Question
Stephan makes 14 loaves of bread to sell at his bakery.
Each loaf takes 41 cup of sugar.
After he makes each loaf, he counts how many cups of sugar he uses in total.
41, 21, 43, 1, 141, 121…
Which is the last number he will count?
Worked Solution
|
|
Last number |
= 414 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/S7N3fAbf5jBLyMoIZ3mC1C7HfoNGC6SFsx1zhYOyTdenBWt9yAr1Tgm8MTxt1AXuzDHZs447oV98CcsL8VfaJfLDISwY8IprXBDs6ba4cV+VgGDB+mIQWzALm0i4Ds8IDhdN/9ZxAenI352AMVKMrMEeeuRmQm3gAGqU8GqPEcygNUbqNxNSUVE4IN3MDP0kpdWgzlnNEQjAUf3gaHgTNtrWqfdmMZ+DAYDv1PX47E8AdT01+SSq8x10eoHSH0sdeQTxrBM7GLofsT81d/VyB0SxA3s8cAAgdxct59d8sTHCFTCBYuud8Fq4UGQqQXrDMWStqgG5qMoQts6uQjsJisTsCS+WJx4Rxa1tIEtTu6K+OKCKL1bwNFk8ZtDQkbDMwRTth1ULQWRIS4B0YAOp59Anx6h77LzH1kYz5txrFTpmULnBnbpGMR8ivJCQkdeWitvSNDSguQvxfO+xy5VkaPl94A7hB8rRSffMSwBwA9RtSLD/t1xrtbl1IVVEw5E5DZKNfq6joShorXC0H36pihhsPA0HVad3UbJpx3ZLravdG7WJEh5gsJ275/bUuaiNNJzO/ZXc8zmsmS7fP7FHRMzLFPYFHzHWiPMrekX3AvilgujI+8CasBpjz3VYWS4eR0eDT61J26m9XHKb2jcS70H6YqXwmHfdqmTnWwyK9GBQXeYyjwyz0xeCavvNgZgk7TktFk/rHUe82txktprrtE+bYgt9l2eHoD0HTvP87BbF57p0z0dXIHLnEBHMz52wqz1A0rHdF3LN+NEmx/FukTMwzWkjfr4nALaFHZe53Z0eUdzsHXhEcs/EEyzDmmqkSIA4SswJZGovMQ2By2B+sn8VpQECoD1qiBay6/rGisfM68wJWnNUCg5G52fhr2lkcmkjLSkX7g9sdQFSP+wDDdA0+PcbJME3blb8oWtLsUAG+vNKFVOU0P05YwJrttPiBXOgwkj4bIDTof7meIYkvVYx3Hz0UiAiS4XVj5LiAVBATMLhFQQwC/ahSfQCztQ/TMqhxzW0W+vkLAM81ZeCsta4g+vLanrSafxpuO1LlsSgsEtH3E//1gBfk+TY6ZNlo52e0DGHMZ/RXwDAlFzkeBGd2nyLYImQuQuXVa6UnzuKM9A1+1x6pJt4SMPS2W4QaY7CoopO77BievqDnDZY8tJkJa9Xa1aoeUbM9UZrD8LEm7m7+L5nHFLBMatUEMEgg356N3T3ZwQ8SbkBM0Ltn0Cle+D5cZuOF6/i+5qOD9OhxU9yM6qz1MwrRktybf5OypaK9cjpjIjHAo8zxisiN92ZhBbURU2L0DuFbJOBAuo1xPCttljV2WTj+6x/kxmpTy0vYfDLXV3hr8Ggik5zA9yshMFMOL96CUcjdno2Sb7gFyhRJADA2ONQUWi9IasyLARstX5kG0cRbpe5b4bBz0NuLKTE23R+28/0xPdGcXiQXCJfp+yQ0SADdjfIOaVBIMO5cOVK64srhikK7LRMJO/Yk9CR3J5/H2IQP4k/VMJrebj2RnGKzJvcWKJYrCKpccwoNVapdR7VRU6xx9jhq2c2UcMB9aaP0QX9y3HuYkSrUji45T4L+1FKlBv77oyloDBI2hicXCb0fU7KNm2uCZBKeD1+zLcA5nY5gZ/lZQixCIIXEQBd64F8aeRMPYOBJP4zBgeLmZCjuIG/POHdJoFHzhJm+Ko+bHoR1h2zTq4XMUq59w+qOoaG+Y5eCLtvnCEqFfmkF6Y5XgoqCq+T2niRYOBC9e2Dwnh3yJFJN4KcqcwygoTEjz5dG76faHbcqxIPF2lTJb9alG7WvQeN6DjLBSTWjKOZEzgOAa5+tv1PRf68N6KB+uqixHcycQhcT5MQIoGd+yDU1zEaeIRx75me9RDcOlvpssO5BRQkGdT+rgFrV+xVtQg6j3t3pJOLRWSDzsXr+h9NS0epepr069PliQnzRSWBb8vHUh+2oxVV706qU5gumt4h2+3VrzeCBv4ckUnIoMfKyfr8X+qzyBoH78DfFmU9pFTt+Zo32qrEDppFOXtA4Q3uPbls6ZDP5gX2ohHR6uRcyo/thn9gMJDKOX9rF+iZoMU9jgjdk01JZnAdMIyeIbOo7MSHZO237A/APAgTFj02tljwWaPgc4MUM/j/A48El+RHa8qvfWTSMu47f3jj9U6G7OLcA8vUEVNocoqGazQ66Mf0uhKrd4yJpSuHa2zWln4ay9Xi6fA7CnDOusOZmR0q/dqOnoKUAenOH1KYuixVtkT/1TutntxSrMt9gl9gydL0ON2CcyNtB7TE78Nxb27+e7jKnT3PesvPVqgg/SPaOSqcthXscbJac2nq4vZRlT5sbTzSBZcbOnCTQGljCG1fcseEnssj0TdxbmQ1prwuCPy+jbgnkTkdNwNTD+EJXZD3TIK2GhRA0DvHah8IeeBcFLYqFNMGhzlQW2Lc/vIqeB9+aFj6hjNyWSDGFmTJXnuEbpT1XdHvpsMB1vXPs0EYrjAexjlA2kaMkCLCOnRZu+z6idMkomrzq1dWX2hwUXa3GfvA/Px++bRvrG3RmuXaMvD10DF3Tzx2Sz6fPDXQsF6gib/rCMihG1gYLVuCDV/iFmGacmRJYuK624wJX7woRBVYO8iukNXKmEcW3L5cQeIvNO6Ctf6EgV2xVGEllGhp7lhx06wtQE5eGzdAF//fqMBWDUfRxJOTzfuYz409NxP2ew6at9Q1EUGSqFY3Q4ybRPjgHVjU3+tmM7N979sMf13zLL7TrgzxH4NcFwhvy8i+Klf7xIajkBuShsR8mO3v1aZm9R+p5Myq+HefY7O9RKr1Ne8LGvkVLrpW2VlQG2UycaX6bu92OypXd02yiT3id3XZL5WUq2Mn0dDH4mWRvcfAw5ILg2V6KOkVQqJln4xdpHk0JCDe4BBbp6HLSi2fs9i7uHoSAUPCaC1rOLKbru4DKoK+jm5h0KoAN4MlF+3AJmeGIUNv7EA80ZGp3JmK8scPTbbazJECmYsZP/RZOsN4WDZw87ieUU8ngSTv30bd4O1fGirh1J1+KWF/0nPQga5d+6IqqEx9+j5CJ0AZteYgVBW/kAV9H4oBWWdXxmu+zWIhmkq/w/JaWF5nT3P07+g13zWuCPGekuyBOX8KnRT1aOi+RXDJ64ZhASG+7rOZmIE//2fte74UWzX50Dq8NVTzek163QSxFUQLXw7TQ+Yqu9Ra97PJ6uRFoFdK3rRQYRyHQU5ndBcGsORJSq6C0Vbtytl3n+iiz8lIUBnaYEbFh5UNSY9zmWtzNDm7yOJnHacZSOunYuxCqRDgEKnxptRype4a+yseDoO+jIqDTq5VgsE26hvAknqm9xcApFbYW11Qmf6KwGj65S50vmTSvx6QnnWkV3iQ1U9WiCif8wbMWyYZuceIGeEL1MbjtWd86JmodRCaieriFMDpbQpRxWtmLay8eLlkiasnxBJO+Z6cGlrX3c21qCSaso/w6GftajZWfkm4ftGDAiO1LBkrnElsyd7gpwFDA1M3LNqmNI6aGoPtq6o20FNjWIJfZVS3D1TZ8BidIplqKbVnTUPtIPpTYZPusFIT2MDMIpQQDO588UQ/PVR9cG+tnH1Gn90T9JPbXM5t7kJRyKNnvFyiViD7bnLkszpF9CHDzyaOiUdWQAkyVTqS+qd6PTQ99tZZWVko3Lp2MKSMRCDYLKpEmX1/cS3OL4VURtZsPCbEQi8HSbRNQols/tqfRlgpD32kLjOp25l1w6O2xMreH1m+PTrGgpOUcGm1K/YvZ7eqT3hApMhyMIXWhWd+eHpRRT3jVqwbCoZhf+9j800xNaPTMxwFW73w4cgdqOp1alVcqOr+TLcTi1N/p0DeG1VZSiYUdgCpW8LvUb4qgy5RsGbf5/2tXWiwODMyuW42XbC4JnLCcUYvGntXmwDdLqyqtkhUbk4E7aqJ74geacNOzde5yDiV8EtJE9HZTlghhY9dhEjkdvl3T8ohRvBtqWUOxA/2kRQEVEoRtgHgWtMScwJS41Wd6y+4j4h9wtga4+EXbVwJLfHl69lazcMmA1GPYXJitOENHlRFmJqTbrDyMBJ/sThPWpWi4eMj4so4tEJW/qbJPzrt9W8z/0hALqTloyHIuqLKDog4JZmDZ7eEMGFP3FSMASaHgQQIVzwdt9a/x/yKzGiIr9sze2xYiMlWeeJ4p3If+xL9vAZviuIKLc54BzX1RM7as3vj2aCUcrTBO2oV1WA7yKwzH4JwYdf4FxuzCGYA8f8nRzDCPeMvk9Cg1NRnyGy6fUFjdnzZSrPnJ0IAqLcQIRtxTnajip1cSovxybEYDjypWANSs+i6bz/REzg4kxYF0qZMVbT8LOAHfT4+m6IX8IR0AiZMOU1tFeKBM4p8oRc8ZM/3wIFbfh57efvKhlHDMA8sW83ixoCgNaAJ/QuMEyNYd9QZ0TFGfKqZ8vhFK0nqEEh/5vwNDECTCOyumB1JUXB3KsnltNtlaFT4W/0LJG1GhvgcZPMSDlD3tsye9QwHEtNYXOYOJgqWWRWRrDAoJ4Y6e15T9bGJ72Vdiu4Htomg1K7Na221JFL68VCJIA1ixhLmR3RQbARx8c7cxp0vEYhZgrXXzTyIfEXE6aRpeqd3oFMnHrPmQG6+5KcvCvD+0WN1nI/Jf+4TnrejqVJYpnsEviw49cQkOV4f0paLOpibMHdHgB5iIrgoaNMP/jZPBKKZXFAeWF1lp14ROto/jo10eFMEZWc0TrhNiNK6XJI28Rasee6PGEykJQqb+R7xhyCD0T2bxEkrC0bPNl3V7KG6Rdi7MbILxRieeZ/SBgRec/HCfD8B/1bAb8TxOgy56uAXoejdjogc0gMnVdqOHLApn9YKmD+bV/HNo7SY0ms4KcSsTZcrbfYN2EvHv1VnI/o3KXE791STDmyamKijA83vM1Y+wmKbAtiRAy4yrZCcaOuWDGoS27qmb8vS2moHEy5XtMuyd3nCAQ0dxkxtyxK3/ovwW3XMY9bRSctBQoII3IBFdv7EUOcL9uLZ7hAkA0nYwhltVJA9pWwTJnVzx5WiR9Zd1ycPOfrz7szSDg2gHXMhphwF+4tlfggw4R0KdcOGWChtr7dOU/TDcJonj8z+GarG6c8GNjKS+DgCBQQ1kHcFeB+jQkevlEJXcoZ2beIbxwrxXcDYwca+vWYZkIM8FxIqGBOEJbeSjkuNUDcS01UXuSg9MsCNDe4TcZT+vofh/4FyYWawRvbvkUwgKBJ4Eu1bcLmvuuxMGBaM7+5KPrSN+TnmI4v/oF1jbJTVjs7zbM3FupNuix2RywFEAwM0YnVrsVLC7fhjSJlvVirW9Jnmd5UlecZQPdpAkljq9emMT1wz7YACV2auLw9T+jmRkAr5McPSmXs6A2eI09LjfQeMWQqAp/A22lft9tX9HfwcaLLCiTBneKa891YDYtqmk6jKiBQnnmF651Tub8LyiPbM2e5NbajWxgk4gqqX/ZYznqsJBpR7JBHk9N39U5Pkac/F0OkuNw94j3Go3/on6LxRUkFeTsYFmBT54uoTtLUcwCaiozzo0R4DcF0o0bBLUEFOEwoT8STctKX68WvreSuFwN++3i4PVqFmaJHXyqpDYQk6Q3iNl4dUPqAo3qWexMItbrX1H4Ti0D7SYSvRWO6T23Jd6yKZ5lstiefY61ZMMQnb3xtk2M7Pg8xVUcyjLt9LMbH1mkY8SkJiG18c0/g0qJonz1Fi/u8nyAMia1J3shm5dDovS9sLjEVs8rymgyPPUpmcG++aBcBZIstBLDa2YdiBs601c0ATYqVCMLVxZOfaaIpntX6z+OcyviGUj4SDzkOOs40cCS47GidrljUG0BqBfKWNvs4kbFL86RyW0VXdfF9Uo3Voya7wB7f1gM00efNpzG1VgcwGAnt8SGB5CjETFWl8JWngBAtdIQLyeK+P8ES8xGeNK1uvW3jE9bABAIrQk38Y1b7tChuePbZSxOHmhTHY89L/iEcq6EE2iSNtTLWdMrbrn3Sphg2po0D+Xz92sJi9mHBQxWgjR9PNGi8e7WRpf5hV6I2rggAljAxxbrwQAteSo9jo5M3i9UPDKY/DkbguAzg1bSiBG3DjmIxdifUOc/amDPKtWvPyTIG+pABv9SCAh1oAoo3LHb3Ecs+8MKsS4jqJ7BfuIGBVUzHZD1mNvr2MhkQnjDoJ1bYLHUM5V5YiTnQJ5H06AI1Z57zH/8NkPE5IYRqrsY70aRTanLr0GJXHCm6lS3BDjWH9xQMpVD2p/olJHphVCHhLwRB53A068zzDYrC65OQ+gQVI+LnakSnEoxS4ztQHvHkMZT93QhOepcLqQ7sfWrGGJwaupXwYjmFw8sj1b7bcOSjm5FfJyYqwdwnsil2kXjLynFh61yoeB4xvHDHL1NaDsXQ2cj//IsSgdK9X3LO+eUHrIQjfBADkhMJ9N08UySfa1nojLHpG+JUtavufc+CRE7jI79GzOr07Bji6GbYmpBfKxoFxy/fBZnMon/Y75+1KPbKWFMb1wNJqfDC4Kt55fA/+0iIoKLWC/5Ck3AjtWyO+CGJkPHT7LUvsHLNs2AWyRE/0Nz6EwyJRGuKbX8XJoytZxsJiekmAKFA9i+nPpkZ81WrqNI2Uuq/kiSa7B0BSdUBlbg6Klm4v6TLPRbQxPRJFcFchtyxEJuNfXPi9ZQzb8tSyPxNZfa78UIotXGYXs0nIIjLKyR2zUK/cXL49nMDUq/4Tt9zRAbfpCbdBhJfWvod53MoZcCADTnxb5G/vrjgB4RT37yVQgZnzzR2xWhjcs3+tCqreqw335dMn0rF3wfELEKNBkEiMCP9OC9jPllNEbyBOLW7BRu4ITNZ6LMTlcoz45nrig3S3N0Wd8+PpvC6nNOghp0Z1G7PHyArpKfXybYvKoGmmv6SlgP0PN67CbxRui8dAWoY04wLOPBylxMkaqQU+Sx2yDSCCLNQRSZX0TOWy+45bcgUCVfPXks6L/5DwkN61CtlDzlp226OQBcd88ARg9ZLRBIeh3yfyvNqXBOPjPKm+qkV8ikqRufX6x14/p/P9I+Tntw/B+cCRKf323zeAiNyJcOydX1/l05Lxg0yWtGfh8ZQu7tEKDVCwkvFN/QOHp7v1ki7PWa963Dyt0LMzta7CZD9gBY5IfGp//jLfG0SUQgvINGolKWda5zxnZIBrO/cQxt23Jdf5T5W6DY4q3YEKcX4Upy/LtRuA4/ttcM1jpWJDOU1GVVOs98qjlyKkbfOWg1jl4WxDKKoASJv5l5xK4pCI7Z5kWi4R1aqbvr+C507JX3K2M8yRtupGicGxl/IW1ENJZVW/RWoD1zkWhdMPUanpyKvD2OjdRMMTv2t6yeSOKZp5Yr2Tj+TJOChvvMW4k4mdizDY1Y+yqCuJ+nlIdnlRlLanKxoauKVVRKORpRi0ihuylKNpVK1JDmnP7QqPrEOx9DBapfdMJ1od4q7MzQTbze3vRlvKca2vZ/HcDagEnowJGi084kwNtpgPIPsRn8H073qC6NBCWtib9+IgeYFyf7zkmJMOri8ThRfAbqPFW/R5G13GICKEMmKc+FzapVmGT8xnEjYVmh3c9iXLzbTSBjdst/+SOeO567nOv56hSb8MAQAAsHHuoUgUayolxHfBeL4uNqZX+CIxSL9IlSFX1xkz/Yq5IYWta6G9IF679tQWBR4Vyu8VBBmNg8MJLvLXP10W2ayEMLMyjNSmED5W4d9erJLDZyq/37zYwINGbLWnP8SW2Qtp9q7o4S6PBEPLMNRJQMbdThRavGDBvCPeC8+hzvtiZwiX9MgLMm6FygLV+N+wMSEAEUjHCBhMNJ1k2KpEXo/+xl0pVsG+onpO1oyWVbTlKdWU2D0v+QXYN7XDiqhcl75AYx62jQEO10IgPH2Tg9OFCeSKrgzlj4yybiXZaFYYazYJImmFd63WA/Ve7LgZMYzOSLViXl74sXjJwaZjBctEkzwXmRB+tsEzwlM65D4R0b2BzMFukk+Yob5kzrqVFGwaCbAfQPqydz1GJiQRfudZTskyoBn98SOcUK9JYIKr5/6K+Vp9zH7FoKE2SlMzG3YU8ZbGkI7KkBaFSaHxlyb1w4FT6ZVtRASaiKsSjh2p6+QLwh3vFRCpvaWg+c/eotynSZaiQCcokF+7SYg3mcCdTP15KMEK3F85iZZJ3r+EHduzwNaaGrEcpZfw2eRlB3R8jF6/MGeBPf+2cCrMOop8R6btCqB8LhRve69Cgd23iUZTO9RpvP5k7N1X1LqDgFXuESZd2SINmyLqqiyZOTeOWSRPjjJSiuZ6qVJCsluWX/EWHMEo8/pmgN8F8XdoBa3oHij0nrtUkT6Zvwwd+ikk5YvKQZwrDnGBARl0ckCyrco6xsFM5IE5uaXzOylBrRmFhym9DsdB21CYsTg81mma9SxZ8oIezaYeiIOes6uTy0yNpFi6/96GO5wCupN9PMLgZV1AsmQmuL20Bb+l8XL76zR9AyHhMnRhmq8Hjx6k8J3vcNYTUXxgTnkFGBjkEi/NEnjwfnCfnTxGRZqJ7xcfijVR1rJ+p09tfCxfilKIPq5WzH6vwu5z6AfcINtVQi/HYHy9ma5Z0+GBkTVE9Nyp32/a6/D9+4wbUjuZuu2FPU/+qBjS7Yqzw+fGmLKJuQRRYeHBKaYuA92XjsiCy49u670yUUQT19rYfE95EuLls+oXOBIfx6AWYqq8HZXhdHrdzmlfVrEwttZu+bzvkw0W5CLBYFNRrQvyW9tzeNavF2k2z6KgftTZWQV+bczLj/EH3unINoA6sTmWama0xODV/+PjMnP1IfmmPphWyiZ+aoZM94tbMjN/Tr0a8DIR9V47YMQgT3pmKhH60jwnLNWR21a0qNJySsj/RaXIk/31/23x35rANrXt9MX3hpdljrzUMssN1CYDnQeVz7XMPBRwtqvjUzCoWNU5OQn6klLnTUUMQJD2Km/QVgFjhQaQnxlQLnP9dlZ6T2gVpusZAlkQuCeQJCnTYi/65ExRS3wA7l80MikTbJRoK8iKRtLpnT7NaPtIWkdJilZJdxZmncQ65QEuBrKKxZjfedFIuJUOzYel4Gozhw+ZoF+hu73rPm76O2PAG+uV+JEHa9oZ0T2sv767p0rcBufN9rzxxuBVJ5a+nAs/7WtT+378fszqquk8+K58Mwx8ifTX9h9bZQFgfMdg9Gw0Wl7IVg9GmkM/eVHeHRVIZuXveXAPUyy5q4yFVK+75xsYAi76hRV1EBXuAhnHg0nfDXhXPLi07Dfw/JTys8NU657Ev29RA0mbjbwP13JOOO6t6VbsGRv/iOZIV4GgMX7yDe/ggnsH/FIHHpFEg2JK699uXa9+864usSXzB6iwMrFvAd4khnctzvOwHG5Pmxxhrlbs3VX5qd4a5KF/X03ryqslNAl99BLE6qAU2pGfB6kM4E3PsJ1dK4a4bUylMSGFlJQdjq2TXvC8LJJ0rvlHPlpcaA2C1/FaJKiXAlqGIJnIx6x+FfSJf4oYLWzW6g7iKFX5bwfWlT3AnGvy4GQANAeCISHq50cIUdeavTuRoj7fqtaQ1TLsVg1G0vPhFwENr/1Rx4k3wWECN0uphhusW5g8TNavq/zv1aTCmLubgRtyFhJnrCxWT9YPzojBsQZfKoNtPGAG9c/W+iNlpvlNlSp5nl2om2x8WO2cYFe3jStic1mPqePTjH2B5bSrKG6xrEos9Kg/Cq0Xb8kTx6AJ+OPP5Ate/DO2YJjW532pnCFInZhVMfrBArz0TN37bNko3ZzqYWfl0clsWNDsyQMPZudb9wdzDK+9iu4G2xtvLe9q41cR0ACuMkYtRhJxd3+I3dzmJlqQFUuaSsMaOWpVwGAiqtvqrf6UuxkGYchXyEWeh2nMigxTpDGdJtEFk7V17WNQrSSwqlUWYIrJkAAwRXxovTxukRcjrdKbnu7mylIZYdZ8rPteQ78kPTSGKW5e0E5Qs0sgyGugPTXmWQ1pep6CB5HgeIAHM4MG96fRTB9GZHf05uRYzF7QC3rAJeir42SYEqrwMc7B8c8r2Ms75R7WTaWoXWHPYOzR1JgSEjaltP5HmCp1OcxM5391cdR9JJ9UE+DCESMfPK16N6ofBvA9C5dG4nit5kq4Zmeh0D5kawPTQQMMZ6XsxPDxnw2183UkbMTfX5HkGu7yM9K/bOrl1vSahP9rkiZIwG/Pn5kpME5tqb1nAMhSDd02HYNtIX6Xuyh1dQXXbfeavpDR9C1EknaE2HWA9Qym3khO2Viu49s2VvVK4ox9YMkQhYO1jIqlMN9cVrtfsabpxFZffH9z4mlhMoUlGI3Kh+DEJNcCV9hqgADKF9Dyygv4/8PfDu0XF3c2QXTFhylSwKz0RLXqf6MoJXhteiDaoQvQ/vDHtujjMjxQW0USHENrdfSNUxiEwQumIlFv0ECsBXbWW08KfosLJeo97xdHMR0fNsfTG7LMvoq0ML+wWiPnHvpr1158FRmZZVEVdSzO90JlpXLT4iqHcK+ixhgHMbHIT6hDIRDYEeq1OOtjkJvbdKI+Wh9RcbNh+QR+mU2n1ZgGCrlFiZTrePs/+Q2xL+COQwU5L/7bJRFtcqEEhxHNLRo+ihYq9YS0+jC+tYD0NuXw0O9YhIG1+Z6DLfQulvpSA0pImzWLF3bTuJEUKXZBXaNRfepBaMXWCd8F+N8sWZEss/HsFfYi2NhQtlJ4JvAWBLIDe8gLHSyzO2xrzBngkmEEDPWNtaa6qaz1Z9k4hureEd+3WYe3o1GwvWqJ4wxIWLqsMtWmvOWi8CKyWbv2EkggpqGdGq05jpUMaMo7VUqGTRESpnxcpO4SNuEcbm6oygaAWFvKlyKvLrE4UosDx4t/4tNfi/41oYEQtHYeLjxOVZjMJas9QMEL8eT8qBR+mRgKg+RGayTXP0HJaaNncWEIRKIcwPcLKXrvnBo7TkRtLwpCnTey8wPcMNd3O1IxBXblLlkB+wUWCpP1SLkea7aIFcsf/gYkNFeSh6/HRIWiLF5akcWT6MIP1IjHkJrAEVPIFa4zOmbBc8+rRVRJQxeCeah3QYhMWEyTaGkEaoIasVU/i1OhDYERA+mHet74+8TP01nSC+jRgSKco7fzZnUM90loS5VyLCDPoboMimLBqALY1086sfsBByAF9DFva7qVhKdEcsPlFkIiLluL5bwu4l0FfCh00WrRfTzPHu53Wx3nYMzoqviiGTUyLTjo7CHJQF4psJv9Zd4Hkg2X8Ia5rNPXS8EfaVn+QrYZGaD4YVz3GmHV1cMhLS6szv28tiNwW9DtHId13hAllidSjjvFHZVsKofpdJN8s7YJ/OovMRUHoXpOOfBxNtZEH4UHpihOyx3tBO222FrDH+S3GaRxccKtBNRrWLae7vHbDDebp1fRiBYN9c6H8GSePazBosVCsAw9qbUSp5Lg9/bEimn+SmenKWx5rHKebSCScKv9bcNswW7KnZZXiRa40N+wsyp2YehCXoFbvT28nJo4iHLg9ARhVfDIwDa1PGm1tjNm3RqAbFnYeafUUPMNUjyhHQQYr+fhKb4izFW5gi3uxfLFaf5pPYswDFUW6ah0+B8hBJTNUgHywYOkrC3FKnef+5R/opjSmwc6aSl/s1j7/aV71PudVIyTUct5P60qLAsm1xOuoxWl4RLfMSh5NSfuCeqOo5kEkOaAUD9ME1IGZbt6rPvDJa8BjIoXVz1VhnMRx0DKmsS6l9Yqq90ND55bp7VK2mh3MXiPw2BZu1vdMF+sZr/dMOVPdjw6ltOnYUASE525zTa1uG/y5xRkd+WuZM1FCPxCf/ZFt0k/zItAddEvEIgSKG3VRSKvXHoIsUishHCtC9mfyBxqGuIKGNjf9dYg4hjzLthtiPxytKOKryyHBZIPA69xkx+EbRWjQ5J8IVRD1poKfAlfBELignjtStmmQ8q/zig621gSqtnmuZMTR8Xl5VqCza9SyvGcI6yn6pa6TOqQLjNyw16162mceG8hlcgXy3dt+aqsaThYJ8PL244sLzyefhcngqc8neiwRMuBaswiZXNTGWTR3aF0d2eHTc0lHczOS3CUBtDWlzpOkqMZGeM520eDVc/dPdCVyCak3/EwjUaD33bFaThEppC0T42fn3n0p0qBCnmDAJGRiXfcIbcGVjp7jV40wncYqUrB3Oal7UhaTcYjaQN9m7UFbqoaNWurmJJakkvklErwTfUcJNPojarHKCJ64vyHgPe8e+AE+5/tuTUierwtF1eVTGHNwJWMhF9Wi7FrbkkBrCa+mMByIP5GlvKvp01XiqpfEZXg31P3b95Odri/RcWNMbJ0QbkpS3eSjnf4q4G/D90k/xlkGXSXqhSVPM2Xery/NQ7PrQLOw4gTdIv2Nn78v7EkQSq7MTjSquqVf8Fub9hK+chR5cpl380NHDRq6jrykvKGh7FvwjiT0hp5ZL3txE+FsmoW2Mjo89ts26H4ImfvT3i+07HuJql3Y9mY+u3yLESwtYPMHz+JE9wI00SO6Ee2ZdRuvH5s2U70udLxhIGPiCqGRQrTKeiIymjHT2Vrm2wL9ra7eTaU1vLvxCwYRgE0DGxLZW3JTJFfo1CnIWEY624XCqUcvcZMBc8oig+Tfj0G6JnBbeyfMrdla403xy3EWfv+AsOVUYxdDHEq6CJzXVuvgiMO2hwppiFjYpELtYYBdyJGka3zk3HrsRATBBei+EZPgJm9Wy42YxPlCSWwTQPVGoUAst0sbMPh7e2pLjG60dVL8nPX61XhM8AM+dU7uzFugzwgvIEyWiBtcHWJ4l/ghS8we6CX/8WEHR0vqlvs1LUVT8c+MPxi17J8pqWnbLuNN6dy+dnbCqgQRK7CNulp5IS7S1HeEwROzLMfUSPZ3wNYSJMAT3hP1z1qYhmbjN79lN9GlwUv0Drk6TLZAMkRMkoLd1kC/ui6OXlmKtdp6tyZgHhoM2qZ4knwb5kI1fg22eyp1CbBaknN71SGUoLet3D+0236M2IJ9EhO1WNtMS7pP1H+WGkwh34x0axuw+Z1n45I1MskIoP8FqtDr8MXGaV7Dc9eYJWl6tEaJqyyVk3uH0bi9Xr7O666pmisLi2L6fW9E+pO2mGcPa2Gn6LC2T7OX2YOIi/wxPg3vjqbBWAlqp2eJa49p9Vf4ICgN2pvSvj+mu170vC5FQU4XZN6yvwNpgHMhUB9DLGMnYkPUmfJxt04Okti1zKECe1jJy9sGTVPUO8ZU6pqHFOxI54yOi8+4bDi1cyOAmWSYhIpWeS/6Pxu1+Ga/wxORTAlXMpCh47apLnu3Ej0V0/MbMe7vhLUyg5KkoAATM68j096Fhrh8W3cITNN2eI3pRZfxe7okKLYfeXiJVQg8E7bGKpDu5cYqyOGgrqLyVCG1ABxnMu+p0TjoGW7To/vJC18j6oasemSNVVbX8svn9AcwD8wUyYHRjNI5s1YskQIyIYnqYdabs3MiF/64WJJG8ZlMD5jAypn83XrOAoJaW7q6EYcfCU6R546LZ5rL2TlXcXb/wucm/GVp6F7VWtj/vVtui4Xo7V7OTAzVBWkhNJI1cckbcowUqoqqk36EBLml8IksYzEJBqmXLgwriPmDw89w7RbrJjWRtIdCK/JcOx1qd46g+NEe8fuhjM9OMcgCL29SGYeW4zaBZi8/WsiBTj4ReiTxhGom6QKTNRuipHg4lSkgb/9/ZH8iHWz0oT6/UzwITvav+ldUoKyJv0UK5sdSq9UwoACBS9MeEQ2L0wKHChxzIQ3ZZlr6XvtF4dXBNsXKyrW0vAVpFvIUjlZLj1rQY9BWnXLl8pqFgo9NSOGCQfUuDTyhTuUqPxhX/3AUUT1+m650/KItRi1iWmYcrjZvUYz2+S+JJQh2Rk6/viWPpa93DP+fiIIe22uHFSPhMTX4elZatBa72t9yFj5AlgHKIXM8LPXff/UFKl65YK98XebUeHRFm79mb2z1XK/lzlRLofTGaOJJB/nWFlnY8Ve3dU5bqhRRwin8gRU1VUCLQa9bDz3/eqjVJ9pnBIkM1t+efnhsq2eETfxeKZQI6myTCeUo7xweFOwsnFfuJCJJFGsuyZzpQWQMw2NpXeckqu18vPtS71ZteexspsV+F2sbAKymilqAxacJOx7FYIbG8k0YPIGWHmZJ6M27GQ4aHKu98q2fXj+jLFMAcPdXXHlUJj5SJo5LucTVJj2BxtFCtfif9+Gw/tvs/XPUvDF6ebxNOBifXTbsRlxBTZ8RP52/PMuCrS6mtwzw/WEIAE84uS2QFZ+ycik8O5IXFgsTvPBFH1dTPmCrstVk6DU5Dk73SNf8O45LyAcH3AHGx3pRLdtBtcM095/pttEMLqvKdsT9pWCVx/HO6W/uGVVp6lDBnDKhxvYxoADEa6Mf11X+0OlQ4CVUZzAu96Uun1EkF703aV3ispUv/puC74wujfejo8vTOSaqChQ65gG2rbOjiQizuLsIjDPs/fgd/t/2AVAa4BA3HzOxWMimPppRePQl1CyevHzTUgnzdRaFTjrg2izIspRo9FVYdP5mTlbt0HQ5t0tgktKAh4a5QYHqHAozzoNsgvyl6evIg0g8nFyRRdDuuNSVRRy5BoCHepGKHeghDlDSaiR1XujfuImqZ5msa83R7VDKs/noaB26MipUh7UmQvk7gsHyHU6jEhCifZNsC/bMiulMldcsFlO7KVEzwHhlF85Bx02OWlEQLqAGyZcqwVQwTe6aUKuyziObUJ1YLFqkwrWIUHGq8Z4PSO4Yd1n4AniHilRRTpukjNj5E7xIUzxNdP/ab6L13fPev/lVu02/mR3+AueiUEbClLa8h1p+yINFowGoXqh/wVzF1lkFIGCFuUIZ0hmFjAvW9JtqphZwcc8v3Cr2Pr+HrwyKYW1HCMurbK0VDS79GkIdnxhr/NoUtFqJluxuUnSFH5SDmnqzxqVF4J8RsXz0uX9Jl/mUdtPl6MHYNltgvxhUhNiPP3AuuHnF6kbZQuRn+dqkc23Ert5BZhRa6YwkAdHoLC1Ztw+KVuxR47b09XWLNKE2d++QyLxglWecuR9nrxBaYiLgZ1uUgOjhBgMS461C2Z2R60wZ1wW/3XEgG6rVWJHaix/WFzE1kXdq+CwsRc4gQjD2YvdvPkqNDP7eYm6K1y13QZxXxYqqJUhM4sqRD0fQVsw1p9GKlO8rOZnEvwHUalwcU48g+SKbZtOAa6Gb9VDDJdUGn6gHYMAdOnLilxA/dqbaVnvNL8lTtxm1VX5hf0EmTpeFDWOpmwtL5gC1qy4LqV9lXi/T9hGk/4YnJpGvLdEfPN4m64Fb7mb3yiWToCIpgw9BsFz29Ryx/jGY5XROGkQOojAz8/vSRT+PymmMoStj4QDGn986sENXy4opMmYUEQcbpaZ04zcbRCFiLXSHbKMk7kYkvLJnIR9rvadcViAxbr0ZwEmSD7JCohh/i7qga0XvDYsXwEe7J6CyC/mGS4MBswDu01Yy7IywD4EJ2weWhYk8IHgSa/a2l0eiuATWv38HX8sHmVa7YS1qsTjK0gsUjJMi0Ub+cCFw36zzzKyueXspF4YkARkyatSDmOb9aI4wNlAh/NMnqdxEqGi2wYbUs6DktdSBC+a/qWFdnqRhOwPx+t6ZbNgx7wZFl1eQkPTNz6MPmgIFOCUQy8wFXv9P19gqcdmqkUPaisIT3mfTBifgapKIKaWUhki+48IMGMeTkmojf/bxX/HMNkvqZkywp4lg0437tHJREl1AHwaVDTjr2BL9NouhjmOHAtQP+kQad44QPi4RO/78hjXpVwJyG1JOqgGYx2IWpzeKOsS2KBx33ngRXTmbG0lPi0OV8w0yTtx+GYAq81xaQIVsiyHrJLsPU/vLyYr5uDJAB93/KTsL93i7kWn6G3JVoVC2UnT7UAW6UuwGsQ7nhGsQ3AGzNnxJAQMZv/RktmlOPZs3B1SRQK7okzUXd98IQ86M1Nnr9xkeYuNt2PDcKOOzpBvQ7RmtGL1UIZO2drX9fjX91zePkGc2CdFSUUiShiTghZMvVH8MRCDBE5bDrKl6lTVt1by8NtsnoVNpBxgCGLSU8mEurvgNY0l2FYFYesZ1nNj/Qr+uLkl0rekDOK2IO98ajQ2hvs4X7AkQ5j4dYuKm45tJdkIvz8hhfhQ2w1b6HbiVZM3g4VG9qHwVw04faHdQxx7/M9Sc1qcS8WjtGduadvX1tUlz5wgdleoUnSlQMfunrs3wc4tDOAqkzy3DTOgFP2T9Jl+E1YXU4wpq79XwlGsZ7RJijkFiv5W/aZNZbxlugI2ogkNSO3cA9zKL0LI4IN6sUZyq+VKG3Rir40/7/2cUwuVzfmjyxUpSEHYuLintWuIA1/737/Fdy7H3WQRnsGnjP47kDP/sHq5EjdzdRRbDQYPFD2qUvhpx1/b6gUNzJKOr6W+XpD7fmOxuQXI5mIVW5dH3qR0P0PHNmzuCBoSYR1Yjz5W8mm4bhom+Yp/WEEPuNbizpYdRduP1Nue1o+qOH1yElfAdhNYQXG5PazADv2MsOeYWMAOI46TlHpBLulLJEgg0k5AxhxBoKGXUR9IXrEhHj3vRHpbd0vIwJCG9bkIIow9aNs2p3XP/wYGzenYRSev1nTFOQhRM3cHkgKkCgCuCKWLAFhRkOvbH15S2uU5u/h5oYiqLt+sUVlh3X+5h4DMaesptolIBYlgKiSTaJ1zlnCnDZItkTWDk3fDYIS4qhu/06AxfB3U1DbT12MyvvhpPvo614lTgdOEDrQTmG2Ekef8CL6zawJQwzwRKocT4P3SFRHXW9j0DeuibHw7PGUF3fohlmZziRInQExKtwG0Rl/gjDRdQgSi87Eu8iW7FNHI/vGpNghq3gFXbWfQx4eRVVknr6v1B3GaoGU6hCzO9tVFSTrcv+5Mx8/WlP1WFHLME+ZRjSzf9grd+9WCNur819LHiLHEKRhg2D+tPwJIve+SsEQJIRALms0ZNdHSZSsVwzZYEdwbYhJW24TqI+NFglKY3RweBFw9o+nd+9I9QhH224L5lh27K9IQh00ueT9h363qvJuJEx7IM8ZVsTNJfcVZdFhwH7yO3uIjhjeA8hJuxh29Yhdc/9FGFeTrTha4tWwDg7XkpQfYF6H84b2lWQe7cwjVoFxhs/WqVmo1TMuM55mMi7ZWjTpE/s3WBkEr5uH5AZZi3U7Nf8bX5wRVIGykMjZiwHI0aUQE3mC9KOSqxchq3nRLu92wWJ2q6UfLQ9Mi1HAJm+SZs/L0aF2W2KPVTPCffnuGBCKWdo/7mVlUVlHIXzEDwlVprxF+wuc5Ppotl8ggov/TgK5Q2XOwb6fnMD7orh6Xkx8akyHkMJHn/yqCyoB14Kn1PG0xi2NyidyKgwsTspkCdrkEDQphO4V6zn0crzwJnihyuUt+3imlZIv3gF6PEV1TRDIYvcKnyipnoQiJdxM72ZoVoNKYjhcp37KrFGhJt9sBfrCi4Kbw1CNgwe1yjDmeaGqpq7c3zRV7opFJEtT6a7QBYG1jWrXuiraM8wd594IQ2pQ/FKXjhZ2W1hMGgGmyhGh0Upt2nK3ZiF3GzzZl/hRkFvkrLKEGetMU+YIJOT/mlwjH7B3722uBAExsPotonfy1t2wwW0wMOTxv98XQsHzOaZAHdk73PRO1kExveDl6mrOAo0B9g35p7SWuF1vV4QUer+TrLqcocF6OS7szmQXZHQRF/FgpOJyJW7UdvlfLN0giw3TG7dX9Ht4IEIK+u3O2V4BeJKKuu82OKWraM1Uzpe4EK1F/zvwMPZrAOWmoTNFc4r46H4djMnmQETUrB6aAhNQ5771ogs0hoiYpykhOGoMdF/mKaXjgAVQ1o0QKkpZUljhVG/LhVB5qhsQN1LsBzfD23x+5kArw7shgnkE+eQbg5/QeYaUQYe1nvmbNAlFSmwZ16ikHcZVcGmFTalPooW8aBo/w8Gan9JQBAJLjHcaoylkMraNMhYr50JJLZhKgL4DO2SIyaZQB/eIKf6d9HUjspGT4hWCLQS9rm1vQBgkRZvdFC5ZQk6GT4zcnvHcnEWiN0FXZNge5z3ZwhRcGXShci+9A3EjTq0CZMMCvZRzOphuLPE/xEndg5PIq23kRRTrnemh8MTuDSB6FW7RnMgJ1vp6gVAh0rnKmcAQVbmSw/DUk59b7BJ/TaVP5Q+ps25c6P6RFx3X/LeqnLS4IjJcDzhGd66E7AovvBXhHw5NxD9Xvs93h6QKKmPXOnaJiIRoXda2GKscJsb5Q1iNPMYutTJgNmzMceMzZEWKts3/9tfmJCwikkxy6nwiEPfLik/WYlKoZk9idQmWikzTeTGEdZkSD7+kAAt0reg/ZmexSfn0+BGqGymkce+o6gqwWcYhBsgQLUbCn7p+cxupiuzFBWpMCRZ9ICAxQplT45MMFHerXoT9oYWxJoXmymxlwmbWD165V02sR7DNQszR3BHgD5nk0YlBBto71GwgFqZem3RzbFpRsHak5Fk8bBdVIIZaWyATdvW7kkrJOkF8H5y1amPXGSnJnX+55XVetoHNtQEl45RTNiIFYBVdmBdoSahQAGmEh4Pj6BLPEJf+SlwCxhTQ33BhHUh5XCQIxuZdRge/wvAXwdYPKji3v5gstyjKDx9NccW1vCj+cdfSQef4YMTvzMxlFg62KndMGfZJs48dIt4TDv+D3er453gmy6NUZa9oJXD8l5P+/D8/zjpcKTIaHRgeXkwbjt98UfF1xsGt9NvtrYBzuc2CM39xG0TDWsSybXOvt1PCJm6vyd78c/CP4+TYP65qiGvQoytpPxunblUidf19WcqkQeWsnMczjG184/4tDNtuHiC9TaC99mdikMwUSfZChLkRcn+ZiT1wSNDzV6Oc1GHsb5ub2IIAHj7ssB51NT51JGUdmD1QhCNJ0ln7XCqA03GHTdMq2lgWkvY/2n4u/kMQtlOXa9hzw3aeA2fKlsa+RKw8X8DB20wlYuWm8CrEGNHrU5mIyUyHoeOLNOU6X9jdTpxrM23qe4kHXWuSwq5o+NZdcNefLS621drBlyFjpVbsSBOtdfiVth7sdXY9NgAyAddBUTocVrRy17wiPTDN5ynrR2Nfw08PMQwVrinkRNkHz6+weYl2uN7vk+JMq+LADJj0AhnMlFifQmvI4/tL02its4HG/owKhYTur36cG5eAsUEFD9/GHoSvYRGiTDJT6EPHlgOGp1UsajzwY14PgwcgWyFKhPrUuWtQdHejQ8en3tvgLTKIVz/P/QbpJmTuIzAMNOObwnwVmoyLyqik1oHqSrtGk65hfpvC/T71Doh0NvmhTu3OXpzbJ6iITHJ8TSj2ag8+jymd9EMup1H4FRcteGiQEbHGQO6SCFieouP0XhjBxiAupaGJFYlFC2OB6u5Pv2deb0frQNBkAIBakRIdhj8lJaHyY8Mmwt7LbqHAVYNMB7HTCUsurKKXI24fnBTZ/Tt/+SRScFxNm7JU9nIt5dR1kio0kKH+o3i0VjOl0oi14pAR9EJa+yL2Zl5KZrZNZVVCHR0bLVKY/KUimvptozL8EYzmgrA1J0Vbpbe5+dZL0soWLQ06mW+2izrEibMEzgpT1peefxkrIGG96OIKX5W+P/GX68k4UMX81EZZ82KH9fAgIdMcfU7zJb20DKb9JK3a3bgVvSMfD6Auz4cccNrOCMaZFKs4o+7qf1kpvF0DcdYWT4fPvsGxkf3U+tfBTzAtaxtdL2R4KtjRXqM0sqKT0CoddXqbn4YskWW678yQBVqGSlm8CdDCNp56WabluuokN9c0ry23E8nee9DmCBhMWc0uoXgGAYuzjtGKcVCH5PCJG/EeWGZBNfIw6/fAEwm5pjXzk0RUELD56Vfwka0NtS7spQgp13OPxXvMpZYhWf0hjtW+RaAItwS3AYQvaKegPxt9LRsj6EhbLRoPw11rw9Zslv/RqM54V7NZVhilth5X8PSGtDFWezSf0nJJq1+6EFKZFFMvlXjMxvwo+gdUycQrlrwErmKiXh3Vj8a0a2/8QuLG8iQD/GSdHVKcY586OZ9aXaExwNUgH7n3PIScLQKZegHV4SuzsRUkoqjJJRmGzyLMLMfaQ7sXcdyVx2SLAHNiBnWvmJfIMUCIg+vIYpQV2ys7LiTaSd/MoY1swzBlmZOFSpF1/4b1u+mld4Sl8y5T0nRrTcEn5KkXMyDKOmBg7bFUKwqaE4nwfwUjHN9mXdN/+j5XCkL4blm+zfJfiTlbhBab2LCHPZf/QyStwmXdYHGJOKwdVGwOj/AuZQjES3xWyb0+YWv4hcSeYAgmMGBgyGTcOIZ8J7vOOpnfeH0C6IMLi2c619j8+M8LzfIfq6tyjUb2VHvuGIi5EmsM9vFm5UzZh6/MZcHitp/im5hCIfOlpzS1hAX1md8sB5ACoBqiPsS3csuSabDVUJYSkoG3gJe4miFBhKYWCD/8hu+tL+Lw7keA3Z6iR1jIrG5IxreW8hBVBze9FurCSLctND9A9gJyOUuFpjVg+U7/VlbdCswosZkm3z0our6QWs+iKvSZqWiYA7hOvVvi2+Z0KunI0JxkUAvIHQsawzwD4jbER6helzK2UqggAQctiLIsJgp6iyxUOOnmwix/PgVTA95agX5f5JeU8PVs4bmPTsDFJAqWPweoQC6m6I73nZSBh0KQISOEEARVFpdvy15O6tB8jGMObS8CayWal2zTUfIJ88j2qTkgXPMQgboMp5/uAmWG978QUp8GPlkdc69vLLWCiWrNnoayFeQT6nDRZ5izNmeZSl8jJES1y0/3MZt/M2a5yHpMELPHY4zJrPidgwuvbAdDe6zxcAZYis+6/vvv0M5C5Blon06/LGJUm/yQgcu9pVkZ3vnlGHxOXL5yaaS2HUXwCNa2YuVC4N2YDR6k4L+Z+GqU+8h02+w0lQhOrsNfJ9wy4eRiB8n7KVaMsx71myKbXzs/DJyG9nnQrfBrfpJ7nvGlL2GXGvwc4bfhkkFP2GH5ZFOwiai9EOgxTinxrAwqcGuxUEOi87E1o3ldhZGXKelwv352X2pWzfQgGBJsxNiizF+ATT4Bvwh4oEOB67SkIjOzsg5OJGzlg0kUGdIogzrNrZ20YIht+++IostNG3jyfnDbQp/FaEzk+uh0wg+sfhMd+qP0o74BsE5XBXIYUysFN3JYq/gmhjaRjCaPCm08wCO/05qnXpRTQ2ma1wRmjNS/OWXbFINYboQt4dMO7r8ScUkwruBV1cnZNGEbAvjMUc96yYKakXoRaNPaIb4oToYgbKg4z0c77VibD/rl95IYxefpkhrTRvmW9t+WJOXsiiavbOFz5wbgArRCsd6ZXUf0HCyNrGDAJv2FQ++vxC9IRsa3MgS8t9tkY436SDYWosNi1I2UhpMi71LtR00RDWJatkw2rZDJ75RD3vjbtCQR2SbtX7yZYhF826YlgoXK1VPMKkq5H0u9AeXa25la8nB8OJZwPQcogEWOzB
Variant 0
DifficultyLevel
599
Question
Stephan makes 14 loaves of bread to sell at his bakery.
Each loaf takes 41 cup of sugar.
After he makes each loaf, he counts how many cups of sugar he uses in total.
41, 21, 43, 1, 141, 121…
Which is the last number he will count?
Worked Solution
|
|
Last number |
= 414 |
|
= 321 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers