NET MIG stacking NAPX7 2
U2FsdGVkX19d7R+Dz7GgaltMC7sfYSt4rg+D0thMrlalZWvSUlcdGkGmakB2wtpGioWxujpKbMxwN8idLvOFHz9DWujMdAw1SjnByBpTloyA1c4iKPK+SOQW5mZNP9PtSq86xmR+F3vvO1bePLjDqlmeMwQyAvGFH93p6Wpstqg0/s6IUcGVhBHvX2w41tKjfnJbVbTIANDixSu18GT1uLvvjYnFLjJd58OqM6BI67SaLsX221fzMKdZxtbw6IkK1DJJdb8Kpezb1XI5Sh+AEyBKzWmVakwsCpz7J3re0E3mODVC2DujmtHEO/mNNuJVqCDt18WZwLbJntxNO8SQb4RvIeox47Q5vqowvV7F47wZ55e3zFaL5i62L1NftQGEipyVuQgC+JQG1HuD14ogUvh/zBHmRV88sPJ9/M5EBclE0/mJf+dOw7GptvchgplSvhsj+wWoVbQOobdiWp8NvqR4TacYxFWWyS6n/fE3RHGC9fzz3zimB4rrorRtpnxei7WjvcCbs5vNiUxLslFYkBOJizwNp0y8FsNbhvmdepqnLSPWzZLtQ+K3IFCIHbEx03KIW5Um4C4VxfvZYD0j4CD0ySQA0hM5+WNnQ2GIoi+ANgRSjKRtlZP05UDxxTJSu5EgUvf/rWCLatEjVZZSFCV5ao+49bKb2wzCBddqrM+drlEGmrih2a7uaO/w4Ud+dKQSNQtDMMm1VokSOJAK2IU8iR702iBmEDpohHt1TWFjPP/lJ+aDxpyWj+DxBQ6mPV0dvHFIKLvj+k5oMFrlJ+6LAg8yJ3aObOj+YYLeHm5sjcq2aXv6pBGnFYuY7UhtdbvgMcsG2TguoxH/r+NYdqggaCatQkXR9OLyIBjgzQ0OHNRENR+0DW8b8+ByDqR5DoFUEY0vmd4VSUitakZitaxbtnHCN+2FH3wtFQrb+QjMKnNeEjJCMuDAofnjQ92B6aK8vwYSHpMn3ONXXkKdDCUDftJ69I6i4uD7QrQ39NGFyOHWPUzINMvWeMuaTFuG+UxBipQEzhYWiKaLLsphQMqCRkNmPrXVEsUw92MfonrlmwAFQbnBjvdNXJTABas4n5+EyhVmlP4IcwuAlD1KxasUfOR6eUbdPwYyKZ+KcThtZTXCvXXAExO2w7g09MxFcFFAZicryRkYPB0Ie77K8nvkJg94LO67/vsdm5Zi82qilSpqPrvdcQOXMSuMcNxaYCzl6A6w+QqQh4JYuYI82Simmf3DMr2WI0tcE9Z18/twLqExQRGUlvcYNmmy6/TruGE8YoHzcp+06D6ul274Qgk1ok9KoNDm7V4vXM1wIMcO2WgEK4oApEoxbcEk6+uFgxvKzudE3FABrVbeE+g5YIHnV/+BZz5T2+5oNB/tjYmx1/8M928thfNiyezyZR3Gdiu6qggyrbZjZt0HM7fWgpjnbIGbh+kROA+DazRqzN4XibZRTCvyEw5g+N5dCmtQsB34YnVSkGeXj/Ah0KUeesdOH+G7oiq0t48iSt7EQTs3YS0h2MCunxOpcflV9R0qpEC4MZi2Da/hhsLsSpKZb6mweupOUJzlok9LU2Z7UpcW2NJLjqFfkNwRXeJSto7TmoYLLxC/DAWx+3pdMPTSD0KxfmAwAPXdk4mmOKygL6lDvA9wZggfTc0+Ci8Zc7wFqlsGVAFH8P/ENHpMpkaJgS0WLJ6o9Q4rg/VjNiRl+nC0xZrbfi3LtIkhGBjQ0Zwiu2TwAleMz/JTECinWjaoUrG07taJRDrfVVm7oDMpRE+0zzk7f9BcRp5oCREen3nCkD/voT6HJCNeupd4MkyAlT4sQn5SeH2Vg/Jz67f2k+4K5sofuwAe09Gx/YXFocodG1SEFgyZ7N6qlQ3FYZ2IC3Bgivc0auKatMgiWXwtJuZ8Stj1uTRUjevGhv3Cbb+xCt5++ukNtgjwI+mC7+eAduk0IuY0k/6XWVfgI/uG+KGTGdkLk1TP7bZfDICouNOqdVAGVDmROdRu15v5B7JPmSlHxwqdNJ/B88ajniz1pkQaOaVAnEVdgSk93m9cYHzMCUeAiTEc0BNJTSb9tNZIP3VqFLk2tiObo9jua/np0qf20Ok+7GO3A/UNej/5zDhpnsP8722uUAfAcYca7y2ywB2zF3N+au0cr+yoKNDi8pE8bGXSI+9q740bMRklqc7FKq8/P7v3OzJIWXrlBnXHkm9DrZ20FGQTNx+yg52dBTDLG8rhcdDcNbiJzB/YMrMDVtBfcV4IJQCdEXGUjqm6y14K9i6/sNU50G34gVZortlWSFdt+n+imq+5SqEsKdusfKkDTaQ1KnCbYhsBtPDkPp8RvAC7pAg7BnB5Z0Y9W8DVDrB8I+IAiCr2V5riTsKpSkiQwIYiJfyaQc5VtUinZj6MDNPvFsDlqG0mjxECpKJnfNqsQapWo3F/EygtE/XH4GQhN3gLd/YLtGwUXYRB3yHj3xavkrctnKypcOtZ/DM5spNWo7OHxtc+fh/gwIxycKGmMjcArSLsg/AvfZTWrku4zMAqucO9zfl7c8C9r2vzHj5GZOePP9IhDfk2+mkAeWuUxwhsZoLVJL7381Aew4glZkmRq8EdwYjl4yAsjVir6v1KOWhnPIuZZgioG44CEnQNHlz3txMr8EWdl5W/hgLkMGPb4pFsreWUjYZ7AQ4VhpDEmj8iQTA7wHzvT4wMDsFjQhISVlG43sgDl0RbP/NJn1gk1u43jFUXJWOP3i/LcrHQBqnR1tiT0/DaWMOyjc8D1yl4FSxnvVDcxLAziANBEcyF/Sl55u3fhBEpXK/WPYwc8Ob27UP9f3QlriB7K43KPP19e77X9MvZvtN4z7tSsAPQDofB2R7ykT2hlqHnFeVoaaHWLMRR2Nc+Uul1NhKZfSB8t6R/CZJNowevGd+hWbOmwT5n856+2yq/ND+rore6Qv1N6QXnCbHFpOubgxTuBroxXYfkJghEllPAlo5R6lwyVjGeaw6e24vDX/lBVABQkLXhLzhTp21uR9zsMvhVeGpIw6cBn+QBgvtdP4MIKSmbebxjrnU3abgGzGUhC6tiHBlqRBjRTHS9CNzUFaxFnx76fHrBeNQv7psTeS/En+q2bbZHg9wP5CM4dW747bOWOQPdD6HFZ0EHmTqLe5qMQK/L4ap4glJSGVRIzMyBczSnmue1YlAlaubvidUTix7aekUqCNd8OvxCfyLLaIRUGgofXxeZcP8i3TSUGehYd3Hht4ue+sI+/uNCPuo7WYNS7YYAjPAGL7JRIfJiu9wT2oLr3ROxlX0O1C8Wth1qxTY5rvQ8iHhNe0JnxT6OUorziVW80WextiIUPOfJOluFzVDzAuX+g+weELugwwJYZtdCtCFBn026gStar2RkdRP+wKg+nTZTmRM3aDNHeXuKhvJ2vIfpPWUIzrEakE4PlONR23epswdLIRl5K5aTAHUGqUFW4A5gvLH85dtQXP7NSns/WAJKu/Swi0/3/np/Xr7kcewd70gcGnL/FJpatFPQA3gV5ZYoPU1g6ZcnXHg4MAWu6WJtgj80U8SCh+vWkvk/qgqYMwiY2ZopWQn5t5tnIBVkt/ioJm7EIP+tSBqrjRMjQGFgW7+13e9Wdr2TA+9lIqY6qc5qZfwZCr3maNqZXyZ5cCwI7RJ1StuMABbf+Xw/L6IEK1ph6nKZb0lXOPuQMtsOWjJ0qFJ/vrggOYSOoaNFjTezTBvlBiIKjpaaWVSTNpXLh6hwJqqhzK1IfBDVDF+dfAYL6Xd+vBqpTQbrbayBBUyJU79U1wcjDb3rsofo8jJmBWAPxmOZXQ98YG6S/amHsudsMkS0TrhgSYfLg4hSBOL6+t5XQi1dDboCls+4ndJU4SipwkShzsj/2WCQubg4knbM8E5nnE2naMLGf54XWSyrIFyT/t5VQOcQ2QCAEI3bRG0X8djcGA9A5B0Swci3Txko4jqMFMqdU7/43zabr4qOBpv9rud6wtupO8INcYhiDAXXdDQKsqiv0Bqkz2WNxzkvqBOEDRGtnO7MA9iLKh8SI7j0UIQ1XkSM1IEXwlZOJ3fNu0c3KwgPT3fPhjK9gmJUiC+tRDa+s3PyUjlspqRVEjGszWkRoZkV1WoS9p01BeUoKwFwtWJb+SRPKUF0317BEI3coifUayB0oABuMczGESrAvjCmkD7XCKEn5OJL9IxzKeCtu9YDNhoQcu+QAg0nJFxyI51DXc2LV5x6BQm5eM2PYK0YlIlm8L0kgz7oURXaw8DyjWrKlMh00JP+XsMR7cx4Pqnp/QHm6E0Mpk929qRv7klK/uMeJLASx/4LFsI9MGHYFReauUGHWRi73FdkTc9OKZZei+YjujUPodL4I1f8+YLrXueyDJvwaRjPYK7ffsqSe0kwmLh9s52nknc1Dky0gAGmL1mWqMz0lKMdNXKjrT9zZAXCcPpDyh843bEnUQfKUjKyzUO6J275J3Ojfm/+REWTyIEjJ/8mjCfa1L3r62p4VSrsNNxBkiLcLy1xZdMvxQwNvqEdNWtSUWISe+/LIFfG6dl/oe6FUMGSkjj2Grh+dKnktikRZVC/fHkUaqR8wWBsOSu6ZDyIMrnsNHTWJBSR0bwF3vsVl6TdyvTm/6VRZ0UM4BAofEr+BDwHpKAKrI9S+KxKvvZzlvSRNvUgezUPYVPTRH2koSahCcqvltbHP1y2gbYxBkuYlCFKPAGkEVOM0ju68r5rHy9o/579DstAxys91jfbS9lYvRDZHKMZil5UipXc4w5adVXW5D3HiiJlE/toPsd2d8OplNYuANvwSBA9PDDGUah7q+rhtU5DB3xdJbCx/hlJpqetPUAeGxvnbRx21Laq0J0kovNQNwYFZwDKUcxexbZ1flWBAjJq/Y8PHMAL5HVpYYo1PHV/hXQ2D+h0hHApSU4bsQe3R2sTF5uKyu9rFr3/L1dDG7KSqZA1LQuskxmV73Wu5DBh3oEHdYi6UfoJhK29byxoSgcWyDcT4oP309FJfWescUQQVFdubxQlTBFq5jLN26VP7VvUzzVfvCTgSsd+zhC9X6skN3m1wJhu3oxHzKMAuuLjb03IuqSn7t32kAU23pI1PoBah67oO2JW5r8zlEcaGpuGAeGohDv6Qk2hWJQfW5ikDnHh1xktzGzG8myb3jOOhLjMPKYcfUaUgzlRcrWuJV44G2dIQSm2q/iGKsBDpw3/8YO83Ll9RPI733jmF07B4+ksjwYFAPEu9XkObPeXvTwiXnv28LuYODyNtsZaa850B3xbJMoN7wEOtAk/9utcKFKEvW3ZA/8cF8CrjPirXZKxrWIBVTJl8bHs8KXkeZV4NWrL+CAqMHC4z0BH9pve4MM57vexb9fBH157VOcYjBri7K81pd6UeHKD+7+QM0Dsq3EuYluupDVvH22iXyih6MYYD+FWYyHFBG0HAj7IBLlQUsNFv9hlRgGwrDXd/H3J+cqvThRLBpY3E+CuLrFsKLTdrrCxHOFH59vlhBE1irhmQFM741ccQ6eSFqovsUcH/Lq4uQn2j+UZ0ZACCS70EotYZxJtzQ9dQMI5WlNqgsypS8aXjw3WowKjBA2YuPzHgL1zF1Q9C/HD/essv2qcnfpC9AQAZ8T1xZavT3Ce7cx7YcIKW4sM5RW4vpwhc4ffEXyzic4HiQ7CateAEkM11aWSGgHYFEPAArbXkdQ4iurJ7ZV4o0R8mTtpqVTGBgLjDWXyXuilOvvL6QMLDwpYJ5aEmCmN3wHd/i+Ragf678huREi6H9XLQDe4T7Si5qIIUbnwFja/Xcdmce0Y1ZtwboLnUsmPAWsZOQXEN78YAoIKQF1poPc9+NsZTq7g0goy0VO0CXQxAuR/0aj+fVZqmmZhR4hzhghYNCTkqGfZKNKXbTtePuh6ttwwUfQYoLJm2KDGFqV9KxlHmVxXPN1QuZP60pOSSqsrohTgIJf/80oM2zVklzDwgBbNZFrN4IX7WQrcdmT6VQ8uf+KJ0BP5BRAdUFOG+arzU1nTk49TCGWNv0xz6MaIBozxkXTlX/rttTWvbecscn3P+h0Qx+Id/s8e4kmbDNEfeQfiytx0CMaa5Fny5Q10AuW2V1R2ylK1xUhxGMyiPb7rJrO+cPO8j08PUsiKCjimys75De1a9nQxqfDFs3lHnnvigRVv2RQ/h7x11MteDzPx5v4sP1g/rTFLdw8OIaGSYCPGVUJ46gE0UsQOgN+FwKMDrnK4BRAhsiYN5cTAxcgRZ5pEve6N76nyg6m3sfKxVW6KzmfHzTtNcWxD5qLFlXGt3Gc3mKzd+W0QsSePzAsvl3GEw5aA9CtUsfKuq4x6lsea2Rw9BIzAUq1daYwHTFcjl7KyHQLdBcrkm79ZwoQqeFkDkjvArXBhGkddomJAIQ1TMzv+HThlK12zRbz8T/xQ8Xa/tJgTRJf0CXHapd+WkuK5GaWm7IEC8D1M0RgrfrUjjixl0bOp3GDl8e6DPjDWIkodlChdFI1xjzIms+ksBCjLNs6brA9366UO+UgQgV1VLvpU49X+wEf03vAKf3TRnqzhCJj4m+9hCBoqFI3x1TRCjVNNzW9xlNkwduayOkSgReB+W6gcCueWqlk1bsiYWp2HA9bGCAdSy/O5vLN05C6PtqcfDXuXQivnHakzJETmFMketqG5QXs0gNyZm/VBOF6n5kSmiSLUzsXNwcJqM0hhTidXiIgTZMEsP0Zbjl7gJJKtIaLqgD+NKzW17fdSSZGDmvBRzlX0mEV5dxRbu88d6G6J4jfPZuHESNrLeEznL/Xf7oq7Obq0jTjPyte/8vtNXH1wy9Rn1dEr+rServhAVfKFdcLw1NcPVQWyJjYt+XPfa3+Q3NW1RJUNuEhSVhY7/sEhWrmyeDjP6uUe7RNzVI1Oy6luyDSeQMkrs5PY9XAi7tlY7cqM+JvpS0ROKH4rywryaS1Y88iuPEa1jprs1t6/vhK1U0CDCrBxtOc2GTT/D8oYY4Zu+891met3xzaJMiOQLx/1/gHqTCAs8pfv3PoCqRmnBAZvSLjWFV8HThnUTz82Z9mGVyzcVnEfe8blTwmPul62vgupj68nSCSiiYaX2yYXHE9PKSy+nhFqt5yCRpR2gC0rwrQKi3G0bdVXWEv8TuztJpHCxfcnXH8ZoUv04g4bpnP0u4MeTajB+tcuuxG1O7mIqsR6ec1RQQWixfTe9v0rHp4S9lsKK9sKo8iPYS5W7LxKnJEPVu6zzD/M2GG8MiJp7uJk2OuDgBJR150d1/Bk1XmkP1oDlHYgUPSONSwPsojmxI3yCp+C0qhkyKdgrLRXEc1osbb+TXzubudGwHqd7wySswcXYmkHQ+P4YxWqj9nTbNCYjNqzkjUDqhlIkjeYq0v0/URyxfWlQp7PwT8t6JLmQ85QWZil69qrJCT30uTbHbAnOklQlSKi292Fd6L4lNoBL6niZrUsZZwIh3eY2RG8DtSbQyz7VUBswP4B+cut2kp0V2UzkTPS+3TpMhDFU03gg7RPcDpaVfoZ8HfZLMsI7TpFXNJl8CythSQuXpZ2ZVtabtVSQHYyYbBahUyog+fp3JPbgC4em4NZXutPRr5PsM9YVWiaw9GfkldDsH2l9McGrEHZfPYJvz5uARF00ICamXEoIIfMSAF3mQqrlaLfDjgo6m+cvpiAQwTORj4q2Ab9K7ECc/mSyZsONlOOf4NbaRfFs1ZJSXtmEygP4XKAym4WQNk2atqTSEHb9K95pcOh9677doF0iJ1rm+FC/72mSf4Vl/U+BSHCMx/28T3Xi/nJdfllsgBja6dxxbZ+AiRrPIVc8pgw9OTqpNOrq4P2Jdc1QoKLDsADVJu4jvkIBPh5wHkXlnaLmvO4DDob0PHhpoZ7FwRy9cAUq567vxnxUh22S7/gD7pIMczPRszhhPnz38z0Q0NGVS1DzeVA/cNoeZ8W+g6ZkXvX65JV9tIR6hr8/hFbj1nHw5E2j1LD0rWu2GrYEV7NLpAL4fCvbwlI3WvFFXE/pRAbqFMEUzprvrT5XTTeYK0zskOXK8FrpuolNHtvtT255TCbqWu2WSclo7ggPH4bFj927ZxL+QVNT2xZKc4g0RzBsKMziwWN4NMHe3V0XW2jLixVTsVXXwz4C/lbJty7WMaihnNCppY6wEdVeYuikn9575XD7lyUn8BkAnVt1729sKNGxbXFviIJtrZzdEQGd24l+y0ABgFySusLyUli2/G1+B1/TnhhzLnypcRxNQgelrPfMEFATV3/KDhmRA44sX9ruyQc7E1FjlK6Q4s4vi5Rsxp5ZIpBCqUKv7TDzzmcqFptPz96oGt4CfzYV1dHB88/FTdOnZYIIskoUVHCGbAneetqd8STHC9mVDAMXtXxh6usKto1eqc8OJcPyYjhM//41qhe30YUsb5mwko6wowQwSyhbc5ygdlaKbBWdu9WY3zB+j8dLijIyNexaH1fejFEUtIA4/H5hzQqUWBr49i4s4p+1glgDFjHa39EV/5u5xS3Zq6f+wPWnhPhpcbBzBejQJxXM41NeHqHcPuk6R1k8VMDz641W7F5v4w12dmWh/ZBjoe+ZDJGytLKv5+2PI+IffHBoeJCCGY6LX1zfUpijr8ll1LevGkYe0OIQAWS5zAeL89HOnNr/xNK0ZitCPYfakubgQM0oYpXg8bnhjKPbLsHdPowgzv2QQC/cnVaLEr9ZPbNnUBDNwc73edW+vegq0G9yn7RogX2Sep/g64/PWDwWkSLzNBgkydiTw0yP6QW27JjUnS6vD9cUu/JTj5rRGizsTXR1Wd69K3QQUXAC3cFUujSG85NyJT0jPCpSAkW0RWZ8CHWOKOiYIRoCzgcp6mAS2cZqgE0bQVkpOkAnMO06Vpcnf10/+BxGKKWZGVJUwD9ykQHOi47RbV42Icuo1OPedQdCJbaPFLLpFh9CSA9nor+L/2pVlePzSH4kbVARLAmCPj++yv/7jimDwchETk+cCNvxEbYVJRU0kPX7A3sFKieaAmPaEjs/ms7i5IHct+fy1kUO5/9EC+xZYYgCi4cLFAnQH1NsJQeDywU4EXB1v0qLk3KZV1wSJYAX8QqiKQeTqWVVFp7wGIc1uzDiTpwn6uDa7s8JZcRdVDPvwTlq9I+Rgzb2TTrAhao/vINjy9D6M3S7e6eEBn9sjbtff4nHdQT/MI2Sefte8RfqGLJ6Hl7C+BW+WNPIMCZ6pEjcNR6ihoT5WZ0QaN1RVmcGbk7T5AlqU0b4gSUUuxg8Cim3es69mA7fNZDaJINNcB0goIvPVPEPH/eLA43d26KkL4d2V02J5BgaYI7EUf1k22lZdsgy2pXJpe7w94Z78+N7ZpXbx7f+EuZihEllCcakPgNRcIKgaByh9266UmRllih09BbuJ4xORfrW0wwiLfwWd2JQdCJ5nIV3wBMcoDhxufuDwh2bK3JaJ4wnH9sypKI3D9x8AYk+to+cecI8UfS9kurAXI/u/hIIfBoUFwjY2AGgzVfVpSq2OiARO9d2l/P+VYNoCthfFE7MEosDZ356M4pcprjB/vjfoUpP8JZub2b8UB4l3u/lYrN3L6xXdhL4yBSD4K8nyMuoleqPdCMHiykjGNrpSzNrviYc9EHru8bMOqPnlXTtZW3NyyDF6iAMNMt6JFgaWiM8ZzaiVwkGSSWn361Q3yBugzjQ07QGA5aoNQQvA76O5q+BOV2vXSTKfN3tzABG8wCjzO0qxcKUvR9K/Tq0HzaIG/UsUV64lgucGnRKN+oytnuT7mOqaTW1Yxg8S44ifuJn6rcZQRoHFBh+HPIhDyY5U4AFnguXy5TBoCZlrXngJgR6jbyG3BqgknAJZJ4wnAX5eWs/h7rVNTrQZAXPiNQXd1clWLibCBLtL+I6x+VEoLGHNPlxs3xrKfSMDozQiokGHGd3CwSP3UbEroa1Ig6dHIaVVPia4xTKhnMHcrjgPSbi5lbUdewi/rRqdCXkH4iIla9dq95umoJskI3s9mvuzcj1+ym+UD9IwSAiRIYQ54aFosUVRr6TtIpzfsWEfh7fLYMYCb+WSUoqt2gdHgpYBxNPXDvI83u/N21wtY5M/F0HxNJvhEx0dU5essCWCxQWPXYkt/1iSdaxgfOi5bMLkuEtz5jtx23yxpmhWuV7+BFj8kDML+0YmVrrUYmUhRfj6pwjpFbl+6eaTisA67q+ZToy0oRKwExSm9VAVEtuLHMGJ4q4sBsYkET6Q3dczpkHphrAnRh2eovn8gioFwdx0ZzK+ynCY96gZbokrjA3qBT7JqUISgYzHydNoM9a5hNwiaQ28zaIX4A3KH162SDeOH92GXE9KoqYteFXUp5FEvjYqJASCFUeRe6nh/HiBzhVRjZFKvhKRa5QbUUgpLIwrIL0rc7kdaBaGWKsOeSQPxSDS4/n1qofbTO/KLiyCuKLbvGzHSqtx91ycOsrmhYDt54Aqpzv7HIZGbb6X3bgTt7bifGLYfpTCFdfcUKThqQm9QZZ0vlNUa6pj5IkS4Z8r45oqLVdFf9NrvNPlcqDvGj8GknfbYNgjBlU77S3b7294kVm1drfw9Cvl+Zgb4pPF9PSdZK5y8VipwD4P4KxcJyc+JiK6Bvt30eWyx2NaH+dQjobspDp1lcP3mOp3VO0nePFThcPQHa/BLXO4LyxEhH8QKcUU7QVdiHXWf9pCqWzewUggmE+ohAFhkYpjk54SSd5ozNRqsIQezTgllIDgdLG/RkiUE+XuJQmBTbh0nYIP/hWxKLVVe8xO0j01BUuiCTG1xtj6gcbMo9QSbEp0mPrkVb7dUqKv+HjSwjCT2kw5D4LOscvrX4ri4Vl1c6f1RJg7YMwJaPRKXUKNeXJny/ksbK5ewdJkY6pWSqjTHEo38VzItpkfZ9xMH+vP/NcC2fO7mVpw9SCfFc0Vy8UWXu+MXS0Jqt9Qs1Mf7Szeek2bL+5aA4zyYDtvrwn4Z67LgmLRFD6aw/pLSEAAdyCwU08BmwIlnSiScszQDhimvbkCtNMUNXVa/sudXpa/pY+QmVDwqKOB+79I+YD5LCDZWoH6fER7JZ9ovtW/a5TSVGZNBwatDOwPECamn+JWFNXnO7b+MEomZCXisJ9iYUTK3vcspK+QWOtaNUu7RGlNl2c49zljwJkXGBLDSRpmrIY9fGGJKAGPwaIRqphyHoAg5YcaCPEZTSVtRKelYbdO6qZxdfnY5j1pWfwa7YadWR2aTGFeUvX475itDJ3RxbXBKgSkUiVTEKqF1WBUQGfveh0TReTOfxD9iY1jFwdhvzfMlGAGbnqBz37J73QupxGYPs6d70K48hpN0DJfM+AIs+HKQQgGFlHR5eHhNpX5H7XEgyWcom/7xecfmqdWfz5LlruJK6pfvtxcOFltxmqNgNFIA6IdNWvQz4YH1hfLjkuG4QSy+D9iIl+EkN0qZ56kPaf6h5ogpxPsSjNUCwexVD43ckS+Zt+vfDyszQRbMFnelYPVy9e3TNWG7lp0mxuCbPkR1T4ZUhtyL9ZyEPPNPyUx8J+fvyWSq3QXWjR+INpp8rW5X/i4H7fNX8zQvEpq1Fd0NVhLbRpTOoUt2SRpszxM0iC/8e3V/tknjX0MJicQ5xXG/2vsHaxvXuTN1UAkxu3Nlh1fVq0wPGHXE0Ry/yUCEicqzl/FXnZFACbZ3eRIpHvIfJ+fF2L9il7CQVJf8PBEOewA8F59aZXSF4ZQtcj6pxBxBY0RgeKncO+P2NENGdSlJeZZIlU9l956WEgBfQkHi2HdhwNhx/NyO0mnrTOXPJYJXwxNG5hWS5ES4klAYVdvFcwM2GK5P+XqiU6odQM+yfrnTtDpcu8T9+1RdghauNVKTcrPPArryoLMKXCjXbavwgXPIzvfdN24OAqTs/jaO1J/w8bHdb6IHxYMDy1zfzXAj0nTCDD1wXWqUetKukkUzreIuAzGftVDjbeGZxxYknUx+MP26gT9RegUZX0Qw/sZpsaLLPYcztZaZl9yfZKtk/13A1gw7MEZBfoWdEWfFY1mp+06vUFhFA3aFyrmjBbbnBY9dvagkT4ZTQXt2KnESaBZmV34hbe6fXGJasuA5d+SKFFwdO/YmAtEsdIKtOoPoLlB4jmya+DYAcij5Lu3m77ueeLuV8dCmiMVTffa9SWc7S8CyVtZJdHzkZIb7Ouz8Y2F+VDVxKvRsr2ECfal0fDJLbJfonv9iPjgjnzQlw3TDL0mRLowQzkRV8F4DAkSTjWedQJ5Gf6AiFmnI300cqyXjBMAS5b4oUXD4cgaLCfkYNARxmjWnUoLcSum+IsQC1e0mYsLUQAOyLatQ1d7PVoIsSRPv5flhcFxDH+pk2ymITfebKlW+EeRpVSwUVKnWueFGkCi1+BWzF5zJ7R3pXrR2d9OkThmNFzecFIMV3ofeW85XBL7+9EJb+EFek935XEcCN37O3N9TTmf9dkqwzJXDXRl5k8yu9A4P9G9BSr5h4AqNu3mSxd1uTv8gTdfIg0yb6o2p5F139eKjeifF96ZfDnvcO5ETn/8YmyDUHk0CVtXRyq/RscDgo13vukNl+FGPYOIbYmyel1QwqraKgxVcNCCAY60OvNE9QFTvvBs3Nyge00IVxbSYEMAWRRxkGG2O1HP19kTzaHMYeMGjzjK5qgypJlQAuiz3M8gi8DzX7j92BdyP5yYoeJLLdG7C9+1zcxOzCCpyPfTyLKOt4KkqgDM5dRv9XXazPESymxsMtSWRfbw+hHqORyJbzR+bm8rMQlaP+pckF2nD3t0RSp8RiC77W3tpBdVfrlJYseD0BAglRod8wAAvv1n6tzX4MmCPOU8IZcU1S3aI9psCsRN7GXnj9QSZHwxrdZ78tSb4Qx/ZomQAGgvOa+T6z84yyZIuxOowUEaU76FMjp06dlqJXjoGEOD/TpqUf0paAyb8jXhw8jmadm6fLGxt6qF+8zIp6SOs3SGkOd5uTP8ry7EhccmscTCecaIj3S2JiF61cvqRxWP1dVHVhlV78ai0P98yfe+N2iTvySGDwWdQ3p/wTh9jo1EeyW6GsS2lHdaxKmvPidylT2IjXZe3zynEJRdAdafZM5gCAUSLl76E97NjclCtLWvCS33wOq/IxcKpsuxWvs/ceO9TCAJvUo0a9pKknHdYwkWp6rG/1o3RAFdFPF9wbFyJ03YnhrugzuzGYRGCgKAvMEgoVRJYg6yC5BiZx8cRlgAAbqPHlKtmv9dwyHQAJdGbsVUOqddcZOYj9ag6kBTFWw1IbKWe01EhLorj2G4gBR5fAeJo1wwFihX1VIPLa0slyZ6GNR9QDSBrxvy+aOM+XeZ6q1L4A31SU6FzyyykGyozKmg1x+g0dtoidUhnTEp3jLUsdcur9jcKMifyqlQWwivtscbKmhlw2lORcxjX1vG4KBY3sVMJBt9upqGoZeMz+t++GgJRYfWyQ3vKxmZdZwojXTpP3dADFYsTZXp/RScGUp9ZtvDpjodiIdV6+BGh4uM4/AZ32oGbfhA0sS7mpoG725Ba60W5y8nO3DZAsSHnL4TuaJwaOCa1PfklxWDjs/6mktVESVIupMnqcoBVaxWQVhLVD2vrR5dXSde1+61LBYUcpdKOOTxQwumGVvI7kOhZtArBoUZMmK3uEoTrGc2E2OSlZLbbvlRwJkc6yUwgyjdzCuusVH3ZSHc6hJcRIf9gqJQmW6M95NrY+lDRGo/2O91n+rKW/MnC8fRTscvamgDaUNgSCZN+Sjbo/RQ7rM9BOU0sFH8qM+EqWsbgU1g0AIGa1yIzDw+dinKY6CgKkFEBb6l2tSuUmL2ceE9/0wu5V0okn7yuSEPr0RXX9BBVPRlOYdWAbZvrIXJ9sZjRKuEghjAaF3pMePVUPuiJLJxjJhAj5PxuvGEM1lPUpCIRev2O1HTckLlq2uNs6BWxzZ31LCuKdZw151HUGWUUTP8g1mRbHLK5p6r35A8+F1ny6l9VETte4YOWbO+K8kP6mkGC/GWrmKPM/jz/yNxmopadt1POR3u/m2vw/5FXpdn7WlWqwMIcDihPAoaEYu49E5vSFXfPDcE2DY4dIZYeYHV7uVTHmutW7Yi91HULEK752WsO1yYMziUvBYW1wJMsQI9o4czpHcuINfVQ6VxBskomkA/F3TBqz90lV9Wu89IXow6+HAa9+o3SIBK9XRSe+VacvISkW4OT3wbp0A9/z44uu2C7/KDeSxTgPlm5ecXTclxnvMbjTPL/FtyIytKj+rE2kM5jT71FFd9MDF9smyIl9eBgX9EnFOCkUwGrPx7to2yw6QJ0mZ2eRcJPAZlM7yEQSxWIGoIQK/OW5YcDmxoELCwb5g4z2SrfBE0GJGlyyTX85+rdRJnjc6/MJNRaK1Gl/obQLrHNtxdexe9VegNdA312nYX6XcV8DcsSxOaY6pxKtahhp9udyYoJSvgryy259uNHUrhZHsKos2l7TuHlZaV7+XXOW9UhJdY1NHJCDyhRHdN54kUbsiSIUkyPGQ1/vp9b5eJCqDN+o9OxJPZgmYeXwWbQ09L5Ro38/oHAymYvwuc8DQ99Z8JiCEyyI2bNkujXamzlHHr1LqPbTW9toRjKycppHtwvSCjOXreQN7LsdaVufAc2qkVxNfgqNqbHEHdMkuvCtogkzPPwteXOHhLH3anGNXxFEhduuznSUwwXJHARrqWVXOry5ppFYSWGNUmX5LMuOl7ezCvBvNuj9eyj7+UfGPelVeHioGZ0HLgLgFBah2N1nGQath2NEA6QjbY5q96Ehu/AxZ3SINlaEEYXBjyxXuzQSx9dCkc9CJlkLtdSfPv/4SMxLceqvSYEL0CEHU29NGP/e9AQUt75fHn83hYFTmC3rBOCHVNFhaCevgF3e2wUw04bZA0Pql9kp8/4/PrdeKRkF0Ig6TkGbXeHK9lX8PxjM8rhShKr2V0UsCc0tnXkpuTyOGQaGkEcYYQVFeGZmqHXq2JxgO+iYJ68jyfne5JKZ+dY8IeC7tKwHsenl5GEfl8XZ4BeEFAYorGaUqiRJRVV7Rgbq5aM3wdE3quxcQCdXa7RhQkiBpDS+SoXkmGyDl7iXFDmBsqOCs8AOgaSwhX4t5XvgnQ5XCQvnOssuNIM2u9zlvN3oYJnZw9bekxXlwHFXOI59aggt7wVCYFg8KOB9OiHsV2AnnJ1JQH/M9cEGKbP0/CAq/m3obCtPoM318Rfbdn2tZPIL1eXqV2zYTNBn1bUYEhvlelquU4fw91VGlGZMKwkr5m36l9MxeSBaM5DlxdFTzSVpLLcq89Tq62be0ihHGcRl0dgk8KYSkuTdkBIhpZFd5/o2a61gvJG4jyImvlpFwGmGI7r2IuUCPjuD4aBgqIGzSa7KBWzRijP8zJSCU0sSD/lIcggZBVWVd2etPAzqAUorZciWmf0nqLhcTu+f2IAYrNcxW/B3Ww4fGAMglw7VWeSgCO07ybOpdEV3F90SbcoPkb14pygoVzVBAIwgfE4BpmOOslMOcp+u1CI8i/+Z09Jtc6uwYwpo8/SSrUf6rWTntCgjaVB/i4yaht+Ij1tD0d07PoL+rZiIY/Nx/Un3TgNB1gUr1T/xMDqfm8GonzTGBWNNEdXSAHedmhTdjQ64UL5voPIrxIqAWCydo5PZCwfrFGcs7gHCn1XcVFAp1zUaA9mPbGSbQQdpGYTJYIZiUkd2IM1Z3L8g6NgYc5w6gymAA1Rl7L84GT+ZS29w0pEdcHLHPEHDfO+fEn0cTisbSxD8i6r5UXg461dW+YsIfgZkxzlQg9T9WEY34KYndps4PWspvZ62tAL2JTitfRASSLSpV3oGpfD6JOC7/x706AgfpmwZH9F2HASJ9vV6mJ6It1+Sv9shbMMfcpt2XFoAunX1F1XsJcH72GI5bnzdBh+uK/y7Iu1Z8rfb7yX33EwJLu49Z+zDlXTvlNDGNZJ5qgwbWfas0fV1U6NUKTTtye0PX0AU0q0qR89gFX3bOQcfNPbO6zwAPiQ7Xq2ejmjr3mvcIyhneyoj1XiGkVVnN969W4RNe76HALm816FV9PyLHgptqiiiq1a+vmiiYfmMSb9fgnGioWtwpznmNuG1dxCclRaORYR0KFwNXeyZ9DXwz689pbC0r9ClmhOFbzRj6ffRE+PyVuJ3z7Yy9LvqpodZYCA+ywQbmY0UsGafaItV6NGixfgbo0kNKH3IJSoByf1ucbLUD2CqSF8kza6Oivsy7e5+rpD+GKWqdozZEprB7GfwFjCTp9CDjhk7i6CwK6U8uLOUMTi++xeZYEaGgvI8QUtXJwScZWwx8Nvpztmhsc0mgCK4i95ORD9AP6CSOdChKIIApde0pMXw1k52OUT1hL5hexnHQ5WjtlFPLhGST7TdgsQOuFBPqI/+6CZ7KxE6I4kIIqi1FXtB9Pm6myS7pklVv39p/UYZU3lc1gHZksNFb8GVuSxYVwXx3IXrBQANMJlA+HrXz/q5eyTLrPPmP88Ue32baNmgXxN1OogQ2ewauvLQOm295JhOU+jp3H6tevOk5lS7pQxp1T1wpihCz3XEqP0Vcrz9u1n0FN/EItUva1KKnWEPFuMYGRI6PhNj3PFcl8JUjmQTxqJnDwhtPzH+r0l7SRtyicOoVAgvzqXb4Gg4IGMlaoDFROcdWDjQ4nMbbUbip/L21r4E6E6yIQrHKilOLyxYszu80pud1xKMQyf6jEgkSEnMTujv7nh3JgQhCLk5MK91wT/Xvlczn8jQI6XgFHLLYURZBBm5FM4RJpRZvsJ9Zqil44cf6G2WqV08jEcDM2sFc+a/lk3zcegR+dbsgaImuFyeYqDWcT9j9bPtGgGz9RF1VcT2yRgDV6KNmeiP6DsWRUq4KnTn8CHu261BTOiWhT6qXatMzk/G+vCx7mW1xaQujLuktYPqYX243vctqZHkmQs7QH5SjNv/0rsgroiRHJimYkO/FrqDObBDzZyFzsdUnH8Th2WzuFHDFDME24FPfjQT+zeKMZiJDfcsm4lw6HZ5lFfIdS7JtFyXrY5KM7k0fS/aBQrPfWms54EtBYZocbPUcNBBlQNlevHZovOlrrhQkGrZtsAFwpKZdeVjBsnUexHfR/A1WZJv5dPNozpUHgK9fLPnR+9oPI7t/Nltgfwfft39/xwGMTG4Qp/MxS45VJ26YDBa1gd9gwiSG57h2uhnq8cFllosDxEBdZcZXRufdr3jA/hyPCmMcLfmXhVc5+lsHVA/kTlGnZpLaguS0rzc/h3GCD6FehizyND+dLMBX6lOGlFfLhD//734d27BPkDaDPuBLYmpDqgso1NkYbVHvcKqIdr92BeF2dkrNjpg/Wyd8hs85T/OjlMT2/w+xyQCj15GTxSrUOzcOM6OOacOebzrbz+jUUS7B5tVhi//lJuyTsZQAL3kuCDiD8ThAg7JaEpIe7HTHH5f/9pBJWJr8vRxNtVEqP+OzzuXSwExIA5PYAjEFIxnOokvl08fBUf/VfpkzdUKKF5/EZIxM92fdGPTH29ggPABw5HSuzQIH8pXJrcSoNwC84Yxafr7UgEK9ZqDN1CxmPkR9nmK++paxfrF/RktpowPUQGA3ZO3vnjlPZmnrnf4EdqRnucKN6/YXEjr5RBU66URxoSrsGIsvZXhbrzl9Uwbp0rgKzx7ZyMHIhy6xazAWqBECehIgldO/Uww
Variant 0
DifficultyLevel
479
Question
Mike and Georgia saved $90 together.
Georgia saved twice as much money as Mike.
How much money did Georgia save?
Worked Solution
Solution 1
Test each option:
Option 1 =2×15+15=45
Option 2 =2×25+25=75
Option 3 =2×30+30=90 ✓
Option 4 =2×90+90=75
∴ Georgia saved $60
Solution 2 (advanced)
Let x = Mike's savings
|
|
x + 2x |
= 90 |
3x |
= 90 |
x |
= $30 |
∴ Georgia saved $60
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mike and Georgia saved $90 together.
Georgia saved twice as much money as Mike.
How much money did Georgia save?
|
workedSolution | Solution 1
Test each option:
>>Option 1 $=2 \times 15 + 15 = 45$
>>Option 2 $=2 \times 25 + 25 = 75$
>>Option 3 $=2 \times 30 + 30 = 90$ $\checkmark$
>>Option 4 $=2 \times 90 + 90 = 75$
$\therefore$ Georgia saved {{{correctAnswer}}}
Solution 2 (advanced)
Let $\large x$ = Mike's savings
>| | |
| --------------------: | -------------- |
| $\large x$ + $2\large x$ | \= 90 |
| $3\large x$ | \= 90 |
| $\large x$ | \= $30 |
$\therefore$ Georgia saved $60
|
correctAnswer | |
Answers
U2FsdGVkX1+wDB/AJzdehtuRVumM5ue55fzhQAYuUJ1HXo7uFeV3V4mAQkiBVX5J0Owc55aKRDW7jZEzO98K101zgSEcgrcvJg/DupTAo/NTrrrJOkMf9ywlpqxiGfzmUydoMCs3/0Xx82PFs8ud/3owqAFDvA8TOY7mGC3le2cSS/2quqfmj4Go4SIQEupjZiG0oCYcPY1UfduwloQsXf//XKCPiKE86ScgCwSztDNYyPfX9+gA9J1ZmnaVLQ6H4ULbIGTPW8n3kf8T9LwdYjXMKq9aZbEVRVaCDEP/+4DNQhMhl7DWtRwzjQe662C1DrCWM7Y3z5EY2ljRMWn6AdOHI94PL67g9GFrQevo3bAEjglTxGwwnQ9g6Dw+DeFUJUr9rZ372HQfqGQ3gIdABb7tHLZG7eUL5yQWIzY9vQb+DupX5iYkxZibyuIdz6ZSVrRo6g4yOvqEQY5om7s9WGVtVnNbb6zZ1bNTgpDN3OFIAFTTqNMqgGpgzzLDA745NXAH0eBjNhnlE3PWUnt+fB6xLeQ2w5AbC1LEMiFSYN9lRn1bzCqA4X4smynbhOSu/mEqhtZuEnBUUoT1GM3XiiiVXi/ufAFEvQSTtDW1PtEltWYJu9HKlAt787472uiM88vzSIdKMLpUnwJSF7LJEe5kzMafkgrFn+ZOZhQbdEAu5OIXsDypKcedXIFzZHUeJW+BsKBbEuTpeCGRsU6oGx6LdCUMAF/KuC8pvU17fc/iCmSnuz5zSAuS5r765zFG1lU5Dqh2dC1cdRd7dQsPsz8slUmi4FJS5/3OkRPbmSFKV1K+6885IWRlXNiT6l3Y8KJXl7hTu25LoW3mUosinlaAM7mJZifjSkzNP16Px9MNU5rBbho1PEXqFvnMK8yRJ874wtzQV9rwC6DnZB5wzuryJj8uZ7vgkoNuphodQLHXSnTTlWveAoR7Iqgeh4qtgUAdWqc3CWA1Ro1WIlz2qd5IbOoZ6xdo4lic2GSUBFq5dLcCN6quV7yuhtiCXY0Igb1mChbu1NKj7kI3WVcQYW9tOEkGgUwlQRa74WxfOR+yVnvWPhvRto9BB9KqlfQl4bxAxBKg29SGrMxx7LwwFN95ZVSbrquFbaGHGRU0GEEzr3FHtt9gRpjbwXJz3LuH6Li8W17i4pJrKq/p9bSINtFTf2VoDO8wP5Ja2RiPwDcDnN4wgyo/vq/8iHzsLtmLZ2T9CgfvIP02sLH+j5NPetZDOFFuuCLmzZ7wa9SFbSWz0TmdW5Lchw6G0SRzc7YxufwFk5lnejl+erkTq7Je38TyGoEj8D7Nw6xyPfIqCzqiLPyGIq24QpgnhuurQSNgXa4a0Wzu7ncc2ZJ4mkOUlPSjoxWcRZoC0V8fVrJWNhOUaeN/DBJshGHSlK5znENeHykvh1bU56u+qznwFlOnaD2ZC5av1KPxeQSmP9n1wNskIIRErJg/hJhf1Ox89x7HMBgFQUrDG0g8g2D6W2CvfHS2Ob9fkzCBuoLa2JcpzrbsAq6gTUiLIqMrGaTuPFXzBbZlMtdJwOkgyxUJWgSlzWuWTQa8VjGXE3Y5+8vNK9fkmUDPUxRWft8PNVnf8lv0e3YTHkLJEPJNfPDIwtHBWR3pZM8MxldPG4O/uWbv41cJPssv3xzPqQawEuMNF1k2Ew7/0l+KGjDUUp29aUoDEU2qq7A4Wuktfq7fB7M8pXeJC51LKSjhprywacYP2HlWoreNs+QuIoCTzW7fkkqvhBze7XPY8Lg8LHDP/WL8PL4E/RXdl1tIo9Wr+CfMn3VYBlhK65KAxfKYCkzvRXRH6qgskbh/1I3Sj0HB6x253xEkt21fBIK14e76syrjy9RiPlEN4sVNexhXJKfKOFNZ6p+ZRchOzoCmGMWHJXxo319ZQci/FWNsuhvIOZYHZD4fr2piuZGiDO2M9eHBUc7eCbq/QdF1cLeLlLvoG24c1BeYuB9TmrpT+p8xL0ZJmF1MzTdq7wWrZOUVzBxQANYe3pf8KUeqA6dfp1ZLzCKL+aaoe7PoEXv42JpBkns5myt8+XonEumgAxMbIlBOKyMxO/FvIRvzei8lX9lhrzygg76ihSrEV19XoIYIomCEbiDkTYWF6BEt9ILP/XxW1kPyrnkkKT6CvY2qEnUEgqzBrPVD8K92Fxr0zh7cRF+TVhRAf7H6jZZ5WVu6kj3VrLY8nkDeERq8UmhfIGt/ltO4/FghTYwPTZXra4TefCgA4Bqj27sb9ESrWrLljkjaPR0ZE4Qwv8kUYFG6aRbP2GuQF/yfpGcXdgo8bGf+vBS/OnIW7b0oRModTI0Ge4QUjZsOuqPxRM4Uyn+/JNc4MhONVDML/ZWxx2LDFuYN5jeG95zm3TpQFoAHcE+j0UGtpH/CjNsT4Mugu2Q6KggUbRy3S21igFGZdLLS/t1J2NoHeaY9KHO+2XaozK145bFEfODYmAGEIq57YBpa9R/F+bw5N8xND5zcJ5qkR6duNJ82IVllUl4jVyeB2UPeUa+ZTdNggaFstTs4qPNrAvd0bJgpT7jwlpz3TDkmCqtRPf1jOJLYBypPGK9pU57W0hiSLTzmkTVqNvXGNCYvAwjO0mpCzDmzMqQtJD64k8LGOKcZaIorzoFZnpYCfM12PS4g3N6L5Rqek48dd7s4hRgGAe06AMbOvGfdu5XOkQBSqbuQbGXb5WOGulwtGl5ml17CsaRTzQKsPM1gPkJdyWj0ixphfj1OORSbVwGHsddKbLzHnVaNkNkhhFpn4JIYO8vRdqtSAdrDQcBc9Hu01nOEEZN8HfuEFQA3yCA6g6+MkWEVkLla3cq6v9WFiQNuYrK39q3BVpJKlbSaJe/663UaS8AqrqyUj6jKyRM1LK/YbnHMmfql9IKoOniCyoDalJa6y/XS1Yak6DVkM19y6sAV8MMXrrU1GhOWg7Ka9T+35ThDp7YsOrGwQDzRDRdP2UPO92TS1x5+cgEE4qySKmQsLYQ/b0TOczG1VF/tNXZ+YxPd231xeRB477b0pWaxsCb11XnohdWV7JBm2ozd5cQxciCWM/OX9mjnRoU/sfSf8IEtiVZzVFvBMNCpot5zUFY+F8YUEKBk6b3JsAQvQUbXqMdPYFx2bd0FwojY6KMfzEF5ne2Gua+q9xIX3Q4hzj8JGZ5V8bHoj+wi21HYuWt+DJ9zcWUhQSCirbFUJ84kBUt1CpCQaPqmqjg/ddtwkHeUS8ImM5KbuwNxF7xUskutYgYhwT1dS0quHzITQSl6vCmoQvbgSakn2TbEKIUWrctTECqSl9GJ+P4ByTN+L6znwUpZTxU49Xx6sgKhHw8GMAmT7w6anesUWt8oZqNH2DkgXq9XGN78NGnXOx0R3sYG1iMITkRlI2E4aZndr7TtRtNJMFGbj3OmFXHVfpeR98V+AaGPsRsIoSz1/bf3//s4DdMcVZBUiK0fmU0AFR9vc39CMa9YcDVuLbfFFyYHrz+T5whrE7da5HvyV8ThO2S/hPp4T09sOpBKIOLnecLPBKbpyXlDJg86pOvlOp8X7aIkRuz+vg3B7ndHeEi2U2oDzxektdqewPjKMhQC//HFalULAenbb63fBaz/pUNsgUYypjrhtmv8ZwdYIZIk1eu8DQB+R9Plp6JsQjsFUniF4n2uAk08nqPpj71Q/tT7MOSNnbabtcB2dp95RFaIpLmAzSzBgPHHMwReoILwhY70SCfJieP2upk/mT5K4GkTGPBSsVM2Q0e8FnK2/BWCIWNSQIm4rEHoAW+uagBTHcjT4mVXPX4+3zCnrd3ekJTc9rxDWpKO15l6QX1GTFGfWZdAB7Nlekx1WhbQntX9PgC/DKCS/GTBwNy5y1iXcLZvWobC+9EPX02g9fzl9INj3epfiPgyJSzGUmkhsz8q7fDxCoCnS9308EmZeJRs00zbcjs3luPaYivxZWfC8ndk3IpVloEdrD4JaXqXevFDAlyTnW7cSMQHUFrTR7H6MuX3of2lXl5agJRYlL0N5QfLecT3YsJAgvLa/im0YiGlbdOOgg+0IZnhjw/JtJNE8iMBez4SsJY02fFpJ75t1aWfYE+1gad0L4JPRPFHyPseDBgUcCDwVxKsAJgDliSuIUUZqT8CISKbpVe1C5GFh+K5HKwojo+3d75LmA73sM4bodsTdyzmWY35s4EbHMqCIv9zGL3CTCjcE2hGlW3ddOCttVq/6wL1wE2QPTZwNxGeBWZoVB1QeXkkSMOcW25ncnMJgmrN3xyP6ELgw3ywTrVu7bAths0TY3ZFaowCp7Pxc7DMHLk4ZOPApI5mzPZhlBB4ln+sXgoS1Tv/iB8oK7qiWKP2ES0/k93zjXRXX+uN4X48fl+MIUmEX6sMSNcATXyihJ9lHSgtBdhYSUJiuEs7VCsro9/czDVfJiV5/z8AyxxckK5e7tXjRCSee7qrYh3N+zddhJtna22yHcQZVByGtX2F6spQaAaVqNaFVYTjfT0lWcI71rdIOPW6HBrYwVlzx/QvVpX2gOGLTahcZANy8jaiQf2ap7WQOx12TzL3F1bETJcS6BvByJlt/aq1w5fYwFv3OSMP70SsyC7GNKhzc0Cd6HU+HopjJpThu4MQgaf3z4vwOjy9zHTN2PH848K97p8LKK+GEuo80EWzLX4k7hE836f83UXwlN/qBFKIlsqnBlyHbcqlRIBxA7gqZSnfDelC/NlNJ0/QZfDJ8rkZXl+JlNd6W9j4RTo08RrVaUXGwQ7UQ4SJzTpLvKiIKumyjhMB/uoCPDmE2VzxFB1KTmLN/JYLpFRpCVwNrbWfEZvtwu/7QmhGSTSAwGiYgynZcbYNoBGkKjhbJpAuRykrPIMQjw1H6WsNR8nuFkzHN99QJCcVGrBQBeOs8YGnbd/U5p7mjtMU6naVXYqfY6i/iwLKNduRcZZCdI5CRqzICfLRRZe+YEKYP7h9EswF81VobgY2H2oKr97U/N28EsO/D0gutTMzartgU9aliMkJHTS3k0YZavGrTnzPPKVUWWNYgX/U0BKGuMbYOl74+X6SKPLSEiDuvkMgvLn0wmvOURwdtErQBGWNUv4oMUl465fngWb1ST9Yq57ahr4+ABv8U+zO40P/oeIvBmiZn85XBC+sVI/kY4kYHJwzx77ajyyZo0zBmzVmIOeTNBvAXQIHF3wkqmoIKWzkG/sqiUQYmH0ZdKchfe32FiCZDO9ldW2byaSL9u4gmJXlzMkVu6BOcIOPvEXeG/Fnb6vgKPo8BVNKsN5P/QfC6BPSR6G5b8TcGEsk27mzcZ/1wJhKePzaE77+OuSf2GBLVRNNfNS1Zm/o8o0AjjP/YJKkbm78dzDHPuHX7+WCALa7dGgZH1F0oYzrZVcdB+A3s0wg8W9Bl/FJmzt2ftDVCM2k71JBiXsswxOldCiOnJAagEnbuuvn/5HPavZpS/lFeKViUjvmqUcfhkYrC8XLgCAyRDTn94xABlNpFqhCKxHDEOik4VeLxZprX8lcpxn2Dk7u7Er5/JU3eHMd0bsI5a5hHR0m9qYtWZgWeuPn8CxNEdDtooSI8lS16T3NuJPm1R/nPXHovyXD/EYRn2qA/LbkfTpyaEvqGoso65s7tECmzxoqFurhIvEbE/JR2F05n9JBXe3zRdJ5zYsY6rJL7+6tKdo5reP+SYQec8LG3V9kKDBbUZ8Fu/uCVmkXQT/msAlzo8S3awOkNRVIaI4VlHuNnT53/ivEQ2rW/WyYYyKZ6GqHyLAwmVLdbfeErBGI5FCIdirSW3qnvKwOBd47YZaL2f+dvfF7klyYzPJCPM38zVqAAzQxAXLLJ9TWKlB5z7QC8vCxAeNolcLIT1vhsXzz0DEe8LSLy47+n+dhYkX99V/WYeTvwE2lu75xpg9lKpT0l0yBu52xNT+m8VUo8uJpxLbKLY0LErFuLiXqfFDpbN29gyxD6xAHJWHTT3zIqQhBaonbTVtrg1C6sPLr1uWQUpnuIrMR64laUzfEDbGMb0YVEpYXSwwrWe3HVPp/BPXqDbT0wfPsc9/n1+nLAbbW8RVdVRLF28SLSCCVUKyEZ/q0/D44vwOLCRiTBzMvl1AJ2dfIUqJB/hGLl99HeUwMD8rIQDFH4Cwyw2JcoYvVhTB+/Ic2K7lUMyaT7ytEX5NW2VpCmGqkymNx3i5cRtBn4jSYMtuvPV1136/B/SoZKExcHmCbuRQGs9HC1CgWT7IAdaidvw5GrxslPrB6irkSqflQIgwnGW8fxvjIupJ/01Kvc1A4kFnWynkAPomK8jx06Txq4kmOcXPF7AIJwBl2e9xY/nFLIo58ijVaM4CDnv+xrBYfCrBSRf+J1UthoFeg8ByCq6pFrLaEjPs/d0YIpte+z5QzK1TTI7YIdWOopst6RYfbAytrTxnnPYmxFevK13rjT/Nrr0sUgV0AyBeFrr7W7oS5oj/DzBeQzaTUp7WV8ZbjuXx9lC3EDUZ7PH+tmgNcpL3JvZJaYSCAvnYzf571THXvDA6p5vCG5t/4j9ST+7A4N6fYDPotyoDaKTdT1xOQGfGoQkQFVYR+vCW9ItcpEFnUVLuoilgRi6+AWDfqzSQbjWUsdtenkApTGaJhiWRC574N4lYXqE8UzbCyJr27yVTHXGg4i5aMfZLs/r9FrFDjW0Ql50a/ln/xyNXV6KfnB3VSh5LkTquOcaKTT5CQc9IuhCqZeZcPv+wtyGmiex4BJrnr4uPePPKFUAB+lu+lWhTgqli66R4rXZxS0veMyuvD55VWpKrt4IG2MYccFNOMK8/KwessmnK1tH0X071JN9tmGoYmaPfoQj0a77x2Wi13pp1AeLL8UA0ECKvF8KwI8PxQyofSmpGoouU3sdkG2ps0og+V44g9ZlBxVlyoIZ+HPo2KYbi7wxo4oG83EOca6HCJLB7ASEkjER10w2CSWNodMiWfdj9u5IGWiSBWS0xRGiaVG7EjnhQ41CN76sWSrLP53fOtlmll6/YTNZ/FsxtNBKw8uqapj7lFkvqIG+vGQ8kiJdJvmYZdtiKilBkspep7/nU6D1Kh2F/HTcfNux5Tcx0xjgiBSbi7M4yWkjoRAO4YsNhG1I8KnG2ajdYJa02HS69Ulohe7hhn1iCiyXV3Y0wNT7obWw4KN08KTkVIFlxXUR4xjHOK7JUj6flz2jV+HN1uNcD5Z7GI+Fx9WrgHLPSzKLejsSj+8LIywnZLJ+qo1Ksv2lmV88FC5cMWjN4jY/ByWsPS/HzqmLrrhcMniO5wCXNYPrMLGdilxBh1vrqxJKTQ8r1QZVBjD+zY6kMm92JLZF8fD41vZm86XmbDm2BRK5ptOTbyw4kU1BOvp539pVrEjgZ5ig9rj98xU9/DQ8OsBXvK72xrVofyskicgnOTJe5ZavDd3rQnIDqrbIeRn+C1KXnjqxCOeR295FHxH436e7E1n4QaSNTsAti44SvdsZXp1iVmrU1y+ZZfJJ/rwGFaJ2V5w7uNEbJwbOu3p9bbT13z+02BoJxXDHfa5WR7Dax45w8zgo9X0cj9ZnwXO0o3zE1SMX03gk64Zf/MBsuZB6e6mLljrhZAn0T9jLAmuemq1WSMLF/LsVmy+XaJTK4wsHgdtbhQv3MWWM4zRX04fSya/O+a3qWE5MFTLqe0bvdvqlu09TeeK4ywHF61fQ9J4X5eCIbghvw24xeW7EHn5QsJiA3Rycg2NlCQKd3ELak/Pq94MzyV4IXfaQk7YTpBkhfbPBlr79P9OxsoZJayu/iUS+5WXvZP3ecuP1A6Urdg0R82s0h3IJn1MluOpf2xvwfShSgS6G+ngxadJaZef0KvEPGN++a/R7mXgOflWmpGEstWQxVy0nqUxWtXyzVmvABI+TokLaW7Xs2Kr1eApVgyppwXpJbZ7kAcWw2a5cYohrjoyRWhPagzGfLpJKEq+C1E0l2cUjdQippKZwaiQi1diceMpeZOj//mqZUHiJ2sZEAkowR9rPuP+P+So2gWWgdfInVbnsLVho7HfEQxI0aBwVgG2Oq+YxIhhTVuaeEh7WxUl4H/fAxLVrfOrrXyri4ltcbSrA1V+08g0clUE4a4hMFjextRUKbX39R05Z+QdbSo6abKZ8ql50ltjn9bYjQseGD8WkgY5boAj4Bg09B5RhAhAepHQIS9nbJiNnJG7+qqLSArDOKvz1XATtQjsatUt9oRmbhZfY6sL3p0sj3WxVdF2dTuwHWbqycTY2pZPHTNq0dY7tMMYQ3dv95rLvzfXZEwTPDkHgFhM1MiXX3xkMZ/FqlPe0Orw7t1UGB5grPETvvZuKgGtL7zatk3rdn6c6fXk3W1YUD7xjeDi7P8R29a53vG5ztOVWvkSUD80KhkRFxIsJsqyWqjVgPlzS5UNY34cLCy9UnBwbJBQayaQXZe5Z7MQ8bAmCa0yVPv6GJUPSrthU4a8oWKqCu6FTNvtG6khY3Hu1IxuAQuWiplh3DzI1pFWe6GiyRjH/HzZwS2Mg/U9t2/9+3/M2X8oBHixrCiARrouyj0MYaoGrCFR5RgotuBfbUzFdIin/4YazPMipzqehKgYv3sabC/1WAHGSQ4OCLCtA6gdPM9WHuhl890NYh75iFcjgwbAxXlDth8vdOB42T0JmP0G2wemA3qVE26oEJEra6UbTdqJzARi7uPqSb+PLGqo+gRLstBHEnVOFEq98x1l3GY3ulnRewCNRnUtRQQjRPTTX8/mB7Xd4Polh7DLq+lQd6jPwwiKfl36MckhZKZK//weu7u+1NtaiGlREkuXfOqPNIcCdJSOLDLLT9Mrdgf7hkJ/EbRg8UXr8tvrVWtX+y3EwOlcRStsG2Xu2PuD0YMRtRddBn1FyDaXALkoU4/nXEK+NKNQhEP4zTCOJcRxRF3/oydL5TW+jhqO3+8hEQuVxSklFKR3TNc32sey+1YERMETbEXTMMOy75sgjAxRT02UJlHHyHmRlJSBj8pvrQ4YrZ19jauBOB/pQzIiiXatipp1X1gx9LuDpV6724GqjNDU/g23+YEch3lg9XFVU2xKeezCl1jcug91aTzLFPeywLcEfmw48ePPZxDeE9qx4EwNi7pxDThRe7gJSIi7QjxjIW+vgjW6yEcdu+j870riTUd0B+xHnaU0roZIBD1CZxY6OF9ts5zCJistJMuOXVChKkmSTPJRwIsce79t2kz44oHObvnl1Uu53JduA40ZP0qh6awtnSTErLrNcEJFcraXLMBndZqchSK240jP9Df7yLW8p0is6BIiTbSOZ4yVVTpZSgAahdRVqb2kdyoZWODbhl1T2KF/5MZ5be0FQhLAKiynD6kbqSmrPRthV17CvzDDK5Pd8B4DNLAz5YeuwfsZPz9fqrJlRM71X++JoZ3M/JpUofl1bjDFgy4Lso97lR4syd49obx1XZQoyfO+Spw3WvuW8FsKTF250G8VkoJgfL7u+QiqmBceHpIKeMpeaS/ZbZdP8rQkNO1ecQemGiK10/ECpxQi9+NghmcCiwobbzR/UpW3IW/j+GIXrdxSiM86cpLSGavN0oqcifHKLghO/Dg+ShduiAx3JJXLJIXqhMfSP4EgxdA56Q9Vniv/m+yWe4c7KByEG9E5FOLbK43L3tNbmuxa8aZFMi/6syhCiro7VoJ14IFn1Tq9f3XXoJe+3KpYzfN3vQxi/gV69TS0k/UGlIDzk17LfqOaOCg/bGu0gnKHr/o5FHrFw3cCvMyLDiWmj86YspEsufkIvVbRDIobYYZKm+ms/40cy5zYMyz1wkUtKA3ratAo4PYRb71l1lwoqHBfzin9X4r+dI5AYguYBK+bQ1J7RdPWpARFkilAEPHuDv7Fqyve0ZYQJg9X1lUmF0A70a6ZkEurfVv+WJCBfvwmn8Pgsmu39y5el+UBmTZp8YNh8Vai65AaibkGBpMTyVl2bbbM/Lel0nsZU3cz4TM5W2l7xYF3x2eQB4smd1uS0qT8DHl1NAVuvSVMnewVichKnqCUfYnBlQ5TsW0X8JxKFyEWufmB0Al1/9rjiJJCHdrqO+lFWyfMFZTe3i6TXspFBpLNSiWJ+UllS4uMLv0bIRKlfN+t68x5BrVp5qYv8wSJB/aXrSr0aD2neudIDun3s72Fet9m3T17PwlPs8KJsdK6OecNV6Olp6YnHgELKfXC8fYoTz9uKiWiR7QcwFJWcLReptIGcY/D52GzOlb2aEITofiqpx+BItagwcIvZvMkyTLDb1f5wTfyOdHUvGw4EubXcChBSJBocmQVdBFiBEt6x3yk0tkjttntH8g5qZDLZzdhdonEnCfFrxh7f6OEcH8+RkYtX1wPaObg1+3IX2KEnOUmIkv/QRHb9WS9YDpt+sOwctsrdV/Ub039z4gnNHVzvYC49HlMBXIh8eew8x8p3NnRnxIVvdgPhN7xcDdjwkECNA9ewuOmm3vKG0EyMpCKexyBiidbNLTkygu2mxgEJjiocP8MuiXIjZGViLwWsbOSbCJ0ENGA4N2P3qV+0ZKloS0kjIwHABpNn1DugBiK++u5ZZDX4GjCQI7EJvlOxvZpCin9Ewn02hygGYlvWks3Qe9xX1Rumz2YzpnKGDnJL5f1BH+9CrK2xbx+maOQFfhagRKetGQi2DZhA+L/zmv0wXihXLkTAdGkW3zwSCtnzCMCsk8nTb5YHw6L5mWy4NdaAYG7a9EHOuOxW3PI+MEI5a8n7UW8D5ar/IDMAC5/jVVlKzJSaIBt7k7BYVlC4878ohPMQ/fUXAYvHA6r/CIRbjp5eA9/jXS7Kt7Eko3kxAhFiN81bvwl3ROJdqR3tAVwaxS+geze4YRwioqPStztHgh1drhjBfXsxj6IwUprlFtSln0QRGHeiUvbiwnU56qgMAFwjFHxvV30G8/Smw4C8j8SW1ZCnT4xRDRtsFCxtogL5EVEftkjjex6h62vUUrlWMAvj7q48ITZZA3aDZLSFsBIyIFfQJpN2yXBhMEGo8e/Zj+KKJ9ypxiBOb7j72zlUfFiebU+p787Nb32KqznbKuywOZZ5HlfZdztVz6mXh0tzsMIQxUmrXNa8eJm1SGCdjnbgZvSlWr99KGtTC+oLly0jKcdQ6p0fK60wUwgAnxq0sv+S8HhRxQO05+9xuzT9j2lKUkmFmTW5tssW+o1O4aJbK+zuy2iPA6+f/wf2cFiE9fxWuuIIyjbGmKzfDeNiLiqAveE4Pj/zWkpKgwCBnd5lwGqOdut5B4JpMNfmHJ5Y00l7gAo+gOkDfgg6YdCjEsBpoJ8cwMqJCBQVmOEq6hCNQBCE0WUQWkAkytCPKqDnFCJVa5Zx42m5pBU/57I6pLIhxoBG8bFWh39BTaPuCLl3hRrQr7+nqWGbRnaA8SsgQRRr5XX02g+bewnwBN3jKa+cd5Wfgdrk+RrhtVOFeir1XvpKIM9kIWng5og8u3ZBsOntK6/HNOc992Q9KiCGmLxFT6sNZ+ml00KW/NYOIbZ4MhQFnb7iiFM9z1Vc3AXVtZLJUIh9Pji5UrYlhlf4M7rHOVcSWuP7BKW/1jROJ+rqxNwaqjCd+YWJ0rOeCIHxnXGYPRrtYaoE7OFp7YMPeOMe7N0EIN1r44aokHrUPpmbsW0ZZKmnbKpngHe5CRfpitz7IMzk01ezLGiwUS4AoQ0uqhYd30YY0c8MIEIa3zNkiVOBKQawoeTmrG8xMLdahakFzOXPrNC6gpTsnb9nGIenK3sXkGzcr6qUPc8faCR/HX76O18ZEargs69IaJ7BatVt9jG/YLMTZhZX3D56JETCkvRUZYiyJY3tKFH9+YWB6izLSOGmz62DU3HiIPl4+JsXzn+uICirM3Nty8W1hGceKO30pYs86q7MuEtXATg0AQeK+0DQMRajo3asiL6k0eQo34crr0qS456w1RnuG/2KBXPE7LdUy+BmM+iGCtS1tNDe3koQN/3dTNu4Bkbo+S77FMWwzY1nSoHqWaG4Sh4ts0z7B63itRiv2g1xFyyJCPUYzS633CzmMvJUVcSZoqst2a2WAfJspqZXWPjSrDLd0FSDOwq677uzsvLfM254sbC+dSZmJ6bb2MD9tfJIklj6+upvEBvkDCYB2kxrvSrBkCkvWG7gbMoXbnbw9o/sywGee2UZHGesz2KOtKaCT/v3lkZe6eMZjIwPsMOUu4OqfsvtkKNHWQMOzy0l/s0We3WXOvf3z0kn50q36KX3lQgbu1n9nijCbJ0Z/zvAj3qxg9nbnjv7A1C/GbV9UU29HHUIzIu4RBIbdEuu4exeXZW/7+f2iHVyGBXVLi6nKPYIMuOJZqh8MKjfFnfR2m+FCTfuLcAoIQ5TYCYeqbputbnaZp1a6FRJiSTGUwmaM+UITa3mE9ij35WQgLkh7A7BCe05kKJXJD9ripTfhNUWr6fjs7sqi7NI66OvGKwfNhdci3p4oJ6CghJuh/W3N8g9vl7HtVP+dgetohEwbDUNeHAkQ1xJRNAG1lwiKdGrOYxHrcpdAtRzbhy8ojZmnjMsxkFsNEb5hWx8O87TRTHdVx7WYUdmOwv1L+KYDk7RlvL7w8YUwYXs4Xr6PZnTNKOL2eaIe06L0hXRhw1njJZsoLq+nyn4qEdq7ERQ4XU5WFlGBgCH6Iw8zu0IUnwbsbszqwb9btakiEwUglDTYgpnsTUEL+xqI9HpHlpnfkiZ4bUTdcJkNP9VB2IAuyasq5Gt/1VyyJgbzP53Hrs+g2u7zXW2tS41x6Cg0y/a2gd9nN0vItNrodCpp4+TVYK/UNA1I78+wtPBaWLBXDfDE/5yr1irQRRnA/5CXN8vwyiYSY7+l22QSWHVn+vLOPjnUlU/U8NbI+jdFc8kSPqZhyDfMJ7M1m2raW2/J6R5q3XZpaSmF5t7lS+uSco2P0SthFpm/lPegah1uG+ki/bRzGFyrsR9shXyB/6jBz3+5C9F3XYDPdF79LjSAir2hqFxq6LCczTfASm0gwfJT67vTS5zsvbBJyPFlPgy0A70iBg0ay6oyUNLAyxn5eQxt5ORCqxUdlSiPAtQPfDQ1jYCrecCqT3fv3DOqxow2Pqnj3gmrqli9fvubpAjeApbHWBpr28v5Rqf3ZiA/xfy5GTTktHajxF1wts1CiqXUrgZ1jlrq2DMQjehRpJ8B+S9h2oL4FfL+/K26yEGfzKnXoDZFE1A+jQgE7/mDSfHPImWBPfsfrnp1n5wbrl5Vuc1cEtqCXYkNrwvEJ1U4MJGegXkHwjr41Ld4lXpFkMw9cxTqSXbQLpso+G2ViTR4Y4Eb0POzBNXrvDx+i6zrsPrcyiILhHfiK5/xbl8pjUaFjtJgH/yVgL7a8anIOGfe99G37z6U5RozaVsZd8wT9mwezeI3v+LBakXnUmt6eIdQvkOIti8xEOGlekWWAbjVYVSmC7xaxF9bcB1f9SR0yT+LkyHg7xn4cx8xf8ml2y5lNjtNXTXOMUHTrXc4kxnzsQDmi0F4uEyJgnKixVBX3hEvdonI0al/tuZBqB1G6E5h2U0MrTmfTXFdIfY4alkSZm+kiv41b9khX6fR1O7jaEy1qcHqBroLj6yF815/WL9+n+NRmsFOYnNRbPVgCU8PZ5Yxs2YYJ2oJw2AqSN1ElmWbheF7+YASKlG/s6dzE0nJlqtICXjg2la4gC5/FfvBwk5Cu/sim1Je5eEcdFyK1WDzfLjx2LunxLajX+FqZSCCt8+1I152kgb6GyJ1NfKKKqePq3nBX2ndX1ECx9iRU4txQxwkLyFTDkbMNEFeFROk8EtTTwFcKPt5ZKwnYmLbtEfM2QWMhlvlQMtJbiuUJ9SYJZB45go/PLVKq/u6ChWqTNxpTN+t0dzvHWTr5YtdILiTMspFbcsr96u5irj45WBTKBs4bO51mxz88XXe2r9MTnUVF7SUgcJpetr6IgIeHy3GzVmH5Jv7Hon4lQvYeP8z32WMK0QQMhaq3SQR2kNeB5LUgiNSSDjIriJmz5BKfrLncR7s5QF3FhvktcTitrTz69XXGCnhHVpiBJf2BtIoRR2CL+dcgGWPGyGGhFKIVxvcxgAYs55Vz9HJxEQ1RlO7I/Z3+uCAHzfgBOQsfeznyxojLBF91sGMGsCtSM4X4BnADpA8BxVjq0zuJWhXSX3GbxeR0vPyV17pV9ff7ffW4MVZPnlnSdCkF/fEhDe12C2AqXjwAvDrUCbPA56TkSTkMv0m+rUAcfAM+KeH/Sy/rSgz5HFjnyJHENubhA6P/vfJLeNuwks2bArHNNqHcHggnoEhpRLqdBzF2KRh0CGlzy8Uke5G9UUgju+tmP7LcbspxVt4DZPS4m5RKdbThvrpKqceBIkBCP8BWafWN3MXgiSCVJQjJW4f1yW9trDdlyh8JHX7Z9DjUKLSO21iLh5o9/hm5XRqLtIlppfNUd/LK0VJLHAp9Axn2N77iM1UPrKX5iaurZ8eD5Pm6S7e6cM8X0JSF15HgmurPeo8dFl39qTytOlLO1+wHV8h97GVBxHsca9sLgSasmVB/2vX+rc4aqL/EJm+gP8E8i0zbAfA5ngpoMfPO6dP+SvkwhZA1kOoHwAiOb/Oxwz22efO6gZnDyEK4VhEFCwpCCs5P57iK3BbmC0gRok20VZhhK0yfTIOEUrWIaEJSE90+eA12MAkIMUaHDiQxU9/y8FYwc1JsJgxD2Ql2kpyaSFGPOBGFfI4WP4ylxGPcRTIb2Qj8Cbl+kvKtdknQ8rYt1Cgw0S+duNuUJJHoPd4FPhjXjirn6ukcSQOaAxTTB1CWegrrCYZxukpAAZEV7F9yJo1pSGtC7o/wocUWkrw8gCJBpnTm9qDJs7GT6Ar7Cb+vayxNbg78/3IL2hrfXrkFU30BEnG8Kuev+O2tlfDzyOCxMkMLGlOswyY6ViauOkcj2ovUpM89E2C7zPGck5RVEdXKgBM5GZ3zr0l1PKf/bcCcg8yDi5LBEOApNuBuOLN3/CKC15K3fLBhph9XeSa7uG8RaFNcqD+hR5NaONG2q0vgj9WYnimJ5znzCiTiPH4jwNz9/JYll/ImUN5wAyfhJBSXr7CoJ8JUXFbO/c/rFkwALgZvJMov/hWaVA3p8+IgZPSpAHh0TyusPzeJWWYMtpraoz9l+Cvc/cdusY7BpX4Fq+899dT3ZN3YACyVsWYgCghNZlowazpMfdrqxq65C5HTVC+nmi/yFhKBS3eBdMvCsogVPqiksK0VWyHn4SOVK26t5HP2OYgbm6XjncMrbCyrAxm0bjtRObfUlQRD/j3rkCsm2qQFR7zNzQ1OtOJ5ygUp6rj4kJlKSbDF2t45EK6kPiR3woSf2d/VTe4T3Koy7DDBjhE8cCt2R/cwwLZhRooi6t0oybnUmYAzL5oWQrVbZWxe3FCMLkBoUzQnF2BeKDLO4xGBPHafZYnS5y3k5mrCBsShZSM9l/jF3Qi9WRD7AP70Fi5qO3sbKrz/YTCj5Wx904FiGztpH+kIOxcSaHo9g0ZJswSQGEIOLv8Q8D8kyT4He1EhHHllm0/IM34EQ84401dWjfXZxJfiib7FSmh1vv63os+/39DOyQvTkDXlOzRKVrQtMVzd2lWu1OwC/rdtEhI1Zff+hdEJwyilGKhjUKZaPIbrU1/HwtCbY1HSsw6F1HJY2R0UXjbbsQGuzuBiykzaH3MaR2YP1nidHrHqLRfIGm6qZhzhWlAJ2+oKM5NCQ46BiAaTubuzGdnIvPb+Yjw1SDJKKaWqAGTd4/6hbgxjrqzjt3l3I8wzVJdqAZau9Y+/4Sv9HuNSqotuleqnToH+b63sArjByyq9kGl6Eg+GWqdLHnGSulXgjeHg9FQwLkZZcCb/axdnU+n0LvPkVVHFNoPtjg/wVQyRx2FRrsjIbKGMMq8VnA+UXLC8SFuURS2PQaqO9F6FDeo5hrfGO2q8HZWEJdkqkRxWXnTD8Hfd70mdY31T7ab2YuRuREplZ9CBHAVo5LH23xrmx1q68cFMlUtzbRcdWOXAUjhe8MBftKCX+OVv5IOaIu0i962Bg60jldjYh8SmXXGW9ltYgU6HjndcSJxLIvhpi34PxRsMoJsD1XEhkW3UHXp4yHXmo3rDqTtM0UmTNiTW+zCcg86YCMZ6P3hSddpeoGoOHJ2bG/cp/SSgCRvKWj1JM0hjV0so3MKnObWx7xmOuwtU3SwIJSGER0g7oLhQI2xxrMrzd+KW43qDoSUkIuOHngXw533WLxrNjkkeXR/lnjZZnwmJXCnsq7kOhJJgwbU8ihdeR5z1rdaM9L8M4GIjL79SPc2OSFW8BWLlSycVqP1N9R/0EbxoJsBqi6FCSYnh2PiEh5JOVS+uv1SqUH7OLiLs2PjHMSJMFiF7t8KSWAGMa6+C4EkmHweN6Rmya5bYiTkNr0nJboeJXgMDTkS0sTE1kQuSHe9uZcXjdKXNBfUoibOAiS3vGxhTK2Z4vGraYOLEmEFKEZ0TAO55AU9N1+WN67OYmbox/KM5FtLC/kA9EALXb6E+t9LL2+MnLwLRXgQ2DLmELZiLJ1hZED1ED/iRjOG5avixXFUg8EXJwmj9ZqEDgc5rSsx/7iazyBjiqqrZ9oJEeDR/ApCn0aHaDCtrBybRrLvVSYbOJAqcpB6Gxr05m5rgMQX9CQgQT2EiPaVpd0MBKJunHFi8P3mNPwvtcB7rbWXAYhukWjRBhMDRLVALomzrxVxt3Kloa5reIgsmrQI9krQ+C2p4eaR6tLxeK8ne4yy2oKIDvXlZ+Im10MWUaV5ZxlOF19q6HW5okrpTjdsDKf6bmudefYBWA/XK0NuXeUw53kmaeUfYHwGhZWIxjnmtP5z+q9u7S964KsAAso5eMU5+QzTQW5VX5g1WZj0KKVUfoHOzXlq62sY/WzV05jlOIONn9S+lO0MYh8PDmKWbVsiux0+xciLBFU8QYx2R8Z4gKhrHp+Y98NpRrR1stvC/mSppgysRg7wLjCJCKljTA9lPJDGGjXDPbPM/O3nnawJBwT0wG5cWRH8t0hxicCyoeHMJGBth0uzsP8m2RUHiLhKwkNryJ95nkuAFnqGWEjmeRvF8K0xvg8t0Tk9CuaY6YQkC4QMUEI1gjxQMTNRNZZZSq/L11jT3NU+N1IzT6CyUhs0S/WrXNoUV05oct8S5RM7cM/zgpidPOk7W1+XQCNFTfg9G4lDAPpv4LS2b3xohvMl5taQbjcY7sBw+DSWtCgNkDucI5hqWPX6NsgYp8pZMgiTfUhZm12+bO3PI5pQe46KZiCERtHrYdzy7FZAhdA8JFkew4oA=
Variant 1
DifficultyLevel
497
Question
Starsky spent twice as much money as Hutch.
If they spent a total of $120, how much did Hutch spend?
Worked Solution
Solution 1
Test each option:
Option 1 =2×20+20=60
Option 2 =2×40+40=120 ✓
Option 3 =2×80+80=240
Option 4 =2×240+240=720
∴ Hutch spent $40
Solution 2 (advanced)
|
|
Let x |
= Amount Hutch spent |
2x+x |
= 120 |
3x |
= 120 |
x |
= $40 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Starsky spent twice as much money as Hutch.
If they spent a total of \$120, how much did Hutch spend?
|
workedSolution | Solution 1
Test each option:
>>Option 1 $=2 \times 20 + 20 = 60$
>>Option 2 $=2 \times 40 + 40 = 120$ $\checkmark$
>>Option 3 $=2 \times 80 + 80 = 240$
>>Option 4 $=2 \times 240 + 240 = 720$
$\therefore$ Hutch spent {{{correctAnswer}}}
Solution 2 (advanced)
| | |
| --------------------: | -------------- |
| $\text{Let}\ \ \large x$ | \= Amount Hutch spent |
| $2\large x + x$ | \= 120 |
| $3 \large x$ | \= 120 |
| $\large x$ | \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19iZVcpqX3RXonMh+sAE9ki7X95Zwv4UpwAamrEU3kt7txW9RlaNBBldECczre/zTONlmX4q7/R5Xf658//luuZpa+esTOx+XmQF6DibfG7UMeWKF3rwEst4cX+4tSmr8StTqISJPy+oqLd6msmHKNPZ8oVoAOZl1NCaoVuWSG+I8Kz90uR7kTf35+aV4i/QMV8Tb9guqkRtIjFAxNmmM9QDY0hv5EMWK0Xg0ezPqiwfxAH5dreAqoQIKmavywrhfIgM4qJydh1jOM7f8qH7vbyu9/7NcSUdp6k55uTgtdkcyPw09q3hlbSNINhHnq2TT9pAN8l8BhXDa/DUidpFt5xIume3kJXcGOX6To6UZNFWweOtXapIc2q8hydLzrUmnmfjc+NV9tHDZNLXqI2H6T3W2mz/9GNjLKYmUot5/8Sa+y/aRcfVtXwbqOytwvZYxLcNi95yBOK3AdbbLvV9+aGxHoXilMU7UzO+1ejbqlsaCHLVUtH3RUhuDJur1pqHjyRzGHCIKG/UDxPIJMvrOKjt8R+0QBsoQItHHyhrTkgBt3F0fzztxEvAnqHba5D7z4JlJw/L7Pv69Yc0BjrtCcZseC6prN01XYm4GVlw4/LrpRqfiYyNn6hm3KioEUZ/f2grL+9+ZrI+lN8teJODeK7O9chn9vR7JXAKJcI4YC2CHkBCMVPBJeMglyIM4gMIbxcz0hT1Oq4U06dF4XoqNDiZJuNoanG19rtfMUweulvgLVkslMka0EfvWFg9h3QHgyCiZlR3U/sawpgCVOVzLHKDq+IuU+nK7FRpZfDky5twLDiOoVvPlJzTxgsVzUkab/32TYaKSZP6aoWbww4DECqXVjY0BAtZxB3Z4soKyA7IxnlByt8VexYgSx4cS6V5saSrkkEQUbpyGFbf3A6cPuFn8wTh0J2jQyihhivKuClNYfT7yy18KjBdQm72DhMRQDxN839sVAI4+h1tCcf7OAe6CRZqzzc0I4mCilEcLPZ2ExjnGZxU9KEMdu17sjDlzoxNdSbC4JdVmbCcFZ1e2KRK3w+cOKAJMvDwaz8de9zjv5WimHIbfxr3+zlLgm7reBEN3Ow8VliWuEPgwftsMfr0UycVSHXeCI4quTRhhaah71SkbTKEjRQ5QF+oj0c+BNbm6RDfpU0wMu6vyUNwZ1S4vvZ5WcjZxi6QrTKRutj1I7O1bL1ewMLia5gWFst6pe0hnTAUcumkM4XhLsdOilO5JPt12xJqJBklBgCHI1mO9doN+K2v8geou2uTvOwsQ6C/vq/uXTiTc+RCvTJqe/k+WUQgzcXlz8GxSEgSDUevqA6KKrvG//YYVmyGsoLzcX5uOHJb/npdDveQ2tHJr4PEM2eROa43ngSq789e0kbzLSXuEw7gH5Ynx/ychNCuVXV6Td0xq/kiPg8LHkRqJXCrevS2IL/9k5nemxdynS5v0/N10SecaIpcId8cBxDHU85mLUet2Vm8+np34Cep5xuDV57EM/gmL9t4vTB+t3Mb4y789LGk2V+gcp50m2/RMbcUXTLyPlqBAjUp6hjDOnT9ITWxA0FbiB1Q5pQqORkQqOf6ApT409xiJWYqHk/5+okHgIl4DMST1GtI5NEFtZla4OggTEOOCFrbcHRkDzp0a6zSv+jLAP7eBMtdPJmyCy5dkfOQiFfyP/mgojx+jFph3OGyoqtgmRKMDSK3XT7VwjNtGJVkY2TEmgP6Sll6F6qejyP0CVRHudR6sl/LilBxxNVw/YDoSbBAmiB2z9o9ZIQurNIKR4/Tx/gGHlDDO0fZmM+OT4R8Sf0U/qEAIbgctLb1A2cfzQG/FAQuTsI4lB6QAmEDGMkmmCjxLfL4HpY1MsY7Yjw2DawehwpnxnBpJlbx2E/j4Dc67rKM1ahZLugkeZdW9fn5BMx05dKfCCA9yew3NLnVFTIlNsG7310Rt8Kmf90JUrO2Ekxl/PSYxyr9ktQzPAyU9Lyf++G6OzBp3XPFZ+SkCCjVfXxYPdXXdlozaMBWsvKTjZVrG2Fpi3pKIZlKHgxISn03Pr5MJnX+4Sdfjs6u/Goa4yjrCge6qv/OhPpAwhNCVB17d5ZR94QaQnG7HLzMoqlJ/XH2mnesDiHThxWi19bZpq27mkYQyhPwvNss6aTzfQ62jM9Enqz/3TZ+lb7SEXIn6kdgrzp3QIBnRjE/sUSIq6B337lxHdGmZP3qDp52FjOVSgxei4Plyf8QhGWr3P0As2uqEqP1iPgabwyG/v6D+OVmlKfl9EmHl2eYhtqYdBG9F7yMjrkxXLQYhhQBA7Cb0RelfqylxfXUFTeFqiiPKh9eXDksIpI/j5EzNAmLV3ZgAy+8Tct/chnYGcBHt3RwvzRe49jB40I5R4yUMcUuwJJi381TyHgIcOxDc1n5wMeYjm9qTMyXP5NFF7n8J7nrX6iq7DKtM56blUlKCWSz3GiY49QsGswSnu3DefR+cEIdstyyP+BEib796mwpHVn/fXAdQtNdvz5e+O1dB8IcofJmT8nJTKqt6QzcBEzEcgeHXtiCNpJfIcjt+JsEzXTJuqCana8VivIcduyN+oP6qYbc6P4N1FL+R42JMUIfbCG5uGzjLVyEcqLwf7XN2Tq7RtUGzDVGVgybjIwl5O/p57Aaozr5GXgiMIQ4mS6MhY1FWJIVZ0pZU6ZmwYp/WdlpZGaifO03bwLuF+Spn5fvbKCGFSPPZb5/aUK2XvqZOVqv3W7JLrapp8rdAhwL6E9OM5NOa111lecpU3WwlisE5ovlfW4UW4z4JN3GBa8JalaRPw2DdIcmQppJWjWfGAVjJVDVbTlAJiQslrqPO6+SlamvNGWBitBHHEDe6YvlClFmpFxk+3NPPFVjuHTL0xdLzWN0Q10eE7iCJZKMGG74PeIoTRIb/W7wcKUZnC/GuaHi7IQk49CZC4HOj35lUvc9MktX71CqJVGCX91QHjJafXDaxrukgJPh+szPEVQtq+CzFx4bbW6/iEPmWfOmTL2B3+UPoyoM8s+Id/ZlNKd59GDc3F4F1cggmgzDn2tAfy8J8ZdS7edsMptJXy+gLv6SevH971/cvJKCUKvNfwXtWhvlUiifT6MQth9XptMsixi3ii7u9X3ml13xXzmtTCpEgyF7YqepGkbvy2sPh1krxIgmuYTONF6zG4+F8LRqF2PnyTbrGd8geH0cgH0WQkeseJbd5ft/d04rONEDFKThrcFgoZ7qHZrjDX4Iaw/xUPxZpRO9ThDAlTXzT8fzuW6FI27J5PZ5suwKsOjrCgKbJFHB3LPWJT1CBNMw/9lri12vr7BlWEWxypLcYOEOPh0HXSYsFjPDsdD8jvnl+KWvZx8eNejqjn1qlKsF+fsYusWTdAhzZx16qMpAvLjlCOPIttibTwJ8ctQKUzqxJ3TBxQN4JwgrXUmzJQQjL8YCEmUvT9cjgwJZeXFHbyzmAEaYsNDfTTHX0Y+HarP8TVFwKuECtofLhislG9GJ3roGH7EZ8czogZsTEcFNBHbkJB3LCKqllebPdakEC+suwiW5IryUyOMd6tQgL2qhpfij5exu+n+KzEUJXwhmYonGB7Tt7ODC3IPVvDd0x30skagLiubMdqBOpMkuNmvJnAJ5jwHcpIGKNi4SngrqVvR3cRH2cehq3oxEfx5RAjeaNCwZcLX4gHhBuV4QQsq6XoHOfGuUMmU71ob8CQ+A6DcOP+OilCBnL0G/AjwqviiUPaOPtdO3dJeSrbM42ZN6CgZzcWusV1VPIeU6djX6g/fGZMQ+ZyihQfADEFnqLb084GC8FtzwCKSI9NFuz18VPH8DE5v8EisDnA+f4xu4tJcNJmbEBAoqJ9Uo1ZsRs+3vbRNTQjOjdwtpqbBMW7h4jbEGMjkSB/tgQ9lse7ZoIjqAvAiozXZdzGQ9/TzNHGSpI25R9zzcJG7Vk5hHvB9X1+B/uZlaU4byYEe8hoo0OiM00E3m5wClVdgQw1gs0RukCywj2L0gsx5slKvRmchKMOYTNAb4vkYITcVkusbQ2xmPs+hhugldyo3Bzvcq+iXh0l8njKlrQ/l5vUq0vPxc2UDQKXPyKoTcZZbs/OfODLa6S98/AUHdRrQirhnJCqOQMTCTdzHcedQYmz1pxi171Bo2lxdGgc8ufwoff0X7316sirA29J+OYwzWdqGuvK9YrSE7tnZhsjo091V5GxRgsyhUeej1NKrYs274qP5Y9Vur3+B57cSCK3c1gGEPRoBTIyG82opJYJPJlohXjvX3vB5FwtAOPw4Svv0hEu69a93LKTeBxiqGWmiakuf+6E+N6vkanEdfSVHjV/Ge6sQIkOqF7dmwlF68tysbuSpwtqKCDNKozgMYP/G39hGcn7Lb5gZw8RzCznz+XFWj0vesZBs0X0Yidy0ytruKBlfey9FS82dIZzfWLf8eFQvRbUSK1Qp9DJlCBn7O0WGIW/z3LV4zcEg4tA6cmAUmbVI4akR47UzfkNEtZJioQ+ywYbaO8VdBp6UJBPyqr7GK2YYYy129MCIERCuJ2SSljgmKH3C4BeX1CaqTpbBEsc++TFLbTYN+wqWIOcbSzVaoTGInB4LBX53pA2BJ6oZSdN78VgQSO09VDIU7f3mRAVT9BQUbhbpRlzrK2ct1qmG3T57JWuZg92RVCSXTz7ff4LJOkuWRSECzuo1ME7oHux4olGvZjLX8QNuF0YOfQx4aYk6mxlSF9c4hAleNWqkHmAnKTZG68u9thKTv4nG622/j6Y5ZOJlJPlMMgP4XZBH2O1r1xmbM8/o5OGTqmv2CMginToA2YhtCXxzi3NtC84UYabM6L5lXUac7LRQQcOzPAu+bFHYVZPCh4SeIzXR/gDUIEDWJRHA7IJNCLzILCoo1t+SzLt2N1llwzGLlXBpfT0/D6HudMbhUnEa5zm3hV9E3q50i46Ka71yw2oyfXyU8btlA+/67rYLA+Cl+wQVeN9R3hQINx1M/2hyD2CUI8xfkhrT6w2h+ikzE/bSGQBv7FJv5PzDddg/hul1kJrmVKSJ4nA0NOcE3apQU95zyObquVpEH3Z0Y79pzdG376tp/WXPVbwvbR8ihbhrABBuX6RC59LBNXrTQtzOenm2KZFQh4bXybZfBjrQI5XQ0XhfQYLo3QOE7gjlmlxs3M1jDuT4yYxzJLS7BHV0P4RpIO7rUz/P8JKLsGmH2wAcVWVtZpIPtBKP7LohlXW5NH+V9WKTSBY7i91/7PZREX1vXOcfa2BHOgDVsfmYymjrpLEZB8VSWA20Y8WxEIeWgXTJ6D0fzjF0+QLjSeA8BZIwJlUNmtk5dPYWQ7OzquiK/Mn2DSEGvffJhu0+HR1AwTcRzC36Q5ErX7u9TNVAFRxacYucX3NLhxr4EYOV93lzDF46lsHlXnazx0KOJdLkJOT1ygW2F/jYHHkEmK/Wzrgbx8H9hYiNKhfHKaEDUYrXk7VeG5tALmRs3bHdhGFJyjbZAZyWp+wn6a9Alv/j4WOdR3x8jAOd6SnD2ekN3upsf+sXBGcznIuGIgrrV1Q7mqaluNykmQBpdoHCDyIVVNXcZIYvG+SCQV1xlPq+Q6/Y1W8D8P8u4muYpqc3KsL2eVucI2MBVSB2Ot72KzLupTkrc0FJdhv0gbiAIYon6DsyY2qH+pQCIRuu4bOgJCgsgOjY6Pe+3MbTKUJ5/sobcVR2bydm4gmnbwu4CGHCRl+EagtCPg1JGWm7BVtvk+3c9OkKfq7lUZuly01YPlgpUQ+v+thanWleIUJUMDkI4FxkPcngHeNoKFqjg3GmcLAJHMaG81BkY2eze/lEgHLQpVDDlopGsFkZVnj12qsGz+rcx+X4kzDQ/IaET/NsGixvs308wVVgmDOY2M6GaltUWECnIoTwe4qFwolXxnk7ngNsDsizgmYmxVQc1FtN4DA3HMMm/RCeJviPX6+npZF9DxLmEyUkcXIkNh5YEqXSmCZGLaAIdLPTzIkjeBOS6cHYKT58fpfMc9GpDfkJ/T+zEpiYg/a2EhPjhZmBgkOMNOSUoxjACw6A4fX8Aama2O0f7GOa03HDxdnQZZfST4Bn93Azbw2aem9g5+wsS5kJmaJ0mqMmi3tFjkK55AdujaTp412dTdXiMT3CSYb9tlsT+lMMdiK5rucC8txq3ZAcVBOLMF9jZCCOfDf+78qjABb8sE6E68MUN77GzYFySgf1jvRBuDfUj7OLiYH/4WzStUuhEafdUTWH7LnfA8uZDa+2tJX4cCnPXCbe7l4KNLVQ3hiJohZItCl5Stl36X0soiPoviomYGdQZO5xLSTsJNk0S9uN9bc9wl0bEsQFVxhXIRXp3ErNBqLX6BNJEbI1HsLlqMUeb5PgbE3ak5HmrcCL/n8/B1ywc7fnJJvnrUkKc5lF+f8XG39Er8TI9E9LyxI0Yurlmk7EqIfTKYNuP7mM906IMaP4+Ke51HTW1v+wRj864O0KrrobE421Dxaji+n0NjtpnJL1E0M6H4mmam26Y/Enw7K0Vx5JpSWza2P3QBBmrtJhht+mf7NBDNBRmTWmAg3491k1waSCsbmjiK0ljdMeGoQmUAqR07ncrLBfLad2FoRFVTrk6eQbyv1F9I1svV4B2m5HmQJtYxSxgdWGl0xAPWD8obCubwUQLzxKWh8ClPV4cJ1hFtojZtAxvrWZGv6Q3e3JMqVarSIz3e5hyVt4ouEZsWM5PicOwOu/W6xSpalF0BOAMJ5hoj27pBmuvFhXlmLNWi5CCg4vZb3o/fVgQAnxnPJtmaFLjfKOOMgScZujb0OdZpoirPBzwI6Rjj7KRFjSvXu1KRGnbihhknXmhnn+cMWGhYWVQxp/dGb58boEOuycxD+o4j9Nr1L9xZWy8nEwwjVNdHGySD5l+J6WrS2secB/8typbHGAPn4BGBqZfX8ckGAKiuPIZe0suOCxglYjcCJLg30QceCvQ4qvAG+nlDRpneKVueskIvlkog9SUQjIwsRZeMtw2Sw8+7LHOWKtk5gDtMWxQNuXmP36X2oBi+rQiC8/P5/7gUuoxlMEsWGgfHxThs0bwBN+QewUd8oyn+IFLGvsKPIdLmjO3AzStNSCVevcLmH5i6oyVx2QX4PTxNsh8rkeuRJYcY+R8rjOqLd+EsQgk8mcaAh3Zzys9DBhflimu0TzA13f8IUCscEuRmdusGEXjVaXuFAZ7HuMm5OOeWoK/wXqs0IffBQicESIOuHux5pPBue3QsdtpmYVlCxlEqAMb3Iholu+GUBcRAq2hiUJiL4nnpA1CctqdxnwEz5zMre1VoAWUT0fwcHRDuiOynD+lWjIcbKHQBWu/lf/M5lSxwNrtAHRNPMs4LZy+aADAHPnOtpNwY+hSAhFgMBHF/jlu35EdqmLQlqxjnGo+BiP1h6JD65az0Cg9IcCLLyQdLffETmFBAER0lCL9+CJ6JFxc0XZt85qCAy/9hv98B8DjmFsvLU/wIXeRejy920FNXOxJuzGBYGGiZ7Fjr7fkDY/m12fs46UrqNW7oxlZQPLEeRHaxxCX5cRqvDSnStpRUYjwcaNkNhNYFvGewfWgzs+SoauigPJDU/gMfG7sQb7qHDLwA4q+gWqySsXk9Ctv2zJINJ1NIkDIeaNY007Cs59z57goDcd5QMNLbIgVc3jArMoEVwVeqyKWu7KftagiAh/r0opy7Exo4J6uTyw3P1pYAqZR+kFrH3Tl+jA9Ii5vkQuQ4ffLFVfG1k1e5V0aA3zRTESSMDe66XKhxsJAUdmCeXPXDdpJ7Xjr52XQ4T+rUXhGwg+kAbPDPXQhl+n6Zz7mnC/sl4q2zJxEBf0L8XL3NCnHY8NG04RwaLGO1bIH7QY6/isX3XgC8lws5/MsCjfTB+kmVfggCTUZJaWlZibjEYcbnKrQFnc2UPap5dG3DqEzMd4+l0dkNmhtiAp5gRSWp/fmKLFER91RFthaJqoniv/+udyK6McbNdsJWSzpi/6OU3VDF5OvEOTLYezX6KWJwX1Gxn3wa2XrlkLNxeI11nXqOwkUJDIB7WZXS+etE7ogGCxxjdNWedoD6DsaX5zorBd495IIGmoxn8/PnB0FF18TuMFL3v0EhTZlA8CNb9dDZ3fQ4c3EgpBGnpBxqyH3QQBPBofBDFo8+eQIHQdIIYE2yS1VM+kd+mA5+KfX4wFF89Q7aGORpVdFQ829Rh0TAIKYsExJnIhcFPljAeqX1UIghAYIkJTxmmzasP30Z8RmL7mui6H6O6N2NyGn5xLmvQSNm2NwDyIaQ3cXAaOL2sgxm0VJ9rGgrNaHiChVPX+oMJ0E9m0VR4RAMIb//ar1R1uhoQVYOmWmChK1SCOSGLcMpUMACRfKKne3ky/u/0qGQqYDb0CzjygrHEex4WiMEW0QESv4Bv2wp5Fn+MIZn270qs/qCDvfv1DhQJewxbormpgxy2U+cK9XIyjbQIS2ILSFORZW2i0xXNxHI0bBs0DflBi+bK7rG+boQY1hslzPbqujW68bBeSs6QvcACcpmOO95dyWCbCuq/pCRX0uU79I6FKztM0DzV9WOmSKY4x47V0CUnTkY8zsyhKlhGRllqmFWbCC17YYirxOHOlF67pmBbKXPl5Z/SU9xBEMSnGEaukYwTMYu5d3unL0IgPcfSWvpaoEm6Tm2wumHOBrlchixD2NYDt//8VOmM/jPL2n9BwibVt85dT1JfIKBIt0LEjXE0u/9TbKzrc5TGThCMHuU5cEi1uXzbxvpFfA8TUtM4v9recUO/yNT3Jc0OHrgvI35KGVcnuc/OFaWbiMfAa4GyR1gFtB64OBJISrL3RFy4Ob8XJDgPZRW+fJGqrlMi7ETAh2TV6U/pufBmAL4oyrZ/Ip+kRie0NaqgSrM5DAlljJJcDHbSLS0M1X9XVEPaw/KHwv19MXMIuOL6Fm/KRaSrFzUTDGTZRV8sASUsBSlqFTrzjYsDHpfshlgSRiFwdbFKpoexLz9kJ7HafREBW6NrC6+UbuEIEYI/8Oz3BmFdIeAObQ7w438Kuw+iRtMykVSk+1tQRyVpjl4mGgzRL+VuYU+ADlWQ5NWCVAJskIZo/cCWU5txRe25JfZxCpQEEhZ0PtaoN1vzP7ZF5cnRr2TQWADgICRWhl78Y1zRjjn/u+vuLyxUhwI+x5XvhAivEm5UOxx8Z5aZPne6scRVlBMXcecTTxFpUn3viiCdrMsBJRcWzMOFnCLSpY1flqEIbT5Fl3eeof2ckX3n99xKbwi03T4Lnh1OJadMLYF8siIYZGqAFQnph85e9tmKlarrhsnQ8rj0tei7igfvwCAf6iDOjAOgt8l+RAu0mHFFRB4uXjg5H0zjdcD7OPy41hryza9L0XGACCVoU4tWJ/tcVQHb85jzV8pWm6gzvmMCDEFi5WmvF/YAFENO9Rfl21Tv4ygcuM3Zbk4NP/7+VpOmJ10KWXtkwKAwCdKAPN2Jio7sFkRq61vSE4OxF43m0r0JdVQNIgQR2Nm3A1A2Rid9ucfFnEQ8aXnHdCNVy1APUtWIIJKX5vMPnu1S8B/kEJ64V6kTKQt8XifgjvM0/wIY+eKmN3brrBW74llNaXm+RvXRZAmLVe1VnlGsD46GpeSAUW0g8HlWshZ79sb8SniMQ+fNNcyXk4cPbnSLJEZJ4rivMBQOC6Sw7zeJWxq44TZ497tqDMnM0SGSFEdp97DY/A9DvVQRQt6VYAh9LNBRrAbbm9imTI96fnEpXSoehtoHBr2ZnmCWcJ5fzJ/VvaNPWVo1jRDOuhIoJSmGk/hgII0iX7A9UViS51QbfMegSfQg3xEdcIymcvDPpnQeMijZBjCw2JyBIq9toX8ZkkesnNZphRJwKxx1bUVvKWHGQbVnqMFBoqaYiJDMdTtvXUtxYTFo79eD/GDSVOZc5J5KMUh/Lhi0dz7Dc+v3kuBV/qNRIgxj+Tt3eGvo3Z5/xQirlkvASKSCiR5t49nWAWrBgqE3Xa6vo0gtcbaSrafnxZuIXmog3Yqnuef+PdmlGFmsUjRGbCZ8NMudqYVkFU5x6NY8mxcBROMk6pSBj3ZLBD89e87WV2nNtaRAcdamzrv+VoKTJRn6ibHCvIna8Z7t4gDTmrZ8pnIq1iHvpZ3iKsgWFShtGmmOSMrrBjqgmiBexTNgi8PjFIgGDpuRQnv40KsIxLdWkHHmMafUvaJsQYGj4c6TEWSv6Pmq6zBpD6/zgwcfcpgHDhaucWtzx8c2CYs1WuTU5EzDehuKVjIhKKe/epv8y706BSm4zarxe+1lAf5qyoUbmXq/el7uYNgHNLt6ZJidl7yH5FYaOCnYznkY7S+VnwMUs7LARQIQ7zBXhYTWt6A/tLRQUetQ0bi9Qx3RecYhlUgEMmNFFmXCkG5F98o7onxqSGHN9DFgHImkpRjS/8QNTXhxu4wa9IsMB+I7LjjAjmz+NzuIr4oOHXEI+gxA2AOf+Nb9qWoePlFmqiZkaVTENBZH1RVp9Gb9+EhU6M31u20gy4r2MSr4bQ1C55spx4X9BIAJ1gLUky3tR9cM/xuM2KM6voQlMZxb7PcWnxSKugfgBAOOfBGX53jtu2Uv75k0xq6xNzAzjuhS4HMVsZ5HwW2+Oz/85C3/gZn1yy3Z8VKaobldIhLttMQm5l5HuBS8AyuMSs7VFu/NBXuFPD3QVehVnV+iYz+uokMlzmrSXTwtuGVxLWxo70SBx21rgKJ39D7+j2uCYP6Xp2AEypN0JdLzvcDeMuLqJ3d1G6N6P6g8n4707bMPy7tddnw0jaY4urA0cNqAHSym7quZmJX0QQE4hDh2nu1xin0nZu3Ta6WJYQuIne0y89NJRhIDaEg1jqUhfZMOd/YMwDwfv+4LCOWFWLoq9xjgkW3ZAVHw3d/8gS+3OSxntobNs0W/DuvGVPPLQng4wdGZDNNNHuMMpSCWOnMWt+VFJ/kE2Tt76YdYGsm1A4O8U+QB2nI/9aGSHjIVOJPdRL65NoNPRUIuYqokw7rv/zbtRJ87tJIMS3az/IiwtEb0iIkzaPC11LLhA9MRRXGzP9F+S8cKVzuZtioa/35ng4l1tLuhgMfdCXxtX8OXTnaN3yvafzYjqRY6t04YDbIDrhkuNaigRsi7GwkzPXebpwg5pDahWgpRqQvpto1l2Ccnjmr5vCVw0u75QnTJgiZOk1UTnrbzvl3rbLOPV0l1JClfssMEs9gQxlwteiFbf+nuqr93SfAyfXkE6F7JplbwVEHDNlbyu/cTssXLb5IC6pqoKnKVXG6oUybbAFLB134HSyRsHY+jJC6CoseKDXfZu4oApfW3nzuF1Jca5aNwqaehuVxg5x00qElPpqe9/gRXJjr3UtS04t94l0Dhw/36Wyry9MaAeQ8Jj3OF0YgFbr5z3zdwRF3G+u8icbLXACVmRgSQ44QX3l5ax1cD0pHC5S2hQvqAXOBvIBL5zWZJYTg6LkgJAsJ1PJ+3t6VB0EoiUVfy7G+3po3l6e1K5QG5+ckeJENGLXlGMZlv1pQoPFD+EM2BxEybiw88EIHoBGivwYeZTWBIpgLrQuR4/SnIpaMk8wiGgW/GY822CYtuyIybms0bfoYIpF9iiyunCg+oX0oJ8etwznPos+CwRT52jmzAacuQz0+D+i6OeF+FZ5itGpNpfyY4WHcEppxwa/jKtB5TKmFkyO88cIre3YcPQruV0A7Ha9cOP1OUMsugw8oj3vMo2ZXRbbFVpwhMhRZ7zg10VCC3ulX0eOVS1l7PDr6DW5NscdrhRmZEXTbyz69qYXfFTvLpO3JpuX5elG5QmpVk7FusLnzA8QmhBQ2D72+Ma+bTSGw/7N2vYP05SjrYE1eGuaaZABeZThmrL7FZVNqT7M9MjvwlrU52pnMhn6c01/K22iR1HpaBvWkg69dbA4j1wlbZqyiCQtsLlNJj+hEtwG4wRVHQ1OZL2SelYMkjb2PkcYj2AnlraJyT4OTVPiKH4Pgbpoq251PACthD6GWjN5wuyh/s3IqS6NUS4Zz1AXgjIAJF8rVJxnjpKT3g16MSfVOdlcqIXI9ziKa1VNc1Mx2RrBSNhAsk/HheHZERM3KhZwuoBR/FzPB9XV6XvFzIfmt6+kLCOhtO6RikHocc9KzqKk4dRghFdRnGOoWfVRbfKEg3oD+FS1u6alZo7cgobIWLSqTNZSKItA/77Ukv40IFh1R8FLuiqZH6Q5xduvsTbO6QOjsqMbf8eUbSJh2CJkFlOQAKy0t6unHkEJlgb/ZMf4c/D5Yt4uewaP0ILsuT8m/56Mhe+5J5nBsoancG7hZlcvmwAczKQaXwrpvlZ0bJi8S9aZ4EKvzYYMIhsQjFPpNdjJFQv/G4IFT5CFNxr7azYQ/vaP5npa8raV8mkYZOjv0d3Mu+QR/XZGsEMUwEKaJoNMFGqE4byIf0zn5+9svviDFFbkCnpA64vXTbbm+Ys9NEn9oB7RWkTRMCgWSUAHCj/vgi2ND9w4JYYoj6K5yznVXlaPhimpeg0hjBxtPAgkF2EkFGflN0egaqTfCY3Rn9DwMpcKndW+6NLVve69z0Q1qaf5e6s8Z6YAccBGiJTAO70v8wo99mkoJfgMknhMCauwrVLZ+n+CwM4u3MkO3mgboU9L0oQwWin684tUjCbk9XMTVOVTmTWv/+NF2+o+6FJlJHCga4Nby3JpGo0z87bmyOppNNvhRZ1lhsHHLH/KozhytWmEjUm7rDxNk8pocQ5wAo4F8vgtt62epyl1d3lW/jWJj7pRK1CfxkM4z+J+9T6Dk3MxaK2A2KEl3Nw9JBv8og46UgyfJpcJLr75MIjbXIz7tOMiR76YvMzjf0KfHF/EUwupEg2/rhoGx/J/nMpSeNqTRr7O3+XKMREej7usaTQ6xNIxPQfaKzPqMfCt8C/keMwe43REf93yNjUvrFQAujlr/FmP4HexY3U2G/WVrjzHt+U+VrBnugLhAOT99z3pFMeqjKiE8YKvmsVzGHCWqBuICEucH3BzZEXbXfUK7GwlaAM/dK84BNngh8h4Sokt1Mb/BTqZpoD98ljhMkIl3qUuL3Eyx51DAQa2ZA2+Jy1qFO0oD7Ef64su68ZawtJFbLokk3YUs8M510vHXsizi8/cz7e4x28wmdk+UyfToUqK59n+ubodwq3zBDIVpr6dXIrRVK7LXf/dst5uq8nsfdqJDk24/IuQU/qhDBqLG3GQlf33RdPmcB5fumuZyRWcba4VMsoU9KY2IbmPbZkCSqni+nKOFNTQ6Jumb75zW0p+uAhBhqAv9Vc6E1A3EocVRMa2FNDM2WcLaTayqs1iMpjmPg/Tzj1ZLg6JqoPMgiX4lC2lmEVp2ebkpxFabFdlVLWkt0nERnjLVobr3smuB1hAvEog7cOHRS9je+j899ZoATEqVh7vGS1TSfSAM6pMG0aMxl4+JwuIxRWALsYe07Gm342l80ZiNPk3xbaAJXtpdpb9B5UMjdIRhvC+tg5H3VJnNNj3kHoeBtdvoxSmtf+rf7MsDjg9vHLMTyWfRGY/D48s12EzBCOjupVS9a1NfhxZvX4G3RGMF4J76eFPsOkSzAAs9U4vk9Cq6vADWECq+gjuscWOqES6Sjxn/cpDkdmbQMCS92Eo7x/7FchtxHlvIc0zs6f+LOyJeq29m98fr6ZypkBHJzWRT3Ue4XqhU3ZQ25vGGSQODFfapE1vSxUu/U+mpalkREeFtdFqURczCl8oVSo5tR2t+3Lc7KuUlCirP1toFFsCWejTUGaZ7cFLLuhdxG39rmzfi2NZtsPZUVBmQ2GvddfkykrwhxEQTzFW2jvbHz6/nKDhoa3Mxet9lyizxxsVHGZOH2a63NXiN2BZxzNRnOgEQWClDJnTEEHCJUM5VIPJUA6Np/CHkZY8UXBD2jx6CnVqxVzc1rcKIL/9Yfa16R3+54j9pve5Jsbv6zDMDDA8wavj5KHubAx9V2z8VGx1AG6MCLvZqKHQQHhQGmBt4Prt86b6/cvGlkH9z6alquPp+fUnbPVdDYRL+BSH46gvzqCb8Gd1PLO2VmgglKfXsksrLIMgFnwk3pgnTQZxCCVmX/lROdH0SCQoMIsZpaPR2+pIRDZwS4x0IixuARiiv6DJJ29y/7MV8A3O0EIjnQzZySMxUmk+jT6Hl9asVyJBiY4AmOnP8DLj1zVudMN72xUE1wa1nFr7/Bc3chGPbnjPHliAJGiwtw4pD7QN0uOBpRFTC7uBPPijikCagiCWt08hX6BrPZT6kjuBqgjZcsc8IjsJR0dMQdNceBw8Bi7LQKtJCproQQUQ+ZrSqFSfhJJsfG9aQJOWCRBPdMiRi5PvabbyiM4k0qRFNxkJvTGz1fTW95Jh0ftp9dQgCA2Ppgkw8hSn6NLIVMrevOZADQTLvRfYPKFuD4r7BMzbGhhSMNaT/bpTcgFuPF2o26yW77hGgBpIhcXN3xe0CvrSXJqavUJeRmJbwNMx+0zSy1rh0Bt4zlPa47nKXCOjsUPvM4IueRcW1JWoMJRuZTFQhnTAcYi2p4KkVtkCBKO/4QXqBP2s2oyTBvl0eXECs7sN1N7u9/idbKdTV4LZ+/TBeZUeZmB0fBkIEpaDb9Pi6TocYoMzGYmKDnI5A90FZT9nGeDabrvrJnyHXxTfpLespU6os2Ip6xssid2DxJVhYLCMXx6jYK8fFE9w80bX1yJPBD4yeZU0isyVbl03inEVa5bs8/Vtkoz7jp4smi0dHqAv4HmLTG744WWPuw9GHom8mgqBytmCg7nwdy8UZNP0funfoq3HUJ0l6TH4QCGwZMS6VLJIKg59Rzvh6hnICBLwNigjbosTN3b7iicuvXZlfHUnYlYqKUKv6JPPyJmLGKs+bJrHXJ2bEqTX592qLnSTEYpwfouAkdDIGH7aCOQ8iRLCQ0/lCReEVyCOj1EaLjnzhZWu9geCB4i4XvT2V6GrYWoDNnyNG4NFt9QEHcEW9LogI0T59BiEnZ3WBycm2wN76Abl+/amcx/67XPFCU7OyXblH7UBDBcM1mAOjOaBUVYaecLuM1gTdZ8vWpyPLngvkjakec86RXg2zWmf5YdFh41665zaz/5az2o4BKeUOKDi5eHB1DwGGm4QR+P+rQ7BU9jL4yhCf5XjO8ZE2DtW8KIIpmEv4fO1SaNq2Q9jGIdNkoOqX4u38QC+sfwuzMAzik4TPzHkSenyqPjF3plqnq+2WOEsFpp2yppR46uPr5vBSLIkJeKCudnwUnLYrV7SPjmLaInoO6bI7Huos5scCljCY7MwOKRmoO85YvbtdYlq8vxN6cwg3GyOJUArV9VDn5f2D3rI5u5mI9GJqgL9ELKcHJSfDcdDWgD6oIROwSzqRLaBjFvKXLBTySYBwCiEAlGYiVR7X+/GfSF9keSngXdo0RPEr+53HQMXcpeu/gI5HpTDxYNmRDex/BT6L4WSAbnYWFhw5DPGUtj3UV5RfRcpexhG6rpnozcCQfSzODHte31QU/2Dn9zlThFFYgopt3BpocM1ImsXfwBgsjayk+bQg1lle/V+I8n2q3ccMtPpZtbrE6KxpaGgdlyChJi/HQ/6eGBcpvTehXm6w29uZR13j1Zki/KKcH6CvXdlbTfXf46ZDucbtQBJtDTmnljZGl7CNpwjsE5a4DC1Wwa7WPKTy8a/VVGfX3GvjObTpUSTgH5Z8TvO4C9w2s7UbNXEM4C2LX0uluaEv+olEcn7hFI1JK0tSZhtYjjk4KQg+BaYMG8aHLTmQHsTQ+Ni9BwvKWwUg7YxioiTKBBxr2R3g4j0Q/RifYDqDAcwDZKfeqkbiCwmSzGMdSJgmwVRmtbVjMvozi/Uy9Xk8J8gNZVef82Mn9horzT3lok7ar0r1mXAqlWCq7qj7RddhVR0ZJMHAsKXX6q5nbqe7M+HgTIup5DSYqUYBaZ4nVnwAopAqaXGleGQxlpKmib5WkKcT+FFoeSqtMAM28kX/DnPk/GSMAFSjmiQ7P6/Vzexo3UMM7rEA1jkyoEJGuy0GWJpCKsS4OkPY0wu8H1fOTjpIFoS3U0AP/T+6QVBdmElXA9inBXB24lwA/qh3OHdlnwI4XSBCTwcBUhQB5lGDzY0WQgb933bEJU5yNyxQI5ydN9ePDL6jf1hhQ+u5sGJW+QXRITNXB2X3UHE0bEB4aVx2/5F90sQJT80JsDxGp9EtYP3AuqvFaSfqczAHowZnXGvF7OwnrnFGNBC0fPVHjgMuwoIPPnKTP1L6AV8nNMnz57ulqMEeZXpr1Nm+UYGTTIjGokaDI0U1GTCkWiz3S9AG32tu6J57rdKKEFzNTv8CuFtnxUIrnrVuIMceA2qrq548ZU89WqoGRyLBuXSPRY8Jq7Dx3EoHWnDc2+1b4SsmMCWT0NmWzsLN2KmjzXsIKJyiu1HEEsBQ5kq9ZAJvoKFIEcazCg1DabjKvmP82m3JbYgYXRz0NYclf+xMdryvqER3Thpfxo1q4pxC4TNGmktapEKW7Qb9afk3EpSvWt3LfKgskey8S45mxoZWPQwuNI5iIUooWXlEAVHX/Y7311RixH3VVK1urQD7Sc3pfYRDvaCLBmAY9nZMZ8pTCJYZY+wEJycxmnpoTDUNam5zxkv/2GdMxbBMhzTHnGaIGBykhl8qIvIH/pO4OB+RIWv1QOXvej6lzMORI+eJ1DseKpNFzoM4KwB5EA8iKaY4vOFwfuVsNssVZIii2lPmmFARoVtcTBEiG1QirrAs9EiXKhr84V3qEID8iPw+cOMktfBxRtSSYLB3EjagtWN7Ui5qUyNrLStK0LbDlIR5yoSMwL5eA5GmXTmwm+kkTm8kzqRYu6wGE9XoHQF9eUj2y2MRyWuQrxPi1LojSOeNOyTRebF2K+J1zMuubPi1SWbo4xAX10Ui4jU0szBLVGPBcMTkq/inyrgN9km5EayRSXCXTMAyzJQ9AaH3wwzxAFvTiuEr+mbkRTNjuzYq8Zsz1d4yd5M+hq6s0mWMAigJDnxYN8D3NnHzCLS3HWPmmXWET6Av7KzCwwmZ1qPBK7b50c9lh+g19sRuLWmE20kJ52Z4bdJIAH9lrvpAUBGYsIrY8vutd4VAFv51gV9KD7O/WRaIAOXlfJkwQJLkdMMyFCjWwtPESpNRcdqKhLonjSbkFd+FvT6mNySNYz8RSyBOdRoYELLtWLFjaq4sZIlrIK3+dFkGCkKkEwIu9OXCsdk+oB6HZoe8AyiGXESETLM94+d14VwMV9Um6i3IfsOouj6L9A7NPTMoGbsQP1yJc0urBWPGihs5C4vFn7w+/6doH4XjR2ZaWPL3JlYcBozTNwLtgTIKel9KQW9GsIgXOyIdYRGPNqmP+6VsraCnkT7uVhQ64h4vnmo26OevJF1e+JJDYMn229EK26a7SLW4Rc
Variant 2
DifficultyLevel
485
Question
Bill spent twice as much money as Hans.
If they spent a total of $210, how much did Hans spend?
Worked Solution
Solution 1
Test each option:
Option 1 =2×420+420=1260
Option 2 =2×140+140=420
Option 3 =2×70+70=210 ✓
Option 4 =2×35+35=105
∴ Hans spent $70
Solution 2 (advanced)
|
|
Let x |
= Amount Hans spent |
2x+x |
= 210 |
3x |
= 210 |
x |
= $70 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bill spent twice as much money as Hans.
If they spent a total of \$210, how much did Hans spend? |
workedSolution | Solution 1
Test each option:
>>Option 1 $=2 \times 420 + 420 = 1260$
>>Option 2 $=2 \times 140 + 140 = 420$
>>Option 3 $=2 \times 70 + 70 = 210$ $\checkmark$
>>Option 4 $=2 \times 35 + 35 = 105$
$\therefore$ Hans spent {{{correctAnswer}}}
Solution 2 (advanced)
| | |
| --------------------: | -------------- |
| $\text{Let}\ \ \large x$ | \= Amount Hans spent |
| $2\large x + x$ | \= 210 |
| $3 \large x$ | \= 210 |
| $\large x$ | \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX191sjElm5qe2evdc1DCRwSEmJksxR73kznsceBWEzkXwkkicQWYEDKWVXQpslGVtnuSOZ2vojWS33WUzmHU7MlmGOQobC+vZMu7+qtcVvyrtdUO1uJeZgwfnM81YLXzt92dr+YZMPmSOUjgxKrjslBkYpaprrcgJJBOCnQZEGVFAKpfDDGpciEep80wScipDkYeF2sRO2GD+HGPmNY1olGHX+05Vo4QcSnD3+B6G7eAe42c7nJxSVFlE9KhdJwFXthqysDXiOWTYcwMesAOmt7RSuugU8F55CGB/fAuhlo06PmB2qUec6ucig9JXS9wi35xLwjameKqCqbmqg8hJxHqVLRlhbjYhQ95UH7eyvXul/VGNtA9CFNTHRKLBjAIdSo1qRSkw9DSv7MM4iQjyuiKAAE7GHNDDpCBUAYg9C+j9ZryvN+ezbzWVPswwscdsHAvHFOwh30Bg9tgEEJLigRbKU49Z7fkFeeA2rdyLl8M0YSYAWaSX/Q9nk8CKJkwePL7J0qzlNlyfp999wYOysKPUc6kcJ3wG+xcHRcPBS6AOF/lVGdG+ubrou85oZLSt1A25wTYk2JkgRcAR9x/oaQWMLCp6DSZSJ662bL7i4fIbtEMwYo8Z2bPKpdv6ROTH/lWXN47g5vhlHT+1u1f60+LoPyWmBHWjmmb3NDwVcgW74b2Xk5umMD1M3rSM5HY1bD6TSTnITZFOfjOrKgezUiHMwdFmmMNnWjWE+HRLN+2AyO/15Aq0CSGTrwTl/TiJqJIDmzyEW1zFyCj3AqjtYQe6GDjluI627NDHsU8Ig8elrRPihW2TA+aEYCi3mO0YG2fLDphJ4ACt1GwUFKvath0sb3em7i+8zk9yX1zN+MYRlYh6kCoz3UwfcniJTSgsnySDaXuths3JJqgI5LbDL4E2hOdjCuRsJfeApbDEhVnoe3W4yAYf077tVsMsSWGcZOIGqemFEKe4VeUjTDPpIgCVhuZoFbG5pGw8A4To4/SzuqEEcf/1qK5ho8x24Wnf3MvB56+jMxeIiB3it+cHn+Bo6ag56Hbp4i7dA2dAF4bfRDUFdnlwVrlhKUbj93NvcjX3R4SZZDd+Z6Fg6me2ae4nFqpIALzyq3M0hlTsnScqyoipaxSI/+grQneuVkgYrhopPiPFp4vcghj+VRnDgKdVf+Ceb0FBOoR5ErGb4LZ9Y2SybG9s/RiZrUUePCiMS+l3g4+7zBglMsb1r7f0DbMUrmomcFaQA2Xb+/3/J9ZceDsKr1BqZke/FG9x+I+/Gf/mGkcKaheC4XajtiDI7ACaBGIUPp3UdYK3WI3jmLPC8rdu9yrBqSq3HYBp37tJbSbihTkxsYsS10IghxgYYVMiMG3yt8iuRYFnYRw1ulo7CzV0lpmgRJXsWvW1avOjT5/w8D6WICH5XCe4gu1HKm/K7C/M+icT4bcerHxlh0hDdftQzHdXXkmfrts+wSfShAaiiIV1GayZ/ZgOvtso395l8RqZO15b/yRoYlqEoreCbPRTypOa3Spkx9MC6LSOrlbhaYgfJSEYkNdd3lipwM69h3liEN4/0M9QNFuDe/UlsqIF7tBKi0fUkyR0a2Qa+2GlKvdor8WAjR83XIjlgp/+fjD4FMJJ4n4edy81N6VNt5fQc/QAPYDpu1A/zdD1vjmhhvhmtTZd7hT0aJGav7/BwX5Q0OcfKLZVsNCGMtvAnEK/R4xfiy6FYQe1OzMmd/pyfPhBwmkuycYQd3Yr1D4k1uhJ5ghs/7yAF5c1+Ep6SudP8dyikxcEWCoFGc4eu7AmK5kNuErU6SgTkS+2uJDIi4sriWvIFQ6z1iWV+cGEcOmV1u8PBPgFLcvHOGYuMy2s+w/7ZZPEXMIqvaD/PaYNRv6f/lNPyJ4a9ZbwuOuKc4u1Flc+5sjtNe1N4mr+bd03kHTteWMVqO7u7wyP7MlNV8tjhySAmGyVtCrbWqcjit++GChrHHksZcB3sLRpQHlKsOgO6dFlk3q+a//MPkwUGtqus1aw0ZFlam58dc4odFTUWDSYsZgVZP631gqC0ItbR8rounv7AMbfr+dQbcOQBTz3+ze8rUH4Ro1js0y17tWb/J1qgKFTsuJrjsthLz44b9yckXN0KRszoqVQ/9W77XJe8vrYqDXvY/wV3ECNVjZPqOmINL464vn3FAEBXE0ZdZ/3vf6iMmBR9zOHmr4SqzZVQAVQpNS6XaIRIQts6TH26VYyihmPi6/JlrJQXch96HXrXQl2UkdVWDIKq3IjZBpbLaQFeuLpjvfCbKDZ2q/OvX5Twdi5XsR/hW9Uwtk5+HATnwVkAe9NO5CDuXjOMeo+Oh5+umsQ+TF0ao+oY5c/TTwB3qUuvho3LmRFIG+66bS1LfYAzs5biUhpNk9YXUPVfo7MA3GMzZ09zclHESDPzquPAa1fEcbNn1zJc0U1T18sQQTxFoRQqAdkz/xHmLI2cUszNDcWyeMcRv9HFETVeXxdqU7gaDXaCyqlvGgllJ+ER/o2IDfuk2aFFVY3YStZgJpB0zTB1sX97sbn1W9MCyzAESXwSbhi3cEprnmmM/2vudKa+5jX4KjeE+XT2ayqDTIdOCfk/iCfrSVlvgzZl4UV9jV0BL1AKJ2XXlPw2jDPRhFbi7QyUmCCiqthqA/c5H4w/2e62jzMXpHQcNoljgXE1dNzgm1pbwTmlMpjR/gbslWhgnVluyY/q9KtSi3OXr/KWvhxQcleftGYRYbJTm0ERyoEkZomD+d+R7CXJL0dtEqYaMdzavKTVwcRtucQy8I9P+j7YiWR9MPHzwLew6syfk9KUSGaaEqc+IA/Myk7hArsGW2cPbG37IaW1lVxgoN25XGLdd5WSAYl+wNdYR/TVc45rDM8BKvUUxRXF4EqNOZrSaj4A/QeaSHLxJqArWarUp5DFMrjJv6NWrFwrUVyGcv+D3zo2bjkS+5JPKTV7QU0rhDOwkM6P6Sagapz6u5H4lTpE/uu2/q68fhfJWQ4uAN65RSQ7XoiMjpN9/rsOHCaEck6Z7ZM1Rk/c5O4TF2ZP/yhHvH/Nlk8/ePsSl8uXvNn6Q6gzVOdkkAkYTw9n9l72uKXvml3fX+Q+mqsCAXOYcWJ1P0ay/et+x56eaoV4wr2R59nN1a8Mkkvs0mClBGvi1iYwh9GjliOr5DUc9XdrUuDDeMcDonPnNherBiwu828uc9OrDLsRSrVnhEjgtxSgUM+d5S1lRjoJRTQ00sbZ6Y0M5ruoFpHm6aKLWqWSsf0Hp6UpcIhHNvn29DtFIZVCf2T9AMj0BKNerGgJLVPgHvT+uwZctFqJTDVImMVUcTEOn4C4ZudYe6NwNY6yeaymVO31txRJYu6gHw674IfByghmZMC/UYhTz2V8Xw/taUKnaLLNaGOmKoM0+iTRaIDeVmnagkPM99Wn64iDyNWzbIgjBM4pV7R0QPVPZoA0ymbmWfwQWhw7FrCl5Y/3WBT32hQ+7fF2So826noi/YtdvkISiS7vT57561bWkFfXekhUL92r6EYwsP7k6VQum+Ffe9Yaw+QnZ0c0zGOLQcwLvl34pw0ryumGiR5CX09oojREaavLtSkwDbf5RGstNRfLhxqddqWVXtGAu9t52RY2v3tICCuuoniY3jjWm2Rj62CLfN8t7lsDdDvU/3OWCVru3sJmcGgaA3I4+DC1HTEbOZAo2EqWvjDhCM9JqrSvcr388L4q4YtKSIDbWXmb/HQHnreaBz4+6ikFtAoa3ZG44/3TUkKkP+VakP6AZowaZBBHJhOqJ/QLVBJFfgduNV8SMxNOVbL6e5oaMAVFBTIJpQaMh0k4gFAKLHLfev+AqGmSW13qtH7gSIeap8giHmbsXiQ7WtQpp8dPo24qWXHlKJ+fXqvc+g9SX9N2S2DxJwrDzgg/mtUXYwdnUNbeKErgZ+oas7IcPRC6yS/y99y+M5oYBpcv2Qy/v5xVRGFynj6xjJ6DffimrxjYH7l2DLnU9yUsJ2uc1TlYKUxXURsxLIhjjWphIOkSfAzSCzPLG8KynxhxihPStiUdqVgoQ7iLk58DtL5mF2MVPX0KpwuZa99nUUAHKHZLsnZgTDzpF2kjWuPnSNvtYPrcKWTJ4BFHAafTEF7L5TrlDAZrdoudfez0VT55RQxGvFDzgBR52i3M9E7n2fz1xmuMMP+3lhHq39EbdwbWIH6jZToteRMBgj8XwKNcmsqvWunsLxWccKmAQhyWAkREAM97dMQ7iKGkz77aNZ1UEK/6y8wNUDgEap6cmBdOffp0HGTc3yz9x+yYRonrllCZc3x0l4ZhcK03cVy4+0nr+fh/xWGAhGvu3AotQF+SEi05/IH0FfG4QtjiTSdEH0ONid/RKogH08PQRAuPikTgMrgdIwnicQ3/ejTrJ0/nCGl0muaxFl0S54yTqzTNkMLEB+AIQq4/wxVVagIV8IIT+6MoASbmYpabe6DT3OI9FQZfYd0WCvoyi6snxIa28dO7uj9HmKvihpWVnMQDeeSW1bx4gF0bYdUoUm6vSm9RLPtswp63fi6xp+FBzzbq0ZPX8HKbsjjFaBhPflNnCfTIDfcSBEu2DMibGoG6elLUrGDJQhDzOvbJpV9VSUILLt6dwf6YrvZg6vmRH/cX2XB9/i/rejkrW8ZRPIEVXfc2BbaJ4s5QrjRkn+rBcfuiLC/66HW5reGCEtXj5rqvb/iZYaxa0ffsIM6P04p8ylEftYefou4XlIDmJn8NNZGglA1v3kdGjDLlI1uz2HVMgkMES50Dhj88YjirVJ8RZ98G8NxwG5lJLLxW4hVp9x9g8rpGGkHxenvWleAIENn2N/AJBlTmg7sXZzs3eGX0kfayu+Nh1ajcfOwwnUi+X/OIQtbvHiBLjbZtiJ4sK/SHjmwWKzORMnHrJ4p5FlZtHW51/sN2AV2LvHzd6dMB7Q0PR9TMljesDbZpYvlMDPFzGItPPsWFwvmm4jA0c5pneZUavQytYxGYch1kDrFjcgFFNZpuH2jyTxI+j1i+Wd9S0aHScJUHB3jjHaV+1X7Y87Cny58VIaqe6C4tnxd7Yn+Y1o+1f319+PEagMq5sf5N6Cz9QWsaZJBqQ9F5nXD4T5RZAKKvuP03e8U0MeBfP1zQB2piD7K6nJsr5o46W2l6M7F/yxvpVznYpmqlGs/saUB7GydQlcv7dRWMkH5wJUupYrvGfjmXn5Rltk71i/8BgwTh71ElxaesXuciXmGylwIzAMz7vLWlXgkZwPY0W9Sr0UT6tzpkEEkqVP9WGLHddmAuMe6EOUgVbtZnnOogsUMllyCoIeIRJt9otay8K0yMWki/cjgzLELJHU+jK8o0PZG9xmDgNROZvZ7djvyItqUtlCydHsVuEdmucUe/7ulZJiv1BXMVU7c4tInV2pverryORkMnCfIMwn0YJ3pzK/afBBT6lvvpzEgNTZZ7DhNRPWJjZKhehoAs+teJo2+haWV2Aswr5+K4jjTFfShmev7xhGz+yogZVb4Q7Cn9zDVOwb4l28SCvZOjIdUw8Bji0dk16WS+ftTYovzoXKP1ceC0ZU88sppzj46ziwl1IPCJyiJiPAM0pp2y6tMcVbAWbxOGlC/8ic8ZK+4Z3RyC1UbODrbrUzIzdj41KKGpRMk37ttXcwgbpkYiP7x1XlSyxsoFWOAphl/eTyUlfKNM+SYHKhKIRPA+83cH/6w4hFqXbrNX8k8DSUQhMJGR++21PUFEWjlgHx8Wu7EeuZoxu/FfQt8A4Y5g3SL6kguE3nc7Rbn3yvW/TYPUlfLou49Ejm1gCzfOqVa9BQpROAldI/WP7VDj2f1H4kGFwNmfEXx42YYVx8w+VxC1bNtSTNnOeTST+d9hWn4FcFtBfHNu04nBJ8fvGedUwL4LwTcTKvr8Bj7lfCUouIK9KNA9fsuUY6nd4raVfLWgTWTLJmOZNPrWOY6jY3rS10vgJyuGh0iK7fXpqytTPvEZuu9E1FDoLVkMgiU8Nz+Qnlt8f+pfE0W3Z3eXsLJjCelMywivmzqX6RdmUwUJVEB+thRd0m9HNFWCv+KTxZ6qP7EeE1yLTkPPGqT6vtl+3Sq6c6X6/Xb9UL0ErxFwn89+H1XP9t2ISonhRHnkUxCCS8Q5CoN1gvCDjxhZ3XrgpR+Bga+yZIUbbwSE6MPq+K7TB9+OQZyyAk2U07j/nWdffH11csEDYiS0bWDSpdP99bo64EC2soP1+1ZTH7loR6CtQnqGxRN5CdxTYbEH4rG0WEwopv20h5flo3DXToEj/yy1jpsO+K0IMw05or8hF5rw7oi7NrtYvdx2+1h+3BipsHVBGFVqGoNYggYBCH67MRmiIuYfIzYaoL6LCQm/spuvBqqh3b67aRgdZ96xL93McBwktd1NYc2pJEOYpSxe/7vI0wxjllIB7Ou1ZwsnezeFb6zmcPAHi8BfE2R3WRuEuCBIFcB9K2X65AQY6Q56djHTH46g2pVwgb8xCTyJAx3SDiMtl0B4cdpvzuWuDXbF1ZDkEb+oJtPAwANHYzBimpPrtyEzolAQICSg/XK19WB9Q4epMxg58JU6M3iFZhiiwGvISzz+kAqFNAPqs5VZawG3DVWznHUyyhMh85ThUlJtl+rAMNvxVM9qtj3PjXI1GKgIsl/ETksYKrVZ+eO/30qnOW+CdfzP3QjCTtNEuc0VV94KUqGRrgVxxL+naYr6ZpQFq++fRb2Agm56adL+31MrBeAWpZnUYje4Vz1WPfkWEL23OJv0Q52C8oBP2zjfvnp96R2Qfbx7ORK1m5uhZLjHUdx2/65kI8JVYudJSeEHml2awHdo7y0HJyTGqaGwGsYWzdVP4re+p7Ue7KlNUQFjkXHJgObW7qQNeKrSXMShFrHZLYJn8yJ6G8mV9QVFBNtGtXwWg1wOo+uYqp3x0o1/FD7pBLpB6dKTvTRIRnJe5l3ObXSebUboRaA9BH3be0i1cAZPf8t+T+YrkdKVukaNEMtPpRlObyUPShRIIaW0PTA2uNMWRDzxe10MaFiAt3/lVb519OAcgU1/1YYDXVr1nBz3ZkL9w9bjg9zUHdSxGn85veAvSASQlocxLPUpNIlVFnY4BeQCnvAqzh76hAWjHPwoP0ncFSsB4sdhsfZ+Ms8RN2cxx4YrpIW5jzmG789+/fOurhjyFxAZOyawxsVPTRL8Z6ypOwwG+1PPS3+/dp5UbcSAwnAL/pO1jblQwBME33RO2j2OtxQMmA+hRAc2++5WlcWZ4dTPYb6HfKZtgvXEbQsihOUR9z47ATjK7tl9DBLU6EmEXFuqgeQsCLDQi76u2KWZR/5rz36KQF78jaiN5quclh9P6cpetwVmiY6UJtCQeu8yJivR9xjSN+uMagY1Ch052Q7ZVA0HEQqafRLP3zFeYx1Y0u40lYJXrGekpJzO8wjsOZCk5/I8Qm4gQWxhlC/pBoHN8KU25Qm4/IWudojHScSYYa6KN59UqcFa6GF2mfZPiahVKVKGtNcaQwQ5RNWw6qtGZzfqJBdsJRgJ5238NEGgf2WtMfR6COhhjmmkqlCYOJw561cwnAPnbNtAs9yeUpESbVxx1a+Doj14B1wVQ4eWTjynFWZtT4zBLzjX/sCpsq7GkWOAaO2Cz54nqjT8gC60zztrE4pTPd4r6IIVvZ3R7N9gtkTlffK7epfspb5/QmvtkRD21GiE+J0hXcygKlJZJDwje+aPc/ma1XxPTfvMqp6FP/nWjZ+WKHqKuZ5LpbAT9H6Zlg6ufeC7Mecu2fY3Pkb58K7pX2eaHo2SQurW5pNuubgPal+mxv9Tb6jqUOPDsgmmHsVwjjdw4eXmTr2U2fv+RkqC75SY/Dp2p9Hby3XvG8VMzGrUnSMzL/bExuOpDHlBZTEofoYQjYaknX74Yp35kqy63olGkb05I2GEzTendemW7FxeIfvfCpK3PnWwo4IG9EpWGc0YCH7gtNjyETniL4nbi/qgYeTjgp3UCGXI5Qn2qyiGwpX+YaV5Jkbrji/siz96buWFYhBpshmxhcF9Wcrrk5tg9cPecH1Qy7Gq0AW5qnVx4z6mnOKQThrh8qw9cz/7nYq6U004opsRyVheY07ZOBICDMAWzKE9VZO7rlJ9xiLHBNePhKx3lZ4Vmt6a+D2+u8pDLq1hOESlkIxwLqIDaLeJl6wI0Vz9dOUU1kLXnd/x1wn8gBnzk7NtTxTPX6UI3t/zkfSYBdcwx16HesiUkLF4n4THcrd5aDXwKsy2k4CNMcyxdnAATwU4UdXPFjrdFYEC8XTz3rWC1mRaVBiWkLW3VOiemcB8qkVyWh/Xs0/yBzIZiJKuO1ewkJ4lcim5xeuLQOBYgey1kkj65Z5Qxiw9QVSCGNN4AG/VeXbZ8hTYOap2jNQkw/7SM1PWs5ayeQEuSHMZGK8LMIRrtFmRTWhO+xfmoZ8nhnlv+pG+9RuF09xM5XStTQccZsYzNUtQDmKYuaiapFWstpPEIylrZGm1m6A1ddOe5SNahxb/K8QcRNEXGPG9AZouMMnmCkTInCEtJcKBBdOeEdX1moTxbXF2OWMMEPzO9haE7v1/TiWmJCkc3CMCIR+1om71oNWIiDdQEIes+uT8YWoSGPOb2ol1MVnkDFsvxuDEUDtmNLkxi17BjnkvT5u1gBtdvZQsDrxQXss1a0q1IlOx4Vrz927eJeXqocQLgYsWpTeUcSgFLa71aED2/vAli/XMttP+mOINvqrTrHJTMrahfGkNzOdJYmRXS40VWcgc96qm3DUaZ7YBUJkEuBf0KPZ4X4lbZGHbt1/4d8bhsBQ6ZMk2BK69MAomvSwoEFOeiPgbZmtrwoQFKfy5SpwHXC/dOU5UybdmGJ5UrpTvNiM16rzZkKWoQk81trv+kPvfNAXgvBtWms2M67qfbQXvCHSFzu6waS8UBfUcGX1jibKIiOdZ7Fetyo08dPYEn1grkReqNtpuD0Q2NBnb0T/IvRF3PVQncfWQgFYy9kR2vHMpcRvAgNxEChGa1OTAk+F7ngQ+R1FFguvifFsWmVlqwjjF08tYbBHg9i/+kwd59x8snTmxTaj5g/LwD9hWrqsmbvZl2dx5iLb9AAajSsgW4VTNscR6Ozi4Ln4kMFb8YhGhXjlfcLJmWioTUiXo3ii5EUEmmM9g9/d3zopZV3bFzgGQw7y8kVIbm3C/U3JJCkCZwxsKmV7VMmFpmEJWlM+ydcnxGUf4cKzmfeOjjmiiieP0i/UBUY5NgP+tOtPkYViMXSmrPcJp5dga3neINIJjy0Fw4216ms2XpcGKSxKQdowm1T5TzpZX1lkVyEZXLgohy8fA5LqN+aJD/+7aHI4QnL+vOsDrPB3LVLBGUJjNH3joCvHIc0/gd41Cuo/qu1ljY3O95OZO6NU4QjuHmfDoqk8N/1odETNBg+vWayJf2rd6tnSqF/L19RoXU/Oay083LVg7vV6NT8cmJ0oYLFONJ/MPv2W39gT9RhZSgoeFp9B1YmlyqBYlOd9s42O8CKiZQK7uzTk/vvqxIg2KwnO8xpBrt9l7PkPo6VtBBjQ0sIh5ZovBZiu4Jh2g/ttq18j3yAOfAgfIBksFG6JwM6X1papnkGtU+1E2JJwHV5Iijjsl7mNyKCefI6nAIPtT4n5VyQZjKG4aec+cFuPwhBgjxvZMt9i5Iq3TEIpQuRu4g5BtxNoH7kzJGyNuA3ziqklTcXPyuAGzl8rj4jnq1x5TZfeM+VX32yP07RYF/NNxU0U3q2nCaCsEgrDMitJ5DxKgi9HL7vd4ORNxVchj3Ie7da75jfhjQA3FoWM+Y0nstfjS+Mfe74FaJnX7+QVAqKhvy1ijuf+xARNaQHXuINI2BLwDC0CJWHEoavfAKZYGysMtvieGjyL8sfBCFJlNB2UNVYbvTfZzeccU/wMccJIxs0CKtzBqMQvVPcz152hAPo3bUH5JP4NJcUw/NpbLVVfkgnswXeNOZXBh+WwSSNKjZIwJeql420k4M7evwKl2m+RAUWl/Pp1aiR4XUMrSPQPlSfJkKs0uEfz7JupNYewN4NykDF1GZGf0h8eImzMLh5jYgsnSgJsXxoJopEkO+KpP3P6/sAV8e48Tk+YetKKjG4RIv8h5SEdygVqhmVTkhr5nSCgqjeJjP65kg9dU3VI+Ggs+sCvtK59KrgHtvBfRXrJpETUJzKi2vAQSaPMTCH/N5M1dyyt794FDTM/1URO4RnZYBs3GunYL7aFFqubVURiXJOVyXuyzLhgVtuesiuSOjmftK7IHDbf3yp/ghhAMmf1rHldZNG8Fs4bvWQjO3QD6oPN2GG7rEY2Iym5AskfT2rvxxdV9PpfJhcaxLKOxI2vqXEGvC0n442dA2n3Thlm55LAWmxiwamJF974WMiOrPOPE/LXKV+mtr4pSBnvERuxTg1d8lARAkff6nwE4VDgTk1j6uRmmKaacEUfKnzylNxN0A+RwT0qtw3YmKddrSV5vunuOtG+bbtgGj8ZDcRTICiF6Un/OeO4y69qyVfL3vFKuzgeL/KpobjlJIrXXYpifuRlYFZzcIA9Ctt5jn6h3z6SwKaGpOZe0V0rfbq4FLVuqNUH1+9qcbpzCiEHlsJhGyKYQaBVnql0ax9Ba97spv5Z91TjiX6CYnNZAAehgiKcBfmDTlM8UPqjeLS31HFU2EPdA/c6kvgX9BhlIgptdbTTZLTESddwlaABCabyR9s7Hgr0RPn7XadpSXaDb+T3GwZiZTPqodP88SmUaI1SNbx5q1mWq/a8/3gfD4LKLARTnefeTgLrYrWreXheOmtgTmTK8fDXyRtQBXd/BiS6FP/6POjJDlEb3ncEu7/K9cGIrAk8F5jcZljdynamwIsdKZDDAQesUHOArTHkKUwlVvHrVELE4XaaoEyh0Rl7E8q+kvau03Da8fU0PsDQylywaUxZWP8dFIOTtNciMsMeGTI8XxNSzSpvBk6uMYbMhB0KXxqUg6lAtYGfJ578Y6GzTBjtBCnj6CExKKrgrYGkZTXJh2cGEj4Oos+3EZVDFGuLnSe2V1lSOnmCOgWjmQAxoWYDMM5fQeOtsgt9ZckM0za8RYq4WOnVSw/0NcqZUOPZNgi0tN6J8FmEitk7P+xuj5wLn9ggtK+iv/RhK5a7iTSf5+a+iz00nPFvgjA3q3RqIl6jP/HW6mYZpF+cmaDMmnnwJEfdPaST1VxLTET+wdVkgAux3R8svgY6fbP/Hl2kpxCFdf5lVzuRaSiFCzxOcBoBWyoxOWBhYFh1Vdt5j23c2Xk0cAtjwgkUVCc35mQmJW7gWQZPOG53e55ZR4WB34xNHHKiknFvHguvlLX2MTCoPXLkaFTDIkd5fefrsw360TwF9GAlwY/NGYTY/Q6PRgYJK3Xumi3/L5X4t0AUZceR9gbXQpQhBY8tWmC3fbZwhC9ih2LbLo6GQUtSc4n9Z2bavYQh7IW+44KNCYeK60b6v1jdn4vvhy3PmE65+1+HEo0gK1yWBhSf4I5QLTGjCmEOmll1ZXvi1RprHHdDPsB2vs9mZu5xMBHMZjAhJ3hKjt5NYVijTr7tleZXsBv4dtnFczr1SQuEgSmpmPD9ec19G+PjJV38WU+ScRlkR13HOfJ0jRZqHf6zyUC3JlO3LTyPnJEANVQrelQvon5nZx40bBVQX7MeUfZeBSHSq9WGRZM4ACnRBBV0XOyDucdMMhe9leEqU+T3TSM0XlKG6OAZUHMmYgpxxcYi9SiWLPY3wyWvAyfn4Gt0HOuHt2D7e0FtoLOLpYCbw3Pk57NEuXVQUDf4On+919FYpdPz/y7UPWLInICcETa8iLsPzp7SzgYactp8EYawEzSb4YH552+XhHpGXNkOX25zKX3uGcyiqs6g24qp2O2++ZEB6+ftSLGkcYOYFvRGb4n1mh7/cLCYd+4Jcy2nnXTqM9s2kJwPu1wlDnrYRs1uARQKCCr+0ynwc42rid4JIGLuMi9Go+BqESkcFFZCMP2hicAqE1r6i9TN6dWHW2uJ+9QOeKDN+GkMWCS78dThGyuv+6/VXIF/+yG/eTFEOJBT7KiFfoR6FOeqQ04703iAKcxrszlKLWbyhoTrb4Rg0v9cHgj2xwUXbTat6E1b6qZ6fSSB06h892/GtHlHCXxlpm4+9+ABLBGJFpuBZLB7RD0PSjwXa/KyumG/ZrLjXQKi6+wOIYbHWOSOcBSQbYBRZXWKj5Ch47EbbwrA9vduscOhLYQQSnCZBqIA9jHawRQqg7nQIAsj2lrSkbr7QUTZA7iWRVhGuf7npcYRQIdQ57LKO5N8v3hoXzle5s+an3LczgR/o/UFdcHXOO/9NfyqXgmJPvCeHVGBs8S0pqJWBoI6cCKuWeNIJfa+dH6Qhx96L8sFsQNywblhADju2e0EsSu07hmvp1KC80rYxl9dP1A735IZPLzA8B/fP482YjwkfnZaZ3dbRjAewxvHW3c/fwqM9J563LxJdrN3HQo5Bcb48groodYp/H6OSwAntCxJp/kpSGQCbesjXEFxM4AYswnwOxbRHE5gCkBdXIGLwjU1mXws4LUYGQJPlXpSyt17XiOe77Am+iSjVmrSNv3uimf6A2CE0bsZlbKDWW12aHm1gkwWWFpocbBDYdppgxKPKtZ+diaYmSLmm4nKc5X2qpyK8WYWOWOnBuriyspYaHad5juAqb053r7o/7fj1cWHrSxKV6ZMUv7NgL9jAVyjGOAdixdkVXzOS8IK5SnL17vLbkM0I6ZCrnJyB/0ubWbaDnZjrFW4+tjUBDGNcVbzonItvwwA+H3mb/D3tETJtvZoaloXwX+tbLB82IkDA+5aYNVtbWabsXIUuR+5NKswhzkS4rdELEcIaKWeB0uGfCBa7ROROOrv299FzIe3kmr8FnHu/PUXCJLdNUDTxVzq8+D2q6LHHnFkVLKA1iltQVUqlCc09ZNIZ+SEumWrOo/imhN5Dgn+omj2Kp2+fHLcvy5BrKPcHFddmiINUlaSbuKixPJu/z3Bm0dHPJqn6hd3F0fDbs6QtFLgvT8V8quZOU71ojSy6obNylaQJalFZbMmNap9uTYo0ShP+7JZShE8BxwZVmJcRrHNKB+waen8xTFQkwealprF+9PcOkSL62roPkp3uJucLhceHXCSTIMiNbcVqRdsesdrTBnWv6wl842M5ra7jBE2N1ANezCUsonlqylk2oCqW8SLa3SFCqSyYaeolDl0p28ej5ZeGW5sGQEaUlh/77Uk4h88s73kgB85kBSxECdBDrXcrHF/7S5qUzDAApyRi2uigMj0L1cGNu6EjaZfXhHzDmDfHVUgpUW3v4XH0Ptkvx/EDZgXFhDPCZG6JK/NbbC/AaOoLN4M5VmU4vgcSvD9+Uo1vDot4jdKH6koWLc0WzfqTlArRdK1yRDTQrLQALHqXt2bg5w3UFgjKQIAYX0ASceDlrfHmc5GGVwe3VsfVPSdDZznAhoAog2Ff3by+Qb65Z+8fdfXEmM57Iohl3GIyKVnSJXyR2IDkxCZKMUEX3ut2Hv859CDpuYxMrOBwr1cIX3mKmonJyajIqW6lx3wapa48Spg4yU3i10ygwnI4YSBKS78qXhk6Sn3iL7lpqeVzzQcwe9Msl3UJnPL720sk0CucxCkQiBhQ5Aa58ODHeEj6rqrHWVDSFoVLF/NrOmsugK+Qwxn6s5V2nBVn51/y4nm+rKrLFb9GvSzGjJOsEQeFtanuIX1krZlLwfctMfhGVtn9amRpCeykY/f+BbKcU9d/NPA4TIXGyaDdQQN3tTZZWWWkgpH/7WMx/T1owapKnpDP4wDhhajrEvG77hrUrdZAXscrVW7GjxvKHngNUl/QgI6V6vNIoptyIQm2DL/aBjec49z20W2eC17+m17sXLmCV2Qi7FAQ43Y5T3U8Jpj8Rc9ZHZrg4YgRIPu3fdRe8b0eOormN3Z/wU9bluWLhgtCNWrJbylkwFeOqI2XVC6BMynSPbJmSg2zvgUzosg3c9ZWo8YhCqM+FqDSU/cufTgbFpZqc9cRG9xvjYPyAuTr4nvC5ZkrD5PxN8eBKkP6N5+6lL4XVizpxVHdpxYUBEiXc9qi+HjEy2UrdbLJA7O/kdigte9cpCu4g5PxwPbGppNCfBv2otmZtTBmsY2YMqZQIqwd4pO2GjDBfo+yC4p9ohI+d1urrmYNfypO6YNjVdGFdaN+dHGunPKLltA9+pgAo3ZRg6Exfv0nt88L0pw+UVR0egmb08RGs3qBLeYQr/xpdi04SIzDJvrh1EhYJ/ZkP51FeEiBTwfrRy9XgrqfD3v6K7jT+zjWRisEhuQHp39O+7q3BaFPk49sPmL9qPWz8MlWeOhDOzq3Yf8+XXPQSukzU5xYc9QE/Us97EOTPhkDImVuuui/DmhTQ6Eac9XC7pSkL8jFkidZm7T9a1IJReHVo80OuiRixerYjcsrljo2cCMwoc60+S2ndSdEpI9zDhYN2Q67gbJ6bT7cAsoL3FjnhmaZa+Ehx+njc8hCVV9dXdiAlJ8Rcc2fw3WiPZaVG0qyPH6/+oSVS7761WwcTMZOVVg8Gvvdk7geOBiDx6pkorUNolubg4RyzKgbnbRkdRw5G4gMPzXKfmFP9xU+Cmb3WQSwxIY89ubsp0kr1ArYFsVa4AX3RLyLainzPwCCgfAfimRYiKQFfpuisHyMyP5jS4mwfWm32pQNflBhTkHMqqxbaX6iWIKhsum9yfAhCFgsx3IDc/hdj12WaXZR9/XA29HaqaMWKKEq9Li6UovteMBqOUnkPymLeUNphfA9N95mKxJUOHqIpB+UJVkiLEHXfDSVYJF+pxKEQvL3ByubJtJ8cNzSCc9InBqK4KrV7ulyCU/7pZeo+2SD8mbIeaB93cUNNX74JFCZV+zkFCIaot54OjJJfMqp4f2M2R3r8o9q1tRcBFqTVHnRzk57JvjhCQa0dNpcMa+LRfyfjZrQyOEyOU2Zz6KWGyUhWSvHPCeFcTAEIqsL4+yN/pxdvucaMyMR5jKCoXCFTh5Z5eRLwtUbKTacoXJ8o0dB0sgA+4mlAKfbOCAzEpIw1xHNqQC0EEWG0DqwFyWaP4jyeEshql3UJu57qI2r5C7wN/qDChX3VZ5ZzDJRPcDN/TxtVvth6XqbTPM5jqu7WfgVEn0em5G22Q4m1XzlijIxSp+NkXPKZ3EgVVYldkPqVK31Ehjllc/4TWETeu/UGgG/+8vYG2iX3PsURWpb4sOnirpYWZr1flEcDOpyMEULP4C6ICTkPqs6OrWuEQ/DLNcUS1ZV1rxaZrmMgR2pyXbYPkI0M6PbAf+7xbSMkRBO5bYeFteKE3wdgpKsJFc/hlv+ZvBur93RA6QL9LGzvYDJb08AMpF1biI3BPg3tAzUfcyoPslhJUqFf82FaUOmtlKDoCA/KgxSYr6zzctwZ5TglsZSrej8g+tEemggckl1tRFTajME2+4scHIdt0s6Jfa/Ovej3sOBaVcwsbrmQBrydqN9SAk50Xpv2fEfoEjzya6T/qvy7yqWh1N1Fpfda2iOaLbK6kWv90nxcLvJb2Q0EGY1UuZOWslCjXDDxCeyNEaMYdLAKzmfnq4kZQ3OWXcackvz3V6QbQiTBcdcacO+/gxK5X6jhgIqMvdWB3DoWa6EfZXaoPwL7vwYjQBbrRkr5q+VQkinR6BgdqxoBlBabJi6YLG13LpjWPhmggeek/jTqWic7DQY5S840TPY1ufU2RUu1W5QAl5JA+FddnQGCph0WjAf9IbaA+Smz4VQctaSueeFPB5WwRNCrv9b0dLICmo2HlyJdCVJ0hzw0m5harFW7NQ/Vk4Q8rrFrcOlBWg7+J+o85S3sLiklUdLbbv7Q2NbBtOcbbTlvkinVjgFA1FyOSoIcP96WdX5vTm0/qGs5z20Jok2K9TEYzDMCdv/P/La9Bm4NBlrGpXdz/piEZ4N56w/Ps+0x5RKpDub6OpUCJ4TujSz61chY4Z25pAcRshjXINw1/X1qNhFee+H3RvRKH3CZqytykznCwAn3bTSQoMaFpHF1uBMjmJNRnFMKg6oILG36ZOtT7g6qWz7ZiPv+G1BZg4tcwKsW6dPxLjQgXszGKgnvCAqY2DD6jZ26B4nmG58evI1I26nlFjahbt2e2whHVv/bSUZL+j/YCHNpZ6aVQZf1u0N3NOkdj75A8NXgmmumhpOvaGR4uzt17AcftzrWQViC8GwKCYImZpMMFb3SQcqIt/RBV3fMzEmmn/v69WnLxSJ59wqHl5oOCzgZoZ2aphhtiE/AQuGk/e2zLF79Ge/h2twQP/yBMiKF87E1P0NsGJXCamIQPuYwWYXDzkDlinu8syOX1kTHV6TBUbra50AQvAkDD27yoWyKoOwDjLpmOVzf6/BIcvbHZ+BLP6b/Suak0JLxfae8yv8jxTHsgKEiChora/nhkqFQdxV/GFWA6vhDPW/kFRIhr1/E7Gg9H7IwkX9hq/oq+2IwdV7dr+ySce0b4EDQO4ZuKTiUgMnA7nKxWt11uo3+kPqN+8QsccZ9ks4x9deNM+W96XT+fZ+nl1IVILNqfNTV3iHpalnJ3jPVE1Se/63CP3oCvS6oSNgwdJWFZwMrHfOY+8StfR7ar3xUgv/yX7FW1lHCKF7yN/HuVM6VFu/vnFPzxjPONerv0k6Rv9d+U9g69i5/kOleY4h09jc7mnj8GfTGxvIhm5d+dYsiPtNh3qPAitg5HNCxgrk5YNC4zNruvl6D2YLBOgbB5bQ6qp4XmfULrJf60K9cytKVy08+knssBciaEtvyMb7OivzBtPEBG/zUarcXJEneuw93R32pu8Ol7epX+Ngh2nrIwgmN865s1QOzwvhC76m67eRwxmh80Tgu04MC//GT1O3R9vnDMCB5HNNPmHN4offVa3WyOGfOM+/n2xCaxCYjcdOBNKyXlVUaF3mKzhNcTpzI58V+oXzCylJrKCdVmmhBKhxjUvFaTtjaLTEmYzgu9fLnOoMjvqmpagQBwWaEi52+hZ0SH9Ty7nLRrisfn0dSRr7LI6BR1ONxtA9T2BLzh6IydZufsfFhOZ7t46nDT8PlMI0tLgOi2HYLYsaiEwMd793A8xqNMg0hh7yeioSQ30N8Z747cY+3XIHCSTm1EAnLFktTFAkGQBFPSagf+bhDm0c17qo5sbIDuCXoKPLEAdePD5webTY7Pf8O1too64d5xVgsdz7BbCvU4XvGwScl/h8tzaSEFAckH9md0JorGur4=
Variant 3
DifficultyLevel
489
Question
Wilma spent three times as much money as Betty.
If they spent a total of $200, how much did Betty spend?
Worked Solution
Solution 1
Test each option:
Option 1 =3×10+10=40
Option 2 =3×40+40=160
Option 3 =3×50+50=200 ✓
Option 4 =3×100+100=400
∴ Betty spent $50
Solution 2 (advanced)
|
|
Let x |
= Amount Betty spent |
3x+x |
= 200 |
4x |
= 200 |
x |
= $50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Wilma spent three times as much money as Betty.
If they spent a total of \$200, how much did Betty spend? |
workedSolution | Solution 1
Test each option:
>>Option 1 $=3 \times 10 + 10 = 40$
>>Option 2 $=3 \times 40 + 40 = 160$
>>Option 3 $=3 \times 50 + 50 = 200$ $\checkmark$
>>Option 4 $=3 \times 100 + 100 = 400$
$\therefore$ Betty spent {{{correctAnswer}}}
Solution 2 (advanced)
| | |
| --------------------: | -------------- |
| $\text{Let}\ \ \large x$ | \= Amount Betty spent |
| $3\large x + x$ | \= 200 |
| $4 \large x$ | \= 200 |
| $\large x$ | \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+pukUnFhQfKnKenNcmmS4RUfpQT4yOhloKCSwYAyq0kofwddg4USoW9cRISlTon3Zny8qyohBOBBi+bvghAwYBnirzlDkX5KZxax56vorLXJNWFJZlLqngVS063VSKZURFEroPxp0/Gb3JvIDQSxXRiFfU8ceItfHTSubdupZmI9fr9DAUvZxQmTrALJ8K7RjFk/fmjZ7q0T1hL7+yAXt9QrEkx+9V1dpoqSHf+umUUeVQ44bx8WvV9Bri2mfHm03G8qFb0sxZx12zcXWECHxIMzoKIFvszsBUrZpss8ZpAESSUnKGJmJ7RcNK2pTAY2Qk60VZu3yC9DTbFkUUaxRWJUTWHY60dq9ehG3j9gks/P+sbxqEjuP3+osVJxLuMzCmy+3EWfxu0yplLBY3a8RDAJ/Y+YCJve1Tu+FFSTHcinimHjyDDVP10S+tttja9uneloCmFaMUdFG/bHBHnELOgwXTfchroyycH/oFFUwauQlYnZiTfNeNmL0VOEuLQHXnE8RN+QD0RoBp0YyKSUJaHWM6tThoZozcbu1khAeg1WVhOtdbL96GmYWulcJXtOLi5yISZsUz+8ATsJefBcL+Btg3hHYcnGF3leYj74qXsjDq4QE23uwni1gPZCcwCnzSKDnIJ2GgomtnU5ZrAYFuAI6fg9lDAiwxiciw2GTUGi8wCOYobyK2PIXK/9kVCjBPC3JbTBtkCeVIL/YRWaApLaHqo92aREGT4qojVnOB80hn3pk9vHFut67KBWtbx5iaPECGCyplGksuYC7XfFm6zGPD5XIOwTYF/H7dXkUQ6Acs7FvbBF307ZZYWJWP+AvDKwWHQsiV14k+p/fZguZSTC2ovuo1a7EXlVaTvdTNYsThdvVKn5T63foVHHTi3bwVviyC073JnEjST1vyU9nXzVSIrgrfKMhW00Acfqw1mFnfrHaZQbx2k23M4RVWt1iWeKaGJJzf1/jSOxzas/KkFashzNXImi4q90GS8SX3AEzDk+n/azMzgJP4+uiYELGe2cjPuJvHzuNmUsnjb9hJDOJ8m3S8eqAQajeDyB1AHHl2T7plWVidZ3Ni8RAalontgvxOVaJRlJB1ygOeXfOcPnULuexGxxTrN95QoIUES7sNC6eT9vP+9zPYldQ1HqIGAGtBQiYoLBTEOzNKu5ygINbJgXAapuBA+p5Anffu2wIRNhtuQLG4tcwmzpKMdk/6Gf10qJJLzwCGUbqOsYN/A8vCYdwJOlfoU6AY03ZrIu/grvR3IBJxEWfD9erAVOMN2Z9P1FgiD1qhKVRRhLou3d63SdEmo+xf4w+ZU0t03t4K/a3D3uowuJbmVVYloEePW73vK/nQEPyZ3M4TqqfaG54xZsWO+X+dPs0bMfQUAJ6Kf3FREBF4iqi1tmqrDeIrg2/uofwgZXWKh68s1V+7VpxA+0XuJpUPohwlo1guOep6qAAUIC3ZNtQcaJArUFDlhhM27OzjUClxg2EPxta0zbKkhgasX2OWXP87Dxk5PWi/+MOhI8RDobZl1EkfuM24FIRRVdPpYKo1kkqH8HMEGKh9NJ87E0yxasu/PPJPbyawenJfoG51h4HfQFQzsduT3Ypd5c74+msznyZpGbrWLaMcI5Dhg9VcKOYx5GenTE3STP1mk1FJ7dTTC8XL+hhbOSAr37QMGh8v5xY/xsyrSg5o2c6KIq9gU+ctbNEnthdHVcC7Xr0EKRDz/zZu3qI78cAWP2/JX1ppo+6D+j6so+OaM45OMPqj2NmbcOsQaNVapwr/9WjD38BbSK8PCyHI527Gh7ZRw0Bbj0RThA6gCwOvgrxCeSqHxz+/HGZ21wssXYluE/HrmeF3px66tIn4tADsdmjdNbka7za28n532ze1RBpf+bYoTsujwF+V1Wgz+ni1lCNwj6nH68sx81X09QTpcik1F8Oz+bOdmK6+30DerafN0D1idaDD3L/QmR7hhJJnxE4jXzkKXQxkOg4AMvKHxbcKBDFS7OmNgpV9bEAcaSyBHxELP/XXHrj0EZdfd4F/O7cPNxDvJLAK0HKgksP4sc45uAmuZQ4u50dml7KoKVlcY5XXi15NrEX6mAZoezDhiN7KL86T9+ZPpjfgt3zFvORXGXSO31lpw4SESiGKCi0oFQU07xq6o0pxzcrvcUbEOKbrWGeWzVgk10axUDKjBZsLplcBTYMr3/Y1quNEv8grWs433XlOCywtQP0JvRRhgvxL2ZmL8uvf6ZRgBI8OXLttOBE8jky0bOI3jmjIRQ/AEY0XzIvNqIZq7BCwvDkvbS2i9AbFJExNnH7RXCF67Z3sL8mzI4k3BSjPx2o1D0n5DJwTPu3weHe2G9wAsRrknNVcR6AN1i3mwYT6pvyg++iq5fLtSN16RTcHjgsUvePGl1qEdDt0afoe/Wab6essJQr7265kCnAVh7q2KH9XH5WjZmzpXGoePgzrPpuRuvrk+KYNV7/Omlv6Qznc6+anSqXvlTDfHc+r2obtY7IT0oFOwyN9wFuIR+v64VNSC4h6svlx6AJ3bhrQ3BCH7LSgYoXf9MJIuSOmw8Qqpsn4NchM42LqAvC4u/yU35wIC+5HFmUAuSBH9HrvT7swKOzYTttxhuWIQLxow5dj5yojrfhcTY2OUz72+8hLRMoRTX3J3e5keLM2vMP9jsMXwpnM5yXtnYADadNxKHzWlYvNKFrKvM1Bgg75F/Z9+uZV7M13f6IQzAjOBBxgY3MnvyUn1PMa9S9pU0AlDpjCEa2cKoM/7FHyYTPWGCDovWBMxkCsws61UnFM8UohyDbEmq7qVM0bOXSNbQpMGwvCzAElraLLMFHJinuqK+vZm7j7x5/MA09s4oWz7z68t1spCC6pLeEA9fJ8e5aqlCf/Cstk+XCpR5ANm7+xHXgpEQI2LhNfcva071m0/tsU28m6z2pduXj+ReZEAxWx1UGHyeqWKK/44ciMwgs0V6LRvdMuUByAQBYyt1knWgExg0RZG0nvwmKMnPaUkkP3meVK6se6kuYvRKCDBhgkzKlrc7ZFlKei6QD1lQ74UToNq6b0r48W4JCHK1T91k87TdHBvlF7Mx9wlZX+wBFu9arBmQhPdRc0Q59kZpo/Q2PPJyG55NlDRZwAf/Tuho5S+QrmVH98ybmrFFy9faJ86QlXGbYaw6XeHVY7VgLgz3Fo5P5qgVSr/hj248Rs7d2pZvEBqadL/qIeTXlAVuxV5dTzphNiHSPguvKaDT4cR2lExp1Eu5uytBkjmPN8md1Rr5Rf+mhSl3CJF5OCCD3xVvNE1mzQjBLsbkhMloTFPRzzW3w94DyZBIgHDMR3bVVUxXNb1YfC1Sk9NpA74708OYM6OFqCGzYzX0IrXVL48IKtMApWU/9X+bImn/0JEseRyCbApSV5AavcLOcukaOndtqQwOJjGv/1OWzeqEW73I2k+tegK44J/sxqlSQjTg7ESu5NDRslbGL+ipQH6msZdr6T3hHXRkZPMIxX8oT8kJUBNyv0PQiL5WdeEa5BXT8apDLzP2kTPKreWtEzXIFMkE7JGKjvM7J5jaeZnEe2tyPw2htqu1scQi2yZX0QtB7EOEZs4tkuKhnvwYmrV9ZTCe6GTtX3l8i1XAwo2v1RP+uUZwsgA7RCADGeI+dK3Zg8P1z6Gyty2zqqYZeYUh+cRncGS2dMUEjgxiarXmT9DZlnKubxnUyCnRkpBVMecXqi7KRpIqTra4axP+Gm6mkTy/Nne9UFHIrDfJWUAtV/Yl5X4UGzjxOFicoiJaSXkCw0ueKUtGP60DaFmW+0/aazIf5SltlZaf4Uy3kLEoicYq2B79IdpZZs8BnI5vy9McPuvUmSPs/roj+95rimHUCP1NgyBjqiVHsrBJn9fY7Sa/nHHYrETHx6993nz9LxcoM+zp/Kx8k2+c+SPqjsvQQxzZzNdBZMUupYPh/QN4d+Yd2s0fYMYLoTVhpyNsYju8X0xBfklm5kEf1cLgU5Mlx8aiFkkanYbx5qa643s43ciAk++dz7E6OvaOXSfvprnq2Sf1EBmrCIAMRTiSeETZ6O7Vk1Fvge+jXK4wIHwudkELvZs2lEEBrrjGUPfGY6dHv5RuMV6cKjyVbSEnZx5shSACaBMWuIZAeBBEZIg4TOB66aF+KDPylYOcDjuMYQPDbq9+9EUYOC47+AG/O39lqhC0/D3hzEmiYKArGyrNLYnehp5dsRnipYkXE9s4v/ylSDERJQQhiK8MCJLq6CqqMwKHRtRvFlg7cGrqJgQ4n7UTZHOAOC8ElUKF6fBbHGsPvPByU+twe8YJEM9FQ6wPSIntrZCxLqpGcECKcYOGi3Bt27hSKxPh6wFuUE1qHR0ypeVRUJ61cOSxTGEByxiXKQf3roDxZjp0fcO63Dn+PVvLEsexLXVfcap3ksNopO4uRFa23/zvbRA2LO7PrjLDcM7JYqOVa78opA1UvmMjh5MxmPEfdWKNkdzr/9yteV19WBD327am5aXD09i7DM6LYoyAcWhK5U1jIcRH7Jd2pPFlPTiRYEPmu9xKn53W51/fIjb7Kze3EWzHqzndrJttxYA2RNt1+wr/tXyANELmjiv0n3T1CrqBaG4sjQAAiF9+75q+XmbinujE1WNsDXpOW9eAt1j4L3B+Xqugv70cFOmjiHEDEndCOwqvarSkdyRBlroyiT5h/4W1Al1RVtPEeVot2ex/ngzP+yuSe21nw7sL+9DJkCf5dCMkjg1Cjm+ykgzRu36ad5+MPN2f/1c5A5a7He5pAMYhX8uCwCOaTpb+W4ECcvYuYuabLj+YpDOVIJqhs3HZaD+oNmiDKZqKO/VxekmusIPbjkHaapmKFVLW6bmI1OQmkiHeEa/6oFp5lDunNF1BV/r0MOFMDqA/eygtAGMIfvAZRTq2vtvFGJcXh87eLLLOUJlcxIgsMzawDb8nhfPl6DhV8MV4cMeLluMrShox5qlo02xvSuY7Nx0alx0kjfwgPTrhXqNA43VLE7kZWbA1gavS9UvKTtwVOQS2Sl/edkxeAlqG7dw6c2YdxTR7frwMP9lcsihXftflotXqyla/m/1leA6jld25di368t79vxbQMuy7dwuF74l6qHEq5xKLsdqAiHQqKypN/iSDvUoMdwiS2TymbLzDQvkjCKoLlF4Re3eZqrTMnf14KxHtihXnyodqubex//xANE+l1WTWiAurhE+4PtnpasYP+h350H/VD+H/lFqweP1OqWeXgsDt6RhfGDojIXX3wAP5kumsfasm47fsAOrPRPP5kptkL4PfK0u83KT1yMko5JZObBdtYEX3dYx6ahcqm9NAPWDgn0QZvvkmo0PA5vvn59EnmJ4QM6FtXLBbiQgt4TZsK5bZV9Gq5JkJwG8XrWl3H4o6D8Fik5p9PuxDhsa5uZcRZogcVTFaHGg49JY4SZjyz4NrSD4WJh0jbmL7s6XIa0pRalLhkWG45X/PRLGEorR+MRtG6gOJ1KGtpHRyNN7Iud9gpPHgT1BUJgjT+SAbVLNGWVXIuSe8BAxVLrqNTp1ZrGkdyRecNeEQmb2suxXIt329epQDypS78hIBKoQPdd/QgiBLzU3amFUMZ6bthEbyGRygHUnVmOxip3+0nvk6yMGPCXbk8Gsm1g2VSmfMS9qbUj41aZ0WSgvMhlIx5PfWgq10IgZT4yAH+6/swKfZTZ7TIkOCQ/VAYIoIsOfv+wxxSC7KoXzdqoUue/jKHbMj4XNXY2L3SHuqqmsFUqzR4IDoAcKX6IcsqkMCt5+1/6GYFsP4YRayUFvH5fkalN6PHj/egXgvWqkdsgSZCjozL9D5jXoJ+ZllTPQd2+CFC2B8MEcHLLH6SAG23DIW16G+jkUzAyQBhlANao29qHwPKH+ZkMOMxk1/qwwNwF+UL5TlTb4+INE9puCruStRCZAQ38rBxXILa9vFYs+9LyfGWihD575N1I/DU2Uq+c3I9B0z216ohVqlAnXhgIhcBq59wWNzPOpYjTRerpV8Hd5MMvxzuQFVC1DVLzimg8IpC+j1G8kWQ66CgDaI2p08L1Sz5BzC9tK7qoaIZ+r2H8RY8fp7V6BtCkY+y32tF4XbD0fpvk9BfDcbfi/IAzayLgOAFinkcA61fNkNpHX4XNjRefvXnPSaQq264NZwmrF09/7XXC/0zJO717bY3vqg5Kv6dKAX7Zk/PsdLeiG2eg2xyubUeM37VThKxYjDGV6YU672MXXkEqk2nz8ex/Am595AEC9HoIP3sGOBNUcEuPqPKgqtPuxLIEU+vsKlLZo2kb2CKajtfw/UBhg1FkCePxFAEo22ifUaAHfJT0UbfeeimiGa/uLiqtE+ct7U5twwCl/qEzxuVH+MAQ6Lvae0thdU6CWxf49IoRYob67M642qfZXQDQ0an6SXZ9Ku+NDcnzcf4YeDiKfGcRMeW5sd58PCdQR03ecEmvcFZtoLKKgk9Y//QobRJnoHxWGV/ej8fNNentJpdISmjfkf+cqX45hVSokrXQmsfMu7eZ8mXN28olM51LOOem3EsY55SvhZ29IzJ5947d7Xlz9aZGLCCPhrnq4LcxsH6N+6vCouhpdEeE0oUjlEa5RfJatKEHoS8jMjQWrLk5QegM7hh1yV9CQY+ZJ4JADdzQwdoXxrXfkIoxzDoKVEjyZi36oVivQJzO/XaYKxNxn+gEGzKtT7HPZ4e/K4zulJZ2t9tY9BeoAjF6NnfNJF9Te9K+TK0fFRYfcP59mEdryDpsOCFr+UOArKAd8j9P8vcAWnMDw65Fj6YxaFSwBJmwyNaF9wyX49sJToJT9bwBdj/RSOk/VP9XDw8/ioHG3Fa5ltwuqGW4DZ5Ksk05OkxyvtMsHcSkgFOUImqA97crJVuCnA/k2yEjhbOsTNkc0YxQJViDkF/qZ+qZ2Ld5MouGzkcDdAlzwfCAPtRv9nmgM6L6c1vxKQx4exmwAF450j+zcj/A9yGJ1sxr1S3Z3sD5N0O/Y+NfXmvEzYWZFWdhZ5g/lMa3Xn4ClB+BreyQQvhDMvTR9HdlGsY8UxAD77oOGr5go8cqGNPBNY0AHpMxDDXTW1IMeMEC6rfJxpAG0/+YfV/I4CORYhICP93uZ0dsBA6F/HVJQWtUuySDHdhTFM906E2oMQBbqrR+qxGXLSSoLHH0qp77mi7rum7RnOxcR+f+IAdL3lXLy35DxcskLs8b5Yk345LVoaUSXT8QNAwqblwgtc34AokT5ySkbYZJCE8jJNayqBLcAk7IoF7+bdOmy+e1DDbl/k3q9R3I4uDFrgTv5w+g/wV6eB4gAwepwbSlhXZ7hCsd2lTHpTiPi7SLx/W0KRwWQCDf91Pq/9MO6TCBlXkbeuZ427u1+/feOsHSibK1pmKF89p10fLL95DfqM0y+QcwQbY8tO/8d1qKnj+4h+iwCJZCxiwfyv6nPNwAl9vUkTtFvFHWnjLt/j9gJTuaCSDKTsvunnvkO2KDOYihR7WX7K0t83eJSOFQeHbKG4Bat9AepXebH+SKaMneuLrk1BLSUjz3ORnMY5Ab0QfErdANiIUMofoweqJQekLy1m7xJgegYrhPxRNZBLxI2WIWQq3oEhcHWcOF1BEz5/YhZVL9Gvc0vIXGjgYqAgscvWMo2FKN/ObqIz5pvy+mSBxxpFbo8QvzI1Dg8AlApRGFcFH2WGNKUN8U+f/0XULIos+NvO8r99po39uklXjqN54cSnvR8OUpKS581Y0WwgawXdkri+xJjFlqJyGxmz1btRmj3MBR/fIAKaN5smYW8PjbVzC2MlolLl0gLY6sgulZeEHNGX4TVfGi5B+dxytDM/9r40YJBLU/rtiFF/W1Xe1hVGKdE0ZolDrpaZRVhmX1fOugtc2RCPtxHCvMrKLx72dlm3Cf47boGB1eKiQSQoh80yQmUxSMht8ST+YVjEKA0X/lSWqiqfe7Gfsv8bfeYLfxBas4XyTlE3M3uuG3ml9rYWqMe6vEt5Bsgh7SiK+B6171xaeAznohtbW9b6Lqt8wlp8sYWpwvGQpRmOESGakDDS+h1CyMOp3jyVrdQwWtTCnj2zuZVGuvB2aJJIruKoDJCBDgMoPt4XzxyuIlGpD1lkBT4QnwHJM7EwtjEbruWmNPr9u2l4wxMP6yU5Z+wAwiL1y7j0XiheZ30aYQZ0GYbjdGd8rH+x/nCrj9/aL7RtWn5Km3sDCJNHjseUOkOYhsCv51J0vSqSOSDAf9y8B4fvU20EuA1rDDVmSRnaciP6qp8K6Piz9cGWsrrTyiTcDQk9BZYWRtX9yGKnUVDdFUteOxatqihVF5Zr5IzOUKscd6pUaq3TO5BlcfVca0xJW5kmisEVCqdqDRuVwd2Tb9eEbmRNzgVmMSHRq3wQ0axmB8LqKHsVvFgNvFAvM6oEjfoq9hkqlTIIW0UQQAaoGyRUtsX6I3Df9F4ZTOlWotWM1s4cd4In40gw7nvqZyvDDt5dVpdgd+Wqj9+exuJimRpvS3WOq/CDZGllJ9q5F7W9w+dOJOBw1fYWk7mJJZhY5O6V7WwLJdMloZ+C0w/y1CQcR8OFYQ2272URNKtWfmTz0/n13MHF/jYkw1bn4U48N46ifxgxnehlsODRndYcUlsOPwarWGXkYEgJ+lwisIw3KXAPYFEoo7CM81TldgjpBvpSr/6wF0gARGg1B/TEpPKjUBEgHmR1ZIxh38bKKYAslVghC1XPGv6mDhjfw1e/vjS9P1d4AVbmeeKv9oEKQFUrSEKD6zNnO6m5iRleXWkm0J4niBjxicUlJIizVX69QLKuGxf7PG4JHvIZqc9/bN9hTwIhZZmKbe5KmArTcgsjIjJOPU/Q3FThhGk4H6eAmT4j4JYjojme3g908qkpxUBRCzbOoFMD8jlSh4/QRMI397UOH/BK0vyukI5tSwj6b2XcWROqZHHT3Zpvj4Tb6VSF2iqogD+k5z2jP0kFyQbXXi48PDL4ORJx42wxiZHg/6lIm6VH7ezlpYbukA3mipjuE7bvEVn5TNiUYJ0+R03JeHUdWyn/q3/2ZI1dlAFVvvfLlYwTPxAfn3vY5m4kSe69zD38LYeghAg4dy9+M2EC2HyBDgtSzSV1pS6Q98V0hgw+sMaK6nyPa0mDFhmbs/Q8LUVBEqXBaF9kUcBQM55I6tpi9kaP64YFHOJY0iRApgMEtrw+5EsmUKQD5PtHEP+Ssy1q+GXjNao17c3rdJDQkLrDR6VN2pkcT3ooFLklVIRh6/kGNpXbJk256sRL/bnge7rC15eVco8IVxYiSs/SS0Tvmn3xeznpn2HTqNY7VHcp8qezisxPaEonD3yVpfH31/bPdyleh5Q0DWWXEzX10c8mVjjO4+vXEh+xKTDgwRV79SE0PD4wzRp0esWwFYfkjD0ZbHoAVXxp7VeiI+yh7q2NRy5E08LZjkLUobiWioufCbQ2Oi+2/27eyrwjqlTH32JUfow319O33nOjvEABENAuyph7j1qpSEXNlUA1hGsBGV3qc43++6DJESNMc7c00zt2yLr9+7s+QRwUh9XdSGZsi4uwfDxRhVpp9rMaIa86hjGTuf3BtyKpcq81SW2TWu8HvUSVdXDhO9RSwyI7SwOTXH2Vdew7sw2AI53l++tfD62U3/cZP01y8vvl3cHl/DrPAcD6QmPLHN6MhPhlisYmCcyCn/dwg+nzV/RyZzHwo2/A//myGOhoadp2m2d7TVZYit0U7nrmgebS6x6udVIYDTkx6UwWX1SJ/tTEfvK5NlJWPkIlu5Mc1vPBpx9mPacRtl37Y0Msb0/J8HRFaPfSWrvbeMkbE92hyF1jF0pZUu64UVi3e/Icj+3/A4CdjGJcd3y//tvTlh792+JXHqx/z4cyo7ACzaQdgNEYQuBcjkeYLWKEQYLVJ6+yT6ODnwCemswPbIc4c8HIKRhKn216NL7xwQDIu0ngBftUhAMaCx6eb0JEtYYscyArEwUWB0429USigG9k+4XJ/PTyNuedexI0m5hZVSo4ETu+ZPKRCn9dc6F50maW8nbIVPWOV4WVGYwOwD46WSHEfCM0IJSX1SjAZibDi8w8B3tD2AnMDAdgswYnlC/P0DxkHTw4yGG5XTu28A0TboXj+Tjz1qRusNvI12OSKlwwmmsCqgCVg9tuA1Ex3F3wdLAt5RKjr9H1XWKr8zWB25wxq48DWGZMe0lLxW57ia3sn5Z2iSWG3ps3XDTIlCvIjKQOm2ukd50IgYZ4VzapcV0lnaxeRJBv59PECpKmcY6cJaPKZlsZhjmj1RFi/Dlzz6F06kkc5f8clP7ZjHe13k1fOM3gqrlEW5N9Yl1Ou+wTHqlNZve9mg55/H3Gm1ynbd/l+/I1C9k/vgZ9ulOIl3wwhEMVQV+eCC5susSq+bFejEniBsHcUgm4GeC9yZAPJeVY7hmI6mcy6XOPVowSW6XURH+TngHpI3E82J/kAMYJ6k03Sdu6YFHrt0v2dOM6WrO+OaSguVyK7YMTKipZ3YJsFVHF42CbavmQzYJfjLlvy3MqFd8ZEBLOFIBDH1kd4s4MroZF1+VZUJBSA+e1arXOC1oj528sKOsmbQFW1FsZZCmhXjkdN5Kp9t154434cRRsxVZEfZjZB+a9OAegfsfwyk95Dr89+cK7bleNBkj8aIK9+QqoKahngPLdFS+l+poRxgo3M0O8KO7ieD8Mc6zXyHwBTpvk2JIUMpWvMr6URh9RaEd4IqyJtO6SiJJ91YniXdd0vhB0QpWcklM8Ps2QwF66h6wRBGhlIbNdK9/s1ghMnkglUFLPZukNhNEKBoV2Zolda4rdUpAR7cBz+8MPTW7+RSmaJTm+vP2bgkacf3fTWbFVuouIAzw3y+1S2iVNy364dRiUB3BtoLdHmdmVr6HR5GNWJ6MpIDxHXd57ueMRzPSIhtesz3MypSu8ty5NVREMhDo1dBdHg7+JECavB/34LfcFj5KBJtVTns9yMlGm94j4QHnmxhm76pn6a9GBAvoSekUnhRvGFLNmHqhGnEtfPqBRxkb5eL3g4h191YNfv7RzgQ/lGFhJs2pp5csDlOzEg4kCUjzWj1rjUw8hJuvmU4sLZpRwSrHECALJYmlw5yKlOsOcVmx0V0qpIsR70GXxchl2w/XSCXPkI5C+88PBKT5mv5Buvf7iHsiE2dhlWV9EJ7nghpgzAPXNa8w9Wa7HIapRzu5JQn81Y6fm7Xl45603g43d8KC8sedlyPp2RCb3vB1ttcKbEIPFUbvsc6XwIAe2RYQlKNYt+j9hEMV0Tn8xnVB8bGxPWXrjaFTjpLO6UHqI1RmSDRoO+aPTnhENkcrw/EW7PnrsHwSJ7P64jDMJIFBOKg2CMRfsMk5L+GoPj+UrR2XkdpB0WaMby9vo/mCjRfjxLgmyDxaKTqJS1fDjqiaG8pFc1DMmzHxTMC9bn67b6MWyZ5anb+Hn7LnwPa6rksH0W5kLU28JNyWLIgsae6hHFbaY527qAzv8FakPp3QDL8OcrMqlCcGX1hHsQpo6lk4c6aFIQI0KrYBTPvFH3eQrTTOLU6lClQhiT1laVuXbFKKKZ9RKW2vaTQ076IHJO0vw8t4Vu4NnMjjn45sAixESUOcZokbWznQf7z6F+jp0Yv4nrlkWYR9630afwnY8JJCKE26q3UJwC/Db+iCDrlyrIEoFfXdhpWqKFjP3PCL13oji52dRICmaB9qK0Ynn47s4nqwWFeNBjlDczZ6BaokXhRKiDW3udOECIOybTBCDX7WKMji+tmRgCK5DNzNxEXfJ2F7b6q1YyGDm67moDyi+WGNcGgnD7aE3gxxhmRUbYWjLqCvbj2QRaSd8llxuGg4AbPG7BSOz1F9547tdrFyj7NPSdubqdl92OSfod3PQOxE2nbFjoGB1xG0WJOgqJEX3GL2OVG5TZ9vwaqTyLD5CbG22/gLUkrsV7h2+BndxPCmCbvTsPdnu02nBmenzbkULkIWIc4UPHIn7kYhOMK8H0tezOYSzwCLrUPI/kftRYCBc50eDid4JGlXv5TG9+TrixjYgMJRaSwoF4syhYL2lYtqC3DBppCWHJVrqNA4quJqQDeXrFe78EX+8lSr/uTjlNIgmj+w4I32IKJ7d96ykE94lo7LIHinL4saXIckCjlfHBePyAoV+jdBF4UVf9qJuafSo2yv4HkbqsTH9kF2vB12TkfkG5TFB/IrmviEMrHIdCTuXF9BG52QAdS+1ydMTk9YPTw3HT+63T7nMTwErxs1aoPtB/LItOYt+3UAulgKr4u1BZTAIC4/sxS2HeITZl6d+bdm5mLuEFb6kE/+kyP3HOaZFn7f1LXJvHoJ1QwO13nr82WY4JInXQRsceM91AKAklgo7sLqWL7AsO+TRD3Bsx+9a/ldn2z9X3qJimSQ7w/RvsV9RnLcu/ZOz0ic2N/GisSE18yY/hJZ5fG8slFDu59Wd+puU4+8m30SRVzsNl6hwHa0ZvhTIK2P04/uIvjPHALPs9Juayn78JKyl08xxv49EP1N4iBqBMupUzYszR6+ZDiZsZswMLccFPOOqEOriKol/xPJVSE6GjYqcJnWJv7Sklyg6reZTzdeeurT23nuBvGFSUnYgPasZMMvbG6WTrqtymgzfXtcfJnbykW9RMFpLFbupedmtBosOXpfVgpi/84Ivs41CsvDDgQeH2DxzQ1ffrCMN1Q97cC2c9Mii5xjS/eOTOgdYZDlWutzT/exWECcKLZAAvYwfdjKmIGCLOz0mPr5vCybYd3pFtfNEvWKvMh6zPmOg24P2e/lXoieuHZaolNAiwcRLXOfpap7gOI27qA0uyoJOLZNLLfLK482I3yDJfFwQDec28yu2fat67uHnhB45oZA2Xoc2g/SWQ8W+e25Kqr+7NrITzhgBlABk28WiV6+ZMU8nZ831oaabl5CoqYFAjBcOom2DuwwtEiD4tEh205sDAUvjT9JwJHA7TqduH8LHIGF93C6RLzyu+wI7KQrtqz3d48BEMUwKkuFemEJbWzTaodDa+Qiaf7QGAfNVNakFo8P6bZmFxTbF1i1LAqyxO8S27hw0cYXpyPX0pEZPD5k3hwVdp3xakhsyEmsTIVUr823zXvQSXkVOgzcDXlQjz/dTSiNEhegViBOFXbRaONR8scgqujDlDjGAVo3sU9wZ/3sGy4lolEQyOZSLgMUfZ5gE58yXmV02XJn8vQu3ucfsG+g0X8U3h2NIZilXaPvo/CzzhELhGbuDx/D3JHuPnr6Y/Kd5Mq1MZcauBTorxDZ5di8dXcPjDSbkVNqgHOj4pTsoh1TUbowrgYv4S+lAlBbg2AOJ453HUCQnCpn9PqBQiVKIakrsYW2vwNwgXWT+eQRERqF33yXXO44oSRi7s94mfpD17h5+JgMRux/GZuZSi0DvPbILhpHvXHhQ05egVfmjCAdj6hL0rdI0cbym+LVheu/GVQO3w3Uz+tpi/dczNGB5D1G0oAZhrZ3m3aYwRuZcDtcEyyaT70P1y82B0R7AflaAV2SIw0IVR7dHt/RvXkNzKLj8T0jNf+/DhrlwxtNYPyfYq43koC/4B0bh1mKIFDhBz19y9bVrsvuy28PA54sA9lncny3ZvMczIVVMxqD8HUnkrriyMFruwK3PN2jmgDj2b+UqgmQ4kf4ix9P+JEtfKexErCqnr/ls36y8vvD4JiH1desmMEht7SXMXzpb+Fz8SQ1TzY2zUrpoLcM3tGWJHkYUXw2HSOD++hkvPIUGUl6+j4DT30TFIW0szuq7RLdsomve73zffheh+/Qtmlw+c5liNlXzmJyCbVsz91IXpjh4DaiAR0eAHEE/BB0lw/nlsy1nZ2hjDHoAtKEyvloK67KFikOeCeB64QmOIGsBrXuOkYdIfM2F0BBfUr1iM6rqKDW8lgd3n61jwkXpXnuMYFX/LqSNyF6HTiWR7MCYBJTsn3F1gQ74wKUx8RU+Fc4ZKwgDmcw0LIB137cjZfgRgA2Wpd4OaI6+H0pzxkM1rEKFkCFfeMISUWJd+6PdVFx3Q+1J8mkjcXg+j6PULfs64lHfid3qZF+r/4btPagsHPDjxmoICPzu2puhqnXl1c/CFcLFPTubYcLmVWeWh0rbZC7zzfLH6Ht7RndY7fAikSL7jIGYaDkx763YtTfdPbyMtdSUI1KxT1WmWeIdBb5LB8hqfZQkRpKsgZpStXbQwYT53ZyfP9Nw8e/YCEgQfEaSCUq7qRYqKYIyiKhRhyGfW1JhAnJrI65Ak5mFZ0kvn8jSZp4quLIEhRRvJRYdSyw3h2dNiFB5v3Bnl3zcE8XW9BP07rVWRU0tnpryfYILQcVc4SpyW2a4cu5R0FGIt+cABcr/UhDtArr2SzdDNRCz4yaXkmfpGeQMVCyyoW9vc/RqDEQXZyWmuG8lDBgR7v+VknyxPl8es7M7T5R8g6kvx+9Lj/tJHb2rp+MLOdPl0CcoRDf/DQJgtJs8zBKLQI/+aK/KxVd4yBouLI1cTJWo2IzraFEimNnowwL+3J+S7Py7BXaf1Sft9HU5Dn8HI+IxfFYPks5ZaCWqBvIo+uBCfEHdPnZfTYe9/YuOa4A2FlUBFi4Y+hljiA1MVOOSUqBwDd/WqlOW6pBzft8XKM4LXzAV5UCHQFjUJDZ8yvXmYvmiKzFyLD0gv9BMEOezfQiDF573bj9YnkBohFlm228HpTL0GGktIewv1frR1sYTkdsnGSXnImAekcc6/Dl0cz1G1ryPwMQzDUx77RathPcgwxO4QMEdwjDBgQhuD6WeZGVUDtDhsUvIdNaF+GaDRnVJLKrE1hiKvObpGRV6Q9OTR07UEDkLNVmhW3aJSQjUZWfTCwsiDitt6Ra/dcCLEcwPhzt9lydvzjpOTJMZrFeHiad7Ax84sL/UFxECrlFU/F/GdwqppiVqRY7IVd7pktrOao7HYaqzTXej05I78OTNukgD9J49WKEwOURDgNpngkmfvH+DusYzfkjBi6wga7iM4b6lotHXJTOz4WJIdk71fFndBfc3Liru2v0kvJjAWKHMvKy0CVpy8ZIPDHK91BBwwyrjOW+ZiTZasF9e6WQdZ8Zoy8LoSk4/cXDz/nHwiJ++GG6ke6mEkz7OHpk4WGp8pxJtQ/rWvgC1pzoDcP2F9o9FlwozQqFmkICeI//Sr9k6lxNBhbYLCas/S0+He7fVyKq+uhPfzeBzpHYctc/wNmDHvCcurhFhiRTtVKifW5dq4YYt/dRkF2J8QS+qT0RyDVFgvxG1QtNDjvvWF8ue0+1KZojdDA79wnIi6HtvUMofCll44Q3E23iKDN1ojUmOCIt0U12ZTE4ANOnrJi1W5vXYu+uBQWL6sIR/emPBHtnpoVmj2sAIVxUuu0QzPT3vE9xFP6W3esV6xRxI+r3++pe3x6Iy0LbjtQ1BlsbOTDBu8rh7XXjp/jZe6mzqHQxYv+daghubvHnQ55JSB1BxRYv8iOUfUbSCtEw0cuJ3Io0f39hI03EQV4LfmW3fqOYwG6APzSczFtaAP+p1xKFwdHNnNPoAkrYUsu2vhJVIs3G3Wt1Jd6f0BDMkXl/HCA59KBcQ4FgXIFcB6EjJxYR6k4t6uMQ1T09ubAX5o7emKflaa8fdM55NlteBkuA2o9G7yYNQt6CD3AiM9hLPa8CK5n9WGRH8yMyA3R02ojbFHkYA5I/1DS89rMPNw9M1p2zOCSGhaQyhJ23A7yZcqFZR9QUdx+XJZrMiWuAyj0MfQ48IV/lY5YLw35NZkQVQMK1bSCL+otLv4U0W1wEoRbjAA06KcAnfhvfOSZb1uUybwa4Le22+YhENdwMRgOdNMOFr1b/b4QeEk/Ne98rU6ooW3+mN8vMtFsdYy4QAnv0PSCPObgF7eoK3MPFHo4ELWeWKOShPdxK9gw9+K/L2fqNBCUXfz5ZpiMVEI3j7NSsklOflxAQi4vc5b7/bRDasNf8/mZGgmQB+DsMl8Tt0VpyM9aogN+TTlC6Ux+e8JHkx0EdP8v9mJSSctCE2K1OeeKuQew6pJlrmnn6VE0sbOoq0tE+ibCp5Wc+4gR1OONK2Svg72kz4/vJsOoE0TsQ9xuSxh+1oqS/bKOngL883daSXlFadwQ/w6rbtDDbEviSi7INZi/V5HOkR+n6FFhyk37H6tcAgVa3XeMtP2XuDRkRDNlmJjE+4h0dOylLjMDLmlYbWKVI3r0lf2irUftmtsbRbny5pyX+h5LK8swQSYVGsQZyVDOad/s+SO4iw0yqdRpXp7OJe5wbVl0kO2hKqB3iG6/W/RlsP6Fk+Ki9VQN9jVGVqyWCUVvKeYtv2dDOmuf4RSwp1f5ykzatQBsBOCigbKx8krN7e2dZwKn4Pv7ILanedlTLexXS4X2TJyOF76WmTshPYljM1dqpWkxYhwepXpzAAxbQQOw8uF1G9cvriQ6gpA2Fz7HKPwfFRTx+VOvkhmdMyERjE/FZdvwl4mJ46FhfIwwD8RBK5YVb4Xb9KHi7kKiITuc1GyF+i8mebSNlLTKEV7aLl0y8wGtm4HV06xq/f7hhU7K2qPVMaVbt4auZZb3rh8ApQ12kdWmM+XJHi7LX7Bvs6QU96GY/495PkooSD0QTbFoYIeVfCL+aTeur4d3jKYKC/JxADAzzbFAbtVJLyZZhwC4idnwtejhv6Etre675nZRUZgdSyTjTdo+VHva3CWJUaDrhiCZD3bB4qTi72oHWJPCl5WwoGAaLFnR5G1DI4ckmwb5Bwo264uXw6OYMlnloveIcADzgTJJOerDWoxWcTuKCC+A/zeua9kIa3CvyRRMq2Kc2r2Vqi/H/SHLjzHXBtEVTo5d95xvFNZvNqs3y3tvkB8WHlazGlTKInR/07sQNVzcoBa+VvhhMEz9mGemIM9Ijh0PR9Xg9ibmHlKTpKsVyInVi08/WWB2Mve1mZruSd5j6T9n/bL8wJ6nlrBmq//6XVMi3KaZhqZwlZsMeL27AU+0JI1rvWmHbc7kzn04vt/03n3JAeNtrwNHWInpNMvJ4C5AgU3gfY7n6MtjhLBAdYLiGv3AuJqvI+Bi+ZlNWTeN7KYVfd4JEIdVYi4NupzjQNusw275LYSrfiM/RWUx+7Azy7a2FUPVdgpCbhSTmE3K2kWR4JD5HFln93rr91UFDUURGMiw//zsWLZxq22F5HBQTKHbfLnpPuTTSEI74szuOFkDQ9IvwEk9QPrEvKbuB8JQgX3OQzgvj6Hal3/PIlYsG5D6HoTiMX0gfXGaIIBve6eQiKH5qtVMm0PSliP93WYdSmLSY8/50FbiSAL5hO/j1nUYwSWjALHbSilHlOGwjdP9WGlparoEOR41EQkNvqPED1WCBjB6v6w+J6wCB9BZfwO8UGvOM8xbWZTATqU04Uosz6ghsHVKkSNadz9XsPc8XDhCRlkKpxMAGvbyhQh3kXfPR03tsVafq+/Sr5fKIsoTHbSm4X6/X4xeVl+DStEhMMW1E0uFmJuxr0V1nt1zdUG0Y+pK2G3reGP1WXFxNyOpouCsTSJXLtJpdJWu+27XIwC3spPDdLqiio5zHHZcG8rE0Xuk+OOlcbiZxgI3/NbPGZuyv6KyvJnX0UBG8H7t1bROtyJaSSnQz+YVmbTFjeLlSrECvMjg3KaUavANDuzI0fFQ1Uet42N7JtFYK48etpYEVygRjxtcz/rFHx5k4VWzMWqe1jK7CIWkuSsQ0QlxabeyPlFDgU3zyIbRJ8ys1tlGZtDqSqYAVSti+bIVJAstggcKSYnkpE+amG9Pwfpxbq3Su7t9ABxNoW05RhrNkEPnX2UqdhA5njAGmZ3VDCBdA66HbeOnAATwfPdtWychq6sgpjbjM8rbFZD5q0kHpmFXksXfgyCTogcv6ZrwcPnAkRBp1bY+PTi+7AI5ndj9SLsw6TsxoJkepRZIUx141hZvU3/b2nIR14kY6ORdrw9UJaQ5cow2q81Jfw/hX3YCvu9r1FiREwRPH0T0mmdbZw91v5xndFRxth2aw4gI9wP4MqowtI0Y5sMSJm592pdwDgTMOXqgXdMb53k26/wrdtFEZw2vIcSFilyqTXISqx+1pvnHV1mID5moqE7zv9O5R4LuyuS9Xz9abUUXlgjRJMnfXQGbIALbZ0/a4yjZZRxdbb/D46M2ngVvFDbeqBFGWgrUw5gEnnDTzVG6Hrtx7EQIOAADFoQgeH0ce/FjVh/S4JycdmmlueRuMLgxLT/essVqj5Rt7seohYCSCyFAZZ9rP53omZPrm8Aaz0zXDUUk7qBV/6pYxn1SeK9N6sFF82VxfIQYuFBe5jQOT37UqqdKEGn/jANWilh6/lfrTy1XBp2jQtYlJtq8hb2GWSkg0isMfXhkxbY9138eY/6Z2ZOaC7HuWFu8Akmh0g2lFeRy4Y3anyQuWLMvR69Wf2EjuhIhpfF65AelxHMUCF/8MO/1Fk4DdSHkQwjFahGYlD63XRlgDLsR1mNSB/78R9HOM8CnAgZ7RMGL4E008Ig64vvC8/nWc0vL8SkkidAgGdFALhsX9eKBNpGGXJS5foikb/9ZDbyAeIpd+aqw6dGogtHqvGPcfE1XLm46EacVPK6aD1Kc+bqfuWgCP/niBaxO++iJ3THmHjm891GVbES9jpQFLuIYxzaBvaROYbF1f9xispCAtupu+Zs3X05PO9LXrCQ0QxG7rA4zXUJuigAORJLYDHCMXPnvkehnH205V/DVp3z3Zfd2eVIwqTbPexS6xmHb91Ygi4Pt1hBvLiaNGbWR+COtWRgIrWM44es8o8pxuLDY6vCHBZWkKEVP2fulYuOINl2h+lFtW8ES9XwkNZ0/kmt+U2yD6fZf+nJ6zVWt2aL0FBE3LMVWn3jbVSuDC35DIM58blDI1hYpxEEMcS4Lan/GqwO3F9O7+KLwlECBIOCEEcv5m//h47JxUqG9b4tShYnVYF4AylMzt24+jYhXSJq0r8n5bWl+sy9BlYYc6F7mlZGtbLi3StvhBjNju3x8UUuOHMZy/iBAVbnsd01eeUbpemW4R34zOWGeEK84dQgcT20zI4i92B7ikzU6n87j7Dmb9pmAjZ9/AfsmOt51RwhYx2BwTk6U7Uk1BpBPMqjwEQnR2/ruQkQogweHhGU7anXBkW1kzo7DxBD5zI3wORObFRnn003XGFBe4I/9JJGk/4KXQCJEQRd50oAjyxyjD+3k0IuNjUKMR1MWJt6QFkimj83tzJyDbTT/2HbvexCzA/PUhOxPcTZkYidmW5gwkveGhd7nr18SgRxnrgeHyHdObmEvQDaJkktw+rFcnlecLcskMaX5tQyOY03HPWPSNJ8LkahGp8Ph7lJ88nsDz2nu6LzPETGYQ1j+r0wef5lIJPc4owtgh2W1YsmFRB+aL3uMb6ZhXN5kM3ByK+SoYHQOnTXn1oNTYpCxyoiCjjbSMz1lm5t6vjsbbhe6PJWUpqgZZUPsTxPdR9luBEC3/onzVJ2nZY5rBjhzL311gKTPc9tzgaYByXORS6eGVTIOcSDCB2YeXzaUoFLCKvOotP3nsDp0VydZ36qbuz8mvYNKQj23II9rmaEq14XoQWiPLGj3cUhDpCIXBqFmWJnmyilJfgxBwU57DAZV5v3qhmZQO2rMqLN2f2hmyP0ggWIsNtVCS67WRvI06CB78KSZDbzKjC76hhUYAw4TAMUc18bboOqz3gc2ItkSgByVieSv+55lTjsGi3S2xddePOPf5mdMCaoDqMcdkN/44a6X6FQ4SY+M4wuq+vePDEwEVJCPQrR0qZ5rEJ0lyte4OIB5uokXrDnNihrJ3BwTGbj1RDAub+UuTDQdkrTOn9O+MI96mQVVpEAtsiygCkK/paGfxW8ycX5ki+Dfy6HDD2HAQBOWnSM2zmR0VHYmf6zW66x4Ola5DZINvRWJaZ3kD5TyjYslImxrBEct3xkSxMF3VVF5GF0VkxDSsvVTOdRINlQo7+MaKGrA1OFWTUHRf9k1M9esEUtvLMhJbAk8bIyzOJitvt7alhdcPFf5d70tlWgM+lFTJM1OVtGTSeI2nvCRMxWdKGCMLaPWcc4DKsWVpamRUapSDptoBdt5MFlw0nA3rC4551I/T8oc7Pp6JgIb2etoCb77YRpLRWJDzxk7Z4jcQTZSFv2hiHVhk6IBvVoRk5njCx9VbxZiTAHACp8jpMpwidP3+2HUG5CPf4Lf3kWP1yWMZHpkiys54DOgJPgqSdOAa3uKf0cP++WBdRmKpCJbujWxlPv1pyZVUIYqbu9I3hDpUp1svhPPfwOYVD2dkHS9/i+fnNvDzVn7brSYqaU6lRVQWtL4wU3n2JuYU++0si7LdBAyCfTA2iCsiMSREC1thMCQQdccXZ9rBGCkwOyfrwG7rI23IH005Cvs7xY/sD3lgMnTp1EQlUI3XhZGQ9kkjUE7S68iyY4MbIazn3m2xm2eGnrwgBJ5uBNCg8/8VYaz0w60/L6ht/joy06oRvj9ROcOHUlcWem2DdqknLP6MXmTK/v28abK2ncUYNZUqM9lJ9EkNPRVt+WR3MA0KawDohYhP/p/RXALj7+aJUkqGaicYmTJ2M8kEqZMllMceORy90DfP0Orff9e0fxpwFIjnQOq4f2hO+jbX083fvjwWvD0efvvRQh4bmOeMkdCH10UZXY5+e6yew4DxDEdHJ679k1DbJgtDV0jqMCjdIzt1MiJg817zq5OjYsmzKn91ZPsivi/r9/Uk3//KFyyZcTKff2vObXgDgwfF7Rc1jN3W86mxsn9GhAppCsA0fYR9/aKmSjRpkn2Fl6m0lTVLymFdeatmM74Q8hUB7Ws2TGVu+0lDJ0Rhq+JT7NxVNM6pcQZIhYt7JqIW1uJn68kE9paNGJ7aYe8J8f81dZ50UhZW1vyCNgP+jEgwbNosbY0mH31YYy9uo9GdNVvsijlQacSL172Hd8u+RE2nhVjDU+SUGXKIE3hI0xf+1AvfYKJtXOl6dWyQvEdVDiEnXDCLa/+uBTUEAp84f6pA3wgiEZ9vL5zv5Q0fBO0o8SwjbjM+MJTDVY3TKVPwRW1oD4uA6GOt7/gmhM1SQhvCPBKeidxVjf6HZe7Y8DajdGowx3WR7a6yh2QX4YrMbATH9IN7jSZ6F8Epdn6jqB6vFxDMsxuRHqnQZ+Wqlugjaflf5AZPGem/LPRvSnJhM6gS+izARQTJBr2hyzgaYOaLQ/SsQSTV78+ErdhQWYL77ymzcIMpJ+DGWKDwqMugYQw3GA3FV6ccR7Z1ElABbCTVc5t6DyiMpDu4Jc/+4I3U0yZQcg0ho19WDR2NxIrDBxHBph1neeM0ZqnWCLlOPEROh74Kga6Kwqdckw8Q9HNtYVPmldnZttOSEtBpurvZmRXPlpGLvbOlM+4eL81TrFy+sQq78JpR2hYlHElMl4Ra/VPdRO6GxtbYEahexjEuwKgU3V1b72CHRHJA+bNy4ezrcx4t7jyQIgvLzR0zQzAE3UNfveBGGYwX5oFNP3qk5CySAm7bwPD/BR0fAfKMqRb90lnCwCq0lzKHaweRxw2Nh2nNBFP1TRujo019yUCn9w5g8ix/RS3nqXBhK0osP5oOHirqu00XSreJZ6PvyaqSvY5seWY+DzrSWBwD3Z2wPQBhWIljy8vxU5QdOo6sJpwsAhLXlThtu005Qy3gYKmjq0ER/JN5u2doo6GGq6xqP/ANbbK18jbHhcLaZuYlUO6BmkJMMMRKl/1Ae2g4eePM7hemc9aYvOzgs3e5cb4aDvNrSipamaw1QuPbfrjLSjvSPUtwzRYsaOWySo2EhdmVb2BqvhCNMpERsjZ5cek2wY2lSqdSaX+u0uoOvRSW4QgcnDh9zXDAH97WzpWTpwxCty9rXbMJh/F1WtLD1i5NtO3AlY/xS/Cf92O0mrtlTW/5PenwATTuVb95AUkxvaeREqOU7VtMst0Ztb+6d+fTvBMTMbpba487MQIg/nQSEUDpufEFgXR2Wqbfm1IMp5pKbZ+9N984uD+2Yw/X1fOuDE2myD+i+0llsJ4EjkBNTMBgGfugewULPrs/bCTkFz1drG2Z8+Qo5W29HiQQDHQf+VY1BT2S3uFKSRblEt22bsq4aP2TGndK2BzZBhnpG9UdYpVq1us1IRBUttCp+lRsshXqvsfvn1tBHrWKm23W4F0lxaF7U5ipxJ3FDEJyTS7crHF6MYoBmNbznAAwCVImV2Hj3w/Y3C9cdhgJ+Byi1Ye4vAko6k3FzWRU04csnnA7b5gbf8IH2bJAAM8jikOes59GYsH2jgX1cvqNKHkdCWzi/sT2c8F/9Y8X4MqomsB2yYW/vo3A2+Pa1uTe5sxDWMMs3gLONzgW4+VGFffkvnhM6KvbvVb/Yanh/rMx7GqZr1rM+kmma7zwgOCedLcaMC8GS1I3A8qxPO/eXSkYBcEEKt3NavSnr6uVgpqzFm+t18h9nRNhY5M2/YUNSB2gwby022sDICAUgL5bvgPPpVhqP4/kF0ZQVJXrsXJCec5uBlo1cEE5YNI0wwgfCxfCelGO3V55dQsLJJ1S6bYFCqLhDc2fYXXN55ZekoytVrrGy7Mvll82+Do7VOFHZTRJjNoeWijeha8p5N/jKR4FVbdu7b8LpKIqDksez3MJ/vsJw+9G08CorgNaKv5MOBMZDrsLC+r1q90k8ksNMgaWRR1A6UdrQBsrK8EGWnrXmiUMtTKWZxKRfJFu5FzV62n9XdiUmb0nZY0
Variant 4
DifficultyLevel
490
Question
Kerry spent four times as much money as Nathan.
If they spent a total of $600, how much did Kerry spend?
Worked Solution
Solution 1
Test each option:
Option 1 =4×120+120=480+120=600 ✓
Option 2 =4×40+40=160+40=200
Option 3 =4×30+30=120+30=150
Option 4 =4×20+20=80+20=100
∴ Kerry spent $480
Solution 2 (advanced)
|
|
Let x |
= Amount Nathan spent |
4x+x |
= 600 |
5x |
= 600 |
x |
= $120 |
∴ Kerry spent 4 × $120 = $480
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Kerry spent four times as much money as Nathan.
If they spent a total of \$600, how much did Kerry spend? |
workedSolution | Solution 1
Test each option:
>>Option 1 $=4 \times 120 + 120 = 480 + 120 =600$ $\checkmark$
>>Option 2 $=4 \times 40 + 40 = 160 + 40 = 200$
>>Option 3 $=4 \times 30 + 30 = 120 + 30 = 150$
>>Option 4 $=4 \times 20 + 20 = 80 + 20 = 100$
$\therefore$ Kerry spent {{{correctAnswer}}}
Solution 2 (advanced)
| | |
| --------------------: | -------------- |
| $\text{Let}\ \ \large x$ | \= Amount Nathan spent |
| $4\large x + x$ | \= 600 |
| $5 \large x$ | \= 600 |
| $\large x$ | \= $120|
$\therefore$ Kerry spent 4 $\times$ $120 = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/CfGNZ66wDTjP0JR+mGf3aK1G4cR/s44c2siIF75TYjWXJ9igZ8jH2JB7u2lvrvaYj/JFMbWjmX6K9lNknxDTiIy8EtxmGi8YNIqiN93GfRlzttyH1NMVFq9XewqQcnx/Bw0NXad+29qfekX4NpPabP/iuxH8sYKJ9ZwT1acqCkhR0rjewhK4CHe7kJO0qXebvB58QYL+jZQximuZA5mwe30PLuVbHV3nzAuB78PR0XrFK7M/XbQSnMzKI3YwnRyFPwF7Sqo1TxbOJqstHxHMREv9hDUIETmj3bcTpupOoN42vHPr/uiwOfVvaelSYmCIhXg/ev1z+4fvF4vcrdZJeeJeOxD0gusi8JKnF9NpwQAZjWsIvyYGKP9CMhCdk54bRvMi+Riu65Ssg2PvkyJUxZvIgbAjywH6Xp0TyBhdY59Iw1G4CIkbeSEW2dL8YxQnMGIQd4EmHQ6Xu02/iOEmgVS00NjDha1J0lPKFj0MVD9Q/J2cLERnw+5aA6IVILz9MGIkJgoGQG/SF2rbtcNBrR21nstU1OlHO9bRoG3eGSQ9UyYrcJmk/f6DEL+k/f0A7CgYFiuLtcFyHsoISkIvSsArcJfeZ2ibSgpr6Z3ZHHEQEqbUlsJTk20P0kLxZuq+Qc7GJVqvcLZtyRuq1LC8a2BSefhTbd2nlIp8HFe1SpNvYRpW0lt5b09E5zgREUAl8ag/8RLWB2cPsjQMk5M1ZPt4NZ4Ob00zx39qLQSA0EZhhjHv0Xx6L+knPzPiN7qRsOpp1d70VBzISFWe/uYQb9ge3FfEHadlAZ4rG43F/BELDKoo3EpOve7HZj6CydyKAZNoM/+o5nef8cvGQCzICa3oW5P7TwaqmgWudTnBIzpssrRCy+cLLqiXRxPJ923zz5W5fSCwgSZbRld3kFpH1SGyt/wgMcl1y/HxgHzRxeCXBVHuaZAW3qLg/qIhFss3CqVajtMKTkXtP8maUFdehZ8V/+cFdIZ0TQoRqofXRgHR84SE/qdaLszy2Q5B++jdV+L77YoBH6v15lmWJ2qDyGCtbv+U4wds67fpaB4P9U33ndhyKfZxAwK50G9Iwj97rmBCBTFOye/aUGM3mzfBoi2fggoc2MgSNsW6F4cCN6sbiB0gEVLKRTwh3hpLdG1Y60l/7ywQZUZZi4uo0Rsu11Ba4gNENcDjqcK/0VxfCu2VXNoHQMDIoOkT8HQK67UagLxP3J+PQYo5Hg6KszUyr7/DrOgteLNS0foDvfjfadJZPjvRZQCJtX+dCYpR9RDiL4qb7VZUGAnRfsYRpT6gA45chBjFiOMro1MsOCoSXvDmwJPGoBYn04GnvRtTlL2VGlCngV0sLJoBZA8cwfOjwqD8PgWtt8CjGcYET+Xw4F9ph8bgf1LEwRD1PXgZd73yCWGdlSAj12SOBL08p8dnGtXg1V1QRVqiUpnVLa0WjAx8UhuAkfUJBDgKRU7a4hPeBKKgjsTxyawl5JSdbV6298ighEehj/2N0zLsnBqjnHW3HNG1tTP22mI/kmnxQexvtyZzFS74lQUvfcjcEJK5Rq2b6WAWCslAdv/XcnHuIcYwqZw4J7eHSsk9gJ9gU7L7tKe032mbAANrnn4MHNvbdHs+ep1b83YXUYfFtE8MCgPLRXVLGsq0AHc9MPiZf/58crett/lB+EuYzpuC2Ghuw7+q61w+NsmdvpEsX27vvyZEyLp+X/ncP+GGF/xB94/s94p8TisZpMCJWmfhoypTEOIadI3tcY3afPyt8ezCpnuzBTwylhtrjqw0yUuIjudML2BCnLb+Krk5MWeksZ8pxsnt3gedti6uMLtIZgNJhTbqNrLmKz5ablmGdMkI3sIDmhdeELc1x1nRBauM4xGYq4GuK0cO5I8qAGL62u1tuJX2+JBCzp7wZcdgJCMfH/emvo+2EqOleS2XZSHZlRa73C2Pin2TgK5cFwy1fFY+1vOAMlHx7mnniSMLafMsTgb12kcFWY6M5J7dFWp1xw8saZZMvNHWF/Li1eAvLNH9XNIj7BOXVnMWHAvcEn2Z+Utb19+wAsjyKjqV/hvALTfTc2OJUG886qYx3WGup2tPgmMJ9GvtSYFe4qRxoXe7MjsBbExs/vhlalzIhohLQIK93Xs3Hf5dcTZZICesvlMwvGdEmtnAaNDiKa77+8n+p2IfKjN+K+jT+7cJM+VjVMcj4XV4QVHqc/brCCUfdgMfW/U4HxKP8r4U6JuixI5EsbTjHsb8zcfYn8nLfNDIcm1q4vOkIGGbozR2SOlyZqncHkyDlQAfubvubbvM2aY8NmAhhqBlFB30qW7jGeMULtiF3pvU44pZrf8X5B6tDA1EIkQZKqHhmbnzgxHEs35KKRaLVO10onIxt4cxDhkdmWpBe3HTkv3UgMsUiXSvcMBHvCMo6mxuqPnir2Qsq7wPBk+VVQvIw4PIJ+YTi2i+IBf2opNQGgiN3WBK2iMj4GTaSwZJ6+cuWQ0AGHKcmcEqO9K2sKcDshHbijI0LVwP3T3ZZ7Y7SwCCRU3C4WpLKqQmOuY+aKamoSVdPHvkJgDFV4H9p7bJvcNhwD6IDV8FTdtI5S4WA/7CdJn7dog75wc5FqZB/EgtwJsc0rS+VFOWwcKix5CFn2j6pQtO20oYiMPcoghjMmWHrxIdHHy/U9Ap6PLCr0TdT5IUt9tkxbwbWZy7n8ZHIFUS+aIn6Le6TI05hRPvjt0sf9uoNWEQ1JoxvG2ojoYyIOLq3Ijp4TOd6cOReCDaqz2mieKCK7+naMTaKFSG5muBVj2SmbPUKQyhSPzb1FznIURwPT8xFu8pnA+tK+zx02FaPDjUQPcGhaMYCOtHVGa9I8YeOVbT4lNuwR1mTf41bTsrmhkPVWn2wsQ479a/LDiStKdBV0h5opZ8bkv6tYTiMo9gZyCF4t/FAUOAPwjFefE2Zw8GtG5N5vWsbpWt7fG8JsJQEDhU0k8UiXnYbgopdl/5fpC8ZGKSkCEPhNIQ/F+MTy71/Nei4dSGxKg8Sb8Qn7V0Px8ejMSjSq3jFq3+F21unKRwnj8jd24tNTf6WknOt0/hc87zbEegIpKyh4yddZfWHSg27MmDOFXvDWIYrQKRBcH8/aap1PpWq78u3oPf0qxkzvS4GD/Phg9KuQeezqc9t2pbpcEZbqDe52CmyBFZbyLno+3tP1W6WRfg9sHPrNwdnQJUaFnkW8fN2k4jjyzq/dYt7qccUrcQor8STgwPX0f46TOv7SvpC514Zz+kZoCVS0UDpzW1F0uylmiKXPqpnutFaRUM5I3psYusCL3hxJrBFUutVYFuG1RUTTHSD5bEeGH7LYFqTwAHBJlq8+NmPQyj1Fsn7rZXcj0YBJ+dpt5KoLkADziZD5s4RxTfucB90KHM5FqtSaoYtk3l6JvH1k6/wVeM1mK/qxGUDFtkxgPlQkRx1cL3d9UKfnXu2mjkLGIBrFRdiOJ+ERguWWWqW8zfGDdyF7vNhAaY264xf1toNUiV7s8pK5B9YubAhoe8Xohzy/sXozVImQNwHz9i+YDfKjCyN1YvwKvqrj8qMMfC9pmGMXUk8iheErqVzrAL6FSY4DpR4ki8Gu4Mfb4cTDUkHRpiUQAgt5q9icOF+k63Pj0bWW49zLaX6o8MpXMhpBkDbm2RE7Cyzb9M2RSJuLjl+2CRVWVIUZP2Hc2JaoVPG6YVOr/wD2dbqhP5hRFrZauNEtsEBnWKiPZjdXsHLMP4pCkF0PpLtWesEkk33WrWCPQq03kSzQpiGul3bd0GkIAPtZKs7+E7YdRhca0IkquFbQyNgXMa+9X15fxvcCvJum+6grrqI/DC3QfkovlhjoRnp1OmH7sUEgqSPVCDFyxd6vMdeT9bqy2hqH+91YVgP+nEDOgHYzzHDV1ME+sVRiGSmoDAjOWK08Iy/U7GRK9VcZQSxC618jYClYN/IuHLgqzcXlC/SRuJ037Bgpl1dWRQvfCByNdpB76s1BfDlDL0nvogUhMpYXY1U9l+1EdZVcXdB5raIHoY0ACCtxVX4teNMbD3zpsQKRTacRbnc4clX8ev8VQdobroPvT763LOkL/IxUeqQ0a1S+eBdvKFtUEwUtrljlnXr/tlVif/pBVIS7TfNcc5joWv0/sa9OvT8W1ImsTEAf3MjYgKszhLPoZqqJNklbt48YLBuCL3/NAvrj0K+0FtfdaMsV1iJjkAnHXbIGC48aSPm8NWsS4JoPQwRHuJAaHr8mWy9B4YSllBHhT62y9YnqGJTt/OfkFRB4YjuHxakH+00EYQAxkTyW5RpWp2EBq2RGezBkzBP9faUSlrW6P9mJc8cyfsrxDcdqxIuAbqLwrdTBUeTtoQDjGM3tDesRjERCK4oOVgsLBmtBUmhVIhd5IC9uImuqvqOZWjVgvoqPZaKpn7xan2YFHHpUNy5XBHbSgQFoo3CbGIgz4FZHPoHeMUrzh2hX+C1wzsydu3Na1lNLrEMD2oD3XnIRZjC2YJL+8xXKeO9zuniw6ltXGqj8AFsxkj4QordfJLin3EzSzWAcBxpGVaPAKpSVjaBHailxHTSRpBMwDohvMDdycK+IKKAzMohzsLi3trg0TKxEu931Y+5IgIcketbqTPKNJ0E5G1M/TZiHtOQWyxlUNmdaPHGNLOGc66mjnjZsb/prLHIJRgcnyO2bCEdciRBtR89+y/uSBeM2rRwxU9Ff8r8zFw2vf7GvsE0/HaAH2nZNvUEzNed4IaCRRih6AgwAsz0/f/W6MKeTVVeVBlTJ/DiGiSPyjDohTFFOTkOcRaQF1gRWYMPcNiiZAqYN0k5SgBhXD1rrzNouHrlOJdxHxbzbeRsgO+tWVGMrUr6rHcHOpHMnC+rpYmrSHhXtSlsAEfUvOcVzcE7jXH+FHtnQw8pIXWQ66MXpKSOiVze48tXZxjpd1B93yHHQo8itgm5vJFgE4GixIq18zO7KguBwku7D40irtRSlPfYKP/uAaDIQS18wMsu2WpmSJCC0UNqfWAgCEeIYB9MnELTnZ4q0m7OyoThswVBkkcMtp36cc8biyECL8Lnny/tmDrRbKTb+NfpB1JrtsZ5a2DUTwWwcwaBSn/vvLM1Nk5qkzJ7FCjhCCEvuXCFzcVsp1UgxYWSMViEm4RwQGzhrrPEz3sKJFn2Rvtn/N6EXRR/+Kd3ypbOW17lXXqUf+8zd27ByDEMMri9YMK0ZHAlgCKrszQIH5q/M0dclQpG2cFMf+bfVfgljXtqZ7jdS87LJeTKk5EKlOqDvDsPbWHszvl0Zo+8KPdb4wm8T9wkkuk7/vJgZyOdrDijoVPod8AW4M+SCYkNUxxqU0v52BLzYKJXySNFb1fmaPTIT0T0AtcObHNbIxI167Ec2LZXdaIBH07qemjYyPJhUnV9Uu3czoX6vzE2xOkp7df5Yl/snmcXtxGr+6gYgRsyHRKVrz1EZe72aH219NSXBGrZaQGHS4KZM+8qds1kMNO9ZzG3HN4hh/jENn8rMo1Q/x5UvSipj/Q+PfNnCFmSX8sPpNpIAZpYSFMDTUsgQuZJBoCpezmYydRpvh+XswqkoSRURHBL5kZbptkVDILkNc4nnd4QJiR8jKds9qkhjJUEprMzHXpOHEz0kmSbrpbW7c/Ug5JcaFUy0yBo+zb/2IS81THhyVDqRROgn/K0xz33mBdJanpqxI2U1EDJiSP+mAiXadLsgFoAIbY/AVfbd8jyjHwV5qf0iQyakXBMOi4z5uXHnKgLH4WIGKZYKutpSmTHrM9DMW3GRdQNVCSxDV/pa7tmn7s9oV1tE4Sd0+AT1/wUza0AH83PX2M9wWJmdnaa4+AJHwNkjE63euEU4qulWisPeW903cAL6l0BzDXLqqN3MipjYO3nCOJQuDdDqynhh47NzXv4Dm24WS/V8wEZEe9rLHMQn7A2utWi7UJ9CVVP5EAH03j16syUqEmXuJq5xtudiZM9qXb1QFIbj77xLSl38CfearvNMZXiOX3T6dNZPEGFYDW4yMiS3xW29zvKzAwaMXKLflX9GB9JAUeRpYKrpVrJZ2n7pW0LJGESSixWwv27cBJxu7z7ENclnuqj9rl3hxJ644YKx++4P8r/x9Z8y5c3PPpxlNqFvHgMIlHMCKExJ6nbwDxVnN6OKP0nwstXOQX5wnP1uEMaQ5LGOgK9IFcl1IY/0pha0hDqG1lNsO3i4gcfSHQJ2katO7gZ1Noo6bU0zLHyD78W6x1X2R+dVlpZiKYSqJvSdBxdglQBcmoDU9EmXuprY27pCmKoYvcVtr9tBrxAB/87gYOobJdje38N2s+/Ho9I792bncuJRYBti0DlxrOarO0K/DQSi1JPVc3539LHe52saqr/RwHSPfAGoyDNGtfEZ1uK49FKJhcWo6RhS2AZrFFmCWICAVjbXb4W3LW4r4O0PBwswr57KCZvbK+6d5RCEBEXjHkofIi57fzAn4rxT/yBYnS3/8IWBxc5yagP5RThVew/qgUKEekpShjg4sLUQYlhsI2BlvMOvu2m18qJrw0V/juzgh6EQ1tKvuN93R2MFzWopilCPHvKeJ3JzwFLEiJV2VE3XSP9TKqiQWIj3fjtEEEjAgFpB/WO6yeFn787gI2MLOJRUTNetIe9xOxJR3qPLrPARPY9TZQnZ92tLBCU2m7S9yFSaPe+FQqA+NAEvze4RLBjt0Anra63swafegDDTAScs4NYF6UiS8VW8V7M9JO49/QLEx/v/Yn2d+rLRmB8O3Rhp0xpDYpkjoDte17oe/tEx9r/cpSF649/LG4k0NJ9UdvZN1OjNHWHHr4gu6CmyQKuRU1LqPfhFDH95VUAmpUSSqc5QM+dQBOgo3eWKE7yIGAXxHUukaaVv+9QQR53OTlOv7D7+odqyxum39lrLFv/fuaJaQ/IewAEQe28zxNGUXGwjJfvn5aYCWmUFbIR+AWFSOd3HWv0dikEwwBwhqQtRhAqtymRn4PAXL0so1R+cxx5DXvgpPekf5yoaFa/wpI+sZvrr8QTwUiU5Vryc+REMy/RnE8v4G7gksNUVdF8j1fe7Cn90yqX8KRKldIbh4ITxK3DULaUU7T5KT+hGxupi/qomQHmVx4U3wkkQ6iVIZP5tkaaI+sCtm590ySZ3YuquIpWV6P60uL/bb9k9YG0s8MeFCq9dNyRjWP88tlNhCgKEwdixL6Qt0j80dmh6U+JJFE+5awlUr5jwOIWxE//fdZbeVqghS4g0E7cWtLGVgY6Gubnh8OMSFdE/1Cwqnt/PHUyTCjPVAaAgr50k6VblVltxaz9u41vhNs/JK7rBgiQBr+69miMwS/1FvWkZDGAbeFRU1Ibb7VMcUWsy4w2CRtJYevxdwRQ7RjPONdSbjx8UNp4RyTuwpu2JE6sLkQIqSt7fQy/Kbe6/iPFBYqWWP6sVIGpRQFNEUcfrTR8Dh/9IrV7305ZD9UCJ7bvwouBK409VO8lBBmTI34YKXmutum1SEcJ3RhnEaW18IPKDmgfOf76p9bHut39PEydln+0koqdoPZTyVQ5efu7OhivSGd04FIY5AyExdKcWAOnC1e3YvNxeI46U+3CJ8vz0uAAuyYfFFa/8Ynbj4QArtktvFKytBNqnStNN6nziTeBu8vhjRl85wrygWZOkPeSND/nXwppHbyu1cKdCmbPTpzffUNL2Bmnz1JxA6u4bKBHmu31AH4jzmblWN7RCs1JQUnZIvgwjlDvTtHS5QhCOJ6Xd1kI9gSHaaC7V/NsRx0qwhonlfeX3wKWD5HrU5U/Lb8aT3VBU7E56+qVMXAsmyuwtPuCSKhXcOIk7KtAJfTG0l+WF2xxTduulUWqzvlDJKZmc5jes5Ak/Cl/IMznVvefVXU73awu885z/vP0vHg81EyV/RCwOsQ2mkv+wGHnZHbl1bebxpmO5eQEtjsrOgY4BfEHpnTfN+JjfSB1r7dwsLtr1FZPter7WRRWYjyz4Ssiz9H7Fn7ksX5e0/2dOqsRMfUpPD/duXSadOa+qIiEfVzH60s2k+oJ2hJJ6v80ZZysuwOUY1No5xFEXx7OQjZtvSV3+hJUn6wXeVgfTkMzUNrwpBPBhqqCB9c1/8rv9/xn4a3FhHGcD7Sdwyz0LwOVMVyEseKR119r9/iU371BiL6qyKsyvbJJaqxN2/vjuHzm4FvcH6Foo4nE4zeTwUtRiIzbG79sI7xLRD5mPmQmMLcjAzNmCwGIk7Y/JvIQbAKnfaBQ2eG577t9CTDwuvZRdRxmRAmCsoSO/YdwkHg1RoNF0GmI0ZrlkoIQUi9Upth2mKDi0AWLKZeVo7E026s1AFQ3bZCLyBSLb49ISXfU2AK+dgM+kIKsymQ6C4IM2OY3Wkgzgl2TFRBvI+z1CpEHfk4tizq/CwpNNDa/pg6APerLlrxkD+xGUjMnS69vQvA1Qq4kGv3AVDU4OiU7DclRAGbBYWcHqsHfpFx+78ITJXRKLSaMLwZBsX4VtxJrvZ7ZJprHKuqGrb3F6Y40VFkm8j1Y4ihppv7j4MEh18F9f/3Xtdxn+EsF24hevuyxdYHRhq/X7NVTOkkKHmn1h5jZkc7FTuoSKJqNhkEMyx7N7EmBsXxj9rm+PawvG0PSwjzqMshn4cCoNP71gvkZzPXkb1g6tkp9rZUD+t/ZTXVmImN1i2LTM3dd0eFA66lbTjHwxmVNh/yvVNMDSsWxO8aj4f9HWRb0QfLG7yGUYDSn43yuwY0x0XuHCAucet3LkCbyuNwXXwTAhN85oKnDtWUSgxCfK/eaP26xxFYpFzGfcPx1hzLgVFT6Gt/BiHupkm5sGrvDxbyBRUWLKcDT1n1tRTVAoW2Ou2WI3Gc8BzVVy66MosVUfR0pppafI4faddBahD7iJchZoTmzKvRK/q/2PvPs5BrARk2GU/JnjIhpDWwCSZOL+mOOAGQB3rUau/qIenHnzB5J8DuSeo2ZnJ1HEJ+B/u+NAREyVV9PNtJDJ6bGEyKKUf71IEEJifhShVDzWp1g5VDxlUSxXQunQhRzk0F1K8Mt2VdKALODLvtfD9Gauq83EQgoVWTHJasnffUFjIkhyxb9crniiufj79ySwamCuk8UvkFFoYww0nwtuz6QJ2CvtvxMPOn+EI7IQ/UnAqKKhIGLSWtNifxGSC4bBz14QdEKhV2PW64x0FJvtjXSNjETVqfnGlscjcF+ilwDa7Y6KOl9UugLO/hcMIueOmEaSnr620xtzg2/rwP2AOv27wLKd4QIbB8BVsPv43T1hHA/9zyegVGbvjGzjgaJD2A2rLFAoRshNSTRQ6xkPrtruqx+LCoS8nASeRxom9KFSKh6daKawBOOdfsiWEgIbdmOtoTc0+0325XR50wiWvOYxJ2D5GWjKkgD1S6P9sI2cOwQmXKdYzBDkYW+qAh3HQTXJt0ksdwLXkomd2uJr4TT1twuOj6vLPkIZuoAEgJ1MRuikxlwDFncJe18CgBP690ecQxH+wzTcKbiIAer+b5KdgBBcEiwlm/cLr3zAPG0IsBEdXw3Ecd74mMlTosYyVTkGNUKAJahJWQmGtJS6OmlmSAh3PXSY9Yq2GoV5P/8eHdwp2rRJWReYqMXcrDfITjO9JT/kkCTtDKhUEsPw9ozcA/UlA0Q0h9ZsyU3MlmY9vzcgQiOVkffcMjYgzM7NycGZTCvTL/Kyuqlu+Dj5bBsBeaTWULeBiA+kcSTIhq/R3cXw0KH19DTgyLjTY0xfLV74wmVQmvBqTWJDKap7Eg5r+SaVdTshg7UblxBia4XUnbdEXGNRMAP6t1ATOt/7u7xY1jjTiiH4XAb0WeVJjhv5Az73m1G+QvKtFmMq1Y/kTeD0rx3JkCAvnjNYKjC+MuG0mSOQq3ScEcEzmPqhRQw/qFb8NfngvklgOJXQEFWvTbinvZvw2SADZY7fOixRXzbTaeOVyDkSQXCjM4IDJZfajYyl6+YRY0OEudF5dh1fwP/9uDCgQAtdux1+wRr2w6U+yL8s/qucuNUHKnHQcvt5kpz68Pl5VJtGCpkD5r9sbedgJ66LlwS0mIH+b4UZE01Q/sDWb9gJrPabsCNdRB3Qo9pdgThUoU5CoXg5bVvuptDOMlmDJVFteOGUPgg125x1fLrOlgOeZIclSQ0HvXN/QbLdA49gxWoxbyJGj3PvjZk6uiM5TaqpuYZCiTHlks2wekJYEMYudu7QqxpKd8tVgWtAdmOZ8qxGejrVlTa83zjfbJ80t2bydycN8BTF33nLhSRAo78HyztNXHVb/9aWSxM5MSSAlbFJXX9at7zzf7dgH/L5BLDhzmFL+E1zv7lkbVebLmcX0ZRdN6aiXr57HTHCkKCJ1UNXY9L9H7/GUOhomzNp3zj6LozRs1LYIx3212za26FoVUjLzRotXlMYXV6aaFKoDveFXIoDrRIOfLVraFM2xhSPHFAlTB36HkhOyodK3jvyYlQ6vMSndoeil7sSW7hbca8a1kUt8WOpkv8mGwTXaoJ2nrYM9bBrDTqLsnTsGcSjpG8OuWAtDnXoP8nLeNrVFSQjLYEFwbahoHB9bo/h6DoZ1aH2YGJBsE/U+lPUJ9UEHibTvUVnnUhBcfRWYviH5rv1gdQBgjasZ8tfduJNN1tGGlrlNB5kN7MTUSqhqqsUSw31VA3XPXfM6lkUsH70TJUly9hjqOzGHDSQTUVqI2rwjDvmycV0gGELxR/5YLvMRPqmOCUiCs7Q4u7YgAn5jrw0tRgODSKelWmIsX8LZZeiyeHqn7qyGNZf3dEY3dd5352jBcfGoxR4vY72ZKbUlLhKpWIl2j4mCf5uMySHoe4+gBHY0nJik9ypR4pu3z/LqB8sVIZLGe8wgF9VVsNjwhZmTO/v9vfAMwmPO4vhk0M+ubaC+O9JHj4UGuHVcQMHOaRCk/9Xra4OYLZIguaHvf+WO2LVc6B6uJrQZai4DLFZHjSwlM+Qjg2xfgWAVzoxDvZfEqYUboTi0zleVP1RZ2HNJXCYJmVHqK2GVLZhkp36grab2L2bqcaVzPy/TzwnaBAD3O9wEaW5j2E29vTKu6/JC4TwlnYXinJ2WEn/B7/Y/2OY23Lh0SlYOkvOLfiIXzXepCvmaGHj9Nbd3IuxAhKmMPBMjm6V4vCPBtqjJh+iWUOkTYAcX1bADro9M111pq7V9pCQcxUsTrPNjijXaxqIR8nFXD3qEfBpIaKaxTuWNiu/k8KFzJQ1f94lZfi4wGoudRxdlw6eY2toHsrOWrA/l2ExYQO5hh+gXlrEGlAkm0S20KN4D967exkarx4atHOR/zvLGkf4lqpivaDnt95li5D5UOLAGVcNpSqIUwf0fxUqcAH3UuZExmBlhhGrSU5UywsX/RiN++amUghZOlzq6KZchqI3VaQQW+9yYbK2EAHHghTW367kJGoPRIHrUxVhUixOAbVdTlhlzBivmnZYQyBAK6PKpMXpoXHK8N+HpuS/SqSrRBLky2cjVZSWkVmB/ZeJJhed8hLXvDjSNHCk+3L/BXXQBsPwCeOxhIU5iLyUK/y/hhru0oy24Sct12jQ9J0v6tyucgxrHfrCr652odgULSmYLs/fTQd8ZrUl6uNmtx2a5YElamYky7BEa3xNmmCPPP9Nn0tV6CiTMNVlof6lalihUiOQ90ElFm9Dcb6axfmOVY7qWKdq1NYfcfxJZXIS29Yw1+54X9X5k/0EV1fvZ425pjiAqmqWiJJkQXoKAgkmjONhDTMr5LNpsMUm7LA7MKB9N6aI8Eu0lMI/Vpm64OHz0uLbA2zJD1OAd1vs97lNVH+eIJWPlrO6trx7sY1dQq8s4tp9Qa8Lo1SgvC7oK9pVzE5suUWoqcnRcW/2X+ho29vqwsCEvfYDsZc7dsQTQLdzFX5jxw87/V/CY9F/SNZc9MQD1fUnepVe1nPKLwrFMA82Le6NIp/MqfDaUjq0jJ03irDB/kMtmNCM7NTG3R7UpETmanJv1PaA5SrWSikABnz1AiutBUsiqa1DhnEH+kEIYnCwiUlJhj/IfI1GQiK0of2hoafOBUJ3GTnp+zFdN955ch2fhynliSowX6jbBr06Alocj8IEzEfCZhcoKQdeyFPdrYbs3+HuPb5UqRpBxeJ48djRKOaytTIPfQItYOb1i0buOKymA074bjHodbkOcBI9V3a+XQEcHJah3dpwcoXCO3N9enKP1rgvUX5TKPTmXfD/nAEaJiCCo0Qi+1+aypfCusrVUG6RqBinF2IuINq4hYvxF9xRoFXfC59uGAg9C7BK57hRx4FceKMMHHq0aFQzM9j6x+2oeXi/6WytmqChElDFZkppbnarjDRQxVjfgbkCar4Y+nbsXe1VvHyj67azWSshKA5QvewGnyK6BOwEpAlgHFvlJqLasJLsyErO7U1yZP/CHukdX9ApbvkhFqotPq6L2Lqdw+Q2bLejQyEgSFRdUQaub3L0UYVi2qs0zx9s/DKWleUs3Hy+KUAqRXQ5fWmQW/6/pORTemokSMTRN5myn1mFMF7n2oavRj8vDnOitKou+L5ZYZko4PLzaKasFYVEXVs+jMwh9SQ2tjhKmAfy6n91hsH7anKxZk5HqsKCaCYrSjczeFNip/A17GShfDZyKOyxyfUELeHXkeDfTgHJ5uSoBXY1CqfnGKuxtGWUlej6Rg+2ZvS1G/X72PbPZQnmhLZbT5JZvAFt1mzIL80yQnpXC5sumLR3IvetIkFHsIsqJRnHCGNH7ASZRXeyl4kdDC895S9xTvK5/JNio0iMBwQloL9sycQQ92VPYDKUg5fdK1BNbuLxi7Cu37Sz/Q1sKaPssYLpjBLQgnmaxrmvdYzVRz8uktcgdLsDCsCnr5fVZp8oasU8V5epSR+wHAxddOi6uweAUV3Pyo8ox5uWyzh7OM+JmF1n8jpRsB0cEqGn2tuAlumDp9XvnRNkHHvblYhiJNa4642QWFbE115vkJ6TmmtdQgiUC8lrrI2Zsl8LQpKMFgrrV9tJPCzFb0g9rboe7pvqv2P+7dzOoXYVizyOd+ZxqDGP4VFeyPABolLWvMJpdESljKbk+qvmt71IIlSPUEKmlDKXV/Yhn/PUNvvvmdwVIO1UvFc9SB6b8Uy4rNpDJhc+TgfIl1F4E9eFGzB6bi2BUhmZ0v7Udf1YF++tH5z7fupJfuTRPvbk16/4XLpDe2nkupdYcSehrtd76RjGtan9w6dUYBvQRx6PkfxaS6+au5Xuv5ynufR9w+kXn2HaY46LcrEu8a+I7JT3a85Lqko0yhZxXibE/xXa/AxdKlv5lQy6icYahchn8wbvSj2ifyIFKVOtrRRPcO8z2lSnWhCgJ6ivI3lQg8U8aWDaD3rfSSc2zc6D/ObTeTI1mBazy8f5x86C+FLfj8EODlsLD9SFESdOXPquwg0qavhZ3IpY4r7KhYLjhPZzDWSJxYqPk4Rhfl1LM1dpLgmCjG405MB/vbur8gikcsyjMwyPM2UeCAz2s0cluqIzq4np/g7YgboOo2tgHH7mkDGTxPWNhoTlzSwPPWe5N/BnryeqQzcnNCaxHF9Rb/UwOI0ZRxVSMrJoTTOlm7ilL5DbTgkSoBvj7o2X1u/G4wGO5SUqRiaugB9Wl+5CTwi2AX2IisSkIRZlRpzqdwN5WHObRjypERlXoyRZ+SWCPq9Jk/J0L3hFZW7Yk1JaufrwP2BPLyDcCobIqn9WuJ55qtGOQz5vQ25YcaqqX2v9H+z3oNi2KAnpcBs0R7BwoW369HZc1km9i068fIeMZiadzrqx7ky+5J8eGBWTKju+JAH/BcAqvO9P+19QzDcZ48YLAThPAFeO4z2e3i3JwhwuxNzdzzuFTkY/f26QdL0fXPfcQQdmyoehYGYewGwy4/07GuYmjHn+Plei+0D0nN31f3UQyN3E7w3dJdQ4Ol7Tg9QNTVxXtdIm+Ofw7XYuHB6BqyjprKW+qTIg+lCwFrEI7f+xElr803P+2pLw5NmukaLp2Blzcf4gmrcNlbSe51j+MvLotuWdtSb/C2vKPmjtvI6FgO3GcvOmnRLINOtOsgylS6BtYPsMnfd3yhd02cPk7kqRE3x9k8dul0S4yCUkqRfrIBOq0jEe/9Zv2ms8p8+9VZA4ynPfTc4ubwywdJybE52ACAZeaKRZVbANLGS1tjw9aSrGRgo/iMICRK42ite99Ic8U75c67FNXykQiwbW4XdoJuXEoXd39qvt900xr7gZcd3sCtmMI1pp8zFY9yuk5N+sLd4enZlDuWiX1efjXYAs4EmsneqcUfLTN//zLUOjs1CtRsQ43CpYDCaXO4BB2fY7Rs3APV0YPqV63IeZHtYUdEwlbfH6c0ja2LYUROMN6O4rgaWmOYnmnqPgSSOPwQie5q4a/a0JAdq011t0cWMZBiljzaK7lgRpbdlzqPUCxq8szScyUyPbTLqHDXLjCE5dSkFC9I2q2sD+ljvQHIjNjDkQlRsWh5i+3Iv7Z52zeEhS8yCAX5+jc1Lrf/wkCryAiTbB2DKmM+bnu3CarwXy+MbnUsjdFQygpYhyw/U7z1xb72b7buNi0iY3E+KpDgLZUNoli7mlzMnqiMiN9aAzAmbrAmIz3CgZbDwJj231mW2FADC+OjDsJCEDmC0B7iifDhdNPk8wKWNK26hVpTXin13eS+VI8x2e653SzI2oMqHEZknGymLoBGzQqaEKawV/yKZqcMZWFmL/3f9eINQ/9ZrIM/zz4vWfmvHF00QmoWRR1jX1B0aCUj2aEJdJEupQQfWWnb6qeKwvztSQ9waMHFzxVlneBhGB/jj7pPR88lT23lrO9L/uNY9rsL7vN7bod5pr+kiGJPJmgwah1GWOAQckM1mysbo4IV3P7kygWvdZea7hzhHAObSrUlm1y5QBEz2Laziz4p57jfeb4i3aWUh50/M8EGVl2iJ/RWNY+QLByKQp44KVqvxbKfCarS8YdMrSzh8+iODzdWdc55YJIRBNZ7MWPums7Jn/smP6qtTkLEscFZW5cO+zsPDW8pK6i5SlGWHyviKLm8NvUCp6Cox1EvTitTU4I37x3o6ma0DiuIo/8wbv6X8LxdbKtpoPnX5QRvhWyvUXsJcd6u7AL+yzSGH/NeMnDf92heti0d4dhOFGmOvl5GfTKG18cDkSNUMdallZwp0BUQ1KK00zPXPaeJVHCVXFYB1uT+a6qvkZNRKkjHo32iiZdgmVmBfXhKbmeQ2aHxwqClqpZx/zGcAZFNKGstVqkI4/ptHBZv6Sds2IS+Gds1HnnhYlscJFAdNuNNRlaYgku3h83cnQtOb6wD5vbDV5mBP+Jf3Q3mXkMwPxJ9TSHrvdfpcW2/3umuTNEmo5kt0ZK1TkEbMDDM1FdlDQWAr40YcXlRwDz7caMr/Y0XJHLPywz52VVN5CoSMfJylA6IecDytG335D4pjgbFjBSGCshnd9W/jTwmTIx38AeDG2pOpfpFMn3uIBv6OKM/GmuazKtmXojygRoekHEmB/hDtlCBoPMdDn9b6Ry4tTGiDxdLjAazdLjn4tJBRiUOxqS1oBabFGPTy1Ox97Ab+2hgWI1Wrzdx96zchSS1hoyD1fQquJAcvMaOkQdPZjyVZ2obgHP3LrymHcdpYBG8Cne/IRWdjNU1GcRJXOtxp1E32D/xY+wYKuG0rGMRh+UBqa5eCejzZudWLxRPk7/lBZUDXOtq0sOuokuo3TunXqxNztnoeylB9sMDDiEshN/sl+y0XkZnNOEDqf4M48T0lj3pfKyxz3Db36M9nwQSegk0k9Wel22zVd2yoSJUQ6jN8sEB3OHS6MzeZ2ZlZG6Dh9e289Crah5D64Cju+lxha0yU2pWITsB6CZKdDIZJ/zwSR6scphlWj4aukbzGj/rxKX3+E9BQviA5xsm/VphNhQHMJ2krvegaOe/PZxVdn5Y2iEfcg6Zq3PBlLkmZeC/Vb3Fl57QFscrqaoY69kM1GOvJ+3i6kfEVI37LTbYxA4qHedZBPUIMGj5QIQfatND2ltyB/InEipYDYEd3YI56q5RA9Z+AWO+QL3JAivvTGdhi/r4PzN7lN0egz4OGxWl2LLwHxBR0QMnt/AJ6rr2AknxhYn20rc18nnaKWUqK+5P7qImbx685Q6XliztrEf24EDEVxow0EpOscVTPfY2J8OTeZPjc/5qQfA6pfdiiJ7KjbTji+dJUZ7i9TGX/FAZtXqQrFpQFdG9HBy1uKgkCihMyfIIjZ0TEyPigXqoOCVoUUlHx4vIwdansR3RO80pVFT8ng+WPpcnVQDpAtM8O1xQENeRCojc0dFzO6iqiMCWLhlZ85dAZLaL7NVUaLxposscAJ6y3LSQciCvp9CRgRxiS9aWsXqbGpN/IMyO4Y/HT/Pgn69Eaq9dicM+kF27ummCyTBAVZEhDsJlhQbwXTs1+st/KiuAwLaqaaZV3dheoi2hPJgq2P+sIP5Dg2mrxopVedtdKxQLZBYuBvpNCVqN+IaGTtZD1ElOnxHmtAcRCOkbYUD+r/ZRggFLV+aJIMGpzfCjLnjnZ2OOUc5TCFu7sdUHI5QucBVbqWIcKh1yN67yqM1FghuPKwmsgiG7OyjVqf4loHlzwS0lW5hhVlqk4LDy6SNaE2+ErG7PIcmP59Jsen3I4wiYPWN3tjB0AyrwBXSmIxxs/peJdBJfeH9OdXI3TjemZtS97RrRYOQoBpxKQrBn1XGnToqWJUq+meqU2lxnYNkhN1VDG86bepl6mL/QTufNbDwdvKWK/kSh0kxTH2lm+JLLqcVnQrlz56bWSsXRcywBB60TxYFVRUlP4fz4YjnOyOK0axKXhkQKQb9Lvi5dLk7r5F/4UCknBz32GPs2d7Kp6FHfrngOCfQ4ALl6wHJsot+CPTTkk1JbGJ/nDDHFb5Y7RNAePa3NEj1yvmBebEbK1Drq7V3Kg0LLqShDw+ICgjr0NrpZLDoII97olLepoDflmVkXg+6MsSMfjCMlQyz7DPDtrWvCh0bl7tS+mzPWc//OTz/PMi1Zz3EWK9/jAEyGY6FIPNg9Ltbbo+b2gC6Eu+YKwvMBAHHCTQz0moMMKrbPPVRNuGjeutSSKIrsPb1p2mHufbqeuHSFG7VRp3/UK287d7fDzvfKTLXvlJr13vhOjcbxscdVa7WBPSd6xbUs3yoYAfZqAsA==
Variant 5
DifficultyLevel
491
Question
Bo spent three times as much money as Derek.
If they spent a total of $220, how much did Derek spend?
Worked Solution
Solution 1
Test each option:
Option 1 =3×20+20=80
Option 2 =3×35+35=140
Option 3 =3×50+50=200
Option 4 =3×55+55=220 ✓
∴ Derek spent $55
Solution 2 (advanced)
|
|
Let x |
= Amount Derek spent |
3x+x |
= 220 |
4x |
= 220 |
x |
= $55 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bo spent three times as much money as Derek.
If they spent a total of \$220, how much did Derek spend? |
workedSolution | Solution 1
Test each option:
>>Option 1 $=3 \times 20 + 20 = 80$
>>Option 2 $=3 \times 35 + 35 = 140$
>>Option 3 $=3 \times 50 + 50 = 200$
>>Option 4 $=3 \times 55 + 55 = 220$ $\checkmark$
$\therefore$ Derek spent {{{correctAnswer}}}
Solution 2 (advanced)
| | |
| --------------------: | -------------- |
| $\text{Let}\ \ \large x$ | \= Amount Derek spent |
| $3\large x + x$ | \= 220 |
| $4 \large x$ | \= 220 |
| $\large x$ | \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers