Question
Worked Solution
U2FsdGVkX18Ctj+mzISq/XgOyQSllf1nHHJCAlzowdw+MLXdcB/EXLH0tCytMNvK/kJEv2kTw9jgufPsVq81zDWGfnugDo+6Lh+fIHbcIeCeGM4K2yu/t37z3lANRCx1tQeGk59ktyoMqJo/o/Q3Z/U7xtY+GJwGIBgv0ccdT0ylTSZHYOX/+4ILqC/FR5NT1SW1GnJB6GGoO9Z5mlB6WmW93ljL2tZzZ+JTCakgrpLHq+iaeUzPkY8PUFG0QD1VUJK8yOmcmo9kYPaaiCXPkhAiJWAqrZzl7TzirEGcTYgV0WbCjH0IWhsjtanaMc4A5H+Z/tCmlqvWQ/h1ovClIoSzjTfOGdMnhw2YGAMUeNMjjYpYgtqgnAuemsc6pchxHaC8aUFVfbc3dULNLjxMqtAO/KeF/IMBLRz3Xy0mvRqVZS7EWclQgZeEOEZXy8btpM4c2rjyhn4Obt+Tc020W+b3O4kdpfxg9iO+KzVUs2/FC1zcgPYPMfpt9ps5w3cv2IRgIQ/j0U5mG9dXjpQdDFI4os1C+KG/O4p7UlD1LxHvJUFhmVrfXfHLvXCJxPCQSgCexit6rTs/LO6uYnz7RRtTg0eRZhlUcSnfZxU/lKvhj/swJK4SCbpKijvW6aTUiZuefUy8QGUjDiopNmqIWnt6RKDRInmfUrFZXhfrxAPwI/FqqO+WwBuYeHT06oAmfN6nkaeXtyOsB/Yn/n4FeGmQqRAv7BEx9urRtbm5h41aQL5iCBgHJ4FvauLJaayzCSCziLM+g5QNQuDPg4RoioEWTs/dkR8lfoH8nf7Rk8vofdGk5j60Y48hVpljQYOv8+/50r5TGWL5n+68B+qoyVmt1B+IXksnNTy07IWIEAiiKSUzpqJK5ts4cUpCnW19mdeqXf5YvKfpAUMfpXwApk0/Mj5+t2tPpHUKiVKurdsAULLXtklK/xCP6oiqJXlvmiugri4/uh1AGv9Mqulpd5dPUvx9LVpGMf8VVhLODZxjujbLJahQnquBPPZNdSrmiU/ODKkVx+ErQ5ujMEhCwACH2WGI9y5bMvE6R/9WMccPerXN/d93pG0Xc3EIfPz/yndB+0zZ2WnqSmh0UhdG6EnAhhmV2X6ou09GWgO94maWdCpxKo/JeM4xG3Bc1/kD9udVM9/pAOhzN4nhhuQVngON6k2sn8NrXLKvpYpSVGzdy3DXF9+Wrqg1KJwR+Y5/GBl+oPCHT83iGCh8xnxJ8qsd63jpZxIWqNZq+0HpfECAKGDimiBWkii3Jym/ftPOsZlZGYjNiCwjl3rrIil31RmgKdpSkOT/0gk/qEQZZjoH8sRweT22XJdR4SR/7uaPmW63ZtZoXjsypfiJCO1zNsuY1d+KSu1wFNsuc+hVAE7RVD8pJHP/Cx3M+4lvDRlamu1W+9eOZ+5eoMPzSv1TVJ684LpM01ER7PPlUlY5thIWg7mIR1kfD7+A7Z6lWMaBubFBe5ibWdv/H+q9/pE3cBqM5B3tRjk76pgR9N3TDRmFgo5uN4lUOI+gfibfuPQyziJ7eiSbqVXiZE5vZJtmm/rEB5w0wLZeegALi3RcnrfseVX9A3ugYZ+OeCW4CDSJuqHXdJ9ZTs9b4pIQhJ8Z7Y/CkgXkLCXIXiJRRRkAEk1L7YMII42nbxXDjqq8AHktgauZMkUKyPxUMccIGddae0FlaHzXGqg4rApdIkdy+kf7grTwTxv23vZJSf7nUgmP7ZeVkzV6mQJmClxmy6GnGv0lw8ikUfMklLG0RRKVUXJSnXtlXULuZPCQjpyYfYTbq4l7c+ul1NiY0rxsHjzt4Wf9Yv1JFao5OTZIorHo9eYrK41gyitCLNTF+Q/QsSYR8AdGfRSprNOhLEubBJXj7VTM5kDbJUYycseyBxUUsjiawtTwxWsxeIPqybFid5XM7s9X/D43qRzIUU95gIxBkTbcQfJ1M1w3yGyjC+SuLda9UOVh6xDv5cT6USps0PHazC0WNwhTga+Aw7DeRWY5a22aRd1lxqoRjKcW95GxJBHRGZkXVHazhSrlcIK/Ueuwr/X1KfO7AKbpO79YxNSqN+fPJh3Li3QTryPfN02e3RM7V1lUStYfiuy/2aORI4r2EE0cGvuioRC19QRE7BQVzNC2secILPuuBmCCoBp5xp65trjLnPyoapHe96xdfYXJOO7WB7TWGLSjAd6VacV4nqKClIHA8xVeGDjeOU2fpCeOsMPnaOaq5kpPlbPHSZcwwHU46UtiZNSQKTlDR9T+XXpDaLSyIxffwZqz48JhYrz+wUtnm+QXceC61biJs9B1JZBYNK+j6OpvKV9ymE1KlWV3F2yi/Wnl/8gTW4JnoKDh5N9hwHxAufI7WCTHWtBkLSsHFv5i0MzFdrLhMKUQz1xwurASfO39wXUxFZpZ4fMDb9TyxG9rgOUSDeR1ChOqSiUslwSN3AKkMC7mkmLgBJGsqSiTjHQWK9YYpBBGQ0T15xH2dCeQDiPMZYEOMVJ4CRSFs4FnEZcutWtA2jCigFL9wKgK0JKqnh5dfjkyl1Z0gnHTH+ICOTRooENqFViFGVW4ZqMavTYkMFK8wgCC9ZQJ+JPxe7UCjHgL1s7Pi3VbloDht3mdQ1z1EBEGBnT93rNAKTidyd1u1PEXfo9xcMroka8tneyNllgUalQcLY44F10Ws5i/7XtFyvQgFa5tJuMQK2b7nwfIx+fXPNddM4kc3F8e2fUruXX6GJQ0B9stCzim1d67jnQmBOyjQIjNiiIXBBa5AfzXKJ2wTXtegS5GdnRHNYdvmS4mjrY70ELb4swEplXxt6RJp5go/V+DUI6zHUbFBp8fHBVFl6NuaHd5AItadOcKS8kc+iVetfLgbk/qmqZ9F3qHntL1SNwzsIRgwzPcuMjTbyvFa5jL9ByqWZe+BTwC6p7RHLI6B7/BPjolIAo2HpkBO+SUplEAFCwXbX9FHD5EP7EiTYj4LXaS3CZMC20vuHBkf7KbWDJadUKKl1PsOAnaZsMscA/XsDBS0HGdzWRqLGLW5AYy4kSXX39dmDbkqYfaLP7nlFDk4wNPNgfL2GvLPe924/YrVUutz/BGj993N+adgm6egeC6mInIlXkTvqXVJ9UkQP2MQ/1nxfFsvv3jJ68omP61gQetn+q+SDhXUY0XsTkAUyn0Iwral0x80qdyWs531UrId8i9zjYbELmjmQQws8C/FeWnZ+/KWsij9DgS6MLj4uUBYfl6MjgQ70dZ3GhXmtYQZO3QJpJTw/WGoGsnErhED6l1IfJJatnQsMrGXmJznto75LTctDyehHIH6rxBPeZYCpGcdoeNqsbB98a/bEmmC3v4M0T9G87dPscQQ50iElgGRxwiWyziC5QFxiO+6C0z5mjztGBHswuA/hClZat8cOUEppQVAtLQUaMVunmd8TY9Ts5ECMd9enYL8waBzVZxDptMygZAEtPuFwFTNGHWSnEdVUn/C2FFLvGe7Ekw1RcsWpDy3qqa8oYaMWkR3se3WgrQX6EVWa4SqdU3ZE1+gbYbPE6nk37yZFZaSsJAVdFOiqDLiefXfPZrbdeOP9tm2ryX+S19DqVPc+K6bTbGVvz0bfs95KdRc9K1Y5Ad7G5nWSzjO/p9fh59w4dkHxz4I8ne4vUNSGjJvuOmps0qfPpHzNHG44Zr+xitQMt/J6Z7ztAsAV1Wo0RmzBFLZUOJEjgwEq811oIl97tCQ/0j+etJ2rjzu4sI27g/ne3xkTuDF+C5b0LcaipWMwPULu8r0U3USl4mgAzSDfdYKdWnOeq7rY/ceDqvnLK97nE4dEy3dCc1kqzESlPM/jaRKF18ZdO30VA1P6T5DTzrfMCZU+TjlyRKoLCkzPwxkV8jm/8r2VUq+aPCDxxxjS04Rbllqg0j6R1Qlsfs5DYKAYymOhGM19I7mVulHc+7ITHzmJ8Ia/IPXHRvYn7Qp3CAYt3DXIWOthmGcEQn63mb+Veht9zZYsiP7WiLYGnhGxEtXNNhFoCxgjFBaefR77xb7dKCGXI6DmzMArNA5NKnDuczrSG6eSAl0Kd6L0Cw+xuDvLIrGnkaBGysamIfxhkMH+bGa6FKJvJbo2Sz36/MJbzmFTxDh0xFGLPrSiQsRaM6epFrrXSh6/0Y72zdUumSkWcLAKOkeqMmOUt1mb0X0pyqDtn+fVe3Pu/VMqmIaoO68cDAs5LSURExwOns8gZCntYeLDCealzAA/m4wq68mYSBDbxhE9PB5WyyZ1Siss+8Ax6pPciMehVk6Nr6Js+hCWGatzsg+dxdz5aLKg/fSXrwf9Ds+SEIagoZe8HzuMW9sOyzf2maTV+YG8C667B/KMzZjBDNUm7WBX+DE0iMsCRUa1l/YxCFxgsCtTTbG8rkgY6cGWWFK0UHdzpUiHYyaRzDUhRXEEk9KsKElNgOOsNbiV/uG0bP9L4CpGc+uo2xF2Um7XFzN1dvsE0I/O+8bunIA7pw9yBFNRA6fylzCm6XC0JF4Gkik93lDbUzDAS6d62jMWTl5fdoZ+Vze9HSCwWzWOckJFNkYfwzC1IFOOqIFl1Nx8Neo3G/6QOGvSJCNc4xbQegsETqoX5aTBLeZW62ZhC7rAgstgKKcE7nRPdB1E2XjvZF8CVXn48HzjJQ3RK/SFPjvzUSno1YCYep34eTVRJ/F1Gv85lC+jyDPsDZhcmZpKanc7zNe8lSFnNwUzQTvXBBijjKlkZj2sb4upm02fOqmi2ZPf8quSrUhV5leT4HpZmUNOlcAzosF+gHViDtyWuReCiOpz17pLJUuJHu0rgyz9Yjl/Dg9uZ4kKUeIgQw2lrz/C1BdhhMVqZYanREH8SVOel+2qjqS3rLOwPvMxurdIdfPMOcINuL3Rq4tAN9B/o+HVE0er0TJ/kZqiFcDQxQlelDNRkMSO8vwRI3GSautrotir7wQNXzstkTQWZAf0lff6flIP9eB1KaBfQ1qvQe+SCcmLmBDjd5DgfERFJ3pNJJTzGI0uF6vDaOnrgRjXpJNMlxIUYFK8aL4wvIF5OP4VNvH5BdXKyfA07NrVLT64RbcdZetlahgTTo4jFEw1fmUAKxa0oxfjUk+FKdUWmI/JeSW/LzLA2CZRZY5Mn9AGGhhFGmXW/pkWo/e8gbpkCRGiuKllDzDQwzO285ctx4WpPduHYV8QpN1wRLoRPCfN+p8IcXUeVkiNADRMvp7gs+beIPganSs3n9FaaTqC/ZdLvQPte36t7hbFaT/WDivTmDUutC6goXfvz/mURG1EkAni1qmeS13KrBJdQQwQ2kAI/KVr0zNS+kB8MFFN03iuk+uP4XudFKDlOwd0M/ZiO+rq/PNxlQcdI3IDZV2E5UT8SmDcI1bzeOXYPDhUb8CAsFxN89m9IcyEwlMvhsBere54uY1mDc5Nfb6INDDLIHY5WihKnAJozcAO68kpqjNH6LIEle9iwA8FugehaN9LcwwDFIibRgGMsVzboqXEnM78F1/dCMv1TGCssoPa0I1eX++K8pRswceUkkQRZS/wrbxbidqxMZQxDWnoJkc0trtN8N/7rEVHTjkzOYkpK56+rbxTxCMVkeERynowV8VF6fTUf+mpzhpO+wC0aHt/SUIpKkQvyCvpjab72ZXCbMxl5vYDaL9KPsPKv6NPG2/kDACW9rs1oiR4KG8ctH9HhhA1mLgFtkaLlVCUOHAB//VxpTGMGsrRu2vS/ZI+uZbvu+tS4zAp0lGD1eKUYEA3JtYfqjub36Xlm40puu6LZz5X95CC3tjGN4V7whBsZ3ZMQmz2t/S55yGqEt/j/iH+AeM9uxHhQqaQt6evPHggnprt+2+2/65nhlw1Zqv0mTM4Ind+/cY33yDIra4nPu/cQKBsCssNlOonMvbzTkOS3cR2m9Awe6EepZ1e/9Nc/643kLdmyTahGvkZoPbASA+RqhNlJe9E2xbK8za+Vhrr4tUTjCeA2Mu20LI1h1oDONfWtHDA39j/WYSCpRFyS8+cnKWA+rGVE+zJM3CArd9F7OZUALLNbCnR6kpyG2Ehvj1E41cFHbJf7FKL2OBElxlBLzEbCkAdZXRyYEK6aXA5KOM4koZvwVr9CwuJhX5A/UnNra5b8AJPE9d+fyXuDInsUQxd3CdQWePKS2CybxPxA84Eji1uHPef4RlVzzAtTrodUJ7lrPdYWEseowkuEIHLtRRFypGjoZsuUSXMPo6ULrcDf+mTybYMmaZA9nEMbS3bS2ftSNP05YeDy801wahKct2pP4lQ/joeoDzAJGvlzmKh48+erAw4zf5iSV8OrejWRMi4fy7HGf2wYHuKGsMCAlblAjBgid0tKoR1J+WwVGCfOzz13mTI21YkBu2wIh5C64KwgYLXpQEgfl/Zy6aKH9Ju7M8780YmiJMt0hq0xGkiuYwPtWvomgLTCsBSLidLrGa3H0Wh8j7NzwKZoP2L1X5LCiTdAEHkWVbCVJUkiKhjRm5xoCrD1E9e7h3tkEIwU+2x0vWmJCPRcE0WM2KICQPMgyQstu6Ks41xvi4SvArhyo9xYMqSZaPv1gkCJob+VJHa7EQfl+U1QZfQWWMB1PA4HqOf6Rj7i7Ke+7IXX5xa3fzLesAaKiQ02CyPjZ72FTjwDJVoNUNIzZDMUJemFOKPlsX32zgAsIJ5KgHZZ8osR1yT72HySt4XVuSc86ovDm5UKGDqTU7whPFGOa2VbADH6H6u1LiWRq9F4p4qSsM8JX/PVEej4zaZBSLb1Grlj4MIXfR7Nd8XQu5RzMcchmZY4jBkAEK5FdbKwI3dMdpr27KWzufE3Se/nHCmXWTcMkZs04priWOr231FGjQ99VaJC3JYS+eGa2C4ZehIGXGhJOEdJFip9IdqGMNR6WwzvE30agWS9canZIR0aG8ebPml1Fk1KlSM6iZVMrlq0N7TJ2xOizWrCpMWLTZiqnDALHLSG+wIxALzuTCf6hRFGqRMqzLxROvC5BVRJOLNLA6tEZ6Z0xwc04GsmD27rhAR73NmKEJsAVmpM9jK8R17L+rRvIgvtVsMr2hpHfmpkhACpZDljf16rvxm+dbgfRinhSGgWx703gGu10fEzS8UQZLZywMtMNR66QhLrDf92uyIgLcPuomWP6Mwjv2Y0vfVopG2O+vL5Td7mO+ijxtTLYmplQllNTPt0W7+xrlEqsT7wLUvDrMjK5ZpAIFZ2tRaOVEr7YY09y1HLWe5DAi+K+VdiP0FqVyjOkZMf0YIetHiFCpfHAxeoPTy1nQDShIFN9Anw38/kc8u8hFxrFjhJQtvoRa/D9C6XosKqmCB+ukrmKYWk3MDaU+PXxbuu3f7KkDzGjwsirpBYacBJehCHK7Bv2CBYSEDTu6UlE9fNB5wR3HcUrOsEX55VgCr9Ms/nKnCxeWbBjI3E6X5VmkDIlTOr6owXyCLsFkXQ0fokgN1Yr+SLE7UKcpj942Hs5hE2UpUV69NCZKvhp10aVauHoCjvsvDdLoegJ+0XA162SFpLTXOBe/x/AvhwqaSAZRmH+gHd4g9Vjnr75vfjM4djnYHj1xLAoQ8gGfArcoZrqVjV2fDJli4GX4In8h/sIXgKAgb+v9MWT5ruj6MLBqd8T9SWYMSl/JAMQDUd33i6zYykGYKSuP0jFcMEAr5DKgYA08R7SjPlCLoSKzSidd6PheoTocdXfWoVHRJB831qfrb7FWcSKOMxiqqPm4bE37ghwmB0k2yZLr04ANZdbTh9YbX7TgP8viPvdTVG2RLCbiCiry/2uMCLTyUrwaxGfPGdkl9nRbXXxRsBKD6c8jWPuI3JvtkSwGEVWSpqE4F2DzE48D2sNfAG07u6n2djGf74NP57ajDMily6DpxaruVLnJtALTkYJGe/zP5pzlgYg/wK15N4XP3ZygSCahOEJYPd/maZ8/WDUZH0O/dk8ozaYmnZ0bibZlXNjw3UNC/uX8vSibmadSCSPc4yTGN6AqsiMiSKfcGIIHqND5RYO4HiyFhWpq0hcyc9xFO7+jz/J2AnF8R076DP9Y13jqM3NdCXFplYnbx87trlB7T21KYICU2oag6h8MArsSkXdrHvWx3qsXpDlKCGfVdrd+7zqA9kCN8/WipBvB559GW/nkmR6Ci6tuZkXn278sZDU+kLVS4Y5UMqZgMM+txAn1u2KWhDxD9/If/IAnxu+T2u1VII4ugwlJGswEMlRHxRnGBB8Zx1/AyT9FHkNRo8xlFKq/YVCaUwmKUipV+/ut0xdtObZWGKV1eXhcvOAn9mX1S+Awf228+RO62QUKX5V627w7Gm7rE1F1SZ10SBy1KyD1jSDlwCVXI0i5Edraq6NyvbkH7jMX1VC/dGrpKHo0hSsYyHGfzfIeYYb25P4L3Vv1vlkeOeyIW0OEPixJabXtmCYoVNVmcuUU0eyyN+yp7ATPBf5PIfnK3iSYrzgCrtHw9/Uze4EjouMIt/H3e2GZw+t43cKe/dznZAW0klK29eR61AW+d50mbvrN5AHvKSv5YfZxA5Kda5LwSqJ7Nmax93px26y3TfCI+/TaeH2hr+i9AkUqMXW+guKkFs1nVajcYyWkV39AbFYGsW9viSHTQULYQeUV6uQENFefnXRfe6PJL20qVpYGhGCE9xsPXJZZhTP2e5DaiDfE3jGXe5kjiVKiYU2JobPiqW+Jj2jJGbIAcw28UDZjJTDpOsW34CeuEszUiLxGNYNt9ULXXFqh/UchSYOcij03LImOKB/xjgR2s3FETBPyj4TK21x3oNIpCfhdph4gHfgxCcvkyHzyeEP/gPsAhsplDoOpfBo21+qZtK7hLPz2fVq6F0gKMEA5Xg26NjG38c5kOKYJAmNk3awWfhx9uvCw7EIlO/k1LGknVyyI9HkTrIGSxkCO3SjwEfEoBC7pI02vvouH5baCeyGCIOQ5gII2GHaRYy6xrInOP2Y4BCauFOirPDb23Hy6icsSLZJw2WSOH17qZKWl2GVsT1ExfxZ8C6kMXjQqyXGU+DzoaZTILXzo3+vqLOD2wHlZnM9lwtVxdYaTqPXH2C41nRmNPNPjQPoph0yWFAXVEfPjbHu3c3tXF+gySSfvQmpT/oKGRJTJeyYs9NDmPyV9pQ67lX9OIpr5Ua4YH84zsGhwUnWAosf5mkYfgvwywpD/UVoNuoSMgxCEA2p8taIuhiHMBUjJa9NZomMAHKBLdjgCxnXCUAwMvw8vake67EyNIIlftVSz+L6y8cPJnSuSShqThNQTaP1RIOdBwDjVqYBzwCnL1OVXJA0+bARwZZj1h5//ASnPH2qgNALQBs38WshVW0JmzNMPmeJ6AzYEGO4zlt/7TBb+wALEhXZmirV9K1Ifl/Vc6Vvn4M20qBiEZG6VwTDqwIXFraYwRfkemYOsIlMaTcx12KBB/w+rSMOuUWtOA/bCMT21CQkp+itfqqd41ZA9aoSDMdTzpwfhCTbPHpD/o9xETSlBcGrQMg4yaYERjk/nZmHthFi3ndfrebICaup2FTCKCZkGcjVZ7YGNJXsrNVBnrIJGX8CF9siLY4l6cnjKd1LHBksDdR1i821EiYg1fUtFofYLun4fDmeNkgar3qApL4nyKHHgv49csN0cT8Ut6HYmd0eugkgd4wf44rRWEfcALZRO2WqufMvDYYpPbBd5zjaP9PiTpesFQYCEubD0/PqAyoosbAIQKT5bwreBASMlrjNOz64vA+zHxjNPx78Oaec24NDbTKYDeHHGNEHwPNx/n2u7HLrBQnz9WLquEHUKON8GVgXj7QtZNqXH/ExBya49nWHhzSNYAzsbsrjj/Pur6KhTD7Z049O9DwzhSIbBGKyfYjkMME/kvNtoa7Xw2LWEcIbHmfhY23rk1J5/vDy5VQqL08D7X0/cCiSC2Os9jkNzAJq/LiFkThazploVA9QHbfcKnhCMJPvPqFF6N120V5D1PpWglvqOtm88vMgbCUkj6jj5PkuR9axOQ9iGVpH5PpdQuYk+74J5TlZicOUdgyJQI19vdxOTL/2Dfg2N7wqB61z+RtMeUM/f+hzCohtCkBHZdQFbCTA363WfHMw8o35Fo6/F0yKV+Ae+N7NAdBXBNJ5P2/IyF60gckUnAXUJldlspzuw8ckPv1NSH2R8jbWy6qvTr8eMbCkzDp8t0WR5cD9S5CfM98zAMrD91CDp4WzNMFzZ05ZlkZQzFoeGCZNC7F9oGYaI/bkswfZHajPjWWlIIwII4zR4CZAIsxlGTzHU9xUZT8IbhpFpZbUPdyj6y0kQQpAu9Ii/JyVHf+DNOH3FMjFAL6YGGo1vwAI8gXUzqZ0fEbstgZewg6Hs0rhI/oGjcd7QIEbG93gwuqHVyNe1lx3fd4rnGOThWcsgwPjn/nJQnRTHKsln2SXMO75BCRFattVaDScfZua0KozYIyPBMQPu7zN+ktzFs+xerPb5ds99jc9QRAfIJ2XwCoM9j7YVikQFymNXgM8eFXYvmDVVWiQHLeqX4kHoe7fvdiE+4JvNMe4zBRPDPO7wNKaVVedoLhkTSeHM6X//w7sEmYd3Sul6gr+6y74HopWuVHvwAeAXIhBePhUVi3H7VDhvI/YtZknxzYwEyXDcAB2cxz/BnZ5PpSykWmHvP/KbOCkMLJPHk8b6HeSznwAfnYCnv2bfzKWhV7tO++KpHnXXZ1k6OPzmv8ao4cNlsqEz9uRls0DR4PpiBXAedr00kb7wqnrmWNtmfkljvORBhtrdtVKgLBSS6TFs2OflLk9TVcGPN01NBvwVAJa71QH9J+p7okq+Rm6cOyEyGWZbBgivZmwoup3o93MTpIDmD3pMezxtRXaK7YLIMKviFaRL9fKQ1mR42/XJ785eJqgdcdbNqA1vB3B8swVxE81W1SRihB0Fe1KSRi5soTNz4/6vQZ7NuBzdefE0EGqVtbm8mPOz4frUsi+63LVMjfu53CXqiTLhdZ/pS1hH6NrffX/nHnoqw5DnIrkbH0Kv3jMRsQCtfNAJdJc4PQ3YuAjih7973J3xwY2GhEFag/DDSwIJJtgwWm5refiwwBIWBUI8p6v2fAmEscAfYDnSe/C3s+0nCCnFAqlk8ANt6+GTzE41npAVo94ZJzwKUVM9BD/3PbQlOSoXbx/kKAEpvq5zfGqJ8FnaJmgW04zHdh3tAoRnd3yGkb1G+ewZ4kY4eF9iwosEsi7rIsekRJpIInLhOnFfp+5kt0A5xkAgNV6VSNuDgghusXu6h4JHaAZNmRTcmbG2AWRwcUD+QAn+UHZVxwZ47varjLEuxnkbsevddGqwxfu+3TZX7iR5dpOI4vvxuMv8X+FP3USrS2OPrkn4F+/9VOoINVW5FgdcGYttMKW5VrAr5ZXkl/lkb/4alLaMAsjX1Ddx2MM+oCCj52gW/dyhnagNnxmyQ7Ieb4400b1egjp/q6ELbAhlrCgCPb65yDGWTWlyRM1+/Sk3+JQwHIXF4mnTYcKxvKt2J0XNRBqeL4j4AGUeBXOWRM5zygCEC4FEcqAYNqbrc2cQ+bukxsY+Rw98j4mdnI2tPc7YibBzWHNbO9xrxUMMDrCxH1fUC+OZiDPaaaJOp6tqE+wqwnELFxknM6fa7Teuv+G4dtrMQJlzwefY0M+VLvA5iDZaGCDzvOHAM9V2goFXMt+VXSmMZ6vXDsgviLJwsYvVRKYqd1Tz4OVg+L2j2kOomziLZY8BsY4IhJ0AVu4+1bOD5eNaB4k9h5ctRV/AKugaIQJN05GKhoFyvq0CXAWsPDkURgKUYqu2RlBUv0EGGDDSQuFrpyczAwmYauXL/Zev1gjMNQ/ntwEFCtT7+xcKLjyBYe4DpEUIwN3ZU06/shyBzV4A92tx63FnGBW+J2sHe0gvTeTc4vf4/RYZmtBWib+3lQh0cApzIXeLHHE71xqIo93FUroCR3GiXO0sxBOVOeDEHSkTwIjeqxPJvVjH73hiEjY7BNrG/Mcp8vTOG5RKgdgWdc/2WL0eQxRCb6R4na4SK2Gw1MEvqquEe1YdQVSp3IatUCJN5ZpxFsg+nQ3rv6xu4YJFcUcBv2TbeouNQ7xlTbDvYq7vX9RhLiTftVXxW9q0ZbqBE2vMlw+699JG8JaJteVnM/UYfnLOBNyCzKEJ6kZTOLBKiStDbsxikU2lwyKyy1hLOq5Ru0jL4NhgM3WyJSUUA9ZoPRzNVuAsE4yeA/D96AqdI2DwJsTd97boAXx26P0aBZKMkP664wKyZjgQQ8jjv9WklCIaKMA1kNZakuKIV8NCnLlGBAXlTLI3/QWs8GP0MW+ya/MC9zCnDjLltuz9Lv4ZcAANTq6Rx3E0tMCWVJb/5enbipGxG2XMudOIaUJN3f6A/v9ThdcL9QqZQ0yc8C9xMlp4RQNlZcb75ehzp7ak6F42IxkYZtETTxkJoaQ3Z3bVxGC6uwDGWu4hW/NwKqcVORgjOVVaRbE1epDrgZZzNn3AcqbUvEdzqvrtJM+Vh3Orpm9amGYdLMsdrtJQC4FthJdXTw5E0V7YPXBSgRW2xdaq/1keNQEVflnR4R9ofHbOoENPQ6zW8qpv5tfacmKKpM78JKJ2ua/rtGn7auoVE1yrlYPxAmabCJBDmcfLdciMDn18IEumgXtikcYBRqFsYnOxa0+Hg5GDHTmUHacEWjXQ6UzvNIzmBpj3KquV5/j/W53ewsNMi94mPVhI4tISFwnSwITgAJd3nMxKCCutHRFaFkK6COOGc/sgwYfSJGXDekiCwuN5rL2daPvGyinrXcJUL1dH36Y9cRrskNccf80T1EY6EhBfrisOIfuEuTG3GNovnouIuHmG6PtM0v+c4z67F5iYEXHIXPWWOIbjK/PC9ebI0dPMq3FGZB8CODME4ymp/CHlfKV09fhSAwnA3LdbVZ4jwFrgVaxKf+8BqKHUCpL4AFT1UdUJ1FYxPwP+G+XSxUsNPCxqvx1ynMa8R1zmsKmc8PSD/NBNhb0p1sl20NW+AuOBrXdaR9ZHbAABcH2zT9X8niFaDJXsbjLq93KhGfE1UwfZMgG8XsXJa7D+BGQxE+2LP1yh/i2IFaAWDlVTPv7BqjEmBffaAT7D4of7FAS5NFxisIG6mZMtZSLKsEebRIZXsJaAFKAZ7OD2E91IS5pW0+vy+G/odkEGKRfsXG1hK3RzCkh4tUPnrN24K1v1Q0HG53uTZpaqAxniJKcktIl5k11GeM4o6ChY6eYGCapgeCot9cvNTE6iyl76zxLju+F4q7hzL7keRpLRLKLIAWGxPiYDFENPk14MsnGmhhuUG4YOcgm9ygxvWYL1/cPEfXJAP+mPpZWclBQdsYoiUD2ALhwSsnPPNgJZJMCCTQ45aaKj1UoFiOB67faLXRaxDbpJbwCk+WhMUzNKOeX/GaIRptPJYoQ7Cj8lixkSQ+8CLYgos4/cQDQQrDvpmqXRtbNPDbH5fHB7/3Sb3uPRroBMPHJ2fDrnpMC+Bk7+6Vn6jXQE5FQfhgrmKAc3HjFW7ZKPYCsKKx7CFlHIxItAqlxT/HafUY4mJh8ekowIWAyeduVS91noExBE22YdbaXLZZK6AstlAfigJ1YautjFx4PIB22h7JbZvUaPtbLJlE9XdSji9wrII/xNM15SEDvXdVPYucgL1EEIMySRwmMfQV5NBNhQ/HvXHjaTtr1QUS0LsIFOt0OAErbE09qY/deGYQ/Xxe3/VSKY/KSrQe8kosKVyQVdKTHqXgmGe+Wl5l5Y/h43dl7tniCIuDIFqdrIO5DeWEXCp69dzAD1IuL5elcuMSCt8U4nW+4yPESX4JPO9agiTxbggdW/x7gt1XzcVuhMgMUdFMhfk+2yw02FwP1Jn8nTVO0iolEWKqkDeMC7FexBvx+8Z4e1MxTq7GptggLCK5WECA0vBaYxIUUxbZM7EEWiVBCYVxAqRKv6QSn+MKunFihiccPqFysfjs8ZwIMeNHCTJfKb4vILV87xDyVtp3LNPKmcvHLqzz/N8ouEkuxucSXCk3hx/4U9j99Vlkj9FV8svZ6pOkQugMMkY6bJj3DKVoCYvAIZlm4cmKqyL30k4Lt2Ty5zvGcU5EhVuYSzied/kIHOm7C+0C5FsCSirHliL0syAm37wUJOkEM49BaIbciS40nIpC7s7EHymNM8qSzXglNH+XO3o+0+63K2S0XAM5JwgSFTLZa9/CtIqJAOTr2D5XhscxNTHluDF1pv7zKKOkaPQrx7675mWPPEt374Bp+QlYm8I8UaoamLbEuQTk+zDNKmOx2Eeeq6F3ZZnckt1NhVFV6/ePdyrZYf4w3uFty0fwuQbZ2vWSvLUB8xTQ6giGA4mAKM+q3mx/j92QPGOR1K7ADrraizEPX1hzzvko/vNa4msGiwNxy41xEw6PaTKkKNmRu95JNc0j2x1D5JsGbPl6HQuAtSzBGg9CLjNmG3ZefdKwyf6Gl3IWUQj4jLX6gWhd5lwHkZwbuDhW33Wmf8IA4q+DAJ5RSMzwex+XNDTOIvaq9oJEOyx5AwdH402063pjIQgaEUgAhkuHb+ktZs/ALnejZTtJ3NGXDMqi1pFrU/JsArG7mJgUm0dQmyq1atO3EpyaoREkmmJQSYgM7emIZPeutpPAMgQz3YUmxKwVFde0MvZRMHD0exgmbAVAYN5Ns40iq84cLUA6AZWm0WKVeWrX/JY0QAk6qG8o2toDBHJxTH57jbSWBoGUIRhCyDO2bi8/s/2aPrVAuwH0vIcPuwuHKkKyrKN98hesU310kfTZCE/FVab8MJ9R+2X1wygcyGd/fN0DQOfpIVLQOtBMNt/Ip1+Mhw7TpxP5GgGJsFSufoZMMyyRHxqih3ovjKLfb9HCOq/vGkoIglrVSyvA8JKPKA3XrgRBUy0kRtsEP+oBEdNbGaCzY64npUTkkQ8nBSOWuuJPWIF/eAMwJf8AayTSFavaOEs/X/EAmSLYRETW+oIyvVe1HOvzQkscwIkCSrErq3VM6oP4w6p3DSwOyMgcNo31N6BH83tLBZM4xunFNXpi2b88cQVYj3CvHCEhgqfAk6MaoWK5DSRhBb37274lopjHG7i5V67btcsitMuxCBG5vxYFQsrO9+H1jbMNoGJSWPutrW9j+4IdmRl2wqvqH0Kt2rpEkmT6DTTExcA+VD+yH+EULkcmZ0U9wt9GBJVrrI8PzQBSuV8IwPOV3IVoGS6KhswGOdmeocMpg0BzlAv1izFcw7Q4bZy4NRuEc0V92LABLbAxVjL8oee12TDM9f/ue5clyzQlfz7SBODetSMdmh0rOwd8idHMAt2c5GhJ+4TCimp+fbCtu7Ycn9hJguZc4ilG1G7r/W4Ho+tVc3znq7Gu+VSVvEhajUXXf3Bzx6HGTaSkGI0Qp65S/LlYw75H69ba1DcfJUOlKENefmDgiv1TOeYOG8Ackc1/f8DtHAr5xS03VFQ+yoN8raQ/9KawYcG06BZGk+G4OOoA2jG7aIWsUZC0CvP3VU0knsOgWdfeXp4TFC3KcDNE9Lw2WRi4dcEoGxLJ4oF79k14VU1HgxYx7Dnxx3zwy48AjZcI0vWSam19FHX/zTvn3clmNub21HZr4RIb686Et7mBSxyXrpNtgg8W4xwMId0ZXRCeFDMwYQzuXpWAr49VNV5JsppJwov0qzJCyK4PhaUWeRPYloEpDOwnC6Vo0grhyfb4S+Th9qykgeXHMr+E1KexY/wEVQVoGo3MOTqsqmcCnSTeqZkggiEqZFnCpL+ZhmweNkwtQaQd1JNvwPdAgaBk07Va+a/NnSCJZYPhPsq6ee+dL/pc4BFzPNyJHPG8CSs4o0HKHiH5Jrw4vFQZLmnWzgftuMyRtWoHyN3rtC307qJa4ISeYBw38EaNJbS9Tzi3PypRYpXmu6LL69aOEhzx1QnivZdQ98gL/oAcUgWDdwioi+HZ/Pv0ztnwrjcLr/3MrmzjdwWvHsBKVHZUQFgiZScxxfvj8T8CFbIW25PwTPCwThgSDmv5kzAmDyMvP07gcXeTgRvY6V/zycLigqSvyH+pEj33pJnvhhiHYin2Ij4L+9Y+hOlmkQoYj14yt43vAcOfnhxlu2UDLjp4t1H3R6hsXq7sw+tAYUThWtVNh8lfIst4nmppyerHOI4l/LgUVcsvJH9IvRE1O/A3qGpgM35UNpTh8fN0/fNZpC8L1fiu1yIwdKSB5UkztIeOcoZdpxqgbd65XGBbge+bYX8IyxvtO3cHWRZV1hnEj9W21BGeSHYR/bJJiF+Ue+XHYsXnLZ+Q7UDdZEDowpPH5BC4UNWmgTgDD7Xna1aQZM/V5pwOxdxYINr3WxGQCgGPnL8fUrXB774tDJ9PGnCztpRj2PymO9cH/d2rcUrocC7EkcFYwwDzENvYIUs415VNNvcZ3RSvhBamLdRqmQ6e1yE4d7y6wAaBfs5cW3kbR0EGHR9/UQLGFqrh4f0AxsD0CRAwh6P6S1ICO/5Pn0nVPXf1noCuN4NCjXtTgt5YA0alxdZ3+3RdYUZKInB4OJPaSzz7+/XRXJ1wDEG5g71khbJFrxPMB9pu4dKTh4fHWjvfWmiH7MmVM6Yxy4q8zypknmC3b+IDbcJtcAl7oH6dI5kkcK83ehKPUwZ9sE91LCLYHSFBdkiVwB4RTCyuo8ywARWO2xeAQE6fVDSEuXnNFDWPR2FFV4EVGxZClLuppgnZfNMMkbLH789G3VpkVtCmoIcumsw8/gm0O1gIoQDDgaf97WLvxLGeAICj3M6ZP6qvMqzqH59e39f9IJf6/DajrKv2e+ROXm2QDAKHF4J5T5I1H5p1UQhSIHgQzNfrXsF/RYY5vDE7DDu0MoWQ1kCPf+8QebArLgiHzdVTyvpqfeHl/rBGKvUQf6nmJCj+eS9dZBFCuXoaDjpkDhjrPrCzc8Ga80mXrSpShKkcGI1lTdWVAbPE3B135+dKPcyaFOzHPre6lrikx2A4BIhfM0lxGxJyCyGFBGRBRMDmetgQmlJQAi2fr7AKnUaVsSTx1Io3MyMEl1/mV5XC71INItX9YQtaUKuUUZfQcig2JWcKRTPHFgTv34KD3RDNfkV0vTEyyxl4jU46nMEoo5lcuun2h8IC7R29b56O6/FnBKSGO8g8wRgEBt+PQBIZXRCJqxP4GEYeHpTsiI5H5Y5Pplqx7EGShDNtbGQnq8hL4A+prT96GJ34XxTQ6nTGb9NE9IATh+L+USdg63hGrxZHpSCyjL8cZj2f9MmcYLHrJmAtvrgQBNGhfDk20A2OG2NfHvgZCr5+yMaZYG8of4u8HvZViOJJSyAsZtRHYeHlXTn+gOvBQoUwAfwd8eKsPIJRKCfhQXiAOEDMWhhaR5g91BL8S4K/CFFr2EsfQ4YgD/L8Qar4F0lXHJwZ+1j1Zqv4K2UFjdveZ0vVpWuwSUjX+ueWZEfCdBNe3aYzaCagULM4Q+vRCBWRgTlgU/4EavlnKscjTgGEaGagKNnnRAedFjQZoJgNwbgeiBdg3nxSfrq9OxaevlDumjLmo49Pf64KYxpeHei+06+/G4yrU6D9e/ATRZVKzjSxUAsh66oDcd2ZAT4vAKIhjSwOOYy++rf2voMjWn5wL676H+7JmlAXfy8+m9S7NrHL1nvPMj4rVlLrDE55brbtcHYWHwcLIo0vTX6E7xJX2GpUDdFHWFEsMAEwnE+UlXp0eIpgq+9nfv1hTPdlfjIb3maJtZ82KfKCjSBZ73ZD+aUeQCitSFfT0hpNeXuCgFy4NJIuHOsAyZMi/PQTPqbdRIRQQj7z9gXR2cR3RaZnAA+/vFqhFaIeOsDFSy652wiSjIx4ilDZJlKMrZrOJOcMfELAVfuI/9NUm/4Hq2L/T6mvE9qjZ7WqSeN86m0K9JR2+M2DPyS2Rr6ZZBreSvJTTQfWNMoBWHNMbYidXgU3qVwdGg252Drfa4swdWM3pdLQeFjkg
Variant 0
DifficultyLevel
702
Question
Herb made a number pattern using this rule:
His number pattern is:
4,3,1,−3,−11
What is the next number in Herb's pattern?
Worked Solution
Using the rule and first 3 terms:
Let x =
and y = 
3=4x − y … (1)
1=3x − y … (2)
Subtract (1) − (2),
x = 2
Substitute x = 2 into (1)
y = 5
|
|
∴ Next number |
= −11×2 − 5 |
|
= −27 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Herb made a number pattern using this rule:
next number = previous number ×  $-$ 
 and  are whole numbers.
His number pattern is:
> > $4, 3, 1, −3, −11$
What is the next number in Herb's pattern? |
workedSolution | Using the rule and first 3 terms:
Let $\ \large x$ =  and $\ \large y$ = 
$3=4\large x$ − $\large y$ … (1)
$1=3\large x$ − $\large y$ … (2)
Subtract (1) $−$ (2),
> > $\large x$ = 2
Substitute x = 2 into (1)
> > $\large y$ = 5
| | |
| ----------- | ---------------------- |
| ∴ Next number | \= $−11×2\ −\ 5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+RvWyZuszWeA8b0x56V64Td5l2mvLsQLo2+tQQZsX4DKx/dA6ePwT3uB/w7QVVPzmLf8j/IZH9LpMelHl0wbfEDrpzFIuYLQeqcpr/lr14kTYlz0lGz/V9dMvzGH8L+vJrfuh5Cqf3r6LEGQP9xZDuzpVvXjC0fgF4rUBREkJVvApbwrN3d/AJElsufhob5JdloZQXFz8Cpq+77zhZSNofWzOfgSwMkpsR1TCjEu//68R/3fKPN6puFmEeg8MitxsAnn7SDZCRbbH4v6RP5pBOr3Z7bGoHof2yXxIHT1o35H2z3xVI5dJksrJy/z5CINBmAWOzgFQ7TNjqEf+H8RoPLNl4Wbn2nGlxU8wT41xdDtxflcFNMBaSCWzRcOUNI1Ju9I9WFv6eKkuegJZsSC60ugHu5HjvjPESosRh5mCTXLSmzxaSQNgLDL4MCo4xr4dHcBxigZvTSSvgnu952bI/baOhCHatdnYc2xwJ4vy8cSfcY6PRGKtIEZHPa1XsPwlD3HzHujo+Y+l/LZ+/xWb7bsDin4XRd80oce5qoadSB6xRbqO3qPzchAbHIaGNbLh6ezUhpKsQgbrJJjeTbjdJx6Mslz+h2eYP6m3/o/w2mMhhXl5Aldpo3O4qGiztT4KyHeRTZFFibMs10qr9eeLUrcQl1v7eL+o/ky2Vn42ALv8Nx/6K4tKZVz2sVHjNwvaHAfsaqrawYzuN7IBGjVEYxDvlInZ88AphXkYy5zfvHfIg1BSxFgZW5C57LN9KliAUni4up7jNc4PzO0c7pxJsQjfpHclm7Vttb4BNZff0Ib01gYnGArUdDcKpUVWo9jdq5eMg1R4xImgrB6/6ppiGSSEJMlsBjqju5sCAl84/AnsqTWhXJMbwUvSqt/oytNL0vC+X/cdFxkF0iM0p623hVlkXMCugrbKTetpwCJQES7hU3TexUELlQcTV23tEBkBq+jAK+cO4G9KaPBdP86e3TTrkU9JI5PnbV3GK1/LDcK4rWjKRAvBxnFKZtoEyOhUThsJ6gqDUzaulGfAcHML/Ls2PMi9IfWMg6pEaLfIpXnhSxmvNwtYuKTrBBWdK6wOUSIT0pQvLdkGZHNIXifuYYT4/CfAWWVDkWJS5pQ+Y3QkRXdSvDnIZQA4Z7HmYGSxB+ppwn6kYGOBsvqevo5TeT0Uyue3pbFBg3c2w75pT6SJEcsY7jTr9nWZ1Sp74AYDNMEFK4Aaa++bZ/OpwmhMKV6arOwXUOiqj84C66x4M2tVAjufFBJwSnzLycpjtd3d5Cec+1dRp0lr4UgRiPw/WXhjwmcbeUOBJGNfISe69JJDWDrEqG98zbeVDyxPn0z+ySK23JaZf646AVFRO32uf0e9n0uhurHDid0Fia3vBYVOFxcSKbL1AW2N8NGGdCVZG69HxiajcF4qkZAJCzVZybC2QEv1Jxs02Opzs+SgKM1lgddOrg7DdB9dI342k9CXB3Bau8LNtz4qrfD5d8glcWRgVuyWhJEdCcnhkmUsXJsJKvqD3E1IsDXJTgY4wS4rZTP/8YPObHumvKkQxjv/TDf5boajYJTANdbnnHsi2oxOCK1zJJzhK0yaAxlKbr6uHF00XyGDCBGEJQYRbz/rE9DY5/j50MoqHVpRmbQVC7xjhenvaHakI1CxY1MCQSjNXOBb8aPdppQ7af98Sd+bZ2opUbTDuKN5qMsanmzZEh8jb4eWalOKi0m2XDgGD7yfsEi6yTDTpQVeHYk1Ss0WWwejTlPhGHT9tK2zgXu05EXZZWdVU/tKojAuvUazY7Rh4Ejni7oBxqSSi88vYE2jCx36MwvWGT/GUa4xcCvDgjifCsYZg73K3YYSsWhWO45+0SNQjKRWjLhfGekxARS7v48SvUj7KKioOfH1eHqtA65pZAT4bfLTyyiSUmM0HCm5gPgO9cb2Qj+5phCp0gZI3Edf7XO7k4fzwWN8GCfkDuEGhHoxnfecJfgT8E2AjVQgju5BV2YEp8wV6JoElbooYAGSzAMX65RvxyoQSsDqb+mNg9fXuSjG2W5Q4oZRbo5/04g2aQpQLpkQD38ImxyhG8UDyntTDLVuVf2ayYWxz751ZPbt+8QAWCBAJ/d05KO7Gq/z5TuDER1OaLVa0qlVBmCHKzMz2/bg1gXQVyMxlyAC9z+2UmQQzrAkSfLQCXhWQkM6jtI0LHO60QFosSJ/4ZuctZ5RRkTjqhdIIMBagCg1TuOnISD27anY6+IFZSWzxJAB2tU0lpprsPmWl1CIgRxFwP9C3LNeOtQR+MNyWVNjWDzir0g/JGOFbF8kFQkD+1VOgesbra4iTzKldm2gbpo/I4r42H8cP9hCtKBZ1Jj2cbtAynhlyxoLtXe7P6CngGgMA4GZ+EEW3101THgPRMZaJkz/w1yJiGQG1WArmAmPPwRXgGp6EF8pz9a8IAnJ7o6Fq5a4ysityiCdiS0ed9s/ObWlT8/GJbcgYv8xqC1cQ4H3KLEd/2AjYnNvVa0D5YpR0CQas7t35mPQ9BL9+UwiusTm/jPWaOl/Y5YlNHzW2R3YLe4KHvhAUz4wjYUC+xS3gdZURpNm7N0rsPCuajcxCVIWT0R8xO+k9kLV2bqXRvwCpE6jWVADrROi5jYJwd18mgxDH5Og4ndiQty03Rc3TaFg7fbsU03R13gnikKj2/sqFLmrH0MunQJsgjqv11Lq7BI+vkXfH9L6lOTY0Vg7T2vx9H95RQ+o8zraSeoAJQ8FzNy9dtaBybsPzQqiXMZwQcd8FzwF2HyX2089o/CRyn5guvsGiTaAwCHCKgOzR5o2PJ/yVcFtOd+I5pdGfwYZJpNxPnBWHNy1KPmZwS60xKi8KN+qR7Una0LtbzncA7VZwQo3kqEEgZ9nXjhT/GpSYKIB4A1kXt33nw+m6vuDMZfvYhOrj+RGArdwMFH1j66iZOoXUhtYhA5O8nPHIqRcFTp35IEWmq0KN2sS2VPrSunWRH8PwCqkXSGhJzEIqmV7mvIHMO1lmdFtYmUXRlvGXmmKPtTc7tO8WCnVVjHt1l7290+Aety9hPhUDo94YlV2mRm86Lu0EL/BfURxtAM8IxIy1RrVhIFPmbwiywKB3WHpiI9Xr4kh1smxNMGekk1DeNn3SPSBp1lB5O8BHXi5f+OykFZrZQeYLYvHhzD00L8x8yl7HsqGbK4V8Y4LUe/svcn9yiIzUmkZCO90K8vdOlEb5NRBPXIPwCwnKM45Ee/Tq4oOGIpW9lzYrYGOJKHstNzkn3WCNfq/0hviMOWlzfBo9SKShAcalQ79/k6vkEZ/GKrbYbeX1D9+eZATKbI09jQgDj4+WAwCpPa/p6YMyOZyJO8lSw2O544fiMLOweLK/bSY/pXIcdFGU0bYoTZiuy2ig6uDvf3qNs4p9P3WuIji1Yq9jVtH/7Bf8QWr87GgjPs5F7q5dMwfL3KYdWsKkhi31HdRKc/L6ya+/XuOhy8dgKARv+26TfJWfHWM24TnKKN/sV9Mw2sYRcbL5uTWN2M4X4UsOf43WsbDqfrrRX+xh6HFuWwu/On01JVhEpjSvvt+aPfj7yTywgP3n8yO4BaRVfvgaEvTLOXanIveS4DnFs8bmsb8dI5pS0Rl6XvZyCfR3uZ6sXpF0idh+1ryb3L+Pvtt5Y99f3snHSDZIy3stfczzEoCi6pnE4LKZnurHJ7aLYVMuOGiErU3kxdHfFV4yLJA1/Hb0pbJvHTI5GwGT5jRze3bCRouGdoJcmDgy3VP2dIM50IC9kLI/Z+a5b0mmapkHTxMaWrIxJoKEpQ21d4rNBgfQr8isHTFlUFvZ6aovCAj0dsKCkLN/0n12X4OtHHU27rA8of9AfBs0QpqzcyeerJHxWqMY+WCImxOh2oPKtNZDBz5ljzdj3pRKnPcTpUjzdg5XInpuiDiHi1Fx8ksWCEhwNEoPJ7Xqz3dxJK2FzSgUe5CLrYSVuN6KLLhF4N9YI7Usa7yPngptFqnEn89CNsQVv1iclpOQOhSlkLETPab46ekOrvqZslMY9HlyRtHxSrOpOoypEz6LA/+dUsRiqsOI5T90qLgnk5D2lMvu3uYm3QGaE3WasPH7QxBiMKuyzhsNjKYnmdwdYojac5TAI01vAc8PrqNZO7E1SpUo1eXKWeol2zjo9qwAZFKcxN976YciKcpmaangY3z2N4w2yH5VGIx26vrAn81uo4gx7brHlbImbWEQjG/pAsqeWs4cUGd8bUwDVlAtbUJ9NmZimdo2W5jS/uwbWmHkLOuoYQNg4omor6PB/WN20JP6GYwVDUN7m4HY3eZFV1U/iDQbpdI1eIt2fANhM3bYgVbmd2CgdQZDr8v6WiyfIQwskwXUzOQYo2DvkLSXNvikWrvleQY5WB3yxwKq+HW8nPk86NOyGfR/aV4aE+Y/BeZLEWjzJjkgH9iWqmkJQc1yykflZ89jMHE8T0q01hY4DAneYqClN2Mzgx+EJEiuSxJwJJR7+WHjHlDracRJPJaR8njKDhXWP49ZhOzo3rfByyxEhUHoGM8dmFj5P9PmyV4YV/ThO16BDF+myFTyjWOsx43EJl99sbXj/zpnRbXsynWX8x84ka0/PC/ng7v7fXJgLY/oitGMeX2JWNT9ojDVDIUabRLA5keuIPY+ZW8oFVJqgX38hqgix/KrAsIF7EALQpRXNTutxu+VYiqztJ+RdiaKDVdMeVrqM/LZ5xNrwrXipB/04cXeQsA4w+jfP9ukL+y+WU3FezMbHNtcFSwl6QeZm3KchmuwAecAZ0zc39UFiw+SvSmfU72AD8AYwAt4oZ/o5Q3vFgJzAEFNQ1gtk6cEOHMS24+yDTWbwbmmcXLZBk+1ExHkCwPkefHKCiNBBOcBQacYUaeoVI/lWElgJ7Yv6M1DE3jGwbtJpwJ/YUEPQksUeQHwN4vRu3jCzI90mLI4Ruw7vgrlkifqUTG5jjPKJjb3MA+4k1T+X2oVezob92d1cybyIObOYEel0UYQKlXCF5b3tAe7CPg+8Mj9E1IXDJ0c1hz7FSIqlY0Tj0pk3vqZhHNQm0SjRFzMiOnNVLXkB+v2u9T047//WvccNx4ITvkTg4UDUdtjVVcmHTrioXITPIlVOHbUlRLKgEo1Raav5oxgxKLid86orCRH144c9Fs0GXal99nAy8GnVx632nmVCpKS87P/iNxFQ31txH6JfD1gvJpCJ/Yj8uFJa/Qj0nTOMjcNcraDUsxsVv1PYmHj8ycY7dmGUig6VzhH0n2aqmIbw/xTA66KI9Jk/Og4AIHFRWHkkiwqdf9v60Ix7BFOq3LocYCBuchiI0Ymol1cruf42pC8XJZ5FjNqvCD6YC5sNyPExO0p3mhQk/HdMnS7Mjfs0TejetMNZeVEjylB8UuXEL651N0goNlW9CzZzW6SYGhYut3hqj/Zw8nuQ8ML+iAxTib3fLI4YcPJoZjQknu90V8Gxkt9qRzhFvk42GzwdXcc93tCaTDAHKtkOIA2cbJCmOMuFJk1jzOQng5l/u60J9Np07hHdO0dJxXgMJm/6kDcdqMCZ1FL3pXiqPVgjiFrgY6FjJT2CqEQTvPniMSaFcilZOO+LafVp4A0NK68sw2XSzSs8PB+yIi3nxb2dCICPJZZxcK7DrWqpHOYU7yZv2UkrB4ETo/6dP/PLqzarxh+Mbrg7GRn4R5PsBeEgn5RMFGw51a1GJSHCank2rbnMyWaezJONbe2Ap8APHzFhx55jPgDkG8QFqJt0CDba71DjACBiFcULcBIsYCQUEc0wCLtwhCGFeziEy+Xx12mDce0PirZIMLdPTT+R41tMXRaraqqXOiNBq2juJv6yWEeUmFwAeMoxyx/Fc5QkTVrjeYaOq5yFxdXoQqxHwFI/sAP9exr01dhrOh2kO2wWoQd7E7hWcBNPN8lH27ceXtdvXqLmO9wEK1ZxrjJQlc+KiS/UhbaIJV9rQowHD1+blo4XdbnJxG6Zu8tlvTekHDjqzxNISEkQ7Vp/Zo40nvS8OQO2LciBA7GXh7VM4/e/T3V8ReX694Ac5NVPvEQqf7gfNxOEgT8IsidmPoK6s9jAXViDoQOBXqKWHXyv/oBRimLQV2v062/BYGfEIs7xSphwA2XSRNcoZjVopI9m8tCCs7dR4DP41RLoFnavlaN6WO3t9xG7JUMjGHyRGwB+1TPC1F26ym7g+LXx1FYlbQLSQnNdtLYpewcPMfFkwhYaO/jw2IPmnXmBiYbLfk0cG4siuu0/jln7l5pBTkYImiN87XZ2xbDGpCgAf+Ywwr4FcGsGcVnHhwrz936PbTKKWQPEvk3KUzb9VML6TLcwshQJQFDR35mlSmCBpQuAJdE2SMLXLzGiogjphe1QpXzTRqH8OtrGPuBbE84SbJi7UfCbB0tWBEMP8hvfYlONQsE5JesPxpCVh3Fq9xgZ9+wi34UpQq0GO62JJ/wyTbxEtU8r++71ORw30SBgS2RFRYnW5pQ3Gagcg5PpB3esGm1Dop4lqtBLe+PKUufDbutREF+9HWRilNiS1GTmJiLsM3o8sZVg0kBIjSnVbVV4qYmcBj+2MjsMv41TVWjVkJv3UecLYfFJiSP6DNhJedHmzm7r5mLxmz2bg6x7thyNQzoiVv60U34xLCF0X/np43nS7TMD4er0RI3qHR1JQjwnM1YCh2nKvDJUTOMTaJ8QL8K5TOLo5emjcWr9g/fI4Iq6VJCuyySOHoudf0rXtG+UCG0v8TfdfgHdTdMGecwg/qeQmOVqY/dhevH+QuZjEkpgUKlSkBa/LL9OEKWk+5EoFdk+Xz3ZoMdm6G50lFwkeHNcW2OrHbO8Gs5lQz3+zoUI3k43TaTeyk8N7L6//01ijdYG6yPhz8U6LtNw0BjAMcQwo2PIw7dDGP2L9vWWGYOr3vUprovgGTWDP4V9LeVvhzehrAgRFfY4l3Mwms6ZDgvlMtemrKN1KQ/Ij2opx/c5UCar0Wc370Xe96jN8vwS0pJrhY3VzbL7LUaGQCxaIek8E5cO8yrMI6od/pyVIkJlVPYYI22lMb4NwCXLkcrUKCZ2em//v01oT6CkJisHLIqsV/nwg503DVhb3cEVZWZMvRc+rEgxBevb813653TXKC1xk2AY8q0CT/HIJZVhKyevY3nIJ5dcpxUDT5mqXHyC9nUuPSqr9T/0gr1ZwdUWoit4xZERy6dTfYL7CSVDFbUvEfje3Tr6DKZ911JgIujH1AikBkqiPAowanGahmPgFEoo3IYTkMwRMjbMzm7PYX6R1t4STKWjZDRE/LShNZ1IS5VD478QnSHJFDOe7ZZKSufKdojwha0BypewSmOa2RTrR5eiTFunNm7+oroLZoyloRMb6RgvGs7mSaKkGgjZl+O8UY55V62q+Vdu9nRTQ42sWOI7jT1CJxfH8D7oPK0bgSKM9eBuST78oGcHkvm7fO8tfJ0GU4JDdT02XvNl/yAdH/4s9c5SJMgjOndOzxuGLja41nnGEXqtP4ehGD+zQ90RGRozIkgdTVRgYL1jpyBA5tMt+BtCiCf/7Q+Lz2i7ZvShJEPLs02eNPPYOlXrNMayILwcFkE07T1166okB0Tu+JwKNnHj1ms5X3tn/XU3ZsdoOmh8yFzF7DOgK1K5h4sbIvpgOJoPg9RdSyJutXpBWHD1JkUF5uwlcEfHv1G2Y7+pgk3fQWhY9HtzMH82g4uip4zUi6IEHqnMIUtHEM4sEHbJpLu73jb8Eh14PPdvw3LUfYj1mSPr6szbni8UVgHguthJjMmHGW3wg2cz7lGyzeHNnmN1Uf1MVnFEE5WTuc1+D3Smww453mCT2Z8CCUPNw8/FqUZjbuLdNKUSvTTTXqa7qX7lgFv88Hd+38Dmk+VhmuSDn0v0EY+dgxlOhRiG6GjuEMQQfDcgqHyEHC3yHuwhzPt7+xxO2DqnQqQDT0pNI3aNyKOqlD0Hxl+oqrE7PBTDv4JBSHlzyRKi6st2w2xNFTCjqMXgjt6RkH5sZwoBsGO3KOf4/pgm1sJoExbyFX2rhuFpHDWnt/QeQa+NuB6W2viZltdSa1C/PUj1XaAhBhqWyDve+xce90yiYAeAdqsGllmeJqjCmAcc5g/yXRjoIDXnPFe7432sQVTwvCtaTPYiLi6IvMJxYcB0yEZv5lWSP1eTSbNs/M4cG+nCqQ0gYTEBBrFd19OlWHmSmTO8zPRjL3GY9fEMILGFIqbNOUQBToLF/TL9ErXhXlkX3BXdxgjHW6CVBIogPONZjvIxlexTGb4wWkRCppxRN0hgJmxGx96orKRrxd0tfIY88K2E6iJHHGOzdCUaf8jdb+g1wIectuuneYAWBiFZBWp6J3j9ui+IIaEVCVWvvBjH1cnw297Erqb/DzZ0NFrpXd7VDhCN137I5S7SyaLsgyNI1d8PGKMHxpQXAN0+9DAuG0WNly6a+D2SZ9tDPX0lnlFyTKPUfOgOa14Lb6bi+v24mQSKfdFJidDl+bbYQxWJtr85r15LWkmZy3GtPsghwKk9vJZr20xh91C5nx4w9yUjoohjHQosy9NfBT7LV1lgFyXOlrUS6pCCx+y0GjQkk8GdPyS8TxICsuFvA53YSKHdsKPh6kRMEgbWEwqRUtB5hRpBJgNm7a1WrG/o4XYRCmrbShNa/2o642DwrCYLSecuAZFPXCmkgFYTVrtazn1n/RYmLd9ppsWckl79+KqcVEbAg1ilTapcsZmO3TCIGh76lV65xm5p765TWOjh+gv6AummT+30UI3317fSrdrRLZYklkHOJuGEzSF1fyaafImX1Y7XOSrCXOykxsbjnUVgpxTchSqCniTpEUhOSglf4ZWfWBNDVud52rRb3rT/AHfWCD+4ooAc8w+uF1TQUXo4mYSR+92C3JHYTKtjyW9cOTFDSKpXRxFfbpQumWbTXiC1vWhmtRv5jxSxt433eOD2b1cCDVE1PDUp9tBMmCizZ8uPKwtyrYbh3J3IN6CGIb4IYFOeamJ2ID1ktVgqc/Eeb69zEvYreQ3c589m5kVdWIbz8W8XQqwf5DgP+H/L/dVjNqXJJk0IAVKZs/II5ujp0LifvzikjFbAnhBAWBVOPaYy20E0luRXXhVeN1FaeozUrwdqyrzgVlRsp7eHhJGURIJXLezu60SvXBPTDQ4oAZeIqOz6Pkyf0cg02ajwokahRO5KZvsl8ykhPua1K/MuWzUiTUccX5BWaOBlM4qpyYb/9IbQKFl1ept+gt0nB3nPFOYWORNkdb9bmRPwGKtW0hWkzvo2uC2Yc9LGHLWHpoxSU5A5h4Yb8ZA8jjRQZiLL1/kP8KdqOd5+GTaMMYc6/iKUO8ZAkE6a7CrOhl2Qf4bChi18LYwhcBy9xKl1ElETFDIEDQ79eX4coKGjws/e1XX6rwuPb59tCPobA06dNgPT0fBU7wCMsnOQQ2AC0WTQd6TG+YQGo0SHnsbSIVL4WMHcCGMqWVv4+hU8JQw27bNrL7v9gXT8BFi+/H8Q8jnld/MkRWYddpHvMS4q7B07S9Scvq0DSaD2I6ut95zKR8VftqIwN+yqZr0Po+ZhzchCNgm1xlwzT7TsXKb00cpShIRVx8Xky3XAWPe+JWaZH9XMPFuhh/m+1VXql0/dbf1q9ssJbMo30Ro9P9D8HkbhSMyP/SOKD/+V9OUWwmxd4pyOL3WDNh8OZjPZs45o9aGi14gclOKKFijYOVrXhxh45b+1RM7scnwGzU++v9YIacC6pq9lJp26cVL8oQ4hPnfvGbtHz9hAA75YtKGwF23sEABzo+E+9PXqi7kkCC/aQfR55SalWWzPwA+W29gtDs6EAJ3Ldyezfy+bUUhTptiTe8LQDXThbSINLkBze2DjGsWVJu0vCAQnTbFt21C5zJuPOZHejHoojv3c5W3ODiYgMLh6sWugJ8Si3fjouEMH6TWd7Mk71IXxAhKN8FX1Hy4n3R6zTnFr/u4kQ8BqcMx9Yg+Zj4gI+shOPrnrpt7BlqjKJaqj/5o/CZJOoDTT7bD5Nly85SHkSFkxPY5qlQK/evXwUoHoX1Ox07HYCnw6L1Pyw3pAPg3SuM8gm9sEUyVjaSuO9u+a7MbTPjsKLgQGEuSGGWdqlH4m8loUAmZ6zaWNWf7JEGQsJ8O6q83XOgWZgqD1EwZTR38DQKNoCxl+6IiVrn7VHRZmXK2WbS5faWZAprVP7MueR3t+3aPewanU5Mj1Z9gBMRFI1DwMYp2IB8YQCYWEHZ8dq2ltY+ztHLBnvSUMCDKVfPDj2bYwo3GY+0DsuLe9/ejt46IFMq2Nzc9cDwCZlGkajKk+UFo/G9sE8zYcHxlWC27isvEqBiy4cIJIP9XraWpdFlHzdpv3JCoOhTEKfEAD3BPHHX96ZhaxKGxsLWjpu0TZ1iZ4eU6jzwv99+aiGBAmK6/o9L7isrsbCZyaxxzxe+UWT9DDBrjeGmgVz423hif3ygHdDa1nSdxxULPh9J2JO66lZrDk78+VUt6WP/06xsAE9cO3qAc+7WiDW1tJ+3QdD3eRWw+JZu+NX/kLKnadkMv1CEO1snp2buf4cHTZ5XXX4jE3vH8NiQ9j0CbCC9OWfJ16+AtH/C+CiljFmU+jNmzqVntamAornkv3hTxg8jzaBrjSk2V3RJQa0unvJEIqm6utTrWVMIncEDSTJoI/DKDsIjxQVav+Oen1ztRuZH8sHTH2Po9XfKYHsvYre36C1DCBHn2cKeuPPUqemfv3L8lUc52vz2VQul6R3RU/2Yl0fh19LEDfBJuoAc1JuLoB1rClEXGm71yVSZ70eE9fMyle2+G1t5pWJ6w67GbVT3ZGamCYTO0MKAvpxWkPzDZt6Jnu7nlGrbuk/jzWYaX7p8beB/XVIlvLXcXcPns7wIx8JgVw/aDYN5CmjCpYYEEU38orgJxf4/OjLA9L/I83JY53C+CHKMamleI+4zvZAAiSOSUPqw7l3RBvS3GpA6HjlCLsG/R1sMlcYyx4CicVJW9zkJpDnxytZsn9yzeRFxVu+ebG7tA4zlQqpXt9Z3io6WfY17GxrFYkLLu03eUNdCqmQz/EMts7IJLy01qbiTXXySgpnlCD7vCl4fzJvS2TiWXCBoU9eCl33o1gVj5gls/azzokcvIkDkp9My7d/Esi6zvTFW2x3gjKAGOmJiFj12qS8RhZQEzjmyz2EAdgyVX4h7NElb3C66/lGJEVSNB6W7LlQqI7cKRCnSqSJ9cFV58FwsdcnqpWOe+sJk0WSAaLDzpbI2EGQG0Y62/17pHu2Dxcjlu3zZAQeG+Da+H1rxq+9MGOMAdsn+rgYidG/BR0P+GX8KfYu7HdNV1PMnzxJCLlr2sejvnrOGw54NEvU3FufItswRTfnH+Tk5bdAE8F+z826HYlBLpt31CCg482j/iMXN4rPq9GQHZdF6fQDtoE0tmQvhZtSUI2vpd5dwHNuZzj8GxYUt3lVNIeydV60zlSxqDrAN9TFy/QavsI5H/0XGYrL6vT7Dc4nIL1RPy36Bnb98e5F0fER6ZB3zQYoDqTXpC4cf8TV6mFVLzm2fCV/R1NUyXWuLOGecgZDR4MGycS55BGq5D6DzWTnvGopvJvJ401CAdAdA8GN/ZtfBI8ucuqEBY6BoeBg1KkG0yeQV6IPEkPGPnXWh1THu2nVZefzr57vn/RkgB+qvu/k1PXm7Pqi7gBlWrnX243i5zbcVmj/cQW4/6/XIDWexctUjTTaGXacX8XbcHmH7RzvUl2jqF9BW76iNixYcDzsFe1TFgypJoBWvirTd9cRjRaY3tTT2Vh9zCBPIyTn/WWDtYdRjABd/8lI7b8IVCd9ez9IdF2ImEnfrwu4phWEv5qCmeJSDuMmUlM1nmMLj4zYlBmncRJMnLZJ3OXpjpeqBFRFrhdTd9l8T7DJiLQQ9agMvsGCURJQKV2gywmC2+qGKDpldcKQ6y7EtgG42auKRHnRPlt6vOeqy0TMHIhUsz/VQLxW1cJskP5Bjj/pd2UQ5lhK5owhTmuUvrygx8zVyoxXW+M5+uUHJEdepPQ0XXPhjAOVFyDTwGvVL3ot4D545IJAe91o6yt+EPk8HSVJZx00gDHMiX0sJECD3ivHJKnPbP3aW018LDriOGLYVe0jLZn//stGc/W6tsySznS66iIHxIwwJLEmtY4YlSUXeDSPlKL4zGS58fDhrA8iu41ApwpXqXWR2tSc2cN5PdH5mvzAIL3/Zv2PE5WvETR3ubVGdra9byUOOEt6Xuu3VVjil4hsEOv/iCjF5ln7XuVpf3ueYnhJ0f1Go7z1vyrjrRayRv40PwpwAlATXMtOE3sate0n76rZMAffNSHJWbIG5c+oLyewztrNTi9joAz8WnQvyrE6jCL2eh6r4jlrwTOwQLaikioFX2Wx7i1GR3ji7BlWik4fwd97h5L1ERTvO9IMARdu9TrkYarV/QITrX4KsjYpBaDzVj9EQqadfETFS4eJXFzqyKcPFxdvoDYNXMD4K0f9TRoGXqNlggT9luCpntIR9kA5NhTxgCvvgfoJHjLY63L4xmMXQka74dVNH0wBQ+tCNUu2oP+QnCENyt1SWZ++ANrRdv5imwyEj7gU4OlqhtjyNiS99FxgvRDwJyBC8+nUl7EO0RfoQbaxUscSIxb8XazfTcnN5odHYM7lrUI0nLzaYSkoUG/YoucchT6Q1w6fATLYd0OgaI/8dimPq0zP2ywV43VeiHsliggaJi+KPJ5xtYdxnqfFhFv0a64y82sdj9+etKeWs5AzlmO+3sgPKc7A7D5VwsT5zxkYiy7XnaRj32gtGN0qQIl+TY/vOyORhv4iuhzbeY27rWyk8pH3TTwBi2PvR3EWFb0oKPmOspM+mdSVox3B2hehklk/ymn4kQn0K2IwY+apLhJSpykBPkMFA2wc6qk1oQboRF1+OAzupVRe6wmU44qQxQ5P9q8M6WnNoBjFx6xF0tN3P6WfWd3KuqnYAWH2GIqARUHcsak+F14Xad63NE40wCPym+psklGBlROgTj2sMTEuwLIeE11NoUzEo4j3rAiQFw6jE7QWxU2/08q0OJRsEqs+DnYnRLkDp61WgRcySWY45h3sr1tNOG6NZvoDujV2nXeZNu/e4albUaFAqztMETQj9/C8j4zxrRdpktDVOv01d1zTS1ONQLMfRjCyJo4rhL6w/2ideXhSBL0eNx+v7S78Zrv8Ml4yruVZyc6r3KMhJi45PSloiCqVvNwqPy9lKh22gEEFdph90pLsCdbn0Ekb1mpJ6PVdapgDPROF6UHxd8/zoWtlp1t1ciTxEG5SHxWc22OPEavGFySNmce5D6jduSQsmqTQmuRTOIbXb8R6LK2YVJvf36oKUwpsO0yYdQW0hZIPTaKNEvOrZTGyg1Bf+/AkwBmAaYqdqbcELMTwQM8ECDLiUCICYngpEG80l1TMpCSku3vQxVUXhuejI4bKh1fHzLhEUl7CIY5t5oTBkD3OfLQqxRC5xWMhTERsq5QQMHEbVQTV6cShp3K18UVxrTmzkZHEnbIevjy8wY0mQ7di6wlD6eVkGRgnjnEvVk0tOK4ODHQO1Vlj/fT0qD7+p98Iu/2xny/1ZWvXkA2lvuDeHkHzl9W886a+OZj+fTGNkZYvxXxx8IvxgfD7vEYhnRpsil3H5Am9U1J+z55aXpo+Nz1//fr2VBlijPwKGkY4pTkWelZaiSTfTLB+SUQRlcc4mjZEmlBnJpgBIopk7WPzuAYF0qi0cxvymq+DLEFNAEzltEOhHNKjmDsGZjpmKYRZjqZyj/EgtxzoSsqDUNWOyMTkLC5JpMfxv4jyFDznLzk1/A4KbCgSRDSv7+7ITQFQPNy+RDBLU5hBbGwkCxbT3yT46gSTma7FmYPfUCmwzZgTGNCX8xon9CDyfZ6Rm4p54ExkQdjk2lN74HxXZ4Sz3gBQr23p2eOgCygC0EBzfJiW/Qd2QDcIJvjriSH1EFlknhDLsYqxqj0XciDluAQHGi/OquYRI0pAyRIOTcCEu0bTJbP46cZ31+DPvtjiXo/faKMSENpV6be2R0vZq62YXiTLezK6YOAvZzA/07+jkezhkkOPxiOdJVfwXDVy1NDzpkQT70HvGcFoVAAomMkWema59j1hRWw8oLN9Inv/+faY1A1tZjwWB4fTryRIOBqI/Os0WTmxm/ioUBGn3wotdpN+pXmP7/x04VBAqfvlt6pP9yUh6ajUVMipGnsSehXhe8Ut6Av3agd5t5Qx0mWh0pD2Qc6qKmZhlcJ2sxRa7XumEZjuHFlbSOCL8vDZCnc/sLKj2/ZkPTRkr/1JRMSy6gp2xPUspl2NMbYsNa9ZFVjdJJPnm5aO/9u2xnBJDulFQgmFmeBUy8ns3qAgx0eRYr9l/i1oTAUanGjlaglJ/nZg/78bDmeMeQvvGn75igoEPQhcxpuRVjkEQuc3v7iwOwE7CEY44zvmF5+QLv5wjhxUU9vhxWwaQwooo8saWArHIIeMQSojB4+j0EQONSs8kYLADHWHQsxIxyKYMHnwH3KumVYz2kSkOBKGUIHzVkw86dLVySE4TyYX/nunzlYYnLdiC+Lr7qACEaXUtyTrnsQKGENxi8UAAvX6pQCXSKT0v6ONHrfUIOzmfzlFRGJyRpfj1VuvQ/hnwQCvb7k8OMBQzktrWNhgRdmIAzSkyZsmQ0px8SMbxD0RQ5MHnY0ZkMlVVPTugYNBV7GTClTbhLg05EiGhJBy3LCD8JvWAlo3o3xxb84ArDq3vQJu0fQ6dR7R+u2VbOwZ8pSdOS28PkDQyc6Y6zX9MHRULSXFUVEOS5za9mw5G2MMC+LFhnWevJdmKLuy0gYPYDZxUlF8std2rhgTJJTJmY6/fk7T8xqBVCtIErzfdNqH+mzigcKFGWNslOWLK2F0qp7/vR61NkRmMQOhTvaKGj7zPO8qM97NDPGHHLkT2cn5HXtKiKy1UpjrcuBUwQ5uyQC5tJKcmJaNu7cPobbBXSJ48OQUtHF+sPLIhSnmuwSyNnYaIMhr+N1q1po0a+geMm8LS7qhaK9DK6qWfabwGcKjTkl3dk0lI9T32AR89rHLdwvSNTUWsBkOUlLFA8TCNKMa9D4ck/fguKiFzp0b4GZwGjjpem3FT+5KpkQKPr1U4gWMbvUFxzZwkyLOFux+/s4T9P/5gmicirIp7eiGbqEfFmUun04ihyNle3PiTQASgtmLWoGlOe6wu0Qkq08yvoofb9XRVz0WFDwqbNnfzV0hymqxYmI9kkIQlSDjs4OzPC95RVyipozuooAL/p69ozmhbEBMGhoQ5DF11ZUwKkPi0VJG+eyQ7p8uneYJSlpWHYKDM+GuqgOFLODrdXwhe1B5z5/xZEuaBfXVxxV/0JG9OO/a/eQ4EJlUEF+KHqdwMrF3zvgwurIVtVzacrP0CyyYl5Nte4Dt3GDeYqCEqqdvQf8ddwIwgxcpzuVfFpRJrPfKCDoS0kqYwrgZK8EkDuCs5RBifcOukj6Z06L/JGKNKXo2CnxxmqWvTS21KXk2BWeFH3zCRG2FiKNx6gA3wih7yz6CREHMwCG1r/DevgB/MqtFVf8UaXfYKupWpXX0GOxUEgiCv6vEZ2PT8WV2hmKLnqz/+kCU9cRYilFhOIiQA51ZoSlHZGIB6yVVIrWxYQhzL1wTD7DqMLn6uuiyUdSrmRgEep/Ljp4bAO8y74l8/9X7PD6koDok1WJ8nm5DaQpd37i2MYmCpFQkGt3CU7f9/FrGDhtd/X/eLz/OgqIjA2NEV590kBtQiPALPO+edUVoJFyg2LvFRWeVnavAC5DTBy15Z6XDgin9mjw8GI/8oGdKoW/DTQxra3BTH8PC0//G30TgvVNLSPSRA7dvpyLVxVsTnR9jlxu1BSpHj+fpBabJlQaRqMNlPqeY8Toj6MbPAVHApZ2ssY4aoqe0G120JZWtatyzp9ecL2OHccWX/7gUK+S0ShQUABQdxC+5EN473e8nAtqPW4Bpj+m3TdOCphVMtcOL+7ZMgP7ID58UEyENLEHKbAGHatMP2K7Dlx+XF6Y1np8VSdQYEkZjZXBSIHQozkaLtvt8/BWTlrF6BwGpYaYEQpPIb+7mB7UwEJDIuNf/W0uqAPqEKEzujZYYr/n5pz9bvOkiO9OIfbnMpt0SY+gh/2VbBqFsw9oVEmcfd1JhuvCZ+NzpV8tUaHZT5iNNCIDDJ21uiOPswuBJ3Ut0Ep1X/424XEWPIR4SLmAFtboR4Byz+GJKbLvuz5T0lOLqRBmuteewSgoWXmgJ/3oz1U1uuylxZYJnJ2lmbbBtz+dk93RK1vRKrABueYDU89TjHbbiXTFRy7WFyBmBqfP0vTi8Pk3o2uXUcVXKSJNtBKlNt7wWeMxPIuU2Cgg4EqLiPJuu++axVYphhBQWu6XkUqce/SC+7u+sI5/mDIwZfGP+ffwJnyq4igT+weK9Ygr4Y6NxerlidMrTNEEfHGuL0EKuJD7dwzO5Q9OaXHmAAkP4yyU5AfG62ta/eDKi5muaOCPCAxu9nGAlREq4YPmEEPemOgnyYMpk5C+Cbns5d3OxmhvweGYTl1yLeb69xtwb+F64piq4mwbcFFwaqqsmSHVLMoWy7T1em4kXG2C0VrGa1rYfFVJxB/dhOxQDhHqBi72Ko0XeWyeat+ib3kTN8BQWaA+DOFvmaBeuxNUGY0q4wOz7uXborZH8+Fw/TynrC6d3NmA89ywVJOl2fadx2N0sgvVSyRiBbdTWOtX6pWc0P5AzKFRjRZO7ejPMCdfp/7eCF3AyYQwkONMjYGnw5FQreVUIW06SO5VbLMJwZOMRAaym01gM8+mjKJYaIvj2qhGKhULG91dKP/zYS3NSeuw/wy6lxmLFEvgAD6XHo0ksxjHSiwcEtkQg9XCF7dw+G+73y99PXG1xp9DyCUh9l7je9zBey6AgHqYOCtkMV9uVQu2/s596cON3PGwoDnn5XLCVFe2Jlb0nKVQjrxUYZxzalqdTOhVJj6l9qaFYVTc8NBXsZtfM2u6TGNRG+xq8VNV2fp9Peb3i/JgeGQNghZsLrQMN7EGSaBrTaH+8/qT6Zu3zm+1WDFEBJECw96kGCqyWrhWDRjraB8HN5knjwtTnhe2NPSPxZuqUm+zOglW+J/5x778zi8htVefD+2MQGVy4jGeNgPGk4bDVIbVk4AjCexlQxSdaU9dpNgNIkgGcqFHjp+eqvTcs3oYnm9eocmN5Jv0hT8PqqdBRLA5Gl7OAC63RdQ6ICpS56glBHc0YlfDWIvSTEOHFp9c/zo1LdnBMs9ZUSAP1RfrW6YfjZiEqdDOY4BpR3sV/ty88t+oqiPGIAbyPbnMyNKvxhpLotUmdWV7fLEWJkQuCbAf/ASu2+49HYcQ03B8c73Y51PYr3PGCfDIXVyPSqtOyiZluqdp0JQ1xERkIEwcUdJZsn4tg4QCBScyoWOg+HwyeUQYbAfKv0dvcFA6OjDLcA6VdOZRBKu3Ih1gEKGc81aYUuvi7JRmjwVU6Rs76ZWMkJdWzeTc6GBLcZ8c1KCEeUGq6cRXJc5wDS/a+P3GH+g0OxXSuMFqhrpJY3BpI0SBlw81escC5FW9TH0c42XpHIR6Mht2vId/rjlRVGAKRTMrAJvf3qWmc+ZCDPQZIRxsh01WAJTNwUB4C45fUdZxdK7/CM5KU9OwvtM4YqV3VMY+ldIZnIId27t95w7MmBFn3Be
Variant 1
DifficultyLevel
700
Question
Jen made a number pattern using this rule:
Her number pattern is:
2,1,−2,−11
What is the next number in Jen's pattern?
Worked Solution
Using the rule and first 3 terms:
Let x =
and y = 
1=2x − y … (1)
−2=1x − y … (2)
Subtract (1) − (2),
x = 3
Substitute x = 3 into (1)
y = 5
|
|
∴ Next number |
= −11×3 − 5 |
|
= −38 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jen made a number pattern using this rule:
next number = previous number ×  $-$ 
 and  are whole numbers.
Her number pattern is:
> > $2, 1, -2, −11$
What is the next number in Jen's pattern? |
workedSolution | Using the rule and first 3 terms:
Let $\ \large x$ =  and $\ \large y$ = 
$1=2\large x$ − $\large y$ … (1)
$-2=1\large x$ − $\large y$ … (2)
Subtract (1) $−$ (2),
> > $\large x$ = 3
Substitute x = 3 into (1)
> > $\large y$ = 5
| | |
| ----------- | ---------------------- |
| ∴ Next number | \= $−11×3\ −\ 5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers