEpkMKRYp4uqtcnX4AfnYGmyzjuoX+q6C8RnPF783mjjgk8h2/OJ741/WvxvBKZ9EZ/UWrUogH+/JBJjDgsPebmnZTBnwsAYq5dX30g8fg3FzElBctMoC7qtLcH6O86giw7WW4KcYXXA2P9VD2/zdyfYZGDgTh8dz93B3uItKc6BL5xcUkRkCODuHPVNY4kxoFIEWx1VKpyPztTMAt6NBpAcM7Mx01IAdxyrfQi8aDYqFlD1lX0QyYsQD2hqJ6+FWy6KQWvvpHk5FBvCBqF2qrp5qOXZ90/OePpptwXY/TCd7eQrb7q+r52c7CyAzm0CZUcToJlncLoDCm9639SG5w/zpUPsEnbQ2AfxUJSz8tK7LV05ZdGzeRY6jG9Woa7hx/G7kcgKZsCuvPRiUz9C9PWMn8CC1hSw4ZbLBweTJxWH0tmOTM4iWdYmSE7Q3uSZAjMkzRtXHPESjqERs7R4zPOlIYMDOHFwh+oSioPXj98DxaZ6qkzfPSW6ajWnSEbdBfpJpnMtp/D60fr/uTejyq9ZI3OzSiYdOKYIlRABU+831Kc6VG1U0GrDIYrEZfi3K/ZR2Lg4Twls0YhJrOsCKbxbGcjUAz840/mfegafijWE5TO6WwyPeo0yEI/o5jWMRfqLETB6zUTCcoZutFqclkq26CpW3M6/xvmpLQs4vbOLf4j33ar5pgohippIy6SfecK+G2WFIzROCR4sI6gQH2raQheb0jzF/qbKwjkgKIv7l4H1PFJm9HXBIp6NoXisN0tdcNifN34XyTx9WdzZjM6tpzzh+BBLKD4JMRUgezFLkCrF9tgeez6fLwz92E3vdLnkWGsStmT7NkNU1qtOun8b4tdlelvIc+LgMTIx7pSbn3jMiGqF+RJsbk3HkwLBo2eyMrh12WTJPjYyjM3HmayA5MaSvv+IbrWzJPCzVY0jaxFDfuiMg+Vg7Lu77U2hpu34IiJeQAm8jDEU+wwHbPrReDi8D66gHVjg1aBUyXtyi+t9ScdExJ2ExNyKsUPKR0Hp1p22kEIqCjD2Bp/6Fxaf6YiFpghGy36bTF3u2wR5+RglQLoP3tbPfumA6r6KxXNlX49ZlJ8FriMebGURo00z50le3XXyV60iD4Nh4zozkai7ynDcLxyzf+9dlp7RFcgCgmTqs1V05bvFu9HLmk5nnPnXLN9a7NnxFK20EiK0Q07n1sn+B8n6gEr086fDam1KBkhYDtpLGINm+e5ZZZo1TVqDwnIvkdyvE3CGN3Y94aAGBIfQQEW6MRu9Hst9zwhtsdxstYMdE+66GGT4As2bKdtBxyI+g1kSTzzbFqU5R1e9IrrTF9PbKn15yD1sv+b3SP6EaJsXoowMMF/MYFG2MRt29r1EPRp5thHHpy4P38I998FSZi/2p2L3jh7ysloC2eHpkTZOZCsJMpy4Omd38IE6iBdlj7ClMWcUMNA6LfJEARp4+vHnmqOqN57GiTNpD5b1tpPBvxfspU2dpqCGEUnvAU5XBU5jxlPE0qLhHAtQmsTzHT7bozwXaZ9na0YS8R8uevDF7JdeY70eSJSPfYVFmWUt4Z+XHwr6zVyE32LTjAyrwxefUjrgwIzZLGESkd0IKpCFhrlQIONhAq2A4QryTjVlaAwUXL2J4uu8bkIEoc0fJNB9dRKGD5+OCwwg+Z3XtPcqOx99mqm0Dt9TufAMz8ZknlDTVjoMNSXR9jv7OjkANa3NaN6KWSWK7WgUk246JwepGCJdAFzOOaUAz5VwNBdJ8xUSsvcteNsUaEQJcX1ifwJXf5woND4uG68rxGV4tUU3EHZA1z0NLgvIWUceDTwhz/HVy8AhbHHlAzXts7XyTbXPfNaqDtuhd/RHwGc4KyLkmxkKqmw1F+CEZR5VYGHfhQUtdC6pW4nACEsAWBUXLEmIxK2d6at39DTiVlX0KiVmvERSIc5LKSXJXzmCBqvOHNE9wttbticEDH/11d1Q1Bb3nrWCJZiHX2cU2s0CYWEh59YwXJG6VWeHWk7R37L3nG5NV24SxSZML5TeDfScD8lIDUlCcken+AbKZnPgNz68FeEaeeCHORJT4tuFbZKtMgRXcQVD+R7UaWQ9oPs/NMaKh19SAt6T7O2tiaowYkp+bmagiAnhDE4NEw/ou1G3dLW7DuGRP5DQ+Nf/QQkrPsOAm+kItwUdacGgxNnith31EpO3hWh+1X2bFIdUlYVfZSLrgdU7GEN0yl8zdSKGc/3RoG7ac/nNdrGXzf3+n580cxIpUKkhtZMLGRVAJA3IMaV7/S1RmAqmqAfoVUEJ2hdp2X0Pb0qG0AqhDinHEwJu+UEQW2CfAzaq76F2HV3AY9Wto6BdPf833maxqzAtMEqxsLP9Gket11tqslLJbQAGrcQFp2ifWXriisZz+C6PrdEELW9CRB8SQ7mquMvB5kJ9IIfa1cyfHPCofIxkWekNYRMLDBKdmwLXBvdm5D5RShLsiBXhsfkzupGwXKz3wV251q2w/I5fyWVe7H+p8fgniMDBPAcY6qO7ceSgSt13fiDZXUgEpeoo2Q8G9/y4Atphua212hea/pvb5e+/dmsVjyNhA2YAeWe3etqyAHuNslFu8sRnY0aihxAk3sa/Zh7IZ6BdLfCiLy/vcyEivvuVpaHh0t3/pe2uxcnJ7v7k4XeWIEk+U4+NW0/adH8jxjsXDAE4U36bhgS+ZUQ6i39jQxjKo0FwKyPUR3bJ9Is93whLq+ywuJ6J0MCVJx80Ekoq+/dG8hR14CiTSXM57I7ID6KiqwYUGQrhHkZ48LpAXrtD7gFS2315QAeECv+XmeI/PKlIPJpXWx2s5pNAWlblKmGmni9TGsO44934uUZzUMtzEg6zb6Ik4/Y+bwiu3VtQWtAYEQ3/kuvqnnbxyAB+YsvRSdAc9AuBwzCegGAQcg9lTjUQl9AEy3L12Jh27WOr8q5aQn4QhgEW4LM8qP4g9WE6ElpFpPDEO4Uih9dbvJYO6svNKlH37FlizqNIQZ5epbKV5B5mDzrKUkodc22GbnRJA5FiHP43i2c6WSApVKbxt3EQ7p34ct+E0TZLOxYncMwYEzU50kP7ZCOP0PBh2G/5mP+TR7aLFPjsLhkJbNavL+pz0GM4j0kn3W4J23Z9yhbmkZnezEJWQWwlgKVrjrl3EejNnX0Mrxq1O4c6xkpHUtAr1zOCRPhjwYjlmdTuxWjYjZvs7gMRgVQ8NmiMmoOnyC/lDTu/MHMC22yMmOM2QdlR8FXl34y8SObMn1oPk/z6EQeV0J8MMDqJlEkpmfJ8qOZk/la+1DtGTYbVtBBMuZVVeBYWrVo9J7ukIH1MMgngKVYaGbYak40ZhcjELS5TfsaBaSEZnPFpXzieJRs/p6rkn39QetgUj9GDNZfQqPZbu4iuUabsN4IIfcTcEqWvSOMF5XpHphnPXBTSjUQtj4JsM866ovz4JYXbQnh/7kdfNtJzWh3DXcc/DFLklipoO/0t84EXmnATHLdretfukI4eErO1CZazYylIhD9BfOTdFfsAj86Pqw/v6JtYhrNRRkyLWCcwen+XtqjolNg6dpUvIp/U1rokhcNZ/9TEXfffe6bFF8u71rhmCMwZcaV0STxzKNaAtFB7ExJU/BpPXJu4fanA1KZ9ei1VQX0xAnkLx/9SOHoB50ghWfGqSMMUmFNs+vFWa9fHIq9LWF1cEjDLrENuzIg6DhNmtpKbBesx7b8WEicqkQzvu93FR+41zU+XXSMrjc5Y84AbpokPUbmgMUHguNR4QDLkDRRXp68tA1drdA72S/ksr2t1qLJtXMza/XGbO08DjZDy+zqD547kWvFDkXP69p0SkUhg0+aPiG8C1FYk6hGTzUm4xmHVM8bTijt8nCao5AD89BMt1lg7e2M79aWmPDR7stq1y6kP9aONBDlijRqbc0vMzKVqmunTeFIM2p8li9qfp9aIQFTrZScxKm5wcdNTPohmxLirJ4ibf3Bls9VttKPS3Be3ya4to0UlFKG01yw/SmJAl+KmkaR2Lm4U4VBiZlqYB6G2gkaMrhyTKdblWdZlODIkzu4DX81ddR8emOTEGb9nfPmDJzTO6dvmuQAPaadMiV3IoPTUo3lqkdDiOwhGUXE9wHnv96sIJT3ZACrufgBcTjRDJMhrGQAco/s+JP4nUncYSFcv/8bHkRvBIdx/Bj86vNsks1o+/mYn4byZQwOWzaR3iRS8glg69qHc3ZpkDK1WaO3MbHmtFsfGgLd+bTp8H4HmKtoa/Ofh5YdWQ9Fr3X0ol9CWtn4F6qUMwIp8LfLWXhlrXKDIK9JsNXLj2pVJ7YRSC+JCC7USxK4CgXph8lh+7SIpDKR6YIIwaIWjVf2F06UBPEi4b8qNFEovAd5j2paOgNgultHU8GP8qfIdOXadP7m+0hr3KRiDik026wyOSZ+adR8H8+n3lZ+8n7iNLDlxBQOo16qRDXdp7Pel08VH/iCdaNUS3Sp5d3rJe7IGB8UtiBwYxb7R1aTBvs8KN0PvA8qC3ydc9tBqm4/dWiueRUw4KhCMtVX33yAe4Buy881oMQS59rWvhvau6U9tcNQsD3hlYA5z52cFDI1NLjbhOn8L3JNqB94Qom5ZdRosFUbpz4sDQiK20zjrFGEOthOBDkWTbRRF+cjVToBSAECOXhankG0jAH7cFtQMUDqnjZGbJi/qr4C9X2G2yDaCMlXnFG+Orf1HowexR4DF0NPeux7bUuGiLNUaZkptdpZD9XYaSsrxQQicKNwQQjd2rcCw+snpe6XGF6zWER35mQIB3wPcTvYjGNKzCgiN0kblYB5XMQXOIegdFN4crH9xwc/HV14poyZy3d34e+uW2syD7v3Dj4ckMv1eQ58yhQwX8Hu/QDj/KNBSbg5MkqCoMEDxPoH9+2GBtgnNVLcEZMBK4beAeMLy44b/V0V7xSgqmQcC1wSg4K8m3dMrbMP9tPEUrJxPyjK/05w91SKv90Dz8Z+sEpaczS2i9FgRdlSW9utMGHihJl6+NYLNNjl7zXkQKOUw71Yl1Z4sRAm4uGvFpDhdEzsXAAiHbRc4ztsQy13FE5nHIFsZnzqIJ44xJ7413cWyCgPXBgX06w9OSCTpYcGTsRfW/iSlgWRmTfaNUGuKuxxZCyk36T3Lm5ZsywrW9fsmlWtiNTndJRO5Sr8BEQOZmkvGey+3XBtBJ/yqmN+EbhTke6RN44ix6IQY/uqkFkxuqyQuaRg+FeqP9HQCglJJ3RtNLLQyZ0RrGYTKUMNKfKenEE/idtJ6rVE+MREec+Py3RmeRZYVV3UTp/LnSBAtm9WWWrLgqy4Zw1zcR/KgKKtZ843/TVacnxvdJqEwz2G0BLNQf1gn6RDnUtUHzmsqqGvKMLPqrJwkUJKAFuOJFb+5fWhgA67QM3IUBLExZsiP0ekWgiso8s8N2YGZ8SJvOK8JicoPFTvCf06wQCwIvXoBG0JtLG87BMTi5Z8KS43tmek8brUHRmHiZwo04IlfbsNDIGF6w6/yCmw2+QsBcahj+hWeHdC/Bc7OJ9CYvUlNwFTasoMcjMoBWKDUpoAoCKfjFqfqdDuOVU3ARU7Z/8eo16ae7Cxi5sywAfzGaAN0R+emSrbplbnR9sYhuy9XOkNQS+g9qbMg1TtDdrEvFlRfIZbpUZPCNYqDpNP6PreobaA4uAtOKMoTZyyRdezBuBSLFxrvWbmfKVzHF1iD0S2iL5FILcSEKgRqLR9b+HE0eJyzUdHAlm/fkDX7GUybtVk5dRea2rLF6WhourkoeS3o3M+8Q6WHlC5ZqDoD9YKYOYRvNGUSepXGKq5mZlnWiijQFyRFf0uUIiLO9+0XyuGVb7qvyJx3j6S2i+ncn6ttPWSWmbnSxcuYVILam+75xevMY7CtRtus3diau2/vEAmRoipTThvHDQjNW2heeu6ZSxDsiLjC5Hpl71C/pgn8bO2DiLkdyCNVZ93J+nVHpbDOmqey2CxfX0Nh5wFRanb3JnGrEbUyI4E4SmjivnkFr+vGLNA+yoj/Z3kjmZgXguDCSJ/Oem1nJAO2pLCuXpNekuBVo1XDGZnwHwTi9jY+xlhmroq8Wta8WchhxTBQrd4RxsGv75VIuUEUUa8od6M+uq7oHahfUAzD1SG19DDOZXDC/Fq9/1WD3sUQc4VqmCMQGyjq6s27X73fSffUaG2jrUJ2QLjwZuMsFx3IP5CGmYhLGwBZ636mmWkxWOLPaPQ14nlDc7L0KD63aqf+5WTf2t1+2DEGJviG9QH3h/Pb5ujpoVUOPAuEW3zs9WAYVpLqR9nOFgZSTFQbK3FzoMUDTZslP8/tACg3xd7F3f4Ro8MbLS42YI2HNNvOQNJvPBq5HBp/+7mXxQZ0ZAzZ3JL9JptXSk8qu4uBjbSCirNFeDwMHIh+W7Pdg9QyFSaG8H9GuBjcjNBi1Rxt4HxFNFVf0Xmrgdpe5YDtvOjYpKVxJdfZiUyfLQ500N+vQkjsMfyDkK1jl2VTRfyRAnFHh2TnAAXTaA+ng+u7dJvy0a0OG0iLp2VHiRyavRAQ0zJT5O2xwaANjD3GAHXriD6SJiyJ5PvmhiFDXLVwqPUbcEGy11z+kdDgmbQ0CrEJ7dZEs9aKm3uXZRxuj+zYYCAZWi6eFtXZgikumf6NNxtIDVQ7KwQGJQSoraIx3oJN/GudADRafLCrw/OddHnDWbdvTnBnxKjFpEVqtaxPeRdc91zq6w9dUmlYbJdc4s58SCD7Es5SgwiWlt80+Pj48VwL66+OlsPUilTkeDWn5vLj1/K1t8ULwoGoQ1LFtMd8SLyKKS0h3k71t+ZIFS67B0lFsyNOwXfnnoTrXXesX7d6W9ZrUXwwnX7WJWXXpSwkI1DHvr/nmVi1Hv/1zLTYSOhoeib5gXN/il8y+Ny9ro3GX0JAIqV0Rayw/wtxoLeEI5rz0c22xezQ/SVkG0PeSkAEwCWGNfIvlMRFj/OlsrV1Tlb6258roxC/r/dhOEQVdgXFtg1iokiCIqmcZEKRqxB8jssBQQ0oXSAJA3SLgNocJvnxfpc4UMKHXZdkvZ5sot+VuwPlGUcLGTxk0TPb2/UoWq2CAjUGwWLmeq1SWvw0i6gLsTDCNiUd/WP4nQCpx4wUR6BO6McfVDpSoewJrAFPUL3Df+e2mI+PXbFg3keLZkqyPmut9qdo8oYRo7wHs03FHV4v65GuOmFQL1gQJky4uIhoo8FV1cks+eA0zIenvjBqebkLFrro6m65fMwUKBLKtzY7j5QJGx5QF4dBg/rO9etIk5UWADyvZWBQ8eyDSopzvNptT0x0foJ4YWnWm0915ObDIdkFs2nnEF47v9Cwp8E8FTnjKx5A+UfYVYrTChcXCnezW+ark+9RIgBtkxWbopX63l8BtsoMyKl5U7HvwNeEu9W+nS9N/8vvss+DZi4JGIaHpQ4JNq8RgyPGA2gZvHK3Va/GVItWXLqphXAvhMuzZSIChOzr9Z6Cad6UiEdERGq7IkXbBgcC7zHV/Ysy3PBSJfOk1qE2m1n72dQTNaD2gmjIKgBySubx8H6DpYfIGJ10oxacqdIO0paKuzls7uItWjrOHR5cN4xmnu1aRRNZD4i3LjxuAs4878lcmhM7SKC5O2MlLAvNX/J+PcGDw8qPDMHL1wqbV9Plnw6XNsL81i3sho+jwJVVuqdNCALZeVzqxrL9sKwcxxgZdTxAzSDwiJPJ67r5lgKeoyroA7KVPIV3Q13M/EGGgVR7meuctwvxcZ4O1yQ3AcG1E+TeXXfKdZKANejZGUTy8m/QXFb91yt2XnpiHUi/aDtMgtta2nH3P98KHs2I8BKnN0OmvpqJ3boNjSHPA01YOmqG0W0uGBoM2fTTtPDS+Rl/VAbkaO4X3aU5thL1KotMiwEhy95DUsvALpj0vlRz1ZyloD9bM1cFf6K2M1cYJ9d3UMnVDb6GXwduleZbekYLhMIHrQ4lL8b0++PTx2a+dqPY0eeju9yaM1kKc/oYEBVFJUYX+JxjDGVApYY44nCeVURGqDGYM6rUkEb8gdoVKdEBA+trsQYN4F02a4LyCx7+4ilKfNsi4U1kIc77k2P/NOzG3pWTv2NuT9BBnB1RqFb+wrrsWMSUoiU5DFDMnaJZGtbMuWeWHesaWTq6uqc8VZuBIg7PrZF0ZMGN7JzbZ00LVSaXA7LuFVOeW56goDG1csvjswaNW6TrBoEdvvu3fJsE00+9eomtVRd/hwym3w5Nx8uTpaEHGqU/gx/BV1K9RxVeK4js6rYrYC8kXX69si0vnYugwhApBbrHHpvdIOXT4/CuTrCFIlZmlUoC+mP1dmKYgEST3p/Mom6+CeigCtB50csFFXJ16L5hTS4aKgPUNIvsS4qZ65JHf/yBH7C7+bLRYRUQvlad69Kgxiaa25O/vpvDob5hkxD/4+SjAK1923/aHs30Kf5UgpzlcHB/Dl3x6SALeEHcI4Z8Doo1TcmoLRWSAfb3SGf7PzLZqM/8c4jJRKUi69ueGojwzz3PMJaR8U9wGosyJgPMX471vE40Oa94aKQ19HhBf7dTlrBRzM9NxvQ4KM6Qs5srwDWzdQO3TXTlPA6AB+f668BiM8B9uRodQt6edWI7MfHvN/aiXZFjA6Y4kkpjH9MTsm8K6h8UQe0JxEWhSG2M9BPVNExHi4U3b9jUXICcd3HNGy+tU1i8wLUlcxWBeHv4LYISCAcD3HBbdvXTRewR9pQOlcCCQrc8XERfeNGmzeJrF2izsu2AToo/t7pR6FgfkJmh/3T0vkOWIqrWbECn+k7v4o9F2y20CWjU7Qp3u4XqA3boWvuSSaLl5oPQ4BofDjqR3Ug57FWfwGt3hUbb/xr3P4cyH9HwloQxgPMAiRbkX077niXePKfztYbswp7xLoguqB3uL+SZxefON3DpQRZnD+2Gp+ouE3F51kC5Bb8CuutdwjYQT+qklj/LVJzHSr0FxQXW6nqYaV+rCIWdmpiWXAinHS+YrVREeHpbINtyenbhY254g9FxhcMQylPZE6mq8xtLfsZS7fhshwS5+7ywrbFb7nclsJ9LKyjy09VavAEyOyP+hNQds11VSFj8UBqobmjj2p7Tc7c4Hnob1+a72MApfBjauADkweEtH5PpfEqKzMm064mH2DQ+Hn5iYbpzb2Vs/0NkKfDJUxHeoP9MZuf4XscwQRDgXnurDGVwSEISo87Nbue5TL6aOvTTn2lwErYJWJ5sZeyWABZGJha73b4mxf54hDDXg/UMXFUChUP5BL190dqLh4yiWixzl4svnq+yRE4ABgIyEgrlT4L/lE+hBDqlDpD010WBjiCqWaMoMuVfMJC3Wuk73dG2sbUr2RHfNNXY+wMg3gpdhe2GVxMyV5q2y3IMPBUWz9SeTJ73wFCGYVbmF/37EzF5Y6TVGmrZFUVl1OHZ5hftCGFaLLkRj6yQF4hSVFM+zLwkwwWKmERpTlkFp/BY7EuoNeeRzDUIJDMX+8IsvE1WRgYkyjjkjRVN12+jvIi3MJY3rqFw4wmjlCV7KaY7ABfM+/qu4r4F++7MCQWwEnUksu2GDoDWIxvI4pzml0/8Kar3n+yuW8OMrZtaD7cMmgs5NVbUQujw+/BNM/hgC4m74cbOZr62AJOXHEjUsTW/xTqtLymOBIDRw/pW/w0Ak47J7DVgv33HGanuPSHn6jfwX79DSk/zOUMy4lgUL/NnZ0IrlbXNRQYQRwYitLrxQXBJQBUg7yJ079bF1OZCngLYVIyuRDT3FA29rhTvlT9lpyyXsDxe+9/B7qokBBYz5mUUjwt5VhA8Hzx46RMBLKwZiO322ptvpzSUD6CHnbN/LSD0nHTxwmOU04+aA88fzdr4Bgc4ZUUIGeETHs1/Od/7/Mr4QoSuHrpEIXkptVZ/jHClRvPZfREK9J2VarYrUh/qozaB71tWTCX1MEfBJFRy8fjfp2m3zHuHPAppqkJ45UiW7zOYqN7sNmPtoHArKs2fMDNgf5z9Z0PqJa2zN4Pk27hvyWhEjDNZWF0yC+krUqUCIfRAjqZWrR/UN8DdZhr6q+WEeDrqw==
Variant 0
DifficultyLevel
635
Question
Manoj is making a number of curries.
He has 8 cups of coconut milk.
Manoj uses 32 of a cup of coconut milk for every curry.
What is the maximum number of curries Manoj can make?
Worked Solution
|
|
Maximum curries |
= 8÷32 |
|
= 8×23 |
|
= 12 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Manoj is making a number of curries.
He has 8 cups of coconut milk.
Manoj uses $\dfrac{2}{3}$ of a cup of coconut milk for every curry.
What is the maximum number of curries Manoj can make?
|
workedSolution |
| | |
| --------------------- | ---------------------------------------|
| Maximum curries | = $8 \div \dfrac{2}{3}$ |
| | = $8 \times \dfrac{3}{2}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX19OBSQhm6DkFbzDRdS+pabN/oiMXv7Z6JgMjka6d8Qg0NXtUWiqiIFAZv1CqlwilBdMP74Kudm73v5oYxbGFnf5ASJU0YPQ1W9XE6zhdQZcEde6Zu5QS4o1/tDnxkHYHl8GzocPqCQgAg7ALCGs4BW+DbcC0xLljEHmY9Sg/gCm9u2l7yQ+aJVU5+NPxKDRv4BnxS1TRi9z9RXOFxF9ZRFBcK73f8YPbbQuPV8OWGNDLY++HlxLWTGNf347SLu9ROAqCMeTBRgWNI8RwQPGbotHz978PsD4OaGH5BIGcds7D3bjZPgAUtGSKbv9ZmfsjM0SQpB8N5iFOe5nihpNxeY/YNxuYKGR0Ao73BEKgbCqj69kwLQXpTTkZqWrFd5Q2u6qLY8Oc8ZQvG6dgPz7xr91sAqx5DRKsefNrkhzE3WEHR7jtJHyjgO6eNEgtwVC9e2qcILNOt0iz36oCUi0deNLpeChRyz2U1RAvggcO7weEMOUjtmCD0UljfXM2KD29AKNSWLx/YIiJhcGe3kMTFOfbqrD+ty1+Z6zKon5/a9OvZ51+YY5Mc21/o/H2HnIB/R2zMVIDL53IlVGc7d4mC9u8/P2u4XlwQTs1AA0GUmlkRXtIjbcZgOrEfJlyfaeL1rInP03J/db1H5bJ7O7gP0urPijL4xG1CvFJKPPLlvg86MvJpFhFmaChaAQEroBIrD79NAtLb4j3QfziciW/5rAGLdWIX3ADTL1v4o00bx9GgTuN2BU8D9jrqyIlpuGdTgmLZB9BUBJXhtkT63uO510TObVLOcyNsj/+O2z0o5sPxmxNdjB1hk99DNWCKzigW+r06KtkfGFgYv8xk6y+C2gGo1ehhrCprJAbeRaFpg1eGXyoFgJAoK8DfPP/V48Sixp15WdAL4DcZpbpZ6u5aods1Vk+jIoOQuamVeu8yIrnieR7ppxLDyyNMMqSQ872stYeCHzRUKWjCAmUhTJOWcymN9OZaT1dfLXiL29Z0BIPx5zRevUnIJDAI0G5+yKctmTHu1oIIZNOzsfXwlzRkyt1dlqj+QP6Md7hv8PNoFD8fraV+dLirxwBipwy40Dxz8HEFvpQz4PWxOtuxp9B80Fuu+Rub7fX2K9s2cVVgSjmL9VLUdy3T4WvGz8SRZMdvRRWaERx7B03q7Suk+HiqQyMlCBJfRuXoOACbbsxCxBjUiHRvXasvEsaJq8RMgNBwsx5o16iropYSuLL63SW61RFQAOaS5o9NSrTB2djQFDWZC/jSlJj6GGwO6BTGGw4i3KsoM6BbkJAsaY61SZ+kpQuub4AkeLrNmJMZLoiU4lZo0H99QBmkyrQst4IIq7B9bdZPkZWbgeFc5htNTYVwKfTZis4N0r5F8f07ruusJSHV5Siz5cnhWWhVrNuPQU/ZQ7vZSmAlV3BRqZ8a1uqfGv0VpbtXb6yvaJCnKd6c2mFZHXIzuY1ZF5ZXoS+pK++04XAQB8+CZcP/Z7xhRTi9OmQ/XcQ8wegVBRALJViUwGr7FBgNKfZAv2gi+UY9dlUR8MNZUtCFTahqDGqB0GUbLo2MUorg0oIFdEihbKaDgxX1Vl+VCQQHcgT52X2x931igkTzoR1im8O5wFLwwJnypNkD1bXabKJJW49mmBGLGkmxpf0gJ1YK+Y7e78hvBT+1XnAno5abu59edFeAJonv2k5h5+gtZrhIc2sm7Y0aAn8+Ygpi3yB1Tc5dGd7sKoEpnj7MlzeR0hQizPeL7875pWTTgzsV1DjpPJIotqo6Zya/Y1cdaPslr7mRyAkk0dQ+Q30M63xDmIFMAASIPqw2Cvfwlg5FY2WnbBjyka2MZPngS2fupJEsn1c0UHJ1aLnq789Tg4RTCsf0XOlb9+fAFoywTSFSmhjrwhPPIw8FXPqsyDaisB1sNNPwSt4sxbAiHsLxXVIFkYIwnbtcNVtZIKcx37EuKy13DTWrzLU7otMLfCJM/NJMZWiWRBaeFQBkfyFDKDb20bhm/dZbIipWS6YJKn1Z7HcZgkvsBOvFuRHY8g8iqn1Hvae5fbAYkJubEl6AMEtOqUyUdkfr1cHE3myNRpFXiWvGRIAXuM33i//Gr9Q8Slg3ZOJ+bIb9lpjnCFOvPJ1XD5Bt33HsUcnt9AQ/TzX30M4T1ho30IuRAw9TvnQmcpnardP8VY48M5V66jDObNEDfkRKBD9B09/KVOap2vpMFynEO8cHjHmKg9DEXOCNOHgjaCqxMIkthDCoyyg9t+UBiHa3jJQiaGewzH5WuiVucJ+J+qk2e8oyJHKe9RL+4S4HUIJ+5ziYeG9agjtIHEh8MXcf5X7O9Hg6WZV6aN4UhmiDSBIwJ+3/qxr3KW+cDOmAac26al7s/8NPaxrbaqnHZ/b4rVCoLLyBinjk7j7ILzzUCMGunNuyjYqDUHUIwmYo7f9Hup88hQCNShBYfv/ogt31Rnu1IQyv40iRXDr9Sa9WFRqCMF9LDj+QTF51ggwE0og8JoDWq9xVTTuGB92P9xxMAwNgAv2q/b4qavcj6kRZ/P4nZYKYToCwRCuqESc/JGwBQgP5Xur7UBHXQ6AQo6Sazy97ilaxBRYtGRII9iaifsn+QP17El6mEPclUuRbA6LROV1+osKJDmeBBPdFxR3IZThtPCbYgi15u0Y4IdUKE4Zdctel/1bigGTdVyx/d5VrbxdXZL/PY5vtDfJB8DdpO1wV5bZu+NB77Ax9gWvlofGMim5ND2qKyn3zsfOnCWP2i7Z35WJNF/tJC6Q4gUAAqkqBlEKZeVoUPNx4lTalxRR/bMb0Axm2C4icYk4pAKJQ0w5ddno35IExJv7k+UnK6vXSuPHwPd8fcA/dxye/Yrb8zYWlVnahX8vLBAesAb7WUni5rHyzsMNduF+v1/yCh/9wMH/5ttqwFWHnmBn0XOCaJgopJ6amXTAETdbIAqf5C+2G0+w1SNSsw55nZ5QE2bJoLxKTnRvJ9LK4N8V6of60g8JJsuPMQHIo7vb9LmhXRLMP8buISbQAYnGNOv3WSUt4l0uxdWcR2B9GsGEqKIVzHZNgktRJHxtKz7xTFvYN9URNQcCOrihjQRmgQGiZWJi8xFqKBMntvYi6B7Chchw4Y2SXwCI7vAOFS9vdFNoxmjfgMyBtH/Hm9bPCj8sFT6Z9GhEkwsnOQayBd/5DYgA75VZ1YJHDw4rovmCxayuyDSsZVUkqmdF3YiwmlfMw/GbdqszSzUGnVxMZIfBaWQoXPujxTKGJQZY0mJXkO57MLLSvqI/4PDFjEJOp1mzk5tlI5s63VLnBhmnKjl5qE3G2Ir69/3VXnXa2JbnsJpIMvQP5MQtucLkfOCqUOfJcfFfO7Ei4M/82KTpOlhu9mjvXWSZysRfBs6FTelNawtcaTZlqjTYU8Y0/wNCekCPsg3P+T9Xk7ZY8813AFhzyg/sHCtUxCaWYFTGz063j5NLX75JR4AtljRXpx+Y9Xtsyg2noZObUisq4aDVwhy4LMH6p8FcBGMwSwHaaZ3kuD6FVqR8X/zD2MxD09jRiwcBpHXM+zhW2lmuq532msecRN2OM85/WwIVb8L4PV+kfUJ9w1/56FLDKUCvbz95wt5hVZJv+fAL9UvIsFwbtjelY+YTBjyLDtBj8llgKUGR/Zpi7SJlfSinWPeGm68/gn1xsKPDSEHGc7S282U8cIABij1SQIT2gPuOYUo3xU9e5UpUK5MmPrVP2UKqyMzrGLi5AIRzN0+cwl/+3d4k1aQ45dmkSqC67TGauuInu6AMpd0TtmowujfCrIjbKJqli7LrW4/oJnxvT5sFn483JZM3ZiP9h07EOZX/Kjj5Qv/lJiG6CJFlvc7c2qVdsvvYAszZ7qnumwG/92dk47gG13iqg6gi2gMc6P8reyrwC8fSZaIxf6l77cHN0WKCw/0kW+TFpJKkQClcOuEJs04BcQZO5vKHsqFUCZr7oJ5aG3alB3GQFYclilLj1XjFj3nro80szl5Jbw1Mmy0eoCWF+W9eg/39/3qYpZhfVDp1CKR9xkUqjyzfiJY0/VFeuC6D1q2c1Mnf381vlRStHxpBEETbecHO6wyay52rHXnzj00VWw127VCRrkTEfBOzH67dkM5aHXpJPy/avEseevOdr/vJLwn8cLU7DMmFNkHALBQSObjS46Ce9P2YO/i9uXLX/nq/oC07FiY+w8yjij6ktRJyX7876UCpA0hpsREAuWuCzAJM13+q/mUN542RkMErYFOTSkpTs6pPvWZJu/93ByU11vvnrgN8Zurta9HD6AYWCOL9rLacwbJ1S/+7wnx+Ih8ENXbu++OaPYBpeSyPKF/ZZyiyM3Zng7n5IzrRQFrgft3HNoDoauHhgyNdSM2yR9GZ964KyrN8dOQGA5iDCHiju2BdvcXPA9H1O/+UafUh326SUmus8vEggJEpwFM3EoPbQRnHx9rjnCynuY6y/UlK1wmFuKz7dUpb0T7zjsIhMUVUUkZF3LMrOYhOOcqlfQd588ydYpNO83qQVJWcycmuEQ2RJOgJG2Wqt3HDOijNJzn/pd2IzhDE70Sq17/BfmEKPKgsebYWfiGofRebP9NouSCOwqmfBrcadw+8UswYvXDFPQtWDFoL/kfbB4Z7gBo37fIwKD7tZGEEQw/U4wOv440PVwiNAAsKIbWC3BlEwCsRUZ2CDtai1UbxO3zQUoq46oBRBxi9WfZoendB51zYiM0PUQquBpQ6AklRq02iw/ElNcGutpLbzx4uQkYPUeIMtbnWmLBnMyOrzII/l05YgkknI7xM9MCfFg4TI3B8zLG31QGqjQE7m6mD2Jb1UurSpPEMImTO+K1VSrjWDJBQlqee1/3hSB4nqqcdTJkxki5b7ckpCq34JONIRORa2oSwhmK/Xg/xB3DM+KQmxM+gk70tB/1+r2mnGSyeFLct2E8f+bt1TmqSYoYHAteO9RgDEZ/uB+VEJ/Ncul2qWPdAYUtq7Jb01J7NDefE0OXw7a4G1Ys/H88nZJAdbyCjrHgrY+HRTqOj+eJsOCtJL2Sni9nhvk2YE+0lydkjJbzgoHNxczJb2VWW6oD7EklgJta0iNNBJbXz1Jf9KqMEh93Z3pZMH6PWfuPHj4LQ/7ablriYxHSDG3dPZ9qSNlpuNOWTIvAKHKMNPXEK8PM3XdXKDG2p1fJQev9YfRFCM/k0o1d49fwg4jQWtMG2u2jrtYD5YcFso9tDPu8lwh5pZ8BOCVGAOQZhw44Itk7BKKD4MYVmHvk9fnb7hHdSe0X1ern3xIS4tTREpzPokBPTHmqoFY/l/EfnW3Za/4pCV8KvscW382GoYElh0YdGMZ0wlBwGRiVvyNodem6A9Lh7k+Mf82CCb7VH1/dGmwOlmKMXzoNLoLK0xhGvMO/n+ivuHheJC016QwqnJUSe/pCoy2WaOa2xf42GpqHoiib4qL1qEdQVKg+1dR6/07ZqrZBEfa5EF0Qua/yhNNIhKqoN8rwtUmRtC9o96+OCfru4dZjKIpGuZP3+XhghY+DPhFi6VPEfo8CdT/MHB2Tu0QIG+UkvrOvoKrDz6yy0b7bjhP5jaUTe8p3vNDsTyAh2X7G89AcsNO87CRevLlAyPRaNbXryvJvSIE3/bsuFzSL+j5X+VRoY9fchBYxv0N8subEfoaSVrQo8GKQIEIwwXPFJkL2YHWewi3mNwMZJQFJfgVY640yg/Kiv+aiGOCrvEeZ0Fe7z0XsWNB2CjiwMxFvFZVgwL8KFxmv4IVbC6yMS3ghxApeX8J52TxNiwkzvBYITwDl8yBmP9IH1EtAs8vQNzlem/KQAXdBITHOIbfmi9lEM+9iLBfMw5JfU5hgSZIXMpibdEoZQrf7CwjGmKmT056TywixPbJbrmL+K200CxahATQfr8LK+8m0WOegaL4isQJfDpTUl8NpWE+9O8dW/17HEV2V55oQ21+3eHuLrvGZqSQ1dl0WNlwLcv/fFHGcw0EpuAoQ9htYvlRuviixDo0r3hBy5yianr4KhwhoafaI0kzwsOqF9cQUs/3/pYMLKcwsR7opm0Rihf4V6gdaW9tRnTNEESNfn+78L4hjT0f4Q7wOKFRWXZ4Yl0so348U7IMdwhFZHprCO/pL26iqsjSa0Ei/fKu3rJh2Co5f7SnN86dmVnKkPO4DXEWhOr/XJWTeuRj3KVE4oi5k3z9xhJBN7jy/V/fVDgN8qrFvxM4Hm+ulBSKd/Juij++CbXqsp6SIZ7tkvdqUR5Qt9ZP+6XkaHEStnT9XQMuSPZWRxlNMAhJrazhFcHKVevS2d8x5vqS/bcvQNC5uzLdyVvBh55hcWRp168S5dHP3eYjkBSNeYKN5Q7v40BPccI6aeJ3LLTTImpG5irdIBy90o/i1mpIXPs8zI9+nlwb9sSkqM5s95uhN4J1Mx/fTeiVEHXpa6g18yEitKdQ7ljH/0sXBIuUix/ICW5u5hCtm0aVW0PxuvKRWjt53z+pqkPsh6XlStAu0ZadHmfZxso+0MucaBJn0Idqk4lODklxVIIs4d40qw6IgAL0WuhjULtDfJBl9STxgbj/7Rh/okmRHYb6sPb+5VsEjmjth8+Zxe0P1gW89aRjBZL7JMRyTm97lfUoudqnfqaYNXZN5ET8DjbWln0dCmU60uQaIDLziLJKmqe86MEgR6TbRi2HwIboVAKJadBQ4KrbaWkOrkKx85Of3Ruz7tXSVWjePwuzUXlktvln+OvsG3Bbfx0l21fkdJYaSun6qO8zQJXg4N+h6YWLINl7ZZNouG3loe5zI+Fo8O2LkE8bQK4z4JPMhLLlEZ3P3p40HMK0Ja/nk2ibP+5dqX4mdxNeq0XfFSaUiYkvJCDjTqscle9soO0hUV2Ha+gheY9rXrgr3S6vZhQRE5ohLTCTIajigelrzuchTveIF7fwlZ+ygeLbZlu2jGRV0RQ19B3G4+wxoR94bU2smg/QU7qP2aKfCdgpXKveGVyLzJxUWSzpdl1iDhTPpId78PI/lhHxdNPOkc/QUy2clqb+wM5W5Z265g7n9tiQMeRDQaLeyYX1b7SD7pnUTe97lN2w8j8BPkvdADWw/bkc2PvBQOYU3ycnpXwVEIEnbLhpkkVRBm7d73XEnuXpCcU6Jwi71gFfPYUohfrn3rwW/tfLkyU9WRZMZikx1B3Wq9OpsuF3OKMB9IUsoTwP2NDOqzVz52rLG5+5ka6a3IVJ2TBGle2Y3kKBiydh/LebwZ+jv2YzUEm9zni35y+PLPRKXNyZ5Xh8MKlElfG5BiDI2dWRYnqHvrPgNg44TO0JvKz7/Rsk6T3XbNrpd8WF9evhoBVKIy9kgk6SyLGHAhDosvZ+2ahK9dKS0DRXohu6ECQZyokmCydsNJvY8oDnJEfT2mXm8Oxw4ut+sV5P1IeADlhYJRViSK+uHd9tWTljvQzFbFNl8D1cFzNElV+PlCcOBwTkcSODgANcLWtpmomJkh9PEtqqAJal7wMU6JwKHQaUix781CWcCiMtx8iTUOIik+hO13Ct0+MINJ7bVOxqgGuqujT36MwgcZth7+7Kl4PWfzzHkYmdwwv9PEfd2r7JIT7c6pFyPrv9ypzjTGt+B16NMLIZRt4bMKYqV+JAt2+wHc2PJM5oTLF8m9iRlY4xhpv7k3vkqo4X+BPCEoZ7nxgIqnH8wKpOBS8VwkOlIDtZHTmaCRl0erdjHznBM94gxUTkErtaUsbbrWyqPMPcR8P6YBc00e1jZxn310K/djKYxcVCpjzcaCFzDO2ODaHvZ3QGi4l0lhxSuHd+61aFvLTXfW2uC2pOy7BetkIxhKlLzfq99uV2HqAwElQi5PxcoPSw86UvEJIgGOecb0tt2zkXbQU5oPF32uAEv0sHQQfXsws3KuSE+l78ASgFiJdjJErSscUfQx+PkDBgXGkZNNuKHWsm72+fQvkFiYbZFrWGXNF426In7Dn+cLw2nvwsOiCJiV2ehz6dGK804Ld2saucHB2Ftao5TZWpgO700Hq5eQIql1EPpG8JPtiLD705xbieQOQTZda5z8ze4+G2JwGfvsH8fYSjqmAjnnGAstStZhy69j1lx9zJQgQDh/hFQN0qxG76rYFoURcHjrNDN0WRi18NsFeYxTvFvV24EcODCR0Ao/um7UQQRiY4U/AcoWd4X2vm1etmsakqarU3tImQHujz8PJxkd3PhZgnnHYazsnbyUc6SUE18gBvlQQymW6wVhLP9QviCss6qCpm3XxDRYybv8Tv/Ep0CAxhrv6I0WKUouGLiG+i6kuN81YMiKlSgofaWDY4lN6LlkPMATB/lr1dwhOUJcAMWL5zRait1KfhmVE3AQry6aSotmx7emsKR2xsvNvgzVN9Y2dKsq7DJcSu3FnOZ808DY1DLXCpDdZVhc7ExGMxrYHyW6Fp0FCLNOjiisdSNoWbYVP3ux6xkLpbLxmYqRE2vaU5V/fPDHxNBJSOXIKkLuG2183u2B9/PybKeilsjH9KQQHY7KMG0d+E6c/JWWSeybQkVrH8oI4zNAVCgWhIhO21kQSZOMBkC+2ECbvxgb3g1Go2u9V4svsnsNGPHWaRXzHaN2XYkbLrwZ3EwF7frABYd06cri/1a831xxL7IbSp9N4nu7KKfJlR6JjEonQlVqUPess9YRgIgE2Ig2dn4Gv5EDpwCQZ120SJHE+iBxGt+bW3PUGN1Dcb0xJxiETDHvbIJ/yxFaNm5JiMYHwAiazsuQqHdKwkho8A5s65G2CNVqsFGfFCjFFSnSfafDHXys1xt+CU1R71OV0r9LIZZl3fxybRmo1lJHGGrBJQ5xC+CbZyoESyfqgWgz8hI6ZmAhHfMp0+lk8EMiO7jz/eM8/C8wV69Kl9C5yTZGF4GrQApk1X8KaaGRSnX6fx55HEkL/uN056WY2++OXbFGznFvnFhmjac6ZpCOnixYsHVbNO5jBItkKpkN7XZZOd5t/Yp6xyzjF5BLKRpMKO9h0QqvFqefm/ZwBExWrsoAnOkrBzW1ab4sc4PXJbolyB49kBAF0Fa+FoAg5q7ldFjFHQm6YaG+hlVdGumJ0gas7D/59W+Ey8YTCWfW56kfTzrUZp7XeuY2rxA0OVEap1H4UuIlgV0ehT7q9XNNK39YU7Bbxh6fuIaKYe/l9Z9g2TiS/FKnaagUGomgvrrL9PJoaueIToHyK+zM5nJy7gY5L+r8NsAExm3h68wRQ0uUxUp3CSs1851UyqFLkXJigAJO9TURMHEH53cSLOh7ndnYFte6rDHrR61Zycdpf3ZkEXRL8X75k/rIPj+adt3QXxw1/YI1Kq4eFzYbZNTaIzc5fX+pAI5qQJMdlIZWxHI75H/qionWaU9s6C+JnA36mAOxVlL8aBYXTKpqRabnTrqFSFUqGQ/LOgINyXffkYoYH2nGNltwfBu16Vli9hTbckxdYl+07h1ofHGDWpP54QIP7h1QtL/sIEQobFUF/CbS0uPLWFifA6wvR/CNkZWNgFk/Y3Dme1h6h8fQQP1ndx7SqtFk4PD89owGC23OeujR5V2k1DVaBeNB4FYqRUMVN8kyY0r2X/nD+Vjm84MCS18MWLB/aQ9aC726TKL8M0zMZS/uAkhPHlDAsmH+8lTOhmQjEUMwGkZ6cHiIgOv68iI1VWO/NtoQYRaKfw+LY3C7SKgsyUliJj2KrM/ci3acHC2i+AdKQOyMtfkfJXJ5lndBYv0KJlbCTZMpMIDbnni08/7kYjlTOsAxiihbpTrr3//9nEABvUprDrUtyx4lNKDv5pcjjAmwPEgDm0R/5CtKTIkI5LgsoZpZQa+94n/A/Zerj+qXT7ghyeuEXJJBETu6v0qbo1FoJutFmT1DOeiCVxoo3RW63PuCy/qm7f3X7nCkpduCaw6zJvVtUuYNz2VzloHQWbCn0UJRyTXna05RSD/wIAeAdrAE4CKlZy/jpOrWEaEvbi7e2SH/Kcf9/VjDYMqmr/cw51uASGWyIcB39RApsupf5YtaCY3LEh+kEic2yVGEqp/CisOZB8L/isrJOaR6SYVzYSFMu0R0j6p6hhLeZWpbKRtmKEnfkFCKucM1k9oKNKflMGofMljtR6miTHdF8jyW/V5OsxAnIde2PTcfvfwoKj7WmQODccOZNJyXOPx1Xn5v45hFohxubo4yYPUGXXowM3bHTErfNKMa4M8UF8mntwG0CSX/PAOANYEVwmRa/19/VHiPHXChKsWZKmQjfAows+SeWFfxrvMhUl41bvqkKE4HcSacjpS54MZ7Gvnu0a2SO1zWIcHnI3Mz/P1PidIEm047UIapuO7j484tp5j51S0z+1JRqOc/Pj/78XvOwrSL6Dh7QgSa4JlpBXe2KJRQW8TpLnUvl84sU6C11VpjelGsoeb5Rw0y459JFGeQmmxoUwqZrIMRMmB8KoT5160jhUoBSNAbKQwNbvBDBROdFVr6bu/BqL+sIG+DjSXxUiYFEBnweU0+oMS7/I8arT7ZVOJPqjGXAEiRvCNdGhxlh6AQ/YrSzU3HKkBw//m2w6XkFPQ4md4SkH12q3SfI7pebr1m4l/og91i/EUqf5IPTDx/oqrJJ4uKzuP6pxfNprfJKBusoofJmqfsnusTWa1BMDVyo5tI48BEvZC1Iwk8M+bnQjIQ59F0ek/UWLqfm+gOhJLJAGZijn/Va6ePNE0UjyqOkHp32LFawzt/Tu/NxMU8xNpcVWOz/zRMD7Dl/1i7yO+451FMHt48s3d3/QYX6Cb4GGKUBi6fy9Tb6FoymaO8WfE6EIthvAYSJtXGBvkTDqXYpccXD9VO9Lu4SoxTgi9LsgDnMLEhklDigJF9yCopDGZN5gGWh3Mtkj50T/GOlEpmalEQcffxdHoBxqGePoPom1/HFTo98awwjlB3gIAWc/vajDKk44FbuMOeyzoDdmgsOVYz7fQ9Dnlx+LSHD3skmHPlzusueANQoZ8rZQG8+uxY2x6eYKW3N/IbZlbdpDSphSg+kqBRpcNOL/E5N4rE6CljoTaKb8hMeUEyFnoKNUA1rZbYEhfbICTOMAh/OrvdP83WEaXu73C2Q8/tx8gTjJvjxAMiETXA7iaeZG3WD1A/YbRYZ3JfeJ2Ybro7i0PAmXnAQy6SrGQ3pBNlfYSSP7TTNyYptFX4+uYkmM21gVsPvMZxFfnUHnrnl6CmTqhSpUA81coMKSR9qmd2lfMD2xKOYDjP6YsSe6pk8yOtoX2jJjguy0wiQ7W7oNQGa+5vFc6bMJ2otExd4t7Q+MakZOw7m4D1YHMLYgyG5QJ2i17eQYTyWSfmh4NSGLLQ4pkBGa7YuCrGnHX8ACFOGzYluwNMWD/Bffbr8ePiHnRHvBF319MhLxA9KIGzARToPk8rClGbHDcH/3f5JgfpU66FumosVzwaK3wasP9yUWR8wh0wK/64iRsn9UGryv9vg1x7XIBSnPOUtHorgcyWAZ8OgIx9Rb0RQU0HDOEiV7QWphlGeJjHmpswwE9PMmTuWITNSKSItvIx1gQt7UwbEglilHfGRXNUXTgUDeFeUBc8XhGu8MHzAp1RxtQbozN3+uRXx0OEQ0vX1UnamOxkUWcVprcWp3ARE4t54nJ9+59Xlz2Z7jK7ccKaVXeACGzhEBzwE7f8rYsYMcLz3cZxehh7/zOnlOEbAWlLQOcL0m61vnZ0d+FzGt8/MGeMaBYa8sK/asUEDIZQdLq1yxorZXV0C0oRipCqjKBcC25THdHSyYjvONHzQppJ16O3Plgfa/aOc66YgErY73JKReyynb8zaQBALukooVfuVxaDcTXY1HqbhS5usl+PMJRWbEvYt0aVVuCxplZDss0dRkptiP7TUXAB9yFkG0DmhsaPglwO3DfP8l0JkflNI0Qy0cA0pFRIGTTVovBCi/44d1cPFRwQDGceCScDpa+R+QhI3nZ0k+/9kGA9TRlemEiX54+cVVtAlZiGlQnqbC18b6CUbiR36yLoWN261uduv0Sjcxe+qscFnjVABsloswLvKDANHJDGwmpDrL1pLntPnluGwAahkXVqNXkIgUzyO7SmvjlnWiDQfxgXt7MYtRyKy7wp6Q8ZnKBwX1J3cvv5I1ft6J73a8XUhmKhPEap8zK+juxFJWN00qM6nJwgQG7AZ5vBU8jbaJHKw/iojI/p3XBH6vW+g+5oay9PNTJ3WfY2rrboVXlQl+6eabsW8O5m/WlROjJ1vSfTAhps1cpljz3LzlvJWUy0RCt6qaCoWmrh2Yu/S0NbX8XNZIeu9Stm80ySFKl8+fdDZdYZv43FXi/eCfwI7OAbn/puPKeC5JKRQXwR5nWzFPF+QWg+sWg62BiOxBkNp9SwVZwacAL++ng7DOp4EeZfHduRtczuI8KDGXZsrhGvgalwJCcv7385XRINCHPFEsH6NMrT8H6yeXW8bCUwXvEvZJDESCLKRkJfH5zjdqQVS/1ynh+oEe0xCVxQoscGV6YKunqXgBRDfyj1BchpD5VXs9O8FIQOwlMIUV+PoKTa5QG1PYL68Flv7UCnZbLLTu+Qxc0Xj4r9HpBMkj/9xpgISFfAHVCchLCBl6ko+7G64iwzc5vgjdLcYRiKc/aV4VMmzbTWx3CWWk3zqIeVYYIFUytfeLdtDZ1fa7sN/9au67Lx2beqeu/C8+lbd9nlprxedU65CTh9euUp7w5f4lejQm7g+NuQj3z6RMYDpOtSFFy9yaJgt20yephAA5VXoB1Ou4XK55EyfjeLtRE5fdJsTLG5+AU5PNmcyf0lM1VOSzq6tplfGTJZoASjDqvZx1KV+DCZXH9AZ/LspiD3bUo3/ORKRE2YViqHAVeCWgmVDOpFFdqWio7ZNPcw1RAUu5GP5g174gv9JVVU1ZVnCgIuF8fvzGax0qMajFgpBPFS9e3Xz8eNZVoGmP8UOfjO4zisbXC68PAuwFUEFKMkK0H2M2Ul8P80IzyVI1wzgwRq03v9e3kffk8914wCt073kB2B+uDLK5NmbwXM159ruNLvSuSa/UZIzUTuibVKda0kJqcAd8cQaV/qBWn2olEceNdj5zpRsCc6eD5EV4OSefrbgaDWeDVrXGZ3HO6E/IICd3TchxtTS45mlQUD5qcrAZCMaUHy6GpVaexqH7GI1HBueXEM4sIWDbyl4A0I4B3+ruqUEDoUkJ1xB3UAKd/MDfnurxEdhbiu4TZlNhIvZpbKg6OxWbKubIeKCHhXp/dWQQ/6thT4DlkQL5wWCIDuWcCDupCTI3RlTPOoejTQEFdhsBjZIqk3iSYlwscIhyArA98ZfvGiB7W/os+dWGXBqAI0M+mOkkFkLTUGU1ZXAedImUA64LrahIbDmttMGpnB7fGaJX3oIy9e+BPqNF0i1A2rtWVF/KMQT97TgJr2pWODDPBnLF7uYfpZlBqEXJQK4UNLMhk0YJ3r1tk3MqY1xQov9aVdG3zZooD5ecw6W5v+sQQmOLm8Xs0SU5kHLizyZrANn8Q8EmbDMrPcSR3xjFte0J9hri08glmDmb0TSQAiTZk/t3ws+aSjOrug9RZL9IXNFbwouvPLSKoYKHpWcY2Hbd3GpVtcs4GCnQa67pt7p8G9XX6cKlzgOpTRaa/4h9r7kbeIvvy6C5/C0ABLeREWcIjcP2lWrN0oU6PPuCC77jB7T0BsncCh7P3GBMsHSnX0Cc5EctQkC2EIXr/0FbdhQ/2eGOeROl3f236D0cXRfsC+15UX4FIzkuY1rM9kW6iYCYPwAZBaFWezkBtlvKUExZsJAOlbQ6YEj4vA2PU9129AGHxAkxPjWwsVk4MaHFm2EOo8MGNvOdyW/WnRSJIEiAzbMAbHADICC9a2JMpskL5hQCcMl4GANVMSaZrvXi/VFplz7PtsW7DsP3kTkHC0gaGXNLm0mMmVC9e4BTVu9OhwjbWnWuSAMsybwb1roXF9t5FjbsR8M0S2EtAmRsmKYvhk5MZ/t1jpC2pjMEnpX0jgiWVLfUStzP8ZJa9s89PG+Is8Bk0D8qtyhqkFozZ3ZmkX7t2T6CSodt+DntCdrxpUV7IOCLFYQpV8hTGVrtLRonI8vGD6KTNPNljTPQ4K/HxV/fKq+QW+vXXC8T9nsIcb7evsmFDLNm+n+RSx9jUmiAogIl+r2DT6Db906d4MYL5C03ZW5xUeT1nHWDbbYWL5UXdQkKyC6c2ok50gD0Np3O1KB9KhdPoYumtSXTMwOPXBFZHAzFoNtbErUw0RpS1aYue/qY7zFW52H8t/c/K60tAhuYTZQhbsgTD9jIqEK27pSEi3D921PG4nnOJdVtg+4JNojwr3dGa7929sYnxJ8yhZ7wQGNygazjrdbY7gDnAUg==
Variant 1
DifficultyLevel
640
Question
Benjamin is making a number of apple pies.
He has 12 kilograms of apples.
Benjamin uses 52 of a kilogram of apples for every apple pie.
What is the maximum number of apple pies Benjamin can make?
Worked Solution
|
|
Maximum apple pies |
= 12÷52 |
|
= 12×25 |
|
= 30 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Benjamin is making a number of apple pies.
He has 12 kilograms of apples.
Benjamin uses $\dfrac{2}{5}$ of a kilogram of apples for every apple pie.
What is the maximum number of apple pies Benjamin can make?
|
workedSolution |
| | |
| ---------------------: | ---------------------------------------|
| Maximum apple pies| = $12 \div \dfrac{2}{5}$ |
| | = $12 \times \dfrac{5}{2}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX19prU99dY8UAcDyQo77ibC0+2/plSG9KHofSU+cIGpPe60w/syN3DnrykOJiivTQp/F4LD2VwS6KBHFrxqpi+an9KpZTpXn5aFzbCBwtG+WWT6Uz91c8sYGSIlC74Ka6uok8uXpv9kKPVeA33OXdnc7F2wfX5Zno/PUscdrG9C0zDHP0tw3VH9ZmWn8yqHgGYKpj+rnYEf5P1613bOrHqgz52uLpeYU4Rk+fe9cf3MYoB0jD9P6TRfeiDC3Kaus9ZGYfQvm5WAQe58CJzHHgsDiZprWrPk2txGsl2MTbaUTvKfUKG/X9zj3/Mr5wMXtV/+GC/f515aePLa/M/iwopDw6ZYAPGoWlegfsY/nleogkMeU6Y3eIJuN43LyD0i+HBj5Ll05nQXDwCWozmefedRc+7iWp1p7r1Vkf4JoYuKK04sUurcKI5oBViOPi9pGij5OyWz568DnpExpL4Yy8uW6epB1DfnBFtYP0BzsZ+cvjPibFs055KfAoeODCemKT/Ky+U3bsQ7qZE/Fs5Ma6h2bqmyMwBtlOw7aw7Aysfhp/Ry8bIn3tmepPF9n0Qcl8Sr9OOaTWTpFyjzWbCNmItbSfru8a8GVTanjGOKoGRksbUadpodeSktx+khEAcRc8BUxr/V6klHEo6uh23uopV4457usQ7RfiqeWsYZMYARxxD9PRUcTIzJZ4zh8GErefjGG4G61caS3E8rXjihEt4LGdYW2d5mhguDvdaO6lMy/zf5FrFysFqjwPeS4KS569zcmeqPMi16E+YKMw135hTbffpNtoobkj0YKAh0X/LKpA4OwunBoTIXHiYyLwHZNl8sAIG7QyXIQg/y3ZQBPwceGT1J26IwpMAjseIzDtKIoILSwdmCghjV73bTnzByMQtwwOX9uWi9m+nyrNQ25sVP7PYyDtT/nAaoRHkasotlS7zPCteIHQKwPJQI+35mRRx1Z1yP0eQMK8NZWsoLjtZhJFfbmVbbjAc0Oaj9ic0HpRQqjoGDgc56p3ZeeRM7ozIzZW2lzhgh0ei7e5DVScaMaJ2+cajLSoGOngRgN0CyspEUqvRcDPLSjLe0TjX/2IthRIMveDebkfkiPhkp9F1YTYVF9XR/8STOLpU7eoTkZH8oPvQFywsGpbcoYb77+AKyh7CKHvLVmM4NH4tr3BmS8YI3FFwRiniRX8UF0F3EAhvRaTdsWAA6yK6eeXMDA0Q6Lm01KAgqHARFFv+NFuIkN3489j+RKtQelCUBBDBrHb4CkxAimBEBnW1BF4h9RayWj92NyJ9c1ckfO3unE24UqcHZhK8PVEZSuaSqWs3Hre9a24pxyphJsbqGN7e/FvPkDdk/JixGcI0p9UN1nqCQD5krUSUoTHaizWcE7Iv4gJI5UwB6NmrK85fUdRAWlkZKFLV5lkpWR8NoDhSFTrl4gs5UCnEJyG/TddIdY6CsjYR1pSosMGcQu2ZlnLQXPWLSm9aks0XiRehRjaDM6gkfRo3bk8pRM0d7EhKBMB3MmALfCkc9Aecy4gHVZ68iRZ7qkhCfmJ/jOekIWpVBFSI0s8JwuF6nRGurbGsVX+zMBbG+V5yNkkM2efXzP2F75GtBUemn6lwMMYY7UBAuUKvck0OLr1CoR1W4yeArcPVKumgYlX2P0oovXNatqovKudPCvholoDVEcrXHpufRZ1BCalt6wXDRToA7IqjvoV4P52LpYYBTfWAMiKYWfYZm8d3rXAMoAIYwz/qdRhsk/IZWclYTUmNtF613Hstk6sXof/ja3K7d7UegxTGd3yvyX56mp+UWqhY6r6a+L3NaG4hZZzdxw7poo3R0YY/FEUk3H47mBDnS41/UkCA48ptIhfYhXYu4aW5S3+ZfqvHES8k/30cPitD1w4/4q8UhWfku4F2hhZIUKw9f3KULGYx7yud3145LP6vWk1oc8W62YiavdVH13JGw8eW01V+TCdWBwF4mQc7Of/JnvYWdHwKM3sLAxYDsWmo9tT4PEf/gDKOyh8mUhT+dy62SdN0ifRsk72Z/dXuXlFWCh59YrxwYc0LeLOsRuEmmauOSV0mholp3F5H8tWHOmputdIZ4+MakYnSpbULAm06UzVQNpZNOmh7y8ufglhFeK/7kFbzppZuZljQNEnCTJ/foJ0nKI5fF8iz8hfnrNfS/gJfMJAqFwO1YLbyXVBweh/GCHB7V1gSMzKe2R67VtF7hV4Z0n4zf10b6BSQfxTfS3ZwDQYS/JFiec+ulkhh7YtbtUR6/8KnNRNoKyrNlqxNJxsKQ32W13sQrdmK7T4owz/7lNGN2Loqtd+kkAmdf6GGgwtB3QVyfG0gx6/juE3AlpA/Z8DfQCh3NVnNMQVFe6U2oeA94kwT8unZjf22nt3acf5GXPLfeEPQzPtg5ZyiDl6VMGm//ZyQuyUU8hO6Luna3bZctxDGdDSulxzO2E1oK/C9nstjxQD6dDsffx+ng/ssosQbHvqCYQm0e/1S+SbXcXEGvX1VAwshdJGR8cMDwvQNE7atcjQwQgJAJ/JEAZRftFhFM/rGLk7+ouFcEC9EU+PAKHzPLPGedlVpYcB3v4M+0j9T7EQkuBe6n1MD/vgLkzIOyFSPFPeWGgdM3ACUjvYxvb5NI6lEn60MgWdAWK5gzadTpiUXM75AEysS+7dFbweZgxvRZBvik8oLPj0ouMJEnDGK+73nRmBhyb3fDVdfYnjTfJKzkRnAwz2/7MMTyIgVMwlC3SwUdB5Yz268/BbzbhQl6JNRNI+K0f2bkd++XZQwQZE1pFd2Dsa9rPcAGtalExoMgccQIP2J4DN3pNNfNx5lGWfgSyCzq5+H2GapJMpZHYnzzvMNYoz2HcUYu1lm7/oA+foD8zFVJtiTVOAWfGxgJuTUBg4emRqqdkO5wfFDJMjJGJWf5GHL09DmVVqAf9JD+/e6kESKerGVOL6/TRIM+7l6pks6xHJvIXL+nMDZSdcFIXFBxJDnxpXaZpHAGxSvW0fGsB03DaZfvnVe0E4DWOZNetxAyUTS3USB+DyEhCbdQ0dfGs7Z1hrPWQljdPrn6VzVn2+cb7Wyb87EnTbA5UnBVHtUw39g8ZZ/zwLtGpAmO+XQ6Z1TMfgohaeqkAkFsYdH7THv7ElEDgHOQHjDcG14EfR8AYG46abQKaOy6KNi6OCB/acp2TMzkB4JuMY1Au+E8x57X45qLytrdVVrQT0F85A71FriIbd5laJDKycEhSSxpA2Gr3AbrS/fakizLeKmsJy5WUrnIR2lviaYUuKk/k8iDv3xMjQTC5WyGoRGzmUKJ7/xrLTeFSB/DTDf7/WDrAc6tovRTH0+C5NoJaBBXzrthffXA+0Uz7Lwg91NzjeydU1q0NF1KYkIta/5PmszB9P779eKQcSO9XE9BS53Q7PfEXtW5JkHlBiA7hHljGpsN1LLN1pDWluxB84VaoJp9DbayfjCERN+CVbZcwjH5ptri9Fd3sMTpt47lQ8oVjXMws4plCQtlUUqKd8DHDDhljX+sRbnidjAw9HBYl7sVLd9iTCCEinOABAs7OpwD9KhDzPF4KQm716TvufqyROwAEeRtup7tDR5dB5OgUZrf4cyTYH8l0sf5jIeQlJZ4GEkjOcuhRtBLStVUIrJsO9v0bUTPUkacV1HkmARxBWkCdtKcJrIITN+aMBbATRamFk9mo6ECvfrlw0L97ZKl4ckjv4w9TyiEqSeIKMm0wlRd7Xmu0BHS0D0qwyXiX4a8MtHwRvmzNlxisottApV65JLrJElS0pEW16FlKabegyw3upyWrX3IsSIr6klhDgav/Kj5Hb3EPV6/sBo69tJACu1ZlusI1dnGKscadg7AxZmgD7sqsUx7tNK6Tz3inxNq2pVMjh0wiYZayIeEXvLF+uhs7gkncJ2JUCEG0ASnoy1vn+mi0afUxM6gS14Fk1+cJ8zs8oUI0Xd8alL3KtwbHzeD6ZbbhHLP1d5cX5m25xaY+mf0IKIrcN+zUoaPMd/zBskADEWI5RJxSWTE5WX33uZsIqIQ/oyTtxVH1T/7PncjnUJhafB0Np+ITZzYXWbYUjciIf9yYlzDpj5IFR2M3Oyi+9DpOqEWkVC2KkLhfYyrF3/wWF6e9qBKARKwmkx0CLjvzGYXnZmUPJOql23kxfkLp9k23VCr6qrHCeEBF4DXgeHmNHv8qvktBeuVOLKhWhCOMdODGX0LbBheu5TwBGmKRSpuvMg2tqSAIbBL0QexiMJzWdNPjY0s42F5O7IQ8yXNq+8UNELS+mR+hvIX8ikMbwnMYe0Mb8Y6UqIH9nQ9NAnVcAgtfzF8rIReLbyasRAyMxuAO4xTopWjAF0/K/a/ffRW1ha+XmVyDS3qx/S3+kuBt/pHrWaesyihTbTnBiW63moLHFHYfK4DFFR5jFOQBLNrZCk4xIDdeL9ejXnCilVG69V82bL6xYKNn09KdfUvwtC1yLKFyZi5zdbfbXu81F+OHHqWb3bk348Enoi3zAgwIW04NPJXCoWPqv3pawOZeN99U+xAdJqv8HZINKFF0KlrCKIMXsZMGDqdv2iELvfL/BLftUMb+BBoNZiCNGdy9J8r2BkaSyiZGRJdwJE0RmRjjd05X27fkaydoyHaxhlHV2j/NGgZsA9iL05yudpG5PAmzbvdJguXpIEBkRhi5NRcNweXR47Ng3hnzd346Ec7+avSCZGV4xHAhAIxTfU8GyUlgYQOu7OvnokqU1SbStrF1cCXPUAbSVoSQqe6siub+/GNi8vISugQYI//+/692hy3GGpzW0hVuPNJKwZnjmHFLGBOLbcL9/l/GxR3qGoYp6qn4gde/ByJYWoDFfjGMpj824v0YdfGDGUJf/ZclW2DNczOekEKSHwcoum/zem+kVYbEL9RXHj3Br1otVaHLz1M06zCyRcv51Rp6X7udVk1TvzAuu2s3kqUcYsnYuqTRFstwQv05eZUWD7M8I/oFIZyPdev5vJtYbMF9cu4SXIi5c7MQ1ELCNW4SVsed4BDvT1IFuhVB7WF6yP7yH76Xbq9xgulWVs6lv/8MyPXAEAwTVmsvClUK492bSvluFYkNJvjcwct3wimTYVWGqPLSYPOzHyvwamU0P6aZe0CW8EyVoB+4CNu3z++8EcFw2AJ/j9QvP6n2OKxXoNDViZYyaSqTvfqJXBimKuhyQ+F/AyxkH67SgIr8uic44gbzzsT0lv0dwH76hk+NiC2LFP53leO0hp7SMHr7TKAiCsdIOPQkMm1Kn2aqDGoMq+doQtuT+wljUTP04P/pPGktnwRN7XbgtB41WeYCy50VTig6ZiT9LVjGye8Gb1vR2R1i08eP096Us3VbKgXia9thQz4Kb0Iuqa0VqYSD7cW6nCqM/qg/spe/4RvaszscvwT4I2kgcJgjIWwq9CvGLNYnYYD6Ir9IWt8+c3qodyUTr4+j0TCmfRIQ4B5MGgVxS8xI4lpSsG7g5drvouifBQ0bZjk1mCVJZ7B0uizQmGYn7CQc46GBfcBKeVAgfcPTiwjSmA9umQ9N4UwJFQzYxIJGHumpSR2Mh49ixgJ6rjOMdZoNIRfsLJpdaVeyIujRB2gTqDOAy45QKX0RolYn6vWfRdkAVtvnMshHOWOT87S+jRqsidpd8uPVnwXYTSlNnR6WVG9SYJ8fMioMfobxYeDr4dCO/olyt925i3KTOM0j80erVKY4edp9gFoalqPkuhAO+Dnk6WeCf2opu1Q8LNW8cNH5X55cArA0DHWVhblQLp+6xQQ0EekrumHn4fdMDCHIkSEunKfmMeb/UibpvqvzYhJWn6J+r1SUvChXjA2t4LFKLx5X50X5NY9RPQGteSyjDGMwwZqT7mlCH91QrKYWGaN9cStwH8v4c62ERMwIYgcJlY4ErhxKpj3wnT62qX2wHv3JrpLian+ObBx80EGe0ZVYA5irDi3MyTgaGn8q6K7pf6ODi0w/BXM0+iH76DeJZOXyayNoa5XDpQPBRG3Mdyiyc9WR+t4EYsyoXF8etIO/mUGJ26S1DC7eR6pzteCkxDWEHO/EFwjuKhUaLsA/BUv43bisiEL2eIMdBU8KuGtFp4Qfnnjo6W4j2dqSziaoGQm10UNQzqfU4gM6S0DLf581tzfR84GPm+7GqpyUKrCsKMqd4tdpFniImsPu6xsUWGzBp8DAjqn+sfN9EbSU7ze3oYviQb55ChvNgthdiR/htwMzHPaKwvUfdyLYrmYfYuY5czSvtp70ZbTRROhMhQmMY37TKel2vhVqba2XZUWVqtcUQbv74uZNhIWR4bO9aYunukF0lioa8mw+pJB/6EO6AvBHmCL230cW4/IyUJZL9saxYb0Yc0Qf+j94EYZBcnsO6NhwO/Zi//3Tm/wHfqn3jAAwh4lqg3yDjdwCUg+stdRJ1jXLMzjnjdEIu8e67gtX6odbxRBa63+nMnqebmLrPExH86JfKjj8widoXGV8BYox6wgS6D3mUEslecX0auyfA1JQ2gHrcwdFQFtZsHZbeSx232aXc7JlX55mgE8kI0thwqFLa2LBitvTSff+yKbwJsDJyq2DwjF7XzSj9VUdMJs6ixwo87kGsgo7KDf8+qoHIJ5+rAaI0MN7Sz3pzhhVR4Np5lT67g9auNt1kbxlB9GTxU4uhFo2TRjnno19LTAQ26DRGIpc30guNdbvT4DdWbpdCXR4CKkJvXn5AQrSmQkusi9lESVRSZvol71wdJwBqqBx/YPplY4WqcS0fmtkv9VTg6g3Gc4rsHXO4FbBJSZnLWG1wX/Kla4gZBdJEgeq+7s/smWAgvV3z5+sths7xdCiVTsuKS3Q7vZtiAbOpBafEu/hBR7aU2seYPj/faPlghxcYEDi7CgIyS5uHql5jay3kQyTaV6sHbhcxu/8PACv+fm3hraCPkp4ovL/qRrs2ETAqUSt8Up2sKrtVOer1OfSoYeNH0J86l+ESBc1LzH/EiV9CT5Q7tdt3CIh5St7IzwTtmalVH8z6vGiooAOWj9ddYncCiXaLjP9kcQvQe6fYQMQ9bZO14jWmSuQonbrHBs0SKk+BcMDqMJibCExNk6MhgdgKHDfk86G+iashJAYH+tJGSY6rdiCMW9W3CPvOhnJ2Vksl9DprK94yTWQXR05tnuELABkLEEwnLhwnBNTe5DNPnqaZfyVSaNWlwcM+oN7gGXQ3XcikBuquPucm1nwgLTGfFXj7wkG4w8FTWXIMzpc+2aqemz/zCqNPJmzF4WP0AQnhFDoJkl5rpqNyru+wG3ynaYQBaQOYyuKD+4bMFz/Prt/NWuQ14wGOZ17kjkbKwaD46qc36nVOW3Qfp+AvqVwe1q5Eutsv4sskvrczRPUIvs6xM5Ew6NGM9pJUE6w8TZHpYKLO+rt+V5B+FX4frP9iMfMk4PxWeLaDZuWpXhhnu5OwhUQ/u4bb5gHBSZKtFdLnhi2/2yM8qtYO4DhhrrZqZxbr1AfoWHlsqJbD/fh9IvTREOyRDMfJUT6vbI7QTjesy7l4hiB6AtCSFeYj4RYpXQo9kZCo67GHUAzkbp0d1OU/l5Ng/S8zQZsKgR8ZuygYPjbFNuUKeV8m6jm/LkTyBXE0yDJSlwC+0Y+Y/Ud3IqxEH388Yl1va/M+DMdZe2J7KreI1vjsP14HSS7AhrDUoRRt3a1ybgeb1ZA+P5ixyW4Y4E8zvn7cNdDcHA0qDEPwksILvj3ZnATcqhekUSc6S1GG9Pf0JjQYBKkQjUdoypd50eD58hKAsTWFkOTvKnAbMrcjJ+e6Oi2cjD0vyPiu8K83hh0ArWlb22ERSb/Vi+EqkGc+1FWF5E6BNio4DYBsXoz0CZmRM75OSw+81oGByfySgWlwUCeo3+0Dwjxzc1jMghWzVaBh0jQBs5BWpimkPhrb8FjiXf7/Pt523ak55HCOYrC7xHo4lkPAlfsDjPJQQSfDp3FQGQvncjZ67l4qJpAf6AW1z2pise2otDLP0Ep5ghwatRhR1FH1hKNMFWCI863bofrFFh1ofXWzyBUkWTbIhq9KL+skEhQF4x5l2uO+GSb/oY5epFbxXWKc1Q8jnFOGxDO/rexNI4cbhC4mS3EkoGAdCIRF86UouqZetNwh8yCHbegxGCZt4XVTwtU/y4IocciZ7LUAkOL1e6gLFO/UC0X1/0+W2omNOgDjWb9w+mQPiPaI0VLRuS0Mkv6qNfds4Er8D4nMjST2bIjR4OpW9CJSb8vskfC2ja6YyxVBBUpOJgvFaDaH8JPAvwmw2STYsErO8BAr/VMkls96HeLgh14K7xhTWSaLJ6Mq6aCFH6AXMaMdx5NpGEu51ttZ+uqkAv4IjmQmHVprEZ8pZInIEY8cHhV6Z/mbZ8lzDmhWzIGvSpkPJwcB75yhCbKxIM+lk+mBXq7UKUz8UXuiphqgB9KpStw8gHE3IFJelqjWc0JmAlqSJc857Z8CkZd4dqMQgnw4LfPLYxDuFPSc0L0/E8VLvei8a4vsnehpGlsTnX/rpJmrDbdP1muysWKZ8IuVB+e2NPjMIZWb18tdFucAow9RZ5DFNoXKE4wMS18PXh1SSLHXXYsgeXOfOmBv2aZyq+vUnZvB/qOML4vLtisSG3aWrGhbScRN/NyJFahZzGUe1c4bJh/kHdd8BVx3S3JuZBBJjwlp0GklTU+X9xRhL0U8cG2nLBKv9u0Fid04n1be6vErgZFD2Gtcn9AgZkup2633IS6uuJLDsLht86MmAOsRl1NDssis/soTKA06r1jJCXsxzyzIP2sm1ITrPFJy+P11ENCqYiV5qqaQ6Rwf6nY6Kf6eQodLGOiIp4KibqkWuUvvZS6r3U3TVY3ADuiaV54t8U0dJLuVO/ISjLfPN8UhRiPl0uMTDmGSLqHSTx1U7DCvHGc1bKaVubUZZgv9waB9bEdO0Gq5XKdU6PJArdAG9qHPOGRaO8m9pg+pZft47938dZtefSR1s4KCJEcJluztqqLDW0dIH3sGqojrzp5bHyN7TkClVDNN3ZlpZcqoQSPeEeaJCaRmwLRaCe/jAosdUwkB8auAo49VGpzuYJYclyZ6Mqc98baK0q/aKrLSmsTWOJX/lPPsNwLUv1418x3/Eag7VnKRJ5N3MTfYFtUJSKJgzYSvNWYZipZjqCNWRB39koXvP0KPTxiHzLaVqbzJ1smuM+CYhEom5ysXIgikTo9TNeZOV2JgNCK4dZdv1KWEFtqt1+ToUIuM4hi7X5pjRFnfWGtWE1FsOdQs9lc+cjQlnzxHlrQWOB5wyBf2IZf0GfAiZ+PMLtQVeX7/qunvHT4CIZcjxifSXHOitc5aMXdCpnNM0rIkgCNyz02p9ETsXXw6Qe4lugrWAPv74ZoQkMyE9D0NgrFyrLdJhO4bkH/TZ9giVJ/ylj7z5xffDeHC7wDMh/Rs+Ti69rcIF+sjq0EcwWaitPmqk2CbnFTxBI79803pKj1yiZfmqvKGz0cpyiU6InMa/7mILu9O0Ax6QKRlepF9/KcUHoK5hVc7dmI88bkDBBDQBhUg05m/Twof3phNAwyae7YxVRWLe7dGN2d9BaHg5p5r130vDGOOUkTsol1XrGUIcW2Zkl/m2204PX5ttlLX/JMUVQDtvu0siCTW4br0O1j4AgnM81Vtsi2mR744t6DnRtV6YYcNoHPTv6h86SuZQsRc+h13d8ds6lLFx8kMC7iHQx83O3j8ByKk3mnJL+e5uJUg3Ba4+99bpepH72le8ZUcICrMWo8GHZe7qYlOvsmPH0bI0/uejssV/FXHsuSl5Ja1deg92HOsZQRh0UOtAAjXURRyFS4SUyKd3NJwRoNqWVmTSGKUwvbflr/4durY/fxkS2hSNbP8qeQbtS5RpnokZxhp1w7Czm3y8Hh0yHbcky08uJkgHXjdS8RW2C99NUIlUfnuBMpcpoJ70Os3okv4bG12sfLbGjegrRsLP0RCiILtoIIKtnaurDM+qOW8Dp2jq0EQ2WdxD4PEdOL9r7e0aqjLeo8hGIgT0ADxDyygmT/44mmDCSchoup75LN3EWAjKz2ox2iSUjwWdjTPNoVrrGX2Pgsi61bDuPOCUg09vLnHgQzPtwm+PsWDPbEUFBGCbrko7V476UaHD1myqkNoitsD8RPqZyTt4dBbDoweZMwPPJwok/r+/o9AyRvFoVFZJJ2f7UGSYXO3uqhwywaqDHUO8M3XHVxpHDKEGDCQ81mnljawUrBuIq7bXw2o6NNf/BUsqGkX3a0wta95/QyrrrWpcG15xv8JFJ77C9PoDEDPBMOHn38/xFr1KIg7ItYHlvrqLEyAf/Bb5r9u3rnDk9UXtyaBLLt9wu2qeeVfiOYAuJxKysuaPwiSyuwG8/8NiwPGT99FHTBPJNujdxD0YBR8jplLDmSPIAne1KcXbvlC+zzTBf5UFal4eqJo6B6Ok3PbqdTWgqQ0GBLuhPelmFUVm5l5Nc3jGKoN8Q7ix5XMfiRXHhL4H5AZBkcp8E97E8fjays0RcA6Gs1XA6b+KWNCKyLP4VAGQzCh3HAdGop9UpManGs3eexqXuyGjyLxWwZ8CB07/DNeLMkTtVsQGbhlth4MJOrQFDSpIfV5geM7r7AtgHdc0IkmSf9YQQmXLWsYy0ICTrD27f+LjZ16EXCttLjsu6b591ux8KY0sxMaYBGBakisoViEgR3m//k+/V7q0xJX286gcFHlRKFkXP/AZpEfjtOiz35xcSdGM8kT3RenqZEZEWjp5JyAZk7kZTQC7V4I4AQT5y/FUhy2mklkkCwfvz7HcLKPGafNJuhz5P1gLz4tjz2CGr0nUfWb9LeRy16y3KaVG2CZadDPU48ixmxV0+qvdeDIdlax7KZtmpTScKE/PikVopkGDO3ZfTcHEdDqqqKPDCVxFlQ9YOZXCs6Pc72RzII9QTqJBDSVUhnQXHWRq8NwWIn0hyV/9fXWchoMRIDTAm+D+TpD0pTIvNBoqcNCiC1Z8tiobMjOPeN0srSeBwXOjZ4cYiWDZmTBEj/uYAX7dYPDYHhhDynnfP2vcH77vDF0cPawu3m11+gnLv0h1PZ6DQOcqDs2rD0XZ7bfp53bheQMWJ/OFW2A63FbKZS+TDjySznOk3L4CLZu5OstN9EnrmZBjzuOo/4EmopmDJ7hus99MOq5M/M7BQE7qA6s/9xCrWUJ39QPwIItHlLVZjdxusIUTBswlwNAgj1qLozlu8UWwvrJ8e9oXy3YbJP/dEvl6ZaFIiQyM2vKOyiXWiqflL5Oh1rKuDcyBjjLKYCGJIKESMufzCT4zV9sFkmpz48msbdGMWowYWx7Y1/LFT7SVS/d3pCVynP1+oHhfKmRC8DSyhxA88JdASym5Tf5Fh2wxIWPFPBtVOwbR/5g+cuYyQBy1JSi4vklr/kJsIbDmKqdmUIT0N+FrBtJeOjjPqieGZbQQXAR1doMPafeVnhwJjQ/SgyvEnG495S/zabBGnanL9MDwuQ5MsN1AZDv/v5w3rCE4qKgBWjrqUerFPeFLLpPDRue8LyuFjOrOowsShPhFXlKD+y9j8R4vfvn6ssOllbTgF+/5S18QoGNd0TANPzg2stI7F9aqrk/jfip+OslI1AiMqX9gT5K2UMhPE/pFXN0I2aREaY8p4I6yxEZUQ6/P/pdgJ5ksYZliuMVBSmdOmSbu13clmzYB7KuzERECauicY+5UePT+yvXOaoulJkocUhq6gvDLEi1LKvGYkaOBCjXz2HxIdPNslhoBgxzVk0tuQB3/cYuiXNS/vyMxDTu4cGB9chKDI/VqgrRgJuyAJYtAhYUg08MLQsdrrieuqW5IKQYF56ri02zqY/pjZk5wY313kacwbCiIiYhld/QxdN/+zrr6+tyl6u/FhmUt/xVyroI4JLcdwLHBVh9I9Sf+ljgdZWUS8/F00qdQT6X1y3EjgPRfO7euMQjuNn486zftOv10phfbuZKwCG9Mxm8Np1uwSWhVLlfNPloGl9QUj25D6OLtGQswwFTx4tSPFSLpKZmgYJDtxfeu0bm6FdsEtF2ARpAwDcJj3PnBGz96lh3KfphgZpchWiwVWrvDirBw7YGz8TPXzBuA8vNl0hQrBnNdR7jbf9Yyao245SNX2dzDxarISpyVESsW3+Ii2O66LdlcWoCLi7f1GXaX6nZxiE8wB5M9P5OTAlqMGMb55clzTwxOMqRKi1Jj4NbsFUZfF1To4qlbvMaQ3/SQeHCXYJ/mJud/YTZm3ktHfcuXcmQo8+aTVq0/HJB/n9/vZDZZmLx8RCOH6tou/qXCbhz1iPqIoLIFap5THPrtkmlmrUuLVFI7uNn+Dgha3QAjQojv5DdtIntE7/ycve6ipM23DdiZmD58xyzGpVsB7FWjuaDGOq6XmY+YbfwyUKg/2rltqJ6qzvX156D7PHqzeWbIgBoM8PVkqa82tdvv64vS3956EQO8kdkU5qjmjNn9PwkfjAwaA4npnUSmudTwNavpH72KxNiTh8U626WWtEK8dybR+JTRQI8QvHpAUStXVwzAs0BlekraTy+3BG4KQBfrbNXDCkca2VPDqhVckDhG2O98WG+ImyU6HyumAklXUeQ1p/l5A2tKDtMALPDkH3cxz6Geb7wH+NnfdrA1U6UftHJekXhNRfMMyR/ak9cNhGw10xR7TArzr9cNXSoFF84a86HIrt/ll9+Xx32nd/47iGUNAvlT4p/M5iFayPuqhH6TL3ct0IZQums7Zg5vGU7SgunvaESfogsLP6BrNvSyFbfI8ym9Foy0rU9gq0ztuaBH0anSRaMX00MExnWmwvvPshvUMvJz9qz5+V74PV2DivA6O9JqcohWrzrNHJrYD0dakJs+TdcHYYYtiWSkenzfi4KUbq+ML1A6X0NUtnArIw/R1VYsVPPbC3Xr7Ybx6DUhVoPP8DTkbk3uPr+QKcXNvchPYB0pOPg6NisaqeP3GTkKxf4sDFexg/TjOgKSV1zJYoRFG2dscvmjfL4FaPtxC1OwMz+PqLB0WsFN5x/+6wn5gs+puujfsv6a7+scUucNE7GslvSCXWydczAsZNgdYfD1ayFM/iI3Os4/ES3tlYpGVi3+s4xZ3tV6dXuOjfdU3uPp7UfxMJFNbEadr9tHjSVK34J5tT4dzNjbwrx5A+tRkZeTf/NYSdLug/DPLSLCh7pTZaCRrlO/2lDa1mxpCIzYAFklhx1Jc/AK2EvODWeQMyyfU8RZfCpPlEU3jFZ0h3FVTYm2VQxA/trI7SnQSQcaBYNpgeeaGf0MGACWQGoQpzSXe6UL7Nl9iuMWBqqGVHLLLqfSj2tBwMHb2nw9506gh7RUhmLZ1hQXIkpTxmTiwGuYCsXXLuwI0mPgyr+t3h+nSbhixdOMal/PnTFR4MQ0Psf98lcF3A1l9zRSq6OmvX8NihysTKaAM+6bnLcGvbkF8kK7iWLNB/W5CfVsS0sX6lEeMXijVC3L6msdqsYoWn+kVjR6lEVi5UIQcV7Aez6HxGomSEU/3sfz5JYNV+utsi+XyIX14Nqqn4ACuexNR+HAXTD/F5Ue8c/H8Be42x+WBlkIYChuweavglL8PHTepUdi3poDcr+ub88u7xcrhxzt6TynX2hK9LwGQ130NJGStkmFkdKTl/lZwHfFp+OU0jL01Dg3JErnqasABLMS0PWR7jtamwNjSAL+pjUHw+iRSTGsO1BBAifPH+PtiiNRPVvD8/ZHMy4Tdv90/D0m40uJINbpr33usRUtCQ3epX0Ty+Tvohg17PQaqWb1r13RtUrnZ6xaazp1yerZtrUGYJ7ng5zxBS87etB/bm0kUv2EDVmmhoGAXpdvkmLA8/1eAoaobW/VxJuqk/D94acdpGcgLRw9T7cjcFH3WYJeFNKUJHx5C3B4LLKUVTxBbAPhVgEPparexiuzkBFrfxlaxbbj+fpqIJRjeIjrYpD7coO7G2EdcWcGbui0aUWPqFtkxszIDMxLpr/ITfZmcLthFgJpStJ6VV+qNIviLbTDMDyWDSvW6mOhFbUp2nrD49qs9yca2GOIkPh0z+d0Da7+rZCL8B6d76Q0p5K6XbX1FxNMnu2lCHXefEKcYe3W+vIafZ+dJ2VKx1Kwph8s1bEfeep5jhfxCxXXOkK35BUn6cAl3Gf8Y0VMllerk+OHyawAkGVCNAwCpFIaXZsfp2q4UPBw4o6gip+0aZHBxkYYsNwIBqwI8pPizMiqa8APLvk9MC96N66WOVmvKx+3lUhxWoIMpsygwB
Variant 2
DifficultyLevel
642
Question
Bailey is making a number of bread boards.
He has 15 metres of timber.
Bailey uses 73 of a metre of timber for every bread board.
What is the maximum number of bread boards Bailey can make?
Worked Solution
|
|
Maximum bread boards |
= 15÷73 |
|
= 15×37 |
|
= 35 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bailey is making a number of bread boards.
He has 15 metres of timber.
Bailey uses $\dfrac{3}{7}$ of a metre of timber for every bread board.
What is the maximum number of bread boards Bailey can make? |
workedSolution |
| | |
| --------------------- | ---------------------------------------|
| Maximum bread boards| = $15 \div \dfrac{3}{7}$ |
| | = $15 \times \dfrac{7}{3}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX18HngqCWXTlF+MsyKkUlnLpDAKI0e8rrdLwGQI7YVqdob5BkiFRZXmNI9mRuFgb8Y/3Ph089ORrHyNnn95PqyoWnGyjw0YxmX0v9d00turDm12r9/3jqYd9Dq+YlxGdLNYu7Q5fS6ov3K3D3fGTj8Lu1FhgWO5xoGdbyhtUD1qaCJ5ayoRKRDiyy46v3ywAHb+tbHmzko4dOXmxW0TdRuPQpLN01vG1BCnUBKD7NzixuqU/vtEMMWwNhy4eVI1rwG8NzW5Yd2XWxxXu9aaa4GKgWF9rreOkMSWz5jhC0xnbqV7rkCjZa6I46ASG/a2oY/gZVZKLO6zmv9ZJRB6I7UNlT66aRSqH28SuQb4L8jDoGZ9An17GgQ4OTYJQH23CtFL1Q1Zy6/wFW9jMFXotmKLU8elmu1wWbd9Piohlyot3FerAGfelhJ8wgT7xpAghbfbN2bu9fac6fsBhyH6JAvSUd3u4xqItS+lpzx2Hy7d++RjgXkpnNeMn4OY+2xQp1byrEey2IJ8QDUDZftiLxRk+heMu0sRFMQxyxv/zCCYJgU1bgu0Id+xqc5z+7JQ6AYEJAhsgvATIdnW5WtiE2tdYXJjrbfK6Dg7A3nopbi9g46Kvqn2HoD6fAJY6crkszYwGeft1xPb3fwWX5U9+itj19IMubXfdIrHmqqfd+nDmJ/Sc9aWYK+T0c2bD0i9sp8aZFCMmSVT/BjB54pSiT2QMOdfG5Ba9mFch58/1ZrTz2cu7cB/pEaD8CHYl24b+KsVUnWoLfr/LIGmv02SpcjvoqO9wt7+QDVpQbKfRJxB1c9wg8nm6kh9SNzELCNbfd51/8e8TPAVA/WfNs2olmd56JsX91RFjv0lMaqnJzLS3yTMOE2TGieLBYeDOJ1OuKi+xiO4GA80URNmRgAS63OKK9qAGPlpvka7+ts7El8uDaKteyERwYAS4HiMbMhJi1i3KrHV1BGvT7v4BybasPMF0FfKsmiAnrhc+T/brw+5RvKYoxQOrLgw/r0U0LEqmbLYQOzvGNDld7C+Tq09zAxnfVYFT5SH6xnh3ON8VDlfv/aut2ZDtLGHcunghf67LbaVJPx4KSF86XeN60TbguY6n5GdsUaYHWc+aUhJa8BlRIsmmMU/HO0IbOYVdX+///8zCrwcZnTShm4wWUold4jYn14JtH3GdN4E23lvLkexXaH5QT9OyUfrzYCObcdvpUqKG09Srp8DgsWY+SrMgLiQ7aQKRUzJ4F0uTF3C/bu6A8/+kS8S/01ASp3AWYG52m4swf7+JYd+9FoHoBd2BslIAH/yw2zzMZJdGmE7OLr3aQW7FM98jdkRsW+uPYhEX1G+p45QOQVLkB6RubEviju0M0Z15bCthJdWeq1rGLTDD3hGPteH6aqze7z/0se9G+j3jI5XTCkS8LGKY/WYaUHQ1Gf2qlY7L6+uA4bras5F86NUFu/jtQZEOzUOjG9tjXLFFcbgBrZwLWadwBgV1OB/g8Q4emLq7iyfx4ArJ7cBmt+0r8l/AGIEuJ2Glf7PCJQRzFkfshnpex5aZmHIgCdSj+pWGEaUhAMLApi0kailKmT4xK4jHeqKZHG4tibOUjzAUKIPGB2GcgtGtGNAud6ORY8j82N5lVUvFwmQHbO0qas8N1gGxaiUJ+uHGC0kyeNE+ugY9Se3R7EmkNeNxEgLQpg68ANP8tio8Ygccu60rA977y0ZW9WxBDB/qcAdQowg9PKCXADmYDNhmxQTB9ykBd6UkQ+hx5/1dRN1lFHYnaYi26nRfBl7gniluo8bMlEz8xWZNyz0/FVGbITHqf2Xg6CeqUVVyxTkEWgN6MixSHHmgL3RIWESCju3ni4st8j+NbfUkVsvEQ+KBmfi2FCsjKCY5gTZ89D7U0E9ezXgxC2CiaQsGvQXVrojONN3f0okAUFziT7+Pcpa3cIyGzIfc+fOFxugKV6EynnAVRNPtlnMyYj0KbesK8IuQh3cCR4bbN3houOUlSppWCLFIPvjzDdJp6eaW5MujicLWbJHR6duM7n9IHiXU9AF9lEwyCyIubBYf6qshkDgu38rzcpt4sQhTdZlkHcOPTFe7vsQlGphjuHDX++FKY8e8xegEQRevjnpk7gD3Hjay0IpvlxUyzkCbLIMep62XhcJxsyzFhNk+/lFOY+mvPGosKNjowOdqQRWMYIZkzniGGQcSfgF0Wzzl6aNBSFDG35rgybwd/Sbtfu2IPosVBQB0rneVnLFuxrYv6KJTkxjZ5cG9tEe1vigCr1hvk8DMmBhTJlius5Tc5UpzQD2+iqTVmLIJs7x3ILhXA64HvJVja3byfYCL9MEjaDKrfmFv38grvWvSyGl/CVI9wFccENIA2XG+B0UjaEBiArKhCTwmaPovEosxIgjWyplp1h5xtUipEh8j6Wu536xZUa36FuCpiYBO1k3nBNjQRujea95L35vOnks5n719OW9xNCOnVKBOSoE18hugajTPfgK69VUPuwuaO7JLacRXeSUzkpQtNJOY9dcKY/yiFx4BBfzeVTqYprjAs7QC4D429RZU1epFcsddzzDDwidiJz4rmeO4Lhm5xk/DhrBwFBZ9eHAA9lzAZGiX4/PM8+sfPDcpvxi9BNLeBdmB3LC7YLC0Uqh3fobqBJjJ0vEGnhy1KKfcaXnwBaqVQqFRbL/mr5VrNt+bqtDvLXPkEbqI/qCOzkcfi3fEHLZtg6DPxn7TBnaDHy3JExHlBLFgN+pyTIGk1rdVpYVt5MyrHLICLoRqPSGQCOE3GiP87Vw9R50PmvEUOU7nSab+iektKeczXy5Sc5s9kDLjjCmsT5A9PgYWsbg09BrJtneJ8XTGM0JbaVqk5oj/JLJDHM1PZF6lcaRXow/1eeYaZpbHaFmMxnrKwUHLHQ0cwx8XqO55GDEySdVkhgt+eda0nF+hKdG1qFFZdyr7ReJfm3afYXd0yEjWRQYVqCc8123lAaxGGitF6j+ahB1ui+moBrLa0MPOC3xFN9+hSIJPBvAx5vg4+Xk2pl1TGOHygrumm3pZHwOoSxriT0XQDp5Kb2UnGok7H7IPKhI7z6/0qb7fwQzeqzs9pIhKoEnIimQEo2zPTzw8xlK04iAclpUeZGyQxU0Dp6lCtf+PbJiBCwYf+nCFR2KkdwEyXSa0YzGh/g9q1//2EuOsNVBdhhyZixmRMpjJudrwsuBtzo/StWz4aVb7P3I92gLXxp94u1zfE6OcZegQWkPbmvoUeOxVerK+WzfUBLM4LT2+DKlgqwW7EVdnEGVHFdDOZXkXBesO/zWEzyLgi2zG4+Cy4rYrDUficj0ae8Sq4ySVRxK8ljQvSnQR4Nj6LNBk4pFXZ5t2KsexD7zaPOqr/yClmqA4IDYzoWaCMZl7Y/cQGx0fgNml70/230oAskN1AFoovq8kE1rJdfO1smxdJaJd9aQIdal4urfrya6mCgfaUOq9ZlmIsCU9Qr+H3kui4Q5qWpDTsPprN6VSSCf4FpFSJll9jZahdErXfOY4Lq7T++PDldgPladDxJsyFvte/Xxn4cZTD6rD9V9QkGQcvKjWQWujLW97T3yXmKqngigo+jyPwT6Y2GmFTlvDzJCkfnenF7p9d5oZ4zQdClARtqKiDe+SLFG/q7/AAJNmP4vUdIpSnkkOhQDCBhwbglVg2+1fp4iMIHsKXiPUBMAXCzMRNd1HifEGaM+f/bAd4riKdxQJeIMYiD/KGOAdYOtganqsVT2izFEM2/96q9AoUMCWdy9E597sHNSMb4SuXTXUiXKCPgdjDc5Vg49Smn40whvRofkHVT+QD4t/IxofKimMtexNIlCKrnCMm2iDB+jRSXkxiGSSYz30fYqL7woweMCkD8X4oRYWQUR+yAc1EbalzltMW5auxi92AYiioAm8WsCZowSG26E6dkenT0QLKGSZoGFKvp5DfRhnBOvzQ/tz8PIUjYgQd90E7RqUTAdA+iYBVpcoJrPtUbldnP7Ggi6I0dSBe9bnAxq5soI2SIfNvqCAQ6X8MijqbFTyIHul0PJVPxEhG7Uf5HqDW89RqaCMgB+hMJqkP2UsCsIcZwCQA0jqJzVcD4OesC/ER8E1sr3GtrZEZvc8DGvcer/zNCn/jxvgUSitdn4dCMYejGXLKD2cAogzWLAy/tI4NvPC8r/Boj7NOGSLxmaoFqI2hnm1D1XIzJ7yj1/UVYboQE/jA93lupQ9kJt33npNSCzl1uOfH7Z7q87BhkdzawurOiWA8cuY6X0CsaDvRTmrUtmF7Bz73CE6FW2CiEtwS2r0cppHo/Dur96HwsCCldIVT+26DSvw830i1EdDBY8pcSh/HiI01au+qQ4YZwYilIFvI+0nho9zdBz8U2WOyswTu7ixKRYEFkVAyO5hOtba4+0+u38CraYMlrvVDH1ULntP/cMWGlhdGc4ocb0k6C4MXhRQ350McjVldEbYpPp7IIYoEJr/MAJdwaFdJsVqOnk8V4uSSx9dN1LaovJwqa++7pAVj1c0qnUzz4/jg1AJFyebBWuSx7PlFDIqxodH4AzabhDmUl08qfPSpGkc+g59D/y0Nz54GXKhxEDnsO0fIMbKvnBgPK+dgQgm5BDNax5EsNys5/ySKjU4KS/nJpmPJ/A9tNF/DFXXtti7lTmDMRSJGCK/Cu0q5pjCepyt+rG78VQUkq/b5vBG9+ehIiwAaCsBUnZ0o6FbR297ApzVLw2HNT9Fsp8Ls8h28jRelzIVGaIYJC9wIGXOG5rE4PgrjgVBaUCjnKdzHtrPKR8gzp5vM6MmcwNJNBRP2TeMBA6G5wlbX1+fISkBepY8JThHynIkpzrnkBakDIZCJu2aO/P8Tp1NDvvRJNFZiTvNR2D6NeVDVWhHmxCsbK5lzTUWAcKM88FCeSBvmcFDpwKzkReJnUM4KRaLlxuDKc18+1kVlgrNHqx7MjTnEtC2D0F+VsyMFsoltBxHb7xI0OOaMciXSE24L4YRggLXsSwYkCd9irMdYImoF7WreXQjUTOOvtc0xoTt626+KhTxPF6HvRoI4CYk50jQNME7H8jViQcrnTT4qp1AXUXHYNTEl96Df7AIaTSpN60FfwUlCgsFXmsIRu/NHregqfoQY/cQg8gDMLCOqyO1AuMAoEdi1AdodDXByjeg2kjZlTFGiw+bM59qzKyk1+W5H80o4lVZznTYrswCP0no4NKX4+f/lYqmTJb8oqmDIoaiDAWv9svdAl1SRyuK38jEEWATDcgjnnxgBK6bLP9tpvdtGghBpxtfJf7o328A2G77T3r9gCss5GkQ73AT+1J8pyxn1sOemlQv7XydZJOSM4GYgFvJu5nB+qJANwnD326FckR/HK5jb197Ppd7uaBQKnuOvKKURuexUKdv3xQ/1d80QVByZlqknBBWcB4GZU/zF/oFrcuuLijTrU2/UskC0WZblia0wJ4/4zJPPx2fiQyg/c+//72UlthTPx2vHqVyMNE+FNPf8D2owKVWBnHm4n5n4MB0nkzT6ssuXvl2X+CRbGzceC7F2LcaVSlXwPgPe6j/aAC1xkZ7bAuAwV6r0URmP23UxLwKnksYMqn9RKof/wMYipheBSQ4/Iv6l+qOcMmU77mYLhPny2gsTiHT770GCATmPFJNhvn+ZYQnQ2gqwc4iLAalfxhyEJ1ttTWKqz8daPgXEhL49oh0AKqAJuUwVq1ZAXdANhglbyOwFxeYsT1jT5YTbP/R10Nv0rIbaKVdXEu0Gcyw/9mq1BTwInKmcB94Y1vtwnRQr5Zt457jHSx2HUrQfBqSOfa0gIucJ82aGXqDvXkj6FcqMlNoz/xSa6DuNKw+29qnLwETe4kgIV41lwWiK+GYGQUHYWEoQIyGHVvqL7OJaDUnywBNNj/NFplDR8bXNQaiHfFNz/2xaPVsks9N8RsH3NzHZVvqcO1r5ZakDla3iePcHcvXXDL01UzwU2TvYjkHn23rJli8e3h9AEXbzYqJVPwMGT6+fB4AgBS8SFB+OLAXl2llNSzoNt+AIU+St/jdT6XYwxvra8rz0cwSb1LH6iHzLKY3BBOPwe55QYuWajoqnkWzzd947HdJeHi1eBnMUul1hxjZdbjpC68JMoxCPm89PA18Prh04soJqFcPdyqIQ3mdr+6t737CWMMmmq8HU4cD7qq+8zJ5FygplVvQyRFm8IOsKSA2p4P/qjB5T4H3s3plW+Zd0/zmcM4Iyj51powhAnlwYia8v7npFj09eTGAWZ8IAllbZOoxxeXroBB/fhestKhcmeYvrAZpQhMeHqcN+tcWb4mKjsb3zmGMHLxMiUBeASL6mubFF/98Sw80488+TPI4w90FQ2KAEc/p16+40qmgvWHfZAeGyG1wzG66bEN5QgUSH/wGxbEIynzWH328aOCr9G7kSlGTW3Z+GugCMDJndKcOupb88LVSceMGCmGWJh1ZPalCfteJfarLfVOhowHXS+1A6pUtdrJ/cJOo8+qVHE+mNhWQE3WL3j7t5G2yAZumXgguuKEXlv3cO6MpZ3DKCr98rXzBMaP6IkdyRgQxgbStyHv3KA2+8Y5cH35DkEeWFxK+U2kNHTxOCYlBxoI3ZITuPvT8N6ADojhRyr8e64XrVXPJr/3TPQoGyj6ZXPWvV8lhjKEh+Hu4L0z9qruswQPhVDCDcGK+1wvpL6aaCaz65YQ2rsjwANqOLh3MPUP7hmofqINVGvrahpcixeMdCGmQ14wmuTtJOxHRcDLdJnjE3PZ958f5G5+ZRoRCzp7t1zZ2/53JUOBe5B5cTJBdizDY952idKSEvuEB6r2QBYbARDfXE3x5oWIwyn4NEr6Nd+2trvvIFV5dfYFvdiRt+Y699kAEVSulA6L9CqczJwGVIVBe0v5cIafNogfNujRRS3lJvoNyhkcMd+0pNucCPcCJ+TFd1YKhnBpQ+INl9h/xovSbZECPxiBAAW95n1KCurBxZTzUbHLztghAB92lCVL6FYAQdTFBU9c5EXatp0ywlQVGhU7pFGJ6TQOagvfhzbykpWZ70+xo6xPH7DS9wTR6oNk/GbjiirMuR5bjDVnraHLVA6rArgcLGw+ivBHy02RjC8EWLqNPain514YY51rmxlLKYJJdXKG6ua7ac+Juj4qSWSslNSxW/Zky5iWkeph/k6YTcaHBCJPHYjE5yZJPNAFjBocupMoekQahpvW6OjcVp6X+RPLULbGBZn4ROYQqsvb+5x+sgifW/F9mSxm90VyiyFQKOoh7hmTY+4JmuS0RGtQavArLIA5Nl0JE3vV9OW2pMmVxGCe8VOp1DqpJDcXZbkw0KnrZB7WfVnFqhhZzsx0vMhVjOlFNeyQGzqpUFek9L8EGft3KMlwOLQda57BzL4xCtjMaL4QI5gnlXNJMp/glbyGLifJHfyKGvJhXN7E0KmGZL3jCqYwx3Ri0RMbXduJ9VroDWze0C84xE4MNHuJfzhzFI3eGtu4W1QqgGine1bSFXXLlMZDaOivSXxgKeL1PtNFWtsZNiWaMtQ6Jex8mHvwsqM0hTQc8t896gnVTFgf10tnJsVs+IFR212bobHi94/xoubv8qnQhdaARjV3nnqkPoVxeUqU2NsJgDDII8Rn4Q8hEKI8FnzcSLRDJdSl7V3E9DdQZtXJkjbt2PJdUHW6AwYtxzoRDSrkMfeOA1dMQRz77IKlJslvFHOP/jsAAYb+k9Agqs82Nos9x0a8StY0FyWtqlI/FB41ETAfT0RMFApJssC5xgHadJejmal+Ip603x55LyC7jEY7zSasDRt6OE0BGtkvtLDnsjnFIgkOT2XNnu/X5tWi2/x1K3vHFvOeGmPvfa6r8GdS5mR0oLuZdrLRuacaFEAaKuhJ6zYMOJBgjv0RnkYLINPwVE6K1FB3lV35oydZSv37T2NVjEuyGfNm9nOKB4+3/iOxLkBqmwOc2//fGT4bA5OaQtSEyvWE8jyyG97giWVsOFqzFpqownBwKEcy+EPnk4xosD66E/HJ1CmvRRaDmHbAR+w+3FWcU6kAoTwy7dyKOFH14qsfMVsGCmgt8XbL/GTu2hglnTQxF0icYOmgTT9xXQdHWII14YfkvlmWmGV3uRNNNr/y4QB/WmxYsaJ8qXk+wB+PCoOPezDCRcYoXsykixdxbaMmqSLNiiDH0vB5/jLKnnk5d4C+OLbeHmi/QMMfy+1YUe6PiCC2cd9o51/b7I0eYZb+FJ6CuFJoJCf5GrtlfIz+QTNG3+IjB+VG9qnyOWPgrUaEs9EYjHQJp8fVVPsdI0jF0DXPtJzPyBB1foicGqu4vgEbFOJWFkLi6VUZUxrLAVZYBLyuPpvV6rm4QwOy7TBDBha+JJU/3StO1gBclH3roIQh0Vhgew12RMi1YbEc7bShr9KTGW70zUpbJRviXm2OPnEL7MhCPEi97kkAUf72nxf3W/raJudMO90sS9nv0WjifQmvgCJ1ak0Sxzmu+etjL5IXxirhWdnR6oosS3NW025d6NF3pI4Tzy9JG6F04x2+BQI7+CGUZmmyFOq2bPYhoiysB0KJbtldvb6AIeqzGIr86J4f+/FkF5qQU+7g0Fnc6zUxqAgZbRSFUs+hXV/mQbHDbIz2yeUhUyhZqxuSVv6LQH9ZfS7FBFablxUKk8ERRUTFFwIWCF0UsLUtxFMYZKDwnEll2pNgl/NK7cgbx4H1rfhCVbuco0pGA7b79yADuam0EUIUEA375YO4fKX7moVbVCl3R1hjO+e2CeIJbCqB/XRHg1zRzqhvgQeo0r6bN701h8dE/5T8E5FFH0CFfRueMXxtb29hIDaDp/IiDP3IgOVFCISjdei2O2tfBN8d/LK2MI8UTv+v7B9hmmL92ZtZKkREw5Wsu6tChFxdytkqMnW+yhoKZtyWyTgJ/wND14pHQVXX4eaen9rt9n5vGZ4hfR1qvKH0F7A8HGGnDyZx6ylakXnGHnESuRc0vKIpi3eOv+IUNAXBYljii3Yxnjm9oARl2WY6Vjrm+/NOl8S/nwueN+H18b76BiRA7LPVwdnlwxUSnHjscTgcLr+eVNGhKaipkwopeWPdcoaWEa8vuQhqylxnChtllC+oHdYe95SgHhqv2rd7fxK/1khVQqvbZmvjbhAdp4GQmcxMlFuWJCIIM7dODfSqoZovrExj0sIvE0mew6LAY+1M9LPH81uuYdoT8fxrse9KbQsy6SEmwmssm0mkveW5F6KV0uSbplspj1/JZT8hJrY3eGhuOlTtW8Udnn6cQQKRUlQtwmorQuZcm6YcClZvoa4YFsBG1oaOsn3J/4y+vLiGFOdSWWkdYnQhXKVMpqY3BSJIks8cFA2AsDxKgk45UJmstQ/5qv7xfup6UmstWdZZB6VrTZeTfyWfIVpBw0jyage7enCb7TXIazhVrhrkJM/62QR6ittQx5pDI0thho3G9FmuvYpiUgjJn9GedBPVWHlyN2MMUYV8/jtfcoYeugQx3zlQZo0UD24n/hqImBXD1gN26/hS5aPCSl2H/HJludpVSf2TWMNnJSJOFVhtf5EsQohflr3vb6iIJueAmP1DK2iKzhdSFufqPLPQ2Ek0/o2nsyH1K4LKz1zHnK+5Cch0kEzGYrbwpDzMduUQF5ArweV53WPVlrsmPow0q64eMZsU8lfMxYCMzkXi4FchF9o8kM3KKe2VEcPBcCNyeFRAanDBEZj7KteuI6jNEyDgv+CHja+kPzff6TKTZQ3EHH4y/3SRV5pFridwj4TRgL4K5ADcmMe4AiQbn/udizYYPnkENOFvcBx7/uRjAPgYTkKyHOpgsLj2eytkFkfxzNB/CO8UV3KcOcxcvX4XIImdGt6F1GQ1nTdSbtEt20AlnfsyasSVt7llysJmcgPOWH4LuPx548jmOpTfFZKNyD0wxzuvFkuB0pZua5Xz3e5GOgDpT2Ti0veIozunxcp2DG2PVACqUGleQvnwtzC0V5mdcdd+oo4QIkolQZs6r2QJpYTKo0uGlnhZb38Z+qsVssHUOYLFoVOPuKVJ+pRu6n3GjxGg/wC7RU5zF0i8=
Variant 3
DifficultyLevel
678
Question
Sandra has 2 kilograms of flour to make cupcakes.
Sandra uses 52 of a kilogram of flour for every batch of 24 cupcakes she makes.
What is the maximum number of cupcakes Sandra can make?
Worked Solution
|
|
Maximum batches of cupcakes |
= 2÷52 |
|
= 2×25 |
|
= 5 batches |
|
|
|
|
Maximum cupcakes |
= 24×5 |
|
= 120 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sandra has 2 kilograms of flour to make cupcakes.
Sandra uses $\dfrac{2}{5}$ of a kilogram of flour for every batch of 24 cupcakes she makes.
What is the maximum number of cupcakes Sandra can make? |
workedSolution |
| | |
| --------------------- | ---------------------------------------|
| Maximum batches of cupcakes| = $2 \div \dfrac{2}{5}$ |
| | = $2 \times \dfrac{5}{2}$ |
| | = 5 batches |
| | |
| | |
| --------------------- | ---------------------------------------|
| Maximum cupcakes| = $24 \times 5$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX18y5B6uzGnVDX7yvuXcb54iN+e86eh4S55Y9krtsAQT8od15hZS2NXsLY36+oaMbbZ5NO0zesI/kOIKFVPvKRe0sS7rSM57q4fSBty99MYVa32bYeVTRjGDeUT6MgIxEmkqGwL/rG+OreqNH3BGJ19VkfYTRjQ6OHOGTCmkaJHU6B7YdPXkEKwC4mtNesTiF8c9s3VPXKz89vFB8tBOcMvnwqMJF961In+OkzTrty87sKBdDVTq4mbp5khyyyeh+h+2a4ZGrBQAteXiZVroKFb8nAzrq5zBNF36ULKkJ4uLprUV0xWpdmeNi/nx6qx7L08NdIZaRvj1+GF2Eh1XXAMFoBWqj4TuDKWT+cqWjZk3mdOe7rLyJ4/tMrgX6ZHZ9+2ya6Zjl97HDfoNZ7lHQPN3leB1rFUeHlaRO9UrQn39Y1+jV9DxrSwyinluCbxYDpZ0meJAR6oiEtt+xIu9tYreAPlsu3HOAp7X6YEnWqnpfIugi4xTD3o5m9/Q/ba/i2l7xSkPwVrpJlPkajveF7axDepZVTsSIcc9Ab6Le5VvsVGkqs3Wd63BHog+ZA3IjGvpPe4/bZx7rLnmPcnDUOEkP1JuxVIQVC0RX7UXdWJIONQuIdU6E9lQqFoWwj6q+2JbM5rdK3HVoHfvMByFHSaZhqRnxv7OIV16pmziT2KGkJUWrmD4jBOrIutgivj2FWhUXR918he5ejfPC+H2OuFRQ1+4qH758J8fzmX27+MzEktqNRXb1ShRp9uRw85gkR3CcF8q8XkclmKwt+RgttnPbJfYAJbgXx6p5KX63pZ3zkiFPGQlP/A5hgkqYWQDO3A0lGn4mjZHBXU6WtnKY62R0IR3GjAjuGXFGAxn7A9LYrdg5Ovjbvik+YSw0qzrpZXBqKf5JVnNttaLX54cadd0JJlx00VsFAGfM//gCWvU46zDaQ+g43D14NgNfRVnH908zmnhI62l7VgszAKROVSeKH8oxoLWTLZuICBmF3yH8RyAmRucnCIaVguy7g7koaBNwkVFSHL8+DLYtNO0ghJjbpyM9BnaWblkz9VOhihcspMgMEw2RQGX9uqzOdznx5J/qlG86RWy8drMcnlTDCzz4pZUsWHVL2+KLErh2go8vNc3vQJMnklgCdLBviH7LmqsvMtVJHoS44Fv7xAxiaeW8EGMha7apmhx4bpliCuzyizbgP5vZpVVswit4UFLqmBEX5JjvNYwcCPWcKvUD1NJJOtJM2XSdLm9C9Wnm9OhQi7b1yT90pqxdDHJI17wbfuVUX7lpna/lAjLDjcLR5ujysVMm/r9NaDyw8GVW0//2TMWMXUioYVumt80N8iS/KrkLwFWaPEjySb4mH8uIrdO3To6+cVyCOU6OckBZ5y9yVMjHlCYwJ/GXEGfqnp5mastM8ajNrKCdQMTRE66Y2BScH/ZhX/cJKIGjeAXOB8CkrWITGZkQlxQ6Di7XN/OQhnDDennrWTRh6+/3RasvQk7/U+gR0hq515Zp6N48JvSy2r5jSDX8i/FzGLEkqgnf/jgtwkZNaKtiyiOBFwXJRTlc5B+SkUZXJZRq5/8LXazfOmXPl1JtV+ngRBLztoAOHXNa7nOfP58Jqs7yBVfEdZT8rRjlhfdkl2FXfq063CIXGobtnC+qhkGCL8tVRomkEA3OZvNtZ8ByPbL0lXYo7SoaaOYe0iE1K8nO20ypI8nFPjrwMTm6Rnyo83fxbdn92C3JrcL7EpGcxq9MHm3FQ8wOKmT4z8QfTUcZL1FHoOuXe0yj0ZLR/ZhvXFb5yDOZVxhCgGIIf+CMWwbkCd+PskfZDZ3zFHGPdIuPdcj1yijkh1i/OfIR6OP2bP/A2crBFkOVdAEpbaUAZLK3n/rAnHSuHyAaXZz0e06jMs7VMGWUWrFopjuU6olXBSodn4axp5TS/jAn4Pj2rAizPY/ZJDqt8LNI+EZcPwzafvZ6kLI9D5db7Gd/xgxAC0Bm7XTash4PfZYTN5lQ79bD3RsLkr7JprwNvd9idE8VUo/TuYIerIf6hv/72MMkAR6jZs5etbP80fzFeCIgu3qcBSuXP4ctcX89nvaxEeQ/ePEEQALhr9uirmPtK27LvtVRIOGPjeX9xvVRiUAd8CLIylHeZyaLw3Wey+fVI2i06EW5CQ5o0as/fSD8+BCbpzvW0iAeKWS9i2IY9OgEGrDz/Jxq/iNKAjzlQZraQ/kJPKs6qlYOp7ukqAHX3e45yw0aUsIwJUqXVVX7YZ5bakFVT+HzJ7ydpWyiDHec1FmKW242TKyPCx+sddB0MEFwkUClYxBoAbxnymYQ5scgBNFMVHvx/5xNMUK61iH5wuwQLcfq0JVzbevFOFrK2YRpssvdL1Diz6phzHLLFSHu2lKeQHOt+PViiu4lZQpsshCLsnFFcaOX4w9Pk0dgR3r4URJBEbuC8Bw+JvMDakzHSx0oOKBKUMEkpZ79Pl9XevuC69dWkeh8C3W4NWyQmOLnxmlsvlpnOMERGMLAr9hgSEq84XTVPC7AKnLx5BZEmtb4QwFNwneASND0FhUhJFmdaTHwRl4Brsj1UxAkx3yHvTSZpwyGyenSA6Dxw7jGL9Y86Cict/con6TJerA4XsWfloN3y3i0plg1SoZaxoqLZNWTgHKiosyjpL622nT+5Rz5VzoiHGyHgaNzBpsWqUpDGdzpmbUsRGLQc/eV/B5E1wjpdFiH7Ufy3eaAvshFESLT/aRwncfbhGEMFQqRy/Sk1y+rISyMvPJV0+DrklGVZYqvaEiq+zy5kOLGCh+wtkjlsc2CzFMMT9kPHq76rD7JhPE/7UHRJmAKZuTiqwOdLPpL/AxpDB+V1UppWUpSMmIkJso2mBF3veamaGqjCppUTMG6lbJFrFT/frJ6Bq/lW1CMvWtCHleJrIwtw6ou0DLOTpGVJCyoFUpQuvO1vYRn5iVQb4COZueSUT42za7RCpmGVfJTyWNjtIH9tqVnZwdtR7j+iB6U3sYxZq0qx1GX0q4UXgOdKgpnLwddsNCdaP2v/yFXsourfdH9lox2HdlPONl05KlVuUCf3Y//uUZlrbKpf3z/j2en3AA2gBzbG8kVUNIDWh4FD2S128rGp8JJVIASN/vYNk9MocOZnvul3o1MJDD4Ww++KWBFyMfxmJCpEr5zo3w46rmlVLR5kbZlRs8XXLJK3GAE1VL9BHBVFvBfPNvr4jFHNsEAhqTOg6MBoRN99HHeEJbTb8o8ZLzkziwIdATrgrE2qppEcC1N9XGexFsVQUED9TLAhYfU0bd3yr6rNYU8VNjfNgWq3TeSVuEVZndAxQzocJYnKbqykdF8nxOevgDFFfBiyxDNyhZ4rO3JON024vZxDzLcBVgAWvZ7XqLHzEkEzRhquol6+ztlr3B8XKzREv+dUiPxLddhvnAE39Yl2u0rXQiEfTRjlTBLeFYyQbUWnY25IYlkNwRuCRqwXnM448yfzbcOQOPW2Ukbb6z9c7DkafbpaNVwZodTw1xfIO2VXfgdmbKFnOMLsPz99D0KoilfO1Bw25uiyvtW1nVphH112luW4lkBXQxjzYcPg/UQBKlYgQ38a/2up4xKLeFpFaOmnd8Q1VeE0ER0KKTBGiK41tSLk2NEDSxcSXJhnxfVjogH2ko0EFQO4/++xr2DbfBhy5dnU/tnRd7LJZgAeps0li/l9fsj/8fWs43i4NSDWdDf0N4EEMiAhdNTOVdkLec90EEi3BUFeCzKs+QEG8MKMNR2k1O/YEVX+/If4a+/ReKUC/HSs7O1KOI1rhbOXtz4U8LJuCHJoF3Ny2u/03358xbrBDgq/AYdubJw8jBhyzBr+mD3Wtp3zW4DZzrueoXWWdnmJv47LcmSSTWyLvsNrtfkDbpJsWJ4qAZV7xXDkTivwH8Tq18SbhSlogp/th41iR/2o475DJ4Ju2MXxb78ltyU6fp5zQc2YUV7YuTL25Qz6HTj5R/gRB2W/vYtcnpR0Ujezv7NeMM6X+mBrc6Iuho4PnKoOaThMSNPoDA4YxVBdUQM3mE4GTXoCql9lIPCZ+/bENq1FayBkyKGF2npD82/auNYLC2VRbnQ+WodITerCgcoSp39tiYWaeEwP57damPtGHApusKhyZmHuXaCd0bXGEtE/Az0i63Mo3xbEz2ZUJjC16K4ynCtBUX7/C2YVgHE0UGLG/sEjgG+xBdQIeBY1oHzcgDERIjgbkUEYwJJmDbzn7yKLoa/T5WOEFka3P7CyF+udgLUFMgkHJNleprZRBCRwgZwBwrXXQBccsk5dc0Kv/ttFnXlMqzyPErq3WKuP/nV3OP3sH+rwnNp+UaKoAXJlKfWOuSm6SXkg5tekW8G4oAkfLfGgHRVPlDpiKRw8vdu0WAUOaDRBaqf2nH5rlyWFtHCgT/LYZt5EYmOkWnJnAJws8qxoW46GAQyiMBqj8r04IMY2H/xLY7A9pMDnPt1fpUdVLv3jjdjoudIyrd3BzYp07+FH/KVSJ98a6whdRaMkJ9J6p+wj0F0ef1geymM+pJvgd+r7jgOkUn766ZDRuo26t/Jalo5sdSS/RtEJgT7IOLwnxbZsoj+sRXQA6tV5GWN9ne5iKAKi1mTamlv/4YRKf3e82YZKgRpCyvw2g5T0Xi9S4bJYA/XJXJCW9yEsPkrgHop593E7heyLnbCiFQ9PSIcXfZvdr5t3K7pZf3vwhKOZUmja5r+M6NQ6HWxWpDB6bl7kzbx2zNJmLglAN2uqD/gyrHT4IoP9gN0LQmN3Zh0EjggG/T5pnVDd3RG2s0YBp8JqeWAyQnketRSoEMuf4WwpIxiwueCuHlrFUhSPz4eKEdAbbi0RvG8UJ1H1AKQmZO0oocL8x7P3P3rCHGHXg6fOk7RR7Klzq4/PlSb4q0xN4qmaJUN8LohFcTSk4hKAhSJZgwXM4pG6PlH5YuaiD6Mal4Avfudsc9TUD9pPhhtDJAx6Osm0qP6ji/Q/aD8Lire54cmrM99T5u9HwwfyBqT8brX797R+fi5ifaJkQzkYIkWSIE8RbWYW+TzQaip6WrOV6VUzSHtc1e6K9xoqxLPU4/wxr0dPGPuIxSRLk+VjNUZKM47n2jsROlmRiRh3SDOVQIB616x8hJ+S9o7aZCyLW48ba4bUq0jKD6viwzT6WYo8Rjm4HRbkvRbQyzBO/yrTjFaaV15IQGS/rpL3+TllQZC4RezLE2OkfZOmnhgBTfAWJVNNTjXTYaf0I/xrCoHJC6sfZDhhAKiIrk48kDVvKqQZzzhmcD0eNFsCgm3hOKH9CZmg4iST7NvjYlyOY/cLQ1YMIsNsanbGUxLtS+oclFRoeLZW/xG8k567BjDGOgM/ZtAeeEW81zehagH8PL4aYujwzmS/Z1kgIJQaAqBCssuGIok8+e20qVYg0tXz/o2shdhwwopaZyTsoPIkzVxkbnojBpKz75JLPUE8cpaHgdMgHh/BZ0bw2ygkHBosuP503FiEuENV92F/PXJbBCsPsHI0YICPf7WPaEMY/lruwJeiLwkVbKY4nR1H8GnCNmnTyddVnduUg1USWimwTjY2nMcjqhCR1/0BWpH8+vL45DMej+GbPrfiDVnrVjjlP8set9NHEdhtQmhPsmxtTorD3QR9hPzOQjCzQSo7APqWLTPCY75vrQrW4jYbSxPC0/3tkdl1SBxVnbhThtmbMp8tmQrfOkZ/vqffn8QdaoSWAqhDyhnkoSLOJ/0G6DzUu8PLV2Q3NEppypFqs/pLN0hhBYpJtIJg+WpHP0X/3aOd2hY42sn4u+G9cwEF5quhJV9NruqiZGfLB1kcvGDCR+YFVOKlQL0IY6isqbEgqXXMd+JQC98SRRHkooJJZMZGH9KpzHltmSlT1D1P0tzg5+bA5TmlCEL/dYamUwasMkWFbj4s3ENvJB02ha9B4WAkjBhLXtembK1v8JZW1c8A9IuhMrAt0Ntil1IY2CtFjwZlL0upfDinEcXs9cm3MMqyBeUBN3S1a7ROSHSZvoplOWxoSvRaLxdPCMclCYX3BUbddKBvuqZtTRy0NzVeZaxWpoPeZdkDJqSHhhFegSddIaSzfYFlYTMcMxopydBMpJ4IbO7ddZTO/IQeNe01QgC7XaufbfVfrrpnxGH1clALHIroKXjNjPoXCuBdsdlD6ELlKjyGAxzk0QOMLl/7JXOFX2Mb7/WpcFVoBEJsKBTH+M6okHnAp4hWfWCyvnpLX4IBIANp1k3wteWyVuLGmXUQVwkzEAn/Kw1H9l7kOupIwN4+UZ6hNxVtO0eEyefH8dmDl23vzWlMShYpT8oUFx/nahv/oLrVIkG9CMuKoSBnRyb3+MitgVgKFgtdL4Os89X2Prgxu5jzWitGxdYxroddId/kVRv0pquHXKBpux3/RgO4FP0rxaCCfA5cdIoA8g73BbxLMCIl8YNlHK7uwX8HALtPz9cY9EmN8TJqfEswnw2kp4Hkhk1lGuYhXmhpAMFoAWNIUIiAI1wrrxnUPa7NDAotjGKMl1x9gfMJ1tkFqiJGCN6ZWy2MpHlNVjRkKBa3HaZ1izE6jjy/LZq+G6vZwipv45M9wyLkW5M01UphfpefVwRBlCAM36Ycnb+l+qYLXJWDmOu+hfOBlKkOm3jQHXlWyi3Dmi77gGCxyX8+Xe+GUq7F0EhYPJyW7NgW+97td0d0CSAImGIJAkYjzhkquGrumPIr+5m9mRqUl0gFsFwdNsiDsOiY1CajNWWTtOqK9RU0Dz+AYO6RGjVjJ2ji82h/uRjBEsT+VCCRJnaUMy+zQdJhg8ZLoHW2oKMVVfgh/Cl4XKXkycpQiTVpFy9KOavRLYxIyi8kXi6yCnD5ZKSK1YJVmAYEDlzHw7Cx+sAom63Ggskkgr6aRPhqV67Y27fQH9y6XhbsLgZpvFNpCoFIugvQXAsEQNX3giAeWp7MXLNqB7ELRkA4fUm6o0+aE2caVHrvNJB9vHfLao/RiYFeLp0y77opTHrxwdliC0x0yDmok0tlFpcTjscYe6zKmU/B9Mt5zHBYxEaAE2V/BWcC4qV+9/3+Y0CFgm6DUmyYv4chK/TfphotMFpL+NbY02J2TvNWr9zx/kQ+TTRuPnUPdKBfHz+EVnM+qfzsaeesdwAYxzwBtQ+vhGa839o+2gW/gFSF8a5lwof12zuMnF0FRjRjGak3P5xNC6kBdS/BGCZaMqvwr7q5oPCrWHAFcm6qiC3u6iZQ4/i7wUuOBftNy1/Jdm1Hog8TIX6QOLEv7e1FJry4Utuxr8eoEE1z+wO1mQkJ+Oup8yCyw657GWobaoQdpPv4E1F6wbSuIVD3euqCVTFdsOo9w2SxWZklkamyF1IyoDEmQH1GGUzgBBBwiQkPQOcDNBsgyXmjdUSQxlldFl4XygHkYj2SZQBR7xjD4iPGmh+SWGuzdc4NCcvGXukMrMILjRDnsPumWAHg8Oev3gCmoF5gDrCv15u3imXb++ri3FbK2BTwAUfA/XGvpkLpTWJqzXhUFRhwQ9ig9W6wFqIs9FxE5vA8Hsih1f/4fHiCSMRsYK8V1ILMEuAWHQSV3CXxO3lFJa9uxf93qiypcYeeFB62+f7yMFZoLy3i8j0UBq+c6+FG9iOE0o6fAJGnJSejZ983nSMxoEt5ErKGV+3wPh61LghhCKnvYHtGXFipmnUwMt8UWfPtgVDlBcYbb2gwGbSGoBRHFRhHH4Nb4+o3kFtKQIgHLnNEIxLTxc9XgLxNqdQh1RPFeZ5vz/8bD36bOQVjzDjSkTKFpvlUkWFokZDMd/xpj0Xx60nDKeojfCZS22S2TBa62Yj1b83Lsup9LYf0mEx7TdBrDPvu3GJAVYSNS9EDPDoVxo/30qn+8h/LXHj2sBO26ifqMyZVBKASeZGuUv5/Au6TKgKOLK6D7jXxe5PqzcOKV84LNYtb6xtZY4PkkZzvx59QNoqasf4o5jnR+vnQzMypwxDSpWkDXachDejfhNEx3aHKwMniu8xvAEibDXuB4lmtO2gjwEJOoSsLHZKiTaDlE200xLhtgOjmrIKPFSHpTzaLR6F9JnguaJMw40L3OCuFRvvYYnADEY7ZEQVlOzaIDp0bDpThfBRYkILHDiKYGnc7lBMVBlp42YKsPAtj6JG89+ZHRVGfQ6UcY6DMRlnGtJdQP1thGB8+2GkkChRPe+xS1NL/QUbQJF99tD8q+hotkiN5jOGsZ8QEpeA0ATCLwnPNjfx0A51kib2jIDtqxUg+Fu5rrNUAoGLzJMfpBZSFXBfEXEM7YLegRIcERxkPi5P0zAdm9amvJzhsyeGJZmYOgUWqDdkPoMVuwW2WrDEbZ1lNTV0KKc95444Y8p5IfVhdd6664/bgA1tTLkVmKTl60SNby/iOKZSO09iJTICDGhxDACfYqZuJPISnx6OQHIrEezroSMoziUXCC/WN33QUwGblxzCX0zB3RT+uu42MkSk+LMy6oO/jTJ5OfAWbCxuAnzGH6G0bbFLG3escD8Id3wqFqfpBUJiE6uuJSe4RrIZEr0aajDNnZpgQoKy/QYXcDaOMrY+wbFST3/Xa0mk8M6hXSReuRamgpetVBnK/mWWEH7LBNKVsYzsZMZEsdcOPgFf9y0OQ8tRS5IpQMttBYGBjTuDUmRAdInnn5JXpulpgnF3BzihsVIR0+dRR3Z4L5cc+ZXqgQ8OPLOMEhpk0NHN92XbE5kh+g8q9CnUuBJ86BmnlHxsOydORDGncm5Ihw7XdYSAeuTq4r6BK8yNKU/pqe2f9J1J7ZhBC4iYAQIZnpVWEuXYUCCDVNnzP5cAb7hxPIGkZY+5nDMZOM6jpYJPYhzZS0n6F2h3h9G8yyNzp4FCSnVQInUJgirAlS7R4os/GoujaKvAhrL7mxOr06w2d8pCHRA6rvLaWNl3hEbfyouHwbJV79d2kp5l5NTlup3ElTs2qihrWVbNkoT1Yh+bYdjw/z1/NxHMTbNxu5jl/ZW5dBN4w9+Jz3cK8m0NGv620ATuYCFYucD6HEWYurnr/fwdltQt5cS5Egd6p4ncNn21bJFescDTOyW1bDrMyo8bN6XSt7F5/sgSqm6BEslPaXi85lAE1fNQUzdr8VB5P1KXfygNkQ1HEIRr8m/Sndn21N+GVVlrEUC+K9jRkAk2NRTU1psP2p9v00IfuxJwhekAP0QOCbTO51NHI4V9LhcqaySoEwGfUG6Kr9xRcYE+P19a5Y97ThRQX1Q48BI8xvLCnRVVWI3qG3a62orXGW7rBWpfOls/D/W0v5ABKCILH289WlJu6MEtiQAYVMhSh81bT3lt8PvuLg4v4M6Se2jYJ4LInX7mCfSpiRIvls5ZKDKA8zmywM8RD2BThaflPkx3bA9xLpopJUkq0xcxJI/ek0YvNrg0F/MCwtKBE597EtWc7C24NikJ/rHRoG1IC1g+W2OumuA37G5W7QgHmmeKu7DITHhp0FgfuPY3CCjMOTBHedjDAgrYTSs4M6FCv4AoJbUYa69dq/ABYPEb0dXEYnTMXCsbL289/V1BGGwFGx0yUM6wb/wREno/BmEi4ITKaNSbsx0PF9kKX6Ff0EiiTYPkINvS85pN3DI8ejbpvNCWsH1nd+39ZiVItVW0coOcUnJalGqjXeoZdb1HfMN2NumKfTcQk6B5Ak6R3fhSlYKwpfenBbYl6VQtoPnFFiduQS59ADjQxqngoYvNERkktYJE26U+0Pw0pXu/cK/fak13YlddHiu5oX097XngUsUtYT3B9CvpCJePteSaQwFpd1KH+FQ+X1251A+jral6WdpkUt0yHJ7VbCkrZi7dBTWLLomhoaPvSHRU+hktIU25b7//+vBqkP8r+Wqni6Jck23dKQ8bpftnKQBT3X0q71Ev4+ZIyoZH0S7pKNLig2hd4AUpS1scllcJPewQB8MdYIUlO34zdPkNfwWYRjhv7T+1dTVUyv7PMYQ+ZVJ4JfIF1QtiErvQIrXEoDtQxUmNjqnK0+1To4odnJkt6lxgMLQieGbviES88AtsD0BRP0ymKL3tcDY7HZUH3RfNuh7BRLa3b+nKLvKZ5iLD0aLMF/JOmQrltyPyq5yY+/EhpDNajp2fmnFpyN6P5QKCCMawm408ecINu/QK/qW4zEFStkInwCMvptPTVqqWZIb4K97N7v/2ceaE5h1mS0Gm9PBKW5Tiy/Z0sIbfNRXkuNypJIL9GFuRCUPnqojm9YouAyQqvh/jqVbBw28e8Ai+JMM+SOZz8U9F0nBc3rycXJSpo98mmU20mnEHcxAuwE+YpCfZ1IBfrRwqZsHnzNPoyJ7eC3fiNAtvnPKMn0a/4tFt2KGLCugjD1LZeA83ip4HrqVPkkrpSTIoGDNx4JobwY1GaoJj3Gwrqlg0nJay7DlwOtSSXN/Kat7+eAXd9+FlnqueDfWH6uHmqsL/YX+bQ0Zrpz+f2McdqB+nEfpl5t2BGnjblm4YNhsa/4kg+QL94Q8DwL7ypocFeyuYLk7PD1Vz01PvjaIheO+1EVSQURfSxM4frAsuIHomPFA38RjwkZLHinXW1q44tp8PWu25fQIxUlu0bBbpnnwa89jy0wjPqXh6/2s+Sc2n2I4TUbwK4nmZUEb8G57qvZ2VB2GSGds0yj5q3yL99pwL7z01vbXAvLQXjikCZl++cdmPUNngmmq/OFadZbk+aCifHH/eQa3Pzws3mv0PLeOe5+m6VymYnj/+YXz6O7Igstd+m7xFU7Oc6CjXpiHLef7p0Gw0B8XDpPwx+59VvghPPYiGXA9l+tvui4B2l3sL8knaB2nC7vjuaTUlWibrsEowuATd0rxNS/nOshBv8CJ6e9DX247ANeqTlJoxKWYbuTnHJ8BgqITbigjtXtpwBb1sFyaORJY3S/MRJcQs/j+fRKRbqMFwco9GsXrQND0J+gqDAju3Re/PlaNDNhU0h7+QKiXqhoyuI01OwdsMCw/ZTkGCf3ebiPG64yNTDrnt0a+c491mecTvD23iA8XM5SbvHFpAkoFbTpfEgnXjiCk4ZceojGKKJv+8Cqx1okaRxoRgresJZjoVNiq5SPgBCxfGxVOFC41Sxwe2RsGLkyr69tK+LuH4YHXU9lMGDfyc0ma/ECX6duml+7O3Ikd1GZ8cLoVj4Ta1y3Sx9o9ENZV8hguQaIdm/sfbG4Jc39Gqa8jZRDO/ll++rPgQZvoCRGrH5p7oYExgqLojPEFXFT2RGOr9PU7hh0LadwEOitcczTpFmdHScUG8Fzor9ycpXc9c9mvlyT2h4czCtIP7PWINkaVAqsgZK9k7CMqMotjprt1IGUoiXi3BzTEPu3qdlq8faKMQYoGaS9SGNDQh9SV0T8AVz1Gy3i1zcLP25DbGD1onGGgS6A0pnNDBcmL3f1BBdE/LAbGM3/kIhcKcgegPVFDDXka3Jf5zSLVoTb7QJLtVXlq0YffTnRS8zQL2eJ2mvVC2zQ+Cypg5wWFk/Xq8DuptDUFdGpkE/hiByAB9i55qrTGG+w594P0E5hMiF/ZYscyo6EvIMm2NU9K9VfCPxrzT3r5qMzYWgcCYZkPdiQnpKAGNA8Z1EgnKTDkwz7qox3zSkJp4RIgQlNU4zYDrdWCtOOeDY7nDWee/9anzk1CPoirjcAcgQKVLOZLGV3q+emExU7LgcMpf7kWrJ5nMr8GrqxLi/djrFLF32RvMeizIV+XRO1vu8dZIw5pegLBxia72djjQ/sugyGdHhKSCNjzP8rNfC8lVTeBu13tS0oZ7J2GqQ9BwhxYwg9Te4yFU2/WHSqJuJLE7Fl/A2T23kF2WE8w8gm1KjNvNQBsi3s0YyT9Jy3RLpzmlp/LvHN3ek+4dpFIuRoeK878bX0R2G6DTRxsG8v20jfx3O+Ql3D3/bsG5cRcsU+pcblPd764/r6e0MdBbG9YRo5DAzfDRxdtJqQmCtwKwzOQt2NUZN1j81RFAqVccKaUOIFpEKdGlbeYHnwqK3WGxPWuZ3QZ33wvYjPs5GPJOktMZcZfAWF+7czX16cFw6/alWWVUUUuBs1Ogbqr9q6JVpS9imFIg/RrIglOiRvr5UTkGyzkFoSkU8v+++R0GpCAtlV9nJU9DXJGHaPrWlAU1X2rwVC2ESpxn6O16cRw7fXihHafA1osXLo8nuAUtp+AgOYEWAb1ujLmjppOUWAd3vkDMexJgbR+TBqIgyQst+hXDuB3nEa7qeUw0XwCO9tXwDKRWkIsgTk8RKD2+tG+ZWwF+xUewBMnaVQjowNO5hcBuEuNhcSS4khG+3TSzWDZScQ589n4kPZ/ttFeugIiG87kqFcqkFn1NCfDDFTYSGvz+bqEqkninXh58QwPX5qfyM1zdsYfW3ch9QN9PHZvJgqeOoaJV275FdStePT8XfNtf6jdOfHvFUGZg5adaxW/nW8ELtskjslUlbiRcHPMKjm1LUGj8K72y39ANypi2myHxTmUScfa2u/WWimJGxWdjT2hlxyeJjHgG+sKJJFA8thCuJ1TJSEqJfxrT9lIAkdILPKr6U77MnWUwZwQb59JnMxFCU1nH4W4AHDlEFbQd30dJo8NzJ6nUZiIpQq3yCXZuDuvC5IqUQW6uUTRd8u9lQ8/vO6tZVWXC+qhPp7Xf+hgcys9kjAYeBzbme39+u+9R2pBNEUvTzruwOnIPlSYOfrx1OTePUxlYtDY/h9xryTTWCqezVPuR0koZXyD2/s9LP8n6CdTH2wwcL7Bhv/NGVDERhVAC23CiVt/wMv5Uz9bWpOY3SiJaj8SK9c3nJPvIuNHYx0mXkDZCMh1azWvvoUHSi4PksU89tDZQeTtUfzHt25b1oNJUYhppk0frKcFte401+KX+279FB6KdgAfZ+2DbtHWTWirsiKF4DFbt22b1CW+LVvEk2lGggosrxu6f4QxecB6TxV8Zj3KIoJ/RcZIHet7Hn5ciftAoFcNrrYMvhmiwNEE8avo1jQtjBPv+ldDbxRXM4MWWWL5xlminCnUvP4nGKd26GGpLo9+fdQd8ELk5TV+hOj7JEn34tFm+6Zb0A+KvV9A48eDMbsHqL3hFXzKIPl5FjpjpRtfcArCL1i4KchCCYuvDyaljxro8JDOfr5Aq8vIRXqy8ktRe5db5KLy4qJ0I6vYlbVeqMakNeGUbyYixOD2cFlcRwuhokEhopwHceI/Qp8Ewl2MRb3UBDmPdjuxe0H2fQ7/byT20PnaVoVEUgxvEMwpUaJLOoq7cDQa84wfEdQTlbdOrDUtwD2lxXxF9UqpZcfOC7trKZMk/ZfWNP7ESuNyZtlW0pYGM7sLlzNKA3/SwLuIUyeM1v44bWRWHHbSH0hlS4OcQAvx7dApwpHh4scybrIOcR7iKODc8mMjhkOC6XvmVVDnK9xnKspSI1JYJpgGO9+qyuS/Ot1sC562niPgs2Ei/6OUyQAy9VKvXrpcnaDrCZdwGt5SQNP2DrH6toGJ7JILBTyHtrgdCnIaxMaOnJzECNFhB9LY/67gVD1sc2L9gdfDDKaPnGhpSjqmle0v5z1H4BKgeT66tqFP32gYnwFNga69xrSPme4LiHPHSinbgKn422Wfh3nnGN/zB6rfNp8YZdD9Vqf/GekSEGLTQFAfcsKq/2YBpZVDYctJMaR0hfoFs0QOgPDoLVeKOGfVY1ei2N081cQIEUE3rUpTEG13aW/okWnKP96SAPTUPcFiBzONaCoNgYqwmRBduUZK4q7pdhyk4nwItJX/IpWMxjkisAMdbnYQDYq0mcM9S3IHZCJq4dlMoRzK5NuSW///mYe+h0VFLJEbZhNYD/Qiua7KVwXAZi+wlwDB5fQpPcECLjzT+ILz4T9ICCbJMQ/RPbazX32hnor4Fr5UpFy+YeW/cRfr4xR86pthBMPWsi9IzgRzdvh+Rv/Pf7aGj0eWSBnPVTHAdt8NNvq+QE5unzRkawITDAL7w0tDIPvMgCJbagXIDie4q6CxM9wkgC9e2+EFD3yXIy2CniNMjejEc6Twd6y58nXEjzPG3F2EVC5phl5Aampj3IVq4YukMh4mpToJcHRMc/CweBRbZYbPkJVRdKtD9O7jxPHvUS0dKjIh1hNR+b0/bzcJgQWHoXm+BzBfLILcbX5bG8ItjrUY0YReE9FGALURR38fL9IA3UU4rZ1QZ0mpuMIby8VT51AqlaYqEezkIp6QDlNGgZlJfCGV9/phdjNmsxcPCL1dPNpMhf53OYErP8DRq5zTkanen8KmweKIiuCd1oQRBrnndlcl4FLVYXCpyJ99r0vAIDpkbiSryILK7YQ3oA5pwH3yPnXRg+N6ISNIF0T8uPyT0oHXQ91dhKPeV0Gcnas1ha2KB27sVVOIegBo4fSfyYu4ewghhYOhwAUebwBeIGi7FmqE5Wlv/KMuPkppIvzgbmM+52lFfkS/V+SuZ8Xrp0hMQzj62A5T17b5yCPsxiwmcEGN3eF5vAqdUOeIbcoO37FsQvTx+UM5aVdjzlnu9Ms4rLA/I05HFTKHJkEPabNDZA2nnlJLaP5d5zqnMIcMGqE2pKvUey05tedCcPYfwDlNOyiQThNCidRGKzNNMd6GHnKxGXnkWFHa+2ARAAdN9VLAf5DT3b9GOvG2RpFzm8BdQbUL53bY2E5wsRx64VrzUvgw5jlW67Ofi7YYYb00CmQR8GLwfzd3jP8qL14KfNSU9YAOtPiNvP8ONZU6arFhvFvatmB0V51QaobBa2sYCxrQoclJ1jGUPz+UZWreIyTRwwrn0BGck4fIJzZt6z0Mx8SMPUwOhCkbujpnCq5ZKF839ofRxYJFzS0Oj2Z1hPIJSZxbajumxcbL+rvFil6LUTQKANUoALLZ/RIq+I6WI95ctnAe6anC1mcX0gfIZu5xIHQRvEM8i+UrzhsF2N1oe7X8jVEwYX+hGxMsMGEjqJMpLXsrSWMuv5m0FA3k6GS+igL0nXYAC+u8USO2r07t7xhhxK/pSLqx5lx8FUdbR1xutbN+oo3aRNDNjKIEtlw8pCjuzMz92T8nmQ9a/qyln0jHDfWvytrIT8swyEhE4GhYHwPdROe3seE23e5vwUI5WJfaDiy1p3PhytiqRJOVzeV4JA/6Bt4ey043IWcVYfrlby6T6oPvf0uzxK/TzvXNxevQaCPJqSn1jNSan6ZUVM5E/+dp3VP365gWFRuWzqZpbDqcjPWW6j9fnfaiy+EM1/Jq/B4sqR6jhFrgv4HP+mhBQL/6NwUOqXmByAbFRJrQYo5N6Buw2EPmkAVp24IUTpCKzvN+1ZMIxJ8o7YXyLUA0+NfzdyKpow+V4O/ZuSVSrjWUznDh5H7E+0Hys1I88d/OcC8puXO7DfWb1YC4YsSGd+iXdm6r5Orq9u6qaIPUd7i86ekcb2Yh7vy7rWmnej1PxfureT21Qrxoz19rJbA4hnDtkJ0GABmJe7b4DwDueIIEqBi8p6HESnIh9dFaCn7VP1UJ+i+WoKNS/2mT7Xam+R06RnvEmNMRndZzs1wdWhZLzMsdI179jO0y65DsHG6eLeqKcU61qSUfUJPLpbEo59qAKA9+uctXOFLZbksYhnXbOUPkpX7cpynamUnLwsbt8hB1WUlMGPVckltAh7OAbCqdXIeQDr6uNuRZURfk3696WcwMgl7vA7nqF0gURORRwpRAmHqx9Q3P1QtUV7KYNm7umj1aAvgXsdDAjlFmmQFfWXIvB8QmV+oEJ9YOQHKcJvJgT58vQfja6cB4SfTGJwAU2C7CLxPuz02eHJchmtNAupOvILXUEj/KUv47VbkCjprdW2vH9b9QxE2e1F/Rhd9JqaGN30fe358oP1dFdzkUnE/WCE/C4f0C0z1lX+RgD22rZAFUOwfz9CP75Gp6FWiOOtb8y/54N0vXvf5D8GsK/4QXCCnQoPm01wMJ7uLgXKpy59hEfwx7U/NltB0+qaszeentTtSmDpU1RVSG1kX4Z+OMot55vD7x1D8Svj/4Nv0N8JjrIykPSk3rFIqpQtHZr7dOkxBi1AQropcd8NYXF+yCjg+7da125omyv78l3w6tVEvs3xesz28irbKD8ZHe0/X4si5BafUICR7AmhBZN7yDch8lVc66kTdtqcaCsTCi3rA3SnkczajUuYafgl0hQyDs6jVhuyQ8BUOdCirl/agyJ5gzWGX/xDt90eEwJ1UznGJY61zGuhbqcstZKh4D/Ow0m/ZDBKf0ZjMnahgVEohQe7P4MfmZKWJWfUw7+J/XGx75ur3U7RDDHvQa6aB8uXH5kk6KREJNnWahKgAzA5yfItZsRHSwHB4Fg4D5xxz4ElP4IvtI4BsoBXUDVKJEoOFXiKB7sWGVxXyKmiPczWxcWgGspo/ZngyUPSallU5t+mCFndCRlyKO+hyQvW0GT1Gk37ntv4g/KbmvBaEl6EVDnRjFfB4rdza5qLAHec9wOfQReFg6W0Yb3P5NAB3TbhnyindoIggUMDs99pEDP/SG8Axui4eYPJCWFsNik19enE4Lzi3ngZUomdUNveWhY6oB5bLhXfqaB30RilRLpv9n0pOjPljP7OWV2btN3ST4wT21dh4Lv1wx6A3oMDwXtvNCydODTKUExZ7yKpG0jtcM4sy2mfB+I55SjN7IHNND2AUWGoXFKSGFpSCQ6pwr2+4PTOxaHocgNM6+Z6NMce7Axay6wCvqcBLBJDuyfxwQsPnQW7NbIuy+UCgrKQTNcm2EN4zhL4aSJvN2VbM6gbtRQPGgC5sdMW6B1+siE+mSH7rleUwEcLWN46xWdL+vUy1rsTbJdJ1E3VhG1b+/9ioiPEqLkz85IFJICyDBWyjNma9kcHXxoaSUd9RmyuKWyV/0Umk9Fyma0SHPc/akAN8+hXWUlKljUZzG+MmIrzIK8apH0R4dREDGUuTow8CZ9A9x2WZyCuXWDemCMVOAvT6B0XJYAtl9iMei+4qyUVDPJSeX1ZJpZtff40W0lGlme/16sAJL8FZFCdQ9JWcm8j6TNkGDEfyDSLB01n9KkKaXeOwflIz6Gng44bxCkaGZD1F/ILdI6CNUkGKwDF1By1wz7Ci2/WWk7TOKhgGnSTen/gKqVODRi4iQgyX5Gtxhgx7JczziaiH4RxyxG4Kn+r5lmTfE5H25z6lxoZdRkMqOmm9VfnNehW6houbkRcM6uk0bq924nDLoKZromjzEwPh3iLYVG7vIzwdfrqUTWntfGv2l8DyUNQC8WLP+PfMImaSD5zejOZLRGnvnZg==
Variant 4
DifficultyLevel
703
Question
Xanto is laying a number of driveways.
His cement truck holds 7.2 cubic metres of concrete.
Xanto uses 252 cubic metres of concrete for every driveway he lays.
What is the maximum number of driveways Xanto can lay?
Worked Solution
|
|
Maximum driveways |
= 7.2÷252 |
|
= 751÷512 |
|
= 536×125 |
|
= 3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Xanto is laying a number of driveways.
His cement truck holds 7.2 cubic metres of concrete.
Xanto uses $2\dfrac{2}{5}$ cubic metres of concrete for every driveway he lays.
What is the maximum number of driveways Xanto can lay? |
workedSolution |
| | |
| --------------------- | ---------------------------------------|
| Maximum driveways| = $7.2 \div 2\dfrac{2}{5}$ |
| | = 7$\dfrac{1}{5}\div \dfrac{12}{5}$ |
| | = $\dfrac{36}{5} \times \dfrac{5}{12}$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | |
x | |
x | 17257 |
U2FsdGVkX1/RVQ/R+jf1eYgQStrKExjD996Rqjai3N+xtH82ZNnFqePjwm4cwZwh19LZDr8WKMCglEocL/rnuyVX8nLBjcSlVbcpD323jROd7PL8pLRZsvF0+6mB9jO1d4lS0O6Z1v7SK6+gHjEhZwBnRxf0G9SflVDa6or6UjxyUWQfTcGEiOOZDXzX0L5Rn0qGJ6yib4WxL2NLayd3Ykdour+ftIdseqSw5nkRKpGpi5qEPXQDkjYuiZ7xhw7eBJcbNMGejgd2JkXtawEfVY4CZk4CJa6RsEASdbUiOObd7jfba5GZ8sVdSUimC24qdZ+DPpY1+zVVehCUdmSnd7q8f1eNXzrrcUxtJI7QhvXTl2je/zxUoO1S/GBjkteoBueoinOCTWSvRZrVa1w6njtzYfOLzc0Iti0dWE62acvu5B4vq4z1B5K+F0Yfsv0/4jFpdSRmzMxJaxPmDQYA8GLherVB/dqHUwUEjaoJlGhiJassyRH+4m6iXCqQ1Dt/C3fGZYNU8eKEB44WXDelAxNg7/5IguRNtuimFi/tlF7QRXF5vImSyUgfWCx3U0tr1HQJq2/J1rCK9q8wTRF7yK+PCT9FgMYeUBsn2Km5nLKtXuSbvtcyRnylT7E7HE2ffwXn+q1CfxbVf5isESp3HRmLEgr+5XSrKpbhKjKoF3eQO3OP9y+k1lO5f0kx3+9jtnOwcCBZ3B/RfF+MsGXW+fVx6y3Dw1uN8Fpxq378y3cAzIP5i1bhj6N72I2deeNm0iwR0bOONVIoMNyR6z2hUxXj9vtyHKew2QRsLkG8WNgVqjqF1F0R9B880eJIQAhN+ZNB1NH8D0tazIUl0Jv6rm6Ch2UenfyRJ2hQwaNF1m1UqVYbCWWeTXebTdBElnBJ5SbAmSpq0L5tr9p9BYwDloYqsSpXz7VUeU4AbnABeGGV2wLEgXfRCQbuqCqlTDOAaS750I+cLBXOQJZWuP/RiUUXTrjE9gMYRgwJtkH9FQd780APYMqwkFFwNQ3zXm6sL+nMU6kLEWH2XxPdBoiCWplo4JCVYmba3MNkzbhvClAW8/EBQbwzJE8U23mwUlkM/U8HQBNmvaRaIYxi4+Qzn58DbcUYwaLT0avv94r1eRgCMGbfWJhfodWJbrPA6fwRn4azbM0BKwZC3RBizpIeW6L0fieEQGJko0ZZku9/YT0wGK/L0Ioa0hQika8OGlfhraA7X6SdytHxXPbVdUQ9kO4DVMCr94r8o0WfATYuvSRVayTGw2DjEfag9tMJLVDmgXAU6zkUow/em6Kzadpo/ygV2GxORoIWnOrZetY3WhMqgK5ZJ7yWIvwt5zJ3DyNiv+8e+pZ8yX6R30zdGgL1abrMSQTgsXcICkapj3TSBzmBJSliGlp1eDyo5fFvCfcvAX71Dufrj/XUoqG7lsN7aBpYnFVyL16L7bEIRZ2d34SthkhpmDR2047EdRYT+jkbq69Bfcd1T4Hbrq1iRiRY3dzegSE1/nYaGYGrFGc0s1ACN14ZIzoKn2DCa1jYPqcRHZPD9DWadT8T6mqraZS/J//r8s57vjT7cvxY5cAqXYoT0lI0sEZ5hPhFXQgkoZuSTMbbvprDZMVTdRUFX+sgmHIWFpPliWxt45paMUnB7gvJlM/qZG2Ccb3kJ/w4vhFsYDgfZsS4uU5hNEwr+bXJq9yYLJg1thmfhCEr6Xdn/GMxISeg4NvlSsfp58jYrb9b54mqZ8B8UAaFDYc+2z4CZZIE/4Ag9g/648CzIJPpdI+iDOTgVs72sTao/pN6Eo6ThsPsESZa4hknzz90tCnOLtPl8EthcM+vQkOTpiQzp2K4aM8kdAWwd3MXQh80XEGRdWf91+d9n4O4IbGDrgZxIQFmUpHCdqoQq6MefIDTTd70yXs5fdt0NreaPFLaJ9cvreOyDfE6E9ZUN+fxeDdJ9LaLuckPIYwKZHslLN8kt8pg1dD//k9TA4d+EQmrIGA+68hBDe+GGqBrrX3ojRcRyrxi8brnmu4zeXoxk4VFfRS8TTLUK+KuT8gIF1k0hPvHtSeOyAzBjGO1ayaH9NplQVqtFTVI6/wkWJ7LIOppop9JNw+PSPQD6tjH3nCllKwR3NBuqEtk9WM64elbUFmsKKjOyiq0dk/tnzB8WfU62EoEXhDcOSoe2cJOUg6TL7PFbGUnhlnKNJ2WRHHG95IaRuW6dEyhtW4JLXdwPCDTXfHqgD1VizehKe91wi356BJcforMTYDwd7A3j49jOk92wuG3v3MzG/FdsNcfWpxlAfKgEABrhyR4kK4D+rorVw5z+OH3f0cvK1imvirkzmFLcb3MGwgiSaQviGbm3CEJHcWwHEkocQg9gSxGuCenSG9gq0gmO5XWB/Lwgn+2mdybXoDoJ/Ah7z1po/ipnMc+gO0TvPgrFBIR8FniCsdRnh+tvBBbvp03XqBl91ksDlYA2+NCETMslQ3QII4yX8cppjoSa4QP0dHKVD/3cxTm1oivDFy2sM+2RA+rV94g6+Du8dA7jLyZKVbcOwmduGiWQGtftvVjq1zmjRoVwixx7Eh17H9xd+dMPZkQHiqFTdItqS9xjISTZvvjXDlPznKVmY8mW8OsICDZhJNZoW/nxCUpanYPGwA6yTwqesqV7nFKviEXA0EZeUQl06YCedVHETu47LF6V6MC2woFI4c6O+MXV9BMwKfBZtEwsgA9WekJKwNr4LfL+lnBRUvKtiz5KhpibkdJseqJTj5h0FbpPADc/Er44alc/3/djlMRcBYg86xDIEeYE1BezhzsEEkUDHTDuDYCavnp8TPoUcoxlJkGO7xVVukfwCLJAJL1A9s4aK+EVjDLVpjFl4/0PqxesYy9IU2MN9vFlUptByoOaHDCv6hIYFgdQSCoYAsypV/HyasNXfv0KXQmxaImCjirgS2tBJMR+rjBYHw9tFX0pONpPtxXGat179T7V7TPuKjIjoqfFfuHCp8U/3tb1uf/oqPghHYVTEZ/3x7rBcVASd2zZTiXtvzmtiec7SC1YqPw8LnVN8CjY9scJNs4DzEyYFc9d3Yy0vlDsMigwZLCwvaFb5r1hVBdcKyKdPRCSvTr14rXh1SkVh1UAKHyZJV0EmgJSvlmcvY0NhdaTea8w5/SxQq+usFDbmzXoQarnukhMTqxfg97hwLABel1T7fFcJDvjAAlN1u0ZkMTU46sQwNqYQ6c5pm3WME16zvijSJgTCWG68O3Ic540FRQ1Ab31HbusIO+1ocOTzs/5n/atxXsAPH6emevyKczYnRW/MKzI/EqYi+VK7SeU7KmNz4ANS0FgAN5p8W7Az7GjoVceINzQtkhQnLJvIJ1Tc9eQIS0HNaXMgw7fsvTl2YPGzlLJRj3FG2VF55VKsHG+ePsaiYLkkvAP0Llt+1he/0Jz2MNWxW/HFZ2LxxIr1VE/oTq1TWdJiwe6Plu+wCkDbIgbYURvIi4Ch+gtvZ1k4AnMtgx9Wgp/r6z9jlhRbCZ3mllwXSdhhe+hCZ3jylZFv+fPjA86ZVSHKkeXDQps0nhus1PSWM8VghMf/yq6WStr+MyZlzcA9CaJevomp/ddXFAH2Vaw9vKi8zHkszncF8LEZEqbYXNy3YWHNTKyRZgB5waVh59F8nIUB/xP0lvIjiL0fhGeewtQMg4lxsOSVqt9sd6LZFN3VQ2bdax8G/1l1evx/5S3cBGnj/WARsGP834czuJDIVInl0aSrCUAD+TvVDTiTe51eoq8A0LoJARcP7HMi+6NyyBaLSIsVxnSb6TkAGfDJtvNJ6hARMIV6656S2qjY+AkfuqNcMPMKdetfL2MXW6iKMfScFisG51NcIgZFzh+Ly7Yr6h9TFcqiREgg4fvuYVTE1tBazH5Gm5R8AugEc2ELDVSyPELTDXKCFi3eqq/n1r9O87ZDWhnfYAyxNz7MZ+80tiYN+z8KIBoJBFF8J3t7OQJRvVPTa+daVuQ1MahmHYtOa3BFp0AWc8VFku480AruTcc++alWQPVmu/l0B9RdfxAYKNZ5DL6BXWWT1z/iNhtQIKN40li9ouSRGwco8G/3I6ZSXZep1jB6k/naW2sHOR71ARJlR921plfTG8oOyMGS3p/BKF4h7Q5VwUtYqJf5EvsD0wRsZUemaGz4cl5PAfaASEg2bHrp5t/dvY2eZOHe8w4WFsElJjFKLrlNtOBUJ6tZJgIoYnQQPxl1HogmSeRE+MYJW9ha7S6PietBRyE07qlQZvt/41F7urxVNyazmsYrXwWfqP6CFadahd+v4HlLlXUqEC34rh3x6dM3BC0X4QWUYhlQNjKDJovRWXksKkJtQ6Xpo1xPJe81AtwZV2Pnm1vzVxkaRdnedXUcE2CFXyxjacF7qwfyr+g8NDFntoK4dqOPoOnMTToQ5aDyWYANZ4bazHoPXmTuqqXhzwfxMfEn6lX8FBXb8KqTmaKhlMqXeXJx7/woV3xL0meWExbsu4eMOM/RbOqVxA9YzclnflAawJiT5KPboopoY9u5CG4zTPrfr+E63unG9MtQcRRLSPmbbgWOZYU3923lVDIIDVSTlsrqSbdYWFDwciM6ja35NF3DmdtV6P0kX08xBzKslJ2IjkFwQE/b/aqrsd+0GNap8raruJchtrZGNFmJbimh4YOdZGRLIKv3F2nW0qy2096aJzNn7rq1PSuHWJclrBOGDQVZtK02RLME7Mdw1i20+jtMDtaLhUVLasV4P5+IYni/Xw05VLqvskgjQCG9wSwkxE+BGlsYUKGE7RbG+uI4opCvOQv0Lb/ODUqa2mem8I4MuLfcjf8sn9ssNP/HuFmRXvK+cQr4jgelN279vBpK7Wz5rAgkOBWNjRmSrbCulKeKBk+ECb4YQWBEGjwVBCiUjfsxEZy/vCCvk5sCyziEB5VNxEP7Y4YebTKtZjYDRG2BGNbEdbjGl6bWRarxJMvsb0i8ngccWyyGSRs/v3EB6HViFfN1cDVt1nuZTfffr3vfPWdrmKk4kdM9EPMzzxfv3AFFLc4Dq+8fZnIMy0mp2J4cuBJOt0cOY2GWtA3YgChKwa8StyQMtLZTKuua0sIx+gJj/EQ244VlCxlVlExV7nUdXwGr6gSri55zwHMy7vDjdG9ZH6pgOMoYcfn4PglPvCXwCD+tBaJm8G3pdAtbCv0gm0TpQK/RdVkSjowT1ySSj1C0QXoWXm69CUblsYBd3J5b37KHKWxHf3kc6sQocZ2Hqfplxg2ODwKInrq2FX//XSqEKj/E26/tEUEU4QwY6dxDkLtE4nZ3v4uL9RePbqajcnz8wuB7RydbySurB1DI9d1oVaoEEqWdD5IxJ2OnA/LssQTKZk8Abi6E9qmqamgoapbBm3xGG14cfUCFjX3IdTXUeBdbge4IRMD1JjrVUUSQBxEsHpoi1PAIqdJjJ78aDvmhDszPKsp7lRMY+TzTmPP1Dvwn3BSva0qCXe8OOB1+vonChC5TmfErZolnVTGIXqsLJE+1MXWkrBlMB5GokFE+802Zb5BovAzdZBrQJDO40dLtMsfjWg6ZpwjufwyD4CUJJUmRDv7Lsja2GRDTcj28Xwg85WEnOhYu94wkOgqt38y65hfgOXViZGr6tY1AW86S9WBkym1aJG4ChLP/7/kTBmiA2mNPSDV/WV8advKuOcbDpEjoGGOuQp/mZJHQR6bqxW1AaZpTssOqF+VPStR/DsVPN5NSkDRhVWyL626+ag7SgrWQKpwnMCVS5f6jiYgKh0uBWMEq2I6nmE/GJYNfIKXUZFGt1VC3PJlr+Q5pTtjR9kdbqkXaatMSyCbOiG2ULnt1Z7jWC/z/cGR1LuWVshlqxHKQpfe33tY78UjUfQbtJ1/WlQDDWoPHGi1vq9nXWYkcybaZJFgGj/hOktxgMIPoXecTT+gf3eMCSAi08vUEgJ0rH4Gyb8hh80pHsI7+FmfyQLm4eCW3QFUAudkebhNgg3QUvkEinpKm3HFaGvZhhLJWOFovbcZSarB7/v6vy8OOhXzb54h0w9e/llmnOPsvpqZ680/F6BjXThuy1LIbuoGnfjGZZcAG1drwROXjOwbBy/ZRhJhAwch9mJk5LL5AtEtYFZLF0td745uDytg0nqDEucoikUsvln5FN0KWKmqZNFJSzBIvTtPrAjaHD+h0uelAbFLLSZS/oI502TxENojz8m9bLses57YmaHjp5ZlYPQY+FsioqSIgQSH0qaxyiFoL/XuC1chwz4tuNXcQyoDnh9DkD+hnPKZBUCn5CLVEXSAFpWFFOJpQ+qJ5gHxZboqJQg3uP0hWfTAj95PbDp78ifABBGZmQtRCuwyYrW/c3IS5JyEwoecJdUrJi6pjOq19NxmuOZsOcQRXEOKmIS0gdPzpBVXVoiiPRGX4uoDHKJudwn3w4jZzEgeQOrxIkNHAskVrapjcJNz2Qs2nY7SoDSSIBX0zerDIPdO8zoDuX1iIJHuv5ZHQTvsX5MAWvVDz/v4foX33MPfLXdRqA5gaoGYk4wetKA7n/g9jI1t1RyUUPfpdWWS/icNWOSZHo2DIy+xVNCNyR2//claYorDd9DsNiluJzoMTTO8LPh+GUX+r4tSuSri5rNb9EWw9jST9yOQtFJIee7XhzrBkfF5m8PiNmNqMD7PQq8fvWFEkoI8zG/NVqwmz1xpZSpZ3goyYjZimST3YNgtEgZ5Kwc66tgLVsX5w1zzs0Z2mBZxUaR2+hxkxj2s0r4J1C2XfAwieTB+pbSxNC/exW4RFoURqMWWl8XC1cOta8eTZmT5qfksXT7RxgYuAX2o5ybEBiqdIf+utI+2eYwI1e36R4q3Pl4RENvhCmj+d2SyNuLOvmoBufssxsFAsL4thTFfz/JekxKh0EE7KF0uhsW+sBLnDH89Il+P/WykMEMhDP3MroKDDtOl/VV0h8OBu1ck+oUJMXvEFx2J+S/ZzEsEOWwBg4t2oUDhPIooIb6QgQOP9XFZUyYr+tL6VTVQitrTqyC8Wf5R5hbNN4qxPHBFo4iPIfqzVz6b3pfywAoUCtJYhtW2jqyOdm+69uZYR3BqpGrB4ApS56xoj8yYyZv09+gtDY1XBBbWCNe/5iAa8BxwJqsHfrD0WFT/v7AqQnSfnMUcyVZmG/PfNvMTU3Npv46sBqnaNXQF0I31hnTwZN5ayIbdBbyLIVHzMeysYoslqUqk3T8Ody0MlkaqXexbKwaFTSkhgwNRc9FUTAAbMSYgvvsPouhA61sE6AtRBjRXp0MmSDXMgr7al3Tei0igJCMqu8adI2fZ+rrpeQgGhBnCZNGeyLQuOlbFGHiIkhosaUjhHDdWD7GsSZtIldh45CmapAkOGyrbvHVl+sIxfjqNdWtEYuq2jySHS+RKqbI1O+Su3YVM2YR5NiUCs2BqDY432zmiJDfQJRyZ+mD/NVC7W4CZF+pj6avqL6bgp4q4QA1EW0BX5T4Cnl+nvRJv9Z0o02Xwjxb2VYupwjF5i5jt7Kdw2YprOlB4bdshil4OcqBLBkRgraht0Im5AS63Lcw2YYMZAW4GlJmJelaqmr1UbNsTkH/Si7R4GeanwzxDOwxHiVRzmGtacV2v54uptag/hYMyV6yPcMzKF4uh/n3PEBxoEnGR/OA1aeTwPR67UZFd0z52T+YGedlX+JDH+LEVEKaXaxN2Z9xDxQdzwu9Dw+rWzfKCdGKsgjrffhtlmJpxePiildjZ7j9MYr6ONDQTNdlsSXGCyOGQZg+aAmgC7CaXzPIjaVuMTBeo2qhDAjBOPzkWH11ij1c5KzvYMGzf81aZyPwcIfImTnsfPvpgDP74iAjrtEddyza3iZKGuG7B2OsES6bnlkW/iV+D7YFhqEGSOAOr3KStPjHrbawM2foUHvWeBYiUk8NmpMCNFVHWpSUxaHdZByvf5kI4hI0RwSjGOcbfLzKe4VIDswbDHsE29nAOULHiffBYTk6asoxlBrhWZHVf2d3eZrukyRVz0JwSMDX5EEkbHlXHY+FlkupH9LUq3aBt8cBPzsjbtNF5sgaszAC42/B59zoTWoJIuSxiyF8QdsIIAh8rX8R/T2Wu1nQdGWYRxpkArmCBA0UEEtkG+EKCyQ+EpUy2euHZSKTtgC0w9WscIuJaJCBxM44KtbWb86x89WHJn8f6ojXbPgpZ9VETG0kAgRH6bEax66NEM7PN4EO1xl0NaN4NiGg9C8NCF6Acwkc2nYiF5Wcw7oQwpWa3EKBNBTW0xHGwLMYg/A6beIZifkXPrWXsWwbuji4WEp+Vjg2auScGK1ObnyFzrSYE1A7Tv13AhjHCMoUDL4tYWXlxtoZcXq7sDjeFj3qXUR23m9NDasT7HVwwVOebFYduM+/5GNhZ6U2DJhYGtzMjJdcQU4SOhRqT5vpw6oZiHSl4QAztCpW80Dt2Arc5MbjVKff1CYePxNHc+MFHDEzVL2t7CTsWHn+TT2v5tSNfL8RaevCErtI/KZtMqeEJCUZBYKIwv2ODasBAVChUZWBhqic+GOz04I0GWPlzKMcMJQKdu8sD9sXxo6xuIBuy4LMoX0r9qrj5eIgEBWaLU1q7kRuz4PjK+JxE1x9OnWFn/+h4PBR8N0/B0WoLTQokhs6dftHH0+q+9hXkWG88NTlYMYYTKvi5OGCHS47kLUdur59mW88OF/b4lf0El3iQLGZ/nmlKMJblK44LtRkC+z8ygi9iCF8W5TT8PM3Hak2aykMyz+LYNpWQ1il7Unnw4hIMGvuSur40lBuAOBSOpMdfSU/BxcOj4LmIRshPlvIJc2Nh1msHwc32iKUiwiEUHXK0Zhf360G9ncm+uNPKb+71G/d3ibnIbRJXZ5MAd5c8D1xW9dL7VXF1i5aWhyzgfp+T60HcqKDpSQTBvsmJ+oj53OQwuqhrDe2aIxMUC3tOO78ZaR8iRHSUYO9OSs4uW311r1whn2D53DxCWVXsnmQjxp1ysu0TBkziP/ctUtKj2rNiSGvyqRyn9vXZlKroY8LZAZVLlNwqVPxI7RfTpidzHuZcKTkXGFUCahKvL9R4KMJgGiw4NnpNhEaVjmwDygxEIKKl2I8ByzwZSivLJsp8Ekxp4P6IY3o4ik3BPhkc1r6vPO4g3vK0Dbr0aNv0T3O0Vq3pxXAiALtkPGaXTbHGCGMMRycFjubMFcY6phzTlDqYbr5iNSCNRO6nIGo/RA24vCx7z19pWEmdUnEah1KQURwdcgVQgoLNZfhS3cZXZdmsSVKe8CeWXxVQqpBPTLZ+eKTbO+6T9hLHifNpH38TrEs5RU3GVAnsFEK4nylHhJsSKTV6fSdTl2YsQaS7EI1TaL2i2FUiVXK3vmnboW0cpT1Nv9NqrfEC+EsLSvngl/guqjZ6t/rOcVOKf4mYhswRUlbBEF3oUvxbPjQ2mRxnjUgoQwReykvgteZUVwVRMx33IbGMfzZCqr3Up/0WJo5CDTiGj0vA4wJNMfVOvfsH72V/hyvUAQseTFGHAaLvCJOCjP4ZXx82i5exSvBIPu8zBDuMBNmKG4gF3PbEDIeMixoOHznj/v1OOndLmyebQZTN5vCMsa8S6/WDdaKECVNssRIRyWGKLvLcSspG9jtJekMuAEYXA4RPJZoxsJ5kGpXgW2WmyhsJzbT9cGblBo8QGv7KigOCNdwXp/vmCwmJ0DzLUcxcBc+eosm4sD3S3JooqHoETZDrKsP7lkDULYsBc52Qgk9faf1IgiDK8Eb0iScvNuDeuYHJjUCShIb0csgIESl4gkVU8uz2G8pJ+17TgYkJUKjIDO7Q4nx8JyoC5On45uF4816VHWp9D6afj5dtnqDB7IaFKARIvSG+q1LZ/GxUW0WJ9t2DrvV7Xb12OGb/rxGYBsMSoK02cCZ2oQIJrdHBgIx/qfhxZkdnJi6oWLl4HE+I+3pBwbd7mItK2uCKHnB/RUlTkBIHeBdFHnjmIJfpCgCOtcMoxqvgs+xYb+ZAfh/46tkjFkd83KVhBWJW3Rxd//ch3jhNqmaFNCLbzFWp4VE3E8PGc9fWBKWB55O9b6h+cjsjsE+y+k68TmtWr1H1H8ytmGN60DKkuw1OkZ0eZQb+ZLa0hs4v+7lTJntle9yNWmnOfGQON12Voxy6XgPTJ1rjzV5smpFmU90lALst+1HQLPg9vTIJGa1tdhAYsw1ykquOcp0YmWkVJiN/SrXIMwqlTN3hxtg0N4VHNDx1FNC80o5qvLQGF0L5cOkqO1A09PqvwQfLQV9WDL9jApj/5n3tpxKL8ixjRw4xPhaHoGUdLGNzmt6s6klgPjBNuPpLOwIODdautYGqo3yxLl74aVwknfxXFWVw8Mjif7eVwtXM3bf9a3e5Tf8TyIuhHWg3OJ/jfKFrd7ymKpVUa5wWtFiHIwkA7fFTl6GvcHJDxESMyPVKtTPcs4GzBODcUDMNeMGBJiHFSEp9+xuJn0e7SkOnrbzDe0vuLtfzeHGhLe+70egyZGtbvxeAuK+wnC7hQrDg7CG7ViCXbekdb/sB4LPUsCpUKevMrtmp5ng2rnHlz0gEcT/V+7M7aGWcxClKp8iS3qRFsGfy5IbPXR4nCk3xZnOAA2ZZXjGg6uaCss0kzMEMMxEA7P3yJrTOAY+8WVwddC9bXLrAcRV2wZdc2Nih8PSUKk5xQEkyCwGIVaq2gE2PDzPwXd+oqvRNOBHpksFbOrQeTVN6Jn0P7OpVNaIg9BGRhjuBnazvX32B4GXS1GnXP+s47AbveTGP9CSohCFbamrQh+OemeicpaRj+ZDQJ/tKbLjKyoGSNl30wt1kRpMVGiTBAEkRNlsfC0DRwI80UULilAXPiaEIEtBrmss3U3B9Rtj7Ku1vWNwyMdUvzCHkQoujWaU84eL3D0uHYoalgmozKs97M4IzJ2YIETMmAaVn0ZeQ4H/5T3Q/E9z4BXxNV/yym04Q4v27tIPefIe8LYKFGVgKs1IcN74GpEs5OeUHaag5CvJ33Uh65q1lWrO2wEZgQdz5HLh6VCvOSRmEVU7fkhk/AxGRe6j8MAokM/w0RJn4C7rxUP0HDETN0Lt+Fps/ljgThk8LnpnRCfi7WVVeDzrq8c54F5HRK8ru3zd4ImOHZA45qBpkHjkrcbnxXFHUAsB6cno91qEwLH7PGsXs87eudGpHM0BmotDFAP3qRrthDosVenat4i2KIcycBS0kCQw7CqRRVcIxQmrfLxpIJO3qB6GK8mLXZd084/VDDR2tiveGvqOqldphMqfsJIk+8YScW+68reezz020ghEhcGWTlF/FKe5WGFGy/nBUHJXwc9Zj+e+JiPXJZv6fKJBVsHyUA+CGkO4CPyau7mxUBg+vQIcxeDcOd26ybPxWy9lrzO9eB3mbtdl5TIqYshO14GFJ+8L2p6U4u7O3pB/Lx755E18vXuN/1AT/UG2UPYW9Mp5HTI1iYcy66PXgbdLF59xIKCdVBKAGx82WjgPYmSnScHuMjyLb9EF2iA/8Axygk4cUwLT+DoyLpE6gLfZImRVoap7kkZ0Uw6/PyrNrMGdLs4bioZe/8V9RofzeNiGFgOGQO3Z715TwLByWW56n4FfdDDcSNJyvm0oJwn7MgV+dvu+KoG31Y5lFTcyAIqXZUFCF3ukvJxnhiiVvJ1ELQM2R7A2r3Ac4WdecySmBo7Z7RJXpnkvrIiiJ0ejcYl5hKp1SjIiGI/Q4hw7iV0KcLhx92uq0apGJu9oRC/rwpVzgWVqMWAxgQSxfN2DQcKZZsZq4W2X2CoUestpUPDRkCs2R/Zb9Ak5ZRMSCKDl3JcmjP32pF999baIGVIcW4teDmv6/Fzxw8gBKO9rvJVL8/4q9a/Hi53Cr9vM0xSM+yltnSdMYgrlASosWl+EAE/M5JzBCk/7JnDbr2aCQVIYUvCTNpc5NvJKZ6XhNLcQvgOBhlC4rMq6hisu22clApC+u2dauX3iNBwbXKG1jL9Ukv/3chKKAwsU9Gdy49J9TSLMF2F3ge0buAzFlupVNqg3Di/MbP2V+eVkhAPUXaR6P3SM8+FR0rGMpZoGMLYcKzmeTJ+x+pjSkMFQJF28bcrrNUf1wDRuhipt0sdJvvJ7c2k+RY+4tJsI6elIPV17e6zMPmUQyd5yqO8K/8tkUbZ8RuDIEzSn7kj6IxG6YCKY5Qt1ccn7zC1JXJcHwAfShSChMpf8DDa7AI7eHlutisy9n1XxJAfQlL2HICleRmABghnwsNfldV81H9yiAfHmOqfaI5YC5OAKI6mfmfxE4hWTga7mLm1A7Y7mLnBv1dI+bW7njU/xVnKgzUmSi/+Ec3p/8auLaMaGsMa//XdWO+yTHoUkqvORrZa8XM+gikQsFyScGQjF227mTFSZLrXv3sjDVrL1D8NTgbKAHWFIYp5rZvVlBGN3OAz7fDqFt+Ne03n9yij8YyG9noT3oy41oXMXpsNjmcFsI88UsEe/Z146PfxSsmyCES6Mr+D0m9rIgUNfX6epDX9x63nOCaaL9W3q0oQgj6Rr0VRxgJqtQVszGKga+V6BjU/9BY3rcwzi8nKMhrOcZHl+6HHnxYmzYGO8cusiHLtVWXlLfd0TboObVLL9n20fP5UcLrLPhM7fxJJEMz7nIkdDCPDE41NYJJIh5rgcLYD1Wgq/n+9sRj+D0mGy7Wqu+OT7H6OKY42FoatJHoDWVOwHF0mNgAbOgLCDAmreG+FW0/nyjnCcpSDpZ8/Z8WpCjC2yk6v5vwCgy0Mwb0LaF0u57/ytD0XGK1ATW/1yUpXDLFoNKLSdWS1/KqChkKevUTdLAlndgRgQ8sbXNIGf3tvHBbUhS/ZLo769jD49IU2Z6OEvq4dXG++wypWdZDfVYkUJp+YY0DXa7S8VT7cTIy/hamMFZTwMVei56etU777MTZK9SRKh6J6yGGaekQKIByE1dyW3Hhi7A8KIqIZKF+jBwUO2IXTu0/ZzUhGbCeXlAumEjsrLoAaxnu/Jre8OjtpzDSwjaYvQLCak8fj/eeY/XtOlejJoZNfimxt/89cyOvDyB/452c0zRx0PP0d9Ok6KScVVwY3yHCrWr6WyOk+9atLLaTXisb8THjJD3AJiN45471nxLRTb2j7AsFx1mO3H7hfI/91RMMY38YKfW8O7Gdd6VrPrJes6b7jCnHqIhAxKeZnlS+U+D7PHu65FAWGbvlCly7I5M6g0KFYuKaK8ZpoXty85+HShpc2bTgwiXp5nIOLT28oaXjNQTtB79a8mBTYtXrJ+pn7tfoAbzA5qt+bm1Zvv5uDjgPg7+sLBwuNi66wtkarq/tx/x97WIMk5GaWmIhpw/QnbG5bpyTibIjhOVBnq1MTam0C1O+SgJfoa6zFYDClsAYht3+BpCHbSCVnmm7+zPaJzuER17ajt2bJJxfEvjZcyu/XoLdKKK2/5KMDmRmi9pbndwQ5Ae5yTbbIU3z6ltMOgQ+sf1qc+dkMeodNefrO1luMgCuwtJgRWJ3hY5AwedNWOk3AgjOcziUC0YzSBMU3NaSlRHcx92adSLzv72WBJC8Z/L4L5RThQb3Uv6jHRou/Blo+6B+9MIEgBlIBXSt+JkxKL883RP78qAJbkeQgUQKVSUSlr/zo8TSsKSOO3dV3Cth2AboKH14dpisL+06D4X1921iWID36/h4mRUWYu5Uhw6cJs3NKbsNZIxdUFteEuSh201EB9g8zK68UmElvTUzcUZrWEKLJta86mx+QN1pPV4z4AB4mE+Vtr8RMTAbha1VK5wvzBgrUZ4yvC8Dg27dUCttIRjbCLmORvULhiQQIFrQHiclE0Qc5c83gFhXYrihNDBzrZtIZ56o4qmnMFYQS9iiCx7WE9C2n+ws4pNy3BfGBveiCjA4tiR8a+AHIB2sPZtszcmlChlBSOmnLluJnse34GebkpPfNCruIvjJ4AQyWVRZSywFGyJxadxbawVWNsx94apeZk0ur8a9tpD95BvDMqxXyjyzZsGKWEK1GrYT8AbWvZPUJjDNPQcZjDwQPvPRoIaYQp/m1Wj1XlJbmBlvlT6KUA6MchjHMuhvFsdyCXEZ1sfAmMTrNOcRqDqTvIR+lsCA/E5rvrn1oTl19+r9QGS2SWZr7A+9L9SXpBznwNaw/S5qLE+X58qxJXq2DVNTlrrrFV5/EBPyWEYYrVcFHlQsvGl+QJvnmkj7Wxw0zvgrK9mWzks/0IxWZHEH95jBRxjbs3zhmwdQKgdlFVJ+4q/yJCdTm/CrkehMRcQwYTeYDNJSuBMB2PrUGw42cievGMp81h40TP1leuJoHPeQF47fleoa3BGZeZ70RxS+AFqcRT26twN/yg6/SdCb3lwT2+f8MVmUL2g/snAZhZFMP4BqZtrGrKb3+jgZ8vgopLKaWSKho=
Variant 5
DifficultyLevel
680
Question
A cement company is laying driveways in a housing development.
One cement truck holds 7.2 cubic metres of concrete.
Each driveway uses 353 cubic metres of concrete.
What is the maximum number of driveways that can be laid if 3 trucks are used?
Worked Solution
Maximum driveways (one truck)
|
|
|
= 7.2÷353 |
|
=751÷518 |
|
= 536×185 |
|
= 2 |
∴ Maximum driveways (three trucks) = 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cement company is laying driveways in a housing development.
One cement truck holds 7.2 cubic metres of concrete.
Each driveway uses $3\dfrac{3}{5}$ cubic metres of concrete.
What is the maximum number of driveways that can be laid if 3 trucks are used? |
workedSolution | sm_nogap Maximum driveways (one truck)
>| | |
| --------------------- | ---------------------------------------|
| | = $7.2 \div 3\dfrac{3}{5}$
| | =$7\dfrac{1}{5}\div \dfrac{18}{5}$
| | = $\dfrac{36}{5} \times \dfrac{5}{18}$ |
| | = 2 |
$\therefore$ Maximum driveways (three trucks) = {{{correctAnswer}}}
|
correctAnswer | |
Answers