Algebra, NAPX9-TLB-19 v3
Question
Which expression equals p4?
Worked Solution
|
|
{{{correctAnswer}}} |
= p×pp×p×p×p×p×p |
|
= p × p × p × p |
|
= p4 |
U2FsdGVkX1/B5I1acRP/vzVE+XRt5A4oko61qYjn06wHU0xB6IsEzGUPvtBwJsRW8DiQ5Ee/ykswbDqFlHmrxPaAgk/ACFV9sFPbhopn9x/tJvRamItWpl2PL4ePR0ARy6qHdIcUELR9HD+Ei2Fj+DASv/Xrw7bLEoc706ktBy37Pc8zchUyu0GQdhDRdd4LPOcjQ3HDB3DAlQWmicLk7SKdu4sjN+H9OJeOqBbJ6eP99NMKAUaU8v3VNanRQCRRK3dgQENTE/TwCc7sEzxr0IUEexCVsNGDg/A8OZeTVrPbQ1UnGA/U2njV/dZm3wciPdimcDm7tGHKdOHsW8J4e/u5q3TncecaMhsqLfJpWs186/5pcoYLH9tbrsExfabZppBQThRbFr5X3BZaCW4WUzHVMr4BjPAdAkR/nbpux33otiyGIrSUFd0NbS6qOunQcou9IYZ30lOmcaAk8e4W+9aXtoQjb8rRyOR0s2gmYEGbxbVbTzYXYUUlEXcfRVHIRGySRfi+D/DyezP3ZPGHQwsE1SZTF/aVHkhYwLgVP9gbWsZ/H90ACgjrrclhvsLsSgCtBSOwPmOeyCJ1vnG0JhT5GgGnAVMC5mIqET77IC9XMR6lx6ejIgf3oBPlooWeDurBoLeIqvArVIox5RohmU2VEfDf2QpWEkckHoiA2qPZ0lVrBMiRpOA0dfmRwyQCCbDQCnXL5XpQVgVIqI/xfist3mBsRrr/2fndXYrEarfcsAzHvAxu9Ii8FyUn4IhcWogG39H2fybsq7rufVGVsq5W9VxrgOYI/yWKM+DOUmq0RbwtU+ou6o8Rp8f4RD+1EO6D2ut+aQN6eH5oD6DspgipIJ+Uz/Z8ODOOBekExm1eLRofmmrYxbwg7Zbw6TwRj1ch2WyLayAfhiMV6B+mPjyTr9Lr/I3f7luzDR2hWU3QBKp1iP7dGZCWqWeZRo3gaqiPN0j/Ob+vq06s6mRgkY3Tern10vyiTf7/057lADi/UpWg96sPZGuagz3377aFGVB1sDrPTO/oiu7WwdqqNd/DwrYIXcYe2I18jMBmMmdUF6Jis8Y2DSGJ0HZOFknL08/PxOV753U9gqB5KXBXfMVunobgHJ5B6wYfEdrhyLhBqy2clqg51AhzbHlVeabJyRKl/3/vs5+RhvlqNstyBVQV/ocs1O5luVkBhUEdEhPyG6wcYqxiNKreCInRc+SPrf1JexWRAPf8YJk+rJRtv9qdW+A9167FRsdlLMKrID22fYhAHgijZrlw8xhL+auxbtpV2zlOzTp9N3DE8u2DHP5dck6r2j7d5QTo5YrepoR/mwzFuo+1ezYeZG3bzg9osUH5ruqeh/Kmu5xJROAZDEI26oJZb6qLaulR9d5uj8c0MqJhlGCrEz0H0M9tZWHQK5CTYkVZqCOcLDLR2G5AOe9b86u+eD7BBDMwmVf8oMU46MhLK5CSPzKxw+2rZB2zpzfWjIV9F7nJCNxPUyrnj8LSLFuXnEIZdGtrR5EzIZih8qiH3R3KjhbcwyEkSokfen0QdfVYQKt7qEXX9K2GxAY29sxcnqo/KX3OzR0J9nZ9NeFd6cA5hXmwF6ttOnVZMzDxIQmsUaFfQB51bwavT9ZPlfTCpF6gBRLY66hV2WJizUcQcYzrm2iswRNGKNiX/rSaoR+KVSgYgXlHBC5Hgdi/JwUlfwyyJWR40IEw7U2EDMgLww/TcGpMZv7zVDpzp0CzFnYdOQm1W5wLqfxyP10tIpn8IsStYrvgfiCjBGj6NHQU0Upj3nnBIfzxNNfnxeumZOLolRqha1xDy47pElYKgQJemrONHAdmIo29rWnr3sBt4QjvxTFe1CgScZJzEjzRLHzoUEcCUsFRToyHPS0fyP5O3XsSefiazt0FL1bKw0EPzgUqc/8UMYovB90E+WROaVFgjZX8fjSlHOhgwibHBmdgKXK+UaNqJldS+9jwYLAYo9x75AYJ9PIqgLCB29wdLL7fCBacFkD1S+g9a1Orz/h3wx/mJe8fUQ8y+W8PttT2p5gD2d4H1J9cMk0rNozqGvUL4BjkNqUYwKyteLGcAgMUOuy81GyZPolyURexWKK9rCcye6XDQ4SpHhqyN7aXXRnhaLdhICI8EbEeZGWhyY6IvYRDRWDQKvic0Ukn0A0BTfXLj8rgIRId8FUsySpNXEGD5YA7OnjXZ+xM6D56iAhbvyR+//+Ni03d1Sg8UqseABHypHwb4RKx8ChHnmSFWpi5hP7o4tUfecRNNQKwZ/NgWIHI9AcF4px/YI07C+mk0KL02Iqlv+j36RQuRvGMHXqezsiC7p+hX8XlhK3W2y/wbRifgZNhflkuPg/EWEJu2MdonZsbSCQeO0eTcGNeVjaVXciM5HqfbEwQ6lFTkYX3qzgWLVxw0cfuM8k/eSMU5kZ1lg6wwfuIyJwh1FIMOeQeZO1AaB64elOp0F6VP3ygIb1gHhZfq+m8w3gASEwpdziZFsUktZf8cuP0IHt2EeJx2VlSF2m8W6kg6r4WSsDCR2ovQDZXA30AzkjVqrcnC8pAYhp0JA35+LtUK0UT3Q/vGg+Rl6sHdL66J4/SYGYGS47pDHk4UnqxneUXgvle7xUREXMpVqbGeoCfF3tG/fenR6sx+cXwGRhxKh9A/cs3HoaXPVIGiIh6JT30AChFXWpRv+A18ZEyyjaTFE94177rj5Ann8MhAgPcc85eoVhhmwb9uTlJc7PaNRkxp6U7li/9sPHUZUXdIGX4iFWU/0xRol4ROBGVE6WWPYp4FqtiLDZ0nq9l2jf1bSq2x1mTwx6zvUcqz79BniA/dmtgCqdR/hai/UfceNLiUQWD2JJ5OPUdOLCnasPeNERzKTdwV/8X1rhG2sFSy7a0Y90+5bLeTG1z0ZThlnLhgLkJqtXYeyOKT6Imsn6QZgG7FxPXMdj3vKT9OEz0ujQWSe7+EBgurW05kZWy1SM/3T187G9oyYSY1nt/y9bqAuUuBhLfDBdilpQ+o+YP/TaUkSwERRn3ul8Z8H9xh1+FOaCSA1VClf/CutYvuM7562+aiAecfK4Tc/xGw1Yh2wKKxzqD0VlAGyKpuv12CO7dxdggWxtp7st2Hz6+OSEe0g0BvJW3ODwgdR2QLKlGo7Sq/a5i7vld0gJjAcsO4BwR9KBaUtz5ATIRLdq2lXl/E9wPJk25LONVgFHdNl4rR+bAvcd6IBL0skj1CqHYFtp/diE9OyLYozk1DKrBoJ0l7/Akyojp0HUZ9vt70i3EvsJ5hAuA7Jt8ddwMCOFdU/qXRpUBBpqD5hoW3dRXRjPddy+RYeZYWN3/FmdyE5/epSBkLNv8Z003D4diX6HeQhYHRToJYGPPpLl2NMdR/5y8pblG7u5t9qQB8acs0OdOzvHQM+Vt2sEcstJHcvB3p0enFo5zGXuP1OXSBUi4h7AmBTy3CAHoNYTZIBZqOkkMvqGlRAcaBEhBpHa9JjO1HCHzldqQ2U3+NRKmGIMeBi6viGfA7+Gscl4ENVqKBotkRT9f45j655gGMh03WmVId+jKRgHHIKEerAsSEOm65ukyAoP6jDMte3qLG2H8q/roeBUQzccNu8f4pTeQezUbv7Vd8ZActs3a9s9RqG7tUVO/JKoju+wSnqK5wzdPSkgygGhIO/r0v+nP8hQCM8K7wDbhOMU/q46+Vf5RIp44CKFtcwz9zaOA0zl0D5oDsgVVs/9X5yvtyi7VpUZQxpGXikzSTD1MlUVi95YPUWqoBCcO25AHTxxXPtpYQlawNQf8Y/JIu2XPWJxzDqYU+UQqJ/XfvodbgdtWNpCBPDlOupDQuETT4Xq3tKhp6SEnsJU9hPhE7Vm6XlyPq4sCdm7XoFilzXAYAXfs+TN1TAZPyPAwGl3m4CXughnoXnIxcc2ZD/V6XPpRRRCoI0KFpCWe3ODNefLRqm4whkq/ShCcLthTbF6oY9fPmrIQpyBoxiGhfztF0FvhT52pW7aAKRg2dqyeye+lZJrMcGhDzBPdOjdAJH9l0arOS0IVjsgtwvMNCt7d5r0C0ctm5fC+bea6ekAMAEcMn8lB9Y2unxlJOl6B1lGiqII+OJsVibADLRMNCxJINnO18tIZLBYq3iAgzZt/At8jNCmTrEvApYrxYXBusk8RkDQEsNvpKQfIcnbOTJJVh1G22nIznb0IDod33bddXo0UkdGojOU4CDMmfug8STdSUcyvQ+J5HfwRoBWrelb/2jWzD09DkfOv5zL36KUQgqKxz9Tax419ZYYEwdmOsJ2f7pt75kXyqweJ8Y0DYhO46DEUpT6WY7AHtRcOeYIk3HVidusIzTRgqlETlZgRrIxwBXWLYKF5n5lTP7jOMm/Lie+arr9KEYYot1w6Oq4J4xR44KKBxlEwxvMTYty+BSLlLCEZ519zvHvdryguozloTdScPZptoQoqei3EJXzU+1eUSzSp6cDOWgcKxSaq1L21uLqjX/twHTH65uIJw0ZGM86MFtq8Oo0oVKctLxTCgo2eWXs3NT8LAhjv4HwAz2i0mXw593s5ZSpkF3aOEbi6ogXVYbhA0kIFuh9vZVSa5IE0KBjUUdokiO5BO4usbEyQzQ7RwddxFD+4DRmTy3eNvtFWMyTXMRevZLBmb7r5Z/C27oegCF+DlEwLrX1AHHthOBe9hUPc9Ji/jq1AJV+kts4EJGMCacH/2OBfoQ2omwn41DW0mc55tPK3pYZsGEb9DEzFe/PY2jAiguRr0n3VSSEeGiWArj5FawFdgjS36rRhvUfE8XRKsOq2E4CwWG8wIyBM05t8mcoCR7pRNNWDlL87VmDJpLwjzuwriTo0AeZ87Hh28fg0xTzNaNVsNQyO1UQBF+VJwlBycTxBwfmuJUzKwMGHO3U2fh04AELbGNgEwEDZ2AqCHXtcuioLuF8ZfoMQsvC7kgjYM4oIZn7pPAjOq01xvyRxuZ57SLAVDSM7D62z1Fyx3IvznIdkcV6S99T4g7dQJINHFv6KTWvYefjrYNqT9stLdoczOL0fW8n/LImqibDXXb2ei6n8ysUz8xep/s1IbUTnDAibiPrpcX4MY5YbmN+1hmdz2ZDIrZ+mD+cOWTUskpIOjn2HShQdIyx2WV1P0pV/Uuf38938YJXshTqcHXGtdpe+sXh7EVtIbeLVxcyT558lcvO4Q59PwBBfvMee5PlyFc6IrKVSJI3xpZsw75NBxE19nWdjKIO97nEXrn5mHndit/xySYct7yb0sH3qbZ+pBIGouUGMK8xs0tw4DlmZjxWWf8U0nZmLCqOCG47/qTjSbCfDTkdPlJ7gv66+z3xRvTJ3oZbnGVBwaGhx/I7C9nqpRXo1p594jzvUQ4bQTMWBfrry7f8H7z+t8dS7VBhlqQLzU35A2sPZS6PjT8ILwOkgKIw8z+0sRh7tzk3HODlfEFtHJnUR8Q60NlXWbZG2e1Pyu7qPwEEC0KDUENQB8zzGpMQUeirX6nuL9huJNmRJCbT3CV4Bg/Pu1b2uNVGfCxqkQRTQ0d19kg3+Yb0bbt0anFns3sg2yXfHEf3JLktPmvvYv/fgdNKdXYENBV45EZh7N7jGFQ3gCot71CNvpQjai58tTbxVIsu97SCMnGhCwLsWRp3UXnr4SGT+QcSPaeRrzUVI0BNXMlNnLS6ybmmKMv8Sx3TbOf3flQvT7DWIN8jGTMQQdFl7Wq07LJ5YMnwtwgvO1omBd+oGsO3Nt38ZRo03inyAJkwat63MIZFkweTRwROO2aVqhjQEFFFou3ipj71tp7M0KjPF/6CoT4JfKNK17q2TqdKIDGN58uAODd08gchwteVyABp73rR4fqkU4vHjGdiQUSUsktjAjDJ63tfdp74EotHaW0tNlaMkgDDzkt+Tu/a/tzsfHQhYkEHjvxEdnIMIvjrWUDCq7uQCIBVkzjKwzk5d2/oSK8aH+pVjesv7EW2q+YwNwvaaSb5EnALRCaoTUidMOLuBMg+jf0E6K284ulfsWPlIiDQNyhMuXjhf4ezpGkkOkIj04OBfC4EV8VSiv3eSMSIV0kmqFqXQbr6afMo/amZmrHZfEFQ13NwDDMiGCbRAACLXeuMuYty6a4Hn/bQhLo3JOJdsTvtYfpZCvuR9fh3eBfgKccDD8ncMeTpMJd/znj9GX6OgfFccWeFP4+8DQhDA8wnCVOFdQbVhzGdH0UHuCnMQq2Tpup3x8DQN0sv0KbN1VE62V6ftQgCK8sGkuQ5POzwHLoH/Yc928j5HZU9++yl8Id196vcWepR8f+GJByXf/O4hRp3l+teC+2GUoIz4qKxvbd8S3OdkC3W47gJVltTW4se45aotH5ak0MdCeufqerBaRHxADt99w34+Q2IWlbUpVkonIDSGRr80p61AJhtyZ+bBlHqG2FoPs700gcd8jIGXe4FGqTsV1YUJGxcB5noX7fVXv9fljyZMKcCR8e+fnK/uiFGDKoYbz0l6VxA0zJc9hEVcs7g+ZZhNOGrYvhQhF0z1pyc9/xsbTcj+Wpua7KcOkryrlfbXM1NABHCsIKINduYPPDUESQXLueF65b4AYfI7t4JLjjowPvhFBf8b9EhhxGES6wRUunEopB/mVTg1QFEOx55Xos6mfAbT+H+ItiPnRdVPKkxG4kF9H+O8PIfokLkeB80pZpbflRTihX6N0gIZV7B7c5Z228uIxRId2RBU4tPbUJxEIoRW9ZQS3CvIvxXoItoeG9TSxaGmbwA8nnNEWOg2u58z7D5L0M/ZQtHMrtlbVPz2qLb2HcGfh4eO91AYEm+C+5GLD3WnXUeunqlMm9CVTi7LVtNlhO3x0v06GkMhDaZepHRiQ4EFnvISN/awp7V6vb/ieRzez/FpyUpJnYkpBSh64iX8l6w09bpf0QJxmIUCC7prMM2fgZMJe6G1xkjbuB/1IJou6ACHpcbLOVap+3HTUgMncEqEu+R5+Q/ScoA+DGZGgPqGaivvnO1Pl5kDox0exXWe2kONiBVIlm1l8BvxjaReLPDR5lk+IMussgE3dcejxRlfakGaxjeIgOnPtrisZfOlJugxBZbsdHFqlbZOBAgN4Vya+JSjy/glT6cJi/kfY0fwymH8GhatgA2YvloJbiGuGu/C078GVnJNS14mdewukLpZgWWpBHkf/AOVNzlrq9z0TAyNkSsLXhSA+sznumlhmmt8n7pLq0uzian5xdO832kB5aTGPLYEt80xhxMrg7eJ+JlL9xtbsW5WsKBLy9B4uy5LmMRYEdIZIzfLM4TIcW5PskdeOsWPSZcfJ3q0ClIiWuy3NOXRzgoXr8iC72yxHcT2r2vEfn2XJ3aCRLGowIM9OFVh7iupNxIq1rlduwAuJyMeSLHvc0lNuusMXpfd8etdaRCF6W4tlyQ5QOtmkyLKTGv6VluU9sjiId0rJX87ND8I+KMRXn87hVVpSycs0iXWXx+/skPjJXDXpy+eStqcBANfK0RzUiOV4WfhPmuAsnzgWU81+QT1TJrtdNv54Di3pRcLJrjXQkmb1PZV3RxpnGR0YUwp8TnmExiSTlli8IFyzt0O4mKaJr8F3Ig6ugzwQn8768gTjKynnldwDYyAx2CayGfvLfPmQizywk6Oh1HKxlQiXqy/NB/2OK8Cgn5cjM+Sx5JM837sOf8be5B8qak1TNc49OQee+RzUEo4TI0GJjjEbRhHkxOs49dp+v64PWKpEbk7M6XQFFqaMlmDuBinyQMwUKhTu5c6eIFE0VGpWc05lbIwa9Hacmfenl4NkcX3YRUaRXXE7wG1JNu1riIgq4JQS6fkjXHsTXDydTWw6AXXfAP2dL17DZJjrF5nKvEKu6FXwXjEaolNaoxSntZB4yPedohQ1KbQz9DXjqkfPPL+unDo3vwGpkS/V9xaU2K891MTDYhl9uAXv8Qd/YNgXSvOETTGpVB/BLpLAQ/8W2OsV6PhEnFoyYotzfGqRYi3uIt96WiFO0xHyB79mCX3iyRvhHOw1Xk/qDq0tCr3sNBrtl1V+/s+MLY375m29m8KKs9ig9RMPZZ2yKZ92SMXMXj4ZPt5YDhxgsI2Uv+spM/K2WJJ0iv6wA5XzOl8pJFIbWTa8RwXN4l0JHefpRkR1A20SS8xmbxQkwlDAUU1NkuheBzzq5NBJ7Wx/JLSCW0cHnmzdpoerFIyYa/nPBTisS0vOResjS7Rp2UMCuOAjpbaYRMFXlUhxITf7c4BFFOURj3/fmXe+Gkxul9bGehP4qxBHJcgw6jjI91IQtqNKpLXxU3MloRTa2+2Xc47bPx6gxVihah6B/uwrRJRpRGuMiquevo10LNhylHZ8DkhzbMriwrrZgNbvwXEAnGy9wUW5z6ihvHDNOuBA+m7Rnic2wlU/bhCABBpPzxJSGkwmhENadcoF4hZ0O5CWtTf/5tZ4NtUlceGwLKQVT3U8xjOSDzvNFwVPqUswAZ7M5iGbbahP1kcNVvHmuZmbzwSWvNB8D5boU2vApc8JYSEhY/0+NEl1J7qIS/bI7M9lhUKNQLyVYBoAPikKmMgu90aZ7/9Ug3LlBNVjwva6cAahrgwGinyP+4ZFcDk5AbuNWCHOaChJtTanieIjxyXuIwbGKraD0bHeKy2nP5DflA3N7xq28Re4t57mkMbNAYCxnjFgNFWKCpTRove+vQ4VTdR4WtCz2AeiKDkCez/0m2FCVV48x6kPwI+3KpO4IlDY+LaifhGwoh18EUD11TVTyWXMrUFEQqeh9YomgYOCPaRtYhlVbfr+uRGVLMdY5E98faUMgfCVUQL17+C+52nETxjefNsHZuNihbItiUaKvCGUCwkvB4iysh9hm7Z2m2yZIQoxRgQbZogiA/mfovJKnJ2UxgC4TP3ZzzYtKTc0BuhOMoK+b/PWvTs4LWlnwRIyXOv9LxFQBbiZdIura/IrlyH2bp7cu6f9tqByolu1waprTIdCSxcgjglw/KFcywx9H/+cVRuDvfHdWn7B/VemK9fMowsUFNP4ZMjWAWWp7GZYQxcFXgPTURWEUAmGrhyoU3ib4qdoLnVudVWNNdeRJoS+v+Ohyh6JuggjD/maBgBrFmhBmRRbBcA2dXxzvIa9Uoln2gSiqBwxowb/gbv922QjaV+XA4xakvk7LPFOHrsJWT89yIk7fJh+MvBTlSi0JxgCLRuCpyxsOPG4SrZ5WGfAWoMuCzY8IBaGgssN1CEReTy68XMZ08OrYEb/GQXigur7sPbA1Um0xw2lCXPLbB63yHIhUVtd4mrpjfcssAxCT5f7idf+nLI48BRzCaBBYQkRv7YMyurJtJgPFa7JH2iLU25ZBHwEa2I6ZEeaN2FPg5+EwQQy3kPxg+6Owtd2W082cvJXnh4DvFI76irGDL4Lz/MNECVHdJxUeUUYKXQq+ayuG5ICDHjzgSes7f/b10Wke1/PlnlSVqk51xMqozP7gtC0RawZAk8b/8D1b7QCOR5iQQsaSRuCpvRQjpEUk/9yBpAR0I/Bat4lAyiukSvV+1zkKIIMnozxIoPI2KALeguWYThFO3Xmb/nUV886KzmLPww9OoVr3tX6S/pTZgd+5wpb9cojIvcdX4qEJDLGgm/o7PHIn1+SXsMRf8ndtU/k1aDGShkSv4CiyKxl3bX1ioYsTn17/ATlo1CFkGSQl2bsPb/Qr0hRveyar5sQqCTVLse640hS0x7LIOE5cves7DGc4DhKerG/kVhF6UFuExb++RkdC6Ds2THLxyOSJ9fXi1kBLUs5m7wg6kTRZZfs5JQcTV8QAWwHV/b240QKNeYpjIQwUyf9WgbMWZ0N8MXr8GmoGgiw3HGMXNe6aAOj5gZk5rYF7/WI/FB11LywDBtCyN1HTXk5ZkN5O22gw8MLpT6KyxJQVRA9Es9gJHWIE6+xGHXwh+9lX5OqfCw/X6tPbuGtocFqsW614c8r1xqKDyV1VuiFM7qsUf0GZW0nlScG3MDeXNGLVTUbtBs16sZfNO05Ms8tN4co1ulGWRJRq3sd9oSVBnUL6LfI//yyA8xiAqrFytzqecdUMkv42Wwo0MRioCZshAXneeoTQzf+om7y9uLm8ikAAs8qRvUhrKbKDmytsVLNevDo8UY/3FDIidcydY3DHl5sHr0DBH8Mv9HZ+hmUKifBQECHnAGicjYwo8S2mIPDf5KrOEeSNOoPe2jj1EHiJF0hEsMlasjzmtqSeTl1MxnTWesq+sUgtweG/xneGko32GF5K9thxsnMRqvMfh6urMOPECJ90GROcBkJ19avSt7qO0ShI27wnmCXTsVA8Bv7taBzzpsyADA1y5s5EzwLmt6y8w8Ct3jzSle1FFgaIF9Yq6THleB+U3tK2tgupjpF28RyIKE51DJgvYTZdGiHUKACNSSWWifbZpx18vUiFoLiz0RDcP6jV7vfBRpEaqmf7A3sjAkHIvXtb+LOygLRPZb+W2E6Yr3PYlvU9Yxavc7miNj6QrwSiDdiMKBRK3eUD/1on3ZdKXkapWWKVEGJdB8B+sVsCEjqIeUtAjtc4E0l+nFPEpcYexDA3jRGxeOOkK5VGG1bliadpRn2isce/buRnMsOlGK1N07PaUzGEgqPb5bZhNZXZDu7lSemw1xTlSXNJXld9qGb3M2g3+QjdNA6u8qYTprt8drmpsnfdVjNunpRl9UitOA8Z87pzCLOFQQTI7TfrIrPzN/4Lwazec0znVgHlq4pKC0Dct+TJ49eK7387WF0jh3OGTwx8/6HbIxYnPjzL4l2cvg/lbu7Q6nf40TG6Gne9os+K5t4SRHnLxoofgsBC2fFHFiXxrbiAEGaXWucZsK4oZsOLmQ63eD8XtB1lxf4egelXS4Edgw9VfNUqp2ukXPwQJj1XmY6J/pSt9Fam879Xh3VIbPn5ddFlVtX/PEDwjde4fmXMiuUXxn/yG4zevuhP7lNBk1FY+iZ/9/SiEIZv9FjkKAsxqPUFlhv921CoQ77if1u8rZe8BCiMFGmn59MUebooHC/UbgG6LtPuzl3cHXuP47iLKruig91WGyB+ZkSS54SLsJGMilJcsbqjPK6rIHN/EwdLmCbXEIM02fXi7EHkx5836j+vc3yeMW6MPdbSRn+EqQx8aNdsh14nLlVRJaOJH8y3IiaoHouZzVyR6EWPH7B/IzNZN+SWavMpF4Ee99/F7jeEjQbW2ZVEqd/BXqRPBsSU+cokJ1RYC3LG3G0xKC9QBrg5DVJiJ5bY8ptbuMY0wLWCsnO/3E2wv3kanLxPlL0xkLQDPuPRpprykpomk8QNU2aYw8IQmGyqSgo8ShcrhBA+45VaWVOMxdUu/ClM/df1/yd0ZegdHTnv152eK+PoddNKi4Uatq+XTkofyOpCqCxYhN+x5OIe89z6VL0sAHfzQJIPT1DPh81LyLlK1ZcseLQ16WavwhfzhVLPLrMjBQselbJOLYbeL1Kyo8N2GJg/k1He/AGuwyeDP7VSP0voH51EHouvOOntP8dGMWDo52CnbUS8+Ux/z0ufxkm0hIiat+/PWNCV8hgfPZVR8mTZIhQ+s+HaahpQSNPMRR2mTbq9H+UANapVjVoRNHUh1tTtGeEYyp2GfG/TKKaUzvelwTAG9P3G0CRyhJA7r32SVgIg421S9xOT3Mi28OfTcvgSRUgIGvAPW02NdD53/l0P1ORP4Wylo8wD0602WoDzjl1sDFpc84ne+KETgeFeDBgfZre9f7CBDMMnldP8eWUVnPJ9OzLfUBT17zBMmEMkeXFEITsiE1gAmHgRoY6kkIsLWeZdIkX8xhcnbWc9w26BPs7slq15wKX8TduxbuLXeo9PBJaobtGjmLv+QSKJQDktLUDm9KNElE7yDi8oyhiGMlAWdEM3OQD/zhJ0v4zvYpTlc15xPX1LU/RY46Rh0M8k0H0cv+F1v3ZdlcibeYGZjmUkRQfDGRY7CJ/Pz3lpZ3+O21CZcBOPbbrOygDbc+l+ylQjPAgGa0NRmXh2+QP8v4JgbzjF2BrZjI06KSvEsKWagonJEGM6CA9ctVBQnyB8dUL8Z618plnWHjGhAmNXk1Xy0xLF1tkp/MbdvNWleYt6QiOJTP+YtMr2tkKAZMV/zA6xQ1tfqV5mHT7olBuZ5bPJk9H4qbZQmZa+lekKI1W4wyoPUveVOdRJRqz3nDFYWSaB2FxdhFo64rExm2D7j0/qfM2YWm5XDmLQrTqe0o+8kSDH4l3GxUDP2w8vmLkA/3CY4C9NNj0J3Xr+bu+QUHsOWFS99cC9C/d1FbGkcUtP19l9Ye8jix4rWFFZ8msHFh8Ej2V2KX0Sw8nQ44/2FhFB5NvV1BVIJfpMBK1wYOi3U9zGcwImijnh4t5UV+McPDIk6Akb8LN9/j9R9xL3RdTdgCGgP8Q99acW5QfkNDvAvfg/9XekrvGTfe8WqlcuUMzqS+jAIVwbRCehgGwOmtIj9xmS8QWv027HqkCmGnCAowpT13Hp+noKlJBe5+ZDgCTh1s9ktGMKZqxAL5OKxPXN6TwNrnFMOSiIo5ZtsNHl+SK3sfeMDh6jRmf9LTprz79CWrorr0c0dI9Iq1Clzb2Gl4GZNZXRGfQBu9aziHAjhJu4m0ch7XYUUpVK+sdB0IcCdvcHPtzVYq5vzjKiSpguhii2OtLfXQ57C8zf4KjMa0BWrlOASa38vGLofBDg0k72TWZdW1XT7kgud/H6HmKkfloUbbgo+StV/d38iGjQ9dYra4QagPxnAqgmxzUo478VAX1KbUvi65tyx14KziYa4L4Vkiljfr2jy3W4021FRbPn3c/tRa40Zoix8er5Yghw5ugeAkEEUm8vNehyw1TtT7mqji5jWAOoFAZr5YGL51RpzOXDq8DbtkkNd0pc5ZYmMv/M7iUbpNfGczP1MBP3XGbsR40vB7MWbz4A1lxBUa8hDZRXeEiyo6I4WWbosbLTLALM2vHGH878+6imfcuTiYH2/KyUjzn9wOYHL6vBrX5PPQP+x1vuAwMaE/Hb9WHO0o2WkPl4ICOymSb+25kFqSMH0RK5CSL19lH7dqGHelOCZ7G0OLD53WrC65QWIyAXAufHufJnsHZxR1rrxjHL9EAwCyXAAkGsmApNUaMI4aaxjYsFgD7azvt/+JugXaSWRgMMgyrjVECISZRV0eRQQG5xwn86pA1vPEyPCHMLPUIoFvJMR8MKsOUiXgD8Gk7e9O7wa92lwwaa3rVZEBuIbdDmovH/xMmVxeWsrgys+DzOQ7vUaZ0/Cy9FzDu3LILEibU8FteqSth9bMrclPoBdnXC5uDIM/Q/QpziVmB7LFA6UhwYPWPCj7Tlqg53xwCviGk9TRJIx7IzAbRxs49AKyfeenmfgcHjVeftkxMJ25fVKs5PxjJxpMisFAsJm7ey6Dwz/Au6iBT7x+SOes5GrkndjQMAgnHqoNj78ow6TsTnaLDVUCG8y2gONr4fBUOOxUjK3knlUfWluun2CHjt7aoL3GtsvBoNJg1oCi/W9hshgsmggy871TUN+loPlw3oCJbKUovuCN4CihBxZosO6AQ0QzF4AqJ7D/P31mLOjeyzgeXEmGPCf4lljylsxMF+BuYP9ejavpCRt3EMLct+5jJn244NFQ3CVeBi9YtxDNXxs3aMeQqx2WBPm5KeyVPOM6Lle1yTEdrQXmD0n5h0+jDBG/QdvNLighIBv6kl8HLJh+Cu15YHzx8Gi4+yQZRnm6OlETdatd9N1AtbbBfDiVmT7ifmPUdUp6PxNwLD2+RgaCnrZ9omWMA9DKCCagnfQ7qyoDDSH5EoT8CYreGqnUvpbAXoQdyMU/oPi6wyXBAuUihXuqBOmtevu6XFMmqdGtfk+ygEidnHMQygSzTOm7blhY6OqzX3qQ3DMdvkgDN8JES45ZwxhtgSG/yY1QNt8nFdyuFWRlFJnaZrccQ38r+umi8Vqzxrb+7W+oMrcIwFhGcJIffwoUqTP7QfX8E0aETXynpD6Q7pb0UqofmQLNCaLa+f7mG6KbZoDMLKPpO9PpnEUkHIr1wSurQ2Qq1UuJ8CBIGG/x0bwovQA+Wf30YwIR2RN30NSVcpvfZ3JW3/lkGJ/FfgIxcoujNJhDyoS30LF5hc1AJQPFYz9Fwq9k1APqYCwHtAhr+ImqH3F4+evG9I+tmvsAKYxvLTPlKB+Y9kYQjWNW3tsF5Zoq9I/SHpnw4Mq/RZQPRM1R8vOra536qMdEwHsoLLBOdo0y+ivFQ3xSjSs1GNSXWlHCD7eA+bpupNQvH3r0xUfpAL944KLjHeSw4U9iy1EFeFA7EKJ2+56xsX772G1SyqdJ5rDCWFHeciBomFdeQF+obx2ZKBsCBSr3xlGW3rLYyG3OxcRykq+ADl8Jf3jpXfu8++FFMtBrDifNnRDbRVojjyV9twFhaBOpY6uDRhmyhvrz0a4cgTDlZZPOEumLEO3RWYyCsOwIRi7b/fdvCgY7aZ7DRmxjsvY5InsCTNx7vGQrX+cRG+CZfvou/RLCBaHGV300kRJsmPITUBqg/q1B1hpRMfWEgaQo57F74CULoevMKw6U6KU5knlJqTO/zw4LCwr1M7UK6wrzjSDKMX9cQ0Q/fnvHZqMEI1JHf4I7avVidzvAQH+8q0xwhx5mD1q3xx5DdiF3dlEMOWpCuXs59iCaw2FzWhBl3uiCf80ybqGEAanCuKNml38vbfROBY/PTiO0lhpUmkIKJYscrm3xKsF4VKm0wZDTfy6b5qVzMKY2hZewg+ZHeji9ip2GnMK31YYrbd0WoRjjbmAHf+R3ko57kRLyqLkKCqFxWCB/TVgpv8gwNbrazEiayzuYyf/cVpFfQxtA+h7GAmi4IVJXS+FijaJcT71KwSBT9W7X3Urwkza5s4hcUUhqwBXdHozmYJ8sYvShdyf3RFC79S7a77j7hLksZhr7ROyF0FvP1HbbSwnhLSRR8Ic+dc2mv60ZWz7pw4+UfIGniIRDjN2QaMW2B5nDoVZXsBUxYi/JYfjDv0Uc2wdXZvvy+JYot9f5gEkLs9F+iImzXcnKH+0HGsxNLoFM3uKky/kbmPtZqqf3t+Kod0zRN1+fZIC7DHv5Fc8QgSxW9cVT0H2WyByCoWA6ZyviAgmbx/IVxMhxGZHnNdYD2r+AQEc2Jj8IJLebTX4SMkIJnRMibQpqjJAQUHNzAjIxpm+whWQKBJf1aDN7Al4OoLoCjc3ZWJsXczdH4rCrtJREohvyKgwjn+qNi+t6Rw34rF5bbmccBXrCr0VNBtiBAzMXqZNnPRTezoKt2DLrJWtOuOGDPD5yl0IXmMAGmAbC19Z1msv2bZk4OEafk3PiUxtyqmel1cbyILHNQqOfOkVqWbQmFSb5uumOMP34Jv5fa5ZgXCZlfIB7eE+tHvKFIwHxmtEozPhCEiKSbegQ4T2gf1FvxDAYP4cSc5Je0bAty0MiB+9wVpD6LtlR8jGTyztluJxRNN1LKRfgvhCOzLvROnIYpB7Nq5ez6Osj2+iKYTAzzS+8oBa46sSqVISkEN9tRhkzLtkTaY+E6K7JMGf+e+fatYEfRyTsde9rIj6oczUCDNdzoAv6pYCkl3tisCl+PFdLKl51ZqB6fiVr1DT2kVSU+P+wt1aUKvL5zdgWZ6NHOO1HFNj9jUBg+vkSQL+yHnCSi5QPfbF+7FOXYgUwS0w5zV+I1uF6GJTVwRCS5N+ZycnD+ald9JGy7N/aHPANCsRrTGSRA4BGM6GLuXtU+uz2flxkyEEC527hgLH5yd+SF7n6CVJtqUQYt49tvc8P675i2J4J0v9Vt/tbYbJee+lCeLFl/ASg14WEx06C2Vc9+8Qirq+h0Ptf1GxFIWZZHvKWHmrDL7cMxZfocJjfs1nOk8NxRl5m1UUKwbGXIG4bCwnPFpzI7JVkSRZUGRirslaJmD7Uso02CV33+GsdUuXkD1Gfz+ID8rcnrv9csDSURSs0vn9R+5d+f2HHwiWZE/wEErPD8WKrj4oaKy2MuaArWhb7XiV2why8CMFoyseF0OkICYPUYtpAtAmYahl/oPP1YLH7dPY7IyKoCsXn1NmyUzoVpJ5Ag4D0JJeGS/T6HCOJ+tKTim8zlJ4Bb4e+0sW5xzwMEOpRDjl9xgS4liMjKBAwvwLrRvHstGgXiFXLermS3Ww8wiv6bOTBldr9Im8391O5/zQizi215nv1i+aDcrmEYK1JHIuRHSNMiG6idgJK5zvSAilPmJlto1qV7/yioqa6ErKRCuZyYM7RuzQY1KiKXXsfBeA6WeeMYPf/RFvF76F8RJyBMfYMTObP/blDz66C4XkhOfV6GRVGFuyL536finR/RpfEJyeK1rf6376lUAM4vwTcN7hJ4QkqLUrJ8w+44UbFkc787TzMPAhHoS9fDOIMicLJRno/mDHy1MwVRlws8W0BJ36YG4+6XVoaAQ0acF+fFI9/TejkomMaSeIDqTruwufLo5qIvN1th1CTqvDdO7w9yxN1LVJaywNuINEM3dOmIoK9wDYsZWLVrD754jmA96/QLaQTBEBl2GhjFjqMLjdC2mthc8Q6iZPHXSJEtpk+4/6jiidCNIIoQoao8VHYC68Rz0FME9wL49HcYd5fG8AEIbBpa1ZCcugTZLcqs0JJoNxCry77f62xDFieNxcJUJXf5j7WKnPnExstfWPRabdltuZ0mlIXiTXYdvw7T97+SsnFYX5Gt98faIimsLvnyMvs0cAwI12fwt79XxYS9OricDDVY1IOVIJi/l+c6xyYIRDlsbDs/5cf2WPBAY+oBVHukEMiZqi9C7py8HVqrtApkTOWdM4rFkH/7zL9ohKmsvsHAY9K8i5HfWw0VWNia3W4jQjhIXihj0BcWkAXBgwr3ZlExZ0RY55FviYMlJGZzzI1RzQ38ul7mJp++tC0cCTEsh8ETLOOcXr2EulCJabIpxKhN5ZP5LXMsbNWe+m6rg3TLdfLP8+SlnKsc6VqrDcauVOTWD9G+pDv6cbAJCpDiODa3MrDEcprcJykKeWLma1wW7vKPgE1r6UHOFIpuKFwY0XtnTdV4q2SewR46pdrs3Npt7lJX+3d+kedOR0Xa/4WjLQECBUPRxO+Y7qyWnlT5zltBeWdSC5y4m8mR9PpVdxufSZtBraQ24DE1E3XlsV88taYHwuH8a5eujBAZRaSlOpUhkBWrEqu9HcokBuOKo5bnx3ZZMgFti66gjOhGKQdIrvLWBaN+8CBfC2Yq8Jk5xrLg39k0asAhMu+YThbi+skkyJKWwK6WO7hPBPfb6ct7wHpIBQAyHKbZ168u05hyfaRy7J2XtlcFJNLSKudGnhEB9KIDfohjoGWxWtq+Es5P4hbl4Ymp/BBH+J5uLfnKjyX26ypldZco0SVxCdrhsXNu36kxN1cMugVuLIocjYD91xmGoyviwx2zv/brugUJDtmUCPqEy1k+Xr35jFVWl/dppkQpKdDIESHnY9aPDi+lcc6M0eoMNSCScSUzHyCurZnDENUgrwW6qVZP3Q0GIFQnWUUWzf9iUbk+5UfaJ7fhnw3G70XMHmeCyoTKmBj9j0qxR7+79Kid0snuP4knGmPgNZx1wqeJXx6UzokuGMqpSTkuZEmnqlIRSHT8bITCszfg4r8cCeYbuksqpfwpG7HER3GFrDlCcXrMd0n+C/w4uMEoUdQnEiSxXQMTnwxE1MJRA/f/zQOddBbQRFX7Z+rdt9faJyv04+lmZyXXNw2kqSsUtiT1JhDbL2RmtGAhcDcN6OjG0aRat99XDJY3ZMlFmY0Ed5UmVM3j4ahghQoHGloF8xvrQ3UCsnnslOWm0G4dczGH/FOKjm6BwbOfLUzf9wtBis0lnrMb01qWYMMLCyenf5SrL8pQ4duHxpWXfgApCp8xurC8Qj3yNzwayigvPoZq11NDmy0zISfn7IbjvSqawRXA1ThvR2dcDnABXBMrQ4D/HcqrbBCkQpuE76BPDP8OOBROiyN6yLtTg6rNPU4hJ3jEtmDbDjuYixedEr8jhdZcqQ0ryhomfc4JRjGSHstvKhbMXDaofkTSTN8Wgd/grzs6zL1+yeyNRsZxGA9PZGc2XeSVV7z9fmURLb6rjZhw4/nYe/SuuN2jmVXAjD3SAxrxaNFLHRjrmBPiUilRZRsDe4vbKhek+b9ndfqzPb7kaiAmxvmZEluF5ZmrwQH8pa4fABPJDW4nTmsu2V197cDAcXit/dzO9Lj3w4iRShO+IwoseMMGBsUHEp2n3Dgdh+NSC7Syh1BVOdFkP7xRmDEWkkntwg1+m9HgNpgLvmC3GckzOBDF+hYLOBu2ef+X/qJLAXhaoXKvbolVGemHDL473IHhaPRReV/2YCPWzGzSm4S1TDkYhY9hklllxlWvCwgBpPSVXXKSeomPil8l2i55ien3zO/SUDyolqptmuDcxaQaSHyfeGupadWv6ib7+heJm7JdvaQfVuKNEDaB0mEadyIkExH5SYdqp6N7gGcB9zVaRAE/qGHSTdKc1wM7bCRyke0+5C0wOPtUIy46+AmHdyrVFJ9wI33ISXI63BBY9tUY1M76Va/7sOJkOkqULCsYrx6SVJ0JYjVUmRr5ls1V13chlx7+clxOheyuIBTWI/M7oLlGwRybcpZhPneqKDuKA4ArHMlzzTI5qsEnt0iOPIDMpvghkeYiHUDlbLsqAaHt+H66rkeUVuN0vvKFikoZxk5m8S24l6P5eRNd6b708d1f/KW4QmYJP97smw0qtSQIu1cIrtD69tw21x8lRrKJ9CbcHd/LHFsv0AFpmZREHBSEzqH9cLRpsNJk+2gKNDP8iRz+4etTRMgiRKvPaZ04h6GEQdp5WvF+zgA9M3QZVndtmVec9ZVsfUSaa8AgAsUfxnS46rdHVgBv5BDOA8xLh72Vgz++LhPIYkNZyrQPfU//GC3vgX3ytW72rqUHcUJcubN8OpHeaSMHAozTgvRkVhemj491gI5FGvQr6TiCHUcMXCIPAJY/gNb1gw7DH8mLNooeVE8EglVMePhLkCHTK3glsIcsnMuKBlB+XNYWL8YPePPeLv4Yk+pZ5AJXP6baLBDDPN626L4vUkqKADVb9RDUGfSv3nks0N0k1vq7CQ29N+oJd2lvPW79GEwfQKlv0w1l1ovQ63fF86epEmotiTfR5Pcz3C/8Yg0+MQ3gN+E3R/JNvLRw9wxZoY3Ms2mPhD1NX97cpqEYB2JycUZz4AxbNzEV1ohCihhMdkylkwpgiGUtKiKBe375gS4u+WjUBDxaWW50MfLl9Af+7vwNSQGkrCWW3R3OEnDZxCRLdWDeVwhBo+++0x20VyPn+T1unZb/Fh5hva6LQfF7GkaeujKjCOP+lNLBC6DTGhLTBbKyrcMVGhWJCzatsCg5YC6L/KeHdWDQvTIBjmPJxXXn03iGZ1pKAVQYOmLJrgF2nemPTz9da6iMj4ctVdTaq1lrdBH80qd/38RAvrP9DEuuGhnLwKUC3O5n7C8lszLcSrx3ylWZ0Xs50QhQRrEwEmjfk5UyC3LfdHK/OVkTxAeOyCs8C2PTVQZQnvY7XPHLznKQ+VomrIyUDyl/lnQvPQlDglFvCk4At2iP9JWy2KxT4ehyYekBcXfjGptzj3xncaSJlvWBQbic+EZTzTs2htRBjizPrZlJd7a7Azr0u3B3f+0uU6kJTRwOphwK21hL2eGKnZOyXKWLeA1bt6s4Bj7Bev07/qsnPzw/+6baNVSQHQg6dUPZHYL0xColnSXmogQFqJMlu3u/4cr42hERo053OsjIfp0XH1NKz6633mWRtnLUUaf0kBD1tMZeL124K6N6kK9fuRliv077ZJhMyYZd6EOL65kxmKP+tKe4R/gOoq1TE897cRtZUDmplTQ8rFb5B0HTOm0sZ1map2CDWa8sOICYe5PJsl0PlQ8WRz7xzFs5c/sX5uo2h6AxvqVL0Thl7pp+p7tym6PmtNv09qtO1WSnM2MlFw1mpiol/vdWa5EPaAvOGB9/eRUMWzveKEFjj4O8NlgG7eYweiftijWoibbsJALu6Z9axzEqzQgCJaXT740k5ENxe1zxu0otoZk6Mb0bRPqW3o4modqAk1b2R8p762xdr6ZDLM7WuU5xK4ZvZS3tceVz45dzX2sFHFT1K9gXKlPmMzthGjtsNfRlDT6DX5sqc1p9qmSHoWjVer35kQkSGddqPkolRWDlUXUCpdQMFlgGfJ7sIjlLlkx8xZaNNUF5Fw7PaSPKvovVKV6DxCSpX13FQIc6Gl8iD7yufXl5dl2SDIH06BUWDI1/nKHAfQIWm1aNDs0Se2yJm/ptmHPbkIt3azvGueOXlMCj77Kjd7+uLv5khX+Vra/YiP7sqmnAolEUrIFTKV8FRQnilb+zzaj13hJyrZLNRGZpM46i+1D7vAJENb+877zc10hmcloGzT1TMrc6jND98RFgIUCgBC/+rNV2Tn6Ujv7B47qmjOSrsl0GVMQfoPiauDsyzQywEvNW0ijQcMUSD3JqaJKv1iBh59NnvM/fhyfL1z8QS5Z6DWPg+xfn15q2E19JS269vnD4dJrc1jc5eMA5RROYZ5v8ExzKGvnKAXP4XnURvfUdZHJG4SzEkf+nvydTiVmm21gA9DiktYlYdgEdHqJXJMDMc+PdS4C0oEjY7SqSkbHktl3VN9MscTPXoW3JMkDTIAjUFKdKUK9QNP+Jgjkt/d95yteRQDCV/lR40wwBRDTd3MDRCay+80FckB+NOTyDRVCkW78GvXCPOU/oaFrNTBec0F+ewAGA2FhB5H40SfJJ50IPe4/Gpa/KAOkD3WLweWFBHGhTXBbO3IAPOaxiv9f+nq6mluYhbc4WtdvKg5gwkHr8nnKBAgzxDR/Kp1DhjNICjVIhZsU0AQsPUHH0ahyuXDhGML7siurMqTeQpZSIiZd7kgSm/gIqt723fErZq6+yi7Epai8KZ4Pg0Ua3kqGr0T4cqUoLUcDZPjwDUJeYV2ufHMCPhwiKic963bb8xmev3v7jU+PJxti366OTDJJyuqHTeOTB1Px3gDiiDXqXnlbZHrXIvTE7+JzwoHDDpV1llV8ItuCQMmwrX/5Jx+1IbL9GreMUkSdDq2+WPivcOx2sYaDZslyynzAgRXPDo9s9fAgFSWgDok6y8uwWlkvi3l0gurd7dEJbpw/z/dDfiENhLeX6VQI2EkIVh62/MWdu0vjlOuvjr5J2nDqYy5lhATyuOEQTNDYAODuRTvA1D3//jmUAAom8mFfK1XVN1TOd5Uq1nAdtVXVePjUfF2txcNoWkQ/4W7wCzWxcpZvZwfX5RDj/XcGCHK/uULFyNn13v5B6QoRdbFQdGpNVmVqyRSK5X+7H/jTku6CdG/hrYfvBetMAbUMe0CnSl2LhPfFkGrWNxOTqGcpSdnBrhcefIJCItx3Qr2EAwy2QKLqhzDA9MKKFpnifdyX5bYrLewJbsKbtATc/zEUgC9LfHQpXaFPAfO8QhYBVwcRS/CDuSKGR7MHzJtDD3lbOd7M3qj3h8ulhTgFOE1VmgUQmB08hgWKbUHn1la7/XMP/iZPDLAbx/HTyO+LY3bJ5RbgXYmVP7Qaun0kTX/dG3Hxqv1RiKsoKUd7jEAmJt/9txYnOzQXR+avhPUKl/zW2W3AWcvfiEeIQz0LftfSfFCZbPHtgJWK3CofrF2j+SOwBafJz2T3NjmRjpDmhoLsSGfqR0lql/QQxEFKe+SoGnMddB29Ds4dqvcfBz4hDaZje0XZBShPX21lxJpggAPafrK2zmMbhpDmof1E8nPHG+DDTPPFTVs3/0JSMuU6G0lHhwezOVFK8xARhQIkfQgjuvYqKiHeBjU6P51QhqoHBtFNVU2BHM+kPfOWA9vTYdIwT07MFGGHFg263/umTDfTj0eCnAnPwCB7ERktLhUyOuhAm8QDO2qBKEjYGPZ3ScRkNMimtn4RwQalAHYzFPEF3P0JeoaSRC+BJ2sawEaju9NOkaFbCJFV9exzmG0uxZD+NuEFK3fpgtAY0cJKs2mr+XCkhMpk48prueYwQlrkDp9bDKWD+Qgpk7hUNDA77YAjV6e9kM7tyvJ6uMu8MpXqh36jCdH9h/CjnnFWsLUwM+6zM9L8mqwk09SWDZ1DT34v1WoxcMgN1OX2A5S3BPTUAsipV/nqRJ8v4SHCq1DJ/7PLpGJf7rY5ejkknVflflQz9iUsowPUV+lqVvVkawYpXPvT6lDHaPbKDK4375BfMNcDrNi6M6HSDFxYkHU6AlWRP7GDjsWBh8em7B09eXLKtrXJS2WlGoZLR3SJEdd54DSUurxehpLI9xxrXIKfyyueZFQzt8OjSEF9l55QBZTnqyYncelhD5YyAr5q6/xO29T80BCOYjnDtFSbIOeE6Mu7AOTlPKiIHPWrzAzAo7720wo7+tBzoYiyqdbvQOu+Nmiaxi1Ap3WVUEyziwb0q3TOPmppi77p6Q/UnMgVkQlKVv7hZ4LE3hi1a7amOpNJeEVjhH3acSPb7M9YnukIWMClPa5E0Sd+JCi8BOLsaOiP9ayNePBjEj0o2UtbpzH3B+RNnVUuEaz/vlcBhdoyOBSk7RDUMfnSQyx/2g1bNdtArxSFKJVVqWgioL8UDY1sI0zn7LkoI+ZMfPLWfajKwRLy99SKiqhryTkymbir5LyIVsmdE+QDWp9xAiOJAEBLpyIFzA9FdkvlhsPqa5FC7WaZQNrtgpFr88isdAFUgnVoT8aad7izCd1lCnc46HiPdEnzKOlCnYFbSyrdOeqcrecGOD2Ny+nLXzYd2QcjpyfB+ykS/bxU/Nnx7Eb5s/Jt1bZIJKPsMhExJ/83RH5cohaoCLbUSlUxyN41O+cD+HKxkuBNdoiO8vkP4rCiq3enSrf8WTjOjE/bkRGfNencrFWI03Tdrfz+kEA7EkHubaDOXYFG5GFyZZ2PvkfJyf8NyVvfXod0zUpNW151eFyTLgLBLBa7IQ+aWUBn1eE237lbt2f9ND6ui8MJ+MnVK4/Hs4Td3tP17s3EpMreD3zz3p7DjpNftAJvOyAMBY9nOtTBgbWvWI6q/vBJi1iAaqpz6hr3ZOarNT8OQBs6GCungFl6HjJro9bvJD7Lc+wDNklADajfTwXCxvzMW9AQSR3XjnI9S2MVhm1R1W1lI8Yg9k5o8Gpoo0WS8DN+dUVG6C/M23Xf6pqADgokmqLQCisIZ0jpJKiB0Sw8/Ew3jS/z19aB1mM6G6pAbPCVfevzyC7oMLOTZ2aAAsykMrEEyIeBS/k9PnZnRcewioxw9/Cywl0JB5LwA7/Dr5uUqz9YTMgSzUr0LEoTdvQyFhvK4Rz/On1F3uSE0WOYL3q83goLCeAWYsxaAS4DIF0/Hxj1BmJUEByqQeloNw7Fp1lpBTK/zPRBdeVs2ZvOzAnAHChhl4Z+emYFy2HY3XKBtQ+/3juGTubTuvBIDX5L9+NKe7C5tBKL0p6aTEFxyY7V2q4ijkOthxA48H7o1EJMv9yJwQXDFHz3TlPoDQImBES17pA15Skvh6lzxMLQ4Z3QDVUU/5YCP2uHAOv4tJoqW7eCXA2iik8yO82M18Q1D/1jL3r8tdT6GpEifdjp6bqvB9mxS+6kBK9YnHl34wNccY4icweyV1ON4PUFJX+s+RO4TOt3sayiCzOcrm9WtWpzCuzhBnZOWVL6oy6GX9C6ORB39r3kALtIbLu/v7K7KszysxAU/jpI1ucaXg0SFV0nBF5y/RoAnZT0tsDnlQ/O5qUFau4y9gPcpQggbMpBLJqEQ8ISBWzdoKoPtmLPLFaoMFOVxeE+YBMp8dHdpCd3FLFAvuwpQnkPq89sYF71OvaYz57N3IcwuK1fvzeDl/5p7ea335seMZvT/rh0sRR6XGf37oxp9K5JB9VJLBE+S8O0zrm0SkPCXKozTz52niV4w+FI9JMFjVTkX8f+uw5T45FwUkXiuybMkEp7g4SZpHYU1mAaKbrk2e9ezy29LyryW8/q53svMhxk8swWcsJJl0LVnz/e2ZnJHPreP5+4oHztnT2iSK9fZZ8RKRnRolYGClGDq/c2XhqCqCH6VH7TrjuvsKfURdF1EFTzmqi5zjNIHkG7Kp7Dqi6DF3YmncXYL+v/sX7Oe9XoM52C5hy0CaK1eZnRdBLB5a6TdDtTTgO5lOxEfhvGvg7qffidI4rN9yjC4VXcFXnqQB22A4Jjlux5X569oW02NYAhpQLzw21+5XAxtRdKNcwwfg4Y2EEDDbEXuOnIMTYRSSbufcMsAPjdO8AbKAOC1muWUMMqimVCAqg3e3YzNhFipN8yhLwfB9cI2F8sSNDpVRu1lGi3bdVJ56d/xs2Gh4DUUFD+GZC0eHhTLnzvz/0pHsNISj/cZBTgf2VWl2IReL2DTmPx5urrlpZcjmdGLqjlnZbiu6hSWt2IXhboNJoQdGAHO1x0Qzo4Y/9tASCDryohU7i7REfg6qzFSQWf44RRXvH/K9YAvhd8y1lD/pZh2H4PO1UEFNf2q0ym8cbYCnyz84kCq3J0RHzsX4w7IWVuvW6cKD8bStTtBHwspRJqSvs/thQkwduXmCCznPPrHpod7DRT4Qtu/ESq26+giJ5aZuSaEF70IabCVYnZ4Nhv8PCuGAAXVcNHaebcIIy+61+CCojhjREB8FNrKVlwTi2xhH4HFcn4BIPZToC+avRh9m4YC9SWfwET3RThJ3Qv+hmaK8WvrpndT0HDlDUf+vo5W53/jwPjlYmxNVR6kan4nrufUtJVzJoULesJfziBxsI9B3kxNbpEKCIpvJamUA7WKM4CGC9o+IwQLBlvNpZ1DX/50Ozm3IsUgqm2POfXbc7La6N2KDZl7uywGptgxOioWu/wAP2Gr4txkyfG2xJW+zry4YlC9xyygqcHOOCIkdfsD9+vgKwgaC/vuOdtls8vAtS5NzHQarkkDLnJAPn/8qBh4hUAMtXWdMDj/qfT5ne0ewIi0LmkTZ5XE/AXXXEylHCjvECqdxRhCTFiumFk2fkn8a4vnh16ipBF3VDpx6Qi9QEE25zUDi2GHApYr9EKecYSymJOsXslBrpy/qf+koYwDktCBPGwaXGBqTBBFArxSaLx4x6svfDp5uBY+T18e7P3JetYD98Fej9oIv3eHNgOrDlLnkjQX509P8iZn7EJBsrzeMh9+nS02BubBsrYBz4v9NC1YaHdtQWwfX9GzKYIeFEC4iiLnjBwHre0YQwWM/jyj0CZWLmAsDz58lQuh7/L0jgJp6nV5SFbE9luxb6l1IaOlIQHAJHSfjnWa8JpZ61Cfob1erasDVhxarZ2nenO8if7gHwT2ffK9XQbbREJzLBN3ELCwyAX7bm98R9hL0rzrlIDYN6hRqbJ9mTXDO1ZJ2G1BmpaUCm1Dnbohci9Jm3K6dRE25sZVxXqSkXZ5/CTwCyLw1qZHrOeOWt0C+dQg83F6daol5iN63bWliXFzLI7dbrimrAE+5SnLY8gueVUOxUO4s4jI3hFiGpz8iBm8kAM1GRXUKeWRsPpJpsjfKYWfrGy8FnXOArF6X2HdJ/c0w5RCPJoO+JRiq699sPmGQNtlmNQP60ZkBegFoGATjmP1jF3pdAYXK5Sgt77kbwqkx3C7Ij+bBTTo4fsyJgmyLnfDprftjEcFWQvvi1fXOs1aawZGtXSWJhOOKS9u/7+px89KwyZBxaW6JIiRqXL+8Uf7bYsIkMYNMt71F+owhqkGfbDFT/G/xERIFnFYCuyNuZLmkYqU8gXXsLogzyZ4sTwa/tO/+eBYrHShyqEfl3yd98v9K8oR7Bvs4v5plNSXzSTfKeiLVdQ0TuIccFifhFrmd90md1W8mZUqOJVNXeegLZRvueqUSOTpzfUd4E56UwdirGsPncNxXIpmqXwh/JdQ/pK9XMdQCR9sKw0KVLmS6fHYS6zdkvQGK1b5O7QAKO+EdOXMkd+IjC9pSwovR7bOIzxHWZc8kdtQYaHMuH3ikUvh7Kn0x+/NRv7vvQdtpNIkFbkeveJksOIp0fThtHeNAKpluhAH3e8Fc1iDzLY3cCUg+ndK6juN7SAKOJL8xpqMvfz19rfhXtB42ntcTvlvIQsJKwSdBVVXKiDzQr9K+S6KjUoTdyZ7TQEEb+yl3doYCuLsG7rDbVCK/r85934GQ03owJ7eC8graHTpGldwF14rGo1XRlm2kPh7jMqUkWM64uZu5Q2SZZAjoaz8oULRHtTFYDK9BFCjsQ+TkVpRcDp8kd2Szu7cQFWaTdEjJg0YbVmCH1WnNGLW9YLC62W71QxzprbJVyxh6WEaoXbQQMV3j50nAb2UPl5FkqvWjNNEj1PiI5Z+oxEuehUriaN9dmnbErdekYvzIn0TEYBiR2wJMiETVNQnJJSzR2coH+GgKKbQH1tBXHLzVToXJkLqP/fwtKF0he/f90Aqw64nSI7jJd/0D/TaACI+ZunUgaJf0z/6hbyCMCD02w1jqUcvrQMFxWZDx3Sc65UMsB3maRTBvL9+Q4O04F8BomT771gA84gfqXF2li+SGtrIOyoICrA1XlWIgSvI0AorRCowpllSkBP5YWnuMnoxAfToukXi7kZOotyvbseyTu3pCyZUNHBZYlYaXEXDPfZqTYGHjnFWLsR1J7woGlHhqeYrd5Qr72F93+faAXJtCakRJeJkwNYqH3rjEbLJqkhYleG9RZJnig9K4T8jbpAVmyUYhIBaMTHasGDdQv1e6neZiTOVSSqz0r4xm1gjeu0D6ybLMtBnD4A6Sw1yrJ9eGo75NdZkP2Ask26aYn/nIHYcpbwe7KMc8ZsF0boKdv7+aNhYRP3RM9lWVzMYhe+fm9TJS99rfJ+behE2cxWr1sgnCGfkaAGuLVSpUXrMPbWDQdg9cwTXT803kq8xTyj1Jhni0+4RHXYg/cQCenKaV2CI3y4iahlxaGY0WTd30dmfYWPfMBqEQudJ+z2z1IRguff7R57SQ9dJh8DkrvMzhz1v6ongjY1aWKFxgJMM9W2Y6aOK+SfLgWV/+mDVNcZpr/KYfEduoTqQY3HgwTq1ZjDZtoDqXSjRmHTPk0dhBjCIgQTwTHUbxkoVUQ+LUcWOwgEMqrJipEfdwWcaujmXzj96v54zv5h5rR1M+E8bUVeXnyI1lL1BaP3sW6tE+/OhXfQMPPDAk53Uw9tuQWKYt/eo/XFFQ6iUE5M3dTnZfbQVFd1/ELqajSLADJLqBF6IIdYul1l8IW1AUbjRvfncw2RkhYoRrgaP05cxr7FYgQnkAmfCn+9xdoCoyUUTxkf6BIMcF/IlxrX4o4edciQXGK/mLqbE+yvKh4Qb/mUNE5oG4hAL/xb76pdbiRRfh5r3ijv1OpMy4CGjGF3hzHMg4h5U63Jfte+npzpawsm0EhRPblAdDzsd4NIgqIqrNzBhHtqPOpAmpJuym3NQCT7kKAnshqpaceVnYOWPsPFFN0ZqcvxRTUSAId5Xt9plPsg6SPeEih9X3ydsQcvEFsRC5l9xbvuGXrFxazU1zgPaxhK2FjhCFXdQLf24YA/7m69BR/SDE8VMKkWqYeRRIAJ/Z26UpHQHXQcFlpV7bwcW0DP7Kk1hzUo/sd2csPPdE2QxiAkNwa/bBWHGtO6t7rLifRc/VAqqs4F/2tned1fwP0hJ+cAJ+wFhP6pR7zCuHIjMdsKeqUA9L6awO/5kYdUhHqrMoWLaeaKS9a7YJEHzznVgln3QG+Y40+AUvKVHT4L3GyW2t8I3TWdxJxaKNJtrQkw1+1tHXk05LoAN1i1ZZZ+EBu85x4Wd6SVePD0Zf6vwTfh+A/bx9TGpyfis6cmtOzk5+/PqL6+erYNqwC2pQBgXhkUw+kzGxsI+btMz58gLzGirIS5XP9s4FW7VMuJVOltHFwLt3Dc1j9xmZ6ZnQ3l0exyPgYLX2CELepbGOMP81mekfkB6JsBTy/pXjccD/ujhjxhSj7KNkuAkUD8hHpB1oCSEgzo8o2Yfv3liUoaK8EI7PHra3R8z0rd0JbUXqsCoGEg8x1TJOoxemQFfSL5/tEQU5xU6WCZl428cMM3oO8YdVFRTkorN8FBcJUy2vzPjmJuve0EL8gMA9xMuns0NtAHSGLhUVz9oIQhf1znYVkJ3dOKBhgyxbdbSG3CYxYGcaUArG+1A8bkUtshMrsEVpyLx3pyz8zBAVvTr3bPQqgMjh3/8HZOPDUFvK8NR3xUq2pBXYj+AHzEYZZgK1pdxzY+XzY54h1Uf6R7Q9cl9wKHMq09LzKsYXIMWcAWIkYYsjNY/J6DLUa/GsJO5y9IeX7OO5IJ+r0ZtHHUUCpN5ayqfk3MrfICZ+hGgO/gYYPpx21tvMI8Gy6uwL4J9/CwupejM09KQDpAq6E3RXyEzrcw4SOfXMVdx631guZGSUBTkdofpChliF1d7PBQz8EW7vRmrJf2778zHEFL9cCuc5qFPovv0P0LHEswxFjt76rrOcItOKtdfU/H0t6Z3epMcznUZ2e47Juj6pQOS3TfqkHCZrjuvDB8nv12S+4V8xKpuny8TRrwgvafDuKMePa7LeK/CfdYoPy0SBHNSsmk+MKMHLuroW+zznVYmK5h01+3yu4NsBeoy3cFfxMCI5JUNgSD+hQGPVzQh1SfSDu4W1noh6FuOSFm/oitoVLr3k/3KnjK8knWgYYr1lmuzQiDuKrfUCpOWNtx+QyUuKtgnmQcMwP6jK5Kiy3XNPy7wbZlM2sWdVkA5K9zfZx63S2CgWPV+zxQX/T9LYCQaeTssnq5vwxctqOoQTV6O/T8RXDrCZPlNZu/VAhVBVsVpmlUnUzmgovont8lFU5c8rB1fvVBxbPwQzGNStIbSYHHz2rm2jH5JJECKcaPvka75qSl9skDh1W6bPxx/ynWy+HP21XCkOeiBzqP9/72+WR1EVGGG9qXlKIxeEaHdloAOQ0bkw58nBacfGWW6nz0c2Bax5cYPuxfVqoMGrFXzYSsarABom9KQAYlKo8G+rbp6Oka4mLG/9X3QRP/I1U8RRdsVHvP9hp0cRn5ZB1duJB+6AK/cb+shr7/t+l1/xQxeAgcW0bGm32hWVdubyQgcNUKkFd7ZLAi/sC3/GWvRCdZelMFN79VVPoniqOGTthHamrNrILOcTiP+st1wETnabL27v7x+PVPHdyjeHgCunsuORVdP8/m3qCsTxUaTPuihOlAFwpcq/vcJjQD8HJX5C05yWMsMaeRs7rmeKkvslrnRg28i2ALnyUNkyZCG64L6xjTR2DUSfpyNJzyaVWALU3+nHVUcgoChGwv5utMSqro8PHmZ0Doa3CJ8tDTxJTtrI2ryWDV23hJYfGP3Ljou9dL9B7rZLb/5Nkg32Z01G0ORwR9wwVqWzfa8IwLi/rgvvxKBQDgC8Cgp9I8bCKPyPHDqY4XsglsD4Ic4z9W4fbaNm1WNMSgbo8gs+ESsh+l8DOyy46OAZv2wdioyQdsCQQCaGuswnLI/qZxkT9ZEvPC8iTqybkLUzY4gTdnc+fYY6GTrvDp8jo3b321P0ykmFexroG7MNbazKogTejv1qVu0vdNdw3EsqWuV5Lbw2RZlbxC4TRqc9sfLHz9bho+7dhjlFMbBOMbt+SvTgqH8QVVHuqVcjaHdjJaherbZjhdo3SMvSBNryqUXLzml22xJLXKYXqHMuosqOHYoCsWv5ZEMRFFEBZL8qJCqUS2NvDDRdB0iE5iPurBayEi/bGIFsl7FcQANCS37UAEfmtRFd+j9VdlBFHk3ZCb/VUYlMw5VLarm3t+claNcTphEheS9sy/VAlV+VPmnOE0qidJ7bqQ/5NKUoVpy3hRd+JmhmwbnRX4QpCo7GoSbjasXfyxLRScCXqV08BnhSqrWI83rB7cFVo3K+2jmS52cynNXndAGUh9Xb8+kULkVxh9l7AGIErgOSJ0izABD/GxD77BKz84n4L6gv7byeqqZ7/0AmXZLZ1oA1Pr
Variant 0
DifficultyLevel
547
Question
Which expression equals p4?
Worked Solution
|
|
p×pp×p2×p3 |
= p×pp×p×p×p×p×p |
|
= p × p × p × p |
|
= p4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $\dfrac{\large p \times p^2 \times p^3}{\large p \times p}$ |
Answers
Is Correct? | Answer |
x | 2p × 2p |
x | p2p3+p3 |
x | p5p |
✓ | p×pp×p2×p3 |