Number, NAPX-p169627v02
U2FsdGVkX19npAOvbU9QiaxxrEqmaSYU4vzFOTWaQ97aFMeZcW3FPA18ng8WaOaOuX2b0JO/E2GjN5IQGoS5Hd+P+zcMnnBdF9URSGI48VgVw1TvC5m7kbd8UjHW/RCTiMU6j0qwDIRSirZGWl8lTMZiiSz9Zj1um6/ewl/KMYQwIeZZFEpsUoXVJP+Xg+oCMYbCi+c64Cx8Nx5owU8fqIAE7/AbeIhsRaxI7S3fE4nTUT3wlO6DKzIZHBGJ/hF/4IbzWWSGhKaL+EM0wV0+kz/FMPil1TamdtjA7yKO2wF6jxXoHL3+lltWSiLDd3JXTcrBLV1oGatCQevNQupRwwGP+nDf1i6MugO4vh0336kze9mKCljwZkxNsBrtU9SgafEaM5y/iML4+AbTWsBX3Zu3sYtYIyJGa7eNcI5HKGTFBXyvRB+lI8VrFhFB8YVE4uH+0dNs9XJ8vZL6+xKODyEEa8ELeB68oY+Kulghys3c2+L+LG1Xdsqhcb3vc7SDEPA/90aNw7tj9HzZipvyMcphfh/Sgcqa3u815ZjzCKg5zK7OUQ4GGtDeaJI7Cy2NVJd9QyJVuwLLVFBxpgPgwniQTPblWCX99vbluxooqlsc0kA46TWHt/EafYHp6+/N266gfckao0+Mfnmb4fP88NtK45lS5FvF0WSPMrcejnP4Qu9Hh3rNAIZzlnDBK7X9KAlUnL3IOvExwYM5TG81eOCAXhSUpxKRoXIAYdMHTFDG/dPRX/4rQWZpKXi/nHXi33G4nqw0CuxqCdGYjkDZSWOpsZ+emf/kXcd4/RimUALG2JIERSVFYXh8gmI7UqlZ6pzDeMP64OAWGExfS+xOz+1nwY4BPcuT0CHLX9NmTyip7A0WLeUl/4RaJyw5RyW2pG8PpyzMWLNMWEj+m6cC6wveLClelMDu9oBsLF0kdHejcLkDKcKfQYWMUdutQpknhhuT7iSaXCMViu8mMP6dSbc39cjDRa/bt5A1sMav85m6S7bug1t0OLLF4Kcu136Ee1VZ/0ZHT2y+fl+WQ9KSGZ4IEyWLjHiLW4ccSNI0PpoZBrrti9vN5b03Pfm0VugemKC5JS5GeOfoc61EEFCpyFZbrmxnsN0qxPcQIS8EiBfmbU9SbZGJ2SRMxzeqBq2CyxpqukHb/N9qeMCqg3CQVNM7bpcCdWLqNDcYGTiNWc2HkYKSNg9IIpuYO3aKntWqleb21c0OAvKK8Mpd5K22PDXpFQO4KXF1ONgYgR9J/CWK7hvK4rShYkYCBGvxfIAoaeC36NSuDCjtiTZQuQ2bP+ObeQsA+zLbJG6SrXHjSGUaFm+2gK8CnmYxt/zRgvk21E8X3VMJb8IRkkAlyamKfAownakzi9L2F499j3dtfO8aTCyQbFGBPRHuO0m3curb1zF1uZUgQVwXqKG8DzF+eMCVWFGovYuvmF5X1HYJVB7QaZReLinwHBHiKFh9oSCPFscOCZle6m3jbNjwMZwCENypH4jqG0dKapFU4BKkFg9pB3tNNfGuMayPeIjTiCpV5zCCOx0eY2LXmPMGWof2mLnBSrbF3UjMvqqrzcjrKhmzvGxBh4V4oum0ycLxVRNSPYHaXfXbYOYnnnatRQScxyLc/LVtz466cSRPMBWEe7e3ft+RBfbMV8WMrXLyS4HsFAz7XT9xswjSA1aaQXPmXHlR0SNc7+hR4SFuvXc0ot34APFd442Pi5EFtEWovJVCI0kpef8M2w2SVt01NOsJFcwNy5cdqLUshxneMGMrvQJt0+wyqtAisMGhlilnOoo7ZIA0lcBZf7SF70qd1YdCLnxZMOujFwLGa5aJL3p4PyBoBh91ZeAdfUUp1pAZdYEuuPlzw5vIDqWidoOLSv6NtYLB6XhbPU6tA/nZI8SH02f9V2aZ7J7xEuxpIq9oKCtm03P2/b/gpwNAbji3GDmSAP/NsikSs5P9GGcZscqL6xzaN4gLhO5VaqAA10i6RvebPCZNGfZ/Xgl1WAArhPjviJSH+CqiNSHHFJzDBQQQBSY2qrTdLuFMxyiksOelg23/IhY4SFTnhUCEd5PzQDKN7KqwSHfS2dlbBB14molHubd7uEmJW9mGIj3UBr/BHfrO3heacOdNr9LN83ruLu4T2t5ATqdlrU3mB53NkLu3UNzWRUYM+3vbR8SMNZfZo4mLBO9n4BKHT4MHN6EZvh0J1ATGqc+eVv3minAuZZzJ/NC0N75BwgH/U7zlfZSGO2/ac5lvwDZ/ZSulMsBtHz/jgveF47DwaJ94YqOz8DOIp0Doixqfc2Ql0axjgy+vZvhooIrp/fR7dRW9G4IJasgCAbYeLKwFEInPronq5iOxsCw6aG3qZw2qLzvd9Z7026C1W1RtjOPaZas8pRR2uDOy4jNX83BBjmW5kehhkI7Pb7HW3u/rXGYwIT1mJLgsGmsKsdHZ0Tb8EjpBHGVyqjRqmZOatM1THQ1iFKSNvdoJ3enXer4pM16Q34ljBepErPbWzOwmmglppR2tYpTDZGQ4pqmNZT3KT3FJHmzr6aF6KnermIubuRpPxiLPvhR3tA4bTPhW1SYTmO3wchoTuSzv+ibscTGcbwyAxGfZiaXAkbqFzjF6NplaE9gV9bYL9qjylhs1De8MJo1QKZg6nCyCMkgONrDhl3+RD73BLyIEtTPnFbIBEuyPiKm3p5fQ8JUW3ctkyoyvWTztWM3WLHVT0cKDzn6X4h9WeuCtIK5gjdiVM6C56zGHGzjj1W9UP+rU6mAizVpBmvBhBzbhXyi/+1YzTyRxVdG7yGDHhoafkQhqDYaYPPYznJwjupJixklgxhKKWZV76MFQey04tlTOhf2LxWhMzPsrArMBGGtcsygkV+iG8F6JFnCDOHwRnBrjVcVTvc6Y4G8UGJICuBwCzovUIb5SnNkE7Jvoq2PbdbrpFGMZODVjx9Vjq66+ujQ7HFr2kUqxgc1NX+LX+lX+0RHZPabUlX5tZ0kAHZrfVPZHJm0TZI8LXtrDIvqZWC6+e0AlUtJfO0B+rgbbmwR+MkWl/AbH15tnrLdjEZ4ej+6SzZjkiH3HuZ9o1u5sDwNJM1vzydpiLLQn8sjcdJG2Fy1WuE+y67EyX0LeMLj5NYLDejXA3/ZYMH5U1iPnpFp59VTbPYqrmZ0VWtUmh864yXnMkktKnmRq+XzHP1eN4SC4mbeL+AvW3nrBXN5IhkLooE4BColjK7+WorI+WoIZ+Y8nFE4Ay3SQwV7BubYfQaRGY6sgp2MYUmV8/z73GZFBUSOZhdadIcBhMQVlaJlVUkRAatHLn6wGHsHWtB4ukTaQfFCEBss6NC7bKkk5j8gPBhqBaO7t4aMMtLUyxY+/JAxkHPe1KcOBalCn9OEqqsYxP8XTBCBNPZD2phY4QsFIpF1kaVwnb/5nLsl8/hlgfPGmGSAcXs/JbRU59FCCvusDC5nQMdunXOu54L6ovtkfNb6fYUBHHSuQ73rmENHFpDjwIe365u1dSuc8V/7W2oySD4er6/aurjUKFrBiWLnRgdWfdSJkp2scU7rTi7GdXf9MfXJv7sNSajAhquHwibowGfgR2RXjBeJoBoUz1lIV+bnzkkBMFrBiFwgfy6Aa51Rj6rpV7yu5fDSi9kKrZKOWyysammlFe42Eo0UIb8eNkaLuF+gu5a1q2wVK8O74TjnYP/5qoCxQ5zV6uA0YNBc2BdAAqqpOZ3SggTR8WUit9+FTe8ZwbMJNj4xhfI3ifYNSHVBOedUf3IEDnGWoLeLY5PtN7KuNOWi+Yu/gaQxnnzEzE5moOW6rrzOFo4mDrYhIgXCLHUTySbbqJMMU+vEgKtKTslG6FUakKNU3s9duPngz4jObi1TUsOgmClgjAsoS1U2JFBiWqoiPhuGZ/LddNWFqoCEn5NIHmj6EiGxI2uFVo9vsnOZikiq7YAUiObcMG9SvoGsqEoT2KQ3lU1TaRhoTcPH0F+W+DXJrQCWR0ej+KGEr3Gv3Xafr91avx5030tjj93PwBlSjjboYKtby72xmhMHoXea2XocM0MydJ5HaD6qyuq8sSOLbYNRRtHAooiaPYuMhGFRVGOGEqPlEK36Z/eTYiXNkZZLQF6x9JpCGQtbm6IzLDrbxDDj6EWjWs3StWUwD6K7ign7nwTFoKkyIS1uhQDLMihXZq3xaQQIPVhTSNIAd/wIiSJQ30FKHqOhD8yosSzQmbHavOuKsjDmxoh5ielnOmhHqSQpA2jcCvXtX75RFi6ogQpL/zWDaAmu5kyE933Pg2tTM7jhdkVtAOrkResed4smNKdfGbf8xs/IOrST2KjXz4lD8XqrX2qqvcxIiMSrBIFJmV0e0sB9RfTChHkpk+5E9YxbCYPwhwTDULhVLNmYIz88jyXMOtDXFmD0Ztxpu1P3BTgdvDOgLh7Z4+CyIbp02y/HlLnC1MO0tWHiwieUwiWSEEe927SoqtmVRDBey5JA8VoIXswDdHNt1vtaObe3trKmX/fgMaErBNI7IO2EqJnZYXDu6c31+O2NO0IQiySDbmdOHAtnI9VNu5xfx8iWnMQOH1OzFX4YZ2kx0vuR9IQazQiqU/C45KwY5qp5+8B4Dm8f72jDOzP61D/xS5QGEIaTPaGi7r7zrRK5Ij05ZhZ+EqZWjtWPt9kRBcsSEqJ+fG4AO/1dpz/qMS+8/cscyReNr1qKzNSBiJbfOop5Hexml3gNVT60eoCJuYOMp3WhuI/6jOxA/LjD7DwAe4K5nbmgK9KD84nIwOh4y9+uTHnLNCfvNsC+ZeWbfduICUYXCgFfUl7TEznijexcadTzF213WLbSYm6YEAdnwNHV9PHe59jKJIGJVMZGdTTYt/9Ad5xqFf/swJ6gMZq0MsYsll0+u7gtt16aPoUBhhf79Thc8fhg248B21oBHOQ8bCHQ/m4vApB/S6W2OMOI6fXDvHGRTl2vtsPi8tYbMwrTHEeOCwu+e+Wp9BGmrXB4jYOMeUPaCYc6+Zt5sdHXJWfQX2k3ijv2RSNVyJadkbzHfgFukoWvWv8m3jGbct+gOTVJo2v7vXv/1TdircqA5iX8rptCuOz8pcqanldDbh5wP0d9qbr0vYJNfjGg2P+B13QOQa612VJXQm1ELGaAHQyfl/z6ziLmcMr4mdXwwksG0yMQ7lKg+y6ZuFDi7xBsTrOpZ0EGQCBr8azXO42EKPTaWAcilQNQryn2/f8yCUc2mBjpsh/TceD0cquaAtLarjo/nHCe4fQTH4sJodVqA2GUkOmP8AwdNcvrH7wjqecrgZAGqmBqk3MeHM/EJnnlcHJBakmLF5/2ykT8jOVEssL8YRlf+Lo0AcOJqRRLP4U2DHTQUPUpN+OlTvTzWslhM5S2GqbcqTdWLSYFt+9gJzuDoXNKw/Z619LS9O8C5aFRVMmcarpPgjaOCKUQKZS7WyuQ1ja0Y3B/Hg3GP36MIj0hUzB3Tv+5V7bzkEm6mV3lGdRn4o7XnHn6FF/MXXM3SpWeRjwm5c8gIbcg6/+JczfCPrNM8USFvcWOZy1LRhfsUbPrDNw7D4jS/SmkplZKqEBtpRfdrXcAensdAhRn0oMh8uAXKQS/TJu1m9eIaKiJFzsmOF4Wcz3Fi3PjY9SVYPThZsUbGKHgPqcM90TTXYzi9BJtLT3N6TDTzZivjRxtvMjaXZ52xUiMCWEOmTyH5GHLutSH03PZKm199kp9qwFEZg0hlVWLmhywZQyx12NskSw3tkXHxq8I8U3ltmsLKaN5IjpDkA86GvzZ1b0H/GH6Kx53G10trb7E67gxo8wUnVaPU9P9rXP+TNw+SXNlyEEzuWWArV9vgfqzclM0sE7UgJEju8w47/gNYZYpeewDOL1wOgn+tg0CjExb4VHgJq8UbMAwPrhKTkULJI9zEGGC3ZASrkd+xeUuQv4pMxgbwJnH59LeV8n08Ai6bXf6/8FDtONuufkioITD+mhZtHutIwvjSjr7Qe0unnU7LTh3NBtrWjxjkiTjGEhf5bGjLFhORJ0My8m9DDSEsOUclt7fgaQdFB9wqToj8mxRDCi/r8QngwWFxVnkm6ZJXsX5xkCJmhJ6a4RELdkbX1tidBDJD5Ss7fDSM5mUboQ11GMSMptOd10E+a59IWUfgZdGgNyg3aAl9/exQSERMVt9HmSDCsbJsDnY3K6YKbXWqG1jRk1nx1bJ34zwsF0bGtLZ86EvCUuOyZWYMDlxoS3tQ3VzD3duknK93VacQPfDMn01fNjFRlrAK0dMymAkVzZuMGvot2dr4T4WwEfjXKsTRz9OVW8Nhrde931LJ7Iv/I6borS5wV7TY1dTaoGAvk97ISrChTTIp97nDu1v+xVbZu6aVWuU7+OpmmZ+80d1QBdAe0KD6GbYH+jpC6CkfY8IXL4lgtFsYRYnVBAALlCUZ7TT+NvMek2cN6sOmORrt856PIiRZhcxxVfMKw9ey0U84WqaFzfIEeiVudKNQkL5cvpsXz+D479qiDZQTW0OYFSsRNjAC+J+egqn/g3IFstMH9coZZ4+rPb13z/tIzZW54vkwYu/8ASSyCX+BuRgXN5I1d6ca9lGnQSwV46SGZ3L6s+ETS71v0/ahwJkupKS+zMdRgof3I7+jYR4sFX4ybBe9kkjv3gWRbiFJar8sZDxs/AAgavQl1yYIarueu4znimFTnUOxAB3Lg4xrdyT7hifyRvXN64npSdyGKwiK/9CgugiHzpAQrrZ+BHCcEx/5T8zwC/sEUWmKIUuxsshUQ4albNOrXvPSx5p6QrWRoWDzQ0SmtzeOcUXAsmHBKusfnQz/6Senod0WD2w1LkEeWQ2F+mCpcijRXdDcCdiBVhD3UyZ+0KTpLS0ICKuLOAm8misH+HgMCUyvhlBQAqs5lpM4CHz3nAHJBGT5n79NIJ14Nof1SfegNgL4M2HPn65N/RhBzevgJAs86U9esx9Pxdbv1H43vw==
Variant 0
DifficultyLevel
551
Question
A box of fruit contains 12 apples, 16 oranges, and 13 pears.
About what percentage of the fruit in the box are apples?
Worked Solution
|
|
Percentage of apples |
= total pieces of fruitnumber of apples |
|
|
|
= 12+16+1312 |
|
= 0.292 |
|
≈ 29% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A box of fruit contains 12 apples, 16 oranges, and 13 pears.
About what percentage of the fruit in the box are apples? |
workedSolution |
|||
|-|-|
|Percentage of apples|= $\dfrac{\text{number of apples}}{\text{total pieces of fruit}}$|
|||
||= $\dfrac{12}{12 + 16 + 13}$|
||= 0.292|
|| $\approx$ {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18BhZEIcVdEQuz3pi/tKAwckpDKfvSUNXpRIFX8ZdFK9Z02TFjWGFelw5jmz1MZ4C9xdo4quHhhn1Ros4WPoh/GC+9UAydbyaKIcNeJZMo6XftMcrCQevoCdHcWP2mF3GOM6k31BPuvxQo6cP3Sdog8kGdcLlBqDkmLt91sH82hOI5ONY4HrWJ/ncRQgIYoykVGc6F9DQhKfre29q7iTzHOFJXQZZFtcGJtywCGPUfHMopyfmwZ1exAjB4zZnMg4/ziVXVVR8vxIbcx8PFWGP7WIrLjP6GHBJmrXOHXFDe/Ycy8H1DZgXleCQB1lUSmxvZd/SSlU1EW1F3Xa4OPQWe6Jiv2JrlUS9+Xym5buyKidc6zVSihoLBapbKnYRoJ83zi10zT3bsFXNeVesp6fVuy4N/ALyJ1apfE1TGUibt4AXuyMzI6doYmGXVZvB2A/tL5qNOV/5sushUmToyvuIAdwAQcMx++PBJ6qF0rF78nSFRv0ZmLcsraFdMfSbXbtzPSNPbqY1c2AByQ0AA2cL4RyTgeb6wdG4NLosxhUNxAdSnzRg52pm7AJ3rt2sC27sD/R4KvwdQwz14nLEJuu8sL5Ax54ctzmkVa5EkoCy0652+9GjbZ6eHHIln1ib/sZf32njqToa4c3igUpPLu3E82oLsVZO9xv1cw5Mym8rD7NsOl7Q1UPHAH1qwqQQlMStl4yfBEWCNQpbQlfPeYoVoX9hQ7m5zvvh3p6wj4KJSDBGBfVxV15mpQDUi9Y8GsNZZ2QTwtcY4g4pGcnEbJz07n/b9PQz/qacJTCzpw4iRaWVFgeHJuTHuGMXDXEbTdABOOs2OE0aH1kwVcMCm7PYEhxYVUt/O9fFYypaKlnEZ1VvwEdDXoZRN6cqje+cQD3LS691ONOQwHRAUnxRCMvgBeKodX0cqyCunQL1fITmOJQA7qeBbjP9Y7ivEWFt7Ubc9MFOwkyGTPjIwMgVlAU1Cc5CvjhgWx9gRtNsevjABOeLtfUbH2nuOVlu7uuUQnDL/GfGjHykkXoDUj9jDniLgxF+Sccoj5bDxP4siFOJRqlIV6n4RY9nu7vUuHokh59Vw1LvhW/gnwcHKHa22sUNUMT0FdxzW7z6S+kWjvkC4O8KS0SS675GNKmbiQe2qrj4CW0859Rno8pKAPYh7q2lke4yuw8OTrscYbqE+QEsEu25verSLYLPGbOtONCg99kIZS2jD26Fn8S6KwIc+ZRtS4tYzY+JtSlfTne6aAHpUP7NZJo5KHiXh3ch5Tkc75ZxFTtmJQeJDhHeAZyqjy8kCkdQ0r6ggIWveQulx1X8Jen6+RUhJFhR6jtLiGKGTt/3AoExqeWlGGs3YnMNJQISxG3u8u4byfFCiW8PinY6TQQDZFw5Jxmw36NLCJFgMFb6wGSokLI3QVr5MIm7MKRWxy1qcq11i/vrRuMQaAYiCitXSf5oCJ0mqznMODGYqCfTVmBMvB5zHcP9K+jC+ftYqtwKU6rUajAfXg4OUoLxkdDRdpBOLID/DvxTf+qxC9jEYKFxLF8hXbM8JHi2bhYZi5K2jWxMgzN6Z1I7GP8A1C+fRgV1jHpAdrzppSFnybMdKypqgDZ/zTzo0POv1HlaSgzLwDP51AWbAgtay/mmlCRnBt81tgUUwpALSS6c70Dz79z3am5J1+FB+VetEn28ZgqwpmtpMJCyjNubhdrwZTifNsdP6bw7VmwDtof2kk47Ib2p9eP6KHlOaTSa1ht9DVGX3tLypcQFSEM7ntG8g/C1/L4MuybYK5n5n03M3VEK8gfhLALvl4YkxWKsTZTr7iMo5o1J2QABz+bz+wUqlGLVpK6WcgGukCWN/ia7A7gkrt/BLYdM2qvkqD804pRIz7mrHovoJBpYbC+fvtCYaLQfVKnpuYCaNjO1TtHZLlbsdTP3xe9z0FnWCsPtNYEGdJGmxF6mGDvaFXJGsx3w9ZO6xiosH/0xkwzwc8nXcUEKb+//q0vD1XIFt4BYoFG/XAhMNplv6KqP8ZmGHm/m61Kko8D4rJUFKFC4yjGqMlULdlFAofPbKAcCcLQ9HdNULgmd915Bzycr1JrGJl74G76Mzme4VYYtIZF4C4DNm52CGFuyxvdMSWH3LtMp0FMZjmGmL16qnrI/wQAyQ6I/Qc/Ahx7ReQ/chUCNlNyhEx6kFR8Z62YHavXhxToCWJTs2cR6rbU8DUDUs1zB9Kl4g26AMLC4mE1m5sLJevFkJep8R+yQ7OaDb7eSA+msQxlwbYopSH34rWkywlbGXvzxDy+PVwAtJ8EdzT93ntm4Eq/V6+i35NBKiMII6woGVHSAJG5Udt7nZMeJ36RCQgrYGQbtPp/rdJlaLRqPHmwMK8noW/0CC3yxQ/nkt1wB3UN6bVgCuhw6rQoBlDv15i5kLIRLyvp79o63mfs4aJGhRq0QZpvriNbwsfGuJ4dlfT43LO5ezNsGMRDR6IVzA6L/vZsJvSEQTdtyJac/Z/x0k20WwPBRkSFYNUV3l6LrhkCx9nfcfWiADcwcMfL9GqwcvA1428Qz8/z4x62Fntsd0bFUdJA9qMzQY9v4hkRHpZDEZJ1fM5HTbxQZyfWB8wHKz2MvhmSH6/G/6/IXXSRfjD3XEpFNAr4C+WYKadc5IayIadkHz+kIbQWBKaboLHtwEXBy3jucVWkELwczcX2dgX4bjKFzJiNlyBKDVldg4SXcmgijjY6tdTmR1g+Fx8LFqV8ASljxxB6nQTQ7xnwbvAkVbGrXI9eTtoBgl1MxcKB45WVKzJz5Lzv0vYdI9/etpBud8rOvLa+TlI6XQnIzAsjcY/tm2cbW6NmzXnSZ9ndymAkcemGGgSAWQVrhUWc2tYCtTm7OOvK+9bR+t82/FUCBW6NFPb7GPch6L3TV3DHIRrV3ydA1vDeBXixmrGAKA9U8Mhv5R4BT/3MKnY0rcDt47YtgrIlojJDv2zDVTZ0PGxeSGOruYO5W0tiPrYmQ4erYreGhl2cQcwmQPGROLFR6hWQa3ZBhXNEsasP9KoHMlcrcIc3qhpaJXGCaBzuG3lfzO1IR1TsjmZLVWSZusg138bilU7R0VaYTT9WB1nQm00NSizRxowMSe3XVF1Xa1Khoqg5mONKw79Sg9LkcaoOl+0tbIG8o5DRq0i09qk5TmbWSpgs8SQtQq3ee04S6z1DM79t3BeYkRyTJ0FOZRptcFUKAYpZvYjNoHWMYZTm0MqkFoQ7AFgCw3A4OtLTZZpXpbFRatpYJTJ0zO623ycrpfQnm7HtDQldhHJqHF54OoeEwfbr/GoMqx9BtWTnEZ48kNyY0Hlxa8/GSxbo6kXEZRftE5zcqd9Q5ceW9erk+qkNubJcTRu6sPK8MXkFRsDJ6gyxZv8RiCYS9shUj4jgjZWjB8SXDmAMoV5W2gYie7516f5NLvRXT5TrUdooh2PpVClwYXSJq9I0KI90imcyBs80fA9PpDparwSv1WRekuiWZ0kYjjKJED+y2M1YjvlnQdkGow2Vkv81g39LNLvnDVKk4FPAkwZsRTkMEXBSqU8YmqUuoM4QsmldLoVRIgXhLmTBMoGBP0Lqirn58Tweq9nPjH2Wu3d08I/NC/T408Bqo4urvzYv6uFFZ2EojURF/VqLQolU71pXNZlBCzQikqNa5LzpiAiT2iSussmhIHJpjhHXB1CjszyeAysw9/98uHuLfm5J0s0u9HYtV9tuHpzhhdIXumA0sd+KsbPhVqZPBb3cy2LrFAAgXBQa71czEYux02zN7gtF+Gdn55bAjM5LqkAhWAlguN4lI5qMqJTQQIRkAbTxgykoRwJ5KU9eE7zp1B0fjBDu37gasiI20NwqUfdJW8mjhPCtenb3ZoSyd2vm5L/xg2DUctIOi7+S1RxhQ2CSxbuGdLCP/9YyU91tUiH91bKSOV9w/6xya8tobXS/g2OvqNUlQhp6GCcUxVsovTYHY+sr2RqlsAhcesaIoZPgi87PZ9AVifWIpuEJg9cuI2Bh9vVU+0ymW4rdw1QsQjdSAnm0mzfYdkne7gUImKMRQERPgVkbJcB9aRpdeNlkEyjuO6cDFGte/WVKcLoVT3aPg689gBCnKSqQaMbS4shvlt8ofJ2o7zNtkyX7V1LyljfawpvK3AxFEY78YRMoiTkEYKXovbPNJPL/08eCCMeU51ib4xvxq/wFBHFonCUMBUchWUPRljcIIJq2SKQR3LtrBK7DmJ5MdWla1ZVIya/3K9PFlUGzlwKqUpZw54orVq5pRZjf+e2BWlO3t0DlCAwj6wf7Oa3YjBg3Jx7NdOV/ehgaart1+nokp/9WcBnUVHUWPid7e0rHp8PkKbUr15uoGfQpUt4TGDQNk+r6t8PzisEHSnH9sq6TfgZ5ijtXO2Vh+tL+Bt+NryJ0ZR9SNsnf+r0dtNWxsaQ8T5xhqa0N7LhS1xrIQ2F+lZWG4ZGy6jAJSzzJTp02Lelq5UCveJzuqjoDuZp4zUN42Cml80rWvRcr9rXKHPClOQBZDW2v9Kdw1cZiOnuyoI8ZoQN9Bo6o9A/Og+GXFEuznKWjh2+7HS0fbFYnxiQiD+CSXa6YIbjut17mpiDcwNW1nFDrVToPWKWYKprbeCl0MDLja7SK/gEiW7qWOoXEowLDSxpcTDP3wCSMCXj4qRD0xkF35Bymli9KD/qPrWujO4GqzRG4v7HtWm5L0r89tggXr7/3huvEdJuToz9dygD49YyI4QaXsPy57JcPea5R7a+z9xTc3Q4/j6Lma470/Z8bckeH94ctBQ6pncSXXzFTyrIyaDKP00Sgt1O4ERnpe8uWNh1YVm/evFu3vkcx9ukfl0f0Bzi5OQB1K+S9SB+sFOUmidj49tCCMINBWOo5BM2jLeMbdaCYmLIx8WPiOsU7okiPeMTWnHa9mcew1L+qpMi+p9Y88n/Lw6bJJlRwlk4WsTCqajVm20tMeyDUt+tTf/Vh5PGk+zbDeoX4VVC0y/zXoSTwr+2dk8FCw8hnRYJK6MDsL6gk5timc7MyfRrf9BBg326QBRIhrP6bTocgbpRh2P1Yt3WTR2uXjpvrHEwxXBqPF7pHsPC6Ht/KpiN7cIHc0nskLkrafhL0oC8IXhDn0KcXiYRzQvIlTi82UNp6HLpLHW6S7Uxd1lIxUT3+BRV5ewf4NCuRwgeEMIMyV2767oNcZQEaofS4tQlkXatrbHErLSugy42VDV6wvbiaBjVCOsE6KGQSTXFh0qLDXaJnVddFWUO4FQfEvPX9bsSk9jwT/KJXrPH5JUbtTr1IPTFdZ5QqjbESOcAMnsxPIub6uDaR3HvmRN3BEmQq6UzFAODKaCVD4fKg5i7AHj52ec2SRxAZ6gWf3uA0A+WRaOKbUZYXeKokPv9svlhQdNsUaAHmjJJ4l8TOdXUjgWQ9lDSmOKZj+Nyv6tNZkR6cQk1ixCGfbO+zxdvs2t0wz/mWXsVHFOQx2WzLKpBX/VclDZgRrHo7/OMCRtGxwvxvBnD7q3cu6XbQAbV9eZ/w17SwnDGwkIKcNxHEW+WbAea3kKCBV3JW556c0f+vx4A9xvSjbMiZfMDDwmou6Fq+ozTZFz0GN/j1HASEpn7G4KQ2eZ8SJuLriei/I2FYQCeJ31e6mdOuS6Zdt7dvjh+jcdgwr+wIZkk95m83R7wrbe8/AJFVVP/FNjZp8Lc2B/abRf+1Yj0pTGtha4rSQ1YF1Uig+aICV/NKyxM6oc5+9jQCLv39JI/hTr7nee3EmT2rcpPec2BY5c41qShFZIPX1nOmxjwWr4depPsZfak3vJ2P9BOBm/4wDubyHqe2Gly/x+QEcFXVt5X82ejkXbpJ8QNA0JV+AxjYdXkTOhWn1GAOYCzZOzxC2cvb/xTzJymRHSz60EcmOLx
Variant 1
DifficultyLevel
546
Question
In a classroom there are 24 boys and 36 girls.
What percentage of the students in the classroom are girls?
Worked Solution
|
|
Percentage of girls |
= total studentsnumber of girls |
|
|
|
= 24+3636 |
|
= 0.6 |
|
= 60% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In a classroom there are 24 boys and 36 girls.
What percentage of the students in the classroom are girls? |
workedSolution |
|||
|-|-|
|Percentage of girls|= $\dfrac{\text{number of girls}}{\text{total students}}$|
|||
||= $\dfrac{36}{24 + 36}$|
||= 0.6|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+fQ3Eo06+FaOm1MSZGNpcVMN2R16er9UDroOvUr3m6AQ9DRU6lzDLePU6nR2I2gXlCzAGb2GfB+J5d2jxZCvH2JcKV+AaMPNBQU46CS4/fIdT0eNpjmZEIVlg+piumt3jQzPcWyqD3heREDtkni+GQwWvXJcb4kqSyqHeEH1zatbvDeiFljeRyNuO6U1HzA7scA9UIrz/fB+gm9SyjaLdNIq+jdfnZRF+ejEl5r9bGobgGD04SfDQsmHtVVBLobxP1L0SwY9oM1MOHbBWY7YojVt4ORdmERhsp68iE9/OtwnoprzHRVITISrIdvuVzSrZLcZ4dz3umZUyBwQ5+r8L/9QRZnJZhGA/Pytc98M/UomgiANZ2ScA2LEby+va+6BfpqHzv8w7cxg5MhcJ+V4TH0x7xm3rmmrDuFOKayurhOIZPAUiKfzU1EvKt0JzyEilq5mYiRkzz16yk0NHIxBosMgMaoUc6gvmBB1DkvQUNFKqIl5HDQwpf6YqTaLDu0lg8vAYBExYv3NS+ex+ExVkDOFyd77VwgSjL/jFcV8gYkboB3fYk6+lyspKWcOI8lPs5jMQKd7SjrbNC/9V3OTdY+xQguUw/H184+xum+EYaaYlFbc8Gqyn4XSklC87nJGpZSpdF/urNdibX/isSFopSaevWv5KYkb/hPhPQApHLoXM0tZO1C/welPvRE0b5fAqm8IaXoYlx9j6X9o/k05S6tqi5aUlTKgtK70voRMuAn/yNUwIq/YrqpQtN8aOcnwjyG6uC33cuem5DMpLzmseXKT2Wrttnj3cmrNmqbG2eJcq7qbi4HXE2vB4gKlc7Odu5su5JW/XzZAuDQO0jfuVJRIkRMNFEdDEJJWdNrCjn/Dpp7UfS7tXuMmRMPDU2dTOYusNDarx88atn23brd+Z7srSOOMPRwjJ1j76w3Mbn9QHxBPZvbNLI/DmaCp4eMUPq9+bIEeXCuVOFr3npOvKWMYobPSQFdulQi2vPYyMfW7PlvGLyJ5SeGLS3ty83/w+dw3iaqizHUH3lIKTfdCIHYpDOAccIDCjqpZ0608QUCSQvw0E09L7QvAySFfWF9vil82a5D7inCaNSN2PCVZIOoVNOqE5gTV0MKIL3C8TZqTo/rODQvy+t7sbnIuCWdQQsrIig+wsj9iFlNb2AzlHeovhBgRSCZsZaATTVWgyAMeijP+RR6GLgPezmVUW3Fyxjf1ZB/xcofscyB9x4ZrP0IJC9FzPOogOykvafryNrzGwiBnsBEvPn3Ksml+7etKYgzQHPmTfPpSfnae5Ol9ZEoI9T9jlFnpZJrc2cHM+J/I0c7z9TzL1J3KPIOdPezVg6d/1n3+gGB0AaZfPGHYVn6gzKFUXaisihxwOhgNMf6tX8RO1AU0wsNSBFb9+vRvH8SnC+5Q8W8lgiXa59G3NaluuAIQ9cw8dqo9TJTnPs757F4sNwlnP9tP8tWXx6ogEhQ7BuvbvWTYWF7PVC2QCZuvcSZaNtgG58IzzX+6a04iLlcAy8d0ImG05OFMxjXEFs2qBPmMjlAgdz8xvy4n2i0IHHJ27beOhoZQjlC2Jdq3NwAUn+FfU/CgKkN66eKh9oaYrCw0NCiQxJCHG1n+EQUCxWhmejm1ey5cIz0BRrFQspQU3JVT0Vpq5gFGc2ueycZQG/KLmcSfYEnzAFhGZpVnTtiu4xrPBuGQOn90PBkScbI7twZa0HrBkT93hLCmF93lLRkN8MKCh8sKp+0rXMQuWH9AeV9niq+qSc3WvNvFXsHU0lvaJBnztImPefLHZfB5pv/nbMIyzLXyKKq/Tl5wFIZNTRU2TUbuEpZlTqAyoAcZ9NXLONPeSCLyImKMSeVUYtB9hNUdECN+1AjsvclzxGbBO5JOgm1y6D4hJ9qpzrp7fAi4Ww2beitbiQg41w+ZO4DHPrd/z+Kn2d5qaDA1h/OCy9SV6CtrEZIK66cvJ0AMGgctE4fD20QVpI7Fr0FaKWy2sbXoOlLNBwDHrub+Z0TEheezm6uvNKy9WHgn5IIZriu2U7DmGMFC5YjGPXeaHJ+3i5MSv8R8WgpZBDRXk/1O3nNdoNYeUbVq4Kg9EWzN2iDkXbfPd6PwlbH5kbSOYMivxBtBbjsZYhXEtJsCnwyYX+cq+hIpSFNcxW5k9RBEvRh9lu0ONGlPHPS6exFYMFCcnQOzh+T2bLw1aeBEZTP3YhO+UbaKpcupIoP+mB12UGnvGe42p46frJsgNR/NLCLC1DjSqMiQBKPgkFt5ApBZ4q2k3XSp46g79NRATr1ow/zm3d34agtVlQr3R8i2kCOUsUlC3WN4dmIVJMJYjptLy19qjAQTwths3KiWSdzTfq8MSNdRB2EFeFe/vmzWt9bA7SuWXeqUyMb6DWM6uRO7/QOT0rll2vhwdSY3iAA7EAJmptQpfgY9QbIorpZxIS5d1taXDkmja7ondqA0oUYBYxQPCiewuwkMdmc+KK35Oq0DGfcQaOUPx2fpJCQlA9X+jjLm8MuT2GjZY8eTXLWaB3pe7ZznleSWQzsgdZVX1NOHojmv9k3+az8+0miZRJAELkPX5VDZn/kJKiUPDOPcqnbKnknPTackb6DQPreC8Hfhj4+++Oo8idIOgrB0zOv5JqWVzZGRZ82PPp4qfHODKf0vfB4ogHeBe2yzkT80J0eigh8u7VV2sL3sglaHltKS7CdzsDJVJLHjTF1ZGMWBdR/Nkpa3PtAlK0ChX+XlgThJxDJZQPmMOAfvBWn0aAPHzb56AlQU7ps0JIntu3XTT2H2GK7+TfM7xu6HN3I3nHQs+aJgG7BqtUMWmakSltJt6T9bkbd5MiGqPUB7lkLF5/2V/uw8XKacLNkSs3ofc0mTWpgYtq5gQeS+O0RYSEkbh+INJYYFeYgeYwe6vZaQxwAEnwwLYcccUjQ2WGkTEmqGF9IMQFVpUn1FHj9AtoOZm/vQqQKMGitJbzxH82naOPhRKjPhfr0KiFq+KbNpCS92ykTjLm9SkLcpQlQDA4sjIFAVuFGTGuqBYK6QnkVx46PHRRhnWpfYzGoRej3tIndzu7Gdi20MIVCURUjp1qtUXWC0y8WITDQDyRL7AkOKz+etj7wSrUK4w4iBkR+zW6JtgGwj0BZ2NnoWgu7NJ3INHayDW513pAtPVXbBkEHE7o/dhFd19CvU/XxZFhGgPDgt1P11Uea0jtzU4ltOhhMEp4Qy4hHNjQ9j1vA32sFQvzYdTQ1tn5DSCpMPyCPPnI44L5uLUNgvtij5p6voUQeyRz9k1ZZ0/n9jS7DmjDEM4oToyP+/JYfcadwF9uiw9TF8LMj3pSPwohNa/Cx7jzdJJ4v5IS5wfXSN/PTmXikuxPnrRHh/lGSE8rAFvfl6KGdX1L/88GfU7JrJcoMV7jdKBlXXmnkfx0K78AfKCqALlhA6VH0RDzOIzeZfmxXnQe9zLVUlRtHaEXWthpCCvgPPN/jLfKxAfmrYhXZH7Q5KUaf9YnN8MDkNocgVtID+C7rjJynMlP8hTyr151iSHm1AwnGU46eeiHmeeTxgSS7yUpIiiwhXzoCcXFiw4unIXTCETGJCcytBMPlfWowhTJUPoVGVxftjhLlFvl2rstBckPp+oqyfiz692HWwwFvIfHLZ2WJCaADs6WMhPZJD3Nr1VO5NJYZCX8FNHieH3L9APj6H+rv1Cexv7uQMbWNlq6nxAjwvjaOO7kZi+dfIQLqezqsoVcBpoKnGNFY2fTf47DzUZyzuUWABStwq0epGKhrBdZNq7hx7OD/UTVNyLROzLoxYhFJ76vEPOPN9cLkPda+XyDCATUS/kJxAK1pXVm4kfzvFDL2SONbgcBrHiMMA800yWvaYEU2WZiqWPq6L6FI2d4P7mk4zTBSLUXfP3+sS7p+MYloBuGkIM2cP5ZuVaCfYVLispXrZMtn1HM//SENw4IE2jXw1cdPJTDjW6/uJwRBFxOuOrshNEFOGxMiZR+FiWu3HJwW9WQ7Fe+0ZR9ECdfiJ42FTbxCFtSbnVCMYvcX4kK7NyjHoC6j00DS4n0BvoAnd1CLDU6k18qXrIMIr4m8rpLeWnCn1np+iJavoWwmfIFbtfH0GuoCs2kXDAX9Rb/TryveP+AjI9h/EEC5IIWD7EFTd0pS2bjIkkusw07PXtT9t01Ni87CgRU7kkbxUk8nrZpeSgXs+k8Bnu/g+rKvdsUHbNr6DQCn59Apfg/U+EFr+A3kOLJ3RQeguq97wrd/kimszSOrjhRYprq+o2biCCnNNaexvXQIC7cPRo2VJI3HiZbYnzxndtxz0aK/8mg70OdPBlJTapuu8NFeqcmtckuJxjvPvfPBdrypXzLg4DX60FJ8SKLThNZ6YU9mqdpWpy7ikesPbHa6Q+9YSfool/3k3PEl7qzbrzmtCQybEulfmJRCHnmf+ymXFCq99VytszM2iAZhkQ+Z+ErT1e5ROuFdNw8BEHqtfq2VkhMBs/+O2pzPV1IkiIbGMJj+NGVPa4L9dY7Z8R52+Bks0ezZTxMZ5szcRqOjc3IhBdwBAiHke4ppGwSLwyWhXkEIs9spkwjNuGW9kIK7B00UEmUIS5WwfQUlQlM+m7yu5sYzH8cp9gKVERy630jBVx/HwnpTV3rKjVVzDXxHgDG3kVOVTF2SWCLjhT+RJ8/2jLQAp1Yd1bhZJTuC59cqWnh7gpahnvmQwqceX2Z9C1aeSAzPJulj8n7bMbehBrz6olW1vb/du+Za4qGv6GAX9G7RgaS2doKOtZYGRTJ0Ah+KuJY5Mmtk/ZGK/oHqwhMEEqzNJlpWK23+VMaGDiIBTAiUv/Oi05Sko7gr++C9qj9B7XLXW88WeuptuO9Caj1hvHNFGnpu3HI6PWAoAVw5SW2KAhB6C/U9WLvIvltkxxApxrp1Gya8/Rktkn31nJcDk3VTF7+FhShAi8x5bA4xwcC/yZS/D/bAxHedXxnPeSWBMj7EYrj6p+OFBVBSLqG112bNmzfXBTyi1hi0tXEvm8OISs11cYsBCx2WcHSXC388QSKYe7OPKo3UwR6qnp5FZd2woIW/kg8fadPIZVdbBkwq56fpun7GDU/5CAIp9XdciTP4rkTJt6iqYC0bXGnYzYJxgPW7pgF6BxqT/NNdwthKmWo5TBYhDH/6X/uR6M/fEzVznvpSVbYRyHIZZMt/0r/HsvemQpJx10YWBXeW4sg44OpPIBtAZIMJVX2mZEjBIKKgrU8FDZsj4OjruTbJPwYXKhVZxjbr0fK//SNOydksdy6MECeZ7XAcpW8cTE3Eqsw7GrTHrXIhcnrlYaG9C5ftmteTCLyj3z7zG3c2OSNkg6Su6b0wc5RTmqEKEi3Y12byp4Pk0Yt07VuglwToEXoSjKTjsxBc3IXuN6sfsoeOEPgiRp4TUDQcb5liuWaMU1k3fF0gS/C4vf3sk7KOKXHOh1JOMB4mFLpzGS7AK6MD6WgSy8mWT0eVQ0vgAtLhbAK829YkowiarnOEhzBroBUK+E7FsU+7kc6SJiAg1fBQ6dRsLnvwF4W1v8V/Z/pFuZZi8oyvE5RZCBJwFcrpdHewyDLkR2tw/EGQcBVpuiv3RaWMoItl/4GlfVr72nTFLx0FzsSBOv8LB+qYImZ4UzaAQrv3kDOTFN4FSP7gSAiyblgTomkqIFxQMtU+WNJfcMxtUUyfGZJW0Vvv1wNHGo55yZksnCQP8Ho+mxcT1Zpk8NTfnklcE49yaWXygn+ERg+WQ3H3+TiKP+aXwF+vBtq27i+CTDCHAtjquwO4dpi9kffPBQ3tSRd5nzRH98uVSYwzTh0ocUjWbsu48F/nM8vakmzNhwF0J58O3kOMy/WQ7UFvGXRA/2DEk6K+dbodrGcLcsLlLZwybAstF2NxrRvSRdVamGUgTf+SJC6wRW1/j0dIXrUWMEmjG2ac/NW7Cbd5EQGazX9IeCoj2ULzVrW5Uqv9c2xovlN5jCHewjogwlJ7mvPo1xN98VVhnv/yNecTvlJ8bN8wMr+T/ivCMNCbcg/HXiLdeL9yYZ2wQmX2dhMdcReaZ4vqRXhfxPBLn8Hxcy+xTK9MtjyNGebp5m3X8pZRfjWbZ60gMKVnQ0BtOuMn2mi/2mFLCyV93X4XaJkdg5TQpX4GiljCD8aiTGqksRXQMATm8Jn2SX7UOjqS7Op5d4/yYkFL2kjp8caWrKE1ML4VtL0oWnrF6T3RbvAsiishpMNtd6FhWkO+UPFl4i9eY/DH00n1F9azIM0VziOiYqR+fN8Pp/UZ9YQ9m0U4Cgu6/6MhX36VL9pqVxj/2cfh1xMTosuo/Lv1hIl9M1fi2lpPOiIJ5C8gkzvl1QcUO5sfuK7gGngTZz8Y7rwEzwCqlRrHvwOMCAybWgDSxOj/DkT9Gkc2TbuqBmujrm54DbokUOjzcgVpG5Q9cSUA9y3TYCB32ru0InTHa7y+VlHxIDxK88etOYO91TYEijNFJxqCeR+WDfa8tgC5dBIwU4g1UyxrTXH4Patu4ii7PwuVRKrQqR4cyN1/K+LLeqjOA1K3K3hE4FMBMtbDYISAPfw2geNcdXc+U8ljvMCy5NieA5N0MDUvfiPW1JCty2siRE04D4QgSyQVl7SiLkF6xEhuHghTS3sdwOcGe6k7LsTVQKaDR6zOlc31gynFjm7RZ0DRB0G+urkAfErizVOUKYTevtOYovn+lBmbQH/hw7+JylRkmWYhUvpFjeJZT96L4CrLN89NibtC2Zi24ph0ma5kOeX0/dFPM5nlR1uUIWSKd/HXLZGGWantlUNRGipwR0uUl3S0J7LDQdLsQQ7RppI/SNy1WRIQ2xRfKiVE9UJeJkX9OAw4J4wAydxXlzhYL/fNPAo8dkbn66BkpZmhW8QgjRsyauSvbTd2q+iTFY=
Variant 2
DifficultyLevel
551
Question
At a dog show there are 15 labradors, 25 poodles and 20 malamutes.
About what percentage of the dogs at the show are poodles?
Worked Solution
|
|
Percentage of poodles |
= total dogsnumber of poodles |
|
|
|
= 15+25+2025 |
|
= 0.416... |
|
≈ 42% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At a dog show there are 15 labradors, 25 poodles and 20 malamutes.
About what percentage of the dogs at the show are poodles? |
workedSolution |
|||
|-|-|
|Percentage of poodles|= $\dfrac{\text{number of poodles}}{\text{total dogs}}$|
|||
||= $\dfrac{25}{15 + 25 + 20}$|
||= 0.416...|
|| $\approx$ {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19nIZtVOArA4qR2UYzQnQJgGAIAXN0ID6UnBgrwpWq0rHqc6g/bxauOaD9bz9suDs+NhlTXJ0BKcrP8Ji/y+rp3/QF+gZuq0ovBS/tJAr8kvgqjMoesaq5UnB7DeRNYmc7WUYyrVD3RipBih+ZP0bF/rKvvKhnKklN80otrcnSIcCNBE1tJiVBdcBcw6EvDCksNAlqhCUDJuKFdWRyppuqxjJThQ6aXV+6zqXnP2OfRPDWlq+e/PkW7jozdljUhb6B7PRaAB0KmYxetz6oDbSpTpRILb3D6YHOM+v51vopEGkkPdEfzR8qCeWqxUSTTxYS9ZNGXwA9imLkhH3t9rI1V04yVZfGSm2nYzgkfNpG8UpfBuK4JVLcav6EVr2hMXHQmzJgOH9kgKf8Ehsqq15y530nsreTK0ejuYhhA6qEgulFRbPK1xJhH0N3dzQ7q4LM4n54KZ6wAjeZCCAm/0TRUNLAR3kYxz2bZOFX/ddAAw4/a3U0VCQdbfASmFtqnvAClVaPruUf04BDU7rGNILyhPCUiA+ZH8aMOWblgJutvh6ldZKBFEwAXFoviZpPMXyKv8L4AGeqMvDrdlrI/Vg4orYMlyYr1pjvXk+ZB06BSq5WN8zqTwH0UQrCLyUgZnqyitrdOy8SmsCdMWacI6/e/3bmvPDkZkfM31bihTXuaWFxukuxIFFJfGdpqmIyD7JOK4XGRoJloX+SqrsmOmw/89LMGPJRltFo1QwTg87HF94YX19zchq96zvAplbHFTHMzIYkovLUydtkY2x5WrtTdroArGQOT0ed4MqUthst8ByxYaE1T62VZGraHbkjyNS5tj/xUY/e6A003mYm8k4FiHS0bBZhHv0fEYrWBOEDabXBtPEe1sg6u9UxDpJbq8klFxnpKx6ahYyUpCZbxv3VXODfcbcZh18pVIbc0lfW9aslM9i9RqnrsP759mSCPGQUgARP8EAlvNWJnAkraTazIGzHTglPyQZ+0DNWVy1rLxEgP2fymnhatWYN0LVMV67qm+n9mv9j38cMJLPKbKVn6q+2HCqkDqRiEYqD0F2HklRybbbMfUQLHlZ92DM7HkIVYjfFYZLfJv5wpqnSoje5wJb8xoGR2RN1mdVFi9no8gHFnUn2XNSF8pZTgMdOTZ1e2gO/uJPcSHFIzO9lKMCzb81PSqRuZ5JAT1RxdwnKgJaOCYFelIP0D4ga97UdxavqmOtXLuhOrW/rJC/8wfD31E2/ICzXlu61BNmVJXcRH3hfDM3w2iGpu/vwu6bXjfgb8Du4lJdsI/Jh8WewZ1YJzjqyiwvuNlCFUje7ya0KxznctCpBHRn3rPveo9sBd/GkplByNOOZ4kVIiVcRfIIrx43pRsexQnn88TerDjssv7bImIMZJ0mOGa8XwTVZ6PhAZgSaRbO9k4HRzcNphAPMcJRDALastwF9LUZ3bg+eeve/6Y8s1yJe8+4/HooaWTzSKXi0rtTVlHmubw2vtdJOmnPSnz6Y7pGi7q9aNbaJ3NhyCbn20cZ/6BqH2nBD29RBzQRECaYBmRW5pC9n9uVQckAmLe+se8lh6CsQU7//SXh1pFu41IxY3AthPTdgyXrb/E/auUX5MJGk/M02gq6OP8R2X51Ku/CJfoA/CNtYaN3Ccij9l0QDGMnvUhM2ddGE93rN9EkuZaWbkv+iPJ3nNksYSBeGqpAOLct20KD+DTr0JhFDcCPpYqXj+TdXgTNkRtlq0ReW3b2VxMLuxUy6oOg4NvMLLPIyBALBLCD4g0ziniCfkIriYyPM8iE+dvBh7AZ8Om8zuIFGgEFoUlGl9jv6qSSFvSYf3nIpA6spES5cDzoGff4zqoxdMz5YTyhGqoIY5pBHdnQvWom1lGaYMi0bBS4YverslfW5UNnUuMQ1dfSJK0skT5ATKoHchcOc4QHYY5ucU2nOm1o8/3fgiquruifEU/5zklL3jD98D4633IgsWoXC0gtgqAIuBl4Kb7dqHwXkQmGrvRuqthnJcFNmuvsM5uDssFpZadoAL7IZfVmmZGIwey4O7d7eSEJm3rN8XXY5wTIysHPDhRpqFeY4mxBSpl12TJNXgg8jQva4h5pXIhuYzc02ifTWtryYnsL0d0W7sSBLBRmBu8KwGixybhgbWKlKpqvBuiyIRtGzbafRDwq+pqjS2HwNF1B+eKjynp8/SyZssQfFemGV7RE9ep9o4MlSzKN9XGpZDpco1HbpsQXfhWboo4/WQJd5Wxu+aFSVsKMZ2fDIwRT0xPLt+ofpWgLfzAPr8EvBT7NjMyDDBRcGOUgUx3RUadRp7pe9IDQkYW1e1foKlL1Y1DEyemq7s5IRbeZM2zu3RzrLlzONd/uihR5cly3OVBVbID7f2+zKOjEzwmhKAH/HdyK1DIP/vOGSXPv9xfmOs6a93tUUp8L42K1PmP63Mahn+HzAbuoTupQYS9VLJ4ZVgy2dZBstv6f29iPOxSXodzSgeN5H8IMuiYoHFYPAlxPSi55VMJRrYnukX5Mvc83eNLckXELfN0vd1z5ALce03S3lgxCSAuGfiRv9iD9K609qNfyMtqI+G9fXfMyUtHt2/JR7E3MkfVBaaJCYs1TYEYMTQfgCxdVsrXcO6awOMzqeUZRgH9Ry7+SUtpQS4nSZZcyuEx42dV3P7rYC0Rx4m99Iu7SDPlVAWRD5Eiq+X3cDq/aAc5SoD98zImPG7ThMyJbAxHnriazVdCnaS/jroY2wo71XiehsWg2/ay/WbUWKKeeDK93FBcGv26vQ+DQzL3703WlH933EjNuPA3ni7uwrq+NsCrwJsnNGaKmC4KayKNC30QjTp6TSAWy304ABeKtudZR/9YpCW0hX8bEp8h4pOxRiA09o1w7dLtQzK+HHhGpMSEuSokKllArzLE3LHV3JAAm6r6iQSiZdGCbG5+KC5ai+23ug+cY2h5QrxoWOAseB5mCKKxiqoEayNfAoGrx2coDq4E2jJRAP34X2OicuPOvkSFCAIoZ3mc0LNf0OhuESu23J1wLGCL4UnpuDeUHOJYCdUDiPzvsQMpEo+ILjWTRa0dH4y/cLGiVRW/Q1YQ5EVeGurCIjuS/b9LHWw3uxEKl8nLtOFrH4rfiSWPsLQh/K7X2UWOnAEYgc8KGMNGrq7Acf7vYvu4xjTW93oTOdvdAJQP8Ki4GtKvA0hGJsb/ozFjdV0abDMvFJ7QHWG2yxwejxfT0YANh/Z0X6YcatugbeBrXG6jPcysWmp0+mJD8ji5XJRlZcdWW863erw58+VOmvy4a222Sxy7gFUwMZ1RfYrpy4f/XxIZYyx1r5Mxay9kkL7YNe5gVzgij7WCRXlT4vompJwGLNu6y5p8nwoYhEbPhIvHnH+As355u9vtp5pL7f5ek4tw7Pofjzv80WdVGjhheltSFqSHOMJszuKu9b8zeABtfm8y+7RBV42iAMMvnlpiT6wPk9gJfpG+zAjvdX1j6A7AEgo6ku5QFTSXKZBOPqWF+tTMOE6e4ueLq6Jjr7fym2+QSCIMdSf9sBlGs7oi5d8X6mwudTiwVobyd4D0LzqNJXA04DHQycxVDHYa8MDob6Ex8rR+p0OcrIFy/rIDtbv2uZWDi08zx5fGX9KuVrA589NelvKHSt71LzEFvcs7h+iEcmhywu9o6tLJyK5whN1gaqY6zO5jdTWSwC6PR1fT3KCUJcUQlCnwqp4Ftl7dnRn8QHACVsbjfm7wIa+rK37TWzM8TsIGFhn+WQm58Gw2p6BOsIGv1gC3zcnM+iltEvd5J1278UjgpjgyaMcF0UzKbmiI7OiMWi0crJrvaHf4+zUHIzvsU9Z/5n0kP5xNVwK955TCfeI2+iSdv+z33gaLu/aJPCpT0aEKywqh++y/4Bmau5c4CbhtA0Cbv0SzxetW5On+IkobXO1JGwB4Zysz3tMfrN3e1WOM232855zdCAtLlaI6Cyss4W+jQE5tuh072oaaCwjk4GuPCXml0aK3z0Innyw2GM7pWrmmChhWo37lPBmhagGpyVuPlSKAaBHE4VAATXllLF/pc97w1D/HVJxjO5qSEUFK9jHVx7BJ3PEwjN31UvhlGMBCKY1tDXugjrnn1/GLGsjmZ3wJ2kh7+bokM9dCKt3m+0VTZpuP/TLW8Yx7XwzSNF1pVQeQHxl5wro1MRDnGyNJxx5pe5CSuNk6bOg26nDOxUk8oh39sROLiM3U9i/U7xXAjer0DHNM4WxVlv67IUn2inj+OuqpZTwA6olfD7DHySWmuG/d+PAe7gRz3kUd9rO7D7Gt/DNKuSmSSU6h68TcWseqq02L4ON40RKfwcFd+aWDDOQAUU9nBylSUghf4H14nF54FrJkH5upgkqaXGs/qjfarcc602yjxLP2Jfvcx3I+ZjJdHgrEBsdOSYlTZqxaelU4QSRHcs+3lFidLWkGdAGUAzquRlkk5ZFAuGzM74ZB9fvWK0w7itZCSCoims31jb1aQx6e+6/dkmICtNrY5IYLdRcjbDIZnDXTyOyNayEJn4lmQSxoHUervFfPZsF/39a00C9QXOfVm7qN+pzsyLbueJkmdD0qp65tN2swhHeDFpfflGpWAvMpiOg86yhO8WLxXthz2swu+m9f/REeLZFwsPeA2bLxawgpi6vLWtJa7flcdnGRD0KrwT+qUXGDuOPmulLl+zlmyYobsz+6zXK3DYIkCDNsfC8ZRWTC3t3aDkMVu4UAF0mHqfiwosUFk3N86xi2qBY10cKu0Ksyx6drzytEscXjt4aPX3q9WqApzwdNGYru/GI1dsb8030TVp7Cu2jVUHe9jSEIhP5BBRN1gYoEj9XrFiZxnuxN8/QC8LzNylX1ogkavr4zguto1r8k/om48c2g3FMB6rOwbKAGRUXG4X0J7oGkPdykC69tk+IETjVHpFaXmGOjMVPFSt0WKGLeK7dGiJHauhXRc64VYbNnUCwRWWPW6dVmnVGOSY24ugVlnuAXKmAlvLRCLkfn130vKiMqdSLBQUrEXV97V9gLvJJRs/Mjh2mLlfxTzZxJuXglJnMb9ch5KkvggzkfyMsrDFxKLdfVDPPoXcComdfTxzraOp1yKxnWUtGtp1CteUoDVaV0Sq9kyowoBe3qQpauv41sRNE2BxnPtNMJFHGyE+RzxJRJNrkWXHfVSDv2AVe+pRhobwSbOo9Y1S22MrUlzZH2sGXBxqZmUjz/N1+U644d5flzRcPNlqaLHDKc+nGoMxvPeJkz4CzJ8VQdl48psrFR9wRKSprYm+VV4zLPVn4g7l715BEDgsqQ/LQenLoD/EQ4FclogdUxIVJGbzej9n4y/6R5cKSZdzfBKioBP1xT1Ciqh7T9wK0NzFR6GxBMLjCybGouFljg5QECA9XNoVtXou1fo7l8VkbZzwg1w8LEH204nW7QGZDABC+pD3bF26yIEr/fbAjx81Me7EXd+pFTlXsvMSL4uOr2Z5uwuCIp9pBbQe8fknDas5FTXald7Wjok1bWb+LHF+OFANRgqyt/3jgBtLQ7Wp8dl0wj9qzO4BKGy6cAkqC99s0R4WbPPzNT5sS1NbYlzDrzNnS/o8y9HKZdkDesU7tIIVLrv+4gueqnpx9f2rUXWgmb1C5n4leGB/cT48/OgdKc2SY4FX7MUBn0MEXSHdSSAEcXmknResoUC9bmbWzeODPAn5CHfJwSs2NSsqP3fNnfh1Nuwvs4lPPfet+c+b0uVMuAkAUpmq8bhbgnAqHJK0436Zc14qpuNG4MyBnY+bMr2KsY5DbsQS+Q/ToQ2Qw+rtxrCcrw0Ie4ekdxYh+q+3WDFum8KUJnG3KHRSX7EslHzu3EwQcNQRb/TooblnfyPvNgVtKcO/8gN9xyEVLAB6VCq3Ejcg5hHx4ozEkmX2oKDN/AloUPA0sBGWHO8PesoTLFlSjjitv2f2+XGGCBFWzDrSty8LLPzjQPHcFjYwlL3IPABtOoen2oj+oHSmtb/WD5sMoMFnwKni+oN4cVNq1LBIDSwWNV33tDG5U6Omig0x6CrL+hwuc3RDdtgAzxPKNHWcyPbLg3Ok9dHqxciGP0libM9Xbs9A6XrNr90ewpWUREhIgXpgrC40iuYyCibHnT/vO2W9y56nrdK+K1QTXgx6zfK1g/2VNOCkX3tjQI7u7fhLmfnf9lQ7IRz4Gn8k7fo8KD4RdRa6E9mqqezr0AyQ0cSzD2uJEyZLJlVXPeqmoJ/Q/rMGukpKYqSaAFIbeA393KBXQrfg08Zo5ev0AWkkfzykfMx/DdNjV8YnB0vxGt6DpSAZ6uzlXzQxE7qWIEcN5igcGV4wiorrNuhzu9HE6coRMBuvabJMwWnjpxkVyxH5BKtUKMbfhNZKkGQ+GXQ9pxKsLD9rBiO8cZDrJlD7X9TBQ5TUdEHNiXV7bVt0/87+uZe+wF5wDfnrwqRRuXfxXJzsjr222badoQOiLj62jBlICkCNFQuARQy9XIoRaRwFwQnNj/vt075oTn+OM8hm0wTlzOX/F0Wbi6Kpyg/iqdkdA8E0yW0f664FB+b8rzS9KqWeV8VypamH1YqBDWGEVL30O7VRx1NUrKfL/FJHO800Sjg3mM4jPGiocaXKfOxziVik11PAk5QCeWpWDwGS6ycDRV9Q9UUUpzdRdV3HWLxne/QFcW3F5ZIr5LL8HadaLuUZKbhPycHTvD1N9KnTuXSf8P0i7rCsejVb+U0LOxAr+XyKP6VsQIi7INgIuclbvU7HkrQUpqUW8gQJNq2CySweRCirNe1cMawc7AR8a/d+nnDsXk4Ogiln+YWvGeR4KdeFGJCw9++rF+V/4e9mYG+Fjba7CjhnD+aHnGo8oReCRAYpqMvB5tl2idTocaEhoq2b0WVJ766cU01H3zM1CctsUMHqcX2ufg/XOn4JQvj1EcLQi2cwyPYxg
Variant 3
DifficultyLevel
554
Question
A bag contains 22 red marbles, 40 green marbles and 16 yellow marbles.
About what percentage of the marbles in the bag are yellow?
Worked Solution
|
|
Percentage of yellow marbles |
= total marblesnumber of yellow |
|
|
|
= 22+40+1616 |
|
= 0.205128... |
|
≈ 21% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A bag contains 22 red marbles, 40 green marbles and 16 yellow marbles.
About what percentage of the marbles in the bag are yellow? |
workedSolution |
|||
|-|-|
|Percentage of yellow marbles|= $\dfrac{\text{number of yellow}}{\text{total marbles}}$|
|||
||= $\dfrac{16}{22 + 40 + 16}$|
||= 0.205128...|
|| $\approx$ {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19ZcCOjt54CMX/TCfcLn3aHEDOGcLfxoOhHBr9OE7o70eUMPN8rZXuKAHw55EE684EmZYW7akg2knQKbEdm28jdSbQsfITCTZ7hojIdYCNsfMo700OZF1MQTzEiWzh7TDViG5Y1NG2liaezQ9tdpq9EQ8G18x5310nXxxfr1763HtFPb6Sf+KhhZifapXEucbiAV8xCt7eTaeVVq2rb+l0sn+bema1ECopmw84m7rpxYddzcedXrRyBSK/DW3VYnq/jgOJuNpX3o+eHo/pCaKkPP8iWCYm+ZGpvyonpvWAtokNoQoKoPGC0sCvvrcE8msGfNo+nfhy4jTXLMzkdCuzxDfuELyhhlh3jFh8a5okfGD/n6cxikKi2QzrCNDYWH5UMnS7qE+WbL4rYMG4kPtHVMSuaC2Kewxo5+VVgfFhSGNbnJdSEGrH/fqi3ioj0S/n9DQ4Oqj8s9ROgkjhuzhBmvpziDGF+pj0lT/yW8toxfebB4SC5iemHYs1dfyRjPH71DZgS+Hwg+STCTMXY3oVxRrDxKCF1T2rWdVwUJ0SaruZlHhYuNGFGIyFuRdZtqwRqzcIntielrckMBSKQbbvI0wS2/2+L1Vsa/3OIXnH6qfE8MohVrI1YbL4meHrdIyzlyxxVMVXyDOGoGYNUYi+E9T3Zx7dazz33UCIEPoKRoFjsXABG3cdtUrl5gwVl5m3+/NyQVlWfJrpTgbZUBIPjMYh6LfJzoEhX5qaYw/HjyHEK96gV10Ku1Gp9uniP/+5MeTSAGHSTKoRdj+hQzBKAHXAkQQL/SafWnr+PLd5pnZQiiXLbK45DIvkUQXpHTCy54UGKBJPAxNjH8OEBmIYy40Vav90ixFeZu+MfP+8otv08wxU9VeT4vG2jjFTkebUhK5HczvVFWCA2hiDZ6g548I6W14IdZ5wOKtNR9FZD7MhJ1t5BIPP6AVn1j3WpcpNwykogLPl6u96Q08oqakgeZghrNzfuN1hv2TuLBMWu0PT36dQDcN5mP8HkheQScB6ZUKZXUEJd0rDr1binN7fOiWuO6JvEXfJw6odmupDFHoBubC4GnTvtz2a/6z1yBk9HY0ECbWb/VNjNN3G1W+moN4wIsgrQxX6DdYn4vCvuwN+Ohsr7rTJwG4e4rRttpVusxpMpDReKMKOUaqXp5EdBvn8pWbrdSWRIEMwJEZwBtukKplzXa598IE2/dmIJiVZd2+AvDC9SNNm2Q+RQGsvbe8hNUOUU1Il5i+AN+C1sFEC2PPcdFeLaZ42GlUowhOSaqxpZTIp80GW3YyLWowsBJeCG8NAdWZJXirbSsGNmb8njxitBcmC1auVFW0kH9/CbCYWFJNR+veQoi3HkY95wm+vyfawWVqKy5AeBZotp6DBCeWerG7KjRbTUNbhsExNcUftNdSkJj7dxgkiiKTHLRTdnDEzM/SFXgAqJSaRbDyOub3QZmsF963xydFJG5G4fuzDH3vaEbh7T5PDxlhK24cHF8DPlyOIZSaKvzqsiXJ3p93mTHw/xNkVqu0R8NMrXb3z21mXOupTpnmsFMkObo/cXx/e42ljFTldom4eYYZUX6fAS3X8NxGNd8FEZ6h+mFSnQGOeTjyNgKnSX9mAr3UxTMGnuubQoDYu9htkVqRZy3oVparCo/YOpV5aR6OYqEz+Tf40EYSoatkx6lEb52EyT6wBLCPzrfEonXiTLG/Q1CVa5KHnQk2hwZ4kSSxh3vF8OoxVPBEgSN5+l0kdjhdOLTxdCAbYs+qWWZduqVilM42QC4PrqRq6pSkjsSj1wihgvS6BAj6HxifzJ1lje/ZlWkGq++dp7UtM1jml1dU7cPF7ar7cP+JxhSWcR4n0G/l09AdqH6MDtPNBwM8PmTcurXTs/pXnkfRjIoDhUyNel//B8+4J84fqtZcBg16xluZ70iO4JxYa0XiESeU6NlLEIffAKESO0hpum1XfToAHLhwI4DtB3xcbbXsLC/o1p9ap+u+shFIJ28QKwU9I6XP0S4czRmCJkfUBh4FQFqS9+NSNC1JyFQYqgGCpT4eFBSF1rEnJNB+osVZboWnSbaNbwRb3RS0Fid9qoLx3esWTjs98WC8kTkuCAxuANUvj1NZ28epxq8EaltisM4hGKK7LdkwP1WxmQ8Rf1MOgEBMWD0NwJUvDPtmWw6ql675G5dJiry1ynxpxXNMUpqIUUEVB3v6jobp0luniCnCJ2vWsL48D2aciisFh+lk3myr/tv3BdwIoNx+/EB4Jdfi9TOxV0N6KroZY7JYMaAyucCcWug+IabJMmLcq+44u2aoI1uNJIHm3rITwqONXhx9ZfYMwY4FMXjYjkevM+cP0txUnaWi/RHQaYYFP/AKch2DQtDvB/wiNJhPArUmlwnn/4/hTGkpDQdtNj510AJQz8+N4Cv0YuPuioSkbn3ZsbEVgpgdecklbcl2KduWCuGF4WC07CKPJVzIPZN7QOHFJThM2KWpJYixoH+3KMyno1z0xw43ZIVc5I2FpbFRk4IvDhrV5OIBsQX+ZeDTnBfRlh8T2/YWQZuk09E1p5OLFP5zrsYEG45PTV+/slT7V5iAOTc51JwsQUqIDsl58gH8lhFpoAQePe5w+oNHbTigxKxCWxBRZaN2Tnr7TqRt0XS4iCs4FR+xHeSKSUfUHSDmJA31gJATW0hXsbYZXVY54lT+3ido0Q5uBF0ePBku7wHTvQy2IS7aRfrPsOIqIv1VijneEU+3SRH96faRcXDoHSeT5bW7QmqqMYAFZcbz+n2iSk4hUbx+q8re1cKIyDH/ClrA1tVAwIhZ6JOJ4lSnarR5nGDfB2yXdXX2TNlYwf5MQkVRuDONAQBLwTHmDBV5/aWAzgjIToVfNz7Rq2w2TXbVrAcmLn+yvdv7XhkrWsBrq1qH5O2BjLkyxO5Mp3Ru8wDVp760BFHkmdFZ+RCaWeg/6ZP3GNK0pnpvsllI1nQjc8SwLJ/2Bt5DyyHt6/PygfHf0DfZcaZkAeJ2rKyE8eD/fGoI4y5yucu73DSviFmj5z1l4tOWI1cGUOpVhNIu4rHeTFyC7JWRIqOj9vt9xRNKP+fCFMUHeynpXvB7n2loRnPmubyeKVS8YftTrr7lWfQeofynKvKLPs7b0k/ozKqMRTVRlkr4SaBMx33CdkOt9BpPv6lEhSMFExfivE8JcK8NDZ3L6XC1L8m5eXOUA9o+pOuk8B4Ny1NcmuJMIYBb+aJFTZmI5qHf5/t+NYNJ3szj6y2m0k+7sfefJLxgMj1IE8BjkkBR1jU0QeYKfVIr9t16tUktinzdnbIbntrS7CYjH+vaYdMiUc/Kg4kR0CRkC76d7oIztdft+VMilbqMBidtNp5jgt1kWER6FmsHGs4f7svF1FK4LNCf5S5ONdrkTUKn4soDnS4ZpTUIXYSvr01S8GJSrgEKddM7KbJ7h1JDbA9eTZFkSZgeJck7PZnoKiqwXMIRPTAFV2HHTSIkXfOLaS1FpqTT7vjjQnOtVVdFsyJ/U5jQViBGTlWNA/LjZ7an6mlQz0uvAJjltTB+LK3Q0fXSEr+yH3YLGpA7ZrO5wYf72YK0BssEaPEmDv3zalNXoVVFaiEOlqpGbS2gLrhXRpeR1nXxNAg2kBgJapzMBHPrie667jYE23mfzFkKl3bEuvq2WIYG1S2HbJwCBBWHgph15csuUW1LBK9/BNPX+Zi/uvGAe7gZ/yAgRTdl4JmkO6Jnr+ezPOiJ18HwI2UxL4tO7jHUTucbSXxQNlNBLZp3qiDhZ8/8MkZ5sIhwiT8tTpStHn1DKL0NkU2u5haqbugL/ejYrt7Q0/uEQZkPi6L/bw0ROIbxNJ6oX1qrctJ8FMwnbI3dr4xS+1j0k2Nv3dMdFfydVy0G0UwmvD6KEZe5EOqmPrNnyFfpDO8oZuxY3o5rDF/sZzcO8ES7IGVJlFa0wsvEpnE5+3WiW84WmPYPA2wZNoCsd8cSAYGWVTu5B3dGqRSs70kBZcEw8E2Auxtha9AoFUCHAOfv0ew+lBXqg1m7FgYdfsIv+9LMA0+QC+tn08EOqtSBLzm9R7l8Vm9+4dKC3Eds4NH3S9bY0BZnMz/3e6KNSNzdOjwm/7F+cNVFi+3sgwghpmIcVvYgzw8liN0//jgePdLwsvK38Q1qbXnZKFmK24O1yQFw0YzIMd++iap9bS8ZcMa7t7Yiwyhj2PYMNdReXtZ3NvxRpLoMdlXoKtN7uGStRwPlnGQcFVzk18h3wP0R4txwzGfeKYwSx97CJkxzUI2ixfuusiDisd9gTey02RGyozNSyICYLwGrLIlpLXFW/mq/TGGZorV5HmoW/L9IMZRixYXI+f5axKHCOrA5cglLiLAAikL8lhS8TZEVAsMpT3nkcn8LpKsQkSPUO9DGreS9eAUc5ahMGsGm6mGWFvITIlO2CemvMKkKXmZI1D5m7JCb+OPpSnzOJM/MpGazfHjW5guPy/phBW+HQh9hfC/cZBJdQ7bIrCR6eaL8OTp0Xr+F3v+v0EYKfj0Q5g2ehUbehNGFBkNe9f26rzZGDDkDZGQv121hr2ra+DTFJw3HqHJ8xV+EZWHsTWcqYOBYbZAP72Om2Wp/ZNEwtgBkENCSQ6RIDD5lL4PwjHeQpxD70Js9fP+PsxC9iwPdvkQxawIpEYfFNEXfC7bEDoZOfrPLIwl4m7BnwWWOKNk03XL1hkkqWFK32UQnXszrlTmj8D7xbs50JeZ7hxyoSV+Q2esawFnMLHpiNQ8LkwmN1wNukmNNv1/CkjgQmPjJsrFzOiCwwI78kEALEFaboNRQTJ54p9dHi8msXt+BihoVTJGKjmWaRQ2jAWf3zvw68cJdiLxB4u4+tWH+S5YUZ+nfY9z1Npv4FhPI82Eyo3ib89iDAV/RC+8VaSht2M6YrmQlhaLRjPJ2ivwTmU4YM0CF1OZd6pjfkVqHmuN4ePiTBIAbePfcAxVIfO3upZPcsU6z3wio0WJB8+i0lGJUhkm4AXkaHocEcsJCsRCNOsaRNH94Pp/GaL/lZ3l9JvGHQJEA0jTQawaVqfxgmr1o52E++XxBz0tj4h+csaTVSKoA6Y2zVOWbsCV7IAisZYmYa33SOusygbMUHvvv56s+ZIHjMHNJSWpNQ2qaflLr78FBVzuKF1wzV/SqN8eOpnL9AN2DVzvFPSCE0zvroEJFDhhB2pdgDNRcO8118E/ipjf+lm50hnknuwQPaYqgNaMGYlDuczT9UK85pQ0JpnBelMAEai6Ey/267B26s1XubCw9C3PBERTy08Y0j0wBMbqnO6EjSswZSPbh+39WpFmVRfry2IuT67ZDbqaHwFdHyUWe5tymkHoFjslVOiElpa2i5zTlje368F7JVx9zpni8b+ivxmHUodcT8c0mxmaMH7X3F0N3CWHnuHJdj9eIUWwzgt0CyDkl1Uks525WbpZVqftsFvVbekZQTJzQ4uPFW+M7/hJUOV09Iob+eXLfKFQhm9Y+XgUBLYsnirHWw74AzleBeJ+pTsLGT4k9v2UHZ9xTIUBbY7jkXN9SshMYaIgfJuLAjtsPISbgUa2Mri4XzBOk3q0SHuJ4ceNbMNxMGMynK7ZqrDIiLLFBMCWKQvsUWcu9EKDu9yaNILTSXCYx3+kRnpLTbAkql1StzbjS10c0ouHEodu6fh8g3nysI0W+zDtjJlv4/HihJchVrraOPye1fSnMFJrMXAkfXc9fn+9y4nOk65WSnxfoG2aozxa7Z7nZMSAwUL0yYGewJuzwxqpoGsHba5iP9hHNhFa4bPnqk0odJsBqxFc16uCfsbnwz9avgb70p9kU6qo76+ogYj+ppPZpRDQLgMdCX/1Mi1OXWJBswt+hIeWrCxQsJ0alsHPgNs2XTPwYgUlCylyg4kA1UblRyxoMD4b2wPRTiYPZwbKUW7P4hIf8+wfnGczDsRK+GcoZknyF8KX+C/Rt7N9MNQ1Hqw6+bxCT5UByDJgn+32i4IxMoZvixpKpi+cm53894e8cF4JIhu/KX22OElDVwS5OSMUUyQFZ5QEC/mUKu7Hqdtaw4P+8vW+tH7PFqwiP0lxipgYqbu+7FgCvurpo09Hgi+1xM/aVzEqElDihftR1STedHAWBQBqzX7OzFv75Wz3gc1eBPT/aY9jipWAoafRmYjWv4TsP9lupg+BPi+kN/4SqBqyCwpW2YQiBRJvgRx+uDglwmcYgkMZL7dmZME+YWTm+ng6DvFXg+JdtT465j1MscTFffZgVxtJL/hcUTI/Xa+qoprPoH12S74DCE9ODpc5ZTcPWx8BVYixnl67/lnjQEOL06sLq2KK1V4+RRYpXdP6eItB6CLN0zDYpuEmkFfsNa/DWmYSlDy1PD0W8fPTiH85uKUanDIYCECsZ9iRcMB56kET0nQhYIc40H20eRR3UTJh4P/SMV305UhURYdwJUMO6y584ugKEPnpPG83momvIEsztTF4HZCgfvcwLneqdKwRv74wPLV/NywfhbjUNTdlcAuiaEujPFq2TJKWjPEjWfuREmgl7jJ5pN5wuZ6pm9RCsb9mc8FvdT7Ebdd1/Z9IOQjVOU9iVHN7inOV7ZaXnzkOQFSuB+o96Z+kjFaQUYNw0U6Dw/UB8WBy8gHvQ0xjqjTQhLwAIYloaaXdVoGTLtGQhDeh+h/pwtLntQjwGTzXwkDcnTix9SIbkPhzL8cWumyHXhRNGM=
Variant 4
DifficultyLevel
549
Question
A fishing boat returns with 16 flathead, 7 bream and 9 flounder.
About what percentage of the fish are bream?
Worked Solution
|
|
Percentage of bream |
= total fishnumber of bream |
|
|
|
= 16+7+97 |
|
= 0.21875 |
|
≈ 22% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A fishing boat returns with 16 flathead, 7 bream and 9 flounder.
About what percentage of the fish are bream? |
workedSolution |
|||
|-|-|
|Percentage of bream|= $\dfrac{\text{number of bream}}{\text{total fish}}$|
|||
||= $\dfrac{7}{16 + 7 + 9}$|
||= 0.21875|
|| $\approx$ {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19CiX5ishlayWw6Fi8RaM1CpJ3wYCyLOMPR5SOP/nmWqYJ7DucdkLBsklk4av/0AqEULhPUauYzsuIm0KwByu1U3D04AUMXA+7HG+DYRojAKpKICQZzuf8ib0i0SPCHXuOgH/BWdvxjFW51EMOlKEMLePg2PbB+IJ88Mx7T1PrC+fielR+Co8Xjk/P6DXB8MMG6xn9ooDhXkO05FXtPj5Qryk96EekHKz7DBMeNr6PgOLIj7eSFokpkPJVKypgjo7ZujTv0H2bcCgaJQrWvgA6BNLJ7S35tB5i1oBQfp02YDnLKHOf5+Vnm+Ypqk/od/y1k9RErEnIBd1olx98ZIA1jUrAg4O+vXdd5RphMYfdJGZEsC7uDoDbAva+caenm2VjOJl11BEaFU2iVbpp7y8CKM+O0liZ3XHX1D/R025h5m8XgtrTXJdKQvLGHfn3TBHJKCOuP95qZgTSPMvA6pObsVjTNN+9+Am1OZsi4BoBguHMsZjdYI9jrJ8WVxg7jBrEX4zkg3OEICzk+2OksamF4y4u22QPvpgAhNYlen+8yrTB2b35OCDpjHA/Dlwku1pECqtuMjIzk5er+olMRN2hTmH7VyljVjpwSwznKgHRJvKsGv1nh8N5or8lpBRaTWFkc+/3JLu2cP2bcHl29Y7yRpOFvcBrfmuShMWLPCt8/wivyZu5JUdqaydN97Klvf5yXuG4bRfH7zy6c8/nbRZLWrUcSQrBs2yQMHgIlcA1ulzUkBY2yFQeUfoU2ZMqvSc3B9lnr9WBn9GwuazRCMzBY3ANOS0fEEct5KmhCOlBVYkYlDF7aOAkBnXe9XLG9WeMiIicBcUtmrXSwyGnk1JjyvpJfVEWThQHJEgibqCDMres4xG3WDYWN56ncGm6J65nbC/9lSH2yf7Ez3yYqDJqjP3r8EXBJh9ZlYRWELwu6rAFvfFez0tppL/zV6t3OpQi8+JnflifpCbkQIG0vYt+AqcB7CbQ3fkcSQNptuqCPagx5OC8LgBSbGXOgf7PHSw56L/yRUw/cE6RA+z7gV1Q9gUaSi18DUuoLtyhzxVdjuynRA6oH3AZFM4qKNApIqT3xtt5MI4AEj+/77LMocxm3sTZV/n1Q2rGOnTeE4hywaSA1HAbx8Cl66z5KEnotQtVh6j8RDU8NNOrZSChKiVYnNSuhVCPwc/VoZ91GGfAGx1rJpCveoz6DhQn3QuEZIXBnqi9NB14dfBHWOxN5bVbuTomqXLjQ/EHlmPMTvbFGP81sCmYud1BvWEJZtf2TzViIcIctZOLp0Y0QeqbFpDAJ6bvsSqRfn4fEqirUeQEiziXF1cC+BQL3AwKckAJiJpqH2fFMhxGlU9djd38It7O0z6ZlG9uJULcHcUpMLZhEoxy3AjiX4eAnHQsp3dsOYAdWiUH36m9BzSAt/clVMylAhpluSsmeotyFzS5sp4jxlHjdjRMthS4vFmAxuxiJuWww08SseXQN1x2gk7SwckrRqPxcWFgWA84LOCweox09AUK706h5RhobcrxkWeTVsjMZnJWneFgQ3r1L5f/pJhODWiuFpe9ElyGXdXj+v/tS8EYlNUnxOZt4LyScSJlbcRO9zaicMOJwWpwL8HVMYFqg+tn5jhJMOwv12CVqFr8kktllX2uubXCVF/m4gF4aCFLhW7G8W2m62V6mbzjxbjPuMbkPA4SKXlPlKR0J2qjDcU7MA9fXfG69p9akKb6BKIr6JxCD9vtULRavI8PpMCWEG3Ycp6UlbI1Uplai3+Luz+BEYHo3+XOIRc3hNk8Ct9J8qfmyz7tYD7xkGTe7rleIyYYTWItXak+ATyeh5Fs1pfYW9V54qJevbUpRMYQBqhzD6bSHkhSUghljp9KI6ZcsifwXg1CglPr6nZbzAmrMVVhf93TIuzbv2umtAy6WIBncW5h++em1pGDgqBCgLlgKms6bQzdz9omIc4tUSx4JssW2wyO/RIh3xoJDVrbHWN++fbbocBww+M88WlbSY8F7Wa3kWjtZT3TF5BRdUE52vxzGD4uq770r8brToe6DRJiplhdnINPJM5vuSeyRHgVs4+6V0bpYvdCzBTp9UIP2C16G0mJ/IYBVRHGnQ1lIEfcRfhuRVr5nHrfL9ETR0/CR+6CVX4/VFUNK0s7fYyotsDD3skbra32oqY2XesRFHCDsZuAaXznQP8xs/E/awOB6L7sPiKwoGYmBK6zoEOQaMYcsgSqi6fsPR2ElPBW8gSiRlcbpHfWmEOX9RmJ7deK5UNHedZWV7ngIRYu/LMFe/D1psZliq3EMKtAf9FHN3bP+tTNYy8UoGnzJAB9m4tG0uy7hD8N2LerY/jj7+c+s5JnOXtE4Dw+r6tjHpgvSPk+RDRR4jnkbeJ9sUU91SFtPsh+W9jrLS3wOynU1ab841ujOz1MCJCJpkgXZATrn5rpo9TnZ2LlkXEPp1vHzRU1o74ts02L90wnYwMf3sC1gxxFsUnPHE6fACF3xCImvL2JcuFfNWl8DGENOSEbLvMOjZE383ypRjmdDdpgSkZK8PamN61t8Pi6lKNcJdkU8Ks2mNgzVl0Oo2bXEPKg3UagLvuSeSqI1K1GFsZgbtEWlEkm9ORnH/kQPTFLeqkE5l0TaqyQLN28Ioo9m/gaJtoP5kZ5VODzwulfzPsNw/v8tfHq4eDNlcdx0fC/LP7SAVPQnMPS2CgVinF+YTzTTuvklxSCL/VtJ4eJwoU2m7i1Nt8FRdYtw0rmS8hxn0o3NV+kKnbz1rqhsTMclFd2pPinGo16UhrGyWE3B31XnpXDygrlg1upcj28CwHUgEuZBEwHWiIFdyfau5HaImZNIyFwltvOwDIoQ8MWiUFHGkhrp/SnrIAnQZ94ZatphEVGppGzLcivg0fRJMr6bfJ7g13loBWdj7HlB3HWfKsFolkEEam0mVVlkIIuSP83Nh0Q/2Dd+UdJAIhp+0CfRkQQ316I68LKh5PInlqaBekbRWreZ1q9ucTP3tK7+8lmDu10Qi9r8dQMZC2QiwP6tKX70qnVWr4h1hc1/fOuPsIL+pSmKnywDJsF4ay7bFTUqHcqzgj7UpYLo5wHzD51iY2tVCrzK+dpBUODxuZ1PAhGVoSOi2URlewOOLxfSwWyp+BxY8yGiiPLjiodOuxFQGlp+BbWTodnzQDj7NpNFVCbJO5d6+7Arz7GockdcBphMya48Oc+jq1PGuIPhOmfkAp5zK/MtAMloESOwg3u7VlEuJm5w97girIjb3WvEyaqE9qbg5pyevTy4FE9aLGCnQ5tHLn2cV2Pb4sd1YNritQFuskD9EoLelUME4INEAa5DY7Z4wahIal8QxdmLo2lrb9SCW5anFPIMmowEPXxJkNtojkmlVEplbvZKWCqY6mtkbVn9JAevbKorp2Xd2VOfXN2jK4r0z3FAo87YmYJVJNSHgGlXtE4fGm67lFCcA/ME0q+UdovY4c9th737XtCxstgD3sWRy03Ely/bnv4ycHRQprf/prByO0mw8Na1ZvlgDLDS3Cd9XesMj6yTxKveAQbrF99e8mTVq6wXwcDqRwSSa2pBaVbGeS8M5MwwKQ6R6KHPEI83LvuTVwHz00bI3vO706I4HawCrvj5wZuUKCaiHihb+YT3zXXrjXB6ixbgxfXN18iRJzf03xQGlo2xoTZWBqnogwhaibZKotJdnTCP0TYeNLYgipiofkfDy9QmPnpGXi/cdEs+jYV3Ahsv0n+rIAG29x9lKAG7Zn6784EKCP2hiWSFmhwdVpOYwIyaOGO3KDiyf7nzhl1O2hk+Oo0xZYcbZI9LteF0DrnthdQjL+LVhJn/gHMU1H94lTpRGVM6Naqy+OWurSfHZ8jSaXkzIyJURi78vdjO/CuCD9uVeqBTKxVTbANtLJ4SCQSQru7fhi0+i7PbUCzrz9FxIWqpSx2EqFVhrucicf76OkoJzbLJjkjNeszQSoIteWCOoBm+dVpjhuGNGUTq6H+HCa4AMv14PlgT/hNv/VFs1FMgXfuU9gxQE5ZPBbXOq7P/R/FzdOKXUoAueKnZ7cYw/3IDq06Jo9puHfjCuI4Xysfijwby43293ZlFkdwbCguUvR8U7goQp5NUzLHkhIIlIytMbUl1d5n1Kf+N6wEt9AvO8LTNhwhdApwebbT64/lvsxe5esAUZtjW6zrZv1IvTJ/tlGthZwCIr9dIpLARSRhptSZH3iGaEHpO5/osoxpDoBQIomib6hraDU7YAZ29o4YK4pFiozxGKqDG2juG2h1WjiX8ZIUiS+0tdtT0HFyQHafNh4x2LKLjOhjq5k0VBZGQc9EDFoy2YMS4cnkEeex7WzgrrCUx1H80jDT98TI65a5PPLQQHZzrGPU3fxf3HsFzvK15qWJO68XBhuzGaAzkK0wJVWR0/58Gxpva8DZWAbOlZqbVGN2fLFcrHLX3Y6zbqNcvGHTmUb9O/CVADbOhOdY7tLgE45MAbfpZ3b+IXPVPstG4B6ozSdasczaHCP0nxG2j7gGLwyg7PEd8nBur5xKVa4LKvdVsECDbWEVExfR+6uxFuYUsde46hcyTyBwq70jZ7Qn+Dxgj794L54IfTaJVuU9vC/FSceke+WKusdWGSAcEKiiqOXWeAQEjLMJ4HLmjTgCQu6XSQ9Z2ewFjFkdaMNamFoF/8oJIQ9k9UxQXyULpX4U2ida5eMNeXGkoMy/4piX8pBS71mGAPFdAyAot2tn53HD/VqdCwrwPzPIA0MsYhEHufXTZ7zx35Py162DL35Z9yUuszHH470LK5DBqJf8HAlFuymkRidmgl4DPk152TjiYRrypVs+4iTg+WGoWyxXFrRT0hA/aFYrByWsclnZhffaBldYMm0hJKZEkR7JDLMaJ4PJ/BYj7g9ae4I2UDA0FW1z+BBVi9IyFo0XnFFL7rF9mCVgWwzBebgxMvbk4vgzIcyaXpoXvNcKo8XrbflLUTtDbrvbj6bDKJEwSiJSeksz2TNthcx8PMhfqG1YG405tRyz4R0kfFT6WESQPZ51oKKdrTMQLySCQgbT4mQvS1h+tgBAkyrFL48rNrii1QtnMgd8CQxuceTylUyGSDXwJHBLndj3Q5cPmnoRPxFUEN0LaIXQ/sVeDGzevx4+ACrI64o0t1/RubCvoakTUKVitOBtvb8C+J7Coc2xZWbzXobnS2GgdbF4uY1uM/8QjbZ3UdXGC+46UcDkOKImDvAD11qs9XUPiQ04rNwIjALfdL7upo3ij6QoTPvpT69f7MStehm02JrnLCey9BtlenFCSAO1GvQbotPBMQNRJCdvQQHtDv8SsqCG/zrpa+XdhWi4McblmxUhb5o2emgFAb9J0dhpKfdHnIO0c0Ut6Ed2BIm7AhdR3t+NJc7voZJ4q+tfjYGbfV++59KNsxnluyKszPDqTR2Eo3AU3kpBcrO2AoUs/w66isLuWfcrHjmVs9SeRoRb3N9Ty9kmoSBVFd9EPMirMDM57ohxzgs6n7SILgWZOCfas+aSlbhiPXNyZRHeEtFyn44Aja1hE2ieIDIQk9Opf7GLxvhL3kKPR1XlCyG/v7rHqH62NA8vxKLRm5Nt40L5181TNfGxgew5A519JVTeYBXcedlfP/hnL7RFHXevfHk1Rc22DIzJ4RnLFnThzBBTb0/7xzs4EJBixZz8sQbQwL2Ci0Cuw7W57I/5yThUdM6sQ4cCOCX5fvjYj3MzlsXvyc4FZX0n4A4+N4612vsuNgNO6/e4J82cuG2NA0ETwe+N0HrrbLdniCkVkLZSdG5thVC/3YO7HreK9m8yzA4fjPg5iexjeYncvnaSgUTpXGrqBa8ewsXaQ6H5G9Az1usUeqfVKQM5KOd2EkMuiY/A1nZJiSCAqjTGaZ/whXoCNxx1NchjhTXz6VaE/TOek1wmrKjc2UWtdcENkf9aOU27BkKgdERFvENEt81r9iv4TtM6Gyc3gTuKKq1l28bFsJhGvWcsf0lMneCfx8K1sXFc2MVX1jWzAGRTQcFKnA68XXrBhuN5BdTF6Ec8FTmUxWW224PMbYV5ouJtkMvWjBUTRTkF0u0JEiaHfzjy7IicVNr0DwA8Sy0vZzOnXskQBS5Ivm7lrsDTqpAx1Vnwka5MERTCOv2++hHdVlmWyLdN/3aDntK8vOXH7guH6lsCubczUnVnFfmFSDQillBapGWdvUbz/YdKRVrlfIXnyHK9yoHPkPHxwcm2/ZgTBRG4Nm3wklH5YI+FB7b+xCRarb2+YGtIKuiq7CrOXgSnQ6enSRg/XByP1qe7cXrBUzK0j2WtMJ88krEAMCHUWnb4FjEjxVgV4Qre/vJ0CVeDuG6SiX7U95aGqtxqUljDrsHNOZk1Nc642Sogako2Sk6LAe8qf85+qBU7foq8j8EXY8CjFO84DK3yEmRJqQm2DtJtb7HL9OOD8Xewk1Q6dqmLr1iJ5gtSwdMLz7TkyWHyqz1wSBYHpxwwxAzbipRdvHJiVFUvTA7ZSSvBhEkZ+424/no1yFZTDre+WmSL9FnmB3Eq7+TCMwGQ6+OQ9AY5fp4x3vBoliCM0n2K6JnqMLs30y+jpexzzd/9M7iN8g9azNIFDbvNCaAsvwYQTK1DDUHl42Tr614wGKYrtdEhEuV/pHj+6DezwwAxZDWh9Z+cqyp5vwejPFUYi8rIhJdAw0Ogifq2jFcV/3zUK+C7fiuKoCgigDW1ZiLi5g4t9saJPUpvrOeWgWYaoeUkAK5r/7WCT2T48EOD6LdzfIWrLt4MU+AH6wnot2lZQ31tg5y7TScTRyYnmi4IgmuovEyOxhfwxcTILh/tPf4TQFDWx/Q9w+bwqI13jGz1VS6NDnEq22Sms2B5iSgfCZHSb4XfOfK4DAUoFAXtOgfU6DJ8WDXtnd2voxO2H540CF0thCnEtkq3Tl0m9rCcCq9x+Qm3dW4IRwV5HlrtW+06vMCbr0hRrHq5ksiicIH/1Vs3+lk7+jBQpY1dTQPc4KARW+N6EJEQop4qJcbcTO50FKjoGWgeLWfYQNqPBLvwpI4Yy7oZH9EMQMtU9jN3VKCmjNrUyib4ldetEZw==
Variant 5
DifficultyLevel
548
Question
A cafe receives a milkshake order for 2 chocolate, 4 strawberry, 4 caramel and 3 vanilla milkshakes.
About what percentage of the milkshakes are chocolate?
Worked Solution
|
|
Percentage of chocolate |
= total milkshakesnumber of chocolate |
|
|
|
= 2+4+4+32 |
|
= 0.15384... |
|
≈ 15% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cafe receives a milkshake order for 2 chocolate, 4 strawberry, 4 caramel and 3 vanilla milkshakes.
About what percentage of the milkshakes are chocolate? |
workedSolution |
|||
|-|-|
|Percentage of chocolate|= $\dfrac{\text{number of chocolate}}{\text{total milkshakes}}$|
|||
||= $\dfrac{2}{2 + 4 + 4 + 3}$|
||= 0.15384...|
|| $\approx$ {{{correctAnswer}}}|
|
correctAnswer | |
Answers