20187
Question
A {{event}} has {{number1}} {{pens}} that can each hold {{number2}} {{animal1}}.
If each yard is {{frac1}} full, how many {{animal1}}, in total, are for sale at the auction?
Worked Solution
|
= {{frac2}} × {{number2}} |
= {{total}} |
∴ Total {{animal1}} for sale
|
= {{total}} × {{number1}} |
= {{{correctAnswer}}} |
U2FsdGVkX19vCw4boycOlKuF8GEnW6WkXEGLSLAGQxO23JLfHxvaNTgjVNm2F6tStZivqrHH59IrJgiuPixkNEI0Z8bPVFe393bJdyNyMCVTqZwMilOHBrinQTnHKhFrTpKEXZiVPsVK3nzpeV35EgL57L7JUo6mF9+1IgSMDNmqG3PN+aEleVFsby9d5jAu8S7pLvij5vAmAGGTBzLaYuO1CjWKeeshT3sofeqUckgKK82YbhFhw6bJP5s650YljXc7lfYBY+KDzswIoQu9G85W9SJf2e1+DwmoButPjeiarP8/c7kCpliSecAlafadkIsOLLft/rn7+ygnP3MYbg3ffJAa21M0EIgt3MM5PPe50y8E5J07c1P+7cgYBmf0YcCoa6FNXWR0AHZbtyUp6QK0aiMbsnxzOl0w95Pih2OTg4lE+c41pK2T9c9mcih1E6atFZg0c6x6RsEPEM14lDabrlwQ0AUsiEBsz2/ZXGfEIlIMtIpRq9Md2BiewSN6G51j2VpkQzdiZB3hm6zQtPaTKfUmqThWlNcV5bnhNfA12vv2ErL+EkLY2eSQr/ED+B/8LJI1jbdNPfIfeataLaceGlCWs6/q6TEGtB4jXLmt4myacQ+bG3Igzn5D84IS3+wz9U2+pPB6PhQYtwJFE+HFoRWyACzwEv0yTOy8c29Q+Tfwy6fWzfHzJx8agfuP4YmS5AcGPoz5rCUWWyNVl1C432j70+jgVBmnl3QFF5ek2pK1NuqTYq3czzb+2ZY4Q1TMFS7YAytesJvdGlDWx7C2w1n2KHpqE6BHct/wklWhy2drLExPtJtop/R7N0b5ROpO2Pt++Vjy3W/qrcN1A0Z0CjSMMWcKGcXXHLdM/F7abJ8vZTfJvPtNtVHxdz3wcBJfsA6yXLSXGBGXG9zrbdXNoWTi6GIDv3NAOFNQNiVs3n2PSngiEA2pQLk2FgafycfxpK8gIUb+OzuZk/fhCn2eheY0BDFHzKmD5rCSJ1ksxLJ8UB7BTxqxN0sjwAcqznebDvNesXPaklbA00FltgRss72AB78tUj4u/2R9K/bRecHdkI9gRu184fKwfOUlJhuOIRK52i53bMoj/UXyTQqy9KNHPSqONXOAjcLaLre/WTgpM1+NJpSOsb7mj2cOEXP/DTKx+ipX7wLtr6okCsYWyRKy18/QvRJBFACZ5+u5qkefKcpaCAORdomaYQ6CuGYy6N+RX/nFAo3ooLRTiM+Nvp2EheOoG00VNrqwxkJsvAZmHIh8KkSgqM5o/2EWT1EABS9XtlESBJe4e1VbX5ZZYIL3/spz7RKGlmWAoAXrZXw6GW46kRlfYVi8WzOcP9kGF6e3k4DPKxJfDfPw6sF0PkQZg4ucLJkEkVC6TOnM/lGahEAbfp88wcqJxSYWA6kfB3RyKuWnlbxoGKuaTfOJK0wOP5N4dgjznOw6bctmYRg/6KPtg3fyGXM9OCnpRc6/U1qNz9w5zvKFJdzw6xuGjlLJ5J8ne2GWGY0Mhq2xiUbOaClrNal1dWESZ0JdiM7ov8D0rPLmK4EaqV345ocQmzWCT1HcGJ6J/qNtCytYPde+prn1ptTJna4X9j4zjqm0V3losS54/JYJPMCRVANFa+bb0q60ps7kRDhVIpsu/tYuYQomclOb0T1NmNx1QIjbqaXZG26U19GjjSVGuTvEWxe+pGykTENQcKE0tmB+MkHh326jlk9GrmmiYMP/iXpKnneF4f+nZdkkSvxxarSN5YiV+FCkvsgSSkRBhSTS4usato8hEVYpgsEvJHgmQepCw4QbAsTksv1NhuX7I3kmP2mD5GyvsACybzvKR6ZhXmzfUZdM2c4w2iJky9Tu3s0knf3v/RCs+wA+aWhDjgEW+6K8PRKqNB8FUMlQPACsQvRvf27LpJZEFCbUCVM2rxPSeJK86XuZnDQ0UCTgNCfYcjt2jRneHnSv8dvD/qE0mMyvLKfJO2IHGNcON17ok9rRq0Qby0uxS1zGBOMzVol5FYAaufYm6uJM7W6hcHUUgJurhn/VX7A39HST+pkurcYLc6XemjtQwzdPS9ta6YtlqM4RUMtuyYWSCLwfL2/O1qfWBnbN4+vwiaW7podPqIUPhGgOhjtOMKA+I3VAaUjPbjvlUQoCMb7oScrYq+WOmM/CahNRh4EhONhqEM7bPBy47HjovBwOdoCcsAei0DtA0QSKkorUXBTAz8dwwX+bV4asjzebXJ38OyEoEX/4aPqkfthufLO+R86mSb8I1+eQp04XEl5hMfE8O03JDHfk3XXuB+fSxla62/rbCyi3PZtdEwGXRIxIZU3EY5mUTYg2Tet5PBRJqaJX0Qik6gChGqotfJudM1Vj27k+QeABzGpbS/oiCXjDYNVd6/miW/q5AJNt8A4OeUF9YS/WXNGSYq0FENTdI5/JQLUrocrIMFSgXJAStALigiazo4IqLB5zj7zkiVV68zlhhkZBMBvtbwemLo3D+gw2QrjGHZgqIqHysw7I/rMpW4WMEN29OZj60Sfz7/BwaPl+4SNtv5zKtd92CvwMU+ZPLNn7GQlYFSQysd8HQjXcsUSGydAQU6q+dzADbLsCkl0GX7txwjPkPks90Ti/aU4RDPm6tCfiHWYUi0LtSCeXlaj5tQYvAK2m3a9v+HZDsHCHC6ifQaJZda5SoeOBLFoiMFzYIAhXSiaCgdMJPXp+jLJI9ITNQGbW1qHtF3ns2GCnU5BEhkyiMbzXLCbWmvS6jEhwnl00VffZoYWociTaW8kvVq0CBb/v/alPlh8ySI5PuO1nw54uMzFy7Vf/5xXK2lIwKAnMw06uYpsrUxz4Fe3gcQthQJDv6RKTiyyIgHbGDwPhBl4Dp3jcFkSiiPJxZfrT1MjSHGYsgpNWofSHwjiGit29NrIEEOXaL7+Szr/+pfGY5i3B5/YjOI2jE9BkXnCpy2AoUEjnOp8bPx4M0ws//lWaBe7aTSuUGvIm1gDdFT7yQneKoJHl8p2wcrjvdRTU9wgpVgojf3mb577Gga4rS+Z04VAkq10BUld521kmbzkQydxYvBtaEgbMMjQ5zQ04tCn0H0nzkPjs1txvFnhLK/Snz5+GdnnIOQ7toPZIMKMfzy+qSvtsOlQLVa9TzdK8IiFnU5pW5It34il1+icoOxFEVkIg5nrCyftDVirrB6m0csdU5+Xjz6og8SKcFqlhP9iBnyWTH/sEba8w7gX3kEu86Eta84SV6N9wkYdx0Gb5vUvFaxTvrlHyLai8U8KJm5xU83hS0IbM05lgSJ4hjx7bwUmKW/WhoX70Cb0ygAjoi//3PB5X0FCqJUXFlJs6v+f6fCk64mD7iWJJksao8bG3e0M5jJoNOgxQl+3WqQ4H7T0th/6K8U3/uOcFgQNeBj7ajlYphEvW/eXUXKQiZw3uUqpEF9RHro3otKlZ4V0kAtAkFOpU+kIoQVhQ2IpBwY9M1gMiD7n0IyIhm42bz7mnwARv+oTjVndTzdg+0VuWusTbfc1I6Sk+VVmE+pNLXTX19dH9Bkfi/Q5LDCYrRE3nuZnCpq0HH7DeN+yAp4BqGMPaeMofkyM/D3JylYCOwnDSDrVzKehQDncnvk8pXfl1k745hgsEsmr1xreiQBMCHl6qpgckXIbBINQoj8UQtV0kO0YPaFyAsdEu7y36HfeHWIylwssl0pr/GCZUR5tUjPq/cF3MSqiw8U341zNdHYUILOixVOaHhGMWQdkRUh/sGYY2gslpkT803PNIjfJ9QZ6qFSPgTHnBGI6uZU9zOx8Bae7tIL4HH4YO2sms6TS4bZh7GL1WgiXjeoobjwTXRJghrS5SguwNIz+GZVg873E6vhBmTP5UaCwu0y0MuEK5/c+9vf53IET1V2Yk/oOkV82vi+3673BEUCit+MuWVlPhpsKQN7AZ3G9i8KDjichK+/1gl0zas1hmfkY9zKdq0q3LcGqk1TU9CZ+SYUfJ4L6swO3I5BBQBSjpYu9cojdLnriOmz6Bp9AMKsYxHzH3dvtG8+YgusaQ2Kv2WEVGhQsyovFeDOGQsP1S4eeTHXHL8p0MYTBen7fApscTj2KvNwRfmmqhJy7vcnpeca830/oXHH8WmOfQHJki07LmiogwDfkSwkw+VmOyPm7rhgIh515N/cFaLkrLnh/kqAoX5XpWvJBNzCNTGC3D3Gu0S8uEOru3AacNes0O3Dg29IoX/4CQtLrk5hYknlL+dYWT28dVdti7ZrYmV6nUV8rVLWQpIK/nje0363AAStE9y3+Ht++Acvc1DxCkjYMq1s9XnFR/xSQTtI1fQrU8cm1ZVnr738/pLIJRBid0wEe20cF5F/THqXia1Fphf0EoXycfkoR6HDjvc0gI9J6bAc4E5j2uzLf5Kz+uUbfB/mIJzd0ydqvR2ibBuW+cVjG2VKbzn4YLKMlI5WdpdVxCaQTkKTzFmNun9Fwhsjzzo75631NqumBKSUZNAz1cUchzS+GLeBdTBSmWJJnwMJ38GcdDdNA9evMfoftH8YqW7foi85mqqqwVgdoNZwz3gtV68eioBgrbW4yIUuJ1LPiv9A+c7Y/N8OxVRX2w8iC0QAPF3JvAScB8ZvtWdBaCXDX8P2zBlQ8ps9tpUya6LDm/oOPC8lC2bUp74DEtGygK0NhhkICyqVRnMs7z7BVN2AmfQDpZOUavk4g7U+ONrq1B8+Lcm3Dp3BNR0+6xyjcMQK+p9wb19V7nZOaW5xMZmRMnE3L9La/5X5hYUZXn/FDXwfrgkio63OfZPOLV7FW6/o0dnxguInN+QDpv+Vs+HobbamdLoYLwe7vzL3xhjGanlAoFkakUGF2ObiTJPXLwQlZ0IeT3IFqvmHMtUXzgy3FUM0KFAAbAs9kbrW3vmCmTv6EbaGnDxqwJ/ALfmYwPhv1mfP/2Ox4U4p4YsCTxX/c4ytDVjfijeH/MwQKIj5Xi03CuVlTosLgdqbqydq0Us9qbDIjgcYyk0iLwqD2iCt6wURiWGn9ib3aM7YZLGJ8o3lBEo9hAyNP2apGVgsgqw/hP62KX7kvc4stHu7VvI8MeEx9MQ40TP22XMYfVWbydRD9kqgDBQsJ4SSy+MLsVHxHWufgoFfQw9URQNtz0LRs0CH5okA/vseEILFvF9o2EnskoRA8LCo8sEvWvaIpBizCWZwsd+vcDh1xAbSE/MbouGOaK+qPTX18BEPGB5s6I18Y3YjwvAo8fMyaMzfaOUA0JvOJiIWkT1sfCBcfBO4AVdIJ1ZdSw9wSuiXX2GTEssOgvjMWTXhhPglzbbAPvHRQf+KYxoZJjJlHJj9R9FZDCpM4qRsToINtzaKBs0NRtqYo0YctYoycFGrzOpkVj4A+jIKUMaov+X0qyVApC9aPkplxt5//0wbG6Dvem/0ZS8ADC2/XzDBAydGBQOAsQyrqirOsIkHEAhQhI2SMCVFy/1XA+9h2DQKly+9ekbONF34nXInSD6ph2qvSK0KN3AiEvU4ByeeHCBE1Gaoy3to6HIeFS++7oU19Tf4oj6u495YhgYuNWGmluPfAspFHidXwliLPSpQkPytQVHBNePjYjd+VUHS8VuqQV1bKCXlo3AgHvFa5PbhKDSyZbnO24oC8CrFK4k6QoQy6p4iu1q/ZfLlL8yiqlcHTtZokQNuejxnHPtjhC6R6ax4uHvwBqrWi+eCIUyuu1W3xZex0POaYENs1S94MuUnRUm872EDhI8O7n6KsgpHkEkc0fv+5so1tL5gAos1UFAcl82Ws/d3z7nbXFDBvXOrHQrrRGpo8oC6TJT8tUP6ov8AKxSBzSp6sGKzedVrgioDuBKwmL+bCJwEPcXWwSaNqdmSXZihX+9xIDkQ9dbvieKk2l8fPLPmDBb6bsGfwtVhfC+Nw/uYjrwGEeYGGX51YlLc/i9l4baS36bQcedIHqvZSXTHQyxtS1HaPJb4QMHCIy1iAqUHXPS9TzhPyxw24ffuUizGqiymSfqTrw9t0grqKm9U8xyX67DpaMSgRwswGZ6Cs3wzi5iUgrmd4rXwCsezAfKJVfCxsc6A9E3o+4x8Ix8NTm5S4TdXU/OKaIt336ud0SXVWpKEGQJOi/R6kXefDrDRYHZOH7SOKHkoqrdm2S3F8fam3HKh3Iq+cIbzDZeIf+Nptdv2JSQnfZHr/e8w/F8tLnGf44xvD3Vyj1wgCj+lrJgi42nRlLwLMbQOt63WxvqJ+FLIofRQiDz7GCvlnvZ1SCxOqLf2Z8QtzbsAcih9vI16ma2V6XjZg=
Variant 0
DifficultyLevel
564
Question
A cattle auction has 90 holding pens that can each hold 24 cattle.
If each yard is one-third full, how many cattle, in total, are for sale at the auction?
Worked Solution
|
= 31 × 24 |
= 8 |
∴ Total cattle for sale
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
event | |
number1 | |
pens | |
number2 | |
animal1 | |
frac1 | |
animal2 | |
frac2 | |
total | |
correctAnswer | |
Answers
U2FsdGVkX187Pln0nKLN2aD7Fp8RK5AR0/qRfvnPOzBOB8ZEvPUmYnWX3FeHstez+3Mgv6+qpNak6iHvrOIcjx/M/Azxn9Ghln/IIN107WClRRabvB2FtRHnt26/OUA22+GbMiMNo0X60wHXgi3J6osoui/j98eB/fgTutOSetP6+1UG2aOHrk8c3Kmf0QgOhCAU8uxXAxor9CjpDfJCo9Hh5FYJHnNKsDL/N4rUwtm7HxLYATscpgMrxS52DxXBQxjqQ6KHYqn+jY8P5LhNjmQFnfc6hMz4WdBBUd98x9kPcvqrtcp/KsezUoFN/a90873EmP0Ifi/G5mN3Db2/6vxqlgY1t+ao0Hpk1zDSHcO8ijpXfK4G4rrem0F9K3YdB4Epm7SgLdMiIm4oaVwaw+QWs6eUURWvW1fkWKC2tl7AOgceLcoMgjih5fCvITcBVuMNK3O4J81kFAzyBBsywzgCFt7PDdIUXRKErSdkky9gv1C1AfkPQKDTWIWoYfDSi/Pf4i0og15KvS9VRm0e8sPIsgjzDxKfoRc9RWH8eNeDBo349nLPDckpxH51XCe78MC+x4VMt+MAPWb9MGfBClxT/Ove4x6QHmqwq/oFICRlnSM+aLIeEMNSj3bWID0jWLIgVYws2UOy9MiecX071pl+i6mCNNCLxr20JVlOhtCueNL09IrcXwSMiyimDYQ9ZeSYeqWILSk63jPyz5PSOjhv8sPHug579oebWOV/5QR3q9SdPl2mvQX2Zj5J9u5VxD8W6YDc5gMj6sT4/1uqv4+fuukL6aRvAfJcYB4SlGeZADpA2SEP1ZOv2n48VmFYm5VMDAM6HS2LoJhZsll6eID8MiDzNkpU7yd7KDDJlaEJQ7E/cCjNPzYnIhrUgC1qf8Q9QONabLaT8jMBrFCilVefIM53CVE2xOxrkifHotafe/DrSk5i/iVJdiA0x62y8xdYizsO1c62vEUHwoVd7uy84GfNz+UGXeumM9RzC5/rZnoTz9LOI3WWwAt9Yvi7NJgHTm9hXKPj8kHW/rPefmwJjlsD0lPovQH1cGa1gP9Hr6FmqVolsGCqQi3ZMk5veQHWijqY/AKnEb2VLEuE6rgm7suI7yMFWn5kEebT9zJGyTc53CRMq9/ASL66U/UCxOsUKwpyixR3vyv8YxnjwsEq+36QfFYXSplplMPPm1keO5hWl4+Hr/zvHdk2DWbQCFVHQ08dgTmeGzXwPq7d5/QC5KV749uKzGoDbO/AeDbXMzAT/OBVdHT1lF4sx/ClnfmGRadSa0czebRWLRfHqb1XRuuXph95wnBS9Hzqk7PPo3VJ/j/Grii10v6lvUIVdt3900FFTe5T/M6FFwDCZ+1TaQDx+wA3DWeOG+jVLILE/MlnjuQhoBlG0IgsGypitDhrtJmot0Mvw1cnkNHlhPzODf1a1tTNFMgvY2VgJnzuwR2QMoBnQcLpymBEbwW4QD1KjJLcdi3mZoV6Txv6Iw2/8VfJLnnr76Qqs5DKv3eeFc8PVE1gOErX0ObnJvBPa+h24XMmKvDO1o2AyobBIb17Pu48wAg/t7SQYlKjSt02/FVJRrmDNN/tPalKY6twqxbTwrk4mOPfWx7jv9RSMNZ/sGquYCueP3B83Wg4JXGsO/2Rye1/e6jEcbAc21uhag8ye5pnlSZ8DI30HQhm3GWzvGNoYbjAovOvXOHjE2Z9DwKKsxzV4CzjsxXhIRXda77NDlytswtknoeRVgDKpbS8isaL5rJtmxVcWpmaS+BT0qhOQKnlRdh+QhnJbnZyoF7PZNOaZAlLat0nARZxLvrSAAdBooDdAzAjCU95W2eZrKjeSSt7JgUDbvCKTFxm+U42d/PugOnS7Cy2/j8GqtiYNSurrqxBu/OAnELiLEh+CLTpIqH/kj9Ch/wdxwcPBWg7RdseblPMYMjRnjnxt0wO24CaH419RiLyxve3lysdW1SpBpormPoHHG4PeslvPV1H5qw4RgC1xWw5vqlke36ky1T/AqUUkO8VOI34h9zZViU85oHvJXscGf3TbHpe3CwL5DBwyn1eVJPsXjXOuqo5iMtTDcwR7F2kKcdFwfgxGFcRUg6gj1bGCAtko9BnUCQVtAtw+d7A0mu6Hne07JMNL/I3BOmJCVIQGtzFKpP80SCyhdRoM++reg7ytxtscosMji639pB5Hz8eCt1HzN1UtC9oaYq1UD1Fy0r4abB0TJr+ovseQOf838RItQZyW9Dz4dolS+g+RiSTMGn9PnS4F+GpHUQdRZAcri2AwzZPGLp1g93HgJVpyqJO7jG+R20hUvYpN7xwZm8Warl5oIYjMY/jZ+0aeqDj6g9e88aG2bih1tIC/LDpQ8whh5nPlk4/SLww6er/FRro8feavU1EbTK/xZaS0W9wF42jOJEp4kN0dCnLKpn/vlyDLSZD5jKF71pbnZkhElh7nqgK3PZXxV1KaRWSkpHrOg1FqHVlijRC4N5kCa0KTr0s1fYusyvRU+nO8yAos5O0QeFL0eTVZlJjYnkpL6u1O4AB61zfKDF/2MgyKCL9l3pMMPYV1mE2cPBm1ogueYjI0ooGqLRPrqWlpZQzvPwgLAiH6PzPuDxqfZYXxrzL3619AHduNYMfsKC6zgwQ00ejVBLGwo/D3IxKanJ5pcUaBQe4eer0QkXkO5tV+Cdh5I3ESVdbdaioKzlKUeRhpkYnEq7VW5aQ/5DOVu9u56StZqZURbednj3AdIj9VjaWO6dCYolDh7h4zxmT6LVl/aPVkYAK/D9E9oZwXURldt4IRxzWkuVGN8MJmWccEdDKgeJXq1yMpI7MWXwzK8hQEmJhacSQ+dPWRUKSWiEld7niFR+xCAi1WDtC+I2n+w5fCrtDyYhGFksk4RUdyIyp6Dc2r7Ns5XP2/mZ0zN2cv5d+KfHXQG70xDIKffZK8xbLxFBXjxYzvTUDUk/wQzCVhEYMBvW6+3JuvLXdtl24U5QpAvz3kT3VuM6tuufm7sRmAmdTs2Iflt/NjcrZcRvun9EoAtdAW12Y7KAO2CVUKsfUZh9Bp05wwpghQ3zCOiP575zzCD7pmcE2btD5Bd4fFGFIggbTbv5mgf9z2MH+cWqWCWsvJhKXF+q4gVPtyduJr32AzcD9MW7e1O4NVVqbUKcI8GoVT/HYLff4M45SXFS/DXgHDcJpwJfXtO+0mdV6a7C3GRHLYSuct+WKfMznaW4hezqaT+c1WmL1fE08L39zLISAnXwBL7pLp8C7/8aarafFpPznouqT2fvZPmGqzTOyESQSwD8a1WUlGsEskkxFemScAI5cIE71NaVWqb29hTDlO/K+6chhKQqFtIqFceDqcuyzi3GCnTsJcK4mQJRMAgEVBxp6h098ShTN2AKl1PHo0ItMHlXYHijJZTijma44JbyuKbrbkW2gToVqHLZ1o8iS8BE4kZQTX+29jB0EZZ8L3mXz5RxfGKp1QDNlbUjNnAmXr8TEOTEaN0CEEE/juEwOHi7Iv1RlUqM4+g9k9EUb0YH2Vpru/x7OWYBKZtJuOrpsuV49j0ZnI1j5X606x/xCZAtgAucoYuIfxmivU7aLbnVg6bHkn7a90ghmo1Hhfz9XWIpBE+xX2YbhfSbgyytlBq+OZ4fCJ2kZzbVBjcTRx91NvF5iLYWUOazh0oefK8kvKUUp4M9eorwdlpiSNjpaDZpnwRDgTex8nBHnWIntcKVh50lOhNBMRTQZjSDQFLxzDILVAnykK3gmCSmxBs3BeOX2Vg+77HGXQNvxDCVHcyRbD5gfLV3jvTvCNZarJCjL7iWy76gVzH03xyXBzJKfNbBzy7U/QrjGBIhRgjMerMYPw+xbwCe2P/tEuQP8N4oNzSNP0D/T4vV/fS1xeexb7O8GmuX2EftazRiI9K9c6k8iZKMa/+9F4QA3t8h5nOcvr+c+3kUpz2Do8OFjUrEBFUOg0dun0IsWzgFMeHGuKYAgfEdWtSnlinIj8DbPGwxbbL5WJ7I+m+JxMmjbXH9Im54wiyAgMpPOPvv3bg80BTMaCXUUbXsyJTl9tidyHY/zJ2HtCmIE4D2eazDWVGBk5r6YRo+5iDjLOVzC0pclZ8YI7NllQYjjYayhVF2RguOuYD4rerTt8SbTnA79VT6x7TE1zl7+r3sA6IEDM+zj1e+BBfgEv+ixwWUN9dDLWdCVXni2fLA2wA7H0/6fwnhiTp3kcA5DSOFecfEsaMYcEvVSmld9nlxyMIK/+sUYjUShQzTJVVnuvsKLK7yE1oR4dzoeb71KGuLo3Vsqc+goyNJ9zidazgtdlrBz3IsJ89yEskRJGN+xtajUAWoqMJpqjW36os9OihpnFN84xfARTpl1FzS0Wauv37W3LcO1u31gzAaeBekGThgkoJuSoCD9WpVl3aM6j9cWA5qN6CrLngYr/6Wxq5kS4mkQKd2txSUvwBUL2WN7TDxNfBYwtQ+uAtfve/+TluYB2H8VZ4xPPnp7z5kQzlVjfHh0iy1EXLvJfi1hJk0CC/Ke88qTnMXVl27gLQ171kfRJCXr3D1TEvejYa0YB8HFElRpee4a1rrLzhjhiqdvzDcjSaVj6Hr1rBNCPq+ydGTK1FgiMJcH4jP484jO+mgUMHvihh3sOnIQJRuLQ8jzna/6NHACRj02iTb5y/2AFooA4SROXiKL1V44/yxj+J4U1j6hgb4vCoLL2vOUmMQizaEmcSaPoDFD0Hh9+/O/tAEhBmyJuHaFmvpBHVTYZq8zhR6Sfv0vF2aHfpL/PtSZtpF9HdyKBpwomCY4T9fkTcNx9/dFRTl0EhbrVzVo5/v61kt3fUrMzGw2WAFFvzvG7OIIGjol/G88qRROJoovDWlINROQ8uBBevDROauEU/SDkghd2i+k5viJtd+MFdOAeHh+1amrvDsDSrr/5Y45gk5leeyWp42b2V6NZXFyNpOLo1DMwiRoq4dl6+0WiYauyIuIce8GbqPhgQokZSfLPrvDLAV0n0DDYPEbCTwx/uZ6ecP3quIhNI3A6j3nvNX0k41bC5Z7FhRNq8CTgpwtOG45vdhlCzvQXx6ZPRFl6UPAHNbCz148kx1FWhaAJb0d4RUsnIqD5F8EMvAR8YYRLh99oDSik+C2F+u50KgSPPM0taLfRauCjwZa/HKg7Jg6I0eoDBK/cDp1EFalX+3hLG47WwwFJglCamK7zKXVyk861GFx60wl+ESrh7wZt1RfWFd+1pYeLwAJXyEAmfMq5T7/jP8Be2sIrSCry06v3fsUNc51fPRBKky9jNHIwZmYqCIz1301K4mQ2p+KOjigS9A3n5crzYXXcoiiBfsmdsBcXc3BdNxUcxBjINI3Lk/0lKQW/PefFNu3tUGmxUQazZzNWObHTmXD9NCHRrJiUqKCwAf23QEGDsdnRflOvpuJnWS5Lp3Wxq0Wj86q1y2MC/+NUWhFsnDSFQDpAzqDlPcy2xv09dT6YqfUp5MMQOipvYkcqc85gYL8YfE7mq6AvK4xVsxF/I/7vIKDKRTx0xszrBBd/lLlLGAbrmEGGCTB2eUsqhjcg2YHaLMTDdQboQp1G55jd4Jaef5j4J5xwByjU+m1frMuINWUpVSFJUNEeaPBUy7ml2TnkJZowuhhwWrPYryb4Dnv/lMvE1YmMazQ/S8X4TZZdtxNz9cnhDMt2wu35cyMsB8oQg5YZ1ojbaI9P3B4f7cBOv3FTjp/IgeFfHD2OjZFdne9U0L3VB35ZC6K/lnug635e69oRPZZE1+ckxKJ3J93NXhdCHwcbPjPo8wVSdfA2A/hyydwvjNDj1FCEG46occN8J0QasKWtwGnfwcLoucCUYyYzDHJq/lYePUVlYLqYbqmb5Nkq7Pun/FebNxfEFz177/hprhCNjccCtpYTPn+vg2jW+22LcM73V+hzKGKPk66Td3C91sNrozvypxdwZhUjfdKvQvWjK8RKmtkoV/jbCpTAI/FW3VMRZEzXxTV09n3v4wdlOxW5wJPrrZdrLTu8RHmmWsyZAXZ+ZBtHoHiWR2/t4BBCC6kbGMLzdbw6Kqmp+1GU9v3jt7m+Z8XAx/ggVQ8uixhTXxL/D4U82BlM/Y79RixR7gukf4I5rmq8uvROxJY6ePi7GIoh696s6a1JRo9MxaI5qn8AOR4YZwDhf7OP1aXK9iiwLXWOkdYBGPEm7fBn4R3Se3EWDAuU9Q7riJ5lbP3h7IgTnb1dNpr01NND3DfWT9qKaGMKHTGqBvHzqzqVj+XsWO+pYdpgBtmT8A=
Variant 1
DifficultyLevel
564
Question
A sheep auction has 140 holding pens that can each hold 12 sheep.
If each yard is one-quarter full, how many sheep, in total, are for sale at the auction?
Worked Solution
|
= 41 × 12 |
= 3 |
∴ Total sheep for sale
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
event | |
number1 | |
pens | |
number2 | |
animal1 | |
frac1 | |
animal2 | |
frac2 | |
total | |
correctAnswer | |
Answers
U2FsdGVkX1/NrjmxEoiDv1Uvsqtf5FxzVq3Q3Af2lvDK8zWu/flR6o0QgRKfOOF9Uye1x0yEQmnT3cfhTr+GnvSXm3JbGq5MufFDec6cupB88jxWUp9oE4bhgT8jLMrskopuXHn4Q+a51Cs7i0jMqNXImvEHiizJOmOM+EGVmImQkeRChypNgrsMjsg1QNe5p3yQtrfZBAgk5ALPZdXBHb0utHlD6/QQIRM86ELQGL4IzkABZaSlIC67m4oeg/p+4ItVPkWp11OPb099WFtlM21ZtOCoD2u4a7P/qq6iEL8bAHyFWOyr7SDz1tzqn8IQSBtoeeyvw5n1aHzSoCqHeswwDbTYINKg1gRDwHqsCBXK2TiPZEGBBIMRHLcEekP/lTwfnMFC1SwPxjaxN7Mpo4x5lvKk4z1Vt1KjBSSPK/lMnQvN1JVJLLyU6f3/otDyY9+EzoK/ZBSIculE5sCYYpN9iztTIA6oEnNgsoYp2Xa5Y5opIikVWGKCSqt9XwruDcMG9Z1FYieN6XMdUIZntWw7Drdw0Dhv+Z+U4KH7Y+Jf8elnfos4yXIqyp3oBqtauRi0JaNDlGKwZuSEm1ay3BTcc157V5/vEZvtxQTDuQ6bpxVNoD4bd/7Iq1hVjuwNv2u4ecFlu0IryFiKY/bOOKYoikyVQamP2oVvnERfjIO1EXQiaBf+kr+aJ4Z9Kw/Sfg+Ti7O70plYHwAN0ebBF+JYh3+Nh/7QW3XUqlJSVyT3rcdjAgv+82h/alBo2bruqet/w+l1/+jG79HGeoi1/N0JNjGEVByaDbH2BjMditf9yuMC9vgbEdjgHX6O0mzKPpqq4W6FQ/exAmxd1uTpkkZqjCjUPCczAj0fK6uHwxSoyhHmo2UzzBmQsQQdeqnCJibMvMdF7Ykx4N6oHlLpFmRR/lwLFUiP/LjK+KPejYsiOJUXFIxXoubTJRiUkCd0uCEorbkyqr/tCAA5GOeO4pNGKB/2RouBNIl0rzzZ9VUnEQvJSi9Zrun6fBN6W9xyPvOvm3h75xXUK7btY4FfWHODE4MgpZzshIg1RqPwzU5ExvFK2w3PfuEnDXIr4jv7CxPKMAO2Ex/AZoBgeIRQV+YH0ZuFVE1WmzyVN8nG7Z7IeM3oC7q5FY6H1FuRcnJyDHzEdz7L8oNFjt9+q8xUKwbvhc+9OWCpYoCEow7bDPJJ3EyVlpg7CB6JTkXmJfvszzXL8bBczb23WZ1P2ZTk9pfzdgNA5OdwA38qxc8es8z8WTDFiBJAzX1kFOSMYoPLRCu9rwcBZLMPA9FBD5WXtJqJS5ZuY/UipIabcRPkIst8FgOm78IBtPp+P2/m9QTYeIZHXwrGCN7gXbUicQmntEJBp/zFn6VyiWriIFwW1AawKhIeKSvdK09Ldqk9zx/T/apP8dTOZZFJfw7XAONLsrqO9oRwtB9oEmCYOC056TN8UOg9nVC1dh6M/fEoXj+ClacV8B2S8vnNkNlzzgbI4iqYP5C4qAD5Pp2XEn8gab3rUCHFLHAd6gicitVy5XUm5xEU8xeecAlMoqxXo+/BUhzA6n04raKbZ31QKUcnxJWivoVpaZibaN28AxRYQdw6hVFRZtJIOQa/ajMZAnJG8BQzeFbRiGnN680nmcgFkyg2yszg5ja/EmF/qPe2FsJflcEreFw6G0vEbgM0uoKVGkoA0TPSs5ye17GezpLieByFF4t4TMzatnS5IiEDUmIsGBc3fey2lR8UCPj1wOtS6Z4hRzVGbAn1m5h4wvOsr0wtth5Kef23Wl7XSZl23X9QJMk6QBMVN0W+/hiI3PfoDtf0SaOGfeuS2V5CNxvDT2Up4rW7w790In6q0Tm+25roZQDXCMRv6J5slaaBQ2I/GwcDmFuMlRXB7X1/ghHz6R1M0pLEj9MPFe+KITsc6CYaHSYYWnhgnvHrowJQBZ9EMOEBEacMfoBaWQaruGKP810iCG1m/EO5tBmiWIOsvUm3+zJ7eZv8aVb66PMj+DFXUELubUXfxz4X85edZFXRHGABjpuOBZ92oCxHjTIOv0dVfBHGf3Ov0rVMXjjYQ288P/lYHQBx4WrX5BIlqcAdBZeTeZFNs9LOg7Sikrve7V3DdGhD22u6Z3D3uo94LYmjTuPiHp35jOuDbAaY9awtOTUPYPz804Spd8qjkLdB0LTfmopna1biLO+xbNT662RoRsOKW1Wmoa0yo6KZR3m6ooWNVEgFGjH/lrTJo3ZXfTr8IuBQ569EDU5vi1j05ppz/kdZk9Jx2OL2UN1ZWavHfG7cWUFVRXrxMcAZKPrFC1U/aIMr7sF/9fg6E6yxpmzNO5NY3/J0Rk9WdF5DI7GkdsQdyhQlpfTI4ApUp9F8tM25tqtmcrXLSCkV26Wokl+GD1O6XQ5F8JG7dS8k6S0vyPW0due9sPEDVPwCIJDf1Yqs5fj169yqs8LQ6lgwNFt/PHRYuQGaxDpUBUoeSQhT8gRZItyU7xzEFtJ9yTSb8uyDzqrTl8hlBo165KWu2oq2EyO0I+x351yxz+/aiL/RkeRdcYBH9JiAmXceFjL+XST9SHRfuBaXqJyhYIxN6wo0TjVIFO61zM7vNSuNIwFNyujlni5AB/+lH4Qd72oPbSvB8LzI/AvXTQp/l6Py1ouPwyUi4ik7PEosEH0tyji+jyB65YrwLS014Y9/XzozMY5c00hUiqMY7QBn+Ikf4/FnZemSgjSwd3j/avuKxsJy63YJvMqNacwqbquF1itD6hO43br+Vhz6llFpojHcXqYHV1klVhxjU4w3ZLY6fMSrSM5f1OrWWhsx6o/ICfTclX7xt1dC3mL/XWdXfrWAtHYzsdadnw4Pwix8/yMYctjWtIcvooTp8iILvMHa/DjeoMz5VzTrZYnd3KsgKG7YZwxbhQI2Cb4fk4PNSsEQIyHTZ+dfOqgEjqTum8ZNntKkjb1EqtJep6WAMNiax6nlor0A3LAnmxR/cS9unBYNkxXY0g1wIdwa7AOnqacrYzYkRlKtpM8SlP4cV8/WD4A1vGN/0RcFjRojyNXDFhEJp5AsNkQMlm7vLv3ry1/WdJexasGRJIlvJUOClq6Ulkg/fIbvaBkyw5Oi15cvL1NnWJqbMxmL0nsZ5SgDfptm1v3/oOgGOuYbyV+k16JiUUUBJtmg0mIWF7pauAjdquoc2t40D2PdyEdaVbLh+gaGmLqH0Ac6oXNddyHuXH0JbA/EJg6qksvx6incJN9aYo+dr+nzfoi4XIb9t21KviHS39f75Y/c/Vp/I129ju9bor/fvuxJuf46JJ0mCZhBUlfZgF93YutbMWyrhhY5Az7xoOUIGtdOfl9k7SAWtAjNsUmUajl26mOrEENUOax/lWHVVjjtLYMGFauqYrR0HfnScOHqaQriNgFwFp0dvF71auItLkYFyQPlhIXEWQB0Yz/JfGrr+YLDQtvJdW7D1cliWRcgpxS7nCl8P1laVL/iY56pTRD9GOr9y8W8EQIRpHIyLCDQvsDmH8WmJI7TDHTj2Ve76QGHUH7UHg0uhszllqVaJMx5gelz8krdzwLiqju+HX5Hf3SVBqeD1RRr7youKGfxYDjI4vZ17ojhXDAf8AXDVGqRl8jUE8S9C3D2ep9MB4gf5bfk1nMhXn1D9WQwiEQ26eVa6S7ZEv5PO7J31xOvSwyuN1pmxbe1bhJX1LJeaZCWXRsQ2KFnOATDW8P4pliFsC7Nl5dvTUPO5H0fvgnRBHWlasHBsvDBkFcbiaH8BHA17hgAuID0pmvcrk3B//QQxSfJN+pG2F8jWoWJGiE+cK8c8Q7obe03CRZgYjIiYoXBr/XU87WrFFCsyzgCes5IoU84Mgg4QBlBGcsyw6oI8P/MKDzymRvTVA799FSCswk5aKP2MJXxkiAQ/D3GL3D6WphV81jpmgznHz954mjGnQ+gJJE4fKIbw7rW41h4eM2RcSLUb13UCQ0pvxlxbEyyzqTQcK7Sjvcv4p1+SPVRSL2auecJ8axVyEbdfA5OgNdoRAK7377jbrbSt6fAzF0nCoWXQ7Kg+VV2mBGkwgSjxmNS4owuePjvvAY83VTzl2aT2yx4PxEdTwA8HNMqXwW7Bfkjov1+5KDXlnhYxOFoxyItkr2wfrxlzNhWQn66IDP18efY+twbxPzgW4b+AMRIIp8//2Is6Rt5jekhp0z3YbMeLrtCu+Uorti0qhaAhyd8QIoTkYj5S93mLHVpwsAT6ICAZF+XRnG2jT67Y0L5AkeancCm5vLrQxlFI+wNF959uzQI8Q8uBlYirpPLsR+yz+T4+KJIsC5S4gEyckIkB5GDPtftfjPXyhN7L0IJh6RU6KU6N7sI0B6oxCUAS/V9Cb3dDFJDyBOzGezvoiB8DwZEdwuuFtPwuJC04uh36RrjrOvOqIMro+DilBp0gCp2pQ/iF/8peKo8mD7CStPwH0Gzh0jayMT6Db+hoyN5xOUwtR8riJHJeWh2MnAH7A1VgJ7XZlhIT6FNc8bhL90XZsW3C608xFoe71Ie34sKYawPF4oeVFI1bdJoNNdx1GEkb0ZbAS2KWcw7vAJgVvF7MGwNt1IU5NXBeU+dl7yQKLR5u9PvZqIkkJsvWUbe8pF33dlX5zAiI/XuVEDtboqyhK51+HcfCRvH0eDmD9ijLgrgAlb3nHHtVgGhLUw79Qd5EWmDlDs/W9/Fp+lDerh8dZGEfoAYqGOZ2wpInbeYjeEO3TAclugjRX/5WKfFQH65vYy3C0DKzjfuR+fUSx5d4v7NylgR+2ozQdTibGNi+57Fyvs3v5YIthZdvMJqeivn/R1qdL8jN77Pwmri54B/jPDeGofkFB9TBxRU2RUFhs39bNklcUD760qgGLASzOK0sLumtyHcUqs65DFJc2p176eVKs7bgwWDjbGlWp43y1b3V8zYqU4WCpGbUW+IMNDqzDH81RjuiF18c2YigGHCBIEYPCuS6ALpbo0ulVNAcqLoI4kO9H+KW/OT0vPJvikHy/NTc5ci+ZhJbKVlU+qqk+vqjlrxdaAsPHAT8Yr/nq4/k5CLlvGS3ufj2KHHLODp2JLx6hNfrAiID8Wr+5KSmbVMYIA24JsblN8Kdf2V9RZsuKVEKlJ86bZghmG5m/ylgXSHG+6dYhMpgf46/Pw2h77cxG7sY8LVxZO4o2dpTtboWwtmZ4PiSZ36DaEWFvyDFATHqv7Q9UsdNMFM8+6AticUThAfFE+2oiWRuQZKolG7gu7YPxa89PKBO7mebGpGMCBHeLVIR4qXpixeXHg6NRA+PxYHo7xpse/aN4wGPTgPOqKTMmsrTwAD+37XN8xUSOaRzI2X4FFlYpTr1RHA0ukqv6zI4dzpDAEHJe6KLD4XJu3jGvctbORakNxoxYK5FmX4WVYiUHeAnVQ88miL4fWwpbjnHRMRtRaCfgJjdtrB6eCbr6rr5o2DAYebpXn4rnPEKj7k6nedD4LOes6A4liLn9OTyrIa9FGWuQQ/Zm5eDmaE+yq93sf4x6N1OdiJGATAmZSoFjbwPZPvuopQdIyY6i4NyR2H5v3a3on1MCsDpGlORWZKGV7NnuaoiD2YEW3ia1Ej7MbT3puOljhsIDmmjTzVFxARiX4HHX9liVBiJE0cCzA7SJn6G0ZQ1Gm/xQ9oaqCwzg8xenJaIHRpnR0JJ7iE3BFeAiKSKqlq6qdyuqlnb/kGuQEr4kaiU0cqSX1ZqQBXRG5COv4IxAcDHHD/yRt7BGxOaXRc91shz3Xoy9cUPCo0zoe6XYW0lL/MDVvLnP+8jRcIEnHwE0PPHndsBWfH0SIe0GOCMyptHkI4LbB4zhwL4fJH0/oPFYipJjN9wI57cCgaYxqTnSTIUxuv63xAQqrHwfmvJ4RZ2gewKJSvefGgX9bIIdwvgIbgCSGOMEZUFczgm+Yh3i8d4qTbY7Qxgevd8QOKk82kXbeTiM1aLo/ILyuMVDxbwUsZMscALXm1ifVocI5YNcKsJ/CkKeI3NKORSmEi09kKFhE5p+q1YBoqO4kqgK/t4rt9h7FkafPd2kQPAQvVub+CtvM6EOuEP/q8n1fOE85GCTg10Y8DSYqv2lAVkKdOm7S24ql6/a97jSlUUGI1eJxLl5h37dm32PZvHrIvQZdiHXubbct16QR9sG0osKM/e4TvN8jYrsW+z9L8SsoUmWF8Gr3T9R5mGmX8y8OROYqcwJ/kEKAly+q6VbbcMvbXlD6Q5wUrfHS0nR9HIz2U9/5f5aSdRg0iTEYZ5SXesOjk8+HLo3Y=
Variant 2
DifficultyLevel
564
Question
A cattle auction has 110 holding pens that can each hold 36 cattle.
If each yard is one-quarter full, how many cattle, in total, are for sale at the auction?
Worked Solution
|
= 41 × 36 |
= 9 |
∴ Total cattle for sale
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
event | |
number1 | |
pens | |
number2 | |
animal1 | |
frac1 | |
animal2 | |
frac2 | |
total | |
correctAnswer | |
Answers
U2FsdGVkX19s8r2AnYmBdgiMPBvS/MGnLx8XZ/QaI3nKg1elWuSHbrj6iZedqbhAepFKucUHAbM/2LOwE3lrBN1tWJo9kHwRLj9Urz9bsJB/LmgzNaoI2nZW6QVXfNMBUjhqIffuxkAZO8bGvG3gXvUALsQ/6UjNSiXXc0F/TvRUeKdRepou6TDBfmOMJ2HInSrAH2AGN0DQw9bYZ1qEN/1/KWZGp+r/cO7Ao53rSRtXxy3bUqKLA69TfNhSTKat/QFeTageduaQEsCOZnVkpFQCjHgdFkWfuKGSKxrOjn6grcotKQWolugSDHz6RJMpYmh4Vjii1XPq+mHlJcgKQDC/nqL/RKy3uNM5rIYIWU53+55UCvEL42MSi+m7ts1ZmJOhHQ60WfnQo1eqkP8gnTe71TFYNrsUhX5wytkFNoLKdCqr7zzHST4LBg7C1yMRoR9lE2+s3jNx6k8lB9MTu9XMQ0DjCJ8KRu8rKuiH0SWVSRf0GjyIjuXViWo1KuIO9zfCQnCHwYZKfhvMv9vzRyZxIt0MeN0SGjwNHgnBO0nGtShBH4ZQFeNsPhZ8h0/h4m9b1VsA9X0Q6zJZUD5MUs9ZH5SwYxz4Z25P+F38vr3IZiQo6Zl7pQf0sqiESHfw6FzF5whzYORu+SwPY8sAhMNzvXKoGs0qR5rIy0aTtDfFfNmYuHwUNrpHZRtFF/e9BWnbUcAkGCRBymEs+Dfg7bHVbgI5NXX1xZ7j8wPXNbwBXTe0bphKKty4cDZ9PIYm+HHzcIpxli0H7msdchuTFpStSTjzuuwljae2t4cd3zEjKPehMpVuaI4zwMrCVLyBZEcl6qDgYGt+5+R1COVBqhFHziS3HleYEQmRp1I+Mp+madNJR2OaySUADlTRdxSDQrk/4DODJ80htuqx4LGp/S451zEJo2+xgUHbOiv+KW83lZfgwN2NGKy/rAYqfESoeOc/X0WSDK60J5jrNm44VdqDcL+/kPGexA5MhwinsZ9uD57sFy/COxficTatBEAyEqo4V+9YColEHYADaf0mWcPPdImC3PC7AgX2ir+CW8x3kNZQmtvymnLUoNpqvLnSM4017SKUbPcxxUjSyIsK4hhD3vuJwk8hMhMAK+v6J8jQrL3OQI7zHBMzJwqJgqjY6JIxNgG22nTT4uTvqcq14nQypIiyFctLrJG/2VBYb0tT7l8+uXAy9so75eDjvEc6zQQyn21hxbDni94jDLemDwdt8q78FmYJA9+yyxyi+zY0jyJGJf+JyjIGiAul5igzDhm1Rp9/5lzGzFjsxLkWF5x7MNdanKKz5OAflpImWatxoHPuAqOW6vLFDo/Dx7viWbymbF6qR2FY7YTfHuLyvtCP255KJmkaCSHAdonkGAFRWgt9130RbZvWo0JtQ/EvTgg1tvVeK8jHPiVnIz3VUHaTdE+rzWXVrtVIOr+NRpNNen15LnaNNvSkKxIX+3Ss+gSBQ4bZ3SkMcPe7vLv7vITz4hPjO2N/6qPpFgWhUeH8mLOKKxg6komEpF0CbY6uUigpYA5MrFJeJy9VLNQfEYTe/5JnoltL6pp0nZXXEJ9YxiXUC+qhf+H9XLWeHvu1Ymt+EQInsnPaLyPMCvCchhx3tZlz5ANLsDQbUO2uK2Rk/WJWoiYxO11vk/ijCQSB/FHqP0gmM+g0mKouIsgn4Q3btRRO4qJC5PmGfQ3KxdFhBFPwL3Pu5672JjiZr9rQxDc0v/B4iWjoeBFI/9j0QT8A1pr/GLBvNEW+9Htg5FYKdOmrIrT84+W0GRyi7fCYQ0Pab6/geQiMeQD3PZU3j7GYXACl54NfYmEOV7MqLCQ31lS6++sfhUFSHnoDscm8nm93FPuUueDdEKrceZ/4n4IBpZLc6BcE4rtb5f5ARAfpZCBQlzoXvHEyU9aYizVFP1NfXMaEJdLDIkM6x1E4G/UXrv72cLvmID3wul92wcqcwzYWoFl5vAl2vm1q3YWWri+m1XpOEG+eI3h3ByEVftC8ScgLmgJwde0oRjDO0LNUFqW1nYnMw/ZjnpdP3+ar932qgGhyKVc/IWP0C0KW6jtU4MzS7BIzwzlhVhdJhKwiQsPZeHKjPX9+RG8CIs0PJIQeztj3RLqE+qXdeWHAPvKgWaLLV7mSU1Ydenh3wjQcLyBRnGv9xJyhxt9oTrwZDyBH5TyHLfi0GPhq0QUsxzhOOZ3vfvIp4BdVWVhSvurmOwM6K2/fM2gNNilCuFNJTWeoQ6MSDQWxyhO3gJzJjB0kzjReDzcvNtKFQJjJg/KMHo3rfIW9Nf6qNPeW3PWQwN6t7k29xdbAF6j6B7Gb/Jp2yDaVwU90sjLFfuatMfv02FbrQKw2CgkVpQ9k9T6J1FYUnsrhB8KBuo/DLLjXt8/D6UsPRvY830KczezqGGRa7KyOE6gClqLk1h840bD9DmNTmfaq/wcA3OgvMlDwk5GF5gbqPBvRJjRZzmkLqPHUihA68xk2gv7ZKS/Sxulmtat6KpesoisVsGB7NRq1S0Aq5udsJotnMJZO2c/PYItcWVuawbv8DxKyGT/nIapCqoUb4NjyCgnZARbD9Ys/+xJLLlHMbVjEmFmmvs96rXjih21cE+OnJGZiGuagnDZS+bvADkHXg+AJbbGgdmQXB3a+TlpuL42tiu9vOuXWCoelG3QWsESRbT0V60WOR7O/b8aqmBxqGcUy9nUXAweAfDV1ghuMR7iETxksaBfgEcymPV5/UkszVutWdZ3/zI9hpCV1p8UaGRIzDBsCHBW+7+7+jOpgEuQwHOUePyADipkjMWfE6ynzOTLPUipepl+E3Po67uxFQJlA11xCqkbcrCL5h0A+UmjUzclWhdHKq+NqCQyyDTAFfQUu5e7A4FdH6mAbK4oOG/9pAdvELwK4r+V/uCL62HmsM95nDLjC2+bOCSOIgfUw0dnNxsHR3URERYI8AI7U31d1gB0nA3TayvKLEyDTuTaVdkf8Z5Zrb1eqHtI9OWzlTQNegwI5tZJFVw4z8w9s73n9Sfpik7lHb9vtqx69gVUn5RCiQI23EfkTYtSr+sMiaiBxIMN/D4Ufql1XJR2BluoEfChvDzI34VyVaye6hKIpWbPBEY5R0aOXNmttJKqcvkPE6CRdEILvnChMoV2wFkWSRvB9TL17osWI0JFPdigj6adJusejPqv/p8zOoAOclDmdaedqyFVPgoIkoJt5czr63akZJEcUtje2oG3bQa/3yvM85IOo+bxNwCuQGY01qO6uSqNzFtR9McpeQHSufU4huapU+3HCO5Tzhlz4pheqDk0fRGEpOYje+UVZSdnHGczPpkOdGZZupcx8yuqwsH6fgu4LLDXv6WW00eWXCwMOaE+GOr3KFS3RRtjL1n/tjXKPBUBwHDM90JaaJ+pe0EfA/nzSS6Ebbt7zCsP2+iV7RH93LjjYReT6InVFWk01skDr8BSW3pRnQXVDhGgZ8ijBbxnVHZPXPoB/WfcLYiy6j0z14zJigMFHUSvhxcrc4dRW6y3L136yV/CntsNHSWCdJyunWFEwssp7Vo3AbMTPRXdaeE2D2Dpr3IePc4yWbHuCVOtFQBB/T/fqyakJxM8dGNLxubfv521Mk6EnrUuNJAmAYDsMnTcAHKpruKHZkvizYwXdBwua5+ecRq2CtbeKAfWhAvFzmQV54y+Kq+WB517u5d4y++8AC4xUc3rGRfFAd65nplZ4wQDQWAJkPSwyTXIycZRJemORoVNfVYd71U+nwE+4wT/UxtE4Ni+btrVbYMYq48l6roE44apWeWbStQkAq2KAeOuP3LMqrY4fMp4HD1PjKROvT0uel3QxfVFd2Rm6JG0a06LwAJtd5aHAbNplQks9PtI8rAoUbyGgLjAfUwVzQcmzeX92A6qzUFNxxUsACdlLAMpsqDk6xGzC11HVXq8YqC4oVayOFIffOa6xanOSRl2t2NCs0gSJqmZmlCpvkuQdGqWsOi/GK0OJh/vQgmMe1PzsXDrAqJZX4uJz27bJE2JKwK78FDoSCwuRZ7pde5vHEZW9fjnQb1KAgW8gNi/yyUyqwDmW1l7DmgEjJXjZWHsqTU7R9VtsrzMEOgCRjFbZwRovR6j2H0uk1aXL2shLLM8s4VkpSN4fs9l6jqnQyZab2JeX0dbDwAAqPOU8jqxj4hk0DJo/Mk/mpzvsNVN4ctJo+28vMlVOKm5FTnOGKUSG/vBRhrryBGsTh+au+ZExYQ9oUyglzwarAFG5lZ6Ni/+T0ET+WBPRmNSgfRk1EHvBXP19XnGJFE7DMa5GXUuz8zGHqKrpIFgkCU9OrgsF6eCbvW1M3lhlq/v/CSZg8p6V49pX9L1nvg75MHFnPPYAc3TXF8G0VvaOCzkt924dSMg3cglm8854TZLW8wJ6T0MNcqdkHvalVJIHF8oA/Rwtamx8c+yTd+TckCDsp+uHcpDEWRK8f6P95jcNcAz3kF+19b2t+SFHYv9OUs/ffzQdRNrSxE7vOb+qQ8ExEQ+GTaqowA0qa/9FPpYtXYjJrHDQQIjaQTz2zZ/Tih/WPi6/6aOsWnsLQQU30ilhwIA02EyT5FqB3X2azC4XkgusGJk9Y1AZAGgL+j5sBVeQJ1ikwCqeje8v3XVg+J8utIfXfrCoclaYXwpmVRYv6DoQK+pE3UvPcKShh7ltqityIxtjL7tTh1y09GA3SdQlq4H7nWke1rwDQSwcSatYCUiCTb/RHs+/Q6LvV9wa68yzlUcJGpElO6WXYt7n7kVqowWV9KkhO8hgoRRVOgMYWMWnrDn6AFXqgTrGYXoF1j1H4Y8ouUwdHSVOSAEgDzo7AnkfRHwAhZo7Dh0KagXKjtOnwnv0gnN+t7tx2PCj7+QtzW3TScghan/r7eLZ5hc1sFkTAmOOO5fhiGOO4SyjyP0Y66PKIi/jt7wI1FINtSCxzMkeKChGGYpDeNgksRV6iRMlcWtibna06g2BXhWGw2R+6lctPRNtCITptE5ynDmKZ4Wy7X/jsgNn3OvvJMQ2J6bckcZ6ni8n7DFswCQ0djzJ/HmKG4xtlMakYViWgZW8+zEk8GNASrYN2B6/qbx0juA3L7TAg4xJfcAnlHJc5a6tRP8XdwvlVL/Ypn5qGAwOvgazBXR5GjgBmASnoHPxh2l6VB7a3D5Ta7+ye/z7r2A81bC1Q/07u7E4BLBoFZ6fj6ptR657UX3u3FlOmSbhYxSq8PhFcBJ+5JihqjjSLtGM+BkEkvPR+QmfxWwcKaC81UzLAVvT3R02tGD0EDseqEshESEsYSoBGQpfb2OTqk/byB6XUufJ731UnnAWoouKUDYFLWJ36NtQn04NXqml83HwVNICEahK4N2CyzkW8ejPO4Qa9llMReSold1cRu+SmnMRJM8BwiYhFxvAQXN+EhUdhfEAErpV863EdsKf3g1I+23GDzZ2xZ5Wx+9yMzKsTXgtoO2QO6nWTODVX4lJLBqWtCwYsGU4h4C7rDd7Dc/q+DNGE5bnT2wH7TfCwHlV6yp8mkfvAoJSwSE2srkNPjfUtSj+ZSS3+QxaEz9pm9paAuHOEIkJIrSRr/5eJcI26tYcKhWMbtXQILp82ByIZqsaoaq1H7NK7KzG3kSaEqf2Cr7JgaWCK8daI37UYJs1V4NWmqv35V6gDOgr0clmbUIcPmPbaUA8V4b4BtA+LCynfXoX23oV8Xe4n9s8QnRD01nEUzm5G2huzU6HGfKZiKuksEu5Le9ozbKCfC2Dg+VGo15VJM2GG1NXRuFm2v2os2YUh+8uzxuDtviJYnqST4qdV1VAfmo7wJWQ+/I7MnEG1mE0GxFLjGzmZjf9NqOdZVz61PQQsTPH6PGhKczDKGY9Jk7xLpAb7VTunvF/tNXcHwRUTg5cMtzH0ux5uHYEp0eVVCmqbUvDh84gBDNX4+EatCKA8UkjMyfS9l8pFno+Oib62vYE2G5ura17h7OOjsUAdgbBQPw11sVA+nrrunZP+YDf4Jhvy1iLpUbPnhB3CTV2VNWbzF5sjXvFprhZda/lBW/uiERYxbXfbGVxkVvNGn1AmHa1I11VBHxojSov0Is6PcaVvA3YZu9Gn16IRjla9QddnDQrVIho+kF8bObtvzS7uxRcB5RkeTJ2D7QM/j+GZaGpkJHON0nqRVvzOAq1sAuBYFuOX5j1thV1j37z6eB+88xZItNocFeGuZZtnDrTlwJ/nDEvldNG+klt5D873WB8K4GssQTc2hsMW6nOUD+QMogsIq16ZRm9jIWDjHE=
Variant 3
DifficultyLevel
564
Question
A sheep auction has 70 holding pens that can each hold 12 sheep.
If each yard is two-thirds full, how many sheep, in total, are for sale at the auction?
Worked Solution
|
= 32 × 12 |
= 8 |
∴ Total sheep for sale
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
event | |
number1 | |
pens | |
number2 | |
animal1 | |
frac1 | |
animal2 | |
frac2 | |
total | |
correctAnswer | |
Answers
U2FsdGVkX1+5kDmrnPqU4NonyHGWYsEFNTK0z7sIpDn3ekeeaLWI2/mnKkO3Lx+6fBoorLY3Hfvr2XkvwBz+qCiwMbIAns9NffvbIrx5cKXL67CS0fH1KsW+bsuO180/XT+QYaMPA5Zn7UcNi5Gu1CVNn4wvm3nK6x8S7Exr/wQKipZdycQjiDSUlTN5H4kaZekMVT4Bw+beZU4r1Rmy71liKUMhIHt8E019aeuNk4WGYajtutx9frHeWCg6SV3/FB4NZs008h91klXhNPugOXKtOGHGnqy7lggVMTM/+vIPeqXvw1h32HPhQwsBvgKYNQP2xhhwrLwfX6RPndw054n1uN8e0RCHCbpDwvS8e1OV7x6sr6QK2aaQ8LRn5x62LuIGPnV6wTqcfp4jqw8B5eSDKByfj1QfpVxqhOPlKmuKxg7iLx9c0K61sRey47f+rIqlmkwUPQSoiHj83R8c2f1OWGIED0l9W6EoPNa2wjim4Hiadeuf4EYDtY/rTe2ATTur0Y1APKU+6PbXczzlt0CtcUgANr46fDjdC2//GrxVNfcoUa/mKB8wXYXDWhZkFot66P56rRltRyBjirY88ILvxIzEAS0RAi71lgMEiS/p0JCm8O9vM7DeXJXqqyBko0VmVK2YQ0Oaxe2NIyoSOItGR3OqJmdXc/kn2SKP93Onv3TuPvY5G/JgWCUWruQoGL57t+9I2nQ4yyVxkyym60Qabtbrdi80/FspqDYr107EJP+x1cts6NCDzP339lltkrGcWaePb4Q/41u4n0Emea86lgWop4gbrs2aQUwm6ShKUPDA41jS6kuXNBQzPi3mPrlxSPoZstbODYvZltktRuqdUwLFb5YolDlfo717SK92LUMxQk92oDwJFg9a7eiDN1rtqJkWFbbNqfqIgW+JVvZ3UrB+/BzS4wcVePahiOWJ1QWmXejkRUMAl6YJF0Fty6Op19LkR4+p6d4SIfSkdwiQ3XQm+RFOVHfAfc4Td2/4p3hiFZlqRKSYi8ELEcO+VJxf8UCvkNM+RCr2SkuSeeDLgBdbmAnpGB3lbLlRsr99yRmQYuqyCLqqxwPyMe8n4sMpMvWSw76Nb0z67umeEcc/nlhPYt0YAmbWpbhFWjilTGgKT6fGZFM+cgtHRsRCmQCTpjsX+xvz5s8s+By3pGvh+xQVc4EZTcqC26df+tV70nX/1adwUvIQSRjMaTX8QDW2FUrXMsc0eHr0/lBaouhdN6Nn9ZaFUIbFHwV2vPvMQ8wZ38ajU6uwWqQ0E37PL/cISAJcTSzAx/RC47eRr/2nQq0GE7QM4Z7d4o4y5YEHSHDd+4V1OUz7nblmCekM12TOp2mizW71w/yuU9ibcyRtF7QLcgZk2Q1Z8/2PLUTW4KZo8eRs8F96vRUYjS7pDN8LZ7QAnf8oZbmdIsRUvUTU0uG5MDpHAf6h2vvZtDCDzzXl0Eq4kquW5KuI4H8uQ3Jig33QTwUpnLZNdxc4J6KMVaeSrC0CDPsfBDZIff8+rVMEzb4RDxOY/r7y6tpDWuav+rX+Z7GXAQV0carwP/oh5DhkzCPpKIF0gVIJ2t8DZmVHTIMMgrOyslfZ4JGWXyubBRlrN+8e8vEhfWZ0XU4gbZnrrZ9R2LWK910nPE/uuhU8xRLW2xR84oYwnvUE/RIsGBGSp2lN3FTk/+ymNLG+ruQ9DmPaa2SNUGRLhD37xuXAt6H646vLb794ooVjHwefAnvd7FD/6twDUXTAZ219pfY7i+60qXFiGMD/KHdwNY8yz2nqTTQdM/V3pIlNgRN2h2Jtrt7Ko+CytthqZStep2wiYlwQ0B21+1IXr5u8o2RSt/qsGMPVSZKmbmb5WbS5WEhEY4b4gRR9Cy3wBx+3b+4XFKrhzz4O/IbI3VB9xWqcwH/+wJXPb+tAdZowhqEysgx+s4xdTnvS3KIduuggndCYMg98ligzCkH26WvuBVKmpkrNbWwV8sIo9DlJtzbdF1JT+upgSqyhl6qUhn9Fgu3GNNyuuwor3HOp2UjOfA2rvssLz6GdnMBDQaj8VthV8q8IDT67ShwocEpnMg8+1WDJanXCq7VZh+MHv1yK8dIPDwgV/UcaLkMwi45uZOV9xG9Nmfxnq5DT7VLxsSXGy0fMXV459buEQ7gGTibj3rGBRD8xBS2VFGpnqsdCuqYVSuUWk+Stx3J5Cbdi1e/+271bdeoYWvpvgeuAWMPIgPYc/lj0YGqq68fazgUuYB6CC6Pna+RRlLdKBv9ZDG0f597VxDli/6s9zUmyX7mm30oQBLjL+fJ7ApdLpst7GcEf9BnjOkgDI3BunfCfDL6zb5w8wVhjpdMfJSAJb22e7NpRH4wBnLlZk6HgqZfOUwxdeFtRgT1Hf86NmVQvVAnPfVL8GM8OW3XE2mjsAkj/31qd3SUOw8JfudM98g54+c7t1LtkBCDu2UYuSW9F+onjjZa6tlOkh8h5dMIETHPalDVK8v7biUTW0lrakQgvu3TTA0nMK/p/WNdsduvZHtTeN2oMv8MvWyiZh7z3UCoBYwik6rAvXcm65TDsju9n6sJYhfokbNtfYPef9PC1TmncYv29QXMrJJ5XLYI5W05kpR8A/E9DqtXWmaxB2k5DrtxdBrPqphWCp6WSvDYBviRkt4aWj+LRlnvlJNlv05N7E5bj9VwpS5B3ZPl2hYm4bpSNGWl06tzRtW4Q2pTK6GtPjH9bR42NFWfKLmjr2smhvVvY2hcInVbBMFM73VQbv7y1NJKesK3ngbQE+eBa8v2r6lyQ3M5yX/WOLKvaNv0D+KF8sucDfHx51IxupPlciDc09d8ra4pEswlIKafrRA8bBxNXDieEmSTSv3GcGBPbh1Px7dHomm+GOHePWh9ro5d8kTiB1KRL5ToUxg0LkJTicp7PHJl5ITdPStMevrvPMUo/7H0V7tv3m53X9/Si8nLU5WvTAKGARmMTNSqe+OZ4d3A8FXDya7XrNQ4cnmjk1iq3i0JvM086S074uqd9KZGUzR2SmjE4MjdNUq7drpUOxC+0tRVU2BVGqMToN4oDzS8GfZjxeYCP0oPILlTHl7mNi7gjoL22hLPJT6k7pfGNamz9rQ2miVEDNNJEKculiZf/yvXAnI9mpaCJ+SNp/tXroy43Yv3X8+1le0kyS0dQ4F8dADAXKMGVNXcpfjL5YGQZcrYKjhewAcLS+td6hEMxrZ8x8jZso7RYxJkqf7uGlT0pHe98UYCWvOhDlW745SI2FFW2sJwiYoJKVm7F4RjivK2gna7S4sosPiFWroSorrzgxtQz3AI7rZvkpc+J1V+cHDmWVALID7vSs0M/dwWw2GLxUg/YvVGZLQ0qCg7iSx2CYVY9O3bYnDx3b3J3Kl6KwqacljHJ4gn4TlD3y+lrPwd0G0+kU+q1XjBgR5dI/xeSO8EG+ZIhUfX5XaehpVmH8WyJlbeCujV21IFN3+Yj5u7/mKoWyv1vwvuglemv244gofr1mbqXfJj/OSbdtA2ngk+52VHXVPXvdcKymuiH858NUuNzDW5UoiGOVbk/vILAbOMY/53T78VqAz7YY8XZETUZBdqMqow1msnnLM1iPz1oaQZUu+CMrOPuBxVdSmTTxVn4q2Ykb17rjm+VoERHrViI8k0vXZZ+1Gql5p9wbvex6YE6MXfEsAG8Z8yui+wN4LZzcYAJRPBKioE1gU3jhIDe6sqqCFW5QBPnifAqtMrch9Ifco7yHkqjZJA1DgUZgm+dHugmoiJF1htq4IfyE54yi74MBnrXm4MMTq7X71ezsmrN3tu8u9ibTWY55vAMvCRscfXpsRLGoa3elBfa8S0YlR/yQFT31qfwoluRuAHTVQZ2E4ZwcEYKAm6GfCOByQK/zMfYhnXhA3PXZvl2ez60M1kiKRUtinJgvml1roW5c5Nlub3XdzEik4d/ZOTOZjIod9jh2tDIBtfUqFv7e24rJOVd4SkTHGiVMWENMQ4brm+B8QZZmF+jN5x9i9zFvs2YP8suhnY7t+OXseDm1OYRQbq/PMv2yK113nE6pYxsmvu6yuDtShd/zQbZy0/uqJTo5EdAGrP2ysx1aGaqJpD99hGsBL0xPOOc5YGAMeOyucpHvFe1UoqrzCBvyvD4K18JUNIT9443qJJbrnkHxy9mAecxiEm9IVQ3i5MniK7ECBNVMBLsS81CY8IEhCr0p86uGWa411vBirV+P9mE34bJLwNOwvavdq/p/BWbid42THR7vepIkGFtjATNdBZYhEaenpGUzhVOiob8caGcp+8fAL1bkUvZUpq9jst+e6Vir+NodeHSOB+NaN+AsQSQ1Qf+CG8OkOUYlNIWGQF8SJ7uUvqfp/PK3j+uiV3SfXLHIArlyZu6gegGnjXU2cNc1/Quy/CpeJGaL6Mb+llE1+vzG/XZNZjlcadEYI3jjczdifv0t5gNhfHSCHlqdj6FOfwOGHLRnmUjUFU73EuGM6Oxu7qz57hrInKxI8yW2l25SKq5KkR44mZR47LgOqoUD/9YSsBWdI6ETk8JnMui9ehHt57EJ9bQRcWjyWZPWNBxAxM1uSd7tU9JxlvnfcQp//C8bcJqO2IDuPgOee8c0NApyDg+NTVZDhiDsTZzDoetw7qZianUayRHONAGllIQkHV6TXwtEvkGgVYfkEWiMlHBY/By4dXNA4fwf4ha9EYjWY1LIdnrPcZZc2kp9m8u4xUxhyEGM9207rkjS3jW79kXKhhXuwFLm/uRtSnZqy0Kp8fF0ZAvBYsPLicuQbCaA7Gi14K6DiqjdiTBbi3guHSewVzz3j65rORegiFLNs+BK/OtHsy7WdDFKfCfbCEFuzl5y/mJlciID290hS69pNrvX6nmTt4MarYUNhX0jJ6VvmXujnqm768RKQQH3FNvfaw1BlDYTkRC3SZ9dbKivQFl/cRjXBLHloJ9xYS4UT/t4CnIRV1cl5zqdMYhqHvkVAysD3A4vNZfzTmCMl6+L5WeIjQT0ZZ9zU9A9labgvyic/23FCluicMwGwToppxNun1EzM4WZBassDBI4AgRbIeHjIRYtxuAlyGrCX1MaSxN4Ep1YA7/xRmTN6UFBDFQMjOb24+lenfGj+RYYRmj2lKl0YNyIU5YSspql5EFvuqipPSaK30OxRAC6aj9pLAiHogstLCqaKWKjz8mJIwcFT+1My8N6Zan8PtawmUcvibGoIQHLzXur0LedlDWq96IjHFC/D8HGsxMYSs6G/f5AjnzE6JdtjyL0spgQF5kgzc1/oJq7uqGAU/RSW8zxALpCxdTJfR6kYnn5jdtf+cMbb7l4rO+1pVTfTEGgwhaJMRPzqhdpo3aY82K8ZtkXiXv7nFtYgnGcMqfj1RP46ukuIYlMk74nlwD2e2zDaJQ/lGpdS1eCEVxjlfPvTxDc6uSIAhoMrmH6k2FFBj/u/cBbEnh6GDOp4j15tzUwnnUXtsJ5i0ZA82LpezBVzz+kitO9MNcZVR3dMrBSMRVV/M1NCctQrAYyoasKD9BFuZQvJV4oH2deR+XO0WQFTJPS0I9IUgjnNw1/aMVVPETlQCJlIjFQ7mbFBt9DMoiX1/iLbf94urF5dSyDVdCAU57Aa1D4t6LL/cdMwtwhoCfPwmiw2rSgYU1Yyj8zWOB0OCYgz8P7kB6drlmm9RTUaA3O2rXAFhAy3gluOtmVrVxcC4yPL/pmiXbcvxox8/zPwGHADImvBTfe76jcjxHLL2PjwY73B9tUw9rdg4wgDGL702iT/QQDLEsstXln6ygmz55iJWC+/vEVrJkOgFOW2tSWIwa+WnnK+7OeZfM+u2I9BHUsO9DE+5s+Z8yPSLDNY56I1H59ahMepRRj8iQPrsKR2Ngwx/Gq88Eyox3SgwxLJw12Nd5f7ljCZPs0QqE7ise9a+O6s54olAz9rm9YVbf3/pFNmhaH9bmgR3TDeDel3vXVINizPZnbllLzY+zwM2iXITNv0WXCAhJzQhDTRa7KVzW+DPTRbcAQ839UNNHU8pXhKIM6IzxUHBAwb0BnDLndABoWvraVCC4j8k8JFl162bGuADpROwHWjycE2Bg5Rk9VQjs3SngunNLw7mK2VUPpLqv/40PiYdIr4/Y76zWErFN/sCSUbLBORtVv6ZA51Ey1PV1LNFwkrQnkyPD8+HlAncW9mpdBrjcXLEUIWPb4dsp5ST3Yf8StRgumMZFC3b/89msmygeOxQEdW2TpoxUm5Ann1jM7otcZ8Z+r8Q/cAVlXacamcrj0WhJsjQ=
Variant 4
DifficultyLevel
564
Question
A cattle auction has 160 holding pens that can each hold 20 cattle.
If each yard is one-quarter full, how many cattle, in total, are for sale at the auction?
Worked Solution
|
= 41 × 20 |
= 5 |
∴ Total cattle for sale
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
event | |
number1 | |
pens | |
number2 | |
animal1 | |
frac1 | |
animal2 | |
frac2 | |
total | |
correctAnswer | |
Answers