Measurement, NAPX-F4-CA31 SA U2FsdGVkX1/GPt+xHSK02ZrjFqBdcezd6nT4IAOo3+bOm5MxlPgqz7DGIHVphFpOIfp06Qt01msDUwg+YFWh1KgYyyNqcZFbiBa+xJkJ4SSV9GO4FqJG/kteaGO0uBv796lTWFD+ldg/kMCH2In8TsD+mK9U3ob+EV7zd8oMWLSyK9JWYVVuVzT0pzJv2nop8iCZNqz0Yd+hvy9kAhEwzDEYcGW89u02w+zn9wuCxUrUcbNLnY63gJD+hh+4SgCtosDpr1pFyucy1TBK4Uv9QKK2YUOyl44/FQROMoHg/tJE2MxnfdGZwlwzD/2KSu+4kMffvrPD/4SFL9/51nDQwVZ8i8ThCsa5cND1Ie1Q9xXrC6qq7EI9nnwxaSz6Si5PQHEvTFBrBHERWC2bFVT6JAuIKcMMuJD6mA/GuMsB1xNC2UJaKsJENxUz4QQexo8XRpu9zrEOgYWX8QIjaWD7aFLA3RY1DBt3ehnvO83C6bz5RCEiFdqCdLHrG6XSXYrTAT/JaAgq2ih4aOz25l2o1pwx6vL8c1t3KU6RzJzfnyW9Ni31kaUlzfwKJjz7+8+w37fer90h0/TFVCpdaWMAaeYCQ+okL0aDNqL5xQtXvCMl74RiPVp6jpWbZh2lF3Pr9ZaBHXaXRStZVPPXa+dFYc9JY9LE5u0ABeN+JLdh9+pdYUh3YGQR64eu3a5GuZhXeU1fhb6SyouFs6nm6CkB4BCjn1ivprBuOPYd3e/OUSHz93pEx3sUP2py1KdF96fDtZOHxQ80+gKOVaZhKL3x3kHYmDK7Sg6CMmBQhLfUyLwE+cgyRKfuSs/BlXNmKiku9CRfK9MX7d8VlMfYjHh7bx0nX1+sqJmdAIDDxo0ITLC1gaq0xVYR4MUz/fLSEEhAUpq+7MUBepI2+4b9HVL/DAhpi/sJZZko9WrkEUT9JIWzwyRXNdC6QgjHcLGSytWcRJDq/0CACPs6AX9/ftm/O3PlWIkIkzYQKY4/y8219wQiig9ZJq2fGvOP6Jnt62bRteB0JomLoP9s+b/5g1C7YnzEgYUtz+BgPisdTuNLc7yzEjh7UtmUxuJ/8zQGYbwLrZhtukS5AxPeT4iNdNLRNUduHLIHPA8f9kluMZcGcefJvGMN9BvZOLGuZcfOa91AM84+BXH7ybd6yCJ6bzoKArVh29XuyGiK3Lc0odtjl/3sIsbEHzfS5GQGjE5UgEfrUKVwqVfR7V4ZRzW3rjDbF1eKiPRvilWW9rfcP3exVz5nJDwdPZpCC2wInCBihODW6wEKxri11bmyIfCR7YnhbuLTQLFCdscN8AQoySrXJKpMAzY1Ob+fEfv8NA7/eMut7ZZDBRC1DrQetzSAtqsc7FhxtPyWKWzhVMf2YmehnthMkB3maLeKjWpGpYt4Uw+iC870DZjsMvx6xo50iq01l6LjVBbxZal8ctQuClSyg7D/xFu/9aDJQd2A+QEn7TFaooWXrlsmw4B4M78SsfgGvNjMPWiOXmkpbVqGVy9FpnPWx/mh9aDoRU2v9UfdaWpy3Zmv9qzH7qNXDbSdQrpYHkwbWNw4RjV73MvWW2fDqCeOfJczgp7wVIocQHRKhEvVUvCyyNwsQLLl1iYZBUxI2lw6tgmb8gJ7NmHqdpTX9/9gu7jCYmCpo5kmzEms/fx7Cg1eFDHKDa0D8OphDAixrq5LWF9hVtInRBD7t0rXeLRU0Wu/vlWL4nSGuYVwNvmWRZW0eOahVqScn43wfU0ubI6LNS74BQjVOgURXneJv+5Li71+h7AlRZi9HiVRKGhx1cM7erOHzJeqTWg46A2vYatQTU2pMsbSdcbFEcHM+J6/D2kvlBEDqaxgyz8Dgbkvwqw+uTcNrEMwQ2TYllco2ZURf1KQZj1QgDoQTfv0I/2bp3fZOHX98gagTll/kEMvEwZMPXQ6Bg0XJ49d8y+3rNn1enNsUt/68HiFJT7VBcTbQjwqAj7xFk8nL8wdzJqkkwV35FlN1S8IS2X/nZx4wjw6TJIf6OJSScctKMvDUzpwQHS2baxIzDpEYP4jK3s3h4op4Bgg/SVwrcH4o2BhfygNxDJRZinvTBUQqBNYlI9yUG91O/iMcXmTaZnQAIYJ82CLJaJzBD+srWC5fQEB66+h3Cp3n4oN228v8L0qKIHDVKB5dVHWT83AGtjfdHvIThCYBiMMBz53baeGHNM+k7XlKA6epmJZe7+QCdzRWct0aFyR9SLeeJmkant+HtpYKgC4RcsoajVlxzTL2japoM5r6CGg/3zOD6dpkFozcymW+Jxh22dhr81JyZh/ZxnhZvIVouqSyH7g2guoLpIK/93bd6wA40n45VlRva1XNCOJczmnHCm/QQ1A5vBga2RZRzIgDWCCQeLbO4u5mdmaCZhVG77EHreAT06p0hSk9S7861DtTYXQ7JUGJeOBdXD6/2qsC9mypzldK0jozxLmnciBXC8EmxH5FYkupxrHrF55N7ozBVeNhJ7RzECMDuZKEAD332OQoYosbD27TnglgAmKVqkOwzuuRkN3Mv3QeGgXhdz6drZTga856j99G9mnNkwmul4JeExDbAUWhw3Ql0sdPFEcjLxckN4vbglOTZM4pD6GbQEf3KW0Cgep02HN2MmxhrIIfGLXeVHe27F8OsSgSsUAD8ZR3w310D5TqVsIiwc5sM32VhqL4JGevF4PibvBu9IjWdkeoq0T1gqcUaNkmTaRo5rmRfTMd+7JNQsUPt0ckZeAxg26mJeoroFCD9dfWtcO5BAvN8vYM3FGXkxcygfWdLyVBAKyxvfJrAgZox3zBXZamMvFyNS9MF5spV4gLPjkhwUDRZiROxD8uQq+sQKxpt07Cy9i/cEb4lc8DtxQzxSquC0+CXHYh74vkLqXzm9cD96ss0WE5S2cvbEUQ3KOptbtCYC9xycv/sLqO0FkRFb1dgUe7FBM0HNUAvDDM7gJEhFWd8s5jiR30g9FCbRb1QJj2ZvcOXY11lIFAveDAeQM0tCBUzEyzfiSfLwhCLU/S2tkB2gnyiDRmpZbe5f2tu1xarXKQBCpqX6f/fJmQD4Py3ilqCm3+C5h7wjXatHTq92zylWjkH7WsC6dgugrldom4GITK913zZYp95U5PZa3KhaR3U/spSoKzvH9vYHG8CggEVCmMasxqHAwVTPOtCQJpcQ+p0LHtr6wvxC7YR+Q55YfyunDWyHfN1I6/Prjg/d/UyOygPOa7QkAsIvY+Fuj14JrTs/AH7WZ+ZjXmFu5ChqzUv12fx8ZLeTqk1tSyRt1gaJ+iSCJo05jvau4mNbuF4gaM2/aazLL8jmD/UhYogZ+MRpINXAc/86SywmEnCxnUiD8j+Qo6ExEFx/9+lprOHPiNLqhAjSDJy8fT5kdIrcqgrTl2lCKiWdVeK99F9dGOx5oYsFDyyMKwhgHRjmbT+NaMa1eMY0neZ2wixjNP/Ek1L1IEZQ6TuJn85EHdA5vTk6uK4wGVxQWas8Ha9kj/IuT/3ffwPlOCWcPJDklM9U/RTSG3VRfbzRefIY9BgTsateQlrdCfbBrM4FjCyDZAWomfa6pePt8p3tnH25QzNqrUxNVfaLMpfC+QhABo3UoCinMGKdE0w6KnuqGs3bCzIApgVweCjGArtHuPhAEvJyYXdvi8knn6d9yegZnidttEr3BpntSwcUUbF+gOJgOFkh8MwpgYDbboQ3k8KpFBWWZxL3SQiZ90cls4EnnTd8Do+Znkvk3DxM1fjL6v+GmvDB8sFLSVbAdivJ7Sub4POfSMyhqUOcAr8p1xLMN9TgrgWKwEc2wj61UIF203TnA1xgrKmdx36vQcHJbzjtTs/Ee/9jocNwuOs0Hl/AeOdT0W5OuUPrQV5+yarND3QvbBT1if9izEROWz1EhmzmkeCLcnGJ80nn98TwFCcQPpM5YzmYD247OBxnzd+6m64ks3Gem3p1OBgBO9G+Is1cesh1GM9+ZFbO67NVRffVdaeNF8O6z4wSL19TMx4FykoNas9zVG/d5sFHv5FXR4WLikjcNYEFO9c+f+mcOYXn+DsDf2paukvXL1Kcf034mWqeKWuNkqp7PtdSShrt/FHIUbJxLHRqxT2HKClrNKMm3ZzRcFKcuehElZ6H1fVFNbXLkZlK813Bk+wh/g/DGCbQwAdnYzeIiIuUyAdQ6Kzesk4gOCT4ukte+2dvPbBO22RDVhppom+v6rJqkLvluQPS0XGXtlyTAkRiIN4VVO5mh3PqsweThYxyM2mxarq+unFAgaYofDdXuYgbRqB2Pl3JBMWphdukLRcgVnMT6jWmYUZhsYU5ISYZWVI26t1o5n8/Z1nvDB2/IAZmf1QEXnu5QTWr6ek8r8E6uaOlm739MnfzGB1TCQBMAHOyfFoahjqJFYpUlhLZoa0UBPjz79mosMTkLl4Dusut0QTiVonwfvBbow9aFtO/O6WpIeTXMjL9OorSKSCmI394+q5YN4Ol1Kms+FDWauXyZHK9gLQzIzMFlC10Kq5Qb58SRwJ7v62cjCgGYmh4dyAOxY0VPK66IrecKzvAG1M7XaON7LtZ/uAxZIJLnNCYQ5uY2MD1u/YBg3BeUU72KZZk7SopheYeruqRG0J8Lu46G8LFWvqxtewjX74vXr1jRdZj9+wlegN5V4upAcM3moidgOJhXj3APIrEJMwGP36fJanHRot9cx1ObP53uW/9FhF3yA5ZIodXVmu06VYtWHC4TQbv7Yu6c0KS0ipRtM+xtRCeMFRV6l+RWxZLz75Z93kM7UT4n693ubQpful/yoUh8heoyt6jD1XIsXGVbPFwBMPS3w2xuL7XqvMTuNK1uff37Gy2QjHhKCOG+CUue3marq6UKhwe4/ORhzWSbbBEax2C4MeG02gxYkkf8w2Oauv4MVuAEuSIbbdKaeS5GT2+WruzdcPwdkEk7Z7hfwYU9tdARNLAJcxwDkDkdXmj6qNB/PLvaUxm+hqcgxflkq8D7pRPEU1o8dJp2aLdz+QfA7nYJuO7sfakjA6MjsSbioH4MglRiyxEyInLuGuy3lVBsOR+IdNHHVZGaMoUfaJV9EAiJGMDi+pSmhJ/JB6+/H0d/33UpRai/pEQMG6QUhPzV1R2g2L6tGOvnbcRuADTVY9UJnqd8Km0SW68q+FOwyb946LlkUapCcjXQuij2KU/QpL+84ekq1i9h+uUUXe/efEycOvmar2/1KTbOYesaP2gePh7M4ba1qOzLzW5jK/gO+SFDmvkTSnEyuk/aapD3btCo6K6Hiu/wcZxN1vYZh6EYtDHPyGjRJtxT2SzazKNouWVBAkgj9uo8DohBwup+B3bh+P5G6d+y0j/u4hxLMDtYTXmFvfIlyynFMYTvbHdeCbve3ZRVAc2i/U60j3RQHNhnKzyCYRTCYx/BV85P/J8u8mwvGyDT756y1OFIo6QAZhHxpS2hOR6QhjSTnrCWEHBPWT/PkN8BcumivgTy5EShRWff6l1hNmKM9aK+p7Hg632hNEFfxfkv7C052XXcqo2boDfEIxnbuYOKRAm2BZsPyszC8ikAhh8Cb7+9I6OyqWHkOlSKB3n0jh7dkD4hhYc2/inHZAOS7oUbSFgdTAPHrZwM8I+tIaxdjSoggEpbGbtYnua9sm7dGLU4v1C4EDeN6CVGu6ujY2ICMQIN2FyGHBtGxiq60HldFDAw4cVnWB4K4jHluTkxO08zzYKbV3ZzZHMBNBIRvI9GvtSviG10P5Ply94CnafuHFz0vm66EZse/Pk8wxGvIGduQEbSPZerYFztFGYTyl1lPxIhjKmrsEr9OYmDbC21Y5MpW8iNFqP5/PshpWpoEQHUndxWbVjueLSzaEzvGwrE4m5TIXfc3Y3v8ubiwVsWSBSWxTs0FgG7T3HgPZXPT4FDnreL7m4bfdWza8mPQQkt7UO3oMayHF/rh6iTIxQmsBwi0+duu7f86oUFy8vxpqWJtkGS6VVHxTyGUkHj17dTSUIHhXIpNGqMEQRZMNex83iwJABmrzeLEvWA4Ln6LKM3duJY0nADLhV6uDylcKTE/IknMqqjqV1r3ps1cKU8gDd1ppwaZU0AeLKa6JF+SKr8aQ2pcwltD8VwMtFDqLx/jeV7iT/+aDiV3fpQDbhXfymUB5Ajjdq6rpBsqu2pqYfaCK8ILlLuHrNUJywrmrVoVoHD1eOSjgGNwWkWuMtBZrzS1whwuvl9IGW5OpU0iCR5TvOnEC19rd5OqsngdWtLZP4JGKgt+Qlk+6iOcFUhHGM+/M6k8ebLwm1WYcl4NpNjn40S0JrPuPmnLtjSGZLQ/KX+UT08EuhIhHzIRsCixEP+nYhNlgsgcVZY32GOi4TIoEI5BJOkuzsYKKF8KGAhYMQIGgDFXtomcLB3xi/Wv0y93GkxtgNvUxxUCSY/Iq8uKml1ZUYJxIaLDqBxWHhKupcroV41nLwjOMcCxHrwAV7XAlML7otRqEvf6jzTmV8oQJM4soVOAJ4fu8a1UIIZFJyhzIq0VJnR+mHtXCTQjlFHskBzGsH+M+ESqNH3F6L669EMsud6ZVjvwkB0Ys4QO/1aIPwAMpoJw+/zmMYOrP7CgPuYPCBmC9WiLjnNiGHpXU/Dk285+McUPOguouGrC3sBhr/Pi9Ohta4hrs+cnmKVtf8+7XL26OS2bd81pQ+yjWt3Hloy7RdZOD/cR0ExLe4sAzEc/LJ4ignvhkIxjumqqaFo+RSEdFBG5r7EydTgv/mRyC4Ge8cqa5/BaQnCw9vtfZfzhtPsBFHzwHanhdTAF67Ibu8PxejpHhc6svwye6W8Y3YDMwk/saLD/dR50zc8iJOMv5VMsLhaVvXSKpwoDEP0XOwI7rPvmWljWvUa821Lkqc5V8KrRnRKOyL2sXNMy0hZ4+NTFjuwqj52UFY3pGUFkfW4sIqxYOpq9aj/FXpV7JBsjScSKUI2sxwTzdkwGm7EJ9Uz64IvQlk/eFWp9ryIh5SIkZBy3d9l68u7aJftLBNf5JtHv2AyJR08Q0y/dNOR6/2FodaPh6MsyrBAhVdwjFpry4iXF6PlmWMLU/WZyBPgBloVypAKxspR7JI4ITaG5tLATdeaT3NW7rwFY+lHNoMx8ShyRiEIq0dyCoI7MkSoQepQsRku0OdOh6TSyZPqBGg4RS5f3PZ1UP/Duk/1RkBhp1Ej/6I3TAvjlxPmT6M6z3QKwMayp0Tms/rRM2tCiic6iOEXuCMps/zwosDSiy3RqeMOuER1JNVzDUxzwtQNhqySAyomftaQU5Tr34NeoMxgS60kveO1pCPIM8pyFabDdlPjw/zxs6sCmdWjv0R9tYaTpZ/yZ33GSyDG9wPIXCIiaSXO/BUyRyqjk4+WPhsOhayq+4G/aTI02zce1EHH7Hi8Uq8Rnv8YeuI1YQS2hQw/CUOSgnQhsIT8+kmKp+soy7z1DSOMaGqq80SCOr8qL9eNtBqRDjgHt7u7IzdP5nwH4B0lMsNkaphrv+RIMgp+YopKtG8czcGWbWZkafRW3rEb296g1rAlhwxssMp74xdTUyy6Dk8hQv5dLpn+K8KONt/lg7A6wmFb2ZkqB0v9DLbosju/UKVmAGwTJEji7Z9gJwlwqYfj26HEdAn3aOulmBO5K0Jppw4YoKoGKVvOEyDE7iPKRvYYzq/UOE8GWN4V4cvEALuIrv0bw6hA8+Stxx+JeNmacNl3rDCz8QTLP70lXIrSwlrAwxGFFDNIKGfs9TRhEhEMtmYnV888fxQG1MZS9hcYEQwNfMO3al378D7JZSFmTT2ohoPxXDxz2aMpmgNIwA2mIKdUiIfjmeN43LfwIBLVBHCku94aS0zE59Gqr2MkjZuBRaVt7kaMtaLA2Tc8HGfpZxkVVSfvuxOp73/FbzCuiKcdRi0mahS5I72YV0/PRZCVtZKSIkS+IGzE2RR6zyw/kbVftGZ70zyjzCkU1i2gosrJqgEK+FHYajEr5hOfC7s1YkKM1bgu3xQA4cziqrMmH/tINfd0sBpG6Q7H3iuDlvcOiMjVaDpNMY3MFGfSOjL2dCxb9laAjJcn58AHPeqiFvU29IMNbjpDOHoZ7dD4p89MHfTjfkE9NfKQ8JNj/MhP7l9jMPs3ZE4sqcQmcMd6nEs8kN232T5x36MEeigJ6uAH3EuBrFYwr8ai4g/rPU2Hzd1FGTx7uLsGMEycWbAdYDa2Toc7Hpb+9ihJ22FlOKIepuJVvmuWbr+QSlOLDKo8+KzOShK/DqJlGt+qK0inUMJTT2hbnn2VRRvzwL1yMQUFIQrJJGLbJGWIWrrL1Xn08d2GdM9wXRgX8D+KP5FNWBbL/KNEW9JyCeW+0Xgji/tqX65ySJXeP082alRxBDYcmSQ+fRCjH4k1Gt7NVJl0f/dSjIvbkVdqhGRb4olPDN+MdqhFmb8/KipbdD1pHkwcv40JytG9+IcH0IRjMUlKTWiatshoSmGSBChZK41DKjAhUtCzwR+J6GIweLfIsYDEaostPi/qOnhABJI8SFQiS1jRrQp4+AIjSQnipyCRSJg5WvR3xaiy+dDNjSx6czZaCHVi8sFmBZuK0yhxHJbgOGo7BzA/+0Kb63AYSUClmwWANK4nrdzTL/dwSnsokfmgEtqMhecwRlUWaM13KhIin3FF+GOZwIpUO7FtSDLp7ZLG6xl4+hBQJXndgyE5fTi4VslHbGnviNj/yJGR+HEKEHGjkAXQ5PLXBl7p1BiP5DBSQsJ88TW+b5t89OtR2jmt7efzCriofqChnsKsDQixLPHcch3vZ0Fhm13fc5/idqSSIKp9AtBedXVwszrNPOW1uvRj8EvKNhgVC2DgtjLg0Pc9mfnwt22cltzeLYp67DHz8MRuvxDPJ7KAMonyjd6HHbiIxlvKLp7N0GE/6w3s7QpYE4t06vIBfAFZaMs8/n13al8c/QbUnBLaaNF5n1/kJWkZKB3ZlnVTN4OCmzO8MC71jxDRDAoGMzaQGKpBTrtnztXnZq6EiP5LKVRv6tT6mg8zIckhiI73E+Ux7VanGb1R0ael8Ic1e7nwLtv/Sk6IYzRFSbzN0l2GiBpfDpnhp55zO7PswOwTG2FUsgCxu1jgUY4f8x0xTQtcxsl8GN6T0xFZyXqPugfZ7r3U8adhftb8K28UY8SvjlKubnnBO+S70b7ZUGS/cSCTsatMFNM08VMEJYz6Vp1fyRpw6pwQ8LVUFzYR1ShceToiS0Afd9erX3VfGqAYM5qbG2nmqWX3nafYOBz99udvA/3LqEsDalUG8lwUU0goHnGrK2FyaFofD2bEGNeAHvPakPpLrbZbG6Zmllmuy32hvxuL+YpL4vVj9tTA4j/rJ0QUiRZa27nOZdZj0GvgFzWBpSxzew2sNqrDV9hN/ldcgvNfj/vbt3uCNcisnHRm7U4YW2l5FYEZmWju8L/YHzR6IT9CnGU09BR2YM2MiCkxRTs01P53lnkp5THO/xTuZSmJnqoZRJUPrAaGYm+rTRYsxViCblLGf/fFUlsx6xcMqImq7Xj6dNGlfi9vvSpLMImGDfUa5e68uKarc9cE/JneG/wPMU+J18u/ds/B8CU35utgGc1wsMcSdKBZCy+LvgDO6Dsls9MxLCYbiAEwuDt4MnaxrWZ1wtM2pp1UyTNkiU+JthWe51taXDjmo6eX2GtN2AAXKUK+EOtkRvwxv3gcHS1Rs1R1E0FFxgleuyVlnhYWWzAlQkIsTT84Ih9lId2NRGjpersG9zOHW+nuptyrS/sCCSJdR7cqArknTz/gd0FMtX8oDw8oIcq5I/X3gnLmKcLzyibvNJpTjGMUoiMN2XJDyx8dLSroZ7cQjQ7Lp6dAEevfTRBkGVLsw8mDuHuQqAbKLVSnrriUkIJ91imuV3LbEf90+sZd4nyncUInqtvcsGyNpsRm5PS9zz6ic0LCKaJCZZb9tqwKtoMe+HKqnm13HkTgkpBc0ijNQWmt19HZDAxX1uXxUc1mX2RgdlaCsXDkCqMg9eDK8KURsYjtc3ocZlQrqgQxHEzp9xTWiHz0tcehUVC/Pbh7kHW7GFko6e/rI2Fih27hjJ47is8EAfYGOnnBRIn2ZfQF2chUxM0b1wOpAoFTLBy3PdqW8erfimjd/sPnvxaYAY1U5QNiFHrojpJBbvMBZK6N1mrziOMvXPY3UiZVsPL/56cVD5Q9ibU74Ws7uBXLr7PP6T7S3IzrYqiQXSF+EXB/b2B7teaN9KBiiZZTzppQZSIDAaf4fw2QBfcehZWFFEboRboCxCi2TaZ6b30afUhaJKqnYndc3ISNUAdkxxEI0zs0cKXw98NtLR5MrGI6YdnFhTvrVRnV9ObkYxDvCQMq+J3jDF1jELEqu+NAwrGdizqOW9tYs4/jv4F5ts/SbYszycwfyOTjAA0DkuQ3MKU/QG7zekoUooBOoGAshtCWASH2ULhOZhwRl/vtBWDgVCXd7YcmddsKUexFC7QR3VqXicMQHfYHfU8oIJDSkAnSeuuyKy0KgYAwvACY1kpLgUCyz5qbvg/bz5CTHTr0juhz88ykB+RE1cu/XXQ1F1p7AnsCoYuXkFBWlkALqng8yv47e7CCAXs0fFkbt56hwMbmRaJxer2SNxA//kRVGpWI8RM9BQ85dteVZgUFZXiny1IYnuXpUqCnJG9rSfvfVdKCswNcpXS6rmtvcDeGFGaTiX42YEB+cOr92SyKRBcsr9qnOS0q1O3WJKLRH6Qf+L9ku62uGPyxDI7bKW4ZpH5g1vQvsXh+8vT6LvszPUb1OgRgS6+xwltospGP0ykzNFUhRQQcoGqftr3zvvpH1U8fp5ZQZOn/ANmqJKQ51fH2LjK9rYd2xPq2dz+BhMxZq0QcufhMJgaUPnb8lIHngyapwMZVkSwryzzRPMzdYUy32jIw+ZUV3Na4FGrEMd+AHHzIlGbPDk2KeHVDucjuqKDKfJVkKoZ5J7R25VvReACD5GJ4R31TIiY61fEmYd3SV5NfWMmejELyxSt1s6PsP20ceIQJN0m4t91mZiLQSuv9kQX9sCWZEmoDaEbY3ePCRQ3OJU0Wu3Ycnh+WaYzugoqObyN/2hC/dn+MwX33+4FzYbw5xQTwR1pRUyXw2SRh1Wwr6399d8zdiUTr5hRSW1W86lzcvHNeyyRsjaYTSddIg0umViXyFUb/5M9/yHPPmVNoLDHCNnqBY4O8W3+4SB245xycun67oto19rAjTULHsJ83owlXTOABwBCV7in5oA9GYMprXDjwAet4Ybjhlv8gwc0Kgu1ePrf+21cY7vG2EtjJJef3xcEIqp3MZl7fURslVzrthZeZNz2teN8V/reknd0o3IghA4JeV7lc6g9WkvwNgz3bKV6DzZ6Zp9LrP6ACAPOVYq2Qp1y+F3pxhJzKWNVIGUPMm520xYZRB8detswx0QMMQ8yeBA23PYTDB5kbSsvlvzy1faGMOghzGPpNZmKt7fxg9PNQYK4C8q9MfbsKk6bB2H1JCmZEwdsJO8UXy7HOOr02HvkClPId/CR8UwHxUwxScQ/iJ5j/q20y/J5Mn++lghx1fHr+rMURp72cvUkIL6V+5FFyaP2SYyiNezQNEpNcL9rebbn2MNzLhet5G3/XLaXNYgvtcMMKNw35bP969MpWEEgWOxiUxKx9QuXWDqt/Xed8LGo+7+wRYvKEfPMDL2yNTo/qmT3PXw8RwEiK7Dtf4V2qRq06bODvXr3/sQZ3RABlbV9WIkiWG9BaZke7n3ydO5vUqNwVyJMHBWE/kujbySyjv0+mGuqAmKpPbaUbhJB3dsMJva8IArDioiRmJV73NwPQ1cz4ZT1wIyDdFKgkIfZtJHfKx3U2Rg6/A6j2A9+AVoA68bvri5fobupqIh4sxj99vYHWaFpkrHwBVKkbBO6qVhvOvXJqdJs9Lja97eu8r5iTPoVD9+2Xo2tdbfcaeFtBpqZn4EVQVhpeYp7tsxdM6fG/TSx7lGw6aYjk/w/5FX3PV/d5nIgKgl6GUSgHAVbSj8NfIbd+1DmfXm/DgO0UOT+DEVb7nY188lO3FBNmsI7ZRGcypk+0EaNHS8DuXtpQnk21xUDAc5DssP2wst9ntaEKZzZ3q4xH+s79f94uC4g1EDmSb2ZJVO+0d9ixBNmBIHSQkCCr5DIBFNippxHX7K7cVZtpT+1rrZypqlkBo4eIgA6fL4E1USpPjL5w3fwnTgI8NPt78A4lBazlXGvVYNz9IjuTCrGPzv96VesEDn4CWI88gk0gZi68Q0SAdC6p2YblkTkBEC9TlW3eYmVoCa9kt8tSJMnHxarFVE/Qysil5XiG+Z1QjKRUvyrS0J9kKhDejOwVwqpg06rVzEfRmXVkupfyqxxolpE8ggDnNO30STy1d2WpzZ+pgrIkXC30hbcW6vvO8t3Q4SqEIEsJi7+IVfJhK2Siafp63IBDgKSuTqGYxVTPm5xPvOtb9oqFnQxvZJQ4xLyyGezzZR7f1Bfp3lHEBzlFDEtNSNO9ReOzrdB+x29pJEAQmmsJ2dwlajDqBe3giweJb5EDAc+3BmdRvzxHsLMgcuMQt9FZw6ua/aSCKnE33Wmauv36DXvHY6eYcoLqbMohBoirwTnCkIFGQrggXKuZjA5kiILaM100uhJBFd/sRBZ67f31wNvRUMrF
Variant 0 DifficultyLevel 723
Question
Three identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
If the prism has a volume of 1029 cubic centimetres, what it its height?
Worked Solution
Let dimensions of one cube = a \large a a × a \large a a × a \large a a
3a \large a a 3 ^3 3
= 1029
a \large a a 3 ^3 3
= 343
a \large a a
= 343 3 \sqrt[3]{343} 3 3 4 3
= 7 cm
∴ h \therefore \large h ∴ h
= 3 × 7
= 21 cm
Question Type Answer Box
Variables Variable name Variable value question Three identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA31-SA.svg 170 indent3 vpad
If the prism has a volume of 1029 cubic centimetres, what it its height?
workedSolution sm_nogap Let dimensions of one cube = $\large a$ × $\large a$ × $\large a$
|||
|-:|-|
|3$\large a$$^3$|= 1029|
|$\large a$$^3$|= 343|
|$\large a$|= $\sqrt[3]{343}$|
||= 7 cm|
|||
|-|-|
|$\therefore \large h$|= 3 × 7 |
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 21
U2FsdGVkX1+FW4XNuWVprJJoWL7oxLroVyWBwL8lSqoWbdCJ1jGrnaGq8eiy0I9GvsN8/sQ0XOLsWf0Oj1PxvzzYdf90+EGsrtGGkYfLK0GN7WyZEtUIkHKYyExm5vkM+8osogI49UJb9aok9lvfrxqcYDzUrgx4lCIk7oSKjaN2aAPRMtCIJQOdsUm3EJMDQwTPaXztWQhdD8yGJZyEHH6DUx1GU8uVsKwyimQU1wLmIUCKZZWzKtKAzvedO0jD9P6dAKUOtA6HxSnDkXaqn2bS4BS9XvbYGUseXTt2QJsXIcY40vIeL0YiQ4aYqC2GBwxt7bUC1GyERvLTDQb29sTyzflgD/ngUzb2NpPpn4x+pa8Z0VA2/tjCur5AKosmodo53L01JpLC4/tRP85w/dTApuYVSWyjQ0oLYjP9MIB+0j9Xy2r84+p9Z4YnX4H+25HA/o3Z2bf/bImenoW6TbqfHghc43VOZ8ZWau0sbPyealXfS/o5rL9rg2D2pqaYn3OvdjZLkb1L/mwNnri/NwYd33rTZhallZShj5FRczIjgJ3VLnBLi23dFK/81rDEI4YZD7v0Vi9JswhweTfFjp3tLMZMdU/lSbpg1TenuwK9QckR38IzcmQmwPv7SjMUC4GiKMFwoVDBWq/S0y1TIgzSqNvGrf1eS5bEbyuOadTee1qGCCqkSKWGB8BVu/XqYd8cj/9BuqZW97IQDOowQPoDs7DIx56nmEzxfBPexRurVWVl4osHSqBOhI2fNq9flTKQhnfmdcdlLgyLM7eWGacOwucgdyGgQ9+y/syiuk/Odl4GeF+TMLMyRHkBBitc0Mne0mlgpV8UOYWkPKTLoGyRZL8KMW3A1lDOX+xPI7cf6lEUmWDyhmA2DslCMSf0JpevvHQQ+piUr4EjtWhrawDY+xsgz1qY1D+DewGbUGs9OMkGFxehNBFFAgpPw9D1CA0Ygv56UnnYAC0XAn7vz8a9LScH9H/nieVsH0XuttE3MtdatGazKblLXJ/TYUMDyCmJZ3wNispHmI8zSDvAokvKT3dzbx4KJFRwggSq4ck+qTj2AeS9o8YZQ0U+22fJRNhB92mUNF6ntJ49ZCGMcEYhkckYJAKELgHDtHDfeTxtEmB5dZJTt8l1eEtjK+hNpLzIzJ6V8Hu4zLh8LvjXhSu4Fo1rwaMIeNfeKjqRCaNUIISvZcTW6gFox8qTR0CoaAUVKjlPaKPoGIWeljeKLgAEMIreRnJclbJyM4GmYhRGBuIkLVj4XlyRZEIDB5dQnAso7VIw9GdjGJjLo1MlAR0wltXt8TndxNnIr8ngA4ZX8umrahyuaqoaQkvv91Wi0ZY9df/CgMN2HVwu5xWNuZ1rcgYxeMj6/U5buG6dm5YByM1a/QZc1HX22yVAJaZWAMWaa04Ed+GwoKn0Bqe3KW7YU3NmHnCZXFnEInP0dGAaQL2lDxcXnQ2N2ExEGMeF/mPcqU+54BxFfmKZWJXtLoGESdNzbWk8GzXyx13mcbdOuIDv6hadVECqskYydTnWoPNd983i4z9hpkqOsdit04Ea+pzTvVW3/F0fnjsqby+SCMaQEx1C5tmE+yeOK3rmUQ/BLzt0ZQkaZgAF8CHnD/ea0JaeB+ozu8G2/4IDem0dAU8SRpnM5AAI74qWH1CwrvwKmmNi9dq5PKUoZ/bJdeULhWLUWD8M3nowfItVO+oVWdhFj/iMYdLg7vSanRrfJV1FCV1zb2bVxyWCsB6Wy16q2rO4pyHC5evp2hQsyCO54XeY77ajrAYMLGoAwA1NoMSNsc0JkNUkZNXPBDMh8khXi5+PAwcEwH0xEcGWCEZN2Loe9h7vh+F4S1zqxbN2vKMLtTIy4V0WdqJmBnxMc9lumxFGNwfWweO0ADlkN26QE6oRvnsZU8+UyxZj/11kXLDHt3rzLEG/yn/ywtuQ+g3BKy0BpP+1EJzhjiSKlTenKksAdcnMpg7jWl3bVmfjJW8FQ0zYNTrjJXpo7xOHkOb9ssRIdBIqvGCKZM9yXW59KNomBtEgVfShGd26msxsrJBFKSvyIJ1shL+1iE+aCzlm5MIEIRGzkVgaioeJKImLFBjcJTfMkLzkkY37zAcEj/dvig3xTceWeBXoc42h+DQEOu6P02C3I6qrcv6g4ifz+LIP3x20V7kmUQumVS7elMiH0VB0xAWRp4xMzQBqK6dL9mK9BsRj7OadLU/oGM0dxxKKpgFhwMDr2RzwZIJ+cE65IRpDC7fzyyB7uu6hvFxfAPixTRWdyr6ZtFAbt7h2za6IK1ufz0bhKBVA5j/6XKFfVxfF8GExS8rTtk+KkC/CDUyMTP0QYg/wiHcgj/DG9pJJgVApyOAr5bPwMzBTB6W5lqE+1+xflbjrcyKgMqvHTfOdKgBF+bO/vDjGV55DpDP4z1ya8HCzm8uCxWf8MGivwR9RG1m7qFufNsV0F16JQsFCH7VywwJ2M92Ud4aXsDH/atxKjpRxEDygsNBcfYxXeFTY1WRC8CQn4RxAugrM4VleJYZ/eOMNLg3W1LcAYP8R5HUBXSq8P3GntvW8KnxOaUKDz6k0M000R3SEhN7YNPWi3bfNqohGunX0jvyfMGMyYG6vKMXEQeWe8tYlm9Kq1bcOM4Q9PvK4f4R313iZ2ba6ZilExyl2X2f8yyG4nb/k4JKbPe4HB27r0+GPVlxvM1vKlzwp/J1mgR62sSE5rRnTcAu6Lh0dt/pk31XE24Nm1dzzqkaLCSlMP1MA+bOTuukFTS7A8lgEa30ZIut0zvJ/sNlkVUQHU8pTSUwkglkMij8lLjlNATQWfwQgUouFHGIv88OKVwgycwBiWXRXiPj/+DBANwNVXQHHQ/eXqeFKzU2InkZJXQvNxCnDdUW2AR72LdbAYFlWCRXhIOz27/D/sAtaSw9tM1KrNlhnfn3VzpkptsvRy8mwe5h7oazpxG+2ScCrfw90K89VMTtK/Qxw0sacfsM7U7bsPTUX96VwBa0BQv5I9Bn/YPptmmU/7De27PKLXYZXJGnx/9/sJG11w/yFLeAG3cnj7B6iiXuDsurv6yAKznhYwjm9WbN04BR/ajOx6irMRSNZ6UDrz/YR2y32kApXVS6KIE3z5Swxiolrs3s7CZ6djvRoNSnDNUbwG8GhzTi1cnOKjjyMCbezN1eoCvMuT2R2jBCIyysjf57IZEmQGKs6LMDZcwQestzAu4ek/oQXmamGsRBJXyuDMxfl6RrJu0CA8SMvoNR/7fxJTHEsRMLrMr66cYE1AZcbxNwIiGts4muOw5qt9WSwEEqhksb7veDtfwTJtyqH+QtUK6FQOSbpbcZtOG1PNB2FkTQLkACUXaTB77vrUzXUbIg9Qm3s2VPHbPkKR7sBRIAYegfsjjyJ/toY/fJAjrbYLbrG0sTxnh6Xx8WDOBlilJrVo3VZPEEB1RLiVsXUOtv8n9fKFWK+151yyJaIpgDX2WZitlgGdcxia956UUR63YYBpg3GlOwBzGSSBbx6zCPEG1J2A1B+gv02cQDAQ+xTVVUdl4QSiXVyFdX9zNb3wIEmz1HzIReJpjSuaKVh94D9ly87lJUs1YJZ83qdxJb+Cd8uzHDeZVuMBuJQhBMgzyoM4tHrXAJoM+KSiWYOcaqpCIattjRAag3apUTfz9m1jpjiawrWL8Ojeo90kMYaurPS2V3Gy6DuXlKbPQCCWdJVb7LCJPcpJ+aZwVpgkZTttiX1M/5o2KszZryJ9qMl/s2s1E/LjHQX6fx91F5snFJoH3Say3m78XzRKpKaOiEj7rnNPDGlkLA1ptEkV2IGFQ0/SuAUWWCkcN/nd4XVl0OFkac7VhkFUEukCUA+4thW9JD9ao4ZwORMXEF2b9P2smBLb2jUeJABrDsxV4EFRtzGqugE6+w4gaAAORpCttdyNZtG+5+hdJ7IF3iLEv8+QLc+KUmcYQaaisLrC49qmnE8BcZ0/d7yJNCG7zAe7S68n5LKfVFxpM7PJ2Xpcn+WYxZwd2tghtMrfDI3jqk0kV7VQFOQ+WZpBC5odzclAsFkM38zSKZND9amojOHRONTMYARtXD6Z4X2hRSE8kl4VdDVX84liI8aXW12oOyWyvHbHMr+PwIcKQDdOJIWhda8ATwpgD2SVogh/WmuolAap+BGg6q5KDYkqjcXpSbhus50HWj5SFJTuslvdJLS4GRyzKHSxu9HAtsV9AgQdXA/G9Ee9Y+9fQ57w3Y2vG1Wk0LJ/NvOLxk4oHEF6KC91qio+jgcjLJ31wPsqW6L1L2wFRzcb/CitRIbB6NwJyrDX2p7Fvn5CJJi3mFXAn4qAnz9BueDoKq+/6KePCRcBy6Dnp26II20bTkoOiRSHYkyAQ3namkBWW7d2CyX0o1/kxGBz8s3qg9xT/oWyCGD7GA67ykGV2r7v+iT7cVzd1e0RWgqZQmS+9qQtmfQhECGUtHT37lUPPmXDWeJHKfSRiP9cCxxQeoBp50MLamtBTHi5VBzbETfXSZnaO9+q9F/hlkb9olDelyKOZO+RCOA8JY2gLVTqpQbgtr4x9n6l1rp4xVvfqOwiE2AOHMaEvg2LVI0dTM4kIowOBpiNyokhVlJDejt+AyhoXt5bWD0+OeW/l0z3lPjjkAp915Bv3BraPy0hHC0WZLVUhwKElQpu4CQMYZp0Zdvotrr/bPSLl1xOEI0jGnr0xxlIb1DFhA2xBWkeEdZ4MqwXPtwZqGaodcrxvj4G4m9i4zq3Y2RKyOo2LmpgGYlrXNh1yvUUWwduvLYlwCN3beCpMDVCdQuwA9ty5/Mkr2gaq2N+wDVgUQ+eWrHvBYf0gmxSZQ96KiZ8b1c/djgoIVIHZZbNCTRF2nnIKvR7pQN8eRFaxHJ1XBGTzcLKuRJNZimVE7O93+vFOcmu3DhAsdflp90R4TZAhiHc0rBIsMhPTt4j6IN714KJ3bKFgYLGBq7Erem26fcR8W2Co09GExrIWkkvVuxQNTWlTApQNZciz3zw3zASEqeCEgSa7CWT+uaLUmmrK2EvTeAnmLK0E1E7N/mfYj3yp0GTGb/yJxlPZ08PatXZRBEWvHzeiMZOrp7al1CDRxcqWwZn4A94Li5XSA/Wck6touH7m5Uqh6NLpQynSxfitTcPYJUGN8pnf2703YVmwO3QJVal6AbT3/GwwB8zX4hc//E3zRDws4gZaZyKmpkXXY0nwggDijENkhEAZAlAgYELz7EI9TUeCfpcIV+OIsUlFEKUf1lPVWGgM1u0r8aG6h/BbN2vzPAojrVfokIZVfAa6J2OCrf1k2mJgTBNrOedATO7QDZ1nsqeOnUY46iVfVWZ2+n1ZFJRdbmzLmt53sE43z32EuqCCt+c5zwl6R3dokxKi2I1z2MzwiDQtJEfyqzfevMHI8NQ1uoc+vNpWs77O43oyByt/O36N2oyJio/g0r8LJ5LwgUy3FT17P3AQSdjGjweZAasB2YZW84uSFcimOoWShs7qjx+rHo/RIoska2n/PyhKFeKFsAyw/JC8glYuqdCflN2+4xN9lBdBgAz8M1KJpqIoiZ5E7aKKOR06qhNwi3CkhtXkawGJaU8dwQ7bQqISFXfvPewsLfIY20ajWWgbQ2xtAvytnCnZLB+r/7ho9SCX7d6ZFyOAQRQ9WYCjikJnLsJ5n5di/LTpkEPJUb3i4Lj38yg25dn9REudn0P5xf9UGQJt+NtFVElTN+hdQAH1/FlL3aZpGi0CzNNO3tt9BgCQh7GXtH2QSJkMXbssKP2oSXi2e20yswYg3J0/o2LMTsMtLVYz5MgTcLBFDKGs3/asrer/Hs2qCIA7XnrX5OC43zhN2XVkgAM+psccwyQjl/wvtCkPh/1GTczzz63Hs8aanVfLV32iKHQUdCXpThydYAmLQ9eq+gkB/+B7WJYv5Eo3yCu6OYl3WoELmgpTRacyWDxFcNAdTMyERp4iU9U1BdB3rC/NqJ6d49MuP2WCVNd07wxK0dk2ndP3DEzMMPMFYAxmqTrYKgpxOR5b76F65GVr9qSiIqf1dzjoTlZbuffcw+mK20ZV3al/dLKF5q6ILwMxrYYt7uGeoMKfLF+vVce9+UVPOgaJxRTtxOXu9e+VOB1u/n+YP5/NP67wWrtV+f2fGVBDJ7Lb9F7v5KX+cNJmoF7mUbtOdVVRf+7MmvNz/ENHm9+uBwooDPfV6ESICUFA4pWAwxr/oY7bKyFK7DDWtPqFJVN+etn9byvj7Ex39RNdML8kS0nUUDNKoz8xTEFMyeuVKZRAKhutYf46AmyZ1//HIhTbDMiUyHAuMbnHWKsUlw8ZHFWdjen+clgwrvi1PxrYxU+jKUUbOJ2TlzJPMx5SSngVtPJtlbWhv0sQ4UhYV6WwWyjWFRUY5RmN04ZSTVsqtDigR5S54Nrtuqd2hzdGmmlams063aBGuNzR9Zj6apmZzDcjhjNelv+r1eqQkIF7Io5BYWvvvu88rj/6Dt9DJAI3iCiqgI6gGOdtpkRxW7Q6YW10nsQf2dMM76k5CvHN5o9QsyfO1zKGhzVrmJPuZmhS2zjG82vZ5wElaxZIwP1t8uU8b9Q59wHSRuyQIB0jQXuaeKrsmb/rUB8ej/s5IzaU7clcjNekDtha84ct510bj1ZtDgmLO+/l4RDhdNoz7cXOwXdK/tudl2vlGxhtUC2BFvR7JoPIdawEDLelVMJ2rMyvBuGk6vNhw6FDtoiNBqGCOJJX5+hzD6nm5KMrI2olUb9DERjomBhipoN35IJ+uJnwuq064q5shXJQulEMIuUsZaoLPWDsw0LspP0cZ77nXRCMu7MqrdaQSf1z5mIu9iOgBXgHj+lXdqiJ76crlnFTfna7uebN5bhYrp5J7+JxhLl9L21XldfCPqMRpASKxRO31B434KNOV+tSnWSNzPTWAupgk6aTgTL9UUDoNfAkEe3kaLJefBRnt7AvqfjPKauyrCyKMHoHarGr4Y7EX8eFJDu5/5KQN+wSBKo/Q2tHEjR3XmUNV3tdeZPCXU0l1ZmLoy1QJVn4UXcOtD6tm9cvpJ+NxsUg1BpmqoNAMYv1BdHtNqMaVE7IdNOCFRoIJvoCVh7KNEbUgFo+sosSCB44Yyg7agxElbuEQiJMj1TH0ov+6qn328EkrdZr6JLALrfFHT3Gme3j7fz5jTe0Z+dLDgRRjXz94eZZjuErAe8ChU6Dsn54OEiMtWJctsACakDBZhVauUy8ljbjlHOG4X5UiOE3fC9MToStKWCDkdgUMPrnu3GbA/s4siz1WqJ6EMichZPHXwfgIiBYTVR2zHN21WkNbakT8DoMTCIDGdkljqGYARtDfJ3M83Tn2CYye26WjIxjM2bbxga66pzNF/idrxP9gjrd1b1h37D6a6ZBCycnA3iVwiAMtGQyv74JieLK3KZa232eNnayMJXHJ3bGkIJloVcWJesa2tXkCJ9IsGSKI9gq9gOpuGncOxCDZPfwtVFWi7DS/KosqAQdAWNlRB8zVQYZVM0LRsk4nLvT3OKDFT7QrzAXayMiLpqSPJ9G2NjpmcrxJMpIu7bkIZxAw3FbM/WLVX526S5cx562e2pK3Y/iVCUuiFA9WQJK7aQrhb/3sfSaOYtcAH5D9HFu8NYq4DqLMAp3Qg0jnbZ+n5cm7m+0M860oiLS9wUXV44KP8arr/GgSkgs5Iltai5rakQLfisE9zTiSUUq+z/QOBDY0JRj8LqcIU4SNndTBrlaDtQcuoZxuVLs3plSV6gW/s02YfD+A6SQz71D41sieju4rSU6RSansjxfMQj8qEwS5su0pHO0N96oqbS2TuPHnvr5fTt5mzI2I/C7mJjm3NkZMsFxkUYtJ4KzZnGLdBT0mFxNHPGBMViVgpyWAJ28M/ak4ahxsP0EvL1veqfREujKCavj6BsFfRNrIAZQzvl4MUgqWiTMi1d1TX7IXrUp2GKDyVnFoJzazJ+cEStqbOXai6U07M0eUmrSiGR9+DlqYhVw8e5Vfhsim85YKDx6yAAzMzhpNRZBaoJSlw6ujuzUXatqQyDEUSTODnnLXNX5lUgW42Y4F+AiHuddjk0I6/uavqT7GhNkkybArSVszB6YubRb5vrOrNzqW9OIhzPGYQIgppoqkhaJMBWaonZNnIpu/9L7Of2PnFrPROZdsBKK8HxE4SXY9/ZFcDyZw8i9/+faHSx8fTId1SIFvYdmvKpEbr6IGD7MMy8dKFFOTkP+q/JIvI7R0EoIkm1fwfYkGGVv1KMoSSD9/sRc9zxSlnJwgv87Xk0WMVWF+xGAW4750amdjEDn4c0TFl38v++Q/jVndpL4E2cAI8AZcf8gB87eHmh0y3ivlh4xebKwm70OcNTnksFWbQcQ5hxuw7RlU3+x4bvu9yr8zyo4bIlP1ROEOK6zIS/cTGqmCdspoX7y0l93faeq6tYKbJED+PayDNiA4G/A7pSlRxt6/Cj0qCeghyuzrFKrv1Wx33u+T11Odi+B24jLPg/Kj1KMncxZ3Ll0W5R0Eh/tDal7E2vwC1KUiVluZACBXhsYD4Gzy9dFuaNE/AYVpWW+yWEegFJyZjfHt1BIxxWIXgviBY1lgamtK+m65Myxa/dnuJG1/pJV6NpXRqZQWbyZW7SdO03qq4caUE5d2eT4zyG80XNShqSQXXQMggWZpEma44DFtGT6mUdBvoIIEr4+t0a1/Xi5jeMq0bWOVFOf5LV84e2BpOFa07X4WVlet/ySPyiBB69Au0Lc42uXPDO030g9pK5F6q+cm6mrZecU46f2roP9MB58Spg/T77AHaXcKV8MjeXwajbW/NwMXQEY6rihnTcGSO6Tdk3HLXxb0/TK66B2G5ZdkorARyQMFdWBHmyPwWuRL4finsEKWzRuKfUBvs9JmL5M+KT/w5KKCHIZ/a1HO7iP2vmaUa3avPqjp0m9yQeBF+3OaWQ9YJFQ8uJ5DEup+F5a+WPL19XzsJbnlsHogY+xIAJUWqxzXY2n/dXGO20AoBfoi4s5AVIPPRt471QuFlICLfw2aaJ+8Dt/grB3Z/Wiq/d9dJXOHN3knZ1820WGkBYEMqD1kfUq8mfuwlhzeFKhCF1BjYHzVU7qgB6ky2My3Xs4/rZZj79sRUjtuP23u9raOW97BOH/cH1PftKkpFAkx94FZiKQkIDUrJpp6FVimKoN0EzmMG4DMMpmSwnxYKShGT9+chu32NF3i/xNaDD/aBXUhpHfcqwZtzF+Ro5zFrj/lMq3jZM4VIhLhA76iblK3utAvxk3C8X+xkA821BizJCFZ6kVmEW7aLshmrD7M3r8lS06HfdfGffYil+xLL8I9Oh2H7iCMRlXFM4WS5LOJ88u6vzBrkRt1ikUBmZ9kbQWg7mpWZX0Co23L5C5Lvwzvne/XXA/lqPblli6hUveX5+DM0NhKQAVLrKvDoSN2m/pZEv+miNeKifhyYFJl+b1kAkm9X2SYvHXHYAsF6p3hPC9B2uW+yOe3Uzft6vAPeWSC3K0cT7yJpeEM/iUHXO50ZewS15JyK90NeSLR9/0yY6tI6ApwoKpcWuLI/9aL1ofrJp1iwoGisW+GajeuABTJoN6l4jx2z68dp4V+kBtEqT1Cm0TXuOG6g1dfIfcpatUKzTdCzX+OmEQXBvHvQMF/geCcfmX7IfmADoT9PBbJb8pZsF71adk6E26VgMap7xUu8mPhmupepHVxfguUASCgkUkzjHj56ii+ehi4cMfmn3PAmUX7HoPonC7SeQjEBLf8DpZl5gXjUZWKNC63AM0JN/XvwxL0qf8xcRyl9L80mvqpp/JQ8lwlxvlsknHtz6P+8HiyXiUW7T6qE06orBbNE3QyH4n1Kyc9Hil0IwQj4tCiyP6MIrQPQ+CnQ0rMj9lffVhm/lOjqkWsRhflbBs0A1pt+yADcdt56AQMmvTpj7DTqSsdo4FOqAbVqmgfeLVk62yrAWdVyGgflWI+BM9NCwLukGzEBhhdAlTGWWjtnRZdvl4Ad4TBcH6eQ89n76pfvwSQKX146LvUJZHn/cPaYSz1T/aSCrzQrrt+GFpmP1jkkX8V6tX402IG3q8RhIb1xTa8yjWD28D4XWaWhuiLFAkWRJtG5M+sLCrEr5DI8ks0ihXoOrOpU9RBrFUklBisvBnT/3jwtO9McACKBw0TDSdkdU/mco6mKxxyvFyygcA8wJdMglxXFpZqQDjMSI/XLAQETRUeab6c5EkW7Po/vln7reBT6rzLuCg1NL9g9Zlvg/HHT7KHMJy/dtNkGQ6JI7j73plxHROIKuDFm0nOE6xz9DGgyF5hWUxkF1vmcuXce84F/d/o5vMzvUbhqVYOOpvpmPm13izUy4Onj/2b92MnB7/n/nyksMh1umG0iUj3Fipn8fmguLZWV+kBJmX6ZcAw5MVyewzYZd4OzdEqGSeB95jojJ/M5Ny44UIGI3iCY04YbTfQX9BYEzzgu5OfzCcsAg4PJNYdMPQ2ZOlzYlLXwGqRlKUIYJCp0EEAqDkpc3GDo78h/FHDVvafC5bcgMIOV354Vahr5sBamuBYcALJiW/5EkAtmtGDvlYl8yWUaQJ9phZ3MC6KWbA0NiG5J36PirhIB5wVdJRhdpf8UXvj+gJ4fnapl+CHJzapPQ1ldf0G5ZVxbyR9eZLtXwnvaeUGTIBY/sbw2CuDYGXlwEF2i9TwMHIQu6L6wQ1LWue3saaaMfdR885ZNoz2NRjfCPpFS7ngvhDjxNCtwYYkCCOnvnFzWgu0Zo1ttp/3F8KcZo1UHN5YKS0iibUoB4KoJG13fZuHQzT8cq776ta/N0lbjEPkHPQE1EDRB5cxwnQC5jGdSRFKHtLWO3zkBEG9l0/0jOye8u9RPgOb5Wsy8INfcKYIwJd+RC331PA87xJb0sddKpV3RQEtSabBbM6Lwq9ltQ/2DWn0B+XyZVjFBoRD8loAdeOrx4/NPQabAaRg0r/V0HVbXfmC2jGqeyvPhMtfgT7tcqZCdZlFCM4VCgr6YD4pp+J8dsxfvOvolQsfr8KETu7KF3BYsDeRbRucixcKoEClRU5jNjTgx1rYUhXO28ld4n1kG6B0JOGEav9H2aCDvH1rHZoJ3+rBO9Z6glttwkHUIBxD/1Ni1dIAAOKzuE8jcdErJ6vU5xp7u3xOMulNpCyoR7faG2X8CXFKbBzNc8QWX4fi6gy0wJdSZcbSijP1/0np2CHGpPFXcNwRhYM31HI1oT5cRm8v5HWdmEpJlWEcUaUcG8UOryk5crFXQ4rP02/hYDnT9lbdRC0DL6yAy/TwLSgPpfL8gpFxm86lgWuap7feSgwoiRPvb9r4JuBqAbK6i0wHNB0YcG/6A/CmXoCrWSllFlmEfoxRyHCrmGtJTJZs1FLfeJYxHBaCRKQ4ow9wHZcjp0+qlyrRxoX+r2W/Ads86vISkyzvLaBK2udBtrlUdfxSjGx0zD7zydI1p14xW0PfQTozT7QFQUrSeKETjN/1NYEqaVy8huf1H8IyqAs2r5RUtCU4n7JZarEjHsxQTJrNLQimvvQL2eR/pd5zZNgu3TIcN5OF8V+jT23iVWNRaPQv+/vFq/ya3KTlGlwm7Y5OyxYR949HriewMvgOvWgGcEwrsY4HiiMNfC8i8qQvGyUBBYAV4sx984c0VMdO3P2qBVVQavtgHVerzS0rmfcgko0D2h/MjgKMyqwMd6EwwuH/mC6oUYLf3X3qxQXOgH+rc790HiiLDXgWqvrVSv9NEhAecyDY1eHzFPookgte6saIaz/UOINGdn1w1UpC2eahwGmkIUzMKjGL5DcvDSvr955UvBitbFmpfR0ZRmQdfMaozusS07J+PssQBalY/t8etlAesG8pdhoAzyM7Cm4HkXfM+IxdGty99+EkRBe7nCey1SwxaXRyM5IXT2KOhUbOia0oSv6OVESRZcBimBmnLexArqm7XodT3WXoiY2tM6SrwGOTeSb5l31BQvvHjhW7Ft7PtlbPm1T4NH4YwwtlyIbRNOcQjB0xKWP7SyNpF9rd6lR+mVLLo8Gxyd+h1TVZIkCuY7uwEPh6cDqcAF6kW2jgat7MA32NLqqzvcBQ+YKTQ/DIzcVEmR/Mn1D0+6dVr7HlOCJFUG3V0nGdP2DVq0a63lDD2IME4K8sW8OrfdfuQSlr7k8KEwyTDkcmNwmo4qiSiRZqYFvvMh4e6CuhNJqTSofuDQ3UQwHOnMgmrNWO/lmqEZiLrUdLIXS6MHeWc06/euPpmDMGOX5qY4i+OBLoXdeed2qqtoAsPDzw5cDTomDCax8fDukmHulEm/nA2w8JSeZ2LqWO3aIi6VaH5+/j8VMZKXPauKwua71/WtUAx8sOAvyjeV1ry1REWoWocFZ6pCdz560KME6mVupZ0uo4mgEqHMgoHYlxPiWFt32wNIyX/zyspQ/lOupCRX4gTjhfVd9hQoTQOtIAOS48i9aT9ck8i4ZDUFj+6Tk76Yjk0cxL+B1IsUxgQj+fMbAcfhwHiaUXj6YkMuYZZZcZHLSVvAQFSc3nZvZ8/EFYl9T08WSzC0cNK7CuIIv6gWSEwACooKE8RiODCqvG0WFGdfAEww22eUoa0ggbyw9VlNL4dcbu9xyDfLilgKhtYdzXXMcxwdF8YRitdv1PY3N7PLXsmb9Wg3jvuSc3x8Hp6Q1Vvc704j3aHFOs4aoYe4umeEj46d6jrgV12/WuJ7/RyZzvsIkZiNuMBHwQG
Variant 1 DifficultyLevel 726
Question
Three identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
If the prism has a volume of 5184 cubic centimetres, what it its height?
Worked Solution
Let dimensions of one cube = a \large a a × a \large a a × a \large a a
3a \large a a 3 ^3 3
= 5184
a \large a a 3 ^3 3
= 1728
a \large a a
= 1728 3 \sqrt[3]{1728} 3 1 7 2 8
= 12 cm
∴ h \therefore \large h ∴ h
= 3 × 12
= 36 cm
Question Type Answer Box
Variables Variable name Variable value question Three identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA31-SA_1.svg 170 indent3 vpad
If the prism has a volume of 5184 cubic centimetres, what it its height?
workedSolution sm_nogap Let dimensions of one cube = $\large a$ × $\large a$ × $\large a$
|||
|-:|-|
|3$\large a$$^3$|= 5184|
|$\large a$$^3$|= 1728|
|$\large a$|= $\sqrt[3]{1728}$|
||= 12 cm|
|||
|-|-|
|$\therefore \large h$|= 3 × 12 |
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 36
U2FsdGVkX1+/YwQrJOyp3IiFsa4l+fg8gnDz9p6Ivv0TBuupKw9rQ6OB5tZDJ6Um8sjR560FqoIiy2mxkVokLi+pJYTLIy4K2rfNXx3mrZZpxXuUD8jBjq//n4YD8MftYBQjF+6oc05flEIlCRmLF+HzzTNbvvcnrfaw4GNkHrMcA3fsmvF/QN/3sSk3Bo59dzsGX2wmEPp0VVd9HQLKg87aF5RYgcyXQXuHrHtVffdIHETaR70NQerA4vH+jC055gQ6yTHwt+PKRqKaP108Pdd+Hd2oeq3GNufzLggOfM6BE77tP0y6GFMjRXrYfdIVBubnTUtYdatFjmsImfMY9TpFv76QgGuK0RLP3UkchU3kDRiFDt42wr5VSc+rq9thpOnqdOBZPfAFqmDZ3WiFoRbjYxQQ6fGWP0MBqkY847FlOIw0V8S6eahhOUsri7pM86c5A3uJ+aNnZ7ciliP5V49gTKtkquVtGhK7jALTwLGF/PWP08mq2Jnru8WvSc3XPBTgMcVk33+FtGYJTa8gAQyewpRJx69G8BY/kivLAbB9CrahtJq0pLy5M3RnSDK+uHTlL4jXuzlrYMj8axGlGzteU2YLdVRwbbP068fTITVXq/8wI+/PIw1jq72Wq8pmTD5XgGGnR4TTkYIjzjBqw7APeBqKOcj90PTKkZR8rw2jnBtV/Qcv9sfhS2EfFD4DSYGr0SG4ULjgNNgUMTGGOaWywrk03rK+qKYDiBqFQ7DcYsrLffK/6IQEvwzJOxN+r6MIbqnVp5ZSY1ybr1re8TNO99HI01pv4l+IY54pJw6E+GHyzOTyJGsul9fZzibx0C0hOP1QtvChop7TcYkLAwCf+Xwh2d096IAYHYugG4bUV8cWFxpfqUxIv0iDPfJzfcUWlY38FQSgh+Gw58/bWHwmkdb/v73cQS8arMiyL2CGB96P2KoWrtnmUjRQ7XdPde1xZBUMi/qTI8wZ2E1pnPsKHOTbfv4Utal+Mngcs8NfOPT+mlkF0PcIX09je79r4EkLc0RdINd0suG+cTcnCbjxxC7cRnXC7Y6qTMzY54GZ6S+zGjM37eO5kTTmQX6ZsJbJwnqlKSHUP9EAvbttB3pyfXpGDwdXGAnmiL7UK8qt9L+suoYbU9eF/Ybv1xo8VSPV1tX5+zusWfxdzXqVgGW5eN8AtRV/rXog7qGxsgKHF32FkU5y6HXxByLCT+C0HzF4HyMakaw2FacZsr05zIDBVpLBbsbWUWVx4NxwXu3/+KRtl6CjA5aEGbGd2PHXixcnMEuCd4hAuJkc9XTjxFdspvaZgCCDV6UQYMdRXz3S1wwvr2L5dSCr6hxTQbUxSYibw2QhRAIvBZxoAX0YI4ozuCVH155g5J0hTIXH/9Y3bSYjeVMgCC0lBucuVSDF002Mc5iCuntaY4g8S8TdUKdo6ZubLcJYQ/DD6fCpCHsxEQrg4G0lGpBckQpaSPk7SvLB97ZDctaM5bAtiA3lq6kuU8q4YLgL5TBnFS6V34vYdIusXewsa8kV0FpPbR9PV3VYSCuCUyjYRHSfrKgJjPBLcf0tKNGYllBHLJo3ST0qrpQJcTugsB8z3OzPkjq4ojq1Y9Oycei1quJEFJe7G1tCE2oF2Bm3VrqgjudPJn9yifr5QVHZYiPxeHZUzXamK5EogV/8sLs+vpA2ZG9LBhhGRZeYmrsqtKbdKwmN+8KF5nTpSo4S8sKUL/nmnZByRhas0KwBN64mHzSx253NaJPliNHMDRRYgeubZqEKRqCD14Ws8Bfs4r5vYZRR+lwQS4hcqdBILAfasSxl0odbAXQiK6BmsfKtkL4qSdz8RQHXTYiXPnXeD4rRKGSg5CFymz1xn6MwZ3hlH4bLqY0lNNBVXubHe84UQ129KRm3Gb3FehB9vISA5Ymsjqc02tjlI8Iv9KiIs2dV63o+pw3BAMJvFNm7qkrTCI0urxhO/ivoi0zivi4q6kEoGwDcNKu8umLY0sNRfn+ZCVhbPe/mDe07POXfI09dkCaTDdHahYVinMcwbIyubdUAbnMlRrfsn16LCDsll/x+3ZQlmthYRA5+EfunRawH1Dk8uea3Tj3c471kfb0hSYum/eNwYttAsxEZBWMjbggesL+gNMEo2ciyy6wfBDvUyUb7CWwYJbnzTMiOen2TCk3Io3KWLvku21Uipljt/Pp0jy6V6TPHvY5ApZVXN8lm+xHt6AbgBK9S69MBt8Voy1S94dTaiA2MtkEO0DMFAl9X+0BOyMF742EODgiCG6ULIpI/DtmYlwHmTp74fwIyCqIA0WaRozhfjmXu4mnxkVogbdbTlRTy6P9KO7wHfC19zrM5St63CbGuM29d2HOZxJl0nRXqs5j8suQH8XmoLHZj1WP6dlrTftGqqXwYPa5zxmaKux6g0f7usa2laM1k+/0UCgeUrvdHLK+oKubH0W+iX1pMbzCATn/PHASsEj2ZYUmw/JJEY+n7qRlzahCqRGdGQPzus4NosxlrUGdwCxoGgblK4/x5diSOTanjslkG18dH9S3gc5U5r6VsvKOol0BGNWikLO0mv9yRx1QEINbJFvlma5f9r3iKAwUguJgKaAaSI3IYtyrc8y4odGpg52YtI5aDIR30rhvIAaZW39icZ5N8Mt2N6tpuReGchjShvOrDehL0NcnIHf8fqslJLqRUIiLDs183ZjlLyjDLc0WSrs7kvWyGgItVOdjnX4O6JbLrRJ2GdTfWW8J7ihRUItvTSkM+zOzEd4uGz4OWRD9Xkoi03RJUK2fd8XPK7Z0STX05saSIycFvHeg7pNeJE+litOuIYUxgSY0dGLnBQy/somjM5U/0zgyVCrr7uUTt3FhhRxq36aD+pf1hAwD5g/EYlRCXQM+OgSUQMYArfmZ2hkL6AkSliAVYweut7F29Nq0RtLEWPCMj4q6didJKUmf/ZtjTQT/lR9sw8n4tIUE8x4CUhKHjQw0cO1uMkVKcBevIz6S3TstVrA7FVGSH1OKpfacOzcLZ2C8tCzeY3BmDqtpG8hHMH4P5NCKMeHsDiwVfzafRxwuKKdPj+zlg5gYwLJqt8j4/pWDNezXxgYXN3DNf5mYgqYC/QIrh4yx2H+IugJSmF6j9OFCJRVTfPYTAmXwUK0+O90bT1p0aQ7edQmk6lq/A/ENtWV/uZqdhdo0Cc5vjlql0gMsUyCteYn1ubNo0AY+QHVVj9Z1UGktOysqmT8LbJGVF0/0jW4zgcoixN7gtWDtlcTYq7v3AVZT0NqntZVYLN0co5n8NQrjtMfo1PFUwNg3juERKYJpE4PJqg7XXMKudkYQIU+T0pjqCHGfemgbdPOuerL3N2gWfduzMCu0QWiHxFapWjXXK2trA6XGP616aVNXC3IvqhnaOEWSCF3ks4LX/kqEYI3uzJg5FxOwbtxdirLiUtqzQZ83qlvpyE3zR6WIulzTQ7RhuFDy9MswBeu6RTh4Q3m7OA5QMpzkibvgteVb+ykiym71tD/ZGKoDTPJ3o+1X17llGoUmNeNAd7ndDYLf1oqQ3VgLdPLvve3QUBe46N/KI1yY5Q4ydpKywdZ+plF4cY/ag5d36et1ztD+Jeuwj5a+COO0zl56f/ao/zk95LpWh6HGYqFLIL8wI1NDxLvry8+pphAjeCNsiDcq2dHvipdJK1bWDmfP36GtoMZl8N8NPqrjM4oKAjvB34+cV2GReYMGgFuOm0zw+xcZY9yfIstF2wbBAC6Ot1YoFC1Cd83NPiVZtSw42YCDYShDAXwBoDbVnijJxpqWlpMV1aCPncWlYzPobjiNdrZbtfDq9Y4opQYz0KGBNVcBEfxBiizYTp8ad6U4jPGooiX4zpd+rLQezYInWbrq0ivRalsa16+gDRRKTtAmSELxp3OFjzg/nLJkysc2aV2iQubANL4kodOIM2QWRax7wtRTkT76JQv63NyTN0bUEde2HkrRF7bKja9Q+suzbsVH/Il5Fnll+qP4VKccnZgn1OLrZlleFI8FaiAtRbmdo8+TgFeZBThpuEo59JU5Hre9UOo0iXLqtBSgYJ8VyYxkiCOXaSaMxvuHtt6oAfw3xIuvkL+6K982jDiERGeKBDOSk03at4YB2pKBYb8LhQnvv+UOkKG7kq4dJ6FRrUMogtEXKzYf/DOhJFHhaVIGR3z0UvIDpeGF/i3lKGDyM0kuKtt2kaEkmm+gWzV0/rtdhI3fikGo9NMCuSKWWeYoEzboIQh+6MkRUQObu7tIndyKQTSdC+81RcFooMMNR1ce/dEsIr+vgoxCxSkP+TmkRm+yNWF96+7u/fhP4bcEnr/7M1RLiga3cfqBPskppnoeM/XvWiL8P7MLlfb3bRuZ+g8ESQr3ghu7rxOzFKtq+HGvn9ht0ympSJa0OXmq9G9aYwGGt4iDr9vZdl10MqGJJGXAKZxOoWLqkrqTgbQe1iv2v490VCRFd5PUE3WLro44gslG16n0cVTT2GAYTqw/MSqOIOielm38Ga0NC3n6yCAOgipfMulle1HiJSVqGgbG+EGxCwZI3ON+BThEa22FeiDcRV8eKbTimfdw9qGNe1vJ0JSRcdcR2apr/Rsy56544i+2HAGPP0z2JbK48GZAtx02f1vhLWbJe65zOCOyuKs7PHn+/kgjcGAy6sl50qsDUmhdW52I+S00HBVslNJf3uJtHovjmPj8syGVpUkRlTp9taYZW3rzbLnwa3cG9GBoZnNs58sVgOcZLh36AQTKMp5jlQZ+r0VGA1w8Q8S/qF/l4PDpTICN/dwJycADUQua2vz0obzuTvoVl1loFtBXHGyiPAmt1LEF4iZ/Rut+kDB6pL4tXY6NHI7/5lCqP9YU6NyrVi5c0LejFbnVHIEKi/FuSEyZ5J1g2bj5J9YhO2KTIS6tPGfSY9+PClSbpRxXmdhuk15QMLsm7Ce0VibPT3lik/lLQyhGi0UenDiFVaVcK3G+0BzmoEWATx+N6x/Hf5Z2ANywrL5aQHKpMYPLXIQB4Qex5PtkKtkj/Pj4BQBdMsorOZNOyYwPBHq9xVZiAlbG42EEXBelr3IcXt42h/DEKy2ANqYqX/3haIhBcJAYxsExn8xQQqDItQj3vhRnJZ0FCE1deVSSwsVq8DWpmdH+/R3dXj1Xz9zOSaEHZQ5FNAZR9DuW8JfQw7D7S/LDyJ7a8H/Mha+54i5KkvOEsgbzL6JQ5EayZKANhYvkuwX6Vh9fJ/JXqU44rJ8Elx1LoFNKjCzdovJm69n36l9MLE7rwstzPd4Atz3Vw5EOixw4JwSgOH9k0OO9umY0ysPtr/RrmvFqOHITtDB6Z3x48OCmAoHQDx3W4ouNxCOhsFVdhz3ZZ/++hAtNR5eyKD7lkAos8lxSvOlpT8Qyj/Yt9eSvmIGtbj+E0tdK0H5HraVYL9mPFhmt5mBao7fU3Aufc4rvQLg3UYE9mRS0ODeEj0HLXMfIVpC5WjBDt2sL7WWdj5AWGtbeHb2s1BP+loErB3NjXwfKrd9+WTVIvivT1YoQ4xMR+l+GtIVZsEQ+2j3LCRDxeGOATpegG10C1W9uYOFma88aYDvU57HX4g4sk841dM4mlMEElFWnPDqSFLG8tTB1zxg3Cua0a0MfFRBAz5bC6lKj/aMRx9YFAyf15JSfnJVYYeeX8vL0o9czcgXKoVmh2/I/B8rujXlSBqUZNC/VOTuocq7SODaCQEs49VI/HwbJe+QJHmWkOtrwjKzBKhvkSkRS2pu21B/tuoVYr5yppgyqptj1fmRn2pKC7qalBsIEZVPfnpaSjbi5cFwp12xMvzYAKqhqc6/VU5cWy0pfVgqqa1AtHt9YZ5TzBJd2lsVmp8oZCVaNzdo/7CcF1HIQ46N71Bp9Yk+FPWzNP6LViQPOKbvuRz7kVuWE8GQIUDk38TOzO5hR0/enaT26zmgfcLP+ovlmPL4BsgtE054qsa0fNGjgj7ZSLLFv7C50JriPhxsmxbbvC9g8TUJpsdbcc87EdDcGCT/NND4ryJE5LsJOqfR1ggHwZXyjzuyDqjdBfVxUrfeShzHUzmZfVGuB6SgShN8iKAFafZ+xoYPc4V45sFnIalrmMxSCYQyYMUwT2MvKf9AeGOp775kph2cbguKpedOS/T1g4gw2lgXQGZwrh5YlhKI7Lx91kF3QqT1CrMdLQRZbf0rTSjRJBaLmGeXq3vpEmPYwK/LNo70t+AnzKP0RN8md1ytLaZF8wh26Hm0CvOfFrdsO+8S+tkvY6rHA9yPoXqoTWU9i3+DAERhkZJQxmzorw0e0EFjWwqgjH3syESIEwbHQppcMfOcuZ2ejA3ynjH9k2S9hSBH+8jV19T89A8fpznLBHfE5BFVxtynYzhztRIqNHzWsnSHioinONnrJ0wpGUvmEqBxnI2IWrcarwLzc2fnxZmAuxDxLOUovpio09/FD0rExCy755D+7QCYfNTItbmTZ/BWrxBdbY+Y9rPIvhAVu0Vu2k6Nd/qLUSLjZ/t7PsB1wGIyFArE2ZOgrzmckHrtl3S0c1d96tWefUs34i5+ZGst3LGsCb3vjibGezbyzDRbAbCeEHjDisS+e/8uhlXrfhD9rW0qn4cvM3EObBm91uNrXw14svJ58u9bHzj2OwFqGQV5cjqfMmhSKhdfDYaOKneIPBsuxX8zcl1M6pUbMaVLz2XMvbZucpg3kbW9H4yWj3WX95EdlT2F+vihyIvbEDK/2h+l5UYubRYzZQgKtJzGW/vgPIPUoMKBCDVuiNxdhM7jNsRItHL6a59dyoISbvxgpnSqdKDsbrGiqIWMeKS8UYgYB5F71sOrbZQrNotx1l9fAaSF/X3rfjbq1LCFhIyzu6L3g2DSqaKSZdi5KDb9bW9KMf8A1Yy9MiBl4zrvvYJtqS65v0zzTVrqdmVLT1sbI+vVU9ZtDaY8UNpUXsSIV0GfjZ1vYtdMOidpz5AXXLYEZjMfk3FRlSFxkLIIkPLNRe6+LFho4dXrFxVllkddtnJfetvyeEG+0Iv1k5+adQTCzDmaZGMbVV4IE2Z4jf4MI5bmb4DCJk2wPbo7elqqEcRtU5+67NVqPULtJtnRzEzlJAKRreNurc8lb/6Nwn515fRwwp8rFgS/PxKEIZLyqmcvpW10MipyES+VrMB/UIQmqdill3t2QNk0ihdXHNkcWG8k+r7AvdvlFBBfGI1TbKOQqpJlfCRoWhYYYti/oX7o0Wr5o896ZvnPcLERl7EbDsUi4Kscsf3jmJs6nHiLaYYqjJl72i70t8vKkUPicWGCYJJciqjZEnrGmft6Vr71I2KPIC3rgop5mrAUpAcYkI6UtcYhJshyB970wxNOSAZAvcQZZBefyPvMB/F+GEMVGYFD9v1yJKKKvNKaksOd12H2hLCX/ZUVo7LQNJo2h4q8zoFUd8DHLYdx584cY5DT65jEx7DGNMFxvr9LIxo30U66jvj9V9+wB0jcOyPEUk34eo6xLuexiEjKXC1jbZKVUXZaWx8rOjqEGbNHrR2TTMhZvYGTjj6v6uYFxfEV9LyooCui1Qft14ZuBtr5rm3WX7UlW4iUPtTqM5pUihXuZj4+Z92Jc1EvW8VpHhWOkppMp05IsiYIxCmKqgaZhqygnGx6rhqTcWnSVzwFYWD14BDI1abn9QGA/aOFDGGFPWa1MdOKTyC+vkz9v1I2PtaLHmnRzbxWV2MRxWcDtXYDI5XaWP8a4JDO/kxQOVo6H/E6oNQqrnymQMq+A7zmbTEUbp/MeiNf9BV/ZA/qQFsi7Gb9ZvzTZJlHBbb7a5s0D7fQBgDsPQys55fjAvJ2Uv/dW0/daVDahktFfNXi9Bd3EHcCvyWZ1gcHlL3stdeA2Fswh9nlDBcDofAG8z23cQTvuC/VNaV56FtLjT9BjDVfNAGYS7qLyQwGyMsfY4g3T6IKjHs9vbLCV37PVEXRUakCQrUJzzzMcYqKh9+rqYVoqmEZMpvehhBeCV+6ZW0hzl48DdAzffwHmK6DJyCaGRLnXbq+2fGiNLikGYd9FSOXj7gC49e1Gv2Yc82QfIa36XGLUum01I/zB3YYxzE4DYG4pUS8oJkB2xnkq4mODKd6ae5llQzSdcOkkd63duAV/JKEt5aDKtrWLeT79qgwgP1UEMAKeBlp19TF0+mSDf11XEJIf+06qzv94wlyxxXym+P7atTm4pf2J6DfyjEHiLnfTUdnioXQclCmqD2D7kwBlKpVKXGezEI3ejDGn+d1eRptVd1NIVUMzgN4qBKxQQ11T95NvS9mMtUReKp74VYMFpcr4Qva94HqQhiKa/5MG6oGIGB+EUoBZIkqp8gbnVCAmDNKU8Cb7PCxhjagK6H//F9U08inrokfKKvo+Q5zmFPCnsbsh12i9LymKyTrdZ1wa/XWT2pdrzK3xA3n7rUG0AZsFoYWXmnjkymfZAYiT6/dYYBYyVR2ZjGuzocHs/vAF5cgw9TDjk/Li/G1eV0Q/5nmgIXX/M9oomUdhSGuhwEzVHfeH+A2D4Bg2o24aZPkl0wIVWuB56XBG4fUfbO3m7pye1rFpdPHF3lKiE9lCEzSaSJ8O5kE45iBOUtUbHgfWCNMNMRBgjW1BJB/4iDaYroWJi/Xh6ILxwcGJV1zzOOqYk5VmKVMhDvWIEyPvr2DXJvoIqI3oYGlomnUqcC/R0rXtvm1M+113xfBII1k2BrMsbpEPkqo6SR10W6RNkOQ5CRADf+jiJmI1Xzyee/6ZwTbQIAbXVgCpzMlPfLqI3rTTXyI7TCKomMtgWFPHJM6M0jTIklb5jbFgmnEOffJSqIwwMq4VTLgpyoUkLL0bpnd8hS5HueHCd9WMB24ZYwWK+IKRQppzz8xag2npG706d+oMdnjd5gA6Cl9svEs9fcGtJqZ4Qt1CK6+W3eKZBYDHt2gZqINLyfkgaUAJ75ltxnD5T4M1rE361S1RxWfRbOGf7RyOR1hh52x/csQnEQd5TflBSY/zZPP5baQT6wTZ7E7FO6JYcZBe/Y0kTkFw8XkTP9dZQKz2UNAOVhUhFmUX0P901otwC/0PbY5q5H9wiHfGZCcDV4G0VJqvP/qUiH10Ua0MYDKn+gKWV7Siu6hcw+tg7YRT2HW5mGsRw9II0zVuUGTcEyrtkIFDI5hy6kkUsSEJOA74NA4lf9RFsCaB9FOx58/plsgj+Q04UZpuLOQlfYBcSvpIoPQ8byAdr6UH7WuOQOF6J+fLsb3RnPXm/3Ys270IE8oEeFtn/uICyMSnxE/wKCXiPJ2fjKcg+n3IDuHHfuLzWJFN/HZC0+ys27OOhHBUsANLnqsxKDfCcoqBf9Co8pk2N0Dx1AdwjFc+aAzoolvEFeQzcv7QC/nHf5eOnyxV5+jDrCq1z1oDjjruAdfapMBFY73cB+Ypva3WNyEXqNJv0hAeCgfG80HNqxN8d+Lv6i7X6rsdnyF4hvySZRPCtv1HzgTCv0mS/t6sCaKsvjTaXR+fASLLZ6ygBdPNtX6y5feukTE9wCOs7RQ/lsHcKUyJ8lsikkx9QieF4h5iHa43lyCJ9PmAnUBKwkK03yyDU19x0ytpCgje0HvBiLqyiPQhJJZ3ydc2KjsXhmfc+Twrea8BSpfRbRLTpmf9HRJgS2Wl7+l/FWo1fsuT+QbTY/2wpFPOhotvE9/yjmBq0dJZqHQLme7ZmPmiBidZspm6bkUtxq7t+CNNGLc8p9hGPezKyyg2E8tTlICab0o7PRSxJodNFY6rxSSuUcQobd9QfzuP8o/30abI10YYWxnAFlAzpIDyuUmQu7bxyO6bavmgpO5LnIZEDU5ro4Go0bf6icmWaKVP3ID5Qt/DF0VMV1tAJ9yhuLJF3/CUXrJRruCcrMZQFEHZ7nGXIy56VyqdYrur6GQQWQHc165Ea1KTbLo+PdbqLDTMWPdoddp08l/E+5OLhPwv6Y1jQEVAd2MuOKLyXpOAnrFTGATZ3xQCRv1VAbYOPgcm4Qim5Dv8JXuoMxiT9Xu4fFOJ7uyobzrwg64PhoBdfYLfBhKOrMjVy4V3P+dGSYjDy5wybCyGXRaf9XBINVYBUWcUOgfmqrvY06jgXXXssjbyGDSLa3wzZdqgeTw8FyN+IwbGPiYXcmaC2WaFy0dnSmtzIJFuEcPz7OKA842jnuSjUHV5Sy7kYiEqEYW+1sq75BEf6T6JGXQCKSgtZ8c+bg9c24cl801U0c3h9h71lvY46GH8TCieX52lvGF3Qs9BafCxpwEST4FP+mzg1aVz0JmbfIVW/Dy3C+8UTg/hET/lUlsn4NTagL7q/zy+pUPrYD4qO96knPNQ9AFRpxzyIPDqN9Rrhn2HjCh1poGcX1p8Px5BAnriO1XzjMRmJuWHE+8QoGfRwwP4Sc1SnUac4SP2hl16kD37yOuDUWDmiwEWe8n+nU5ktgxrmGGvo2UwxLLY2HmjaHXaiH4tccm9BspQs+IeUW+aBt7omXdtIRMETg9TgfI20JXPuwedKbdQRWwZyweITP71zAFRbToP/wHQqluGJGQ0Ef93IXEe90aWsvUfH8bQj0aF+RyUGBu5qULum5C8O6aPWOFTod1NuqmF+BW+vILPFjLrA7PDRwD2mOGhP/cT4N62DTzV8j4+UYPSXPzL0pMlteyWonXXkNZpwu5opcmG7URfb3wKFNdC42VRmd6vdliv1f0QmR0sOe3HJThY3bE3cbjzlWfY2/fK/g3Uer+0zEUjCUeyePyKb52KXKgNsNeJVcQBX993vh6Bomp/4n00XQHThzMLLxCJmeIeHBWVNIRIL+JdUD6wRvjrgy6Vx5T9pKYUXFhBD5kkfkaBeB6m5B1yBLoOZH31l5Sm5wgScSmP0LOPJq5z6jPq1bRioJbxs4/l7aX2qarKe7DI6zLovbIt7vWm9D5CbVxkwbgHj5c1DVeTgiyfioNPlEeKg3UDTl1K4BStJOOQ5ajj0i9BlRvrivYdb1kVRgiBa2VntDNtz+0co5xuvzOA9lRM9L3X1e/2PPm7U2wuGn8goQWtY0W4i5Qf8m1m9+YKIovzutUP+RyX8a0Sb3q7g9NfcLgToc5fZy0o5xoB7UYPAd/+e8dy88tobvyH/1JfrxQ0Hodw+frjUgqeUJbet4c03Ay5GeyulDlB9laG6t5Gx/CcNJFc3HZhcEwUEpDf8CepUqP28hycs+F5dimu16vZQDe5ftEjrSR6X5viglwTbrnE9t+Me6Mpb88EoHuYx0+UYVrWZ+TuOWrC21fwJqRn1Bv1tBDX6yDRzd5I+df16C+Qk/y0aU/7Z3UZux6VxdNnu+29ZRmtrmeKQHSHP4ZzKul8CcTlkIM9RdVU7F1rvh13+SycKYntdHW2svyygT+Mu+8koHXjSkwD1PyICuykgLUfP1gNysHIPQhMRvJEXmEId8s/LxQfiHd2YE0ZBs/FIY6K7cni5G2H9PaTQ/VkXrNNSCxAepqvbns0N3I7Ykw4JT+1muIgTKkVX1NQjdFlyxGJVwvkVj5/MEevm31dETJzb00qAv7rXyM3O0NfFGSVU9w/qwZy9SVQJUAYtytPIR0cQjImFTwf5tTl87AyK3FaZ/i5YLH3xlsM4sEqTjN8TewoqDYg9G8X2lAuawYirrcrYrQRA0gzpR5cqiJ/NFG6QRs2eBy8RdqIk3BDLKC5MeipPPqZAQjTOF00t8H8Q846rLquL9UyUhdJ4VZ8wqGErvOgNpxC9jQ6lhyHQp8MVKNfwFEPrzAhwoE6y+D+eGAe0SzdSoo5Q/BCRGpBspVOd5wlrGjkvBdytbCoWWwpBz9ZOmiCcKjUwBj7V2kXew9TbEQ96WqUQsR00/fcm4sNhPgH77oQQCVTEr6Qpkq0Lqe0G/Q0f0OdXBbJGJY32L+SOU8kBBumG14M/YBJQbPwafNREuHAKu2wUvAJs5lqanyaP/3CPAn++LWUEfLOSGmHzrF6q8tXefUsEnlTpZmtkERRYS2TPNJHqYt6Yru0b+oi/yWpxksSoR6PcqjkhLwzLfOvkERAUr1oPqWgvK1MSlAJMkMkQ9qdGTwxpcinoNgh+HN/Vx8ka4xtESO8R6Oc2nA85aCQO3wmXAeSroofjb02D1MBjYJ9fzSs5UPyyUFQHx/sbCyP88saGsDIooa/wNBWR/0K4BSdADaGRs/71gukX/UJWSOSVbEuYNz2nMyNlUgE6bToSKv+wkzVO8xCIcDppLx/VNb/MgA+XvZj8ssiHVT/kaoXJZbWzrByUSYzCFsAgiqwPgg+lWDo6wqOzcXufnT4jTLv9spqVVHeTCeGn1SEF4TPRxsITK+7eYNUkdpqv0GMQ0a1reU7pJPlV9MyL6dAG9bM16LKrj1lloydgcakJZlxPtOrmEODHbjrBhxmC2a1JcYkQ3A3yjk+5wrvvefN7Go1NNXppTVtlObRqeCscgNVPkp58it+7trhk1rLN/Qx8Q1zsnCgHgw0lTluAp1F/+7BSpDN/OR86Q709ZHWXxHbZk+t050ajcy/142yKsKO72jpMOj47vmid7X8cgGfPe70c/GEWjpJR3USaKjRc51us1aItucRvj65pD4UGii2+nQuUpeBWNVW+recbw4hgUMqUWB1Th/EmBE5igtbUYT2jzjqAIJzd1n56f2HEtfTbyUbFp5JrbZyeQ3WrCdVc/mJPVDDHx/ycvDhzeBaY5g==
Variant 2 DifficultyLevel 724
Question
Four identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
If the prism has a volume of 500 cubic centimetres, what it its height?
Worked Solution
Let dimensions of one cube = a \large a a × a \large a a × a \large a a
4a \large a a 3 ^3 3
= 500
a \large a a 3 ^3 3
= 125
a \large a a
= 125 3 \sqrt[3]{125} 3 1 2 5
= 5 cm
∴ h \therefore \large h ∴ h
= 4 × 5
= 20 cm
Question Type Answer Box
Variables Variable name Variable value question Four identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-F4-CA31-SA_v2.svg 170 indent3 vpad
If the prism has a volume of 500 cubic centimetres, what it its height?
workedSolution sm_nogap Let dimensions of one cube = $\large a$ × $\large a$ × $\large a$
|||
|-:|-|
|4$\large a$$^3$|= 500|
|$\large a$$^3$|= 125|
|$\large a$|= $\sqrt[3]{125}$|
||= 5 cm|
|||
|-|-|
|$\therefore \large h$|= 4 × 5 |
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 20
U2FsdGVkX19ghQYRggOpSTkW9BQWbxzfO0Gd8WJXfG5tx5YuPtVlZGJdsjKnkkr/I2tPQ3VCyqw21Ly0eTAjYCnYTaTDkUPYoRSV5tWnKNYvGQ44EUVFw571p5xus6ehdDGZQor6IECRAQjZhWvXkFTQS+koJEX2UDqdvjVXpTGtX114XyVPABRDtJfXdsVhaMXUsWizQ95mcPZ+Q7seHT7c5ANkAX1Fh2fMvpNWuQNd2vVwd87OLq2GSu/7LRpMlg8LE/o4iJQsXVBFq94uswJTkezuVpLfjo2GP+DzgPnp8vrGx0olLlv5WlANz1g9rHbaULME/CcQzt1UGHAKAvVTZvWv4mU/nhsD2rjzF7tLOdPi8aj7S4ZzBioVMHfzx3dZr4Y0m1PuZwQJuM6he4T66fWbWDPRgC9MXEbVCZzIPY7N1rXOXLR7PW5erKt9yL9LhIU0cK0ru9vE6Wud4rbbkHfipXm4VQh3MqJbDqaH89S8aQMRRIeu+cDMrdk0jvPbp2Ep/HBDO/rjP3G8zFwTT4jBrcbdONC5wTYQTe45D5slrblzEGz+QcYqECXEmajORMkEi8hW+S+sdem3RqH2L1KItJ1gPjdRKQi7fMJMUEuki5MQSAD4Ecp7ctjh0uDEBCQ3EJDweuht6/mlHg3Whm4CAZytXUzb/b0roOpf/WIeZS/9rcQlEs/VYDKf55QwDAT5npeOF8deZ6+tFiYx6wGyc8uX1O3ukQARzl0y7qQvR4h0Wy70hxTNua+4pj5od2M6DK9JE9obcvQ5neTfdE9RJM7qX+m65SnE5O+zLhgnrYZqysQ6GVyjKXy2p7WhBMV2QT+3GiH3MmqFQ6yZJ7OT8w8GrlAtbYXELVRhOnKq2HEZxveHeeMZ2Y+nE0kOgoPrhP6V9rXD8WbMaAHeSpy1E2f9Epv2cnVrZOi70RhubHGLTAf64BnRpCUNnLzb4yMzK8pFchKhL+/q3npTUFDbS6FEUHHvcxOp9KWxqNIp0vcXZgQiBgvtav6VhoZdAKIr6ahS8o7KGwJDbir7/pb2T2H3ROlrPMgiqYDJG/ssxYvrNmXYo2J+dCwzkM+hWjiNVfgPMCfT8nWU3eag2NHk2dlOu8dfFATcXzeT3YVHBGKpZswd2W49eF/0wO/VH2jz+IuL6qrKkfyjHBTCE6frSIm1l6KYPER+mceZGlUHkFyTfe4zgC7Kz2OwZaOZO8B9y1ehIVWrX8wuNnHRrvPPk/z/l34NUAPPhzzOmJFbwG9IVhqI40ckaIzEMSt4T0Pljk+mPV0h1moFaJfr2sboba7VWBesvL/VpOFsJsYxWL7jJcFxusVfsp6Ock/dPrgIIpGG1H2kIbu0mbZF7ugzMCkbf/XRB0Qs8ewoeFk1KdGpYRAW0mncAY3XmZHW3zJb5NjShj3YcZBuG3T8WhuB0M9QZbHIpaWx+DQxtEARqGi7jLqRPxzXXf+oKMh5kpOMar+givx0P+j5I3KRmtZkcim0iFOWay3vrRIDE6rcQCuEv08vzmZTB4D5g2UN1tCzrA2WwD1GkkKVu+9pYfAWIU0yevzOqMvq9u6CR87EbxKBvxEfTDBzMxzIUH3KZzBFAQbPR83Uv4YlP9CtA1caDQDOFtkWs/DSNxtvULd2v/DSkFE/I1xfTSeIPL0qYdqIUFR5Hz7o1abXoAC7eQQioNadhRvs1zjo2jA/i8H+pFwi4LpHa6iWQxZ+T6VNa08HoxNQAxX7ak3o6JKGhN7cq9npBBzFgbgDJyfxFSO78w9/60y95arcyKevAlSwV+iveQcpP/iG/nfmEMJK2l42Eyv8LFmn62wtYCCM+2ibvOBsTk3VfS4RuRZC3KmvWnZZ8c6/6UIUSmNYoDmTOd/+BqL7S/21TIxxjLrDwR8QXEqHPiEl806UKCMZQgjIiU1vUYT5dV7ByzAt5bTKIe6iDNBBvLG0wxz+VO/WTZGybeq+C2/PglGQREs0Jrv33f6eSjn0qaG8fDafmaAAHcwScEF5GT+SSWwr0XJ1tnPdUuoCQpjIuDOik7IEjSMOd1kw+h0N/9ZYk8VtbDdHFn7hhxQcW1NlLRCkOviDcEfrS0cYr8X41Mz8cleUQypQrVcxWfTWf7lhysReON/9QO+yoO44qDBNmda8QojGgAEleA8dFWFQcnYmgA1Ag7pTNohrDh7dMrjKRbe4cozHHP8Eg2GjQwNiW5h+udGF60JJ+6ZUt0uN4EtHUgkQizTeTagzSGh1tQuM+Or6usm1f3uXXJ6OAR+o0iVLCOalh4Fw2EA4q7kWAgBtDP3zAqqU3eqO9e0XLL3C964DRZ6nhvcKomvFnY1vzTHVkHF/gLXaw0nKMlC2gvX51W6+MQpW5sfm3/Drj8lD5HpXrTKmn1wpn149hbL78kyxFuf1ERv4yDkRHiFsjrn5yFtaUQGEVYUFuyK3MvZAB9eW9wgtL6w0DBQ8Y4E/jxQcsy8H+YPtMJWQ1rMTEs64u0OKJ1Bj2JWa75KmvMo16abIvT9jAZvDgXnMAaWuJ8efHE/UngE4FJuJAO7QEjGZZAeD2TmCbbw5g/P/7dw2Xa73NG4uyiCV7N6HZZF6A0rUKJXGVdEFxMr/5O4Ao9Errbgfe7y1VBnWtYMZyQIgWNZuAy17yO/Fai47db+jmq6hlY5A1txDEArUjBfDOt1pzrlMPSNSmyHelLtXqkVgo2MvwpavTT56mIiFg7Lu6EFBPJpyPoSfBtE7cmC3H+NkiEQvEsZ8pLEFR1YklapAXjAWtU/MpSu/OdyaPgCBwDa+cpwPSyyq5IaXFCqm3XfHKxaHGd5zkMaUJ3GzCoitRkfe2kJqkufdSAx7A1XkeCnji1eqMbTYpJHYo3SR/5YSDTS/cS18lbhq3URA5GrZmGC8DEnqxmUg9M8iXKsa5d+TkK8nO92Ej1081TcgS1b8Oa0GFSltJOa9xRSaJpLw9AsP2MHWWdya+RDzFrdzw5ecqOiUfbH2lR+nej7ZGxtHGnQ+4bSdMzpfzMv7jOVzAVt+MpYmE8XKoPUOeERvyhp4rRS9N1nTnVdl46Zfne51cockbEQmgqHNoZKFKD5rMkjopLsEiRH/vNrNk6XHGB/gqvoNRP7zIpYixQyERPwEaCKFGxk6B5GRjM49bjGOkebsFz/TRmPA5SQJioEH0EE15O8XiXzEwPhPXWAzfSp5xF4zTxUBixLaaQRe+gwrQdUkde2Td/SOYn2Wu+V9TSRbvfFSqDbD2czmuz9ZzXpl62FAmWarFNaLTAgoqOIBkQ5HapVx1Wwp0uiaeAKVYcFvc3h6M9EyO8aUzrUDpuRvHpo5d83JrOti/QTmZk/lFAiEU2Wf9WrYY76nt6rcHSXyhKWDvRFPXLSg4amIfyqwz70xvRfV3mmW3O3u0W3uEdud1ltCvM+LB4latn2Tcs7A/XEcwRk6MO28VUkoQN4Q3vo/7to+o5LCnoj7nwMoAqtDO+aQVlabs2xzt6/kp9tY1c3POMAm+3PQ28AjZD5ZpnezS9RKpE8mRKrnWYmGmcGuBt/Dw63ND/BOPFYXrbNVdbKiaRD8S8i5Mj0Om46bE5D8LRDy808Ke+soQq1LZrmTn8O7EBba/UIoqFsgB9njzRZYhLnxT3OPoKIN3uumziqSjMVwd5Bt9tzupsgddh3WSYtHnlLX0nytmtvCf/ifd1/AA70R5jFQosZlG8Od9Z5bAKHIzEe9rKxCWkFpehx2+rF0kuuChKbRwgDYdxnK8njD0AiT9Lk7IlD4R641Ah7SQ8tQu1Q3dfgk7Kozb9/GReCxzeeF0dVHeb6X4sECLmEy1OO53SG6zeRdeCXRicRHIDouRZXoS4OHL4UikpCl0EEMj43dEOwgsQ8Nw5NmUf90kOl4nzofMXjS9tiej5f+3wOh0Qf4ljIDyjN7/5u1QU4DbFM5zQy2FxF3La02d3skqOg3H2UtrK4Gbj0ap0DCm/yz3aW+qLiYkflp1We8Us6CXpGezcDHwU090RXNO1c0lUV4VOqraWE+//UCnGSaCuif+tJzMFPV4ySt2uWElMzJro6HH/y3I+EdaHVHYpHS2VdvrXbVBzGJq4TcovgT8FyEequSnI7R11/C89ICTvKanb3d0wQhmVIoCUwCtqztl1+s5RXd9dY5n+b9s/D+mOOSN5tfrkj5OTxY0RsIDGvik7SmW4BIStpXZlSqamoAUskMOVw1Zm/O9MvFnpa0lw/CJ1305q1MHTjWqSSnPZcHpQ0azgKeIr1cUcQ5NCnAYQVEPzDMwydA5mMtH85P2F8EJGYvycY41P09GKRC1UrLcwTMW6X/3c7WNXJ1vcxoV8TQb0eX0B5GhOiilkShltFQM7SdrjdKE+LzAiAsu5uABZd9YJ7QtcJUXaXyzbLiVr5por6wVYIg/Eb3hp8FUU4Kl79KDNTj7/cF0Asbyr8Hl6PwmIYRGUnFQT6zl3WHgEzdyUIlGfBX9TIBY4zO/0Aa/dLrKPsQF3jp7TEWou6hjMDg7zT0eD0Xo19SkRICo4e5AxOGgCyeAFk9c9XNXk04x7fhVxBGO+46ieVQPMvvRxhWQw/NmNeDMkwS/2YNehTPlS98QbjbEiMsROdQZNXnjyCE+3IgmU0QhjRuZRTZ5iyvFeJ4QMSoj8HpH3myFoBcebdfFxSXfUQv3l7hTDawMnyG2MCYoRldolnDELmMei69y+Z8/xcKHq/DCFD+OgdtCKKNcuEPplUErsNraxUTd07qgBp44crbP8/prjDzjpjdkrXEHM8VJxA+STMUYLEoaisW+dknRZumNwtUd+sow+Fze42jrW3ILlACIR0vZUmZVFQrmL0HKcpQYFRYfU+uHbC9UGdwZFi+0lEh/IMVGyxVVgpRjxAl3CsjxZpj2w8OLzsP7EUgLwzXq9mQzkNZmdY6pvz0yx5bIu/pQ/y8d5NVhAlDjky4bLjXaq0xuaho4e+GwsajLXNOV38kA6+UQd8LeAdTJcx9CspM0ac3EurwKye9eJTGWHvQjW1GmjIlT480Tkv24sX6901ymMX0fn/9fjO+WCugMr4VJVylaRvK69vrnHdIaJ7dSmmnG428mOgyCHKsC9M2oqmccw526jYM95mIMmlOFj0nXBE9vcOS3i2B5/jhhNbAsGU8u81wGmzmqJ8u4kCdUfgq6IRDQeXzIrFDCpChWvsJhtAj1AKhqj2jK63lTygcAuiOS90H/dpqSaiw6/0abA1u7Pp5oDcJy6jb7vDe7q8uLUGqg3r/hndgNM+bGOQziApl2ZDjoyh97Zlq1aiL8rDsrnLCEKgCK3tJcNPtE/oMp/lvWEnwDXMS8D/GGUXvK+R2hnhGEgUpN6PsvIqv9sGWBkjWoa0IjhlJt8Tn0p/C4qsoIhF0q0nhYJaNOUYyI5iy6hbgMS0ehDO3mcB3K+Jh5rU7Ftw8o+1JkCzZeBoyZqHrqbyUGY9XF9uPUckklXBUm1sIgjwvxxbWXc+jm+w4lZu670aOuTV1w+60B0ckXB6JlMqBABdkJ99jeqe+epGMSxWNsznkyVYjZEfikXsU/QZxC7d4Evmn1EpMoeb68KPR+YutxghvGFltXebl0qq0Xzp0K1MeKhO1Ptr1sj9xDyVcPhZ5v/+bPBUu8QuzyXTj07FExueRMSUD6gYN36yV8CxoTKxbsvCgycd/a/nWUYsJPJFH0m8eET0QcHPZFQRUla21rK4XyykfQ0CyFPpcY0EE8gHRjFtkt5XGrGqEBXn8gRxW1V3ik33CFRfkKZWYzg6CgaHyUxSjnntDA+WKDHpPg9Aj5aGAf6J9Cl/G2Ig+aSz/ehCWrPrpm0/3VWIzEhSmIXNI7a536TjENqAsXn31M/Rw0MaJO16WftBvHXLKlwJGF7s4hs268904lnMCC9KtLzI3VWx9ZB8x6AjtrrEAC5+QXCpK5dBZx0hC2YZNGyUodkRGx3DbloC011sO7/FhVTrBO9bozhSWGhmX12rI7HRwTz3ae1fyM3K2cp3QVIzvtgc07rMuX9GyEpyDMHcr1kmToPtqA++XeVorXCXXZSeyQzZrRln5JCq7r06tT7+pPSJBZAtbSLq1hMHe5mDHGHLZIILvYOClkfdBsmnjapyl0xPEYtSAgDFi3PbFojh2j1vNBURLSg1PK/O1GoI5csQ/ALmIrNCmBGoaTNrjgYalFQUVHOHWLN3HRc9fTJ6BSE23vbmLoWJxiqV/sGRXSH3A6nrD8Lv22YbXUy+aj58pmKXP/Vu0c7Z6ar/WthQj/d8z4Ug1qlKzGYC1wbmz9qNP1vKImHPCHD3m0Z0f8iTIi1oSKhDVt75g478X8sc9BRvFyRpBXIhY+0ZD8kp1FiUGG/pIzAidHvDEGwnUgw0dpOaS4LWwNG6IajVcs1ijHCJMqOCiLzK+QDSpXp7hXdiqJVomhVviNDMAVi8OUOudvqKxJZ+EUB4VgZAIulp8mqy5XggWakj7wNBrRYN8RO/VLiuKFR+2n91PKtkqmqvd9saLIrQWQXkMe7+Wy4EfCaAAVx+3wRhuhQahMPZ9kHb1cZk/QjdvV0qPSK/v8MRihhBTKFgZADVjHqc7DS3mkZ6nsuE55VOagcvmY1IrppCy6xrQaN0JytAgp+t4/UaG1ouz/6k+F72Ik79TXfJDNzeUISKj2NTqAsh2p541xlpQEQpnpR+nzK/DiOfh0jBoqovAuCYgcA37ZjZWqEOYjPOKE6IEXx8c+APjiihsOwsHhkQYJM4vXSqSEwc77ddWYGlXQiWXaiJ1TW5GI8jGjZVDJ+lpV19sGaDC8x5ROpzZkOy9xpSGobqeOF4Pr0EeEc0Qi3a+of9kSQ0le2vtDlPJwMEufUWBuq0/G+ScB7ineBlcNwCx3vwiu8+g6USKqzCcAUTEycJXMpumap966/TYsrjTmguON1QRzphYETRoECL+zfNhvm2UznMe7VTauefeGmv82O/iBhO080uGRe9VAwWDkvpzXBOQLGvcxS6FlZuXphCNU8YywFKgh7mw6hDJWNyC+vdNngmp1kKPsZrynamGrpnZ5kv4krN0NPzdIt4fyjq/vLEbTlrd6fuauQoH7wZUZuapkrRKVgfhVQ8D7M/PSLSH522j007tzzsmFi5V3hfoxjstBxrYffpYa+hJdKSxiZmAptDNRgrx+Jn5HFHS/5beZ1plIFLJD+AFxIeiSfkDiDn2LC/GWishSP9umT98mc1NMwGih3JypGK2EmvKc5cyvvkFPhV02VhWIlgw+yEcITB6kKVYVoJLotXdJisVNGE40Xpz9cw8Uo8sF9Enr/l8X4oQ8H0t1AvzbCxUZ4VA6Q6b3VDSpvV4kBmm5eVrzfyOvyXWGtToLsjrZMclJznjadub6JWQbXUILBNDQgDxQNRg7wNXXHa/6+KA/ohXYHLNe/JvxvzMKXEPXL3MZUfj3lRa/52l/69dkKWb3X81zMW+Dro/SKsFXcladu3IfH1K8pgZooDRJuA2cn9+k2H/qQED2OChv2ezXg4br1y45XMslJz20mGsOHqoBcxPmFpQvyyFtlMdqN/xMOhNNeNF/LK5pMh3U4nEfnZeW+L6SJwHQLQXQmaqrKJfdR5/AyPxTWQvZxmCoKYmZWCwrc0hkFWO+wtnNreLDTsimqx31fVVT9sEpTxkIA4VE6EGNZWkl/mK1er7zQSnE/m2rZwLhdD3BBsnKLys0vsQQ6l8r94HvCo9NBOnlyhZqK6MjyWFbmwcpm7PBJLWYzFJh/1OGFXzCdJs3KNcihaEMTskaXiKJzRVKovY6Wto4mvLiclexhCg1Dh971QXPC+MV8kgW552hsEfihtFNsw9d+hFn5GNyX3htSEfum2oB1CatdtHKKMB4h2GXzLwEEMSggtgTqgvxIRnSFMb1g/aNCVz8vzKemR5lg+owh9zgEO75zpn0lqc3lWWjWI5iJGWUfMDk2Ht1R2XTXnp/yRV5jZXZLlsp819sGhesS/ZtembPHUMfvUbivw+R2ZRH/3F06Wst0ktelHVVJoAKEjZ3UMaQBvUxvtr+wcluPKigayItMTPij08xFtSmHgpiFSTAngPnumWkAuqzGVqkRuRt19mcuBM0JYA9kSboCextP99hO9Fx3JMobu9hZLhW5L45QzCdb/2+EikjshNjq2p26wrvQtcPP0im7jo989RSMBj4Ly9l/gtlsCylLK5o4XQXjwMjG2+lQ5JpgC42mkIoOWPDZMCdtAF11zFww1h99JgounpJQo3ZFH4VI6R/SawbfdlVz5/JgQd2hdkRUGfEzoKK4e2jpYFtQOn8VJjZOdoThlXuWrCjuCaU4264xNOetaQcY4ItQUq+79xs3kkP+7KF23Y9S4CL8Bl2EcnbJN/U5/w7QEFgPVfDotXXr+WNYUJBtgMB8K5Pg9N3p+An3p8bjxiNdp/EJCdDO6DGPACBxD17bMC9NekO7gAekClqbIlmgy9jpWOvN8FIZEuTvKp9Ix+huZsL2og3tqWpgtONDWIQye92QkUyHc/DqLJggasmPBTrTFwc3eMftPny2Qf6bI33sVZZeBq+zQWkGxzfZwdKbpkJDlPU7BPsaUiqxJn5ck4atLeWL0guQ/FXAeqoNKRuwTdOf68qFCo7d/tKRmzffmwdEtjwnJulo7s8J8rPgsvXiuQloax8m8nPpKtGdYBTfRxEpbVVwfiBVGeurT2bXZ6it/RNF0rrIaX7WLXhFGlWPKraShh5kbi8vUTxOenOCznwkppLzw16yOLIajXEs3pV3jA1t987izlsYt666PK3ttppCVYVXwxO7cgKHZumDQHhZwa/iM6Bg+BYm7scWHrKzUTrFIxbCnCh8f+6rMu4OodoHRz1roTOLkHurDyO7B2fJbCM3ivWVUrhS4OVed3qMXeI4LX013xdrPgHuz6qJtRTxpKPMVkdl9quJkmt1Qu/SSulvqhMfo8+ThpRtPYgy0hvEC+StYqY7/lp+Ew8WzOlTbkdBHF3wtMZ3+SV/NdEaeDIQIMh2RaV8lXM5aDpB7zCb4igQnzgjDKyiOQLDxOkdmmFACsPBjtUmmH4HjG2Nv/Rl0shXrVPR0/wkI+TA/Wvw3sx7cjxJiextku0+8rWAeqiz5nZ3Rc24/Y3QNMlm7JHby8GDrhl7wV+P6Y8xJh2AuD5k6qcW3IeIgBELwouSnFjOXD7U3q6U8lNRMhInxTj4ScKY8/JaYXTaLzGOIe0Jn9tVkVchMhVW6GS+qB4+qI4dlNsrnibUIKn6gi7xXbFVrvZ79E1zGi5BsHEVPuytrxbjk9XUKbmvO3Nf8T2c3+2+h8hRg4LO/R7afYFFb/4uA2Kb+oxbh6G32wdWtWK96pp/Pl2tLu7dPtgGWIIEC6yNWxWtOf0jvprZS9D8MIjcYvddMFBhYtHOVezYFihTgyrTN09zVXB2G0Kh95qZ5MRr8P7PTXiJ5uaHZlVY451mYdV/buAm9koQIbsYJDetooFG7x4V/4ZdFcLtkIbV2fJXHQhtFi0TiI5srdv8qztFqzybaQFmz7omSdYxszz6XxXlO5cEC+Iv0M3a5JQmoqkC9C7sp4gS31WTZioymPJmQW9azLGIv/b0KqnE8cIp17ZLWGLgN/simi0j3pf8WivOEM97ATesSxuBBEu4xEIdx3CyTRgVrnDpHcX+bzi9IDbd50Mmy+MoJjyQydVCLWrLXS4p988Mb4sKIVJStKWfg/7UnYl9HhRbcGa/pCoF+DAXHqkMPK0+7SfmqCIxJt9g+9G2gMBRh9ppMR+kPDFcMhgydV0uovsm2YfYBOKpPwFfzr0Y93IjDQ2Xr6EBd1gQzb5OZf37Kms89DXgf4Qcl+rvbvY+ruUnFUsiA+lwklu3beGF7o8XkkRunMMwUgKI7B7iTJ6w73t/nAaDL2MjnmNBuRMxp6Yr5Ca22CMvMFm7BPIV4sVmhWDugEpC7TEpwDtnQml9E/eg8fHImO/nioT3wSusS/aofxzsvJ/L6vGmuR2XtOcw33yX+wt+JOmpP9SelN6vyaJyEJ/BTqnkdSCEu2nF/lmh5B2z0uojR2WpYa7tkPKXDdRDBZyjk4pBVevhEIuXEsdzn2bAgHOXILKP63ZwjC5fGp0POltJ8q1sCeAXKPzybpD8e/5aqgaY11Ne5sVxuwVxafHPZjW1X7OOMrrwGFX12BDZxX/wN0zbond0BoLcu9LA7Gosf8YDocXLmDTV033U6Nlnrr+2hdjqPM7OS621oWLoBWXXor74uS3ZpV1jH0naOp6933efTzk91tA6hLxeZKn38j6TP+ifsxtAd2Awf0gph/vx4HwmgJIj1n6RjCocsOrtYFYE7/eWQ3ENq4c1+E1lgLaY1kNI4REVlK/RySfVs/3o8DGCuVoA2HaCVK6PaD2A7fqVKVAGr6Bd42W8IFHdAri9eQvHJcTe69x5IdQvAeUipIY5ucL/pv3UtVLvhI8F7RLKhipHcXEjRQKlF2VbFM4ApN/G1IhxEdyrOjYZfjuVcI1h1QCOopUxZNT538UXfqLXe+G9mVBbNpWzMNQmNUG81Eagtj7m5WAYfDtaXKPDFX65llwM8PDlzEBeNFXRmc/YsokIpYF2F4hYDIgAXxfyQYhXzSFJ7ctrqm9yS3kSgP7S9XzNW6S/f0IVMX+JrskD7U9y66jBa8hj7lQmixbzcl/+ATs2vJy1Ldp1SmWpUaiqGb02p14XFw6P7CLMPg4KGpYRBCcKhdvIqXYJ7fwSbQjWXn3s1vjEByD/QYLe5nruqutFFFkAzj/OWGMBmslJGUJ/URThR2i46N3WiuLwDgfcwGszZcyxtDxIHZkcDRiPxo6FU+R+uk3Iux8RfoR4W6eFb2kZlYJKTtsgWAq0PJQqhjr4UP50ZohjwfqlZaYPjOrpGl9NJgjz0RP3yQLDUmb1uN2bAbGHTP6X0VM+rshxLnTDN12Q9CW+AvU3z1o3BS2MMwTAdmI330Qpkn/+CmtgYAT1V9wLjFBRWK6+GsCUXctx+tLOOEjB59jbAklVnfNDd9qGlsK8PiYuQWqjZmejeaCVgdJIa+sXAMxBS6ZoZ+OJlJVAuMmWdNqM79lqI9zsJZnnI3LGqlqG/KFYFUe98Czbr0eSrycJPNmXJ7HFyE+nLKPVhDegSoT6HiFgOC9b1Fu/cVoQ0ff1mcVq+OtMfbMpzTcOis9Z+MZdXioH5YGUktbbBaYU4JTJ5dvllv9bBQU/ZVIPbZQ/rl5W0N7wUOrVKiFuID6gnZO9sjIPvsfzkL/UMF/wUiM1sUIk+sp6ijJF/gijASpbECYlHqBGr4kVZTAK4hUXpTaohfR//Ii+3EvDGQxd7t3zq5t7HdVHCIIbjn1CaR3pwoI8G9SAXQi4/EtYzlZYAgippTj7878bW7/LNR40IHWQELDgL4w8MsG7cBfFP64lVt9NECN6e/BQIej6ADc3UnAnmIP3OTBSP3H0s8KVsSK1wvU53OmZi5YLLl5EnDShHdAkp3wKUaYXQzBBjkLljQTk21H6C0VhPs4N0htaG4nqMI5J1/15X/kX30K5f1YZajjEy6bqkCdN8YvwCEbR6hOg1ErQECjQurbAVmceZhPtDm6poqIunXU47XiDTBaEojg9rx59Cx1tRgQ0dqbrIToNCOrOjGhc6LvLE3kmJGYGNLEVsPo7KAJloqBvFqVeB/TRtISR+0vZBMX0cOE0UbCakEIS5OP3xTkW1wtlkRwpE1jgFO8SDcP6iQElkFavZB/evyYkqv6rRIBOLzPrNYw7VtECWtYZjvmZzPkpYMruPTujF6fJhhopOKPXojVm5L60jQ1q1P5R4YtfPXktUymh30x+Adauk3E77/1dOZEw/F626UCHABynfoYKOIEG4YHt5lstfcZnFUrbvox8bF+w/SDBSK3o/E4+Cfsphyj/IrmaxwYM1bQyKhUzbfIfikWAavrGU7QlezGC/inQVVjAQPDZ8OszwA7McKjqu0gucvkmVoCtN5BgLODbc4VfWm0hC5Sb5pLfArZESIoQPWdI23gF3smd+o00w77cl3wWx+rVyYHC/1gCYSs0IT3p5o03Wey8U1xB5q543fIFqqrRWdfrt7jqv22QacGTu+bHrnFyycPcetqnBN2QS77J0WCKBtOqOmSWC9QmLEVmhHHkIJCMA96FdQUFLNX/oqmgEZJwSfRRSsFZfIJtNLKkYwLpKIYFKF5vDbBq04Wi7/oOek/JnmU1FPCOYeqphS2yOyQkVs9dTT0dzHVTGCa+uhDTtFq5+JVBb1OoF3t0qyo17b64lux10JTivv9ZswrDj5HRX7tYCnSA/JkRTta5s1o7/AhuYiT2CDXIPFln4Lc2WVYzAZZZ7TOWWGNX+/JNJuEQhHehEZKCwT2OY6hTa6R6g6LHIf6nwcWt0INnr34dfIrPQEiQR8KgCP0IKMGjpre+TvSIUFeQCyMvNDu8n34mKbcBihBMDlj1yxVb4xBs+u9kESqQSN+qyYjq+WgAJsaDG5C7bxbr7Oi1PHSMuz4pd74Hj07gyM5Z/P1wX3hIqG4gHuhHuk+eOQaA0tmqqBjYQmElscDUey6fcpBkBSiVeMfUTTHZMuusm1fbNvf0fquwXnSJQPH4xjsqX/s5Md5FcJJvvMozkNpuVivGBXcq5zPcWiqA==
Variant 3 DifficultyLevel 725
Question
Four identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
If the prism has a volume of 2048 cubic centimetres, what it its height?
Worked Solution
Let dimensions of one cube = a \large a a × a \large a a × a \large a a
4a \large a a 3 ^3 3
= 2048
a \large a a 3 ^3 3
= 512
a \large a a
= 512 3 \sqrt[3]{512} 3 5 1 2
= 8 cm
∴ h \therefore \large h ∴ h
= 4 × 8
= 32 cm
Question Type Answer Box
Variables Variable name Variable value question Four identical cubes are placed on top of each other to form a rectangular prism as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-F4-CA31-SA_v3.svg 170 indent3 vpad
If the prism has a volume of 2048 cubic centimetres, what it its height?
workedSolution sm_nogap Let dimensions of one cube = $\large a$ × $\large a$ × $\large a$
|||
|-:|-|
|4$\large a$$^3$|= 2048|
|$\large a$$^3$|= 512|
|$\large a$|= $\sqrt[3]{512}$|
||= 8 cm|
|||
|-|-|
|$\therefore \large h$|= 4 × 8 |
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 32
U2FsdGVkX19b6rjOD3+YM3jmNNgT9S6rY9DcBj1l+lE9tAMuxLkK6/rIqjmyI1HqqL1Kda055PVw/NNDP7h7PIuyf9RBY1aSJ9rjYIpXYIRCMCHQAEO+uAmx2D0lFjT8C18ctNjhWbxzbOGD9luhyKpPvVlenGBnF3ZmlIwp4O7VtXt83HIwuujCmUg0BXSr+4JgeybGqcU+2p37hVGK7VdebJAh1gggGpQamnsu4YDmOo8tQ4uHNyULDXqOglTPDIMulcrMVtwQ7Z2gmmu7fjyGJvLxWNCubdt0XDpNfUtxfZgK5GPwDoATt9uz+wsSBMoADhFCcJapz0Rk2V/jJ/u+cTTwa0mkYWqpPdFmP2Wy8r/MuAhHhHPu1eFxbbUWWiK1fq1cfCRGh+3zKoE9GyeKTCblLaQqGlobtMfGnqK9jDVnToB7LxKYbw/pDVR/U332iMEVlYrwgdOFjc+hZpe6O2jc6ghTd5akx5/B86CATZ7r+dzY9YPm5Njug2I5m0O0Z2cKX5hAD4PQH0PNjrknqduytRhQAguSCD1qpTrRAxRkMi7lnYF7RSqlRhz4HlJ/FqY7PMslhIOOab4EbEga2N07m4XGcofDJHvGnjnMbJFXdYpS8YYAQdBNF00mgCIPPnZWEiuelhXtfM30SF82dEbPnmAm624V/GxT7XeqPmU8jGw5phZ7OiY852DLHcrynfPpTvk5yR232ifIG0hf7uvyTlVnUCJR9yu7DfduqKkRo9HSSL7WcuZ1OJYWvyxZ/Zo6aBsfMZMMtMPRunsza4uDB4uYKFLUNEGQqEUU/MDy16ISeW8syWdmFFRcqQKyz24UP79S4LhDVImJeGwbH15vdPnkhuHsJZu5s318ZLXUFphdj7HMaVdBH2njUuQ/YVcDdBnyVX06JgUAF/rkHImWfmcrajSHgjTQviet/NyNTNsFjFkuckZAwkaB66Z1KH65QroRsT44jGaGP9hRZC3kMGAdFlqzDNq889877SXTKbm7JdzMPS80lQbbn39CWD1/ctWGtLwk4KaDZIw/+nyD3/v9xJTU1ovHddi2ExK5iVGQFzTRfzdsHpqBee0nwqRmvFMnP4WQw4Fgmm2dTbigE9pS0bQIdGwZg6xvckbmDlBgGFzyMKw83pwevZ6lEbybgSEGFWY/At/P1VkuA4lC7glXj93Q5wB2efC/4pgUDAtm51Z+MigIqNLpkTTxDO/XpiiezO1yvbJ9o4k1IgWvUskqD+yr9aaDDKyLujEiCW/nDV61KobVkwglgSpbiHpTC5ROBtiguOv+ul2Fjex8TpJ/vg987Xf0Re0OraCtAQtKS2sq1p4+WOdg6GZkFIrxwMEdO5/v6K+tiPCzt2YjZLqsLmy9zahyyUMTEqXPMlUgDABDjvPrr+RrRtT949eF9fics6BNLdV9RxIgDbSaZGKlzgMc3P8VUqmL2z0z8jAed57MfQDxCgurc6gRovuv39HQHsnvQQKDug/gtmJL6lhagB7D7przojHYK5vKYBt/TIY/8cLwtJoVDMw8OC3c3LuSMiVRXSP+mLa08Hei5Kb+/Lgb/9qJBEq8+Glpuy0TBsogIQKa//Ayuc6NEH10YNYonauTn/230ZWVgiyyOjKJkhv1HlW1qv3X+5JhrevlOHzFcAVcXdA4/+1oqe+dpHYILoaHkuYsBxqmnw8C3ejGUA1kX5wGttjadYc721Ba659fwxM57oXX0FyIpTT/jiGLkRSBllJhZfqekoJcREez0qKsB5AgI7n/YYpUHdj45N1HGnhNepnvT0hoS4CF16PIgWxJPOCC3HGkuXVn6AGAT3fXN9RWoKiVODbr1rx43J2gnpLPxL4OC3gibeETctIHa/4leDM0c+wqIP7xdpEeE/gopH/Ddcx8hKU9B1g/5SZQjYPjhGbm6t4a59wusu4ZhJMTX6sstPlr3iJ+lUnLEqGdOPGt+K8MMy0vZlQzHOXwPFge0+7RnW3ogTQsXBz3d3DK20ckkVqznaOsSRK6/nB6AyMpzOUKM6eV17WFiKuw7Na7ac9V+wC3GGdctwFzLNgSNe2WCzCrdnSdyiPORmube9r9FAT2v8s8NXwvcQM2nE3Eao8YEYeawRnr2K8msDOKulTNY9tkPQoKKhXdv8MVF9zXBe0mvQQxp7zSunETZeZnCk5SKGbBbuxmxvN6TXzC8tHGcNLPM3FVMaC8iKq7FZTHfMDTW8QAazF1aj1czCR+DD2ErEumYBBgncADmohqKGKam2u6nehLaLyJtsOCo0cAn3ahdGPF/GxHyqLmkk9LcYKE4ktrjjU0zVZnL5GRLxBPDMN3ttLDKqoAFRfbNc/DvrNkRwwKxnRrxyXdfofy0p61aeBTwui5lIEmfZuaSoCMqc6LoZlV9eNKXJc4n1PazhsDbPmBxQBHpfp3S+JMShxV64OvToNS0ecnX/sCDLfGp8MQqXLGFH91O7gKyOu0g2dboWdrOCMx6VbIEptOcd6JcB1GTgj5nw+koUeC4A0eVy+lP0GecvsaF3zXcZAGdBMHmEEUbUgIcbdd3RaRsfXKhVkftBdXWhRyhhPtbcgcPZXJJlaWRGfhZcNnn6X5ZkzyUo3LbVAed5xxVzVTISNsTMdgy6DH+OOn4lhdwhAVJw1N8wFeIoyGtfoQ51GwgPp9VadAyPVN5PgePd86BvT+qg5DpEOdw3ucBnvy5blDIe5JfGyLXHX9kPjdkHfGH51RD5q7Irgnoq+3Z3icpNtN3qmvRzIp35KAQ0aqYA63EWmZT+F8SIjvCjPa9beLY0CxbNaX3k/HFgB024yzeVF5OuNAeadcTzFWEoLfApTjTv+3Id0aG1qsJM3Y1SBitZIkFhc4Wa/Hy3RyrHg08TmmSz2kyQsICLw9VNvzcPrJzzhOfo8KF/RNaEsitXk5KCyQri/eTR+7ZWMZpgoSY9FpvtgbH1kmoAYdxVF+jxl/tLnaFQwu4QeafpV37yp9nVkwaemar0HaJGC4GCjCyAm66PUspNV1w5k87iMk6ooLvA9tytOvX6J4GzvvuCvrV0+KaC/1xyl3gMtb3WFlplLvZ86SqaTztMKevt16crwLU3+7hTZaNTx8sqYtVIucMdxg5CT19Q1H44lb4RqzpLyKxIGeVAOIWNOAYO2j4rW7VlgKzS5VWPGkyi62iea1UGqWgo/sdxUANKD1U7hg5gHyrurnBu4/oGj0yuhOpTKnTaWlg6PrfJPGzR5ohQEK+R/4k4qpSCP5sDNPRrb5UDjAsIGpiQKGaUF7Dc9imLEDL5bhnm5VEDxitQxxGzaEV/tPiQdVCczk6A6YTLIpA5JWXgykr32UsivxfAV8ua9OIz7RvOdEu7e6g2Vv8gXbXRv6k5qtef7fQfsz5OE9SkC6VwxO+UDyXeiQ6//8waErOBw0ta9GLJr4GVOw4tQB+FzVl4fo0y4Xt85wPRbh2ns5COjw8/zP34a6JbD4Ayyvp47FVGVWDe+iU2XpOpJoQNNlvYSx6AUwkiKVZteRYCCo6aOJwVZTQy2Bx6oGktEIx+0F9kCPgr9890hhGZj/p7VU0KBq0roXwEsqp/D2wxKyT1NZ8ezlS/f76FMlhHdecy6hdGaoswq1R1tVBfptpz3q58ZaZp/i9q3pRHWw4nEOIgkVJCyzp4CH2QPejdD6l0PoLbXch3jOvJ0HAPSRxnlPz4Y1RW8PsVJxXvzr8+g0Gq6yFr6e3Bcpch1iSegi6iE/Tja44xmE0Wz214RtAzU13pnIZEEahLK7DSmKTev7xP2iSKFpD9tJipybDsAZ0DnZG7ixHxixsG8UZvOmhZgUbEBUDLSIKmO9jVYgPiuTu+CDVTErUbRFiJSR9wbTqtGdk8fk5eIMIy2XzJyScUcNYD+BT6Q1tXEZdsAkCVERV5hMq9qvHCONL6FrtpIT59nq014ib35QWtJhzCslPIX41H4PnSNqdoZapnmziNhTZwRRJ4DpBc1jg+zZMsui7AjWsTUvNkOzFzf9ytDT4KZLZ2OgB8qGu7Ulh++UfkWRU18emHodAV4GCis8ryEW8TAU77WdVm4xnboIeuu+txnSiJH+jW4JLdAXZWgkza2r4jncP/rOZkNf5yilJKhP9Nyk0KhD7RkN3WjUUxKz1GKE3yNXL2RfkXRBOJtaQVwth7PVK4b/3Wvwdli55UPVOWmRjCz57qIKlwaKkRd8fwPV3BtEA2AE6HjEpY1iknMhZyPPm2N1AZ6htZ64U2fuYKVkWl2t/ZczgyB6YuewGk2ks2vDHWPXzQVmPfqdSWT33wi0MxxJISBw9F7X/7DSnEsz+NLaUdtVOIuBc0WlqswUTrmfk2CeSdynItEM/+D1t69OCyHBeRggCZrQa6Ld5M5o8F0OjjnFEiKrkDN+ZmzgafObSGHn/FoqlP9jwJdH/Ln2wgctpA5np8J1mLSzpz0q4htjy0BHLGPDoR6TSG2SHkweVnAf5eW2tvFQLTzC/K4EhWpW4DiF3jgtZ93MjUvFVDBcJsHDu6JoHCA4lQq7FiammZUyb868N34j9hHja4BCxPw0CpqdkEVmjK+ceM+oeIlGfAV6Vq7VM9wwrTDIQufY6z25Z85csdxvbZ9mNgs+inZG2d7TNLSB4IbSbR3xjM9ZDREEQw+eh83Jf+RKK5QfOae3k8PJbbL0gifJ992n4HHzUlokEaNJMbPgKOI9nhUkLGZT1dFPSXDVS5zsELdUJ75n6z2PlMJDXDqCqWQhaFt6P6C9te5UZ1A92z7x5y/2ItepwgyGDJS5Ftvvz0rPrf1+9jaOcMlE92QZ+CM6LZzzoHUxzir70wQHWuEYd1IiCvypknuW7FDCD6LLgfe08Shzrq0gb+jn5nK3Yv8eEwwc/OydB0AoEK/8B/9b29PZFGLTOaT0rzNS4734gPE6cfAqVpWPpvHtzBteS5XGz78CSLYzXV/dS8plRzZIOzH+fbxW8fqS645kauQBcyGY+gJgWND2mUCjUVRRPnAN/OTWzKN0TA6R03+Dsx/MLx7AqrvvWsY5f5mOPrjwW26iJA1XZev/RcAIG4v8HpcotocKDjLlfroDR189vr8izQGga/exjbRC0oZZIqbSgPg/45D25bg9pUceJx2MC9dXXSmITM7kBXITuW6TuAwW5I8hBC/BJQS3ArdbVHsZapQdaxqP0s6DhFe2E3UxECfPqlHGxPl61sek4brnJo/ht5pDGuIiPaYkot6AT1Snhe5CYjKYp68cZVq2S45OofBgrc90H3iHdJWBY0JcE2Fo6LRYM376HWfjSUnVN6AlJ+6m14ET9q9dHUKrscffiM5r78RTujHCc7En6JQrdafF1ue2nP5G1waNSA9fZH5gmnDZTgZ1YfNEIFql1vpxSyncH3Ja8ZA5tiSng1v3CVzaK24q4dhL9YXWAr64GZjqdNUVWJdDxfuG0RZPsMWkFL5ttIvCowD1syhSTEA6XaqLcFBgNgBPI+RpRNe2gGE6+0beulYRGXlJogrtFHvnZY8XPp9M/VKRqHxSlktIcf6YPzN1r6IK1tiev7adNCVBOXbZ8x6r+vsyr68/hO/ozKdO1eISIZV6lz4RQR+BfU3O8CTy/C3ran1Ods9s4KYuJiLFxpHBvFs56NKendK6V5UkvN7lHLcM6nIjgQx2Zrlrt/PiAWDXcGRZ6o2MvoKv8Ac9O6+5AfthSL+f9o7kWxDjnCCjuTFPtGkvCALLbfEQSf3726HvREVjgmQ1965+wmIFKABOfIH/XMnxar+ASVI0v1aW2VEn1q5ZGovQiCyHbh8BiplLzmOro7cUJJYiAhxCnfYYrOHxr8I2SokSMNESG5oXmrS7og1X0LpWgWoKIu9toLkR9B1L+zAnYDIB9ZeT4kjEBbDaNPPNpbviHetZGICKg69JOh1AB+6fh5MhrFYpRgTUx+Yibc8bphNVvrXSgqrKO7EOAFih0Fuy+vWk7KePTyvl2PIa1LzrD37mzaGg8ykscB7LBWatAdDk6jMiYCx9CXA/6pSxRB+Q/0EKqNb6Cg9OpcNIW2SAeMjHiYuiaDtlh3/vPED3PSlrhL8/KA/kUIMO6JXtsocb6BQLu3f8SrWn7VpsFNYar1D6DOoghzk8DlxE/Ni0Ke2OceaC4D2kEIN7SCxrE21jfVI+Zx45Ic+opH6gZ3uY3UEoSMMCAq3vC8vb1umTg+G2eX99+1KGkr1D9zolMvlv2wTwX3+8i19U5IHPkWE2mHoPT5MTxqxoEEldSaCQFXKOotXriF7fYSOyS0dWg5zdbtalTlXTllt0DoeJXG4Q2zlILCIThGxE82pKSYfXwBO52wJvRu948UWjfCuIPYOkP2V5FtzMp2i8qVRYX1mWM4RaRUY8CmHLUyABs2XcgEyiCtR7+JVjSlOlum5fein2MU3eIukVRBk+JcFJ+F6jRmjTo6J+bttuY8El+5fXt6qc13RKw+ELYRzyGwLdDWjG9pyPe39JaDrUfRgkNuESDsGXLmLLWGGkRWjWgA9TtIBLf57ln+0cghkcTHgK+k7FVWfPXVjpL25ciioeQYOQytHjzf+6M8r/4mVuZDTb6gUsujctZ7fVWAU8AZlhobrlBdBE2+F42/CtXfyX1qz9Q2OOn79nVv4EUs33r2d+rRlYZiV4P7bSf59KsGR7yMxFbcS0uvPbcAesccJpJSyqMn8OcVKV+u1MgiQmGC+urHUU7jev0VDGA2IpMLwk+v5JKlegYSHGNTNA9tWVE14/1IvVQoAKLU6osAQeXH2UipNhUDJ6YIzBQkMSw6gys26L6kehjFR3L6589facQItmaSbBz9uLoECo1OSoFm1XOeQP1VXGvIzbQpENELFTvHDgU0q24g3YrdA93BoblhRqokSYgGoDjrXovT4nFkjUkekqw2sg4ifmCoK1NNhaRoDSh857pg5aiWqV7rjNXMF/jkampRttcyn7SRrK2rfoI0qfIQifdLxJ//Tf3q3j4Ki83T033XeLmO5HNJ8icbkzPc5CdhoPyIuwsrSFpWusJGVbywmko4IqmneeOppl8ufXHfmFjJKhvFHnHJ3UyQZ6espHZXlmVlJSJs+DZtdNqZk47FurXb5LGz42ltWsua/E1YzoMNbZgF9builgy4sF4jtKryehbTVrsvJk0UvHz0Xi60PoC4TlVdmaytmmOTY7WEjSdqzKFS3qD7Z2WtaOL+lz9BFjbae2UW8o/P2l3GXFemzw0jyx2UEqSCzo62LPSvjjgVE3Es3Bi3TWJjfBB8pfvD8IhVl08wg+UuAq5jrq1l4E4Psr6rUjNKxjeFyeA6AlDn2Xm2nv1ZPeWxgPRSufAbb4wwh2S3SEUUwkE86cnEOQkyTUpwoWeQYAkd64hu2DptMOlc5bOyyOp9HPJNaFX9scFDUMFUicl7M9t1japzOV6awDJoTeZieN3af9q46iHlq0Rffxc9nB9F72ge6JEYpf41wQBMyZhnOPYkUzGnckiswQ87E1v2Y4JNS+UfZ9v9XrP+qrQv5f88Qk5COZJTLrtQUn9LF31dy6hfD5smMqIM0bln78dL+r4k7hwgU61BYaD7yGOrieJkOBMpIxkfO1FZzTfic5CRginTozNCiWKfBIvbnC+s9uvBrPPUwFswORkW/1gmrcsqVFuYinxQMoo6dhm3sr4J+sENFGx1tuvWXrViXqUp4aOrI6g1ODx1+z4bD+EjqyOIuRSi2+jz/z8W5mvOGT8PmaVyKj/Z1+PXyeYqYEkcMtgRAQZFFFq+YpXKlTQY1BHer8AZEjkwpADz2HXSgq9hjmalFmee2sxqG98TOrXr9xj+3gswJHSXcmsx9zOdfGnZZXVN00n5yi3hT/4tLV8gpaCKp5uYdJvfRPpqv9PZyTe6cW6QHju8AuGXcwh5Ti+UdmS0+Zb15v0i4+QUKTPPLjWzZaKf0++wxvruIkJSAyeWFnXVmXCzEW01dNcn9LMBIGqBycc7N/KKUE6Wd6yGTu2f/8UQUxlzokvui1+uVPHNSMO0/Dky0vzcfPeXYDliUxzqHJPjrTgdqlWNSkda0rofYbIyYsCKd1M6UJ1qkw4KB/1bMWXDgAGrIR/547y1+m/yvRbNFWOlk5jAOQ5OQOKME4Wl0YnuDJLy6lE1Rw1nJYr+IKm3GVtDRmXDgSaol7GmvvUrMZ5BreO5OurTyPqvxEZAh1Mc/f2KfiK7MtbwBxgwo/5JlqcxLTltTlmfpJA2G2kjKA3CPcURfWzht8/LrTkbQBKpZiyGuER3d0bWBFxweEW8ws3Hnxzc4MytTiojTVUgLhqFaY6BeyfXTjtrlyYoUFfhUjRirb30lH+AzLkjbSLUJKmoAlObcON+292SL/xxAKZOoayq9RhNbOkN6EI3Hnqnig7I6POo+aTwlEEBGjw20nkjdTYqzMNabMG5cjW1J8a4E5SqC7k3lQa2efhKeakv/2td920bf8TANJtrBGsMPuSBq150Pqc9gMOby3SbKyjDydgJJWdCrOFr1sYoFzYuy2jTzfm0f7lsXkyuk8swpRZ+OWAqLiFJkcTf8rxi+/FiFSbvW2dvn+rIeFYyVGMy4JA7eEf5rAFCe66o1za1iqOAG1UeeOyScduRFtuHBqllNoKNsKP3UKnteBfKwjgHPXuLi/1eKlZZBscnbdMkjBZepbrI2k/NjPDRV58wpQP99YLflcKZBuPYQFH5Z9Giegq0rr0nxzOZrulLB0KAPBDVtt25nbCnDAV3AP34UK4Vbll1o2gQILYbE7WlxzvfGsGS7kXLSQxQZQszNuSXmh385QfAwYUNe9F8v28wXyopwZV550fABrXSA9JoSdBSHufm8GwyFG//sRvB7f+v/mzJI8J6xuicYHdqp85yqMAhuTXmeM6hvIGoes2QlXlOU60rUCwEE9+SNEegcesP8pXgh3b5V0dPdIGfL2DNR2xjoRph3d6+As1874XofytMocndxx1p7Ep0dCzXgxzss1KJL1FRv+fJ+ttm2qwuI00/f+XQkCOV98B8ws42Iqzg9ikJFOBZP+wtxIWbE67SJ96uZ1j94HYUCxyAiQY0UrEECkASB0u+/z0KKRHkcZd2d05WhI0XrehYfDPPNxqLTIy/bSOKXFaVa09Bf3Ukuo1QrZPof5w5FskIFmWz4MPrTYJOmsb9l0bsP4d3E2MLyeU/flTFAbk5mEB9IjCkrCV7x0FkMYRof+vrVEEpcS5JB/by89YDO30v4GKm0rtQWyTJfedDjjCo65mD25xNXLQirlfUXdt8TBCHiqgcq7+kvuuZZkzc96enDQalvdsNO8S0ys9TdhtmoRhhJVJJKS/3fmaCB6M69nqCp73vt/mzxlKUSP/H91oHBqdRBMai+1johVOxJtUMQ4jcI9rDI5PgDTaJlhCzwBpKk4LonymHR12w211W00k8NafySfhZrPsf2j33xcj1ey+BXm6wN/QAW812ivQIMPLa2Mf8gv0A1FlhClPtLvuuE3h+Wc3KDFk4hoLlV4UOw3EX+OxjN8PB2MJplqODXX/KMYYUbzkS3/WNqCUZ0s533iQ7mGZbrBEcVgi9o8Cdizr6ybtEytaQoNx04GjCx4DGSNmO4bYDbKVm2mKxAIlHvVQBwFYM3gg4OOvqEOyjXdQ5DxaQ6RNn6wGkQ5lrvY+t3izs0Ytj204YlTq0VI7gF75XQVR05rBdRQOy8uxWZS5gWqDDoHWcUFSTTGtsWVRkoFtJvvnQYy9Y1eqP+bhXT54MZoP8lo5gctQGNCX5hlL4PYf1RocEsMvlyavP82Uqx/NkR9Yht8716LbiuIx6INA7RgMjlib+YlJij+u2SiWoNiRbxOGc05g10Rvk26c4Exs5wvy37zdNiEeglN/e9lMH2bgxXwvCCbk5qY2OV6FLr+ES3wullveZ1CHdJW3JpAamk7He88uFDPLlB6gKDGOP56sOB86EwOo3vxkRWHjDrXkU8P+1LGvme9Gsm8bxChGGRkAn6kgSHIgsQGNVLhI5UYKtUivSofiD39GHq63Q9+1OtXijI/WkZFMsWgQE8i7JEMjldIZ7WjdA/MyWov4Yzcuq5YiwKSnvKVFKoqDzCMOhjM/7bZbLGnIr1lWZNVTmJA7ngqsMehkloDBAvm6seqAwifuTjAmekELxaYOW4Uyh3/QMBh79CFF0HCSTM3RgKzx4ngR1q2K0UPq6LN0cqDuAur5Nf/Qnxr977OfZw/tdq2Cl74QCElvP2P9bECBJbqyzjepTGxHoWKEY3xEeU8cF+2qsv9iZnOqcx1LDE/NB1OmIBDk7Y6dPLXw2X05PuYeHVvaYQK4D6SsYwwsTDzb9QB+KeD3bXOmPqPfcRV7NcidgIFrDbLPUIGsykEebTua1zkOf9VFMDCPjwat1GzvpUq8syAwnqJPzlo4RyYUwzjAIaf2TlqeaeAvqUAdpHKoMwtPlvk6CfgjEhMXawSh6zzEE9TIzRaXMJke81yuRlhKx5K0V5U+TvzhQZvsUG0d0s/gC3QuvCod2u5dE4bPTiXc3xhlCDxUDfSxb32HjOruSBZruVRKOisrAsx4r+Y6e5b7lUAbHMI+qIK1U/gkg676Qw+W3cnCdt/wQoNjvjFQKPGffsTT6yS4CeWhjvakj/cqmgll38Zs61OdOxNSFgI8PhxrRhJYUpxnq6MP9VWSpye854mqK5Il1lbM7oCFe5wWCpxZJCU+6gjgkM+B1CvVaenaXHUAmahPWCQFIWwc/3+ZXYxdVtQT3czdWtwTKCBkGm/IX91eBFEhXuKzmLhvPxpKZ1qtSI0ZX3OnBioQBLDAsCG6nRq0D0rxfWR88IrGcSkkjZCrrNCyqmeMUSjBjsjQG+wU42WzDWBNh6YJdYYnt0XEyl75fFylSaNSkFv+9HJyjSX+VdSMrf3bTpgzXGORECHydnAiPin+FhJKlN2QO/GbJWTLTag4XCgs7VBGCRoxEPtXGlaSVkz5IlwYxpJhj65nxcb2crVc2Ar5aSzscgMa4/mCQeznyiPzNq8wk3GCCv9NifQiKXY5it0RSjiaA3KpAjhT7DIMid3wRT5oOr+iAsL4R2S1CuBApoHqn5zQOJn0SMOhp8Uf23eGB3tQ4sWXnzlG+p9yJ6CIdmMPxth/MOpx2k4yhIIAHk0qTqH1inD3r53rNEZ2xrDu3wfP8IY7j2nZjguME3S/+2nPa5J6KKEgqmn0ubFTEEx0OmSUU2SieMwTt/6eO88AP1X3bT4tQJeMv1vupfpPS0+frnA5QwuDaFOoJoBKF/y4ADd9VcZSPcmI1zggKjiKajcPyd3NFb2s6smgIvjbx/8C3aWNYRDysuLBG0ISpdt5qpeqlgcujS4qD0Tgj2b+au/iDXkq7TzynwaIWKPnGxaaZ1ME0PEO4gx6AH/tTyksZH5ByOSCd0Z8jEMn9o22ZXR3oXIktYVOS6vmnWdmzualtsXh+ec+j3uslcXy0ZrVYlhaHsJwgjZoxUM5zATIfRFBcqMB4CmZzEfAbU/bhIY9aoHUEpam+YlIRUxRjkUlvCVXalsI7Q1vtBKfFtdgxCkNwEleb+wBESHTl8xCZGnTAIAGliWe/60/nwe5xwNlMypYDaCP18OO38pW/qgu2mfxVrJlB/xqL+FkFak5qBIGjvYQS20BmoN3wNZZIB6nW9BT6OahvDSsM4qTfOO6LhycYGOAddiThbhFZNScQytYRwnZA8gS8w4+NVlbYBbHv0ALOTtvseOtuNf4FFQGs2ycv9ZCgmuV6IJNc+XoP1DwTh+EkADsZssLGenKH+2JSTZSWoF5d/odaiTw9zvdJl8A5K1Hoeq/nGIL1gTUxVB3qoqZbkDxOOePmp5lnqoAajiIhqNGce+sHQMn3MHnMKVC98Zkk3jIlhEbJfB+hfXqVGspmVCqOAUCsA5wIiN5H4y3gKgjvSAEkmo7fxaXd2OPnnk5WBHApE9cFax9rX6GC3b8MF/ber2hhrjgv8ryu3ywIql4kJGy2//hmfZzPDNOKxEju+kbH4NctIGNv+wPUMAgrAaYcveTkp8eJiwzRzNF7qnFZfOCuNucYbMMsFyePoL73dfnM8wm5EcKIgd1RMMRBgmQx8ZcXcmBTaRhOmyTMsQYGauxmzyaTT9SlHOiFAsgWi/gO2w06bm5ZNAwqF2GeF4yEghts2fF5cmT+yjRTGM43JWAS0EokvPEpeBgZ0wNmzxkfV0gARs4/RCVh9Oo0/Z4i9Gup6rq6q9ljyCGB05f+xGopCV6WYsOfYnnKJMhAUTghoWzdrTIosnhD39ZCvdYhUZAk89ThzrdzjI8L0HpDrCaq0LxrtdMCBCCCI1svHRTlhBvPaxXCTIBV5mtm3cmUjypr5NOw673S5Q1UBF8KmFuWkZSCZWoNidgOqvRFv55KKKb3XxkMVmQaitwNim3XdLpWXDUBN8Ma/dhXxSOhvwIEVUSlZbQcbyyW/XDWgnBu7D6TbD7adhooEZPjy+Yfj3R9zI4WkZNf0wdXmQRC3ARGUM9FVaG7KR4UwFCCKRyuTxkUam1eDFDHUX9wf7s4gnvtNdUBJ8JVJhOxmYtsD/x4BjxevVfYAWZhcTQ8BIN3h2VscP94k20L4yD+3JQ0P5xFTXXBWb5RwW0xw6fhcbCLTfUrKzYXpdxGNFr6VZ9stWCEpSEFamdZ1TVNLsbj4jgzu/7Vr218A0MbqOToy/McZFGSDMKV6+Qyi3uxT3LP7lRtkj7vv66LfO404f71k=
Variant 4 DifficultyLevel 724
Question
Five identical cubes are placed side by side to form a rectangular prism as shown in the diagram below.
If the prism has a volume of 6655 cubic centimetres, what it its length?
Worked Solution
Let dimensions of one cube = a \large a a × a \large a a × a \large a a
5a \large a a 3 ^3 3
= 6655
a \large a a 3 ^3 3
= 1331
a \large a a
= 1331 3 \sqrt[3]{1331} 3 1 3 3 1
= 11 cm
∴ l \therefore \large l ∴ l
= 5 × 11
= 55 cm
Question Type Answer Box
Variables Variable name Variable value question Five identical cubes are placed side by side to form a rectangular prism as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-F4-CA31-SA_v4.svg 400 indent3 vpad
If the prism has a volume of 6655 cubic centimetres, what it its length?
workedSolution sm_nogap Let dimensions of one cube = $\large a$ × $\large a$ × $\large a$
|||
|-:|-|
|5$\large a$$^3$|= 6655|
|$\large a$$^3$|= 1331|
|$\large a$|= $\sqrt[3]{1331}$|
||= 11 cm|
|||
|-|-|
|$\therefore \large l$|= 5 × 11 |
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 55
U2FsdGVkX1+yHPV979FdGk0vAJQ4Hnu2Q9suURMizMteMq8CPRi3t3Hk8vSrJuG/oDukzQpEZy7lQhRRL8DAL6URfvmXEl7gVXgOvEDeX9VL/FFQFDSP1W2A+1cxUsbFuojonawAfpy0hZZqDEbmkEH2BqHjvcgtGLHacUCIchBQaIiPkCzfc0v+A8wJMVRM7l1EuLBb6QHA/s25F9cMMPN/SYk1GBsqjx0kuWiaFTO9BkWwIzCqLxJKVKgiFmZ87R8jYUh2HkUJ7qJJCrBeBVqwiF7bACiw5wcSPHIEWysbvg0p7PyAg6UZQq0E9EzLOCAG8ktcDSMQ9o2dCKhk/seYz56OnhI5KSNMb2xFmKvJ2eYD8Dn1S7HPUpbBgkqPPvB0qU/yjPLtQFu7VQPoBl8bUDU8vXGYz/Pzha1IrXE7w6jwEpTtkxCHZfZd4vEHmYpmNdJhfNsrl+gvtPRwh7Z/ysKniA5R8lkmQgYQndKKAUuYvEU4LV5GcgJaMWGnghvgIQ+qHhWE4j372cQzCb7GBHG/DAbKYqhhn5zIDHPb7cIBgOfb0JOvZkpcY+n1jJWpsPkAMr2c4CqZzng7LwKP5hT7C6ATXc8w5d33w57Bm/iqqzJeUc5E1Ug654mBaZCwLd3nypHseYZV58dwed2Vf7lm45m8VuqpvEiAWtJSlkk+jHz3BdShR3q5+Vtv4+pDMSyh1Xn/DG6/glM418z8VWk/3yY7nBwIoeu85eCyOCX9R7v2/ndz/HxdxyzYPwOrtzZ+ZqBQoMto1BAAh4caplLXnCrOFMxebbyIeufzIN3sRw6QQSStoG4nP1xpPrLWnvKhUTJstHKWFj7pDbZhm8uKePR+xjIpYYNORwLK3ZDW1BBQpLZrTG7uUFmk3R1cQeNg0sKAIFS9dZ7cYZJg0PJKVnQWQnkI5MICWszLI/3mPl7uDOifFOr+jApqV6oINNUyYcQAwxW/DSOC1SvfO0jDSwPSwrsXsY5IV/YnO8ENpE5cvwtBCykdd/mhtp9LabVcTUBW4y/okAXdwyX5S1nyxt6mmaCmd18ahKRw0DwcqnIOEdAwLzfxDW2um203ROGEb/JUb3U0CujJcUQH6N6l9i+3i8gVXZcsoI1cFL33Brz5t21rgJAYWfyNjc+G4TrGsS/0EigQN9DO2SSDDeDCSnEGqGMyUZSNY0V/6dze/wmiVFAFe/WE00ByFQRY/kwlMUFY8XzfREpGcob3xauM80f2SxWcBrviixO5rECq26tBdRwBLRp6fhXJBXbeNx+44YGEx65n7QvevGVhROHN7AfZFufSubGE23sfck5aUfojqeoxwEIhSoQsDvmCHZDKJfpEVka59lG/RZSSHhMOuXPYP7+H5ILHLSAof/xNDQ/bhb37hQwojLLC481fdYDnm1LYr5BIzbEfjpNYdSQQ3ghFMwDVz3iPi+9gH7oVf5nodnLjE1T6Yjbp1GIr4AoGVQO9QPc7AVVS3H8uGtNGLQN/vbhjO+MyxFLfK2nqn62srGsrLN08Ql9vyzbatJidqFu5ktf8QMmC4DzuWSBoHiNUnfpSMV2FcbraiSTIQirwpfcJlQlf/fG2DUsG8rNEaWkKpSw7POauvVHOOsCVzd2AvBBYBfQvL7yb+Zw30F8Fj4Ef9eAJ8Fdok2oBCiPij7yufM7cx4MXR/KebZ2hIeRRQrbZ/PilyFuJghfyNx+bM/VwrgAIO0rqLnPuSj7fYIE1lQLVLRFjxa0nGPvLyOTeiAM9fUZXkDQnmuwN0WEt1RS5t/i6XQxd3DhhzdkKBqwtG2gPy+D1Cj/DkwMpdagVRxkAIyGoX8H/Vbxl/V2zOm+WPmpEDAVyC7OdAlzkkZqGVp27O7armsXgWTfcMv+LZx1h7C23xQ4LRk535i9hPlyue2h1uUx5B9AIQ04G3E5RRTCs7zqJdHFMwrZJ5gp8IEfhugpWQ+zwXCAoseYoAlFfYUUbLVBMlD5ZbhOCQetiOaJUi04HouAlAi8IwrBfzyQ8hZdEH1dRgvcZduXfz73tuqALRjaOYGsYmykSe9YFOLMnAjs4LYiD+Zcmc3ySjqJM+RFZcm0bmqxVr2ra8dTEYTfkbcPz8XB42lVdGugqlaL8kxii3f4WCxHjG/DFTsnCklMM+ppm2khZ6lKeTwiyrt+/a+5pZuSEULVAgeD3/w01Z0CTA+j4kk67Bqp0aEL9n7bMUCyhN3JYoR7ldbfotNEiIbftKJxowofdVIjbqDA6whim5Gv44/zUaVucTAL0OW2szt0jIv9hweFrKoglT9o59E6txUcXJeMWCEV2hjAaFhTChuneyD77akDhKEARv81eHNMi5/k4GW/JG4bz773zF5Xx91I2PVhgHfmQgVTXqCF81SN1sqq/gIvXA//PsSgt4YjAaQdPjqd1sQX3F+qd+ecq7z8bTqS2t32Uscrac0FmRXx1QoiP6o9RPbMvN9UdM3bDcly1AMZyCu0fX75EoTxuLvoi3H+3OjsQSgnmYJ5G33Ut4BaGcMNLumPEYwaxsPk0a306PAUz9Ks4mTjrE4VtOWuoFyoOno84JWAq5bazQCR/MkWXxSBYLSUHOzwPOq5j5UWnALHZ30es3f6YDNfgQBBDueUm1OanLECAR6dbSrwEjhpkXxrkCwWoKjWSAYGSeXcsI1jw/6EWHsYL1C+rOrUbXko/FA2MtKbTlbc4PGpc1/Kj8MiaDIa/G/YfXO4yDG+zun3fRm/ac6yPXwni3gNrFIDS7jowkkYXoWcDMLhAIQ6Uys/Y6Dwp0kVE+0QaBQGTKbmoVSvbu2xHuXa3+NxU6EIpfkbGmQXm6btW7zdLlQ+oMCqEe4FTqAz/t0Y/s/FXRTDngbGZfH6zRkLiniDG0GUVEsNtLGxXZg3mBzPT9Ez2Lb8M7Ke2dQpUD2oIS5ggOFxCjkiDkZEcE4O6dwTDwMayCATv1f9rBZwxlnokN3f8qy8PzDTKau92knMdPmHZw1dO9AXhBbqvFNVEr7Cvh/lHyE1Mat86LHG7Mm6oVcFtjhHs401QM9rOSGWrJkhDeSBaWzqworn44n+wS13W9QjMC1ZNA0hEKEquvl/cHsyIN0pslXW4D3yV2bhnHIZ+A+pFNfR7RS0U712N3Alt8FdhQs7R836kE3JUrr31LERzLybYr2qcQw4qDvRuI8XZJP5oLIsjh18r2tiRjYDmA1wQzkzPDUSR7V7kUBuVuUMzKoimTTJU8+zRZ6D28zk2Tc5Twh4uAF1h/5zdm4Pcnp5DOq20hNGC+5UEHZ0bbjW96/ih283KS2qs4Ry5cGSF7OC11maTmyOAuJAcageSgfigncJJc4eAEBoAtyfq0ZUDCKFycSZlcjPnI5l+DtZilUOuPjjwz+b0ut8zrGKlrpBHTBxNb+iWNdJAiLRcIKScvi/EEs02B0LZMtzYtYdmxyLkyTWgybLZU+fS8SfbgJpMUSjKbvfyUehsW4D6Jt/EI/J8Cals0bA8qBdBjsh0RARl5xc5+psnWEphd2G59o4KF+1PKpkLEx8DoQfhIowVYhgfQGd7eneroI2iegXL7D3qOfcudaGuph7DIouF7Kj6/qQz/Q2F+i+vuwEkZGHsKp4dXu+WL67UMWjzzeGB3IGpay4wFrkrmwrTwp3JfAJ7MtJ6X6RVDWGaLtuALCkUTGGFGNMDdDp5dvZfgQAkVY9MMx/aj/HqebrDfY53J8lTjiNjAzlEM/p9VSlDhMnNT2GiOMhZ/gg7WNHunouEFm5Cptpnws8jtsce9xGp7BCuVt9Q/AP1xFONVDUb9pOtuxdZWnsJiGfy2wdiBNq/SZr2Ub5LZ7tzWWUr8EAApB1ocHcLeTWuiohY692qCX/LGJso6KIaoFfiqxEkn91JJ/jRQY+VWGgDKpPYKbvsZRx+qYCo9cwQm9mHuwmWPoQzD5r6/n6b4Fmkj6dEULUlyrzlY3nQpbQy5xVcadkEHylN2ut3bUP2vxhbSN/0W7HuG8/65grg0D5wZCY6NYpliDFHtV6yiVbPyuJRfHD4EIGGPXXXCmJVNWkRHmBu5Ivk48k/7F5P0hw/xuTzgwaGbB76N7MffjDx2miigZKxzHPyz4RONxCHjbKlxF/hvaIxFx9pgBcMAczYEJTZCCVok+G44X3wLJ9LvBf7P2PXadmeHKHYkqrhtpaP0ajY1Wy7TpjlwEEC0hUnBbvlfrmzNHrtEjhWTD4e/tlfSfUSi0BYVSjQdGIu18rFuaAjsSvtzoD6RpawdnFO/1E1O+Ol+4cQKVtswjLQd8PsqHkJw498f6U01ry3Es5Ur5enBOt9yVXlsPIbfV3n+upqenq/LfI4ROnJZJnmQRJBZchflZf0/G1AVG1R0j+PEeftzaQ4f3TdEyq5rTteoKxeaNqgsDHE/hvVnwmzru0R3/80PI24YX6pWDPqF4G8sSDsTjbbNPkoYEeC6R6rucmpXhnw1EFUU2PC7arHgtx8OW4ZXcAVGXcAXW6BXglACyCfVK4dI0ltYkEWsh50NUMAT8jK+CH8fSpXEVjq954BHv5y9Ylo0oJ9mSUV1IQ9QiLS5qCgWS+05ZFa/9KQccB5rgIWVefu03DRSMIY8q9jKJV7PNe/bipvx5ZO2GZRvrFdbp2MrBIySTJqYIw+sXXwaMGIt+XacYv5Fuhdq8A/FBVR9khV4vK8gEUSjM2OD/P1GDFqee/i8XrzslpxhH65OVNfNnS9n8iHEIFAzfGh0lkOYtNOwVzH5nUiKTQRp6D+cCXQcjx4VRL/Zt2MGXeSKR/zQqucJ9ZUg9t7zbeL3KkmDT6AwIAS41wXTpdBLbCxRJQtc7LNOX/ndebkx1M1ezAHsX7KjNS0hR8U+oLBpffThxN971k9aVik1RldcaqxWrTqv7QoSh8BBuXUu+Ge+nKNA1hzAWkNGjQHlPAMQT72SbbLpUgfQ+Xd8UmtppFIH+EOczlgXZM6Ahfebr8ZlOxN8yYe+xbjWytD+AloifP7PsSz+V3uuQakwcCsEh0jkxVKDA8ol9/RRLJe+jB4h3Gzk0gofsapK2nmDMlX4sBKUpffvZ2g9UZovZUhn0yQ4j2DPkAQPNgNMz5+j7JkXgelAzB+pBGkIZ0mQ9A55RnYEVw2spUFh2XrqrEg8kSeDbjJFWbnCILdeZ7jGNvB5IBv+gf7vuJl7R1IMIzokF29qRRKmniZM5m3uGk/+Xp9MOSbyUCwK4YOh2UI8SNm2jFPy1DISPZrT2ZkBMkmtJc/tCxDDKKc0sVR9nZ7tgF+DIfFfQW3Nve9+xqBMK5Ge78DJDEW0AWHadInfgyFmsgIcyRgBQPF4GN1lMUTsVicKaLZI7hSpM8o3/51EH440rsL41CivnbHz6HEATLlScA0j56YwVs26EokiqOgr/Q9vHjwVR+/92nhWiJuitZqqlEkLH/goc8uAVgZF/t/0Dm8DqL7opY5kBE73hJXA06zst1aXOlBGtGkmJJACUQ84ZtGsGbz62fo7EFH+SveZe/w7IqZOYOZg2CClP5rdhnn60p8JRvgmChDVtXAjR1kxsjWrt3RluNz0z0ve5dLXzEtt1XEbCDwzi01Kh7tZLvo2yYKuFLZR0WTfi1HWlFGWtCHXKSWZaBVP+aEW3eBoZ8dpKHUdErv7iRV4Af/J9pSso2zsC9Zx8woDgH0hppwiJvFbnvDou9v9iyQFqTcV9NlXxi512QekDCzW0KkEZ8F38RHeKEr5juAO7cBmoTbBXvHDtwRh4gNhZbZu+fW3W9fKv0JiabmGtlGQeGoDfwHQqBQ2q7iMr6hpOrNwoO7qlayQ7H499WLXnJGMFZ/SnwRKZLmEsMrvkuQfW900/KsYGakWkmPIltw5OmearfzNH+qeZiUea8H0v7GxoL06phSJeSuK0+VUckofYRDfIjEmML8WldEri/zCQnXWabKT/1nMTrxBuLKCMf/rzF6WeXZuOohHj7Ax4sKy/l0nBRVe9BpCcuWy8UVr74eYHYm582zHNAjuaUajFNRxNvT5CHnY6GPEWtOPF8lIhK2uCaDJJE5AIK3xsH77xt9i9kn0hGL+Rsv1veaNxqk7kBo28KFujDhb7zt+gcoOy39AKTzp/Z2FEVnj7xmkYTpqBXX0gnlAoyzl+Xb0KWi9C2VYN0zn+eKlgkGoP7mKsQW8NuZf8Ze6fVT0MbU3uVhnlnidCpz/oSiJs8ztCPNeGfUs+ovxhQ8dhaE+pHxhMujne45s89RmS6/5gPWi0KmKVPrPCFvpjgpzltCKOmITRDTvPLx+3RI1Q8hACAVDtdExHF53NUb96LTjPGJK+KBEpdueDtuKV05UVm18PmBS2r8KBkNg6nkv6M7awI30F6Ze2EPLtcgdFYYxtUKP/eESLBdx3cij6rUkqWlIGUDgwT0jKZYZ6qEAblRzjJeV9jQ7JgKHmejdzX8PzhaWvWcgGPxpxmzRx/L19GDeUaOa1hFSMfwIlodPXAuPrjzc3xm+6sFUYPqCJOYuNPnVO99VUVN92MdstTnHAlkKRHysSnsFGXWie1TwEyX7vr2vnZUyviavEyefE4/QGEAG19F5BEqOzSQgE0PGf9+0zyKb3XCTrD28021Xs/ssrm0p+4PnAf/CvWnekxAosIf3XK/1aNdsym+A5lDB73XL2xa9Quw22rvA37m9Z/8OK5q4qj2qA++iZe+JIxOD/VP2sAyV1LO1nu2a0fv9T+OVZG4JWfCgd/7BhKyvlZoRSu4MXhGN5waqSv1/a7rLGdHDcZr7luFoxAg6tEBDFv7Pc4gH3Y775qtqeD81P+9LVudomX9rGRmnwgGk1FqaXsCchVQ6pshxOhpoSU0zgOEXJuqgGox4DL0FBqv/ylunpwV3PhJeAJBhhvpunnEfd4pQDxPTBIIUgpT+x71lxRMIYiUNUw6vFcWS3tQ8dgABCf2SRb11WIVfXG3gs2Dd2iXUuiCvNl5K4qWWWpgq3RnZlXjxMVePqUpYOKd9bc4HRuXe52w8Zwk278FmCpTPAL0lQBjoOM8p+V7rwhfJZj4Rv21XszWOjEBjk0lAdefm8xmrE/Z8eEilaD/n70G5jUDXkyOyxsP+Lm55pGUsyS8q0TBFvJYwtd926KBag4Lq8Z9XzOf9IUOG3AwP9j4CfWNBPw6MjjumqID1XQ5AgajyT1eSRJg2nVx9Kv6mC7gtTgqq1jETZYqId7oNh7/MlxBc3pWy547rKe9xFbhvyRugLqJ7idX0Fxmgw+LECjcokBHBsj+wtNXThsDewK+GzZd4AONp8wm21oCoRu2k/If/mybil29pNVqXpBoyirVpRGLfsShzb4KkV30K7qfYRiqXuVrKIgjLYXxZt+ZMwBjYKZsbNbCrb/9hxsL5UilYeUM1ECUdj3AwCWbYnytuhkxTq2Ry5uEO1h+Jv+guQJ08NLHx4tkcXzU2JwR+e0XzIYGcMyP+JZ0yr3FfNQoIaiehW82sMsfNOiHbJ+Jc0oeXLjrxy8lDLUvhsc8PrpUKPIKok2oVFFEkKUqrP3zqPhv5TUHbz83YfoPjW2cX2DYg/dWv642yjy6pwsU7Ge0+t1AUYbMv+sjx/d2GtNxSFBdfYo/IFdLaD1O7kCj8zhLYcqtfBAmboNYWhGBCUBBZ+AIS5r5vN8dW+2e77t2b3+KbmuaFd0J4tj/J+o1dmlZFNLetsz7Yixi8IJK8NNgxndaC0c5EKx9dlHFdL6qKPVK22KAr549+WK9itBxcvC0VQL8+Kq/MfWWpPGVZk9pQ5iu1NeAzt3y1vowIOcBQlvEIeVUtBI7iqvFw6R9vID/7Fzcmx1noTv/6/bZ7P1xyzPKpPieXAqSxPxovSZEOhrgS/YGEfHOImF8lG+lGSioOk8nlvoTyAeSTmfS7qeaIyqVoqDc7NbNDs+AN3LNyvC5a7n1NN6ZP/837GtHEKKZQG55K8ErKXXzLgWOu4iZ1rEE8DNnkW5qEpY99njlr8vjsCA/lJK0aHCbpVkdmb7NQ5peRwkQMpYFbb9u1KdU01h1ahpIteWgpUxpjgl7S/hjbqOTRdTQp24ndjHp+qPL9Cfg0lawFrr/ZlzepEN9s1KP6zyB/g+qxBkzH+nAo265vYZrv5dg8EqlQ6DMQUDEgs0bFYQqPzcaXrgYzHD14NzYI13EldpcOzSqrJeWPOlNx4Lr62Vg+95EBIRrsqQt4qFfpPjzoiXtg5eKEBDaLZuhTmmYYn8BjE+I4kyfmn9tz5hhPB9KqT6mQSMqlxT9g5cP4J12cjvdCpuquCjsDfZ1aj4AW9+rjPT7U7fXJ7p+UnjLOLzcLfUECGknqmkjeNLBJ4AHJVB3L04Slc5g++EgSYHucA65ncNoAydz1mliOPfERckEaXbeCeICiwPObHJlbzezC5JjTvzyuv3xaEljdXPJLt8NXtRnWMGnvcAJLFwXZX/w6OSVHQK6W17i7jRjiRL+vrejMuf/GTqBnzKD1szeu5uvBUp6J0z0CCBrghYnACmHto9ZP1Nb+5ktTCnkG9uTSNf2xuwlIjNEaLl6kj+RySDEPA/WEzRxxOxmvmYHG+7IdLvktP+z3pI9J28VbftGJtUHFmfnfU9JPlkplNM/vAb7yYEuuclc/1tBrCYqu3xHhgDzLjEEHihY4Pybvo1xguF409BCcqi20GhlVjhAensJm1iKQjTlk13kUlNOgN+Kmnw/DH/hOtSX/sxwIONsWk7+urFxVIDWL4N6FYqliqfPk2N/2u1PStjVx3Ru+DSUoBcgpqYnFC8oVFT698sl7BScDA38Pt0sUtx0rJRF7K5gEN2Dg7NyShlqqshXoYrSSn6RvsXrD2zgOOGqqGfFsmO/bn/p3a59ZBZnGo3e/mBOWP79y7bytn1ku/9mZKbzKYcctND/rm5yOrk1UuHqNYEF5zrnTKldJF8AHjYaFYh+0d+onaFKnoUNUKeBNQb6I3OxJPnpDTSp8fNxkFIkc0E83K2OQfF9mo07f2E9Z1hAKIBc479utcysrF/rs6tHOagQ4QrfBwiqn0T3CqCu6OCGBBjv9Sqrgjxmg1CI5h3LeZL218T2T4zglDVcK8p1aXSSghk6XXBl/KAa9y5evSWB6BA87A347KlLyJppUwvt/eHzHNO3BU/JJj4lDG4exWMRcJOdWEZVI9v+J+TnMmu+IC/ZBFW4iOy7Om/r6G8L90b82JLPaZoA/HRjEZoP3RzRPwIpWvu/TZlJup6N/p4Fr1c7t5keBoMSm5J/gxswIXL7w7An8qRMI5k7dkETl9FrRAGhXCIgKpBV0YBhB5RwTBnus1wddSBqwhham5yKopFAEuF51PYG7DW3Z/2ixeYOZO18eMrKtx2WOBiqFzRHGJ2sCRC1x43dNvZHpgR0WIwdpSGc/UeEWZ5gv08MwsJrL4CX8YFExQfnSHECgGcNJvBPzpWcKuGao31rffREYNiuMDyCjWPbtRInosVTC2MdMQnZF+pOK3NiPaTdRLR5G8b0HsLl1kOzQ0CPIBqNdkvjMBCidPWmpJn45qScCfJtBhO6VIp9opX1QOPX92e7ngYNmF8ODNY9cf8XPv/VPDYbijTe24XmhHS8nl/Z9pMTmSYwyq8WRw1fVwnjzamUZOljIHaJJWvDj0+Bq8jk6fTS4xYMlr47TakdIgumt1KsRLYPSib4+I+2Vh62XktoDk13K049gygKAafAKyjEDY/nDRGXDDhDslDXo+MVTR8PDS3Q3ojEY1nfEgXdy6pGx354yHkICiXOXj29+WrMI+m8xzMU/9TQfId0jEFxp1dloOsNAypzne9X4js9iKD3N1qrh+Cjn4MEOOunjRCeTotrfVs0VxO76cQxgnBaUC9Czv5EvNJTyiQnC/5Vpu60CSTh4i+V99a8YtjKHVmz91gP0DeTzV99ATgCS/F7qDWVOJxgiHYH3DjTxPUJEjZA+U9WhBklR0nEQxHuoysLwQtCHks0+eLwIvuj1t1gOisGllCvaBTyDUwKyqDZEopRNhXdN07Pa3NoWPxO3nlIi92aL7DBCWptg3UygkrF2kXKSz4fNwnvgec/2bH5EIQwQuNNyWcp4fFXDc9nFpT2dgoq4Mp/58W6fwMx5owOZrR1aKUEbXJssmvd3S52quh+9+B/OwqUSX2jz5G+IsILBg0JOihlyibAnvyjsjNLl7C7Li0ktj4FHAxES7GTGDF2Ecf5BI+iYiKApLw/PSKlIy7PCUe4oZZWP+OzZ8I8s/Uf26i+4n7F3G7NLcjSXigBHV71sdrnrda81dvV8HLW/QobgKUvoYewnJP7i5Zxqf7r6dudd3ySig3JXA9zaO4kl1XYHcCa9Rn/w2FciFMt3XBGtKfC2+9oPdn3KD2/cz1EmF/qK941wBj5N9wTGqFnObVCWU4LH3AlOGrzHg4n+9GvQO+PbNzMzdJushpL9tsQU+HFSYCi2Nc9xu+4biJNUVZBG+bwOk6nVIUJYCNLqhqmj3yPM2L/RLTx059cNc1eFrsAUKFAnlxgFNEl8GBztZ4NruKcZSZ0nL1BlLJSsbrReoFdCNlds6m/CgxVlQr+5ktSaMCH6xluYbNJsOThdbs9lztqYCaEfKXwatHWP+HFHFfzIgjaQwogYXjhtAaQ3ZY8hfyiejWQgAFgTJ7pTVr9soIh14mG9cgSHtOA5IDC+0sJ2tBNn58dbopPHIHLNKq8XYvS/a5JwLeif5/wx6PFnFWPURODb4J7Ugsc6WgxSmogFNH+I6Q7JkxBasniNJFxWj8PclNcqS9Rr+Qg2/rtEma5cDS+o203+dPxzei2j4Lcwr5QNqAzTpb/Z5Bnayl+Ji3TFXOg6txDJD7iCWrHbueCZpWbYnKNkDZA7WaUN1F83n9LFvOm6JFm9I2E51mtvSzpJMhKDPtkWowCmpuDTjZAkIqVrPQDXThbMqhGnkUTZRmMGBzbP51YsSvhp0ex7QY+I5JSjOn7SHrGFzc1e0vhgdigdn2LRl65TYHdd0BLPRtqazptSxDZtVF5NIMIruU7qdZoISPP9jGTms+frBKfCT39493Kok5JfFbf9xCQluQOZpLsreuAZgGFg96Paa9fc/zy1ZSycZkAKu1K3X/1opoB7RfbzYIYByYRzSyf3z8S2H8W3G+UW1O0uW9Fj0GHdt9FZe3wEtwOcmLpkjLXXF4Q5zq6p3HlEO9Z1GSeIUxNuZ3Fxk1NnkigHWd1iQnhJ1yKdK44kbfXmGhM2lGiFIoTx9wInhM82J6nyUjrDe21MVMApPGHvb3JHfqSGHpFhWGT9rn3wjJgjHrSEiorDwyFQIZ6YbCnWnu2nEgPu2LySUxT+J1SEoK4mIrRZOaFRT2Qhrfw2ec/s2zcsRnBdM69qhfB97Aw+dcDQdu8SV35VqDZWiU1uS3BdyYNCw7GLZmxvq5hPo2sE4FX2brQlGG3z+whUubpCAfeFnBu0hmYk37F9vRlm0pMOkec7dy5rfK3onD77pFMrAUUpBMmIs9l9+iKt/dLwLPADI142ItkgGK5X/v5QFHZUokt44AkR6genqTTu9gCh4nlmJUWvQzxbndK1vEMmET+ZhMoHzkQJ/FNf3r+AKTdopFJw2Dh3qBzwRDotkvZQ39gBo9ZZuJTvdhrWxh9VGM/Pczj2eYbKzfUETvOZ4gwj5OH6LHg3rdSR0DrPsHIuETFkvn1fkU2cAp6XyGoYNvJTEY+D4jYGXk+/EyDElo9/AWkT9fQ46GfoZZM/pQAnwHMDRv060iH1fmwF3rkEMaIDM0XFFMLsN1XlIRmAdeNCb7ifuB4aa99e69jkdb67cpRXdMq+2wxEy8AjBFG3dqmQnwTErZSXdM6FKkhabCyC2orp0qo0OSBBGhUOxbXDYRZaslzUP720L/BlEmTSkxcOU+Oy63nwLHcVBygOyuTUsM8Nzt0+a6aNbI4si4LUDZw1ysjG5CJ6x+xHBN5lYLXx3Ie8e8Ot4k0HMqL4mRDp1uuEaGasgmhF8KsPvymN/H510S9FRaBnsS19lK78IrCigM0VX6P4uZwxk2VNR1TmFb3IwTzp7QvZJn8qaYUK7ANJzzWP8uL7ctgvzXWle96i1OgH8ftnCno4PMzGlL3xAZOESfYMIlId88Kry1IYkRF3ikoPDq/5eYZgnjLRTSSvx4TTcT79rDhgovfgAivpi65GVRca95Pnhv+WjfWZezU8Pa6a64XlIy4W4TL5iV54BgcKn+NO0Ts2PUrL0t/oUNdTFTe9mwShuHHQb+YdIghJnQd6PnJlyo+/StkpYqTD4S5pUZ66Z8C2XS6y6hyQwPkWo8RTbTfa+wSmHQXVaimZppP0A8wb3RbWYMLLqc7oKoP0SjXBKDJKMV2BKG1AS7dIEvWmA4J+NWVpOAwM72ijuru9GoYNkLBblI1xc7uyHDhYDVBhQ8JrIjRZLh72/yZjhVQt6dSO55qMoNN9umJn7zJimtdc4lOHYDfX+2qBgjJiqdo65/sgIbKdNhvFU4rQWiQTDQLCcbYRip5sgCZyP2oMxZ4UwQ659MRn7MIBc80/zQDr1gi4bT0+YKX45wdT8BoQuCMMzlWE3ncPULK++EKP2l+NSn6sR3KXG2JsxugLmWYECkJ9twAFXDwOcDU7l1WgBN2FOF+q9/zeO4eHKjrSD/bCennRo88r2m1WR4+ExwN/eEiFWs=
Variant 5 DifficultyLevel 725
Question
Six identical cubes are placed side by side to form a rectangular prism as shown in the diagram below.
If the prism has a volume of 4374 cubic centimetres, what it its length?
Worked Solution
Let dimensions of one cube = a \large a a × a \large a a × a \large a a
6a \large a a 3 ^3 3
= 4374
a \large a a 3 ^3 3
= 729
a \large a a
= 729 3 \sqrt[3]{729} 3 7 2 9
= 9 cm
∴ l \therefore \large l ∴ l
= 6 × 9
= 54 cm
Question Type Answer Box
Variables Variable name Variable value question Six identical cubes are placed side by side to form a rectangular prism as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-F4-CA31-SA_v5.svg 400 indent3 vpad
If the prism has a volume of 4374 cubic centimetres, what it its length?
workedSolution sm_nogap Let dimensions of one cube = $\large a$ × $\large a$ × $\large a$
|||
|-:|-|
|6$\large a$$^3$|= 4374|
|$\large a$$^3$|= 729|
|$\large a$|= $\sqrt[3]{729}$|
||= 9 cm|
|||
|-|-|
|$\therefore \large l$|= 6 × 9 |
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 54