Question
Rufus had 5 cups of pumpkin seeds to use for baking 2 loaves of pumpkin bread.
He used 143 cups for the first loaf, and 121 cups for the second loaf.
How many cups of pumpkin seeds did Rufus have left?
Worked Solution
Cups of pumpkin seeds left
|
|
|
= 5 - (143+121) |
|
= 5 - 341 |
|
= {{{correctAnswer}}} |
U2FsdGVkX18Ts2kxZASl66FkXKmqvW8b3anm1aSv9SmLNje0ilDCJvx2yoOQuvxLKzrwN6z4m0AecpbJOxmeUGztvXGFWxWkmRYGODhUlWwEmBZaUcJJ3RJAkfccfVSvqp2hx7GlKpJlXYEdbWmTa9uKFfs07sjKb8ThtIQKq+h+w0hgr7ldg4iTtdHmNoZkJ6n1umGCzVU2DkQi3RO/JkaMCTZ0SKWc/oraJLUzdG5hQBU5sFWHn4JIZ5zWKc4d0GQ938jL9o3qY8Dm9C8QAjiWHCeUxCcpPQcKwjPAi1t7VhAS61DzgoDLmcSw44MXhru8UWZxO9bGNjSXa4hC9ffag7bN3i1ZD/ynv8IlLyWy7SMy2qPkiOLffapNB89B4LsXADaBziczDv+udGG1ANrIixWVYHecF0Td9pfRZ5eu6Z83JFYIskzigbw306S6M+6hJL3uweO/Nojewwo8gXPxgug9UFAaoU92p9exVfOIN+ldzXR+Xu980HJzsEQfPCOUR11OV10g1WFUJoN1LIGQ23n2HV/5oG71lOIMOj9773smWsfW6YH4wuFQKETDdxZSCcfprfARgI3ornzXP1uB6e7elIHKClawIRZpld6o6X2XtwbfyrHUwgXC8wecdRrAQCyH1Zf05ul9LDCAbTkncacBZlSbiin8+Q8LVW+rQfJEZsPhfiDp+FNJFzB19lKrprlNMRI/IrKweUmkeWTRlB91LriynEZgCJk0WNUjF7YSqgCpmyy8zjrDEI2TXEQ1hj39fktMZIisRRTalI9Rm7IFbNqXpQE2h9RRvlwrCd6mRQkF1MLES0zovutvUrK3dg8rgWUInt6SKMe3568OXfsLucqpFSD96TZTDCuOWz04dxQgjmBO79b00wyGbRhR2zOGxT5+cdiSDRWJ0xYHFBoZygNh4dYpMMv8SviLx0LuljS1I0jvGwHnn4exMcZ1VTpKnleiv+RQR1WAn3Nfo3zxfpdXnxaa0kgHVshOEEPLFOfugLdziln51PfV5UqRqdX3roIrx8U9SFTu/g275aAZd5NnwFnMbLuRbEs1D9OZZZshWjwUrcXTnXxOKJu4vjfkejkQfPNXd4O8TXOyYtUC1WpbGa2KD48yg5qkpzJlJz1eKGMWwIece7hYhnYi4QSxQh9QCNFeJvFVkALNi1njOQCbdILqh2Qi5G8XgivbtM0oxW6LSD7xqL48sDDKAU3g48O7SammnWELbfWSR2kxAOu081wk265P3Ir9Q8AQPSK4neV4KSMpIhywrVoX+Ga4L/jWr/a3W686CjCxlQTQIaSSCDHRrwi14pZ8JGN1MdkFqNJdamgXR89HZByM2Fro2CbgASlfD3yr0ZXatn8HKLVcCPOBJho2Ak/o0INtLwgqBeh0IVs3C6vXOLWZwWAZgNOofJOQBikOvk+kP3p0ZlmDGvVE6k+GwJDo1wPVurV72glrDyXsylpYT3PAqmmfU7Sb5aF7XsbXQvuc+EzK129EKN1D9W5uGOSVqpEBa1kgTaSeG7hydE7XUy9XZDVtHXvhEBfJciiibt13m2CCu7UF+70t2/R8X0KSDG3cFrPDHAeuxAUZpoLxiAhXQFWanHu5clAxGWorAR3WqJQefUulwq7rg5q5RF6rGGq1+rHKv04cE0OCVajIhceq16nAYOzXXKapnK9nuGwgQ0+KPTZ/ApNI1TSAv0FHOCISUGSPqeBes/p9/Xw/TV2ggSaU+jbZs8qyj7AeuaSO4rEAcy2AhlA6Fs1thPfICvigHNYJQulfdv7s4Gd3CwZ4ao9O4jzON3y4DT9RzcIVq5FUAWsXKU3TplbywTYCcXRO4YIR5uZ8Tm47sH90afWDpAHnQnLZJXbySGCTol58vu9eFup0Joq0AL20vunCSm2uj67TT31sQVWHNx6KFcTMH80ZRr/aK447OsMlm0ddPjRM8+HZj8NzL1ULXE/R4cG7pFzqlyuPuZPWpALQqoJ2kEfgX0ohoZUqTMopHo2BRSjpXz/niJAcaVHPEw0mer5rbZy+6lqwegChQ3+13Q/8QlgPZoPCo1lIJ8UCbtDvt3G3vB7ATphzHiS+pkMpBPVR0pG/zHVIRFNhImt6M5AUE7ql5ug80j6naMnuZRqEf7/LwHLYFQ5sQwcnTgsl8IbM8VHsrC/K41RPTSA1YX+xGIe8D+Wvi96EE86YKGnhI9VvOSWWRy6+MFy9+NkUnZtgQwyTiFS1isVq4d0mqJfhlV9Tw3WBFjcIE++t5V540bdBZCgCAp/K6ABG4r2gTOwESkok+M0gQ/XeefPzCXLgXMeEh1x4rx6hNSx/fnsvl0OaTO25enEz3lyzCa/b0khXzK4luA8HmknFujoTBvck0znbloP+MTqLJdDUD3mgKJ8VuyvT5pZooFC9KBPTd9s1MP6Qvq+Y9z+VWYY0CKPRMCc1/SOE8yNkD8Dvs8pcrw0vwUMmU88YUoaCJrAk6Cz8R4hj/pQEI5C75V05HqwuNVQVk9Njiy7cBuq8cxMg6TIPz6xJPEPjMcW6akYnaq8kL9+wmmXV7bS8ap+im0vd+vITKBKNbyntwTn1E5LgSJP8Omy1ycDLpYtcoJfZb1rwsmMbPsz671qrWDA4yn068tx7lykU8XMnTfTy0MOEUjOqgtVo/iW20d/zxNwMFfd+zhafH2wM5qxZWXRZmZrDaCizDdgZIsUWss0tYW5lJGCPxzEf6nM37lZu65p3HolJE6qy6HTWuqfBiRPxj3ehhyogMR92mNAaOhIj+TWq01SZDD3hdlGpNRs9lClOLgcrlAtAYTAAmeq5un+LEvLrIeUmnaPJ8/lPbj3LRCoorEsZVCLkWtmLWvl/fEfw5Wk6WYegWY+K2ZK6XPSZVSPFfEVLNLnt+DxrsOcLgTMPbnq95c09Xzpnbohj1twEMpzkNQrn6HycjDjRxqHh80l8ZsTIjNpZH7huqHOHvX4RM353Roo1qj8R6xTwdiGNvCMdFXswkB4/8QDNqb1lKyAsdVx5YiFI90hgD+IzNftYKT04hVZ3i3JkrIOJGGuttid6CLnRToMbDkf5SkkimLDK3Zo7vtShJlRT4DgErGambWEGokKqakP1jw8FGLjGJSrxdme73Ksx030q0gjpbiOnRq4y3oGrAbbhliB4kiE1ujryxRuuOwAwvbI9YpcsLlNoekOs18z9W/GYieb6/FmZUWbLDAv7gKOJX6i25Qu2JR1wOXaaw6G0gUoTNBn40rb7sTGqMxUX3V+33Flg55Af7TDqVgx3pjp2F9ZSaqSOaAoUX3L+8M9NSUUzlQGo50LG9QslhjMx1d0JYU6TjEV5mAib5u1w1E3jVyMqV09DLGitetPoCDC8ls7zCu3CD15lvdaRs2d8jvcA8dOlwi0dXluM5vfh36ijkvQilLf4y3v5MXhmwAHyy0UpfNpCpGwTl29PB1JHB+mwLdT8Mfjph4i7XWFGkcrSge6/bQadJlyZ9MvWcR1Jc/oxehEpOW9ZwG9AgeGmPN9AG3TzcyMQFV2M83HJsxbOJfO0vcI/1oJanFf2fS1OvquPhHm0srcURIFJFsQhIswVmbDg9l1woOTyVLDlALYTIkxQk5W5YoY7bK5QvU96UkDHojdBIvGzQDuiK3qcpMk06KU3J0iKXYOuHynp2ndITiWhyGfKALwyEerH9QNdomD2H9R7J9KzdEsnIY3FXAFnEnscSMynmzdEZYD1VBLkSzSpRWx1qVJrEb1hHDQhTnRFwtMDz1K8Bl4AjQbBzZeUtIo48JNvHjKxbbrEuFYVvYji/RvfJmWccTq1nSFkrG33Jw73UjsCzaW9wUg2ykWibImjgS2LC5qWLRXR+0Zwp89DMa4DaOxID/DcDHInW8NnWLypyImbrbNm5Lbdn9L9VKKZ675fcXOTOneV7XS/8dm3aLPC+Oo8C5n4XEv+3JmA5nDu2QqWYlpKVLBoj9ySKji26aX8U11rC1J2MmwcFs7nN1fI9aHAKUPO7Szto/OW1pJPGcQvTSMyANx5v5Aswbc+ecjJDxf3j8ivA98EldzsY0vbiFXLtBvlI+7CODBzOuVbwLNPgywfA0VEfW2PQb50ZDi+Kro+7jZhPNJZZRmisV2uO4J3QvxoeJ+ggX0f7lBGE6kZVTjariWV8mrGidaff7OsQ4XcrASNCbADUldQdutNLRmCE0Y64wPk9155BhrTYegL1k22EtWbeBEAb8hIIkt1YiJesb/zBUpePkdhmeZYZbgVVP/CWYam0cTgHSbaCmM/zGbsSXFEj31jqyEobxHhLjm0WT9qdEGZQod0JOuga7nohmHW3damGgClNu8muqNkAQzS44gJmzZGmicRCvbmXDMBDayI6N6LblQvrcvlEC5zFqSa7B782kqcta8p7ol/agRa+d3W0AsGr60U5LcPJLVIRYXj79u8ikjDlOWthtQeIPXk1r9ZNDiEOfPptQAI40FstOeBx5r3xKuwT4WNBv1AroEjjFXDTOgiDAkc+k0yOJnqF6uNE3EYmqgHPwlzEc8wMDidqWSrQr4mgWNzFPlo/ll1pNWTSLzTW5zkpxV4Wrp8erCSi8RFRaGXwWh0mFbwLZCs4t7wj3ebbQghurM1+e7MaFE2E2mMhgzm0XUWyaS6A83KiBeVc2aHzFnrBVpoHoy6qOVDT+dDPRf4neNww1PweX6m1hrPRtovtwEEeu0EAJ29Bg5p1l5VP0Z5tWjBBzTcOflmzGUl6Vh7reznzaHfQbYGBr5TVDfO2e7BC8SF+8haLMk1+4RjImMrI/fyflth0zBhJ9eFLuHGMj9jdui20dJN0Q83O1Yv502GlEbrGkXEv00cgiRgdx7zFCS/FA0BeXNNYkASrm+/4dShQnGLgRvCQm5q7HwNDiZitCvJ9hnmj2CuQDjhdr11I1K9kl/Rg6wA0l61oHWgkyCSzaBLvwOv2eHjPMrBF8huG5foQqj2Ztbu6W+rhqVTgfCO8sVriVSmofxC6KZI+Ul7FVd1/fVW9k83S/nUuzYGlfaTAeoihYnbTxfawM7Yyn5rCIjQGQNRFZzLnujrGC8ZDskYjikY0uG6Ss1CIh85jsX+v5IRBrjJkhxUZPWvZDG/nc/LoPPRYNLX7zEyXt+p7m/Rk6oQ5AloHGhMHhKLavBGJWV53aIQbV6+IL0ZSm4N3VFjl1FgVTSXdp58c5/Qy2V1GlKWDFTwOgbx3CKu7MbQJR7M+dWFm2JDNJ/5MmdA/4y+NNAyFMOOSdfc3V22cvpHQh9Sc8P4A5fRmhWYlG2OFisbmoll6vn/lTn6EbLwVir1UiYg4fKuDol1/AQf+OFfP5YfHFb2+kmUAxAQzoJmTQp64rpHu7CvOeUiMBzFbRK6ZVdzLQ8OeVMgWFq8+1SblnNpYqovi/gdXrfQTeuwte5/YpAHjxkmlwdQhW0Q5ufPhawDYcAf/DJiIpB9DqEUX0CIRws4Tm7eq10lT1EnNDxe5G4NehrtT6yvoAMq4e0z3pAcvNNds2WCt4MvHMMGfvavjxxM3ez7pWvLM/YeKkULs6URj0KQHdyNYDGWxSGmlRalUNsVtDJuOkpV5hs/6DtJFVD+bW1IchgSun3+IiMb0qdC6iHx6JNPYnRTln+5UDI/dUJnhUYoLaGzKIW6Jp5IE125SWCWW5zUTpVopcZrJOUUzle6CeAfDKqb9XwArdDsJ9lEhK8QDWZENIYUs/RxOcMXpDgoEyENlwzDaVAdv70PsmSVLiV7S4emY2q5cPNtUsxfjqm+YTSzeHUZJKUFi3/ATAfVV0U7yKxU4jBMBowwdIZTgHkkyyiedYxxjDjheKMdOoNe8KjRk2NOW/Lljok3qlbQKOsYIxxKRljkWEgF4egXoWSxZOoqgvcUfDgI7ABh3HipeuqyhmbDzpTLfyTtobD83LnCXL7GrsFCGS5Hy4+gNrvehV0NGChq0zRjRTUx5ixVpORCQrOF2rkOTZ9sprVxb3shpwgkSnFngcsl3CaWXhuPNPvbh4KG9009DWXjSY1B47K7y0hx3A75C/pIZJj/VM+KdMm2ZaZF7let7UR1p6+QaAuK5hQe2Z/13P8LWgORNG3GyCvLd8or+3gpdAPddTMTVRZVoMHBWArLekpTH83durE3qRwjf4X+6XW3YKRO74ZIie5k2gK7DYmDaD2QihC/eTW499dLg4hhs6dmOnF/3IagQeSUV9zjKgjVzBGedTdIiRwvMr/Arhd39dAWJ69ZMtCpPN/m43ylEXEiM7QPNwn50ZnC/5ts7uD5owbIb+HsSd3TP7E74CRfa6l9ukYIbLwQI+e2pNDpNFkwIbdHuMaM9u7+5DIyyvoE8mXRkKuYKqb6DGDCnWP0MlqlxTXRPKuuY+8dtsuNYvUx+Vos1/PGugXnDQ0X6U9/fmsu/RAu80mh8W5DvDV2Tl0KVrikofPQMux2a7KWpSP+6oo9DVniP8TA4FNxBNNe0RQw5NzpJ/ganCmxsVp3P7sGYg8QI5X1msvVM+EMV5yKKY7FOTZ6Kcl/EMIZ5UJn+sEgZ46YxXx4rcy+VOXwLTiaok1zXUvvyifiCOtxhPgd0B40PPKzxUWEFXlwJBcFzwAMHpj40qXd+NZXqNKeHdt++dz4WCaDeGFFFWFcNqQ/fLzONSipRBLfDLmO9g1GBOym7CNeE/tbhVwKUCu5yJjXmo4+ru9vYu6eg7sbKs2SVNt8eQhYg0rgpJ9oTUbMQ47a5SoaGtSs7SEQk+KBgmEUYZsMJwcqHny5ULCas6Krfu/JwP0JHBPsYA630DZI2fs/hHot+1o5QTbSjoqPYk/dbJVqJyZHbRVM3kv10cacF083ocu7EiULJEmkMCOr1IGZ3MMYnXuxwlX0VXltSPTyyCzRzAW6S0u6iZ2aQTnnsaobpucuTYdlFJ8YgbyOQVQO2EiIF1vkvUNd3xZzmOx2Ex96tsbp58alw8gyuLTofpHm9eaBzUaTw8oX202WwckX2hvA9MN0YxxQadDazd0b8KdBrTJm5LQX1XxS6tksPW5jjEWgeZwaTHaPxEqW5Mp6Ub6x9zEUvT5LoudpX0C5JAV1DMFrEKs3GoEykrMpq5jYHFGwcgFy/Of8ffq1JiPaXH8qFfxlIRokPsuW2MmxKVlf8g9bKEyAdUjmYcr8DJ036ocG8Q0/xbEfINcia9a06lfb28Kzeuo12x/KFC1Yqy1pHjZm9D7KY38zCBbsDhz5vrTOmLncc+41DT/flltq2hJE+/qltBKuV3pOG6LdUCo7xbPkjdsYJsQj9Ur8v/8BVKmuAsWrZNvOdP1gSVJSzfOI7CBKOjZr361fVTcCXmvoYj7AN4dv4h4VrGJm7WCvJfhU9U2ciUcdj6pnReLtrbcSmhbHa2vTLCwDWHjy19DVaFQVRpxS4CuctMeZSjNQNEdH52oIHHxXXn7aGxLCclNPapH1Jly/CNapRW9Iqr8kY9Jjhi3ZV8fEAzmug4pBQ0o6WN0dkp9pCwXMWlVZoQ+3/RslKKAB7dkgrfLLUitIfWExZ20Uk6LH0fuXiKxz3KGTHMFWEoLlVryEOUjnIudxGkCXAc+1yvxPgIgCPCiT9mckNhBSh5s2VDLRGEq3WJCJFjiaX7iS+o4IhUINTSqCMVObKAWdVZQesnIKgLgwoQp8nsxmR2+3nm/zWrrMA5yVlH050UtbAJL+inSOJuiAeB43jDCEVL3YmXgFzDVzXSrW2HK34PsNxp3EZdia/3W4OF3IRZ4YEcX/tBZS1CgXC3KdXRkUpsbThoUo5inpNBQWm/GqGJ0HBM50oQ9+Kehbzo/vbTVH4HQIPfDBkrtMcp+yJ43E67MQUSkhB0zCRdFEsS9I3PB5PMIRrdE2BFZb+i+NUG5O1sglpxGp8tWbG+5NSBuGFOssEdnV47wxYQZjOFzr2AKN1c7kK6Sg0+A4RaGaNEGW5PlqAE9Gb/swTSI3MLRzKuf4eCfXYwthOtaJ364gmO7PzZMW4mEzLbAPCbFK2zepYnc2/l1cKrNw7Vu6se1gB7Jm8MGlsMIx+hMDxHLSaX7t0tJ6DEeXOoKmfJPXNihZ77uCCnvmUsCT2uej6QmqjBvPlCCkrFzJSNjipF6L56M4pdxHWAV64SB/BqpW+J4cu0//haQYvWZodfRVqMx2kxbtWtX7tTKYMl+rjDhVYK2ZKT2nUXmbwbaU31rrHgzW7Jxzh3ByCe7APLhzmQLMXoNjkDybR3rdSgOt/HrmNxOZT6nsw9EnVNQwrva0VZmDaGtFudyhC5lS2c62gmlddLBamjoSIqq1alo4l1MkdD4gcse8ivhvxdZEUNzIZE4cPqGE3HXVc2m11XPzLGfvivGbEU2D0qnH0BZd4EkBgdDr4Yf/v0axKEpV8swO7u5UjPqzIUPrzQPG+TG8yqpKk+Htx+Z62o9jsJuwn8xNAFiMAdgu2Ou35+jTBjc6YwUytMcaLqBu6XWwhRSxotKU7CCOlSAIZQmHIyX1FQdabGlIRK2fkBcACdmVdHQBxnBxrdBHnY1rBE9t43cqQKNwuV9xMWpyPcbsH/NnoM8aWXUst/DzYol6tC12W4CYrNwCDTkh3QLreUc7+SS/LcPXi55Hp8Hc1BwfT6sO/qL9knh3cMwpPFnLs71cgIDDoONLxivxtspIMuF5r3qOha0hHg04jUHYdKwZ5Ioq4+QUnQVkIISJjLi+buM3oaF+4QpkOf+AFNYEsgbTGMUhhGCCgt3IgEMRJZtbwcQ1h+Y9Z5QPHfirZds+Q3F/4h5Kwh3JHabBUW+g8wK1xNA7Ivcj2jzaCD3bdkcGqHtJh+DehWUE9Wgemuf34IQLbdIJ01DTW8LHU1EjlmDyzF9SWl8mC2p3nx7r1PPV7VmUSmgKCxTbeDj+/4Q422iNG2Fqzrfrq9j55tYgvZ4ro2Fl0QiLpWllQ5AqxB6zrMq8/om5RG5WRm1TiVCx9oHAhh5gpZRMy7LUhRWDgw60cUBDShQx+JVAWfbnH+aYU/Ip5tje4TiBF4k4lJqTLz3W7E2W5g8Ceoh2eE1QbpyiExg0uzUcLNw+fbHeEO10Vsa/rS/8+6HMnlvBMiuamxBH+EJAvlVvr9i7kqXZqZL07/9AMw2poRRJmLWPtTZ3K2hahhcxwiUF5VRYe6nZ4tJsBtiwIWJr5AJTCsdsHkcqSqnfWW3kUj7SR1/2rk/L869vEa0/Tu83XmtHA20E6pNjtEzVMpWIg0MKwN1rlFX9VdNdf6ssI2jrLgR/SwEbso+J5m1MMC0J/y+6rAFQzIrXITduXEiI/munm1+ffIG4cVtC6T8rAugrhAMJBml+//zC5XiUfeODQ43BZ5BKVPQmJzrmKNZ8oisMnqVK8x11aHKwAhz3+dG2UfBunoyX2KR0rYOcvOKmW0c7G4Hb7itx3UhKBHRUb0+Iw7itJQqJrQW3NPS1IwyKPv+MmFhAgKZcMdS5/mSAsSbxNkw9tDCVoapIs1PPpSjRrxzOhSuVH6gUNi6t/7po7mn0fo5+WV3F7y5zw+eaxD6EaTHyldSeKPJflK6K3GrxohYZHJOyKtV0cjHusdP/jg2fiw1vZjhP8a9ygKOGQOXifm2SVWWSDnNkYtXFvzyRrQAAZlFPbCuJpYKrvgW1W74E7Wy92RTpPmG9RnkqUzQC862GfroXXJp6Fs01wLyrZZqoXi0TA5qmPidVkNpKPwuhsijAYN8xV56iHQSg/LrVp4ogBhcewK6Gw2cY6AQ0YqPI3hyHwU/NjG0uuFylyLeAMVl6i1B0+Hbckz6JsZgYrVQRh0pJbv6g3ZQ+0BmSqrdqiNRXnXgDWgLBalKq3xVnXuaCkK/FSzWzyUnnithkqED6AdJdtN8P9z3dzmlcaXMejA23ahlOl4FMi2Q5Snhk4xVjOu5oYB3l5x96buQQC2l3TKCp3ZL9B/nEGdyEZDG6QRJGRJG8nLdtREOGzEkFmgt97uQJxMS9eQCL37JJ6btyZqmDLl+W5bpdFi8/b/EBCmJbcxxbSEwJ/7Hj3QWKumYu0MO7ybb+hV7bqM+wzGtFLHL3AS1B9Oyy404YuEsYRYNE5DSTMg6YGZ7wrKRDnfKhE4B7MzdaUzad1q7l0BOrXaULbGlyamqxltf2bKhHx9d/b9WrsgaB7KZ28SRFsLLV1kJiMTl79eAgOLD1Rhq/0/+JtsE6nTJvjzLN8yuLSmyae+J7izYAg7az/yIQ7CDZF9egRRV1hkI6MYd3msF/SoDDFK9YA6tkQLLpvnoh5eqJ7XUblWDqMjiqD0xqqtCUi3N8N6S2qpGcqUoyqim6lURfsplG1/Lyfupb/5oQli+oFewZGidFiZGu4bMFB1EuB5++CnW1roEBdg2t2BYzIw/lOO7+MH5sI9uA9homJXuHWzjt85/xw0l26nvWEN9IkHO00zICyFJGz9FOY0Nd/mmG+HYkfHje79Awl6BCtb9J6JwZ7C1lLEsNgEECi4v1nA1lmplmVs0dxe/6mjOI7Kqf7oxbYOY8nKVMCXTSUPRSE/NlWy7gdavLzZo34EbhCmH9XVNVYYAWpJhiTc7ASlnCxZcj5NwHVYRBRhQiml/Z3CV7V0tf/jjdb438SL15AJ2Qpvximg4aNcAL+fvKRWIblT0T+zgtYQao+NdU/ax6MeGF4NA9RA0nNAlNEfND2k0FqPHN366Siwyf5Gs5jBwWVeliaTQ4TJ9jwo9uZf8E0LQgTONQQbzJEcu3YA7s9ewPccavukakYI7h62lZqpZ2+Lnn1P9phm/JJtAfca3Og3vodsQS+hJ2ubL8UwKhy3EZRgZsvO0ZfJttNUhxJW+8GEazPe2nqzYLMZ7UwRr0OUHkXZxd3cGP33YDeOMoW0WGaBjkS2gvts68MzXt1okPXx0Yv/extBuE8acWbW7Tp/G4WV4dz78b0PCEZc2NImOLCoUxEgqJ3OPS38Af32lQZKFLb16m1QYSnlN0T+bFxUCHtypAT9NDi+EMXZx1U/0dLOQLEJfI3iLYYPQjaB6AKLlqmx66u9kQev7IvijkxbFd337zh3dCrXoXULlnhVd+eMUdffOhcP42KfiIieFsZWavooM3HrCv2DJ0Yr3KBW0FyQ7jov6lh8GLCZ+hzmO1duAK5uLtl0mUu8sjd8koadS/S3CGyeXM1map52OaVq7VtmU3sEneDxKbO47cj6g4knEuLL8krUKkYwLRzOGFIF3jiXKT0uN2/knzjg4lDBVFMAJslyKXuTfbDtjT4YLWriN/kkQj5yUQISh15kBWsenoAKCvUKx2c4kqUH1rHQM0vtD2gMaovS53QpZP7VdsV1f1pDsk1sullFxjgg8EumT5AnH5uw6vpyGZXilAoBquDxyEGYkLBxR8borWqV2BLwqyPjM3flouk7dFCrbmz/WlNGcR0AWNCoJ8+A1Udylk1+ykxnI19eS334ZxoyXaEcfizgXZiRJLndtytuO8FA89yF3tRMbyJz+OeSI++w9GkvcD7EIUTbm3Mt+fgcmlovmqC6yBg8zeZ6OwRe9Ntyi1mxcTrihi6nS8hiaxkW/Kn7DJsip2EYfsDdgtxA2+NtMGXnaakV/gPQ9XVTaTkg0iYQSD930nBO47+1wslV6Uk6qpylDWwK2vpuSHCBQN4JCmI2mcOtr2NtKMq4HU7YDw9RdWRzzMqlNYi7ONM7NmqPc47nKhNu/FlSxKq6E+vJx6hfByuXdGHYZo3o3FXu52uv6/W6dB3qjSuLAQov3rP0m/wooCwM638ykBCu6HUYnja+Xn6xRWeBzR7Gz6DdvFY7rZdwrHLfOtueIlj/sOt9DxPfxFOrApcb7r5AWIovMMjrYnoDqKRhjDd7t0gVF1fKeYb1I+My5tK8fHVZnrTOKu23ygdesSRSF8RD7ca+sBI0hCBA/63FfKnCaZet3zgOBWZ5bPJQTU0XMhjLNS5yCcZMpMBj2viJP31OjKSbcCq3ms6OXaux2UCBaC1EHc3gfY1sj+DjEWJ2vunZx6AI5dqmJPoaUxukJkvDsTzJUrfvvAgi27G9YUHGcDaXbwWSHJAfEXADq8KtxVLnp7I3iXJYsBiuzKCHxRv3sqWkInPPHhx6Asdann7NyLuhsvN7ierjJeuGlOk08IwhITlayWGjPaJjA6GlwEx8I5KyQwxszPsxx+nIiP6XFMFdRl2LhBkZx4D2gPYCEyo0fB0xO1BWlcJcQu9EP8qNFfQgN/hSikQu/SZbV2W3R1Cg97t/Z6mXgSmgc9KYt0oVfsNG8Zbx6NQEH3bGK6cpsZ3nTsqgYAM5cN9ajqEACNUv1nMyuKroKXmtyx5EoTxz98Yb403ACFz/H8dEe0wyxo85bl3hYpmChWcUgatCJWSMN8RsmhMCiXLTRIE6iiJq64PUahtqNaU1A9Vw6dlhh6oQf+ECnL1a9++hZr8mre/bzeOb5KzEF7/Evi7yyeDS0dGZpitK+jBxc+f+qjqILFD+6GtspcFyYQNQE1vSLcD3VKs2FCB6PRtlMPenCtvxoK2rWQlkd0C+nEYkJlrJ9gxBINP8eD5obKtin03YX2bDRPzbGAFZYE4J2ClOYq0nm80lsV2/qMrLWrKMklDIDU3c5lff2aOm7v30qLN3AWBpJ3HpqhpPt9YaevhjKNJQzZYO74APF8hI/JqCaKA9WQ7Kz1cDB1gNS0d+4NjJH9Q9DToIz9izpBnT7MsyUtYaJR0o47APKGPJUyOZaBNy43j/eKz2Jrn3ChBnicTlbpiLqDhrR/BbnGcaQSIbSgWOIwKfVF0dq8+oh5w1etiC54KUfPKjN23DMhiNgs5sF3ic7WlEWh95Cif4Q6dN99x/iOOiC/ON5VRfOedWfLSe2X4GGCJvUBqUMZ+B49HexeYD3hYm9xQ0i764eKJsDJ12HbWAQrZf8OFMAGaBkch2WafxI+twbDOOdOBevby4gQLEHvMkXa0/UlKi4zNptZieFs2LbyLUgw1D8ILWmPPbCr99kMvkdmuZDhTjkfTunHJQo73J8oC1D8y3uP/0MhSAKS1hq9dPhC6ZW3I7Fi0ZNwMg5H9wtMrFjqQbjWlmRlXG23bE7PBi4lr9EiRW4U+GQSY+XPF6chB75ezWrU7qbir5kdVM7BCcatDHBOqThOrUZnqia3DQF6s/D8hgboldQCBGM3BaV8veYGOSP+fGuTmF3248pLoBGd9Erl+I8meQWPAZ3rDH4td2WhcA3qoPa3HtZU5uOH2NjXx4R+oU7r3tC4Do7aH65UGhGE6c616tsEJEZClyn6KlvsNgEoGwaR2/OHBdFihBkDXlM85CrDYmNlKJ55oOXtVXsqgveNeoffIVzFeWsbj10K7NWxbsW7Ro9v35LD665JXoR5ZifqHwNEftfxPD3A96+A3wpMVPN5CxUWZ0IZZlnmQxorh5nhSGDErXN8CLF7eWdvyHchdhnj1bANN7CrfdFe6c0VUoUw7ScCJSRYOCFayCdMta8Q6s7FzZYGGqZ7bT4Swp5VBI949+kNLjxn7A5b2ll5vTb1RLGnekGdc4W1vgtB+Bdm4hTvxgyHV/JzLn9M2u2talBIMX4fZcJjMdxSL6kKVY0X+aX977izIiYMa/zT/YcJPELX2HKVwLBTx95LlIBPCsEh0ptc6W4Ih8XwaL0mGaMhls48eeqmtkv7QXQO3qJeP91RVt9nXZGI0PnPZcetsgWFdlwBccsILQrzp1g5N27OTu44tq5QmQMhCjwPXuGp67QU1+oS/NHZKUd9VqAK9T+Y93QMA4mvcZE7JqdAGzQo8/nKLrIAM/Oa4U9uIr5YjbDvEmtLvgk5hY/S/uNDRM/XvXDlcisvTjrZBR7l10myHzxcIbHWq2vFPpcro7du5ZxCEmIw3aKlAQYdBcqs0f1zqEwAnpVAX+nNn7HWrsGcpRAHnDqMgp8bHGecAhmndHTGd130e7AMMxtYdwVFX37hctROb1kJEV6Y0jdb7b8qrTQuH/eBeS+CAQ9B/sD/UV2/xgt7ZGXjvvIC5+cfzJKp4wSptEu4f1JDkVTUVLl71uwkIwl2qLpqQCCDHmDauB9AO3JbxFORldMigjp5ohuqdjmL7N4vnMU7ZnKiBeBjhTpUm3qahUTmWo8LI4aPHocvvztvd0gWZvrACcmmAgvO10815xQUYMB6oJOn4K09NKePXG6vULMkbF20xEGn4QQo0nctyFUadxAXUEWQOrTL14NVnJAGwBCF+PzQt1sbOizGXmvoSto3vStNKvUJlLP8QkYvIWzL9aVFDkXFeZbGXXfUCTYYHwyV+culZCrVXkP0249s1Bj+tiP6iLw83u80L06tqJmB43yHkdPSddawBiOOCtVCcY3swV9z/vdkKxm460tAlRByxiIQDfSFeNcdeBw5DRGkUhvDjbwhOqupkKwXO+eXLkJWGTJ8NrorxjER8ev6ZvAqHpXWZpGA+O8SywAFVfA+dfGxUN7SJPaAMDevyez8DRi0VFMXW5JQsbGoJ5IHDPWztnALfkpCeYip2nJ3zA9iJKvQxvn5T2MZwC1vF6WW90uYvFwMa5bg446e3c28QvhjMn/r2nDxSCs/cTs53aR+NIRWYDKvkXjsWRhTRz75MOF8f2XdMaQLhKeGmYvaYTAKwWaZX5m1Q5EaJuyysFJ3D3sbDJUOa+o0SJPf7LA6ziMMsX3JNGldr6dNRR6eQOv081KR9tMysbaFCZq9JOYwXaHg9osQpj2QpTVPHjm6g/N9vulrtDus8bZ4wfOM0Hgxi9/aYj0eINLaHvvD6D8aiv1EuEga7MZMnXwdNbcYzqFpP83jiOFnbseHY31WYrFlvkyboTDKBbXe37HiE/3JYpLk6mBtuCo+9ch/8XOR55m4feVYEd1xFjzbuRAfqkkrS7rRdskHJDXogu1ZLll+lzoE2QJwOWCyW4pt/jKhs5BIv/LWINMfoOocjdiKjOBTITb+n3+lmNfngS+xT/tK2PQg+UOwD30e3vrbmu0T7NVqziux72CY70uQ91mxuhg9NMHQS4XQaanf61N0gMBe+Q4Ez7rIGi362W0kSES9pH9KgV8SB68GggoTAtIwA5zZOWqJKeUhhMCOaGm1nVY0ufLGDzXJPUGCZRfJNXtuKvDoY3dxMvZ4v658doIWyU3MH9Ar9eodaovD3+AkIOJFMiY3XxUj945nkP6NVX1e5mLCT6o+rSlRpqAFOMWeJYK5vymBN4cwj80HDVNKf9tStSJ/nH64cnSpAXiwVi/cCk/3/Idt85Rfspokkm9lxT55kFt+yF91nUBeZ3BBLwSCaTd1z/s5ObiKfb74SBCqWV99qF8zJswc/GbGMx8VLL14cRqlftcThqLccC/eLe79HmvyQu8EIhZHKfmQLOqzN+dDA9DQds/Y/8SECRNy4/Oq4PB3qu10vVPP1A/MiRvM0QW1qlAkiduTYQ1OgMNhYH3hsKTUlTAm3jVxUoIXTn1BfLtNCB85PQMhEYzDa2rKa/LzLG+tLhAeBsoy7gh/j0XxNcA5blrFWlZLGw6ogKi+7Ul+F1APP54HAl0bwW0EZ6Xfr4mrCrCmr9FOWd/PFEHe7cevXsf/Ny5prsnrHyp/HIqfMh0vrwBmW7f6FsYZEr6GQNDxNxOg+Rv5nyk0cOiAu66SygW0IQVVD6vsd8VccUePJwZaQbGKEc0nNWCuuX2DFdE78lW27KRiHm9RzjQJg/pQErYwUHAdCEwJcSQ8D06bygTXeGEUSWgfpecTlkTgjV76iqBl/8mY0Wo1ds1TAN/8MyMM9Zo9BvcSzEUYI6oyMVtQVpDytVvhZus/40YZR6tdrgwqiA/rDaC0sk+1Z0B8glpHvs0ns6Ifb/vCsoZmkQz3Ul7RH/xQwX9js0QF+RVMHb7XGyxztheh+Kt93YLcQcQrSknGNqtDOrgGbBvDigCQKFdgUAOEz/Ji8l22ZHe1QpE5pvklj0MEpVku03Lztsp7z/2b+mh9CcqMuOCRPbdU+F4KFFcIwYsLVwHZLH6VNBcEiA4kxpCtaVc8RP96hXYXXTWhYUFXVa6gD3qtHiwAIUSTk+mphvDe+cFIPH8gPwMsdkprGmF/7HtB7XEeLjJYtqYe8Qnt1Jwwpk8UcTF5t9+1iAB37I3mebIoSc8vRizwP4GY9Cl++Yt75UiD93DXhJW9dWCI0xM9ZSfwaOCdhaoarvpO9iA0AzRjumuDfK8gFW8Y5SkTWIzcppgl68nCoShdmHEn0mW/rWW67Y8r1CdSNqxoMW3vrYgSc0Pf9qdU0fiNHj7X891CgtZsse+qcPS6zdXPUoX4Q1uwxNWvxsRUYY9XY2F7JXKD+M+oqL61DD/LvPUYGME0zvk9CbMVFSRjE/PfOMmFJOmqv+PH3qEgOa7himLpnGYJujUG4+3xMAQpclBKwqAdx+f4eUygLyZwGJCPW2ofO2Dg9YwFBgzxb3vWa+RzMQpjuM8gYLbQieX7qIBqGM4aqUuavYvS375Mz4doOadTBqQPkCkgLt03SiVeoF6HWDghvCiAwARDLDHvZUt1iwnu+4R/ns6LeZDhN/V+iHr/F5Pj6pnkecGF8wSc++Yj8yqlafxaGhQfloRtAzXPT3Fl+0uTySZSQ90JzVWHBOukfE3xC5xNnWGgjX5ECFAQt+af6rnanc8DMAMrBvfCE9xIGhQKQ2qQ8zzMZWvAmMeUNGEgdmNQrYYCa9CIHssWyCg1rMc7jp6l6HflkpSegFbypOqIRd7P8RqxVYeDVMS0BS0rPK/lo4zoS6dfS2QCDCwrOe3B/1Qa7b8+YyXOvqcmtypfHatTnnZcAXRNMf4q+cQaD3wtGhTS1oz0wQrpUOU3uUirA9Pxf4AZpAnxyohGcGImSKZM2CrrcJIcKciSLCretPR/HtSRdQW3XM7gtgu2ZZ4Mo1BcUX+0s81mnwE2yjp0L+2lGniS0o+Z9YP1yck8GSu2BaGWPI/ZKI5N6p4QV0xjudQYNlC9ndxXNmvfe/gpvZjWnpIdZGmT/30JkpzDiuzrYa3KTBYMk28gRdFlhDpq2eekWIH6ri7ptTboRZijpAFY8SrZHlnMwTzVlEc+a4yYePVE3TYDQ1z+89+rFLNgDD/CTfjD/QLYcNeb4uYLkTsUUh5V37M2o8KvgoYyZpGGGMWu+b0eogg8arvao2lRMprXC8hJ0vNVaXYyrAXaOLuRn0YATseflzrt8iXPE5M9kmPRKQfvjLkjUxGZ/77C6eW+h2k59REOiiHpuH62UwP5Gd5LpvZx57GEDyJJ+KkRR8ewVGNrjKFE9gngAC+jZ5/zX16bKZvtPmsZXrXGjcw6hXKg6psuzvOez3xk+AeqMkSnIH58ZbCmASgfxUNhrPIKmorYtNWWnr0K/4mLxY9Whpj/FtPpHeupHb2e2p1C/hV/u/Uz7sZGTxPLcPbIT6lE1lrTNs9062lEQihNEsvT4kzJL9Z7qj0HcQtJ9lNkxx7el+QDztpry5BDfEksmjdWfeZB5khgy7smc10Y7+P9FDE4lXNUsoeEKkdz4YLII8NdUBRzbyeiQtsc6fvvJYYhmDR451ggXpz6Uv7UzwyQx/dZ83DhJVM1QWjuVdxppVCla+Sb5pjQED7jHQuvTkpD9XpT6c+79jZHIdpqsz2Hyd7ndyRZA7c4OKY59Pes+zbUiAotMnHETD7E7Fbz3kBZzRULlpE+cQObw++Eoy3+NY283t3EsFuDo7JU9oeFoY6QtjN1OPkF30bNUt5aQmwvlFWKxgNt4pTPymaREwy9fQdDekR3FOt+1DInYZSMAXw2GCRPfRFax15MFreILierttqHhhJ9nHaBgm2Jw+M67BEuCriUpFfdocwa8ojafxRxBWQABRmTO7mToOXmaEh1JTLKZei/p3rW2z9xUzohraD1kjMlIRovZx6hhSJoHMoLGylc2O7T8b1apOTmIq2DETKIs302M2iUway6yeskxVc12CEt45XBcW/UuepBz9Ak9HuVirnzttz6ROvI6sbF8/YIFITQmhDqQEubCz5AKs7j/Kr1Q6IQZT66URT8LuV9IoVsrpNPBRDSz5vaN6/GxRWVG6CafiU+R3oPQ76CFDHhK1Nc5TjrKL6HiYCxhK4Uu8EVuOFfb4JvHHpznv4mHBIT8ej+UYp3t1ThBugauTrpUsamK+cnleJpSmef0J18MT6d6WE48PqDGvFtZPYvEb0Wg3nuPAX3eupXrGU0tO0+qNDGfVVTPVltPq1kMHCBycyZCjTWFkVf7nv33lpmGCNR+YsbkfVFQw5vCdbRj31EzmrlODXeudBjOeX+Z9hcboG++ma8oN6+QOEDO8Aio+dC4BOEWWiIC8zOiPBD74cDDOIfjSbQ8WTUcBtxzebnqukqHqPDefT0zgfb8wI0LaNkTKnpyHlQKLBumBY5hPjVoR3ZYrxdTfHJ46Bjxujh8YDpr9NG/8yCORq3U34sn/KZtcD7RniM14dA4HjxzFo+DwHACrBOlkUBIZubK9s0veeIR+vGQYpCC+UcbwASaMi+h2HonPT8mxfvgm8CB0ph9lKtbyEF7OjotJmUAzgtn40EsFVg+aQpubXAwq70IkhVoQTIwH9R9jUviEMcOqCo/LQk5qrRNSjRMAUm3cAm6rypaUckIqcYfdbXz3dwFcDIcjNNI00Emi5zFiLJHqFnU+LRvpHspfJp2YrQTdJuizb1z8l/Ilr0Kaj5rzRfu33yby60wAChjugCTWhnhVnV8q9XgHrjyjddGXW56vKTxit3pQj4wHLzUIweIZZNLUlQ9sNog1jXh6e8SfA19Z7DTHajXKKTj7HGZIlKCZpM4LE68CqUdzy596pBq6XveGpEF8XRIfsxsCPLRLVVIlpWs0AYGFkJaCtmtUtnx8bUDoQcAfKsJLjXS8JyYho0rXZA8rsHfLseR/1TMsHWyZS2Iudi3NICac0madSWEaMCjvIqTvusERkFTY6ppyRlDBD/kt1MELyWnNFvZvSWebvxGbISJ1IeQxrjkt45YJVdJWVjOdA81LdP3zOTGReHi56CkcSx43uTD+QG8vP/5le/j+SNxii6Qy48gQjWK8FnedDAo+pwWzoJGsPDdXLJe2ecwevX1q+HkFubQ9RxVapqTOZyapjfECF3i0V0HjL6BH70zAXVMDFqHql6TE43AJIDv1RUFYZQW1Fd/PJquGM1kJq1BFI/wMhP+4RLjd6wRPUi2Z2ZyCgTroW4yegcRXIg8YSk13VQbtGxYwDFAkhoyLO2RWe4LzRfuLuNbvQkFWVM9lvOa6Hmij3KJ4pu9jfGNEmusTimoGBpksgx1vkuoAvjXN549vgVRTKSW3KR4VS5MFZneANrTschOfF1yp83QgzWlsyk+uP7NvrKVQ78INWOvqzYTuyb63s69jmrtV+pGTwhBdVdLYDj/lJ5dbCp118EwmsziqNbPN48tp3HxBgrtozYZG66YZ+9sIxO+QhTBOzh3TfNqzVcyMWu1/C7k3u5WCG3YAI5eOBaMG2Ie4yDwGbnARKJiEpJwZfDuP3iR2DRXsJPetI3kpdbqRh1755r9FO6LyuF0yOefsW0+LKfHbcv8Y5+5Ou3Ra1931LRgqcjlOaEWVdyoFGpGqLro3JIAS6nvPj/HnXDd/04W7ydP+4KfjWPiZaeL3M0+e0JFlbCcQW+JL4/bNSejCRbD3Q5+wAaJ413RCaI2xrCYgiaTIt6WNf4EXJyyz2Sn6VSlkMPnk/IIORhMFn+Uwn/sBOJjLE0bhVN77ZMV83Lt7PXYYhdW8cdfzOuR6IuOMDD2Z54+zWMgGx8/5KI4jGYWwCXjyxNrKEDKiv6rzCalX6F47adUq2seKyVm4Lfp1+yCW2ZIx1hSTrE1dgbMJv79PEj0NsTZroSMqGsoC+oXKQkfek86mIhmLA267WsRA/xpQJOENInMC3TUn0vvszYWtjUGPoFvjsEmjPHIWlyqRVahPOtLwB08JxxHZhREYM/008CCXwjCfJ8EmPlGeObqNRLLpzMNiWEz/Tm5bUErnlSnpTmRya9p7CfLviich9c6usQ4L+goqATfQZypx+jxUck1xr8uu8HjgByJ3+4qJbpRvhHfC/b4cd5uNy8UPwPlXy8rPaZ3ci1Ui4icj4I1lEYurD0jMCj3hXOGUFStvpcT+MwHEhy3F7QQZRTAwXbtSlvNoEQYu6/PInqBFuUnJuuGQEO6ecCo+E5AIXsQd49W7R2y/6+vGZ/WcpDrDIHWaaOC9NGFSDc1JsJ8QB1WlA=
Variant 0
DifficultyLevel
526
Question
Rufus had 5 cups of pumpkin seeds to use for baking 2 loaves of pumpkin bread.
He used 143 cups for the first loaf, and 121 cups for the second loaf.
How many cups of pumpkin seeds did Rufus have left?
Worked Solution
Cups of pumpkin seeds left
|
|
|
= 5 - (143+121) |
|
= 5 - 341 |
|
= 143 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers